v4.19.13 snapshot.
diff --git a/net/rds/send.c b/net/rds/send.c
new file mode 100644
index 0000000..fe785ee
--- /dev/null
+++ b/net/rds/send.c
@@ -0,0 +1,1462 @@
+/*
+ * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses.  You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ *     Redistribution and use in source and binary forms, with or
+ *     without modification, are permitted provided that the following
+ *     conditions are met:
+ *
+ *      - Redistributions of source code must retain the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer.
+ *
+ *      - Redistributions in binary form must reproduce the above
+ *        copyright notice, this list of conditions and the following
+ *        disclaimer in the documentation and/or other materials
+ *        provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/moduleparam.h>
+#include <linux/gfp.h>
+#include <net/sock.h>
+#include <linux/in.h>
+#include <linux/list.h>
+#include <linux/ratelimit.h>
+#include <linux/export.h>
+#include <linux/sizes.h>
+
+#include "rds.h"
+
+/* When transmitting messages in rds_send_xmit, we need to emerge from
+ * time to time and briefly release the CPU. Otherwise the softlock watchdog
+ * will kick our shin.
+ * Also, it seems fairer to not let one busy connection stall all the
+ * others.
+ *
+ * send_batch_count is the number of times we'll loop in send_xmit. Setting
+ * it to 0 will restore the old behavior (where we looped until we had
+ * drained the queue).
+ */
+static int send_batch_count = SZ_1K;
+module_param(send_batch_count, int, 0444);
+MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
+
+static void rds_send_remove_from_sock(struct list_head *messages, int status);
+
+/*
+ * Reset the send state.  Callers must ensure that this doesn't race with
+ * rds_send_xmit().
+ */
+void rds_send_path_reset(struct rds_conn_path *cp)
+{
+	struct rds_message *rm, *tmp;
+	unsigned long flags;
+
+	if (cp->cp_xmit_rm) {
+		rm = cp->cp_xmit_rm;
+		cp->cp_xmit_rm = NULL;
+		/* Tell the user the RDMA op is no longer mapped by the
+		 * transport. This isn't entirely true (it's flushed out
+		 * independently) but as the connection is down, there's
+		 * no ongoing RDMA to/from that memory */
+		rds_message_unmapped(rm);
+		rds_message_put(rm);
+	}
+
+	cp->cp_xmit_sg = 0;
+	cp->cp_xmit_hdr_off = 0;
+	cp->cp_xmit_data_off = 0;
+	cp->cp_xmit_atomic_sent = 0;
+	cp->cp_xmit_rdma_sent = 0;
+	cp->cp_xmit_data_sent = 0;
+
+	cp->cp_conn->c_map_queued = 0;
+
+	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
+	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
+
+	/* Mark messages as retransmissions, and move them to the send q */
+	spin_lock_irqsave(&cp->cp_lock, flags);
+	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
+		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
+		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
+	}
+	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
+	spin_unlock_irqrestore(&cp->cp_lock, flags);
+}
+EXPORT_SYMBOL_GPL(rds_send_path_reset);
+
+static int acquire_in_xmit(struct rds_conn_path *cp)
+{
+	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
+}
+
+static void release_in_xmit(struct rds_conn_path *cp)
+{
+	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
+	smp_mb__after_atomic();
+	/*
+	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
+	 * hot path and finding waiters is very rare.  We don't want to walk
+	 * the system-wide hashed waitqueue buckets in the fast path only to
+	 * almost never find waiters.
+	 */
+	if (waitqueue_active(&cp->cp_waitq))
+		wake_up_all(&cp->cp_waitq);
+}
+
+/*
+ * We're making the conscious trade-off here to only send one message
+ * down the connection at a time.
+ *   Pro:
+ *      - tx queueing is a simple fifo list
+ *   	- reassembly is optional and easily done by transports per conn
+ *      - no per flow rx lookup at all, straight to the socket
+ *   	- less per-frag memory and wire overhead
+ *   Con:
+ *      - queued acks can be delayed behind large messages
+ *   Depends:
+ *      - small message latency is higher behind queued large messages
+ *      - large message latency isn't starved by intervening small sends
+ */
+int rds_send_xmit(struct rds_conn_path *cp)
+{
+	struct rds_connection *conn = cp->cp_conn;
+	struct rds_message *rm;
+	unsigned long flags;
+	unsigned int tmp;
+	struct scatterlist *sg;
+	int ret = 0;
+	LIST_HEAD(to_be_dropped);
+	int batch_count;
+	unsigned long send_gen = 0;
+
+restart:
+	batch_count = 0;
+
+	/*
+	 * sendmsg calls here after having queued its message on the send
+	 * queue.  We only have one task feeding the connection at a time.  If
+	 * another thread is already feeding the queue then we back off.  This
+	 * avoids blocking the caller and trading per-connection data between
+	 * caches per message.
+	 */
+	if (!acquire_in_xmit(cp)) {
+		rds_stats_inc(s_send_lock_contention);
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	if (rds_destroy_pending(cp->cp_conn)) {
+		release_in_xmit(cp);
+		ret = -ENETUNREACH; /* dont requeue send work */
+		goto out;
+	}
+
+	/*
+	 * we record the send generation after doing the xmit acquire.
+	 * if someone else manages to jump in and do some work, we'll use
+	 * this to avoid a goto restart farther down.
+	 *
+	 * The acquire_in_xmit() check above ensures that only one
+	 * caller can increment c_send_gen at any time.
+	 */
+	send_gen = READ_ONCE(cp->cp_send_gen) + 1;
+	WRITE_ONCE(cp->cp_send_gen, send_gen);
+
+	/*
+	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
+	 * we do the opposite to avoid races.
+	 */
+	if (!rds_conn_path_up(cp)) {
+		release_in_xmit(cp);
+		ret = 0;
+		goto out;
+	}
+
+	if (conn->c_trans->xmit_path_prepare)
+		conn->c_trans->xmit_path_prepare(cp);
+
+	/*
+	 * spin trying to push headers and data down the connection until
+	 * the connection doesn't make forward progress.
+	 */
+	while (1) {
+
+		rm = cp->cp_xmit_rm;
+
+		/*
+		 * If between sending messages, we can send a pending congestion
+		 * map update.
+		 */
+		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
+			rm = rds_cong_update_alloc(conn);
+			if (IS_ERR(rm)) {
+				ret = PTR_ERR(rm);
+				break;
+			}
+			rm->data.op_active = 1;
+			rm->m_inc.i_conn_path = cp;
+			rm->m_inc.i_conn = cp->cp_conn;
+
+			cp->cp_xmit_rm = rm;
+		}
+
+		/*
+		 * If not already working on one, grab the next message.
+		 *
+		 * cp_xmit_rm holds a ref while we're sending this message down
+		 * the connction.  We can use this ref while holding the
+		 * send_sem.. rds_send_reset() is serialized with it.
+		 */
+		if (!rm) {
+			unsigned int len;
+
+			batch_count++;
+
+			/* we want to process as big a batch as we can, but
+			 * we also want to avoid softlockups.  If we've been
+			 * through a lot of messages, lets back off and see
+			 * if anyone else jumps in
+			 */
+			if (batch_count >= send_batch_count)
+				goto over_batch;
+
+			spin_lock_irqsave(&cp->cp_lock, flags);
+
+			if (!list_empty(&cp->cp_send_queue)) {
+				rm = list_entry(cp->cp_send_queue.next,
+						struct rds_message,
+						m_conn_item);
+				rds_message_addref(rm);
+
+				/*
+				 * Move the message from the send queue to the retransmit
+				 * list right away.
+				 */
+				list_move_tail(&rm->m_conn_item,
+					       &cp->cp_retrans);
+			}
+
+			spin_unlock_irqrestore(&cp->cp_lock, flags);
+
+			if (!rm)
+				break;
+
+			/* Unfortunately, the way Infiniband deals with
+			 * RDMA to a bad MR key is by moving the entire
+			 * queue pair to error state. We cold possibly
+			 * recover from that, but right now we drop the
+			 * connection.
+			 * Therefore, we never retransmit messages with RDMA ops.
+			 */
+			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
+			    (rm->rdma.op_active &&
+			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
+				spin_lock_irqsave(&cp->cp_lock, flags);
+				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
+					list_move(&rm->m_conn_item, &to_be_dropped);
+				spin_unlock_irqrestore(&cp->cp_lock, flags);
+				continue;
+			}
+
+			/* Require an ACK every once in a while */
+			len = ntohl(rm->m_inc.i_hdr.h_len);
+			if (cp->cp_unacked_packets == 0 ||
+			    cp->cp_unacked_bytes < len) {
+				set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
+
+				cp->cp_unacked_packets =
+					rds_sysctl_max_unacked_packets;
+				cp->cp_unacked_bytes =
+					rds_sysctl_max_unacked_bytes;
+				rds_stats_inc(s_send_ack_required);
+			} else {
+				cp->cp_unacked_bytes -= len;
+				cp->cp_unacked_packets--;
+			}
+
+			cp->cp_xmit_rm = rm;
+		}
+
+		/* The transport either sends the whole rdma or none of it */
+		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
+			rm->m_final_op = &rm->rdma;
+			/* The transport owns the mapped memory for now.
+			 * You can't unmap it while it's on the send queue
+			 */
+			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
+			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
+			if (ret) {
+				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
+				wake_up_interruptible(&rm->m_flush_wait);
+				break;
+			}
+			cp->cp_xmit_rdma_sent = 1;
+
+		}
+
+		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
+			rm->m_final_op = &rm->atomic;
+			/* The transport owns the mapped memory for now.
+			 * You can't unmap it while it's on the send queue
+			 */
+			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
+			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
+			if (ret) {
+				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
+				wake_up_interruptible(&rm->m_flush_wait);
+				break;
+			}
+			cp->cp_xmit_atomic_sent = 1;
+
+		}
+
+		/*
+		 * A number of cases require an RDS header to be sent
+		 * even if there is no data.
+		 * We permit 0-byte sends; rds-ping depends on this.
+		 * However, if there are exclusively attached silent ops,
+		 * we skip the hdr/data send, to enable silent operation.
+		 */
+		if (rm->data.op_nents == 0) {
+			int ops_present;
+			int all_ops_are_silent = 1;
+
+			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
+			if (rm->atomic.op_active && !rm->atomic.op_silent)
+				all_ops_are_silent = 0;
+			if (rm->rdma.op_active && !rm->rdma.op_silent)
+				all_ops_are_silent = 0;
+
+			if (ops_present && all_ops_are_silent
+			    && !rm->m_rdma_cookie)
+				rm->data.op_active = 0;
+		}
+
+		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
+			rm->m_final_op = &rm->data;
+
+			ret = conn->c_trans->xmit(conn, rm,
+						  cp->cp_xmit_hdr_off,
+						  cp->cp_xmit_sg,
+						  cp->cp_xmit_data_off);
+			if (ret <= 0)
+				break;
+
+			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
+				tmp = min_t(int, ret,
+					    sizeof(struct rds_header) -
+					    cp->cp_xmit_hdr_off);
+				cp->cp_xmit_hdr_off += tmp;
+				ret -= tmp;
+			}
+
+			sg = &rm->data.op_sg[cp->cp_xmit_sg];
+			while (ret) {
+				tmp = min_t(int, ret, sg->length -
+						      cp->cp_xmit_data_off);
+				cp->cp_xmit_data_off += tmp;
+				ret -= tmp;
+				if (cp->cp_xmit_data_off == sg->length) {
+					cp->cp_xmit_data_off = 0;
+					sg++;
+					cp->cp_xmit_sg++;
+					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
+					       rm->data.op_nents);
+				}
+			}
+
+			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
+			    (cp->cp_xmit_sg == rm->data.op_nents))
+				cp->cp_xmit_data_sent = 1;
+		}
+
+		/*
+		 * A rm will only take multiple times through this loop
+		 * if there is a data op. Thus, if the data is sent (or there was
+		 * none), then we're done with the rm.
+		 */
+		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
+			cp->cp_xmit_rm = NULL;
+			cp->cp_xmit_sg = 0;
+			cp->cp_xmit_hdr_off = 0;
+			cp->cp_xmit_data_off = 0;
+			cp->cp_xmit_rdma_sent = 0;
+			cp->cp_xmit_atomic_sent = 0;
+			cp->cp_xmit_data_sent = 0;
+
+			rds_message_put(rm);
+		}
+	}
+
+over_batch:
+	if (conn->c_trans->xmit_path_complete)
+		conn->c_trans->xmit_path_complete(cp);
+	release_in_xmit(cp);
+
+	/* Nuke any messages we decided not to retransmit. */
+	if (!list_empty(&to_be_dropped)) {
+		/* irqs on here, so we can put(), unlike above */
+		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
+			rds_message_put(rm);
+		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
+	}
+
+	/*
+	 * Other senders can queue a message after we last test the send queue
+	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
+	 * not try and send their newly queued message.  We need to check the
+	 * send queue after having cleared RDS_IN_XMIT so that their message
+	 * doesn't get stuck on the send queue.
+	 *
+	 * If the transport cannot continue (i.e ret != 0), then it must
+	 * call us when more room is available, such as from the tx
+	 * completion handler.
+	 *
+	 * We have an extra generation check here so that if someone manages
+	 * to jump in after our release_in_xmit, we'll see that they have done
+	 * some work and we will skip our goto
+	 */
+	if (ret == 0) {
+		bool raced;
+
+		smp_mb();
+		raced = send_gen != READ_ONCE(cp->cp_send_gen);
+
+		if ((test_bit(0, &conn->c_map_queued) ||
+		    !list_empty(&cp->cp_send_queue)) && !raced) {
+			if (batch_count < send_batch_count)
+				goto restart;
+			rcu_read_lock();
+			if (rds_destroy_pending(cp->cp_conn))
+				ret = -ENETUNREACH;
+			else
+				queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
+			rcu_read_unlock();
+		} else if (raced) {
+			rds_stats_inc(s_send_lock_queue_raced);
+		}
+	}
+out:
+	return ret;
+}
+EXPORT_SYMBOL_GPL(rds_send_xmit);
+
+static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
+{
+	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
+
+	assert_spin_locked(&rs->rs_lock);
+
+	BUG_ON(rs->rs_snd_bytes < len);
+	rs->rs_snd_bytes -= len;
+
+	if (rs->rs_snd_bytes == 0)
+		rds_stats_inc(s_send_queue_empty);
+}
+
+static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
+				    is_acked_func is_acked)
+{
+	if (is_acked)
+		return is_acked(rm, ack);
+	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
+}
+
+/*
+ * This is pretty similar to what happens below in the ACK
+ * handling code - except that we call here as soon as we get
+ * the IB send completion on the RDMA op and the accompanying
+ * message.
+ */
+void rds_rdma_send_complete(struct rds_message *rm, int status)
+{
+	struct rds_sock *rs = NULL;
+	struct rm_rdma_op *ro;
+	struct rds_notifier *notifier;
+	unsigned long flags;
+	unsigned int notify = 0;
+
+	spin_lock_irqsave(&rm->m_rs_lock, flags);
+
+	notify =  rm->rdma.op_notify | rm->data.op_notify;
+	ro = &rm->rdma;
+	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
+	    ro->op_active && notify && ro->op_notifier) {
+		notifier = ro->op_notifier;
+		rs = rm->m_rs;
+		sock_hold(rds_rs_to_sk(rs));
+
+		notifier->n_status = status;
+		spin_lock(&rs->rs_lock);
+		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
+		spin_unlock(&rs->rs_lock);
+
+		ro->op_notifier = NULL;
+	}
+
+	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
+
+	if (rs) {
+		rds_wake_sk_sleep(rs);
+		sock_put(rds_rs_to_sk(rs));
+	}
+}
+EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
+
+/*
+ * Just like above, except looks at atomic op
+ */
+void rds_atomic_send_complete(struct rds_message *rm, int status)
+{
+	struct rds_sock *rs = NULL;
+	struct rm_atomic_op *ao;
+	struct rds_notifier *notifier;
+	unsigned long flags;
+
+	spin_lock_irqsave(&rm->m_rs_lock, flags);
+
+	ao = &rm->atomic;
+	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
+	    && ao->op_active && ao->op_notify && ao->op_notifier) {
+		notifier = ao->op_notifier;
+		rs = rm->m_rs;
+		sock_hold(rds_rs_to_sk(rs));
+
+		notifier->n_status = status;
+		spin_lock(&rs->rs_lock);
+		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
+		spin_unlock(&rs->rs_lock);
+
+		ao->op_notifier = NULL;
+	}
+
+	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
+
+	if (rs) {
+		rds_wake_sk_sleep(rs);
+		sock_put(rds_rs_to_sk(rs));
+	}
+}
+EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
+
+/*
+ * This is the same as rds_rdma_send_complete except we
+ * don't do any locking - we have all the ingredients (message,
+ * socket, socket lock) and can just move the notifier.
+ */
+static inline void
+__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
+{
+	struct rm_rdma_op *ro;
+	struct rm_atomic_op *ao;
+
+	ro = &rm->rdma;
+	if (ro->op_active && ro->op_notify && ro->op_notifier) {
+		ro->op_notifier->n_status = status;
+		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
+		ro->op_notifier = NULL;
+	}
+
+	ao = &rm->atomic;
+	if (ao->op_active && ao->op_notify && ao->op_notifier) {
+		ao->op_notifier->n_status = status;
+		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
+		ao->op_notifier = NULL;
+	}
+
+	/* No need to wake the app - caller does this */
+}
+
+/*
+ * This removes messages from the socket's list if they're on it.  The list
+ * argument must be private to the caller, we must be able to modify it
+ * without locks.  The messages must have a reference held for their
+ * position on the list.  This function will drop that reference after
+ * removing the messages from the 'messages' list regardless of if it found
+ * the messages on the socket list or not.
+ */
+static void rds_send_remove_from_sock(struct list_head *messages, int status)
+{
+	unsigned long flags;
+	struct rds_sock *rs = NULL;
+	struct rds_message *rm;
+
+	while (!list_empty(messages)) {
+		int was_on_sock = 0;
+
+		rm = list_entry(messages->next, struct rds_message,
+				m_conn_item);
+		list_del_init(&rm->m_conn_item);
+
+		/*
+		 * If we see this flag cleared then we're *sure* that someone
+		 * else beat us to removing it from the sock.  If we race
+		 * with their flag update we'll get the lock and then really
+		 * see that the flag has been cleared.
+		 *
+		 * The message spinlock makes sure nobody clears rm->m_rs
+		 * while we're messing with it. It does not prevent the
+		 * message from being removed from the socket, though.
+		 */
+		spin_lock_irqsave(&rm->m_rs_lock, flags);
+		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
+			goto unlock_and_drop;
+
+		if (rs != rm->m_rs) {
+			if (rs) {
+				rds_wake_sk_sleep(rs);
+				sock_put(rds_rs_to_sk(rs));
+			}
+			rs = rm->m_rs;
+			if (rs)
+				sock_hold(rds_rs_to_sk(rs));
+		}
+		if (!rs)
+			goto unlock_and_drop;
+		spin_lock(&rs->rs_lock);
+
+		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
+			struct rm_rdma_op *ro = &rm->rdma;
+			struct rds_notifier *notifier;
+
+			list_del_init(&rm->m_sock_item);
+			rds_send_sndbuf_remove(rs, rm);
+
+			if (ro->op_active && ro->op_notifier &&
+			       (ro->op_notify || (ro->op_recverr && status))) {
+				notifier = ro->op_notifier;
+				list_add_tail(&notifier->n_list,
+						&rs->rs_notify_queue);
+				if (!notifier->n_status)
+					notifier->n_status = status;
+				rm->rdma.op_notifier = NULL;
+			}
+			was_on_sock = 1;
+		}
+		spin_unlock(&rs->rs_lock);
+
+unlock_and_drop:
+		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
+		rds_message_put(rm);
+		if (was_on_sock)
+			rds_message_put(rm);
+	}
+
+	if (rs) {
+		rds_wake_sk_sleep(rs);
+		sock_put(rds_rs_to_sk(rs));
+	}
+}
+
+/*
+ * Transports call here when they've determined that the receiver queued
+ * messages up to, and including, the given sequence number.  Messages are
+ * moved to the retrans queue when rds_send_xmit picks them off the send
+ * queue. This means that in the TCP case, the message may not have been
+ * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
+ * checks the RDS_MSG_HAS_ACK_SEQ bit.
+ */
+void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
+			      is_acked_func is_acked)
+{
+	struct rds_message *rm, *tmp;
+	unsigned long flags;
+	LIST_HEAD(list);
+
+	spin_lock_irqsave(&cp->cp_lock, flags);
+
+	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
+		if (!rds_send_is_acked(rm, ack, is_acked))
+			break;
+
+		list_move(&rm->m_conn_item, &list);
+		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
+	}
+
+	/* order flag updates with spin locks */
+	if (!list_empty(&list))
+		smp_mb__after_atomic();
+
+	spin_unlock_irqrestore(&cp->cp_lock, flags);
+
+	/* now remove the messages from the sock list as needed */
+	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
+}
+EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
+
+void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
+			 is_acked_func is_acked)
+{
+	WARN_ON(conn->c_trans->t_mp_capable);
+	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
+}
+EXPORT_SYMBOL_GPL(rds_send_drop_acked);
+
+void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
+{
+	struct rds_message *rm, *tmp;
+	struct rds_connection *conn;
+	struct rds_conn_path *cp;
+	unsigned long flags;
+	LIST_HEAD(list);
+
+	/* get all the messages we're dropping under the rs lock */
+	spin_lock_irqsave(&rs->rs_lock, flags);
+
+	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
+		if (dest &&
+		    (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
+		     dest->sin6_port != rm->m_inc.i_hdr.h_dport))
+			continue;
+
+		list_move(&rm->m_sock_item, &list);
+		rds_send_sndbuf_remove(rs, rm);
+		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
+	}
+
+	/* order flag updates with the rs lock */
+	smp_mb__after_atomic();
+
+	spin_unlock_irqrestore(&rs->rs_lock, flags);
+
+	if (list_empty(&list))
+		return;
+
+	/* Remove the messages from the conn */
+	list_for_each_entry(rm, &list, m_sock_item) {
+
+		conn = rm->m_inc.i_conn;
+		if (conn->c_trans->t_mp_capable)
+			cp = rm->m_inc.i_conn_path;
+		else
+			cp = &conn->c_path[0];
+
+		spin_lock_irqsave(&cp->cp_lock, flags);
+		/*
+		 * Maybe someone else beat us to removing rm from the conn.
+		 * If we race with their flag update we'll get the lock and
+		 * then really see that the flag has been cleared.
+		 */
+		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
+			spin_unlock_irqrestore(&cp->cp_lock, flags);
+			continue;
+		}
+		list_del_init(&rm->m_conn_item);
+		spin_unlock_irqrestore(&cp->cp_lock, flags);
+
+		/*
+		 * Couldn't grab m_rs_lock in top loop (lock ordering),
+		 * but we can now.
+		 */
+		spin_lock_irqsave(&rm->m_rs_lock, flags);
+
+		spin_lock(&rs->rs_lock);
+		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
+		spin_unlock(&rs->rs_lock);
+
+		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
+
+		rds_message_put(rm);
+	}
+
+	rds_wake_sk_sleep(rs);
+
+	while (!list_empty(&list)) {
+		rm = list_entry(list.next, struct rds_message, m_sock_item);
+		list_del_init(&rm->m_sock_item);
+		rds_message_wait(rm);
+
+		/* just in case the code above skipped this message
+		 * because RDS_MSG_ON_CONN wasn't set, run it again here
+		 * taking m_rs_lock is the only thing that keeps us
+		 * from racing with ack processing.
+		 */
+		spin_lock_irqsave(&rm->m_rs_lock, flags);
+
+		spin_lock(&rs->rs_lock);
+		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
+		spin_unlock(&rs->rs_lock);
+
+		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
+
+		rds_message_put(rm);
+	}
+}
+
+/*
+ * we only want this to fire once so we use the callers 'queued'.  It's
+ * possible that another thread can race with us and remove the
+ * message from the flow with RDS_CANCEL_SENT_TO.
+ */
+static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
+			     struct rds_conn_path *cp,
+			     struct rds_message *rm, __be16 sport,
+			     __be16 dport, int *queued)
+{
+	unsigned long flags;
+	u32 len;
+
+	if (*queued)
+		goto out;
+
+	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
+
+	/* this is the only place which holds both the socket's rs_lock
+	 * and the connection's c_lock */
+	spin_lock_irqsave(&rs->rs_lock, flags);
+
+	/*
+	 * If there is a little space in sndbuf, we don't queue anything,
+	 * and userspace gets -EAGAIN. But poll() indicates there's send
+	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
+	 * freed up by incoming acks. So we check the *old* value of
+	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
+	 * and poll() now knows no more data can be sent.
+	 */
+	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
+		rs->rs_snd_bytes += len;
+
+		/* let recv side know we are close to send space exhaustion.
+		 * This is probably not the optimal way to do it, as this
+		 * means we set the flag on *all* messages as soon as our
+		 * throughput hits a certain threshold.
+		 */
+		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
+			set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
+
+		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
+		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
+		rds_message_addref(rm);
+		sock_hold(rds_rs_to_sk(rs));
+		rm->m_rs = rs;
+
+		/* The code ordering is a little weird, but we're
+		   trying to minimize the time we hold c_lock */
+		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
+		rm->m_inc.i_conn = conn;
+		rm->m_inc.i_conn_path = cp;
+		rds_message_addref(rm);
+
+		spin_lock(&cp->cp_lock);
+		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
+		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
+		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
+		spin_unlock(&cp->cp_lock);
+
+		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
+			 rm, len, rs, rs->rs_snd_bytes,
+			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
+
+		*queued = 1;
+	}
+
+	spin_unlock_irqrestore(&rs->rs_lock, flags);
+out:
+	return *queued;
+}
+
+/*
+ * rds_message is getting to be quite complicated, and we'd like to allocate
+ * it all in one go. This figures out how big it needs to be up front.
+ */
+static int rds_rm_size(struct msghdr *msg, int num_sgs)
+{
+	struct cmsghdr *cmsg;
+	int size = 0;
+	int cmsg_groups = 0;
+	int retval;
+	bool zcopy_cookie = false;
+
+	for_each_cmsghdr(cmsg, msg) {
+		if (!CMSG_OK(msg, cmsg))
+			return -EINVAL;
+
+		if (cmsg->cmsg_level != SOL_RDS)
+			continue;
+
+		switch (cmsg->cmsg_type) {
+		case RDS_CMSG_RDMA_ARGS:
+			cmsg_groups |= 1;
+			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
+			if (retval < 0)
+				return retval;
+			size += retval;
+
+			break;
+
+		case RDS_CMSG_ZCOPY_COOKIE:
+			zcopy_cookie = true;
+			/* fall through */
+
+		case RDS_CMSG_RDMA_DEST:
+		case RDS_CMSG_RDMA_MAP:
+			cmsg_groups |= 2;
+			/* these are valid but do no add any size */
+			break;
+
+		case RDS_CMSG_ATOMIC_CSWP:
+		case RDS_CMSG_ATOMIC_FADD:
+		case RDS_CMSG_MASKED_ATOMIC_CSWP:
+		case RDS_CMSG_MASKED_ATOMIC_FADD:
+			cmsg_groups |= 1;
+			size += sizeof(struct scatterlist);
+			break;
+
+		default:
+			return -EINVAL;
+		}
+
+	}
+
+	if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
+		return -EINVAL;
+
+	size += num_sgs * sizeof(struct scatterlist);
+
+	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
+	if (cmsg_groups == 3)
+		return -EINVAL;
+
+	return size;
+}
+
+static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
+			  struct cmsghdr *cmsg)
+{
+	u32 *cookie;
+
+	if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
+	    !rm->data.op_mmp_znotifier)
+		return -EINVAL;
+	cookie = CMSG_DATA(cmsg);
+	rm->data.op_mmp_znotifier->z_cookie = *cookie;
+	return 0;
+}
+
+static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
+			 struct msghdr *msg, int *allocated_mr)
+{
+	struct cmsghdr *cmsg;
+	int ret = 0;
+
+	for_each_cmsghdr(cmsg, msg) {
+		if (!CMSG_OK(msg, cmsg))
+			return -EINVAL;
+
+		if (cmsg->cmsg_level != SOL_RDS)
+			continue;
+
+		/* As a side effect, RDMA_DEST and RDMA_MAP will set
+		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
+		 */
+		switch (cmsg->cmsg_type) {
+		case RDS_CMSG_RDMA_ARGS:
+			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
+			break;
+
+		case RDS_CMSG_RDMA_DEST:
+			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
+			break;
+
+		case RDS_CMSG_RDMA_MAP:
+			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
+			if (!ret)
+				*allocated_mr = 1;
+			else if (ret == -ENODEV)
+				/* Accommodate the get_mr() case which can fail
+				 * if connection isn't established yet.
+				 */
+				ret = -EAGAIN;
+			break;
+		case RDS_CMSG_ATOMIC_CSWP:
+		case RDS_CMSG_ATOMIC_FADD:
+		case RDS_CMSG_MASKED_ATOMIC_CSWP:
+		case RDS_CMSG_MASKED_ATOMIC_FADD:
+			ret = rds_cmsg_atomic(rs, rm, cmsg);
+			break;
+
+		case RDS_CMSG_ZCOPY_COOKIE:
+			ret = rds_cmsg_zcopy(rs, rm, cmsg);
+			break;
+
+		default:
+			return -EINVAL;
+		}
+
+		if (ret)
+			break;
+	}
+
+	return ret;
+}
+
+static int rds_send_mprds_hash(struct rds_sock *rs,
+			       struct rds_connection *conn, int nonblock)
+{
+	int hash;
+
+	if (conn->c_npaths == 0)
+		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
+	else
+		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
+	if (conn->c_npaths == 0 && hash != 0) {
+		rds_send_ping(conn, 0);
+
+		/* The underlying connection is not up yet.  Need to wait
+		 * until it is up to be sure that the non-zero c_path can be
+		 * used.  But if we are interrupted, we have to use the zero
+		 * c_path in case the connection ends up being non-MP capable.
+		 */
+		if (conn->c_npaths == 0) {
+			/* Cannot wait for the connection be made, so just use
+			 * the base c_path.
+			 */
+			if (nonblock)
+				return 0;
+			if (wait_event_interruptible(conn->c_hs_waitq,
+						     conn->c_npaths != 0))
+				hash = 0;
+		}
+		if (conn->c_npaths == 1)
+			hash = 0;
+	}
+	return hash;
+}
+
+static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
+{
+	struct rds_rdma_args *args;
+	struct cmsghdr *cmsg;
+
+	for_each_cmsghdr(cmsg, msg) {
+		if (!CMSG_OK(msg, cmsg))
+			return -EINVAL;
+
+		if (cmsg->cmsg_level != SOL_RDS)
+			continue;
+
+		if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
+			if (cmsg->cmsg_len <
+			    CMSG_LEN(sizeof(struct rds_rdma_args)))
+				return -EINVAL;
+			args = CMSG_DATA(cmsg);
+			*rdma_bytes += args->remote_vec.bytes;
+		}
+	}
+	return 0;
+}
+
+int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
+{
+	struct sock *sk = sock->sk;
+	struct rds_sock *rs = rds_sk_to_rs(sk);
+	DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
+	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
+	__be16 dport;
+	struct rds_message *rm = NULL;
+	struct rds_connection *conn;
+	int ret = 0;
+	int queued = 0, allocated_mr = 0;
+	int nonblock = msg->msg_flags & MSG_DONTWAIT;
+	long timeo = sock_sndtimeo(sk, nonblock);
+	struct rds_conn_path *cpath;
+	struct in6_addr daddr;
+	__u32 scope_id = 0;
+	size_t total_payload_len = payload_len, rdma_payload_len = 0;
+	bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
+		      sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
+	int num_sgs = ceil(payload_len, PAGE_SIZE);
+	int namelen;
+
+	/* Mirror Linux UDP mirror of BSD error message compatibility */
+	/* XXX: Perhaps MSG_MORE someday */
+	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
+		ret = -EOPNOTSUPP;
+		goto out;
+	}
+
+	namelen = msg->msg_namelen;
+	if (namelen != 0) {
+		if (namelen < sizeof(*usin)) {
+			ret = -EINVAL;
+			goto out;
+		}
+		switch (usin->sin_family) {
+		case AF_INET:
+			if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
+			    usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
+			    IN_MULTICAST(ntohl(usin->sin_addr.s_addr))) {
+				ret = -EINVAL;
+				goto out;
+			}
+			ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
+			dport = usin->sin_port;
+			break;
+
+#if IS_ENABLED(CONFIG_IPV6)
+		case AF_INET6: {
+			int addr_type;
+
+			if (namelen < sizeof(*sin6)) {
+				ret = -EINVAL;
+				goto out;
+			}
+			addr_type = ipv6_addr_type(&sin6->sin6_addr);
+			if (!(addr_type & IPV6_ADDR_UNICAST)) {
+				__be32 addr4;
+
+				if (!(addr_type & IPV6_ADDR_MAPPED)) {
+					ret = -EINVAL;
+					goto out;
+				}
+
+				/* It is a mapped address.  Need to do some
+				 * sanity checks.
+				 */
+				addr4 = sin6->sin6_addr.s6_addr32[3];
+				if (addr4 == htonl(INADDR_ANY) ||
+				    addr4 == htonl(INADDR_BROADCAST) ||
+				    IN_MULTICAST(ntohl(addr4))) {
+					ret = -EINVAL;
+					goto out;
+				}
+			}
+			if (addr_type & IPV6_ADDR_LINKLOCAL) {
+				if (sin6->sin6_scope_id == 0) {
+					ret = -EINVAL;
+					goto out;
+				}
+				scope_id = sin6->sin6_scope_id;
+			}
+
+			daddr = sin6->sin6_addr;
+			dport = sin6->sin6_port;
+			break;
+		}
+#endif
+
+		default:
+			ret = -EINVAL;
+			goto out;
+		}
+	} else {
+		/* We only care about consistency with ->connect() */
+		lock_sock(sk);
+		daddr = rs->rs_conn_addr;
+		dport = rs->rs_conn_port;
+		scope_id = rs->rs_bound_scope_id;
+		release_sock(sk);
+	}
+
+	lock_sock(sk);
+	if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
+		release_sock(sk);
+		ret = -ENOTCONN;
+		goto out;
+	} else if (namelen != 0) {
+		/* Cannot send to an IPv4 address using an IPv6 source
+		 * address and cannot send to an IPv6 address using an
+		 * IPv4 source address.
+		 */
+		if (ipv6_addr_v4mapped(&daddr) ^
+		    ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
+			release_sock(sk);
+			ret = -EOPNOTSUPP;
+			goto out;
+		}
+		/* If the socket is already bound to a link local address,
+		 * it can only send to peers on the same link.  But allow
+		 * communicating beween link local and non-link local address.
+		 */
+		if (scope_id != rs->rs_bound_scope_id) {
+			if (!scope_id) {
+				scope_id = rs->rs_bound_scope_id;
+			} else if (rs->rs_bound_scope_id) {
+				release_sock(sk);
+				ret = -EINVAL;
+				goto out;
+			}
+		}
+	}
+	release_sock(sk);
+
+	ret = rds_rdma_bytes(msg, &rdma_payload_len);
+	if (ret)
+		goto out;
+
+	total_payload_len += rdma_payload_len;
+	if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
+		ret = -EMSGSIZE;
+		goto out;
+	}
+
+	if (payload_len > rds_sk_sndbuf(rs)) {
+		ret = -EMSGSIZE;
+		goto out;
+	}
+
+	if (zcopy) {
+		if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
+			ret = -EOPNOTSUPP;
+			goto out;
+		}
+		num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
+	}
+	/* size of rm including all sgs */
+	ret = rds_rm_size(msg, num_sgs);
+	if (ret < 0)
+		goto out;
+
+	rm = rds_message_alloc(ret, GFP_KERNEL);
+	if (!rm) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	/* Attach data to the rm */
+	if (payload_len) {
+		rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
+		if (!rm->data.op_sg) {
+			ret = -ENOMEM;
+			goto out;
+		}
+		ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
+		if (ret)
+			goto out;
+	}
+	rm->data.op_active = 1;
+
+	rm->m_daddr = daddr;
+
+	/* rds_conn_create has a spinlock that runs with IRQ off.
+	 * Caching the conn in the socket helps a lot. */
+	if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr))
+		conn = rs->rs_conn;
+	else {
+		conn = rds_conn_create_outgoing(sock_net(sock->sk),
+						&rs->rs_bound_addr, &daddr,
+						rs->rs_transport,
+						sock->sk->sk_allocation,
+						scope_id);
+		if (IS_ERR(conn)) {
+			ret = PTR_ERR(conn);
+			goto out;
+		}
+		rs->rs_conn = conn;
+	}
+
+	if (conn->c_trans->t_mp_capable)
+		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
+	else
+		cpath = &conn->c_path[0];
+
+	rm->m_conn_path = cpath;
+
+	/* Parse any control messages the user may have included. */
+	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
+	if (ret) {
+		/* Trigger connection so that its ready for the next retry */
+		if (ret ==  -EAGAIN)
+			rds_conn_connect_if_down(conn);
+		goto out;
+	}
+
+	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
+		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
+			       &rm->rdma, conn->c_trans->xmit_rdma);
+		ret = -EOPNOTSUPP;
+		goto out;
+	}
+
+	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
+		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
+			       &rm->atomic, conn->c_trans->xmit_atomic);
+		ret = -EOPNOTSUPP;
+		goto out;
+	}
+
+	if (rds_destroy_pending(conn)) {
+		ret = -EAGAIN;
+		goto out;
+	}
+
+	rds_conn_path_connect_if_down(cpath);
+
+	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
+	if (ret) {
+		rs->rs_seen_congestion = 1;
+		goto out;
+	}
+	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
+				  dport, &queued)) {
+		rds_stats_inc(s_send_queue_full);
+
+		if (nonblock) {
+			ret = -EAGAIN;
+			goto out;
+		}
+
+		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
+					rds_send_queue_rm(rs, conn, cpath, rm,
+							  rs->rs_bound_port,
+							  dport,
+							  &queued),
+					timeo);
+		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
+		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
+			continue;
+
+		ret = timeo;
+		if (ret == 0)
+			ret = -ETIMEDOUT;
+		goto out;
+	}
+
+	/*
+	 * By now we've committed to the send.  We reuse rds_send_worker()
+	 * to retry sends in the rds thread if the transport asks us to.
+	 */
+	rds_stats_inc(s_send_queued);
+
+	ret = rds_send_xmit(cpath);
+	if (ret == -ENOMEM || ret == -EAGAIN) {
+		ret = 0;
+		rcu_read_lock();
+		if (rds_destroy_pending(cpath->cp_conn))
+			ret = -ENETUNREACH;
+		else
+			queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
+		rcu_read_unlock();
+	}
+	if (ret)
+		goto out;
+	rds_message_put(rm);
+	return payload_len;
+
+out:
+	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
+	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
+	 * or in any other way, we need to destroy the MR again */
+	if (allocated_mr)
+		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
+
+	if (rm)
+		rds_message_put(rm);
+	return ret;
+}
+
+/*
+ * send out a probe. Can be shared by rds_send_ping,
+ * rds_send_pong, rds_send_hb.
+ * rds_send_hb should use h_flags
+ *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
+ * or
+ *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
+ */
+static int
+rds_send_probe(struct rds_conn_path *cp, __be16 sport,
+	       __be16 dport, u8 h_flags)
+{
+	struct rds_message *rm;
+	unsigned long flags;
+	int ret = 0;
+
+	rm = rds_message_alloc(0, GFP_ATOMIC);
+	if (!rm) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	rm->m_daddr = cp->cp_conn->c_faddr;
+	rm->data.op_active = 1;
+
+	rds_conn_path_connect_if_down(cp);
+
+	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
+	if (ret)
+		goto out;
+
+	spin_lock_irqsave(&cp->cp_lock, flags);
+	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
+	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
+	rds_message_addref(rm);
+	rm->m_inc.i_conn = cp->cp_conn;
+	rm->m_inc.i_conn_path = cp;
+
+	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
+				    cp->cp_next_tx_seq);
+	rm->m_inc.i_hdr.h_flags |= h_flags;
+	cp->cp_next_tx_seq++;
+
+	if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
+	    cp->cp_conn->c_trans->t_mp_capable) {
+		u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
+		u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
+
+		rds_message_add_extension(&rm->m_inc.i_hdr,
+					  RDS_EXTHDR_NPATHS, &npaths,
+					  sizeof(npaths));
+		rds_message_add_extension(&rm->m_inc.i_hdr,
+					  RDS_EXTHDR_GEN_NUM,
+					  &my_gen_num,
+					  sizeof(u32));
+	}
+	spin_unlock_irqrestore(&cp->cp_lock, flags);
+
+	rds_stats_inc(s_send_queued);
+	rds_stats_inc(s_send_pong);
+
+	/* schedule the send work on rds_wq */
+	rcu_read_lock();
+	if (!rds_destroy_pending(cp->cp_conn))
+		queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
+	rcu_read_unlock();
+
+	rds_message_put(rm);
+	return 0;
+
+out:
+	if (rm)
+		rds_message_put(rm);
+	return ret;
+}
+
+int
+rds_send_pong(struct rds_conn_path *cp, __be16 dport)
+{
+	return rds_send_probe(cp, 0, dport, 0);
+}
+
+void
+rds_send_ping(struct rds_connection *conn, int cp_index)
+{
+	unsigned long flags;
+	struct rds_conn_path *cp = &conn->c_path[cp_index];
+
+	spin_lock_irqsave(&cp->cp_lock, flags);
+	if (conn->c_ping_triggered) {
+		spin_unlock_irqrestore(&cp->cp_lock, flags);
+		return;
+	}
+	conn->c_ping_triggered = 1;
+	spin_unlock_irqrestore(&cp->cp_lock, flags);
+	rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
+}
+EXPORT_SYMBOL_GPL(rds_send_ping);