Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _LINUX_SCHED_H |
| 3 | #define _LINUX_SCHED_H |
| 4 | |
| 5 | /* |
| 6 | * Define 'struct task_struct' and provide the main scheduler |
| 7 | * APIs (schedule(), wakeup variants, etc.) |
| 8 | */ |
| 9 | |
| 10 | #include <uapi/linux/sched.h> |
| 11 | |
| 12 | #include <asm/current.h> |
| 13 | |
| 14 | #include <linux/pid.h> |
| 15 | #include <linux/sem.h> |
| 16 | #include <linux/shm.h> |
| 17 | #include <linux/kcov.h> |
| 18 | #include <linux/mutex.h> |
| 19 | #include <linux/plist.h> |
| 20 | #include <linux/hrtimer.h> |
| 21 | #include <linux/seccomp.h> |
| 22 | #include <linux/nodemask.h> |
| 23 | #include <linux/rcupdate.h> |
| 24 | #include <linux/resource.h> |
| 25 | #include <linux/latencytop.h> |
| 26 | #include <linux/sched/prio.h> |
| 27 | #include <linux/signal_types.h> |
| 28 | #include <linux/mm_types_task.h> |
| 29 | #include <linux/task_io_accounting.h> |
| 30 | #include <linux/rseq.h> |
| 31 | |
| 32 | /* task_struct member predeclarations (sorted alphabetically): */ |
| 33 | struct audit_context; |
| 34 | struct backing_dev_info; |
| 35 | struct bio_list; |
| 36 | struct blk_plug; |
| 37 | struct cfs_rq; |
| 38 | struct fs_struct; |
| 39 | struct futex_pi_state; |
| 40 | struct io_context; |
| 41 | struct mempolicy; |
| 42 | struct nameidata; |
| 43 | struct nsproxy; |
| 44 | struct perf_event_context; |
| 45 | struct pid_namespace; |
| 46 | struct pipe_inode_info; |
| 47 | struct rcu_node; |
| 48 | struct reclaim_state; |
| 49 | struct robust_list_head; |
| 50 | struct sched_attr; |
| 51 | struct sched_param; |
| 52 | struct seq_file; |
| 53 | struct sighand_struct; |
| 54 | struct signal_struct; |
| 55 | struct task_delay_info; |
| 56 | struct task_group; |
| 57 | |
| 58 | /* |
| 59 | * Task state bitmask. NOTE! These bits are also |
| 60 | * encoded in fs/proc/array.c: get_task_state(). |
| 61 | * |
| 62 | * We have two separate sets of flags: task->state |
| 63 | * is about runnability, while task->exit_state are |
| 64 | * about the task exiting. Confusing, but this way |
| 65 | * modifying one set can't modify the other one by |
| 66 | * mistake. |
| 67 | */ |
| 68 | |
| 69 | /* Used in tsk->state: */ |
| 70 | #define TASK_RUNNING 0x0000 |
| 71 | #define TASK_INTERRUPTIBLE 0x0001 |
| 72 | #define TASK_UNINTERRUPTIBLE 0x0002 |
| 73 | #define __TASK_STOPPED 0x0004 |
| 74 | #define __TASK_TRACED 0x0008 |
| 75 | /* Used in tsk->exit_state: */ |
| 76 | #define EXIT_DEAD 0x0010 |
| 77 | #define EXIT_ZOMBIE 0x0020 |
| 78 | #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) |
| 79 | /* Used in tsk->state again: */ |
| 80 | #define TASK_PARKED 0x0040 |
| 81 | #define TASK_DEAD 0x0080 |
| 82 | #define TASK_WAKEKILL 0x0100 |
| 83 | #define TASK_WAKING 0x0200 |
| 84 | #define TASK_NOLOAD 0x0400 |
| 85 | #define TASK_NEW 0x0800 |
| 86 | #define TASK_STATE_MAX 0x1000 |
| 87 | |
| 88 | /* Convenience macros for the sake of set_current_state: */ |
| 89 | #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) |
| 90 | #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) |
| 91 | #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) |
| 92 | |
| 93 | #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) |
| 94 | |
| 95 | /* Convenience macros for the sake of wake_up(): */ |
| 96 | #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) |
| 97 | |
| 98 | /* get_task_state(): */ |
| 99 | #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ |
| 100 | TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ |
| 101 | __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ |
| 102 | TASK_PARKED) |
| 103 | |
| 104 | #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) |
| 105 | |
| 106 | #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) |
| 107 | |
| 108 | #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) |
| 109 | |
| 110 | #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ |
| 111 | (task->flags & PF_FROZEN) == 0 && \ |
| 112 | (task->state & TASK_NOLOAD) == 0) |
| 113 | |
| 114 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| 115 | |
| 116 | /* |
| 117 | * Special states are those that do not use the normal wait-loop pattern. See |
| 118 | * the comment with set_special_state(). |
| 119 | */ |
| 120 | #define is_special_task_state(state) \ |
| 121 | ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) |
| 122 | |
| 123 | #define __set_current_state(state_value) \ |
| 124 | do { \ |
| 125 | WARN_ON_ONCE(is_special_task_state(state_value));\ |
| 126 | current->task_state_change = _THIS_IP_; \ |
| 127 | current->state = (state_value); \ |
| 128 | } while (0) |
| 129 | |
| 130 | #define set_current_state(state_value) \ |
| 131 | do { \ |
| 132 | WARN_ON_ONCE(is_special_task_state(state_value));\ |
| 133 | current->task_state_change = _THIS_IP_; \ |
| 134 | smp_store_mb(current->state, (state_value)); \ |
| 135 | } while (0) |
| 136 | |
| 137 | #define set_special_state(state_value) \ |
| 138 | do { \ |
| 139 | unsigned long flags; /* may shadow */ \ |
| 140 | WARN_ON_ONCE(!is_special_task_state(state_value)); \ |
| 141 | raw_spin_lock_irqsave(¤t->pi_lock, flags); \ |
| 142 | current->task_state_change = _THIS_IP_; \ |
| 143 | current->state = (state_value); \ |
| 144 | raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ |
| 145 | } while (0) |
| 146 | #else |
| 147 | /* |
| 148 | * set_current_state() includes a barrier so that the write of current->state |
| 149 | * is correctly serialised wrt the caller's subsequent test of whether to |
| 150 | * actually sleep: |
| 151 | * |
| 152 | * for (;;) { |
| 153 | * set_current_state(TASK_UNINTERRUPTIBLE); |
| 154 | * if (!need_sleep) |
| 155 | * break; |
| 156 | * |
| 157 | * schedule(); |
| 158 | * } |
| 159 | * __set_current_state(TASK_RUNNING); |
| 160 | * |
| 161 | * If the caller does not need such serialisation (because, for instance, the |
| 162 | * condition test and condition change and wakeup are under the same lock) then |
| 163 | * use __set_current_state(). |
| 164 | * |
| 165 | * The above is typically ordered against the wakeup, which does: |
| 166 | * |
| 167 | * need_sleep = false; |
| 168 | * wake_up_state(p, TASK_UNINTERRUPTIBLE); |
| 169 | * |
| 170 | * where wake_up_state() executes a full memory barrier before accessing the |
| 171 | * task state. |
| 172 | * |
| 173 | * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, |
| 174 | * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a |
| 175 | * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). |
| 176 | * |
| 177 | * However, with slightly different timing the wakeup TASK_RUNNING store can |
| 178 | * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not |
| 179 | * a problem either because that will result in one extra go around the loop |
| 180 | * and our @cond test will save the day. |
| 181 | * |
| 182 | * Also see the comments of try_to_wake_up(). |
| 183 | */ |
| 184 | #define __set_current_state(state_value) \ |
| 185 | current->state = (state_value) |
| 186 | |
| 187 | #define set_current_state(state_value) \ |
| 188 | smp_store_mb(current->state, (state_value)) |
| 189 | |
| 190 | /* |
| 191 | * set_special_state() should be used for those states when the blocking task |
| 192 | * can not use the regular condition based wait-loop. In that case we must |
| 193 | * serialize against wakeups such that any possible in-flight TASK_RUNNING stores |
| 194 | * will not collide with our state change. |
| 195 | */ |
| 196 | #define set_special_state(state_value) \ |
| 197 | do { \ |
| 198 | unsigned long flags; /* may shadow */ \ |
| 199 | raw_spin_lock_irqsave(¤t->pi_lock, flags); \ |
| 200 | current->state = (state_value); \ |
| 201 | raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ |
| 202 | } while (0) |
| 203 | |
| 204 | #endif |
| 205 | |
| 206 | /* Task command name length: */ |
| 207 | #define TASK_COMM_LEN 16 |
| 208 | |
| 209 | extern void scheduler_tick(void); |
| 210 | |
| 211 | #define MAX_SCHEDULE_TIMEOUT LONG_MAX |
| 212 | |
| 213 | extern long schedule_timeout(long timeout); |
| 214 | extern long schedule_timeout_interruptible(long timeout); |
| 215 | extern long schedule_timeout_killable(long timeout); |
| 216 | extern long schedule_timeout_uninterruptible(long timeout); |
| 217 | extern long schedule_timeout_idle(long timeout); |
| 218 | asmlinkage void schedule(void); |
| 219 | extern void schedule_preempt_disabled(void); |
| 220 | |
| 221 | extern int __must_check io_schedule_prepare(void); |
| 222 | extern void io_schedule_finish(int token); |
| 223 | extern long io_schedule_timeout(long timeout); |
| 224 | extern void io_schedule(void); |
| 225 | |
| 226 | /** |
| 227 | * struct prev_cputime - snapshot of system and user cputime |
| 228 | * @utime: time spent in user mode |
| 229 | * @stime: time spent in system mode |
| 230 | * @lock: protects the above two fields |
| 231 | * |
| 232 | * Stores previous user/system time values such that we can guarantee |
| 233 | * monotonicity. |
| 234 | */ |
| 235 | struct prev_cputime { |
| 236 | #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| 237 | u64 utime; |
| 238 | u64 stime; |
| 239 | raw_spinlock_t lock; |
| 240 | #endif |
| 241 | }; |
| 242 | |
| 243 | /** |
| 244 | * struct task_cputime - collected CPU time counts |
| 245 | * @utime: time spent in user mode, in nanoseconds |
| 246 | * @stime: time spent in kernel mode, in nanoseconds |
| 247 | * @sum_exec_runtime: total time spent on the CPU, in nanoseconds |
| 248 | * |
| 249 | * This structure groups together three kinds of CPU time that are tracked for |
| 250 | * threads and thread groups. Most things considering CPU time want to group |
| 251 | * these counts together and treat all three of them in parallel. |
| 252 | */ |
| 253 | struct task_cputime { |
| 254 | u64 utime; |
| 255 | u64 stime; |
| 256 | unsigned long long sum_exec_runtime; |
| 257 | }; |
| 258 | |
| 259 | /* Alternate field names when used on cache expirations: */ |
| 260 | #define virt_exp utime |
| 261 | #define prof_exp stime |
| 262 | #define sched_exp sum_exec_runtime |
| 263 | |
| 264 | enum vtime_state { |
| 265 | /* Task is sleeping or running in a CPU with VTIME inactive: */ |
| 266 | VTIME_INACTIVE = 0, |
| 267 | /* Task runs in userspace in a CPU with VTIME active: */ |
| 268 | VTIME_USER, |
| 269 | /* Task runs in kernelspace in a CPU with VTIME active: */ |
| 270 | VTIME_SYS, |
| 271 | }; |
| 272 | |
| 273 | struct vtime { |
| 274 | seqcount_t seqcount; |
| 275 | unsigned long long starttime; |
| 276 | enum vtime_state state; |
| 277 | u64 utime; |
| 278 | u64 stime; |
| 279 | u64 gtime; |
| 280 | }; |
| 281 | |
| 282 | struct sched_info { |
| 283 | #ifdef CONFIG_SCHED_INFO |
| 284 | /* Cumulative counters: */ |
| 285 | |
| 286 | /* # of times we have run on this CPU: */ |
| 287 | unsigned long pcount; |
| 288 | |
| 289 | /* Time spent waiting on a runqueue: */ |
| 290 | unsigned long long run_delay; |
| 291 | |
| 292 | /* Timestamps: */ |
| 293 | |
| 294 | /* When did we last run on a CPU? */ |
| 295 | unsigned long long last_arrival; |
| 296 | |
| 297 | /* When were we last queued to run? */ |
| 298 | unsigned long long last_queued; |
| 299 | |
| 300 | #endif /* CONFIG_SCHED_INFO */ |
| 301 | }; |
| 302 | |
| 303 | /* |
| 304 | * Integer metrics need fixed point arithmetic, e.g., sched/fair |
| 305 | * has a few: load, load_avg, util_avg, freq, and capacity. |
| 306 | * |
| 307 | * We define a basic fixed point arithmetic range, and then formalize |
| 308 | * all these metrics based on that basic range. |
| 309 | */ |
| 310 | # define SCHED_FIXEDPOINT_SHIFT 10 |
| 311 | # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) |
| 312 | |
| 313 | struct load_weight { |
| 314 | unsigned long weight; |
| 315 | u32 inv_weight; |
| 316 | }; |
| 317 | |
| 318 | /** |
| 319 | * struct util_est - Estimation utilization of FAIR tasks |
| 320 | * @enqueued: instantaneous estimated utilization of a task/cpu |
| 321 | * @ewma: the Exponential Weighted Moving Average (EWMA) |
| 322 | * utilization of a task |
| 323 | * |
| 324 | * Support data structure to track an Exponential Weighted Moving Average |
| 325 | * (EWMA) of a FAIR task's utilization. New samples are added to the moving |
| 326 | * average each time a task completes an activation. Sample's weight is chosen |
| 327 | * so that the EWMA will be relatively insensitive to transient changes to the |
| 328 | * task's workload. |
| 329 | * |
| 330 | * The enqueued attribute has a slightly different meaning for tasks and cpus: |
| 331 | * - task: the task's util_avg at last task dequeue time |
| 332 | * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU |
| 333 | * Thus, the util_est.enqueued of a task represents the contribution on the |
| 334 | * estimated utilization of the CPU where that task is currently enqueued. |
| 335 | * |
| 336 | * Only for tasks we track a moving average of the past instantaneous |
| 337 | * estimated utilization. This allows to absorb sporadic drops in utilization |
| 338 | * of an otherwise almost periodic task. |
| 339 | */ |
| 340 | struct util_est { |
| 341 | unsigned int enqueued; |
| 342 | unsigned int ewma; |
| 343 | #define UTIL_EST_WEIGHT_SHIFT 2 |
| 344 | } __attribute__((__aligned__(sizeof(u64)))); |
| 345 | |
| 346 | /* |
| 347 | * The load_avg/util_avg accumulates an infinite geometric series |
| 348 | * (see __update_load_avg() in kernel/sched/fair.c). |
| 349 | * |
| 350 | * [load_avg definition] |
| 351 | * |
| 352 | * load_avg = runnable% * scale_load_down(load) |
| 353 | * |
| 354 | * where runnable% is the time ratio that a sched_entity is runnable. |
| 355 | * For cfs_rq, it is the aggregated load_avg of all runnable and |
| 356 | * blocked sched_entities. |
| 357 | * |
| 358 | * load_avg may also take frequency scaling into account: |
| 359 | * |
| 360 | * load_avg = runnable% * scale_load_down(load) * freq% |
| 361 | * |
| 362 | * where freq% is the CPU frequency normalized to the highest frequency. |
| 363 | * |
| 364 | * [util_avg definition] |
| 365 | * |
| 366 | * util_avg = running% * SCHED_CAPACITY_SCALE |
| 367 | * |
| 368 | * where running% is the time ratio that a sched_entity is running on |
| 369 | * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable |
| 370 | * and blocked sched_entities. |
| 371 | * |
| 372 | * util_avg may also factor frequency scaling and CPU capacity scaling: |
| 373 | * |
| 374 | * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% |
| 375 | * |
| 376 | * where freq% is the same as above, and capacity% is the CPU capacity |
| 377 | * normalized to the greatest capacity (due to uarch differences, etc). |
| 378 | * |
| 379 | * N.B., the above ratios (runnable%, running%, freq%, and capacity%) |
| 380 | * themselves are in the range of [0, 1]. To do fixed point arithmetics, |
| 381 | * we therefore scale them to as large a range as necessary. This is for |
| 382 | * example reflected by util_avg's SCHED_CAPACITY_SCALE. |
| 383 | * |
| 384 | * [Overflow issue] |
| 385 | * |
| 386 | * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities |
| 387 | * with the highest load (=88761), always runnable on a single cfs_rq, |
| 388 | * and should not overflow as the number already hits PID_MAX_LIMIT. |
| 389 | * |
| 390 | * For all other cases (including 32-bit kernels), struct load_weight's |
| 391 | * weight will overflow first before we do, because: |
| 392 | * |
| 393 | * Max(load_avg) <= Max(load.weight) |
| 394 | * |
| 395 | * Then it is the load_weight's responsibility to consider overflow |
| 396 | * issues. |
| 397 | */ |
| 398 | struct sched_avg { |
| 399 | u64 last_update_time; |
| 400 | u64 load_sum; |
| 401 | u64 runnable_load_sum; |
| 402 | u32 util_sum; |
| 403 | u32 period_contrib; |
| 404 | unsigned long load_avg; |
| 405 | unsigned long runnable_load_avg; |
| 406 | unsigned long util_avg; |
| 407 | struct util_est util_est; |
| 408 | } ____cacheline_aligned; |
| 409 | |
| 410 | struct sched_statistics { |
| 411 | #ifdef CONFIG_SCHEDSTATS |
| 412 | u64 wait_start; |
| 413 | u64 wait_max; |
| 414 | u64 wait_count; |
| 415 | u64 wait_sum; |
| 416 | u64 iowait_count; |
| 417 | u64 iowait_sum; |
| 418 | |
| 419 | u64 sleep_start; |
| 420 | u64 sleep_max; |
| 421 | s64 sum_sleep_runtime; |
| 422 | |
| 423 | u64 block_start; |
| 424 | u64 block_max; |
| 425 | u64 exec_max; |
| 426 | u64 slice_max; |
| 427 | |
| 428 | u64 nr_migrations_cold; |
| 429 | u64 nr_failed_migrations_affine; |
| 430 | u64 nr_failed_migrations_running; |
| 431 | u64 nr_failed_migrations_hot; |
| 432 | u64 nr_forced_migrations; |
| 433 | |
| 434 | u64 nr_wakeups; |
| 435 | u64 nr_wakeups_sync; |
| 436 | u64 nr_wakeups_migrate; |
| 437 | u64 nr_wakeups_local; |
| 438 | u64 nr_wakeups_remote; |
| 439 | u64 nr_wakeups_affine; |
| 440 | u64 nr_wakeups_affine_attempts; |
| 441 | u64 nr_wakeups_passive; |
| 442 | u64 nr_wakeups_idle; |
| 443 | #endif |
| 444 | }; |
| 445 | |
| 446 | struct sched_entity { |
| 447 | /* For load-balancing: */ |
| 448 | struct load_weight load; |
| 449 | unsigned long runnable_weight; |
| 450 | struct rb_node run_node; |
| 451 | struct list_head group_node; |
| 452 | unsigned int on_rq; |
| 453 | |
| 454 | u64 exec_start; |
| 455 | u64 sum_exec_runtime; |
| 456 | u64 vruntime; |
| 457 | u64 prev_sum_exec_runtime; |
| 458 | |
| 459 | u64 nr_migrations; |
| 460 | |
| 461 | struct sched_statistics statistics; |
| 462 | |
| 463 | #ifdef CONFIG_FAIR_GROUP_SCHED |
| 464 | int depth; |
| 465 | struct sched_entity *parent; |
| 466 | /* rq on which this entity is (to be) queued: */ |
| 467 | struct cfs_rq *cfs_rq; |
| 468 | /* rq "owned" by this entity/group: */ |
| 469 | struct cfs_rq *my_q; |
| 470 | #endif |
| 471 | |
| 472 | #ifdef CONFIG_SMP |
| 473 | /* |
| 474 | * Per entity load average tracking. |
| 475 | * |
| 476 | * Put into separate cache line so it does not |
| 477 | * collide with read-mostly values above. |
| 478 | */ |
| 479 | struct sched_avg avg; |
| 480 | #endif |
| 481 | }; |
| 482 | |
| 483 | struct sched_rt_entity { |
| 484 | struct list_head run_list; |
| 485 | unsigned long timeout; |
| 486 | unsigned long watchdog_stamp; |
| 487 | unsigned int time_slice; |
| 488 | unsigned short on_rq; |
| 489 | unsigned short on_list; |
| 490 | |
| 491 | struct sched_rt_entity *back; |
| 492 | #ifdef CONFIG_RT_GROUP_SCHED |
| 493 | struct sched_rt_entity *parent; |
| 494 | /* rq on which this entity is (to be) queued: */ |
| 495 | struct rt_rq *rt_rq; |
| 496 | /* rq "owned" by this entity/group: */ |
| 497 | struct rt_rq *my_q; |
| 498 | #endif |
| 499 | } __randomize_layout; |
| 500 | |
| 501 | struct sched_dl_entity { |
| 502 | struct rb_node rb_node; |
| 503 | |
| 504 | /* |
| 505 | * Original scheduling parameters. Copied here from sched_attr |
| 506 | * during sched_setattr(), they will remain the same until |
| 507 | * the next sched_setattr(). |
| 508 | */ |
| 509 | u64 dl_runtime; /* Maximum runtime for each instance */ |
| 510 | u64 dl_deadline; /* Relative deadline of each instance */ |
| 511 | u64 dl_period; /* Separation of two instances (period) */ |
| 512 | u64 dl_bw; /* dl_runtime / dl_period */ |
| 513 | u64 dl_density; /* dl_runtime / dl_deadline */ |
| 514 | |
| 515 | /* |
| 516 | * Actual scheduling parameters. Initialized with the values above, |
| 517 | * they are continously updated during task execution. Note that |
| 518 | * the remaining runtime could be < 0 in case we are in overrun. |
| 519 | */ |
| 520 | s64 runtime; /* Remaining runtime for this instance */ |
| 521 | u64 deadline; /* Absolute deadline for this instance */ |
| 522 | unsigned int flags; /* Specifying the scheduler behaviour */ |
| 523 | |
| 524 | /* |
| 525 | * Some bool flags: |
| 526 | * |
| 527 | * @dl_throttled tells if we exhausted the runtime. If so, the |
| 528 | * task has to wait for a replenishment to be performed at the |
| 529 | * next firing of dl_timer. |
| 530 | * |
| 531 | * @dl_boosted tells if we are boosted due to DI. If so we are |
| 532 | * outside bandwidth enforcement mechanism (but only until we |
| 533 | * exit the critical section); |
| 534 | * |
| 535 | * @dl_yielded tells if task gave up the CPU before consuming |
| 536 | * all its available runtime during the last job. |
| 537 | * |
| 538 | * @dl_non_contending tells if the task is inactive while still |
| 539 | * contributing to the active utilization. In other words, it |
| 540 | * indicates if the inactive timer has been armed and its handler |
| 541 | * has not been executed yet. This flag is useful to avoid race |
| 542 | * conditions between the inactive timer handler and the wakeup |
| 543 | * code. |
| 544 | * |
| 545 | * @dl_overrun tells if the task asked to be informed about runtime |
| 546 | * overruns. |
| 547 | */ |
| 548 | unsigned int dl_throttled : 1; |
| 549 | unsigned int dl_boosted : 1; |
| 550 | unsigned int dl_yielded : 1; |
| 551 | unsigned int dl_non_contending : 1; |
| 552 | unsigned int dl_overrun : 1; |
| 553 | |
| 554 | /* |
| 555 | * Bandwidth enforcement timer. Each -deadline task has its |
| 556 | * own bandwidth to be enforced, thus we need one timer per task. |
| 557 | */ |
| 558 | struct hrtimer dl_timer; |
| 559 | |
| 560 | /* |
| 561 | * Inactive timer, responsible for decreasing the active utilization |
| 562 | * at the "0-lag time". When a -deadline task blocks, it contributes |
| 563 | * to GRUB's active utilization until the "0-lag time", hence a |
| 564 | * timer is needed to decrease the active utilization at the correct |
| 565 | * time. |
| 566 | */ |
| 567 | struct hrtimer inactive_timer; |
| 568 | }; |
| 569 | |
| 570 | union rcu_special { |
| 571 | struct { |
| 572 | u8 blocked; |
| 573 | u8 need_qs; |
| 574 | u8 exp_need_qs; |
| 575 | |
| 576 | /* Otherwise the compiler can store garbage here: */ |
| 577 | u8 pad; |
| 578 | } b; /* Bits. */ |
| 579 | u32 s; /* Set of bits. */ |
| 580 | }; |
| 581 | |
| 582 | enum perf_event_task_context { |
| 583 | perf_invalid_context = -1, |
| 584 | perf_hw_context = 0, |
| 585 | perf_sw_context, |
| 586 | perf_nr_task_contexts, |
| 587 | }; |
| 588 | |
| 589 | struct wake_q_node { |
| 590 | struct wake_q_node *next; |
| 591 | }; |
| 592 | |
| 593 | struct task_struct { |
| 594 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 595 | /* |
| 596 | * For reasons of header soup (see current_thread_info()), this |
| 597 | * must be the first element of task_struct. |
| 598 | */ |
| 599 | struct thread_info thread_info; |
| 600 | #endif |
| 601 | /* -1 unrunnable, 0 runnable, >0 stopped: */ |
| 602 | volatile long state; |
| 603 | |
| 604 | /* |
| 605 | * This begins the randomizable portion of task_struct. Only |
| 606 | * scheduling-critical items should be added above here. |
| 607 | */ |
| 608 | randomized_struct_fields_start |
| 609 | |
| 610 | void *stack; |
| 611 | atomic_t usage; |
| 612 | /* Per task flags (PF_*), defined further below: */ |
| 613 | unsigned int flags; |
| 614 | unsigned int ptrace; |
| 615 | |
| 616 | #ifdef CONFIG_SMP |
| 617 | struct llist_node wake_entry; |
| 618 | int on_cpu; |
| 619 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 620 | /* Current CPU: */ |
| 621 | unsigned int cpu; |
| 622 | #endif |
| 623 | unsigned int wakee_flips; |
| 624 | unsigned long wakee_flip_decay_ts; |
| 625 | struct task_struct *last_wakee; |
| 626 | |
| 627 | /* |
| 628 | * recent_used_cpu is initially set as the last CPU used by a task |
| 629 | * that wakes affine another task. Waker/wakee relationships can |
| 630 | * push tasks around a CPU where each wakeup moves to the next one. |
| 631 | * Tracking a recently used CPU allows a quick search for a recently |
| 632 | * used CPU that may be idle. |
| 633 | */ |
| 634 | int recent_used_cpu; |
| 635 | int wake_cpu; |
| 636 | #endif |
| 637 | int on_rq; |
| 638 | |
| 639 | int prio; |
| 640 | int static_prio; |
| 641 | int normal_prio; |
| 642 | unsigned int rt_priority; |
| 643 | |
| 644 | const struct sched_class *sched_class; |
| 645 | struct sched_entity se; |
| 646 | struct sched_rt_entity rt; |
| 647 | #ifdef CONFIG_CGROUP_SCHED |
| 648 | struct task_group *sched_task_group; |
| 649 | #endif |
| 650 | struct sched_dl_entity dl; |
| 651 | |
| 652 | #ifdef CONFIG_PREEMPT_NOTIFIERS |
| 653 | /* List of struct preempt_notifier: */ |
| 654 | struct hlist_head preempt_notifiers; |
| 655 | #endif |
| 656 | |
| 657 | #ifdef CONFIG_BLK_DEV_IO_TRACE |
| 658 | unsigned int btrace_seq; |
| 659 | #endif |
| 660 | |
| 661 | unsigned int policy; |
| 662 | int nr_cpus_allowed; |
| 663 | cpumask_t cpus_allowed; |
| 664 | |
| 665 | #ifdef CONFIG_PREEMPT_RCU |
| 666 | int rcu_read_lock_nesting; |
| 667 | union rcu_special rcu_read_unlock_special; |
| 668 | struct list_head rcu_node_entry; |
| 669 | struct rcu_node *rcu_blocked_node; |
| 670 | #endif /* #ifdef CONFIG_PREEMPT_RCU */ |
| 671 | |
| 672 | #ifdef CONFIG_TASKS_RCU |
| 673 | unsigned long rcu_tasks_nvcsw; |
| 674 | u8 rcu_tasks_holdout; |
| 675 | u8 rcu_tasks_idx; |
| 676 | int rcu_tasks_idle_cpu; |
| 677 | struct list_head rcu_tasks_holdout_list; |
| 678 | #endif /* #ifdef CONFIG_TASKS_RCU */ |
| 679 | |
| 680 | struct sched_info sched_info; |
| 681 | |
| 682 | struct list_head tasks; |
| 683 | #ifdef CONFIG_SMP |
| 684 | struct plist_node pushable_tasks; |
| 685 | struct rb_node pushable_dl_tasks; |
| 686 | #endif |
| 687 | |
| 688 | struct mm_struct *mm; |
| 689 | struct mm_struct *active_mm; |
| 690 | |
| 691 | /* Per-thread vma caching: */ |
| 692 | struct vmacache vmacache; |
| 693 | |
| 694 | #ifdef SPLIT_RSS_COUNTING |
| 695 | struct task_rss_stat rss_stat; |
| 696 | #endif |
| 697 | int exit_state; |
| 698 | int exit_code; |
| 699 | int exit_signal; |
| 700 | /* The signal sent when the parent dies: */ |
| 701 | int pdeath_signal; |
| 702 | /* JOBCTL_*, siglock protected: */ |
| 703 | unsigned long jobctl; |
| 704 | |
| 705 | /* Used for emulating ABI behavior of previous Linux versions: */ |
| 706 | unsigned int personality; |
| 707 | |
| 708 | /* Scheduler bits, serialized by scheduler locks: */ |
| 709 | unsigned sched_reset_on_fork:1; |
| 710 | unsigned sched_contributes_to_load:1; |
| 711 | unsigned sched_migrated:1; |
| 712 | unsigned sched_remote_wakeup:1; |
| 713 | /* Force alignment to the next boundary: */ |
| 714 | unsigned :0; |
| 715 | |
| 716 | /* Unserialized, strictly 'current' */ |
| 717 | |
| 718 | /* Bit to tell LSMs we're in execve(): */ |
| 719 | unsigned in_execve:1; |
| 720 | unsigned in_iowait:1; |
| 721 | #ifndef TIF_RESTORE_SIGMASK |
| 722 | unsigned restore_sigmask:1; |
| 723 | #endif |
| 724 | #ifdef CONFIG_MEMCG |
| 725 | unsigned in_user_fault:1; |
| 726 | #ifdef CONFIG_MEMCG_KMEM |
| 727 | unsigned memcg_kmem_skip_account:1; |
| 728 | #endif |
| 729 | #endif |
| 730 | #ifdef CONFIG_COMPAT_BRK |
| 731 | unsigned brk_randomized:1; |
| 732 | #endif |
| 733 | #ifdef CONFIG_CGROUPS |
| 734 | /* disallow userland-initiated cgroup migration */ |
| 735 | unsigned no_cgroup_migration:1; |
| 736 | #endif |
| 737 | #ifdef CONFIG_BLK_CGROUP |
| 738 | /* to be used once the psi infrastructure lands upstream. */ |
| 739 | unsigned use_memdelay:1; |
| 740 | #endif |
| 741 | |
| 742 | unsigned long atomic_flags; /* Flags requiring atomic access. */ |
| 743 | |
| 744 | struct restart_block restart_block; |
| 745 | |
| 746 | pid_t pid; |
| 747 | pid_t tgid; |
| 748 | |
| 749 | #ifdef CONFIG_STACKPROTECTOR |
| 750 | /* Canary value for the -fstack-protector GCC feature: */ |
| 751 | unsigned long stack_canary; |
| 752 | #endif |
| 753 | /* |
| 754 | * Pointers to the (original) parent process, youngest child, younger sibling, |
| 755 | * older sibling, respectively. (p->father can be replaced with |
| 756 | * p->real_parent->pid) |
| 757 | */ |
| 758 | |
| 759 | /* Real parent process: */ |
| 760 | struct task_struct __rcu *real_parent; |
| 761 | |
| 762 | /* Recipient of SIGCHLD, wait4() reports: */ |
| 763 | struct task_struct __rcu *parent; |
| 764 | |
| 765 | /* |
| 766 | * Children/sibling form the list of natural children: |
| 767 | */ |
| 768 | struct list_head children; |
| 769 | struct list_head sibling; |
| 770 | struct task_struct *group_leader; |
| 771 | |
| 772 | /* |
| 773 | * 'ptraced' is the list of tasks this task is using ptrace() on. |
| 774 | * |
| 775 | * This includes both natural children and PTRACE_ATTACH targets. |
| 776 | * 'ptrace_entry' is this task's link on the p->parent->ptraced list. |
| 777 | */ |
| 778 | struct list_head ptraced; |
| 779 | struct list_head ptrace_entry; |
| 780 | |
| 781 | /* PID/PID hash table linkage. */ |
| 782 | struct pid *thread_pid; |
| 783 | struct hlist_node pid_links[PIDTYPE_MAX]; |
| 784 | struct list_head thread_group; |
| 785 | struct list_head thread_node; |
| 786 | |
| 787 | struct completion *vfork_done; |
| 788 | |
| 789 | /* CLONE_CHILD_SETTID: */ |
| 790 | int __user *set_child_tid; |
| 791 | |
| 792 | /* CLONE_CHILD_CLEARTID: */ |
| 793 | int __user *clear_child_tid; |
| 794 | |
| 795 | u64 utime; |
| 796 | u64 stime; |
| 797 | #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME |
| 798 | u64 utimescaled; |
| 799 | u64 stimescaled; |
| 800 | #endif |
| 801 | u64 gtime; |
| 802 | struct prev_cputime prev_cputime; |
| 803 | #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN |
| 804 | struct vtime vtime; |
| 805 | #endif |
| 806 | |
| 807 | #ifdef CONFIG_NO_HZ_FULL |
| 808 | atomic_t tick_dep_mask; |
| 809 | #endif |
| 810 | /* Context switch counts: */ |
| 811 | unsigned long nvcsw; |
| 812 | unsigned long nivcsw; |
| 813 | |
| 814 | /* Monotonic time in nsecs: */ |
| 815 | u64 start_time; |
| 816 | |
| 817 | /* Boot based time in nsecs: */ |
| 818 | u64 real_start_time; |
| 819 | |
| 820 | /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ |
| 821 | unsigned long min_flt; |
| 822 | unsigned long maj_flt; |
| 823 | |
| 824 | #ifdef CONFIG_POSIX_TIMERS |
| 825 | struct task_cputime cputime_expires; |
| 826 | struct list_head cpu_timers[3]; |
| 827 | #endif |
| 828 | |
| 829 | /* Process credentials: */ |
| 830 | |
| 831 | /* Tracer's credentials at attach: */ |
| 832 | const struct cred __rcu *ptracer_cred; |
| 833 | |
| 834 | /* Objective and real subjective task credentials (COW): */ |
| 835 | const struct cred __rcu *real_cred; |
| 836 | |
| 837 | /* Effective (overridable) subjective task credentials (COW): */ |
| 838 | const struct cred __rcu *cred; |
| 839 | |
| 840 | /* |
| 841 | * executable name, excluding path. |
| 842 | * |
| 843 | * - normally initialized setup_new_exec() |
| 844 | * - access it with [gs]et_task_comm() |
| 845 | * - lock it with task_lock() |
| 846 | */ |
| 847 | char comm[TASK_COMM_LEN]; |
| 848 | |
| 849 | struct nameidata *nameidata; |
| 850 | |
| 851 | #ifdef CONFIG_SYSVIPC |
| 852 | struct sysv_sem sysvsem; |
| 853 | struct sysv_shm sysvshm; |
| 854 | #endif |
| 855 | #ifdef CONFIG_DETECT_HUNG_TASK |
| 856 | unsigned long last_switch_count; |
| 857 | unsigned long last_switch_time; |
| 858 | #endif |
| 859 | /* Filesystem information: */ |
| 860 | struct fs_struct *fs; |
| 861 | |
| 862 | /* Open file information: */ |
| 863 | struct files_struct *files; |
| 864 | |
| 865 | /* Namespaces: */ |
| 866 | struct nsproxy *nsproxy; |
| 867 | |
| 868 | /* Signal handlers: */ |
| 869 | struct signal_struct *signal; |
| 870 | struct sighand_struct *sighand; |
| 871 | sigset_t blocked; |
| 872 | sigset_t real_blocked; |
| 873 | /* Restored if set_restore_sigmask() was used: */ |
| 874 | sigset_t saved_sigmask; |
| 875 | struct sigpending pending; |
| 876 | unsigned long sas_ss_sp; |
| 877 | size_t sas_ss_size; |
| 878 | unsigned int sas_ss_flags; |
| 879 | |
| 880 | struct callback_head *task_works; |
| 881 | |
| 882 | struct audit_context *audit_context; |
| 883 | #ifdef CONFIG_AUDITSYSCALL |
| 884 | kuid_t loginuid; |
| 885 | unsigned int sessionid; |
| 886 | #endif |
| 887 | struct seccomp seccomp; |
| 888 | |
| 889 | /* Thread group tracking: */ |
| 890 | u32 parent_exec_id; |
| 891 | u32 self_exec_id; |
| 892 | |
| 893 | /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ |
| 894 | spinlock_t alloc_lock; |
| 895 | |
| 896 | /* Protection of the PI data structures: */ |
| 897 | raw_spinlock_t pi_lock; |
| 898 | |
| 899 | struct wake_q_node wake_q; |
| 900 | |
| 901 | #ifdef CONFIG_RT_MUTEXES |
| 902 | /* PI waiters blocked on a rt_mutex held by this task: */ |
| 903 | struct rb_root_cached pi_waiters; |
| 904 | /* Updated under owner's pi_lock and rq lock */ |
| 905 | struct task_struct *pi_top_task; |
| 906 | /* Deadlock detection and priority inheritance handling: */ |
| 907 | struct rt_mutex_waiter *pi_blocked_on; |
| 908 | #endif |
| 909 | |
| 910 | #ifdef CONFIG_DEBUG_MUTEXES |
| 911 | /* Mutex deadlock detection: */ |
| 912 | struct mutex_waiter *blocked_on; |
| 913 | #endif |
| 914 | |
| 915 | #ifdef CONFIG_TRACE_IRQFLAGS |
| 916 | unsigned int irq_events; |
| 917 | unsigned long hardirq_enable_ip; |
| 918 | unsigned long hardirq_disable_ip; |
| 919 | unsigned int hardirq_enable_event; |
| 920 | unsigned int hardirq_disable_event; |
| 921 | int hardirqs_enabled; |
| 922 | int hardirq_context; |
| 923 | unsigned long softirq_disable_ip; |
| 924 | unsigned long softirq_enable_ip; |
| 925 | unsigned int softirq_disable_event; |
| 926 | unsigned int softirq_enable_event; |
| 927 | int softirqs_enabled; |
| 928 | int softirq_context; |
| 929 | #endif |
| 930 | |
| 931 | #ifdef CONFIG_LOCKDEP |
| 932 | # define MAX_LOCK_DEPTH 48UL |
| 933 | u64 curr_chain_key; |
| 934 | int lockdep_depth; |
| 935 | unsigned int lockdep_recursion; |
| 936 | struct held_lock held_locks[MAX_LOCK_DEPTH]; |
| 937 | #endif |
| 938 | |
| 939 | #ifdef CONFIG_UBSAN |
| 940 | unsigned int in_ubsan; |
| 941 | #endif |
| 942 | |
| 943 | /* Journalling filesystem info: */ |
| 944 | void *journal_info; |
| 945 | |
| 946 | /* Stacked block device info: */ |
| 947 | struct bio_list *bio_list; |
| 948 | |
| 949 | #ifdef CONFIG_BLOCK |
| 950 | /* Stack plugging: */ |
| 951 | struct blk_plug *plug; |
| 952 | #endif |
| 953 | |
| 954 | /* VM state: */ |
| 955 | struct reclaim_state *reclaim_state; |
| 956 | |
| 957 | struct backing_dev_info *backing_dev_info; |
| 958 | |
| 959 | struct io_context *io_context; |
| 960 | |
| 961 | /* Ptrace state: */ |
| 962 | unsigned long ptrace_message; |
| 963 | siginfo_t *last_siginfo; |
| 964 | |
| 965 | struct task_io_accounting ioac; |
| 966 | #ifdef CONFIG_TASK_XACCT |
| 967 | /* Accumulated RSS usage: */ |
| 968 | u64 acct_rss_mem1; |
| 969 | /* Accumulated virtual memory usage: */ |
| 970 | u64 acct_vm_mem1; |
| 971 | /* stime + utime since last update: */ |
| 972 | u64 acct_timexpd; |
| 973 | #endif |
| 974 | #ifdef CONFIG_CPUSETS |
| 975 | /* Protected by ->alloc_lock: */ |
| 976 | nodemask_t mems_allowed; |
| 977 | /* Seqence number to catch updates: */ |
| 978 | seqcount_t mems_allowed_seq; |
| 979 | int cpuset_mem_spread_rotor; |
| 980 | int cpuset_slab_spread_rotor; |
| 981 | #endif |
| 982 | #ifdef CONFIG_CGROUPS |
| 983 | /* Control Group info protected by css_set_lock: */ |
| 984 | struct css_set __rcu *cgroups; |
| 985 | /* cg_list protected by css_set_lock and tsk->alloc_lock: */ |
| 986 | struct list_head cg_list; |
| 987 | #endif |
| 988 | #ifdef CONFIG_INTEL_RDT |
| 989 | u32 closid; |
| 990 | u32 rmid; |
| 991 | #endif |
| 992 | #ifdef CONFIG_FUTEX |
| 993 | struct robust_list_head __user *robust_list; |
| 994 | #ifdef CONFIG_COMPAT |
| 995 | struct compat_robust_list_head __user *compat_robust_list; |
| 996 | #endif |
| 997 | struct list_head pi_state_list; |
| 998 | struct futex_pi_state *pi_state_cache; |
| 999 | #endif |
| 1000 | #ifdef CONFIG_PERF_EVENTS |
| 1001 | struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; |
| 1002 | struct mutex perf_event_mutex; |
| 1003 | struct list_head perf_event_list; |
| 1004 | #endif |
| 1005 | #ifdef CONFIG_DEBUG_PREEMPT |
| 1006 | unsigned long preempt_disable_ip; |
| 1007 | #endif |
| 1008 | #ifdef CONFIG_NUMA |
| 1009 | /* Protected by alloc_lock: */ |
| 1010 | struct mempolicy *mempolicy; |
| 1011 | short il_prev; |
| 1012 | short pref_node_fork; |
| 1013 | #endif |
| 1014 | #ifdef CONFIG_NUMA_BALANCING |
| 1015 | int numa_scan_seq; |
| 1016 | unsigned int numa_scan_period; |
| 1017 | unsigned int numa_scan_period_max; |
| 1018 | int numa_preferred_nid; |
| 1019 | unsigned long numa_migrate_retry; |
| 1020 | /* Migration stamp: */ |
| 1021 | u64 node_stamp; |
| 1022 | u64 last_task_numa_placement; |
| 1023 | u64 last_sum_exec_runtime; |
| 1024 | struct callback_head numa_work; |
| 1025 | |
| 1026 | struct numa_group *numa_group; |
| 1027 | |
| 1028 | /* |
| 1029 | * numa_faults is an array split into four regions: |
| 1030 | * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer |
| 1031 | * in this precise order. |
| 1032 | * |
| 1033 | * faults_memory: Exponential decaying average of faults on a per-node |
| 1034 | * basis. Scheduling placement decisions are made based on these |
| 1035 | * counts. The values remain static for the duration of a PTE scan. |
| 1036 | * faults_cpu: Track the nodes the process was running on when a NUMA |
| 1037 | * hinting fault was incurred. |
| 1038 | * faults_memory_buffer and faults_cpu_buffer: Record faults per node |
| 1039 | * during the current scan window. When the scan completes, the counts |
| 1040 | * in faults_memory and faults_cpu decay and these values are copied. |
| 1041 | */ |
| 1042 | unsigned long *numa_faults; |
| 1043 | unsigned long total_numa_faults; |
| 1044 | |
| 1045 | /* |
| 1046 | * numa_faults_locality tracks if faults recorded during the last |
| 1047 | * scan window were remote/local or failed to migrate. The task scan |
| 1048 | * period is adapted based on the locality of the faults with different |
| 1049 | * weights depending on whether they were shared or private faults |
| 1050 | */ |
| 1051 | unsigned long numa_faults_locality[3]; |
| 1052 | |
| 1053 | unsigned long numa_pages_migrated; |
| 1054 | #endif /* CONFIG_NUMA_BALANCING */ |
| 1055 | |
| 1056 | #ifdef CONFIG_RSEQ |
| 1057 | struct rseq __user *rseq; |
| 1058 | u32 rseq_len; |
| 1059 | u32 rseq_sig; |
| 1060 | /* |
| 1061 | * RmW on rseq_event_mask must be performed atomically |
| 1062 | * with respect to preemption. |
| 1063 | */ |
| 1064 | unsigned long rseq_event_mask; |
| 1065 | #endif |
| 1066 | |
| 1067 | struct tlbflush_unmap_batch tlb_ubc; |
| 1068 | |
| 1069 | struct rcu_head rcu; |
| 1070 | |
| 1071 | /* Cache last used pipe for splice(): */ |
| 1072 | struct pipe_inode_info *splice_pipe; |
| 1073 | |
| 1074 | struct page_frag task_frag; |
| 1075 | |
| 1076 | #ifdef CONFIG_TASK_DELAY_ACCT |
| 1077 | struct task_delay_info *delays; |
| 1078 | #endif |
| 1079 | |
| 1080 | #ifdef CONFIG_FAULT_INJECTION |
| 1081 | int make_it_fail; |
| 1082 | unsigned int fail_nth; |
| 1083 | #endif |
| 1084 | /* |
| 1085 | * When (nr_dirtied >= nr_dirtied_pause), it's time to call |
| 1086 | * balance_dirty_pages() for a dirty throttling pause: |
| 1087 | */ |
| 1088 | int nr_dirtied; |
| 1089 | int nr_dirtied_pause; |
| 1090 | /* Start of a write-and-pause period: */ |
| 1091 | unsigned long dirty_paused_when; |
| 1092 | |
| 1093 | #ifdef CONFIG_LATENCYTOP |
| 1094 | int latency_record_count; |
| 1095 | struct latency_record latency_record[LT_SAVECOUNT]; |
| 1096 | #endif |
| 1097 | /* |
| 1098 | * Time slack values; these are used to round up poll() and |
| 1099 | * select() etc timeout values. These are in nanoseconds. |
| 1100 | */ |
| 1101 | u64 timer_slack_ns; |
| 1102 | u64 default_timer_slack_ns; |
| 1103 | |
| 1104 | #ifdef CONFIG_KASAN |
| 1105 | unsigned int kasan_depth; |
| 1106 | #endif |
| 1107 | |
| 1108 | #ifdef CONFIG_FUNCTION_GRAPH_TRACER |
| 1109 | /* Index of current stored address in ret_stack: */ |
| 1110 | int curr_ret_stack; |
| 1111 | int curr_ret_depth; |
| 1112 | |
| 1113 | /* Stack of return addresses for return function tracing: */ |
| 1114 | struct ftrace_ret_stack *ret_stack; |
| 1115 | |
| 1116 | /* Timestamp for last schedule: */ |
| 1117 | unsigned long long ftrace_timestamp; |
| 1118 | |
| 1119 | /* |
| 1120 | * Number of functions that haven't been traced |
| 1121 | * because of depth overrun: |
| 1122 | */ |
| 1123 | atomic_t trace_overrun; |
| 1124 | |
| 1125 | /* Pause tracing: */ |
| 1126 | atomic_t tracing_graph_pause; |
| 1127 | #endif |
| 1128 | |
| 1129 | #ifdef CONFIG_TRACING |
| 1130 | /* State flags for use by tracers: */ |
| 1131 | unsigned long trace; |
| 1132 | |
| 1133 | /* Bitmask and counter of trace recursion: */ |
| 1134 | unsigned long trace_recursion; |
| 1135 | #endif /* CONFIG_TRACING */ |
| 1136 | |
| 1137 | #ifdef CONFIG_KCOV |
| 1138 | /* Coverage collection mode enabled for this task (0 if disabled): */ |
| 1139 | unsigned int kcov_mode; |
| 1140 | |
| 1141 | /* Size of the kcov_area: */ |
| 1142 | unsigned int kcov_size; |
| 1143 | |
| 1144 | /* Buffer for coverage collection: */ |
| 1145 | void *kcov_area; |
| 1146 | |
| 1147 | /* KCOV descriptor wired with this task or NULL: */ |
| 1148 | struct kcov *kcov; |
| 1149 | #endif |
| 1150 | |
| 1151 | #ifdef CONFIG_MEMCG |
| 1152 | struct mem_cgroup *memcg_in_oom; |
| 1153 | gfp_t memcg_oom_gfp_mask; |
| 1154 | int memcg_oom_order; |
| 1155 | |
| 1156 | /* Number of pages to reclaim on returning to userland: */ |
| 1157 | unsigned int memcg_nr_pages_over_high; |
| 1158 | |
| 1159 | /* Used by memcontrol for targeted memcg charge: */ |
| 1160 | struct mem_cgroup *active_memcg; |
| 1161 | #endif |
| 1162 | |
| 1163 | #ifdef CONFIG_BLK_CGROUP |
| 1164 | struct request_queue *throttle_queue; |
| 1165 | #endif |
| 1166 | |
| 1167 | #ifdef CONFIG_UPROBES |
| 1168 | struct uprobe_task *utask; |
| 1169 | #endif |
| 1170 | #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) |
| 1171 | unsigned int sequential_io; |
| 1172 | unsigned int sequential_io_avg; |
| 1173 | #endif |
| 1174 | #ifdef CONFIG_DEBUG_ATOMIC_SLEEP |
| 1175 | unsigned long task_state_change; |
| 1176 | #endif |
| 1177 | int pagefault_disabled; |
| 1178 | #ifdef CONFIG_MMU |
| 1179 | struct task_struct *oom_reaper_list; |
| 1180 | #endif |
| 1181 | #ifdef CONFIG_VMAP_STACK |
| 1182 | struct vm_struct *stack_vm_area; |
| 1183 | #endif |
| 1184 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 1185 | /* A live task holds one reference: */ |
| 1186 | atomic_t stack_refcount; |
| 1187 | #endif |
| 1188 | #ifdef CONFIG_LIVEPATCH |
| 1189 | int patch_state; |
| 1190 | #endif |
| 1191 | #ifdef CONFIG_SECURITY |
| 1192 | /* Used by LSM modules for access restriction: */ |
| 1193 | void *security; |
| 1194 | #endif |
| 1195 | |
| 1196 | /* |
| 1197 | * New fields for task_struct should be added above here, so that |
| 1198 | * they are included in the randomized portion of task_struct. |
| 1199 | */ |
| 1200 | randomized_struct_fields_end |
| 1201 | |
| 1202 | /* CPU-specific state of this task: */ |
| 1203 | struct thread_struct thread; |
| 1204 | |
| 1205 | /* |
| 1206 | * WARNING: on x86, 'thread_struct' contains a variable-sized |
| 1207 | * structure. It *MUST* be at the end of 'task_struct'. |
| 1208 | * |
| 1209 | * Do not put anything below here! |
| 1210 | */ |
| 1211 | }; |
| 1212 | |
| 1213 | static inline struct pid *task_pid(struct task_struct *task) |
| 1214 | { |
| 1215 | return task->thread_pid; |
| 1216 | } |
| 1217 | |
| 1218 | /* |
| 1219 | * the helpers to get the task's different pids as they are seen |
| 1220 | * from various namespaces |
| 1221 | * |
| 1222 | * task_xid_nr() : global id, i.e. the id seen from the init namespace; |
| 1223 | * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of |
| 1224 | * current. |
| 1225 | * task_xid_nr_ns() : id seen from the ns specified; |
| 1226 | * |
| 1227 | * see also pid_nr() etc in include/linux/pid.h |
| 1228 | */ |
| 1229 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); |
| 1230 | |
| 1231 | static inline pid_t task_pid_nr(struct task_struct *tsk) |
| 1232 | { |
| 1233 | return tsk->pid; |
| 1234 | } |
| 1235 | |
| 1236 | static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 1237 | { |
| 1238 | return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); |
| 1239 | } |
| 1240 | |
| 1241 | static inline pid_t task_pid_vnr(struct task_struct *tsk) |
| 1242 | { |
| 1243 | return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); |
| 1244 | } |
| 1245 | |
| 1246 | |
| 1247 | static inline pid_t task_tgid_nr(struct task_struct *tsk) |
| 1248 | { |
| 1249 | return tsk->tgid; |
| 1250 | } |
| 1251 | |
| 1252 | /** |
| 1253 | * pid_alive - check that a task structure is not stale |
| 1254 | * @p: Task structure to be checked. |
| 1255 | * |
| 1256 | * Test if a process is not yet dead (at most zombie state) |
| 1257 | * If pid_alive fails, then pointers within the task structure |
| 1258 | * can be stale and must not be dereferenced. |
| 1259 | * |
| 1260 | * Return: 1 if the process is alive. 0 otherwise. |
| 1261 | */ |
| 1262 | static inline int pid_alive(const struct task_struct *p) |
| 1263 | { |
| 1264 | return p->thread_pid != NULL; |
| 1265 | } |
| 1266 | |
| 1267 | static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 1268 | { |
| 1269 | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); |
| 1270 | } |
| 1271 | |
| 1272 | static inline pid_t task_pgrp_vnr(struct task_struct *tsk) |
| 1273 | { |
| 1274 | return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); |
| 1275 | } |
| 1276 | |
| 1277 | |
| 1278 | static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 1279 | { |
| 1280 | return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); |
| 1281 | } |
| 1282 | |
| 1283 | static inline pid_t task_session_vnr(struct task_struct *tsk) |
| 1284 | { |
| 1285 | return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); |
| 1286 | } |
| 1287 | |
| 1288 | static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) |
| 1289 | { |
| 1290 | return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); |
| 1291 | } |
| 1292 | |
| 1293 | static inline pid_t task_tgid_vnr(struct task_struct *tsk) |
| 1294 | { |
| 1295 | return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); |
| 1296 | } |
| 1297 | |
| 1298 | static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) |
| 1299 | { |
| 1300 | pid_t pid = 0; |
| 1301 | |
| 1302 | rcu_read_lock(); |
| 1303 | if (pid_alive(tsk)) |
| 1304 | pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); |
| 1305 | rcu_read_unlock(); |
| 1306 | |
| 1307 | return pid; |
| 1308 | } |
| 1309 | |
| 1310 | static inline pid_t task_ppid_nr(const struct task_struct *tsk) |
| 1311 | { |
| 1312 | return task_ppid_nr_ns(tsk, &init_pid_ns); |
| 1313 | } |
| 1314 | |
| 1315 | /* Obsolete, do not use: */ |
| 1316 | static inline pid_t task_pgrp_nr(struct task_struct *tsk) |
| 1317 | { |
| 1318 | return task_pgrp_nr_ns(tsk, &init_pid_ns); |
| 1319 | } |
| 1320 | |
| 1321 | #define TASK_REPORT_IDLE (TASK_REPORT + 1) |
| 1322 | #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) |
| 1323 | |
| 1324 | static inline unsigned int task_state_index(struct task_struct *tsk) |
| 1325 | { |
| 1326 | unsigned int tsk_state = READ_ONCE(tsk->state); |
| 1327 | unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; |
| 1328 | |
| 1329 | BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); |
| 1330 | |
| 1331 | if (tsk_state == TASK_IDLE) |
| 1332 | state = TASK_REPORT_IDLE; |
| 1333 | |
| 1334 | return fls(state); |
| 1335 | } |
| 1336 | |
| 1337 | static inline char task_index_to_char(unsigned int state) |
| 1338 | { |
| 1339 | static const char state_char[] = "RSDTtXZPI"; |
| 1340 | |
| 1341 | BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); |
| 1342 | |
| 1343 | return state_char[state]; |
| 1344 | } |
| 1345 | |
| 1346 | static inline char task_state_to_char(struct task_struct *tsk) |
| 1347 | { |
| 1348 | return task_index_to_char(task_state_index(tsk)); |
| 1349 | } |
| 1350 | |
| 1351 | /** |
| 1352 | * is_global_init - check if a task structure is init. Since init |
| 1353 | * is free to have sub-threads we need to check tgid. |
| 1354 | * @tsk: Task structure to be checked. |
| 1355 | * |
| 1356 | * Check if a task structure is the first user space task the kernel created. |
| 1357 | * |
| 1358 | * Return: 1 if the task structure is init. 0 otherwise. |
| 1359 | */ |
| 1360 | static inline int is_global_init(struct task_struct *tsk) |
| 1361 | { |
| 1362 | return task_tgid_nr(tsk) == 1; |
| 1363 | } |
| 1364 | |
| 1365 | extern struct pid *cad_pid; |
| 1366 | |
| 1367 | /* |
| 1368 | * Per process flags |
| 1369 | */ |
| 1370 | #define PF_IDLE 0x00000002 /* I am an IDLE thread */ |
| 1371 | #define PF_EXITING 0x00000004 /* Getting shut down */ |
| 1372 | #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ |
| 1373 | #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ |
| 1374 | #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ |
| 1375 | #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ |
| 1376 | #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ |
| 1377 | #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ |
| 1378 | #define PF_DUMPCORE 0x00000200 /* Dumped core */ |
| 1379 | #define PF_SIGNALED 0x00000400 /* Killed by a signal */ |
| 1380 | #define PF_MEMALLOC 0x00000800 /* Allocating memory */ |
| 1381 | #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ |
| 1382 | #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ |
| 1383 | #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ |
| 1384 | #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ |
| 1385 | #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ |
| 1386 | #define PF_KSWAPD 0x00020000 /* I am kswapd */ |
| 1387 | #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ |
| 1388 | #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ |
| 1389 | #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ |
| 1390 | #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ |
| 1391 | #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ |
| 1392 | #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ |
| 1393 | #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ |
| 1394 | #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ |
| 1395 | #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ |
| 1396 | #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ |
| 1397 | #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ |
| 1398 | |
| 1399 | /* |
| 1400 | * Only the _current_ task can read/write to tsk->flags, but other |
| 1401 | * tasks can access tsk->flags in readonly mode for example |
| 1402 | * with tsk_used_math (like during threaded core dumping). |
| 1403 | * There is however an exception to this rule during ptrace |
| 1404 | * or during fork: the ptracer task is allowed to write to the |
| 1405 | * child->flags of its traced child (same goes for fork, the parent |
| 1406 | * can write to the child->flags), because we're guaranteed the |
| 1407 | * child is not running and in turn not changing child->flags |
| 1408 | * at the same time the parent does it. |
| 1409 | */ |
| 1410 | #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) |
| 1411 | #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) |
| 1412 | #define clear_used_math() clear_stopped_child_used_math(current) |
| 1413 | #define set_used_math() set_stopped_child_used_math(current) |
| 1414 | |
| 1415 | #define conditional_stopped_child_used_math(condition, child) \ |
| 1416 | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) |
| 1417 | |
| 1418 | #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) |
| 1419 | |
| 1420 | #define copy_to_stopped_child_used_math(child) \ |
| 1421 | do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) |
| 1422 | |
| 1423 | /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ |
| 1424 | #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) |
| 1425 | #define used_math() tsk_used_math(current) |
| 1426 | |
| 1427 | static inline bool is_percpu_thread(void) |
| 1428 | { |
| 1429 | #ifdef CONFIG_SMP |
| 1430 | return (current->flags & PF_NO_SETAFFINITY) && |
| 1431 | (current->nr_cpus_allowed == 1); |
| 1432 | #else |
| 1433 | return true; |
| 1434 | #endif |
| 1435 | } |
| 1436 | |
| 1437 | /* Per-process atomic flags. */ |
| 1438 | #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ |
| 1439 | #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ |
| 1440 | #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ |
| 1441 | #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ |
| 1442 | #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ |
| 1443 | #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ |
| 1444 | #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ |
| 1445 | |
| 1446 | #define TASK_PFA_TEST(name, func) \ |
| 1447 | static inline bool task_##func(struct task_struct *p) \ |
| 1448 | { return test_bit(PFA_##name, &p->atomic_flags); } |
| 1449 | |
| 1450 | #define TASK_PFA_SET(name, func) \ |
| 1451 | static inline void task_set_##func(struct task_struct *p) \ |
| 1452 | { set_bit(PFA_##name, &p->atomic_flags); } |
| 1453 | |
| 1454 | #define TASK_PFA_CLEAR(name, func) \ |
| 1455 | static inline void task_clear_##func(struct task_struct *p) \ |
| 1456 | { clear_bit(PFA_##name, &p->atomic_flags); } |
| 1457 | |
| 1458 | TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) |
| 1459 | TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) |
| 1460 | |
| 1461 | TASK_PFA_TEST(SPREAD_PAGE, spread_page) |
| 1462 | TASK_PFA_SET(SPREAD_PAGE, spread_page) |
| 1463 | TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) |
| 1464 | |
| 1465 | TASK_PFA_TEST(SPREAD_SLAB, spread_slab) |
| 1466 | TASK_PFA_SET(SPREAD_SLAB, spread_slab) |
| 1467 | TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) |
| 1468 | |
| 1469 | TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) |
| 1470 | TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) |
| 1471 | TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) |
| 1472 | |
| 1473 | TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) |
| 1474 | TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) |
| 1475 | |
| 1476 | TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) |
| 1477 | TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) |
| 1478 | TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) |
| 1479 | |
| 1480 | TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) |
| 1481 | TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) |
| 1482 | |
| 1483 | static inline void |
| 1484 | current_restore_flags(unsigned long orig_flags, unsigned long flags) |
| 1485 | { |
| 1486 | current->flags &= ~flags; |
| 1487 | current->flags |= orig_flags & flags; |
| 1488 | } |
| 1489 | |
| 1490 | extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); |
| 1491 | extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); |
| 1492 | #ifdef CONFIG_SMP |
| 1493 | extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); |
| 1494 | extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); |
| 1495 | #else |
| 1496 | static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) |
| 1497 | { |
| 1498 | } |
| 1499 | static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
| 1500 | { |
| 1501 | if (!cpumask_test_cpu(0, new_mask)) |
| 1502 | return -EINVAL; |
| 1503 | return 0; |
| 1504 | } |
| 1505 | #endif |
| 1506 | |
| 1507 | #ifndef cpu_relax_yield |
| 1508 | #define cpu_relax_yield() cpu_relax() |
| 1509 | #endif |
| 1510 | |
| 1511 | extern int yield_to(struct task_struct *p, bool preempt); |
| 1512 | extern void set_user_nice(struct task_struct *p, long nice); |
| 1513 | extern int task_prio(const struct task_struct *p); |
| 1514 | |
| 1515 | /** |
| 1516 | * task_nice - return the nice value of a given task. |
| 1517 | * @p: the task in question. |
| 1518 | * |
| 1519 | * Return: The nice value [ -20 ... 0 ... 19 ]. |
| 1520 | */ |
| 1521 | static inline int task_nice(const struct task_struct *p) |
| 1522 | { |
| 1523 | return PRIO_TO_NICE((p)->static_prio); |
| 1524 | } |
| 1525 | |
| 1526 | extern int can_nice(const struct task_struct *p, const int nice); |
| 1527 | extern int task_curr(const struct task_struct *p); |
| 1528 | extern int idle_cpu(int cpu); |
| 1529 | extern int available_idle_cpu(int cpu); |
| 1530 | extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); |
| 1531 | extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); |
| 1532 | extern int sched_setattr(struct task_struct *, const struct sched_attr *); |
| 1533 | extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); |
| 1534 | extern struct task_struct *idle_task(int cpu); |
| 1535 | |
| 1536 | /** |
| 1537 | * is_idle_task - is the specified task an idle task? |
| 1538 | * @p: the task in question. |
| 1539 | * |
| 1540 | * Return: 1 if @p is an idle task. 0 otherwise. |
| 1541 | */ |
| 1542 | static inline bool is_idle_task(const struct task_struct *p) |
| 1543 | { |
| 1544 | return !!(p->flags & PF_IDLE); |
| 1545 | } |
| 1546 | |
| 1547 | extern struct task_struct *curr_task(int cpu); |
| 1548 | extern void ia64_set_curr_task(int cpu, struct task_struct *p); |
| 1549 | |
| 1550 | void yield(void); |
| 1551 | |
| 1552 | union thread_union { |
| 1553 | #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK |
| 1554 | struct task_struct task; |
| 1555 | #endif |
| 1556 | #ifndef CONFIG_THREAD_INFO_IN_TASK |
| 1557 | struct thread_info thread_info; |
| 1558 | #endif |
| 1559 | unsigned long stack[THREAD_SIZE/sizeof(long)]; |
| 1560 | }; |
| 1561 | |
| 1562 | #ifndef CONFIG_THREAD_INFO_IN_TASK |
| 1563 | extern struct thread_info init_thread_info; |
| 1564 | #endif |
| 1565 | |
| 1566 | extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; |
| 1567 | |
| 1568 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 1569 | static inline struct thread_info *task_thread_info(struct task_struct *task) |
| 1570 | { |
| 1571 | return &task->thread_info; |
| 1572 | } |
| 1573 | #elif !defined(__HAVE_THREAD_FUNCTIONS) |
| 1574 | # define task_thread_info(task) ((struct thread_info *)(task)->stack) |
| 1575 | #endif |
| 1576 | |
| 1577 | /* |
| 1578 | * find a task by one of its numerical ids |
| 1579 | * |
| 1580 | * find_task_by_pid_ns(): |
| 1581 | * finds a task by its pid in the specified namespace |
| 1582 | * find_task_by_vpid(): |
| 1583 | * finds a task by its virtual pid |
| 1584 | * |
| 1585 | * see also find_vpid() etc in include/linux/pid.h |
| 1586 | */ |
| 1587 | |
| 1588 | extern struct task_struct *find_task_by_vpid(pid_t nr); |
| 1589 | extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); |
| 1590 | |
| 1591 | /* |
| 1592 | * find a task by its virtual pid and get the task struct |
| 1593 | */ |
| 1594 | extern struct task_struct *find_get_task_by_vpid(pid_t nr); |
| 1595 | |
| 1596 | extern int wake_up_state(struct task_struct *tsk, unsigned int state); |
| 1597 | extern int wake_up_process(struct task_struct *tsk); |
| 1598 | extern void wake_up_new_task(struct task_struct *tsk); |
| 1599 | |
| 1600 | #ifdef CONFIG_SMP |
| 1601 | extern void kick_process(struct task_struct *tsk); |
| 1602 | #else |
| 1603 | static inline void kick_process(struct task_struct *tsk) { } |
| 1604 | #endif |
| 1605 | |
| 1606 | extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); |
| 1607 | |
| 1608 | static inline void set_task_comm(struct task_struct *tsk, const char *from) |
| 1609 | { |
| 1610 | __set_task_comm(tsk, from, false); |
| 1611 | } |
| 1612 | |
| 1613 | extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); |
| 1614 | #define get_task_comm(buf, tsk) ({ \ |
| 1615 | BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ |
| 1616 | __get_task_comm(buf, sizeof(buf), tsk); \ |
| 1617 | }) |
| 1618 | |
| 1619 | #ifdef CONFIG_SMP |
| 1620 | void scheduler_ipi(void); |
| 1621 | extern unsigned long wait_task_inactive(struct task_struct *, long match_state); |
| 1622 | #else |
| 1623 | static inline void scheduler_ipi(void) { } |
| 1624 | static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) |
| 1625 | { |
| 1626 | return 1; |
| 1627 | } |
| 1628 | #endif |
| 1629 | |
| 1630 | /* |
| 1631 | * Set thread flags in other task's structures. |
| 1632 | * See asm/thread_info.h for TIF_xxxx flags available: |
| 1633 | */ |
| 1634 | static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 1635 | { |
| 1636 | set_ti_thread_flag(task_thread_info(tsk), flag); |
| 1637 | } |
| 1638 | |
| 1639 | static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 1640 | { |
| 1641 | clear_ti_thread_flag(task_thread_info(tsk), flag); |
| 1642 | } |
| 1643 | |
| 1644 | static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, |
| 1645 | bool value) |
| 1646 | { |
| 1647 | update_ti_thread_flag(task_thread_info(tsk), flag, value); |
| 1648 | } |
| 1649 | |
| 1650 | static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 1651 | { |
| 1652 | return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); |
| 1653 | } |
| 1654 | |
| 1655 | static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 1656 | { |
| 1657 | return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); |
| 1658 | } |
| 1659 | |
| 1660 | static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) |
| 1661 | { |
| 1662 | return test_ti_thread_flag(task_thread_info(tsk), flag); |
| 1663 | } |
| 1664 | |
| 1665 | static inline void set_tsk_need_resched(struct task_struct *tsk) |
| 1666 | { |
| 1667 | set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| 1668 | } |
| 1669 | |
| 1670 | static inline void clear_tsk_need_resched(struct task_struct *tsk) |
| 1671 | { |
| 1672 | clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); |
| 1673 | } |
| 1674 | |
| 1675 | static inline int test_tsk_need_resched(struct task_struct *tsk) |
| 1676 | { |
| 1677 | return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); |
| 1678 | } |
| 1679 | |
| 1680 | /* |
| 1681 | * cond_resched() and cond_resched_lock(): latency reduction via |
| 1682 | * explicit rescheduling in places that are safe. The return |
| 1683 | * value indicates whether a reschedule was done in fact. |
| 1684 | * cond_resched_lock() will drop the spinlock before scheduling, |
| 1685 | */ |
| 1686 | #ifndef CONFIG_PREEMPT |
| 1687 | extern int _cond_resched(void); |
| 1688 | #else |
| 1689 | static inline int _cond_resched(void) { return 0; } |
| 1690 | #endif |
| 1691 | |
| 1692 | #define cond_resched() ({ \ |
| 1693 | ___might_sleep(__FILE__, __LINE__, 0); \ |
| 1694 | _cond_resched(); \ |
| 1695 | }) |
| 1696 | |
| 1697 | extern int __cond_resched_lock(spinlock_t *lock); |
| 1698 | |
| 1699 | #define cond_resched_lock(lock) ({ \ |
| 1700 | ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ |
| 1701 | __cond_resched_lock(lock); \ |
| 1702 | }) |
| 1703 | |
| 1704 | static inline void cond_resched_rcu(void) |
| 1705 | { |
| 1706 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) |
| 1707 | rcu_read_unlock(); |
| 1708 | cond_resched(); |
| 1709 | rcu_read_lock(); |
| 1710 | #endif |
| 1711 | } |
| 1712 | |
| 1713 | /* |
| 1714 | * Does a critical section need to be broken due to another |
| 1715 | * task waiting?: (technically does not depend on CONFIG_PREEMPT, |
| 1716 | * but a general need for low latency) |
| 1717 | */ |
| 1718 | static inline int spin_needbreak(spinlock_t *lock) |
| 1719 | { |
| 1720 | #ifdef CONFIG_PREEMPT |
| 1721 | return spin_is_contended(lock); |
| 1722 | #else |
| 1723 | return 0; |
| 1724 | #endif |
| 1725 | } |
| 1726 | |
| 1727 | static __always_inline bool need_resched(void) |
| 1728 | { |
| 1729 | return unlikely(tif_need_resched()); |
| 1730 | } |
| 1731 | |
| 1732 | /* |
| 1733 | * Wrappers for p->thread_info->cpu access. No-op on UP. |
| 1734 | */ |
| 1735 | #ifdef CONFIG_SMP |
| 1736 | |
| 1737 | static inline unsigned int task_cpu(const struct task_struct *p) |
| 1738 | { |
| 1739 | #ifdef CONFIG_THREAD_INFO_IN_TASK |
| 1740 | return p->cpu; |
| 1741 | #else |
| 1742 | return task_thread_info(p)->cpu; |
| 1743 | #endif |
| 1744 | } |
| 1745 | |
| 1746 | extern void set_task_cpu(struct task_struct *p, unsigned int cpu); |
| 1747 | |
| 1748 | #else |
| 1749 | |
| 1750 | static inline unsigned int task_cpu(const struct task_struct *p) |
| 1751 | { |
| 1752 | return 0; |
| 1753 | } |
| 1754 | |
| 1755 | static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) |
| 1756 | { |
| 1757 | } |
| 1758 | |
| 1759 | #endif /* CONFIG_SMP */ |
| 1760 | |
| 1761 | /* |
| 1762 | * In order to reduce various lock holder preemption latencies provide an |
| 1763 | * interface to see if a vCPU is currently running or not. |
| 1764 | * |
| 1765 | * This allows us to terminate optimistic spin loops and block, analogous to |
| 1766 | * the native optimistic spin heuristic of testing if the lock owner task is |
| 1767 | * running or not. |
| 1768 | */ |
| 1769 | #ifndef vcpu_is_preempted |
| 1770 | # define vcpu_is_preempted(cpu) false |
| 1771 | #endif |
| 1772 | |
| 1773 | extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); |
| 1774 | extern long sched_getaffinity(pid_t pid, struct cpumask *mask); |
| 1775 | |
| 1776 | #ifndef TASK_SIZE_OF |
| 1777 | #define TASK_SIZE_OF(tsk) TASK_SIZE |
| 1778 | #endif |
| 1779 | |
| 1780 | #ifdef CONFIG_RSEQ |
| 1781 | |
| 1782 | /* |
| 1783 | * Map the event mask on the user-space ABI enum rseq_cs_flags |
| 1784 | * for direct mask checks. |
| 1785 | */ |
| 1786 | enum rseq_event_mask_bits { |
| 1787 | RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, |
| 1788 | RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, |
| 1789 | RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, |
| 1790 | }; |
| 1791 | |
| 1792 | enum rseq_event_mask { |
| 1793 | RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), |
| 1794 | RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), |
| 1795 | RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), |
| 1796 | }; |
| 1797 | |
| 1798 | static inline void rseq_set_notify_resume(struct task_struct *t) |
| 1799 | { |
| 1800 | if (t->rseq) |
| 1801 | set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); |
| 1802 | } |
| 1803 | |
| 1804 | void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); |
| 1805 | |
| 1806 | static inline void rseq_handle_notify_resume(struct ksignal *ksig, |
| 1807 | struct pt_regs *regs) |
| 1808 | { |
| 1809 | if (current->rseq) |
| 1810 | __rseq_handle_notify_resume(ksig, regs); |
| 1811 | } |
| 1812 | |
| 1813 | static inline void rseq_signal_deliver(struct ksignal *ksig, |
| 1814 | struct pt_regs *regs) |
| 1815 | { |
| 1816 | preempt_disable(); |
| 1817 | __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); |
| 1818 | preempt_enable(); |
| 1819 | rseq_handle_notify_resume(ksig, regs); |
| 1820 | } |
| 1821 | |
| 1822 | /* rseq_preempt() requires preemption to be disabled. */ |
| 1823 | static inline void rseq_preempt(struct task_struct *t) |
| 1824 | { |
| 1825 | __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); |
| 1826 | rseq_set_notify_resume(t); |
| 1827 | } |
| 1828 | |
| 1829 | /* rseq_migrate() requires preemption to be disabled. */ |
| 1830 | static inline void rseq_migrate(struct task_struct *t) |
| 1831 | { |
| 1832 | __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); |
| 1833 | rseq_set_notify_resume(t); |
| 1834 | } |
| 1835 | |
| 1836 | /* |
| 1837 | * If parent process has a registered restartable sequences area, the |
| 1838 | * child inherits. Only applies when forking a process, not a thread. |
| 1839 | */ |
| 1840 | static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) |
| 1841 | { |
| 1842 | if (clone_flags & CLONE_THREAD) { |
| 1843 | t->rseq = NULL; |
| 1844 | t->rseq_len = 0; |
| 1845 | t->rseq_sig = 0; |
| 1846 | t->rseq_event_mask = 0; |
| 1847 | } else { |
| 1848 | t->rseq = current->rseq; |
| 1849 | t->rseq_len = current->rseq_len; |
| 1850 | t->rseq_sig = current->rseq_sig; |
| 1851 | t->rseq_event_mask = current->rseq_event_mask; |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | static inline void rseq_execve(struct task_struct *t) |
| 1856 | { |
| 1857 | t->rseq = NULL; |
| 1858 | t->rseq_len = 0; |
| 1859 | t->rseq_sig = 0; |
| 1860 | t->rseq_event_mask = 0; |
| 1861 | } |
| 1862 | |
| 1863 | #else |
| 1864 | |
| 1865 | static inline void rseq_set_notify_resume(struct task_struct *t) |
| 1866 | { |
| 1867 | } |
| 1868 | static inline void rseq_handle_notify_resume(struct ksignal *ksig, |
| 1869 | struct pt_regs *regs) |
| 1870 | { |
| 1871 | } |
| 1872 | static inline void rseq_signal_deliver(struct ksignal *ksig, |
| 1873 | struct pt_regs *regs) |
| 1874 | { |
| 1875 | } |
| 1876 | static inline void rseq_preempt(struct task_struct *t) |
| 1877 | { |
| 1878 | } |
| 1879 | static inline void rseq_migrate(struct task_struct *t) |
| 1880 | { |
| 1881 | } |
| 1882 | static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) |
| 1883 | { |
| 1884 | } |
| 1885 | static inline void rseq_execve(struct task_struct *t) |
| 1886 | { |
| 1887 | } |
| 1888 | |
| 1889 | #endif |
| 1890 | |
| 1891 | #ifdef CONFIG_DEBUG_RSEQ |
| 1892 | |
| 1893 | void rseq_syscall(struct pt_regs *regs); |
| 1894 | |
| 1895 | #else |
| 1896 | |
| 1897 | static inline void rseq_syscall(struct pt_regs *regs) |
| 1898 | { |
| 1899 | } |
| 1900 | |
| 1901 | #endif |
| 1902 | |
| 1903 | #endif |