Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved. |
| 3 | * |
| 4 | * This software is available to you under a choice of one of two |
| 5 | * licenses. You may choose to be licensed under the terms of the GNU |
| 6 | * General Public License (GPL) Version 2, available from the file |
| 7 | * COPYING in the main directory of this source tree, or the |
| 8 | * OpenIB.org BSD license below: |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or |
| 11 | * without modification, are permitted provided that the following |
| 12 | * conditions are met: |
| 13 | * |
| 14 | * - Redistributions of source code must retain the above |
| 15 | * copyright notice, this list of conditions and the following |
| 16 | * disclaimer. |
| 17 | * |
| 18 | * - Redistributions in binary form must reproduce the above |
| 19 | * copyright notice, this list of conditions and the following |
| 20 | * disclaimer in the documentation and/or other materials |
| 21 | * provided with the distribution. |
| 22 | * |
| 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 30 | * SOFTWARE. |
| 31 | * |
| 32 | */ |
| 33 | #include <linux/kernel.h> |
| 34 | #include <linux/moduleparam.h> |
| 35 | #include <linux/gfp.h> |
| 36 | #include <net/sock.h> |
| 37 | #include <linux/in.h> |
| 38 | #include <linux/list.h> |
| 39 | #include <linux/ratelimit.h> |
| 40 | #include <linux/export.h> |
| 41 | #include <linux/sizes.h> |
| 42 | |
| 43 | #include "rds.h" |
| 44 | |
| 45 | /* When transmitting messages in rds_send_xmit, we need to emerge from |
| 46 | * time to time and briefly release the CPU. Otherwise the softlock watchdog |
| 47 | * will kick our shin. |
| 48 | * Also, it seems fairer to not let one busy connection stall all the |
| 49 | * others. |
| 50 | * |
| 51 | * send_batch_count is the number of times we'll loop in send_xmit. Setting |
| 52 | * it to 0 will restore the old behavior (where we looped until we had |
| 53 | * drained the queue). |
| 54 | */ |
| 55 | static int send_batch_count = SZ_1K; |
| 56 | module_param(send_batch_count, int, 0444); |
| 57 | MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); |
| 58 | |
| 59 | static void rds_send_remove_from_sock(struct list_head *messages, int status); |
| 60 | |
| 61 | /* |
| 62 | * Reset the send state. Callers must ensure that this doesn't race with |
| 63 | * rds_send_xmit(). |
| 64 | */ |
| 65 | void rds_send_path_reset(struct rds_conn_path *cp) |
| 66 | { |
| 67 | struct rds_message *rm, *tmp; |
| 68 | unsigned long flags; |
| 69 | |
| 70 | if (cp->cp_xmit_rm) { |
| 71 | rm = cp->cp_xmit_rm; |
| 72 | cp->cp_xmit_rm = NULL; |
| 73 | /* Tell the user the RDMA op is no longer mapped by the |
| 74 | * transport. This isn't entirely true (it's flushed out |
| 75 | * independently) but as the connection is down, there's |
| 76 | * no ongoing RDMA to/from that memory */ |
| 77 | rds_message_unmapped(rm); |
| 78 | rds_message_put(rm); |
| 79 | } |
| 80 | |
| 81 | cp->cp_xmit_sg = 0; |
| 82 | cp->cp_xmit_hdr_off = 0; |
| 83 | cp->cp_xmit_data_off = 0; |
| 84 | cp->cp_xmit_atomic_sent = 0; |
| 85 | cp->cp_xmit_rdma_sent = 0; |
| 86 | cp->cp_xmit_data_sent = 0; |
| 87 | |
| 88 | cp->cp_conn->c_map_queued = 0; |
| 89 | |
| 90 | cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; |
| 91 | cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; |
| 92 | |
| 93 | /* Mark messages as retransmissions, and move them to the send q */ |
| 94 | spin_lock_irqsave(&cp->cp_lock, flags); |
| 95 | list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { |
| 96 | set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
| 97 | set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); |
| 98 | } |
| 99 | list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); |
| 100 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 101 | } |
| 102 | EXPORT_SYMBOL_GPL(rds_send_path_reset); |
| 103 | |
| 104 | static int acquire_in_xmit(struct rds_conn_path *cp) |
| 105 | { |
| 106 | return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0; |
| 107 | } |
| 108 | |
| 109 | static void release_in_xmit(struct rds_conn_path *cp) |
| 110 | { |
| 111 | clear_bit(RDS_IN_XMIT, &cp->cp_flags); |
| 112 | smp_mb__after_atomic(); |
| 113 | /* |
| 114 | * We don't use wait_on_bit()/wake_up_bit() because our waking is in a |
| 115 | * hot path and finding waiters is very rare. We don't want to walk |
| 116 | * the system-wide hashed waitqueue buckets in the fast path only to |
| 117 | * almost never find waiters. |
| 118 | */ |
| 119 | if (waitqueue_active(&cp->cp_waitq)) |
| 120 | wake_up_all(&cp->cp_waitq); |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * We're making the conscious trade-off here to only send one message |
| 125 | * down the connection at a time. |
| 126 | * Pro: |
| 127 | * - tx queueing is a simple fifo list |
| 128 | * - reassembly is optional and easily done by transports per conn |
| 129 | * - no per flow rx lookup at all, straight to the socket |
| 130 | * - less per-frag memory and wire overhead |
| 131 | * Con: |
| 132 | * - queued acks can be delayed behind large messages |
| 133 | * Depends: |
| 134 | * - small message latency is higher behind queued large messages |
| 135 | * - large message latency isn't starved by intervening small sends |
| 136 | */ |
| 137 | int rds_send_xmit(struct rds_conn_path *cp) |
| 138 | { |
| 139 | struct rds_connection *conn = cp->cp_conn; |
| 140 | struct rds_message *rm; |
| 141 | unsigned long flags; |
| 142 | unsigned int tmp; |
| 143 | struct scatterlist *sg; |
| 144 | int ret = 0; |
| 145 | LIST_HEAD(to_be_dropped); |
| 146 | int batch_count; |
| 147 | unsigned long send_gen = 0; |
| 148 | |
| 149 | restart: |
| 150 | batch_count = 0; |
| 151 | |
| 152 | /* |
| 153 | * sendmsg calls here after having queued its message on the send |
| 154 | * queue. We only have one task feeding the connection at a time. If |
| 155 | * another thread is already feeding the queue then we back off. This |
| 156 | * avoids blocking the caller and trading per-connection data between |
| 157 | * caches per message. |
| 158 | */ |
| 159 | if (!acquire_in_xmit(cp)) { |
| 160 | rds_stats_inc(s_send_lock_contention); |
| 161 | ret = -ENOMEM; |
| 162 | goto out; |
| 163 | } |
| 164 | |
| 165 | if (rds_destroy_pending(cp->cp_conn)) { |
| 166 | release_in_xmit(cp); |
| 167 | ret = -ENETUNREACH; /* dont requeue send work */ |
| 168 | goto out; |
| 169 | } |
| 170 | |
| 171 | /* |
| 172 | * we record the send generation after doing the xmit acquire. |
| 173 | * if someone else manages to jump in and do some work, we'll use |
| 174 | * this to avoid a goto restart farther down. |
| 175 | * |
| 176 | * The acquire_in_xmit() check above ensures that only one |
| 177 | * caller can increment c_send_gen at any time. |
| 178 | */ |
| 179 | send_gen = READ_ONCE(cp->cp_send_gen) + 1; |
| 180 | WRITE_ONCE(cp->cp_send_gen, send_gen); |
| 181 | |
| 182 | /* |
| 183 | * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, |
| 184 | * we do the opposite to avoid races. |
| 185 | */ |
| 186 | if (!rds_conn_path_up(cp)) { |
| 187 | release_in_xmit(cp); |
| 188 | ret = 0; |
| 189 | goto out; |
| 190 | } |
| 191 | |
| 192 | if (conn->c_trans->xmit_path_prepare) |
| 193 | conn->c_trans->xmit_path_prepare(cp); |
| 194 | |
| 195 | /* |
| 196 | * spin trying to push headers and data down the connection until |
| 197 | * the connection doesn't make forward progress. |
| 198 | */ |
| 199 | while (1) { |
| 200 | |
| 201 | rm = cp->cp_xmit_rm; |
| 202 | |
| 203 | /* |
| 204 | * If between sending messages, we can send a pending congestion |
| 205 | * map update. |
| 206 | */ |
| 207 | if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { |
| 208 | rm = rds_cong_update_alloc(conn); |
| 209 | if (IS_ERR(rm)) { |
| 210 | ret = PTR_ERR(rm); |
| 211 | break; |
| 212 | } |
| 213 | rm->data.op_active = 1; |
| 214 | rm->m_inc.i_conn_path = cp; |
| 215 | rm->m_inc.i_conn = cp->cp_conn; |
| 216 | |
| 217 | cp->cp_xmit_rm = rm; |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * If not already working on one, grab the next message. |
| 222 | * |
| 223 | * cp_xmit_rm holds a ref while we're sending this message down |
| 224 | * the connction. We can use this ref while holding the |
| 225 | * send_sem.. rds_send_reset() is serialized with it. |
| 226 | */ |
| 227 | if (!rm) { |
| 228 | unsigned int len; |
| 229 | |
| 230 | batch_count++; |
| 231 | |
| 232 | /* we want to process as big a batch as we can, but |
| 233 | * we also want to avoid softlockups. If we've been |
| 234 | * through a lot of messages, lets back off and see |
| 235 | * if anyone else jumps in |
| 236 | */ |
| 237 | if (batch_count >= send_batch_count) |
| 238 | goto over_batch; |
| 239 | |
| 240 | spin_lock_irqsave(&cp->cp_lock, flags); |
| 241 | |
| 242 | if (!list_empty(&cp->cp_send_queue)) { |
| 243 | rm = list_entry(cp->cp_send_queue.next, |
| 244 | struct rds_message, |
| 245 | m_conn_item); |
| 246 | rds_message_addref(rm); |
| 247 | |
| 248 | /* |
| 249 | * Move the message from the send queue to the retransmit |
| 250 | * list right away. |
| 251 | */ |
| 252 | list_move_tail(&rm->m_conn_item, |
| 253 | &cp->cp_retrans); |
| 254 | } |
| 255 | |
| 256 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 257 | |
| 258 | if (!rm) |
| 259 | break; |
| 260 | |
| 261 | /* Unfortunately, the way Infiniband deals with |
| 262 | * RDMA to a bad MR key is by moving the entire |
| 263 | * queue pair to error state. We cold possibly |
| 264 | * recover from that, but right now we drop the |
| 265 | * connection. |
| 266 | * Therefore, we never retransmit messages with RDMA ops. |
| 267 | */ |
| 268 | if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) || |
| 269 | (rm->rdma.op_active && |
| 270 | test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) { |
| 271 | spin_lock_irqsave(&cp->cp_lock, flags); |
| 272 | if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) |
| 273 | list_move(&rm->m_conn_item, &to_be_dropped); |
| 274 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 275 | continue; |
| 276 | } |
| 277 | |
| 278 | /* Require an ACK every once in a while */ |
| 279 | len = ntohl(rm->m_inc.i_hdr.h_len); |
| 280 | if (cp->cp_unacked_packets == 0 || |
| 281 | cp->cp_unacked_bytes < len) { |
| 282 | set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
| 283 | |
| 284 | cp->cp_unacked_packets = |
| 285 | rds_sysctl_max_unacked_packets; |
| 286 | cp->cp_unacked_bytes = |
| 287 | rds_sysctl_max_unacked_bytes; |
| 288 | rds_stats_inc(s_send_ack_required); |
| 289 | } else { |
| 290 | cp->cp_unacked_bytes -= len; |
| 291 | cp->cp_unacked_packets--; |
| 292 | } |
| 293 | |
| 294 | cp->cp_xmit_rm = rm; |
| 295 | } |
| 296 | |
| 297 | /* The transport either sends the whole rdma or none of it */ |
| 298 | if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) { |
| 299 | rm->m_final_op = &rm->rdma; |
| 300 | /* The transport owns the mapped memory for now. |
| 301 | * You can't unmap it while it's on the send queue |
| 302 | */ |
| 303 | set_bit(RDS_MSG_MAPPED, &rm->m_flags); |
| 304 | ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); |
| 305 | if (ret) { |
| 306 | clear_bit(RDS_MSG_MAPPED, &rm->m_flags); |
| 307 | wake_up_interruptible(&rm->m_flush_wait); |
| 308 | break; |
| 309 | } |
| 310 | cp->cp_xmit_rdma_sent = 1; |
| 311 | |
| 312 | } |
| 313 | |
| 314 | if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) { |
| 315 | rm->m_final_op = &rm->atomic; |
| 316 | /* The transport owns the mapped memory for now. |
| 317 | * You can't unmap it while it's on the send queue |
| 318 | */ |
| 319 | set_bit(RDS_MSG_MAPPED, &rm->m_flags); |
| 320 | ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); |
| 321 | if (ret) { |
| 322 | clear_bit(RDS_MSG_MAPPED, &rm->m_flags); |
| 323 | wake_up_interruptible(&rm->m_flush_wait); |
| 324 | break; |
| 325 | } |
| 326 | cp->cp_xmit_atomic_sent = 1; |
| 327 | |
| 328 | } |
| 329 | |
| 330 | /* |
| 331 | * A number of cases require an RDS header to be sent |
| 332 | * even if there is no data. |
| 333 | * We permit 0-byte sends; rds-ping depends on this. |
| 334 | * However, if there are exclusively attached silent ops, |
| 335 | * we skip the hdr/data send, to enable silent operation. |
| 336 | */ |
| 337 | if (rm->data.op_nents == 0) { |
| 338 | int ops_present; |
| 339 | int all_ops_are_silent = 1; |
| 340 | |
| 341 | ops_present = (rm->atomic.op_active || rm->rdma.op_active); |
| 342 | if (rm->atomic.op_active && !rm->atomic.op_silent) |
| 343 | all_ops_are_silent = 0; |
| 344 | if (rm->rdma.op_active && !rm->rdma.op_silent) |
| 345 | all_ops_are_silent = 0; |
| 346 | |
| 347 | if (ops_present && all_ops_are_silent |
| 348 | && !rm->m_rdma_cookie) |
| 349 | rm->data.op_active = 0; |
| 350 | } |
| 351 | |
| 352 | if (rm->data.op_active && !cp->cp_xmit_data_sent) { |
| 353 | rm->m_final_op = &rm->data; |
| 354 | |
| 355 | ret = conn->c_trans->xmit(conn, rm, |
| 356 | cp->cp_xmit_hdr_off, |
| 357 | cp->cp_xmit_sg, |
| 358 | cp->cp_xmit_data_off); |
| 359 | if (ret <= 0) |
| 360 | break; |
| 361 | |
| 362 | if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) { |
| 363 | tmp = min_t(int, ret, |
| 364 | sizeof(struct rds_header) - |
| 365 | cp->cp_xmit_hdr_off); |
| 366 | cp->cp_xmit_hdr_off += tmp; |
| 367 | ret -= tmp; |
| 368 | } |
| 369 | |
| 370 | sg = &rm->data.op_sg[cp->cp_xmit_sg]; |
| 371 | while (ret) { |
| 372 | tmp = min_t(int, ret, sg->length - |
| 373 | cp->cp_xmit_data_off); |
| 374 | cp->cp_xmit_data_off += tmp; |
| 375 | ret -= tmp; |
| 376 | if (cp->cp_xmit_data_off == sg->length) { |
| 377 | cp->cp_xmit_data_off = 0; |
| 378 | sg++; |
| 379 | cp->cp_xmit_sg++; |
| 380 | BUG_ON(ret != 0 && cp->cp_xmit_sg == |
| 381 | rm->data.op_nents); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) && |
| 386 | (cp->cp_xmit_sg == rm->data.op_nents)) |
| 387 | cp->cp_xmit_data_sent = 1; |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * A rm will only take multiple times through this loop |
| 392 | * if there is a data op. Thus, if the data is sent (or there was |
| 393 | * none), then we're done with the rm. |
| 394 | */ |
| 395 | if (!rm->data.op_active || cp->cp_xmit_data_sent) { |
| 396 | cp->cp_xmit_rm = NULL; |
| 397 | cp->cp_xmit_sg = 0; |
| 398 | cp->cp_xmit_hdr_off = 0; |
| 399 | cp->cp_xmit_data_off = 0; |
| 400 | cp->cp_xmit_rdma_sent = 0; |
| 401 | cp->cp_xmit_atomic_sent = 0; |
| 402 | cp->cp_xmit_data_sent = 0; |
| 403 | |
| 404 | rds_message_put(rm); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | over_batch: |
| 409 | if (conn->c_trans->xmit_path_complete) |
| 410 | conn->c_trans->xmit_path_complete(cp); |
| 411 | release_in_xmit(cp); |
| 412 | |
| 413 | /* Nuke any messages we decided not to retransmit. */ |
| 414 | if (!list_empty(&to_be_dropped)) { |
| 415 | /* irqs on here, so we can put(), unlike above */ |
| 416 | list_for_each_entry(rm, &to_be_dropped, m_conn_item) |
| 417 | rds_message_put(rm); |
| 418 | rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Other senders can queue a message after we last test the send queue |
| 423 | * but before we clear RDS_IN_XMIT. In that case they'd back off and |
| 424 | * not try and send their newly queued message. We need to check the |
| 425 | * send queue after having cleared RDS_IN_XMIT so that their message |
| 426 | * doesn't get stuck on the send queue. |
| 427 | * |
| 428 | * If the transport cannot continue (i.e ret != 0), then it must |
| 429 | * call us when more room is available, such as from the tx |
| 430 | * completion handler. |
| 431 | * |
| 432 | * We have an extra generation check here so that if someone manages |
| 433 | * to jump in after our release_in_xmit, we'll see that they have done |
| 434 | * some work and we will skip our goto |
| 435 | */ |
| 436 | if (ret == 0) { |
| 437 | bool raced; |
| 438 | |
| 439 | smp_mb(); |
| 440 | raced = send_gen != READ_ONCE(cp->cp_send_gen); |
| 441 | |
| 442 | if ((test_bit(0, &conn->c_map_queued) || |
| 443 | !list_empty(&cp->cp_send_queue)) && !raced) { |
| 444 | if (batch_count < send_batch_count) |
| 445 | goto restart; |
| 446 | rcu_read_lock(); |
| 447 | if (rds_destroy_pending(cp->cp_conn)) |
| 448 | ret = -ENETUNREACH; |
| 449 | else |
| 450 | queue_delayed_work(rds_wq, &cp->cp_send_w, 1); |
| 451 | rcu_read_unlock(); |
| 452 | } else if (raced) { |
| 453 | rds_stats_inc(s_send_lock_queue_raced); |
| 454 | } |
| 455 | } |
| 456 | out: |
| 457 | return ret; |
| 458 | } |
| 459 | EXPORT_SYMBOL_GPL(rds_send_xmit); |
| 460 | |
| 461 | static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) |
| 462 | { |
| 463 | u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); |
| 464 | |
| 465 | assert_spin_locked(&rs->rs_lock); |
| 466 | |
| 467 | BUG_ON(rs->rs_snd_bytes < len); |
| 468 | rs->rs_snd_bytes -= len; |
| 469 | |
| 470 | if (rs->rs_snd_bytes == 0) |
| 471 | rds_stats_inc(s_send_queue_empty); |
| 472 | } |
| 473 | |
| 474 | static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, |
| 475 | is_acked_func is_acked) |
| 476 | { |
| 477 | if (is_acked) |
| 478 | return is_acked(rm, ack); |
| 479 | return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; |
| 480 | } |
| 481 | |
| 482 | /* |
| 483 | * This is pretty similar to what happens below in the ACK |
| 484 | * handling code - except that we call here as soon as we get |
| 485 | * the IB send completion on the RDMA op and the accompanying |
| 486 | * message. |
| 487 | */ |
| 488 | void rds_rdma_send_complete(struct rds_message *rm, int status) |
| 489 | { |
| 490 | struct rds_sock *rs = NULL; |
| 491 | struct rm_rdma_op *ro; |
| 492 | struct rds_notifier *notifier; |
| 493 | unsigned long flags; |
| 494 | unsigned int notify = 0; |
| 495 | |
| 496 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
| 497 | |
| 498 | notify = rm->rdma.op_notify | rm->data.op_notify; |
| 499 | ro = &rm->rdma; |
| 500 | if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && |
| 501 | ro->op_active && notify && ro->op_notifier) { |
| 502 | notifier = ro->op_notifier; |
| 503 | rs = rm->m_rs; |
| 504 | sock_hold(rds_rs_to_sk(rs)); |
| 505 | |
| 506 | notifier->n_status = status; |
| 507 | spin_lock(&rs->rs_lock); |
| 508 | list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); |
| 509 | spin_unlock(&rs->rs_lock); |
| 510 | |
| 511 | ro->op_notifier = NULL; |
| 512 | } |
| 513 | |
| 514 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
| 515 | |
| 516 | if (rs) { |
| 517 | rds_wake_sk_sleep(rs); |
| 518 | sock_put(rds_rs_to_sk(rs)); |
| 519 | } |
| 520 | } |
| 521 | EXPORT_SYMBOL_GPL(rds_rdma_send_complete); |
| 522 | |
| 523 | /* |
| 524 | * Just like above, except looks at atomic op |
| 525 | */ |
| 526 | void rds_atomic_send_complete(struct rds_message *rm, int status) |
| 527 | { |
| 528 | struct rds_sock *rs = NULL; |
| 529 | struct rm_atomic_op *ao; |
| 530 | struct rds_notifier *notifier; |
| 531 | unsigned long flags; |
| 532 | |
| 533 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
| 534 | |
| 535 | ao = &rm->atomic; |
| 536 | if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) |
| 537 | && ao->op_active && ao->op_notify && ao->op_notifier) { |
| 538 | notifier = ao->op_notifier; |
| 539 | rs = rm->m_rs; |
| 540 | sock_hold(rds_rs_to_sk(rs)); |
| 541 | |
| 542 | notifier->n_status = status; |
| 543 | spin_lock(&rs->rs_lock); |
| 544 | list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); |
| 545 | spin_unlock(&rs->rs_lock); |
| 546 | |
| 547 | ao->op_notifier = NULL; |
| 548 | } |
| 549 | |
| 550 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
| 551 | |
| 552 | if (rs) { |
| 553 | rds_wake_sk_sleep(rs); |
| 554 | sock_put(rds_rs_to_sk(rs)); |
| 555 | } |
| 556 | } |
| 557 | EXPORT_SYMBOL_GPL(rds_atomic_send_complete); |
| 558 | |
| 559 | /* |
| 560 | * This is the same as rds_rdma_send_complete except we |
| 561 | * don't do any locking - we have all the ingredients (message, |
| 562 | * socket, socket lock) and can just move the notifier. |
| 563 | */ |
| 564 | static inline void |
| 565 | __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) |
| 566 | { |
| 567 | struct rm_rdma_op *ro; |
| 568 | struct rm_atomic_op *ao; |
| 569 | |
| 570 | ro = &rm->rdma; |
| 571 | if (ro->op_active && ro->op_notify && ro->op_notifier) { |
| 572 | ro->op_notifier->n_status = status; |
| 573 | list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); |
| 574 | ro->op_notifier = NULL; |
| 575 | } |
| 576 | |
| 577 | ao = &rm->atomic; |
| 578 | if (ao->op_active && ao->op_notify && ao->op_notifier) { |
| 579 | ao->op_notifier->n_status = status; |
| 580 | list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); |
| 581 | ao->op_notifier = NULL; |
| 582 | } |
| 583 | |
| 584 | /* No need to wake the app - caller does this */ |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * This removes messages from the socket's list if they're on it. The list |
| 589 | * argument must be private to the caller, we must be able to modify it |
| 590 | * without locks. The messages must have a reference held for their |
| 591 | * position on the list. This function will drop that reference after |
| 592 | * removing the messages from the 'messages' list regardless of if it found |
| 593 | * the messages on the socket list or not. |
| 594 | */ |
| 595 | static void rds_send_remove_from_sock(struct list_head *messages, int status) |
| 596 | { |
| 597 | unsigned long flags; |
| 598 | struct rds_sock *rs = NULL; |
| 599 | struct rds_message *rm; |
| 600 | |
| 601 | while (!list_empty(messages)) { |
| 602 | int was_on_sock = 0; |
| 603 | |
| 604 | rm = list_entry(messages->next, struct rds_message, |
| 605 | m_conn_item); |
| 606 | list_del_init(&rm->m_conn_item); |
| 607 | |
| 608 | /* |
| 609 | * If we see this flag cleared then we're *sure* that someone |
| 610 | * else beat us to removing it from the sock. If we race |
| 611 | * with their flag update we'll get the lock and then really |
| 612 | * see that the flag has been cleared. |
| 613 | * |
| 614 | * The message spinlock makes sure nobody clears rm->m_rs |
| 615 | * while we're messing with it. It does not prevent the |
| 616 | * message from being removed from the socket, though. |
| 617 | */ |
| 618 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
| 619 | if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) |
| 620 | goto unlock_and_drop; |
| 621 | |
| 622 | if (rs != rm->m_rs) { |
| 623 | if (rs) { |
| 624 | rds_wake_sk_sleep(rs); |
| 625 | sock_put(rds_rs_to_sk(rs)); |
| 626 | } |
| 627 | rs = rm->m_rs; |
| 628 | if (rs) |
| 629 | sock_hold(rds_rs_to_sk(rs)); |
| 630 | } |
| 631 | if (!rs) |
| 632 | goto unlock_and_drop; |
| 633 | spin_lock(&rs->rs_lock); |
| 634 | |
| 635 | if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { |
| 636 | struct rm_rdma_op *ro = &rm->rdma; |
| 637 | struct rds_notifier *notifier; |
| 638 | |
| 639 | list_del_init(&rm->m_sock_item); |
| 640 | rds_send_sndbuf_remove(rs, rm); |
| 641 | |
| 642 | if (ro->op_active && ro->op_notifier && |
| 643 | (ro->op_notify || (ro->op_recverr && status))) { |
| 644 | notifier = ro->op_notifier; |
| 645 | list_add_tail(¬ifier->n_list, |
| 646 | &rs->rs_notify_queue); |
| 647 | if (!notifier->n_status) |
| 648 | notifier->n_status = status; |
| 649 | rm->rdma.op_notifier = NULL; |
| 650 | } |
| 651 | was_on_sock = 1; |
| 652 | } |
| 653 | spin_unlock(&rs->rs_lock); |
| 654 | |
| 655 | unlock_and_drop: |
| 656 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
| 657 | rds_message_put(rm); |
| 658 | if (was_on_sock) |
| 659 | rds_message_put(rm); |
| 660 | } |
| 661 | |
| 662 | if (rs) { |
| 663 | rds_wake_sk_sleep(rs); |
| 664 | sock_put(rds_rs_to_sk(rs)); |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Transports call here when they've determined that the receiver queued |
| 670 | * messages up to, and including, the given sequence number. Messages are |
| 671 | * moved to the retrans queue when rds_send_xmit picks them off the send |
| 672 | * queue. This means that in the TCP case, the message may not have been |
| 673 | * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked |
| 674 | * checks the RDS_MSG_HAS_ACK_SEQ bit. |
| 675 | */ |
| 676 | void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack, |
| 677 | is_acked_func is_acked) |
| 678 | { |
| 679 | struct rds_message *rm, *tmp; |
| 680 | unsigned long flags; |
| 681 | LIST_HEAD(list); |
| 682 | |
| 683 | spin_lock_irqsave(&cp->cp_lock, flags); |
| 684 | |
| 685 | list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { |
| 686 | if (!rds_send_is_acked(rm, ack, is_acked)) |
| 687 | break; |
| 688 | |
| 689 | list_move(&rm->m_conn_item, &list); |
| 690 | clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
| 691 | } |
| 692 | |
| 693 | /* order flag updates with spin locks */ |
| 694 | if (!list_empty(&list)) |
| 695 | smp_mb__after_atomic(); |
| 696 | |
| 697 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 698 | |
| 699 | /* now remove the messages from the sock list as needed */ |
| 700 | rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); |
| 701 | } |
| 702 | EXPORT_SYMBOL_GPL(rds_send_path_drop_acked); |
| 703 | |
| 704 | void rds_send_drop_acked(struct rds_connection *conn, u64 ack, |
| 705 | is_acked_func is_acked) |
| 706 | { |
| 707 | WARN_ON(conn->c_trans->t_mp_capable); |
| 708 | rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked); |
| 709 | } |
| 710 | EXPORT_SYMBOL_GPL(rds_send_drop_acked); |
| 711 | |
| 712 | void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest) |
| 713 | { |
| 714 | struct rds_message *rm, *tmp; |
| 715 | struct rds_connection *conn; |
| 716 | struct rds_conn_path *cp; |
| 717 | unsigned long flags; |
| 718 | LIST_HEAD(list); |
| 719 | |
| 720 | /* get all the messages we're dropping under the rs lock */ |
| 721 | spin_lock_irqsave(&rs->rs_lock, flags); |
| 722 | |
| 723 | list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { |
| 724 | if (dest && |
| 725 | (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) || |
| 726 | dest->sin6_port != rm->m_inc.i_hdr.h_dport)) |
| 727 | continue; |
| 728 | |
| 729 | list_move(&rm->m_sock_item, &list); |
| 730 | rds_send_sndbuf_remove(rs, rm); |
| 731 | clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); |
| 732 | } |
| 733 | |
| 734 | /* order flag updates with the rs lock */ |
| 735 | smp_mb__after_atomic(); |
| 736 | |
| 737 | spin_unlock_irqrestore(&rs->rs_lock, flags); |
| 738 | |
| 739 | if (list_empty(&list)) |
| 740 | return; |
| 741 | |
| 742 | /* Remove the messages from the conn */ |
| 743 | list_for_each_entry(rm, &list, m_sock_item) { |
| 744 | |
| 745 | conn = rm->m_inc.i_conn; |
| 746 | if (conn->c_trans->t_mp_capable) |
| 747 | cp = rm->m_inc.i_conn_path; |
| 748 | else |
| 749 | cp = &conn->c_path[0]; |
| 750 | |
| 751 | spin_lock_irqsave(&cp->cp_lock, flags); |
| 752 | /* |
| 753 | * Maybe someone else beat us to removing rm from the conn. |
| 754 | * If we race with their flag update we'll get the lock and |
| 755 | * then really see that the flag has been cleared. |
| 756 | */ |
| 757 | if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { |
| 758 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 759 | continue; |
| 760 | } |
| 761 | list_del_init(&rm->m_conn_item); |
| 762 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 763 | |
| 764 | /* |
| 765 | * Couldn't grab m_rs_lock in top loop (lock ordering), |
| 766 | * but we can now. |
| 767 | */ |
| 768 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
| 769 | |
| 770 | spin_lock(&rs->rs_lock); |
| 771 | __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); |
| 772 | spin_unlock(&rs->rs_lock); |
| 773 | |
| 774 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
| 775 | |
| 776 | rds_message_put(rm); |
| 777 | } |
| 778 | |
| 779 | rds_wake_sk_sleep(rs); |
| 780 | |
| 781 | while (!list_empty(&list)) { |
| 782 | rm = list_entry(list.next, struct rds_message, m_sock_item); |
| 783 | list_del_init(&rm->m_sock_item); |
| 784 | rds_message_wait(rm); |
| 785 | |
| 786 | /* just in case the code above skipped this message |
| 787 | * because RDS_MSG_ON_CONN wasn't set, run it again here |
| 788 | * taking m_rs_lock is the only thing that keeps us |
| 789 | * from racing with ack processing. |
| 790 | */ |
| 791 | spin_lock_irqsave(&rm->m_rs_lock, flags); |
| 792 | |
| 793 | spin_lock(&rs->rs_lock); |
| 794 | __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); |
| 795 | spin_unlock(&rs->rs_lock); |
| 796 | |
| 797 | spin_unlock_irqrestore(&rm->m_rs_lock, flags); |
| 798 | |
| 799 | rds_message_put(rm); |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | * we only want this to fire once so we use the callers 'queued'. It's |
| 805 | * possible that another thread can race with us and remove the |
| 806 | * message from the flow with RDS_CANCEL_SENT_TO. |
| 807 | */ |
| 808 | static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, |
| 809 | struct rds_conn_path *cp, |
| 810 | struct rds_message *rm, __be16 sport, |
| 811 | __be16 dport, int *queued) |
| 812 | { |
| 813 | unsigned long flags; |
| 814 | u32 len; |
| 815 | |
| 816 | if (*queued) |
| 817 | goto out; |
| 818 | |
| 819 | len = be32_to_cpu(rm->m_inc.i_hdr.h_len); |
| 820 | |
| 821 | /* this is the only place which holds both the socket's rs_lock |
| 822 | * and the connection's c_lock */ |
| 823 | spin_lock_irqsave(&rs->rs_lock, flags); |
| 824 | |
| 825 | /* |
| 826 | * If there is a little space in sndbuf, we don't queue anything, |
| 827 | * and userspace gets -EAGAIN. But poll() indicates there's send |
| 828 | * room. This can lead to bad behavior (spinning) if snd_bytes isn't |
| 829 | * freed up by incoming acks. So we check the *old* value of |
| 830 | * rs_snd_bytes here to allow the last msg to exceed the buffer, |
| 831 | * and poll() now knows no more data can be sent. |
| 832 | */ |
| 833 | if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { |
| 834 | rs->rs_snd_bytes += len; |
| 835 | |
| 836 | /* let recv side know we are close to send space exhaustion. |
| 837 | * This is probably not the optimal way to do it, as this |
| 838 | * means we set the flag on *all* messages as soon as our |
| 839 | * throughput hits a certain threshold. |
| 840 | */ |
| 841 | if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) |
| 842 | set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); |
| 843 | |
| 844 | list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); |
| 845 | set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); |
| 846 | rds_message_addref(rm); |
| 847 | sock_hold(rds_rs_to_sk(rs)); |
| 848 | rm->m_rs = rs; |
| 849 | |
| 850 | /* The code ordering is a little weird, but we're |
| 851 | trying to minimize the time we hold c_lock */ |
| 852 | rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); |
| 853 | rm->m_inc.i_conn = conn; |
| 854 | rm->m_inc.i_conn_path = cp; |
| 855 | rds_message_addref(rm); |
| 856 | |
| 857 | spin_lock(&cp->cp_lock); |
| 858 | rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++); |
| 859 | list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); |
| 860 | set_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
| 861 | spin_unlock(&cp->cp_lock); |
| 862 | |
| 863 | rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", |
| 864 | rm, len, rs, rs->rs_snd_bytes, |
| 865 | (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); |
| 866 | |
| 867 | *queued = 1; |
| 868 | } |
| 869 | |
| 870 | spin_unlock_irqrestore(&rs->rs_lock, flags); |
| 871 | out: |
| 872 | return *queued; |
| 873 | } |
| 874 | |
| 875 | /* |
| 876 | * rds_message is getting to be quite complicated, and we'd like to allocate |
| 877 | * it all in one go. This figures out how big it needs to be up front. |
| 878 | */ |
| 879 | static int rds_rm_size(struct msghdr *msg, int num_sgs) |
| 880 | { |
| 881 | struct cmsghdr *cmsg; |
| 882 | int size = 0; |
| 883 | int cmsg_groups = 0; |
| 884 | int retval; |
| 885 | bool zcopy_cookie = false; |
| 886 | |
| 887 | for_each_cmsghdr(cmsg, msg) { |
| 888 | if (!CMSG_OK(msg, cmsg)) |
| 889 | return -EINVAL; |
| 890 | |
| 891 | if (cmsg->cmsg_level != SOL_RDS) |
| 892 | continue; |
| 893 | |
| 894 | switch (cmsg->cmsg_type) { |
| 895 | case RDS_CMSG_RDMA_ARGS: |
| 896 | cmsg_groups |= 1; |
| 897 | retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); |
| 898 | if (retval < 0) |
| 899 | return retval; |
| 900 | size += retval; |
| 901 | |
| 902 | break; |
| 903 | |
| 904 | case RDS_CMSG_ZCOPY_COOKIE: |
| 905 | zcopy_cookie = true; |
| 906 | /* fall through */ |
| 907 | |
| 908 | case RDS_CMSG_RDMA_DEST: |
| 909 | case RDS_CMSG_RDMA_MAP: |
| 910 | cmsg_groups |= 2; |
| 911 | /* these are valid but do no add any size */ |
| 912 | break; |
| 913 | |
| 914 | case RDS_CMSG_ATOMIC_CSWP: |
| 915 | case RDS_CMSG_ATOMIC_FADD: |
| 916 | case RDS_CMSG_MASKED_ATOMIC_CSWP: |
| 917 | case RDS_CMSG_MASKED_ATOMIC_FADD: |
| 918 | cmsg_groups |= 1; |
| 919 | size += sizeof(struct scatterlist); |
| 920 | break; |
| 921 | |
| 922 | default: |
| 923 | return -EINVAL; |
| 924 | } |
| 925 | |
| 926 | } |
| 927 | |
| 928 | if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie) |
| 929 | return -EINVAL; |
| 930 | |
| 931 | size += num_sgs * sizeof(struct scatterlist); |
| 932 | |
| 933 | /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ |
| 934 | if (cmsg_groups == 3) |
| 935 | return -EINVAL; |
| 936 | |
| 937 | return size; |
| 938 | } |
| 939 | |
| 940 | static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm, |
| 941 | struct cmsghdr *cmsg) |
| 942 | { |
| 943 | u32 *cookie; |
| 944 | |
| 945 | if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) || |
| 946 | !rm->data.op_mmp_znotifier) |
| 947 | return -EINVAL; |
| 948 | cookie = CMSG_DATA(cmsg); |
| 949 | rm->data.op_mmp_znotifier->z_cookie = *cookie; |
| 950 | return 0; |
| 951 | } |
| 952 | |
| 953 | static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, |
| 954 | struct msghdr *msg, int *allocated_mr) |
| 955 | { |
| 956 | struct cmsghdr *cmsg; |
| 957 | int ret = 0; |
| 958 | |
| 959 | for_each_cmsghdr(cmsg, msg) { |
| 960 | if (!CMSG_OK(msg, cmsg)) |
| 961 | return -EINVAL; |
| 962 | |
| 963 | if (cmsg->cmsg_level != SOL_RDS) |
| 964 | continue; |
| 965 | |
| 966 | /* As a side effect, RDMA_DEST and RDMA_MAP will set |
| 967 | * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. |
| 968 | */ |
| 969 | switch (cmsg->cmsg_type) { |
| 970 | case RDS_CMSG_RDMA_ARGS: |
| 971 | ret = rds_cmsg_rdma_args(rs, rm, cmsg); |
| 972 | break; |
| 973 | |
| 974 | case RDS_CMSG_RDMA_DEST: |
| 975 | ret = rds_cmsg_rdma_dest(rs, rm, cmsg); |
| 976 | break; |
| 977 | |
| 978 | case RDS_CMSG_RDMA_MAP: |
| 979 | ret = rds_cmsg_rdma_map(rs, rm, cmsg); |
| 980 | if (!ret) |
| 981 | *allocated_mr = 1; |
| 982 | else if (ret == -ENODEV) |
| 983 | /* Accommodate the get_mr() case which can fail |
| 984 | * if connection isn't established yet. |
| 985 | */ |
| 986 | ret = -EAGAIN; |
| 987 | break; |
| 988 | case RDS_CMSG_ATOMIC_CSWP: |
| 989 | case RDS_CMSG_ATOMIC_FADD: |
| 990 | case RDS_CMSG_MASKED_ATOMIC_CSWP: |
| 991 | case RDS_CMSG_MASKED_ATOMIC_FADD: |
| 992 | ret = rds_cmsg_atomic(rs, rm, cmsg); |
| 993 | break; |
| 994 | |
| 995 | case RDS_CMSG_ZCOPY_COOKIE: |
| 996 | ret = rds_cmsg_zcopy(rs, rm, cmsg); |
| 997 | break; |
| 998 | |
| 999 | default: |
| 1000 | return -EINVAL; |
| 1001 | } |
| 1002 | |
| 1003 | if (ret) |
| 1004 | break; |
| 1005 | } |
| 1006 | |
| 1007 | return ret; |
| 1008 | } |
| 1009 | |
| 1010 | static int rds_send_mprds_hash(struct rds_sock *rs, |
| 1011 | struct rds_connection *conn, int nonblock) |
| 1012 | { |
| 1013 | int hash; |
| 1014 | |
| 1015 | if (conn->c_npaths == 0) |
| 1016 | hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS); |
| 1017 | else |
| 1018 | hash = RDS_MPATH_HASH(rs, conn->c_npaths); |
| 1019 | if (conn->c_npaths == 0 && hash != 0) { |
| 1020 | rds_send_ping(conn, 0); |
| 1021 | |
| 1022 | /* The underlying connection is not up yet. Need to wait |
| 1023 | * until it is up to be sure that the non-zero c_path can be |
| 1024 | * used. But if we are interrupted, we have to use the zero |
| 1025 | * c_path in case the connection ends up being non-MP capable. |
| 1026 | */ |
| 1027 | if (conn->c_npaths == 0) { |
| 1028 | /* Cannot wait for the connection be made, so just use |
| 1029 | * the base c_path. |
| 1030 | */ |
| 1031 | if (nonblock) |
| 1032 | return 0; |
| 1033 | if (wait_event_interruptible(conn->c_hs_waitq, |
| 1034 | conn->c_npaths != 0)) |
| 1035 | hash = 0; |
| 1036 | } |
| 1037 | if (conn->c_npaths == 1) |
| 1038 | hash = 0; |
| 1039 | } |
| 1040 | return hash; |
| 1041 | } |
| 1042 | |
| 1043 | static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes) |
| 1044 | { |
| 1045 | struct rds_rdma_args *args; |
| 1046 | struct cmsghdr *cmsg; |
| 1047 | |
| 1048 | for_each_cmsghdr(cmsg, msg) { |
| 1049 | if (!CMSG_OK(msg, cmsg)) |
| 1050 | return -EINVAL; |
| 1051 | |
| 1052 | if (cmsg->cmsg_level != SOL_RDS) |
| 1053 | continue; |
| 1054 | |
| 1055 | if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) { |
| 1056 | if (cmsg->cmsg_len < |
| 1057 | CMSG_LEN(sizeof(struct rds_rdma_args))) |
| 1058 | return -EINVAL; |
| 1059 | args = CMSG_DATA(cmsg); |
| 1060 | *rdma_bytes += args->remote_vec.bytes; |
| 1061 | } |
| 1062 | } |
| 1063 | return 0; |
| 1064 | } |
| 1065 | |
| 1066 | int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) |
| 1067 | { |
| 1068 | struct sock *sk = sock->sk; |
| 1069 | struct rds_sock *rs = rds_sk_to_rs(sk); |
| 1070 | DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name); |
| 1071 | DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); |
| 1072 | __be16 dport; |
| 1073 | struct rds_message *rm = NULL; |
| 1074 | struct rds_connection *conn; |
| 1075 | int ret = 0; |
| 1076 | int queued = 0, allocated_mr = 0; |
| 1077 | int nonblock = msg->msg_flags & MSG_DONTWAIT; |
| 1078 | long timeo = sock_sndtimeo(sk, nonblock); |
| 1079 | struct rds_conn_path *cpath; |
| 1080 | struct in6_addr daddr; |
| 1081 | __u32 scope_id = 0; |
| 1082 | size_t total_payload_len = payload_len, rdma_payload_len = 0; |
| 1083 | bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) && |
| 1084 | sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY)); |
| 1085 | int num_sgs = ceil(payload_len, PAGE_SIZE); |
| 1086 | int namelen; |
| 1087 | |
| 1088 | /* Mirror Linux UDP mirror of BSD error message compatibility */ |
| 1089 | /* XXX: Perhaps MSG_MORE someday */ |
| 1090 | if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) { |
| 1091 | ret = -EOPNOTSUPP; |
| 1092 | goto out; |
| 1093 | } |
| 1094 | |
| 1095 | namelen = msg->msg_namelen; |
| 1096 | if (namelen != 0) { |
| 1097 | if (namelen < sizeof(*usin)) { |
| 1098 | ret = -EINVAL; |
| 1099 | goto out; |
| 1100 | } |
| 1101 | switch (usin->sin_family) { |
| 1102 | case AF_INET: |
| 1103 | if (usin->sin_addr.s_addr == htonl(INADDR_ANY) || |
| 1104 | usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) || |
| 1105 | IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) { |
| 1106 | ret = -EINVAL; |
| 1107 | goto out; |
| 1108 | } |
| 1109 | ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr); |
| 1110 | dport = usin->sin_port; |
| 1111 | break; |
| 1112 | |
| 1113 | #if IS_ENABLED(CONFIG_IPV6) |
| 1114 | case AF_INET6: { |
| 1115 | int addr_type; |
| 1116 | |
| 1117 | if (namelen < sizeof(*sin6)) { |
| 1118 | ret = -EINVAL; |
| 1119 | goto out; |
| 1120 | } |
| 1121 | addr_type = ipv6_addr_type(&sin6->sin6_addr); |
| 1122 | if (!(addr_type & IPV6_ADDR_UNICAST)) { |
| 1123 | __be32 addr4; |
| 1124 | |
| 1125 | if (!(addr_type & IPV6_ADDR_MAPPED)) { |
| 1126 | ret = -EINVAL; |
| 1127 | goto out; |
| 1128 | } |
| 1129 | |
| 1130 | /* It is a mapped address. Need to do some |
| 1131 | * sanity checks. |
| 1132 | */ |
| 1133 | addr4 = sin6->sin6_addr.s6_addr32[3]; |
| 1134 | if (addr4 == htonl(INADDR_ANY) || |
| 1135 | addr4 == htonl(INADDR_BROADCAST) || |
| 1136 | IN_MULTICAST(ntohl(addr4))) { |
| 1137 | ret = -EINVAL; |
| 1138 | goto out; |
| 1139 | } |
| 1140 | } |
| 1141 | if (addr_type & IPV6_ADDR_LINKLOCAL) { |
| 1142 | if (sin6->sin6_scope_id == 0) { |
| 1143 | ret = -EINVAL; |
| 1144 | goto out; |
| 1145 | } |
| 1146 | scope_id = sin6->sin6_scope_id; |
| 1147 | } |
| 1148 | |
| 1149 | daddr = sin6->sin6_addr; |
| 1150 | dport = sin6->sin6_port; |
| 1151 | break; |
| 1152 | } |
| 1153 | #endif |
| 1154 | |
| 1155 | default: |
| 1156 | ret = -EINVAL; |
| 1157 | goto out; |
| 1158 | } |
| 1159 | } else { |
| 1160 | /* We only care about consistency with ->connect() */ |
| 1161 | lock_sock(sk); |
| 1162 | daddr = rs->rs_conn_addr; |
| 1163 | dport = rs->rs_conn_port; |
| 1164 | scope_id = rs->rs_bound_scope_id; |
| 1165 | release_sock(sk); |
| 1166 | } |
| 1167 | |
| 1168 | lock_sock(sk); |
| 1169 | if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) { |
| 1170 | release_sock(sk); |
| 1171 | ret = -ENOTCONN; |
| 1172 | goto out; |
| 1173 | } else if (namelen != 0) { |
| 1174 | /* Cannot send to an IPv4 address using an IPv6 source |
| 1175 | * address and cannot send to an IPv6 address using an |
| 1176 | * IPv4 source address. |
| 1177 | */ |
| 1178 | if (ipv6_addr_v4mapped(&daddr) ^ |
| 1179 | ipv6_addr_v4mapped(&rs->rs_bound_addr)) { |
| 1180 | release_sock(sk); |
| 1181 | ret = -EOPNOTSUPP; |
| 1182 | goto out; |
| 1183 | } |
| 1184 | /* If the socket is already bound to a link local address, |
| 1185 | * it can only send to peers on the same link. But allow |
| 1186 | * communicating beween link local and non-link local address. |
| 1187 | */ |
| 1188 | if (scope_id != rs->rs_bound_scope_id) { |
| 1189 | if (!scope_id) { |
| 1190 | scope_id = rs->rs_bound_scope_id; |
| 1191 | } else if (rs->rs_bound_scope_id) { |
| 1192 | release_sock(sk); |
| 1193 | ret = -EINVAL; |
| 1194 | goto out; |
| 1195 | } |
| 1196 | } |
| 1197 | } |
| 1198 | release_sock(sk); |
| 1199 | |
| 1200 | ret = rds_rdma_bytes(msg, &rdma_payload_len); |
| 1201 | if (ret) |
| 1202 | goto out; |
| 1203 | |
| 1204 | total_payload_len += rdma_payload_len; |
| 1205 | if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) { |
| 1206 | ret = -EMSGSIZE; |
| 1207 | goto out; |
| 1208 | } |
| 1209 | |
| 1210 | if (payload_len > rds_sk_sndbuf(rs)) { |
| 1211 | ret = -EMSGSIZE; |
| 1212 | goto out; |
| 1213 | } |
| 1214 | |
| 1215 | if (zcopy) { |
| 1216 | if (rs->rs_transport->t_type != RDS_TRANS_TCP) { |
| 1217 | ret = -EOPNOTSUPP; |
| 1218 | goto out; |
| 1219 | } |
| 1220 | num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX); |
| 1221 | } |
| 1222 | /* size of rm including all sgs */ |
| 1223 | ret = rds_rm_size(msg, num_sgs); |
| 1224 | if (ret < 0) |
| 1225 | goto out; |
| 1226 | |
| 1227 | rm = rds_message_alloc(ret, GFP_KERNEL); |
| 1228 | if (!rm) { |
| 1229 | ret = -ENOMEM; |
| 1230 | goto out; |
| 1231 | } |
| 1232 | |
| 1233 | /* Attach data to the rm */ |
| 1234 | if (payload_len) { |
| 1235 | rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs); |
| 1236 | if (!rm->data.op_sg) { |
| 1237 | ret = -ENOMEM; |
| 1238 | goto out; |
| 1239 | } |
| 1240 | ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy); |
| 1241 | if (ret) |
| 1242 | goto out; |
| 1243 | } |
| 1244 | rm->data.op_active = 1; |
| 1245 | |
| 1246 | rm->m_daddr = daddr; |
| 1247 | |
| 1248 | /* rds_conn_create has a spinlock that runs with IRQ off. |
| 1249 | * Caching the conn in the socket helps a lot. */ |
| 1250 | if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr)) |
| 1251 | conn = rs->rs_conn; |
| 1252 | else { |
| 1253 | conn = rds_conn_create_outgoing(sock_net(sock->sk), |
| 1254 | &rs->rs_bound_addr, &daddr, |
| 1255 | rs->rs_transport, |
| 1256 | sock->sk->sk_allocation, |
| 1257 | scope_id); |
| 1258 | if (IS_ERR(conn)) { |
| 1259 | ret = PTR_ERR(conn); |
| 1260 | goto out; |
| 1261 | } |
| 1262 | rs->rs_conn = conn; |
| 1263 | } |
| 1264 | |
| 1265 | if (conn->c_trans->t_mp_capable) |
| 1266 | cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)]; |
| 1267 | else |
| 1268 | cpath = &conn->c_path[0]; |
| 1269 | |
| 1270 | rm->m_conn_path = cpath; |
| 1271 | |
| 1272 | /* Parse any control messages the user may have included. */ |
| 1273 | ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); |
| 1274 | if (ret) { |
| 1275 | /* Trigger connection so that its ready for the next retry */ |
| 1276 | if (ret == -EAGAIN) |
| 1277 | rds_conn_connect_if_down(conn); |
| 1278 | goto out; |
| 1279 | } |
| 1280 | |
| 1281 | if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { |
| 1282 | printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", |
| 1283 | &rm->rdma, conn->c_trans->xmit_rdma); |
| 1284 | ret = -EOPNOTSUPP; |
| 1285 | goto out; |
| 1286 | } |
| 1287 | |
| 1288 | if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { |
| 1289 | printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", |
| 1290 | &rm->atomic, conn->c_trans->xmit_atomic); |
| 1291 | ret = -EOPNOTSUPP; |
| 1292 | goto out; |
| 1293 | } |
| 1294 | |
| 1295 | if (rds_destroy_pending(conn)) { |
| 1296 | ret = -EAGAIN; |
| 1297 | goto out; |
| 1298 | } |
| 1299 | |
| 1300 | rds_conn_path_connect_if_down(cpath); |
| 1301 | |
| 1302 | ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); |
| 1303 | if (ret) { |
| 1304 | rs->rs_seen_congestion = 1; |
| 1305 | goto out; |
| 1306 | } |
| 1307 | while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port, |
| 1308 | dport, &queued)) { |
| 1309 | rds_stats_inc(s_send_queue_full); |
| 1310 | |
| 1311 | if (nonblock) { |
| 1312 | ret = -EAGAIN; |
| 1313 | goto out; |
| 1314 | } |
| 1315 | |
| 1316 | timeo = wait_event_interruptible_timeout(*sk_sleep(sk), |
| 1317 | rds_send_queue_rm(rs, conn, cpath, rm, |
| 1318 | rs->rs_bound_port, |
| 1319 | dport, |
| 1320 | &queued), |
| 1321 | timeo); |
| 1322 | rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); |
| 1323 | if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) |
| 1324 | continue; |
| 1325 | |
| 1326 | ret = timeo; |
| 1327 | if (ret == 0) |
| 1328 | ret = -ETIMEDOUT; |
| 1329 | goto out; |
| 1330 | } |
| 1331 | |
| 1332 | /* |
| 1333 | * By now we've committed to the send. We reuse rds_send_worker() |
| 1334 | * to retry sends in the rds thread if the transport asks us to. |
| 1335 | */ |
| 1336 | rds_stats_inc(s_send_queued); |
| 1337 | |
| 1338 | ret = rds_send_xmit(cpath); |
| 1339 | if (ret == -ENOMEM || ret == -EAGAIN) { |
| 1340 | ret = 0; |
| 1341 | rcu_read_lock(); |
| 1342 | if (rds_destroy_pending(cpath->cp_conn)) |
| 1343 | ret = -ENETUNREACH; |
| 1344 | else |
| 1345 | queue_delayed_work(rds_wq, &cpath->cp_send_w, 1); |
| 1346 | rcu_read_unlock(); |
| 1347 | } |
| 1348 | if (ret) |
| 1349 | goto out; |
| 1350 | rds_message_put(rm); |
| 1351 | return payload_len; |
| 1352 | |
| 1353 | out: |
| 1354 | /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. |
| 1355 | * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN |
| 1356 | * or in any other way, we need to destroy the MR again */ |
| 1357 | if (allocated_mr) |
| 1358 | rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); |
| 1359 | |
| 1360 | if (rm) |
| 1361 | rds_message_put(rm); |
| 1362 | return ret; |
| 1363 | } |
| 1364 | |
| 1365 | /* |
| 1366 | * send out a probe. Can be shared by rds_send_ping, |
| 1367 | * rds_send_pong, rds_send_hb. |
| 1368 | * rds_send_hb should use h_flags |
| 1369 | * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED |
| 1370 | * or |
| 1371 | * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED |
| 1372 | */ |
| 1373 | static int |
| 1374 | rds_send_probe(struct rds_conn_path *cp, __be16 sport, |
| 1375 | __be16 dport, u8 h_flags) |
| 1376 | { |
| 1377 | struct rds_message *rm; |
| 1378 | unsigned long flags; |
| 1379 | int ret = 0; |
| 1380 | |
| 1381 | rm = rds_message_alloc(0, GFP_ATOMIC); |
| 1382 | if (!rm) { |
| 1383 | ret = -ENOMEM; |
| 1384 | goto out; |
| 1385 | } |
| 1386 | |
| 1387 | rm->m_daddr = cp->cp_conn->c_faddr; |
| 1388 | rm->data.op_active = 1; |
| 1389 | |
| 1390 | rds_conn_path_connect_if_down(cp); |
| 1391 | |
| 1392 | ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL); |
| 1393 | if (ret) |
| 1394 | goto out; |
| 1395 | |
| 1396 | spin_lock_irqsave(&cp->cp_lock, flags); |
| 1397 | list_add_tail(&rm->m_conn_item, &cp->cp_send_queue); |
| 1398 | set_bit(RDS_MSG_ON_CONN, &rm->m_flags); |
| 1399 | rds_message_addref(rm); |
| 1400 | rm->m_inc.i_conn = cp->cp_conn; |
| 1401 | rm->m_inc.i_conn_path = cp; |
| 1402 | |
| 1403 | rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, |
| 1404 | cp->cp_next_tx_seq); |
| 1405 | rm->m_inc.i_hdr.h_flags |= h_flags; |
| 1406 | cp->cp_next_tx_seq++; |
| 1407 | |
| 1408 | if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) && |
| 1409 | cp->cp_conn->c_trans->t_mp_capable) { |
| 1410 | u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS); |
| 1411 | u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num); |
| 1412 | |
| 1413 | rds_message_add_extension(&rm->m_inc.i_hdr, |
| 1414 | RDS_EXTHDR_NPATHS, &npaths, |
| 1415 | sizeof(npaths)); |
| 1416 | rds_message_add_extension(&rm->m_inc.i_hdr, |
| 1417 | RDS_EXTHDR_GEN_NUM, |
| 1418 | &my_gen_num, |
| 1419 | sizeof(u32)); |
| 1420 | } |
| 1421 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 1422 | |
| 1423 | rds_stats_inc(s_send_queued); |
| 1424 | rds_stats_inc(s_send_pong); |
| 1425 | |
| 1426 | /* schedule the send work on rds_wq */ |
| 1427 | rcu_read_lock(); |
| 1428 | if (!rds_destroy_pending(cp->cp_conn)) |
| 1429 | queue_delayed_work(rds_wq, &cp->cp_send_w, 1); |
| 1430 | rcu_read_unlock(); |
| 1431 | |
| 1432 | rds_message_put(rm); |
| 1433 | return 0; |
| 1434 | |
| 1435 | out: |
| 1436 | if (rm) |
| 1437 | rds_message_put(rm); |
| 1438 | return ret; |
| 1439 | } |
| 1440 | |
| 1441 | int |
| 1442 | rds_send_pong(struct rds_conn_path *cp, __be16 dport) |
| 1443 | { |
| 1444 | return rds_send_probe(cp, 0, dport, 0); |
| 1445 | } |
| 1446 | |
| 1447 | void |
| 1448 | rds_send_ping(struct rds_connection *conn, int cp_index) |
| 1449 | { |
| 1450 | unsigned long flags; |
| 1451 | struct rds_conn_path *cp = &conn->c_path[cp_index]; |
| 1452 | |
| 1453 | spin_lock_irqsave(&cp->cp_lock, flags); |
| 1454 | if (conn->c_ping_triggered) { |
| 1455 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 1456 | return; |
| 1457 | } |
| 1458 | conn->c_ping_triggered = 1; |
| 1459 | spin_unlock_irqrestore(&cp->cp_lock, flags); |
| 1460 | rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0); |
| 1461 | } |
| 1462 | EXPORT_SYMBOL_GPL(rds_send_ping); |