blob: 4abb5bd74b0455340482481c7a824fb816905f1e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/resource.h>
25#include <linux/latencytop.h>
26#include <linux/sched/prio.h>
27#include <linux/signal_types.h>
28#include <linux/mm_types_task.h>
29#include <linux/task_io_accounting.h>
30#include <linux/rseq.h>
31
32/* task_struct member predeclarations (sorted alphabetically): */
33struct audit_context;
34struct backing_dev_info;
35struct bio_list;
36struct blk_plug;
37struct cfs_rq;
38struct fs_struct;
39struct futex_pi_state;
40struct io_context;
41struct mempolicy;
42struct nameidata;
43struct nsproxy;
44struct perf_event_context;
45struct pid_namespace;
46struct pipe_inode_info;
47struct rcu_node;
48struct reclaim_state;
49struct robust_list_head;
50struct sched_attr;
51struct sched_param;
52struct seq_file;
53struct sighand_struct;
54struct signal_struct;
55struct task_delay_info;
56struct task_group;
57
58/*
59 * Task state bitmask. NOTE! These bits are also
60 * encoded in fs/proc/array.c: get_task_state().
61 *
62 * We have two separate sets of flags: task->state
63 * is about runnability, while task->exit_state are
64 * about the task exiting. Confusing, but this way
65 * modifying one set can't modify the other one by
66 * mistake.
67 */
68
69/* Used in tsk->state: */
70#define TASK_RUNNING 0x0000
71#define TASK_INTERRUPTIBLE 0x0001
72#define TASK_UNINTERRUPTIBLE 0x0002
73#define __TASK_STOPPED 0x0004
74#define __TASK_TRACED 0x0008
75/* Used in tsk->exit_state: */
76#define EXIT_DEAD 0x0010
77#define EXIT_ZOMBIE 0x0020
78#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
79/* Used in tsk->state again: */
80#define TASK_PARKED 0x0040
81#define TASK_DEAD 0x0080
82#define TASK_WAKEKILL 0x0100
83#define TASK_WAKING 0x0200
84#define TASK_NOLOAD 0x0400
85#define TASK_NEW 0x0800
86#define TASK_STATE_MAX 0x1000
87
88/* Convenience macros for the sake of set_current_state: */
89#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
91#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
92
93#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94
95/* Convenience macros for the sake of wake_up(): */
96#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97
98/* get_task_state(): */
99#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 TASK_PARKED)
103
104#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
105
106#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
107
108#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109
110#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 (task->flags & PF_FROZEN) == 0 && \
112 (task->state & TASK_NOLOAD) == 0)
113
114#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115
116/*
117 * Special states are those that do not use the normal wait-loop pattern. See
118 * the comment with set_special_state().
119 */
120#define is_special_task_state(state) \
121 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
122
123#define __set_current_state(state_value) \
124 do { \
125 WARN_ON_ONCE(is_special_task_state(state_value));\
126 current->task_state_change = _THIS_IP_; \
127 current->state = (state_value); \
128 } while (0)
129
130#define set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 smp_store_mb(current->state, (state_value)); \
135 } while (0)
136
137#define set_special_state(state_value) \
138 do { \
139 unsigned long flags; /* may shadow */ \
140 WARN_ON_ONCE(!is_special_task_state(state_value)); \
141 raw_spin_lock_irqsave(&current->pi_lock, flags); \
142 current->task_state_change = _THIS_IP_; \
143 current->state = (state_value); \
144 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
145 } while (0)
146#else
147/*
148 * set_current_state() includes a barrier so that the write of current->state
149 * is correctly serialised wrt the caller's subsequent test of whether to
150 * actually sleep:
151 *
152 * for (;;) {
153 * set_current_state(TASK_UNINTERRUPTIBLE);
154 * if (!need_sleep)
155 * break;
156 *
157 * schedule();
158 * }
159 * __set_current_state(TASK_RUNNING);
160 *
161 * If the caller does not need such serialisation (because, for instance, the
162 * condition test and condition change and wakeup are under the same lock) then
163 * use __set_current_state().
164 *
165 * The above is typically ordered against the wakeup, which does:
166 *
167 * need_sleep = false;
168 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
169 *
170 * where wake_up_state() executes a full memory barrier before accessing the
171 * task state.
172 *
173 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
174 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
175 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
176 *
177 * However, with slightly different timing the wakeup TASK_RUNNING store can
178 * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
179 * a problem either because that will result in one extra go around the loop
180 * and our @cond test will save the day.
181 *
182 * Also see the comments of try_to_wake_up().
183 */
184#define __set_current_state(state_value) \
185 current->state = (state_value)
186
187#define set_current_state(state_value) \
188 smp_store_mb(current->state, (state_value))
189
190/*
191 * set_special_state() should be used for those states when the blocking task
192 * can not use the regular condition based wait-loop. In that case we must
193 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
194 * will not collide with our state change.
195 */
196#define set_special_state(state_value) \
197 do { \
198 unsigned long flags; /* may shadow */ \
199 raw_spin_lock_irqsave(&current->pi_lock, flags); \
200 current->state = (state_value); \
201 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
202 } while (0)
203
204#endif
205
206/* Task command name length: */
207#define TASK_COMM_LEN 16
208
209extern void scheduler_tick(void);
210
211#define MAX_SCHEDULE_TIMEOUT LONG_MAX
212
213extern long schedule_timeout(long timeout);
214extern long schedule_timeout_interruptible(long timeout);
215extern long schedule_timeout_killable(long timeout);
216extern long schedule_timeout_uninterruptible(long timeout);
217extern long schedule_timeout_idle(long timeout);
218asmlinkage void schedule(void);
219extern void schedule_preempt_disabled(void);
220
221extern int __must_check io_schedule_prepare(void);
222extern void io_schedule_finish(int token);
223extern long io_schedule_timeout(long timeout);
224extern void io_schedule(void);
225
226/**
227 * struct prev_cputime - snapshot of system and user cputime
228 * @utime: time spent in user mode
229 * @stime: time spent in system mode
230 * @lock: protects the above two fields
231 *
232 * Stores previous user/system time values such that we can guarantee
233 * monotonicity.
234 */
235struct prev_cputime {
236#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
237 u64 utime;
238 u64 stime;
239 raw_spinlock_t lock;
240#endif
241};
242
243/**
244 * struct task_cputime - collected CPU time counts
245 * @utime: time spent in user mode, in nanoseconds
246 * @stime: time spent in kernel mode, in nanoseconds
247 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
248 *
249 * This structure groups together three kinds of CPU time that are tracked for
250 * threads and thread groups. Most things considering CPU time want to group
251 * these counts together and treat all three of them in parallel.
252 */
253struct task_cputime {
254 u64 utime;
255 u64 stime;
256 unsigned long long sum_exec_runtime;
257};
258
259/* Alternate field names when used on cache expirations: */
260#define virt_exp utime
261#define prof_exp stime
262#define sched_exp sum_exec_runtime
263
264enum vtime_state {
265 /* Task is sleeping or running in a CPU with VTIME inactive: */
266 VTIME_INACTIVE = 0,
267 /* Task runs in userspace in a CPU with VTIME active: */
268 VTIME_USER,
269 /* Task runs in kernelspace in a CPU with VTIME active: */
270 VTIME_SYS,
271};
272
273struct vtime {
274 seqcount_t seqcount;
275 unsigned long long starttime;
276 enum vtime_state state;
277 u64 utime;
278 u64 stime;
279 u64 gtime;
280};
281
282struct sched_info {
283#ifdef CONFIG_SCHED_INFO
284 /* Cumulative counters: */
285
286 /* # of times we have run on this CPU: */
287 unsigned long pcount;
288
289 /* Time spent waiting on a runqueue: */
290 unsigned long long run_delay;
291
292 /* Timestamps: */
293
294 /* When did we last run on a CPU? */
295 unsigned long long last_arrival;
296
297 /* When were we last queued to run? */
298 unsigned long long last_queued;
299
300#endif /* CONFIG_SCHED_INFO */
301};
302
303/*
304 * Integer metrics need fixed point arithmetic, e.g., sched/fair
305 * has a few: load, load_avg, util_avg, freq, and capacity.
306 *
307 * We define a basic fixed point arithmetic range, and then formalize
308 * all these metrics based on that basic range.
309 */
310# define SCHED_FIXEDPOINT_SHIFT 10
311# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
312
313struct load_weight {
314 unsigned long weight;
315 u32 inv_weight;
316};
317
318/**
319 * struct util_est - Estimation utilization of FAIR tasks
320 * @enqueued: instantaneous estimated utilization of a task/cpu
321 * @ewma: the Exponential Weighted Moving Average (EWMA)
322 * utilization of a task
323 *
324 * Support data structure to track an Exponential Weighted Moving Average
325 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
326 * average each time a task completes an activation. Sample's weight is chosen
327 * so that the EWMA will be relatively insensitive to transient changes to the
328 * task's workload.
329 *
330 * The enqueued attribute has a slightly different meaning for tasks and cpus:
331 * - task: the task's util_avg at last task dequeue time
332 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
333 * Thus, the util_est.enqueued of a task represents the contribution on the
334 * estimated utilization of the CPU where that task is currently enqueued.
335 *
336 * Only for tasks we track a moving average of the past instantaneous
337 * estimated utilization. This allows to absorb sporadic drops in utilization
338 * of an otherwise almost periodic task.
339 */
340struct util_est {
341 unsigned int enqueued;
342 unsigned int ewma;
343#define UTIL_EST_WEIGHT_SHIFT 2
344} __attribute__((__aligned__(sizeof(u64))));
345
346/*
347 * The load_avg/util_avg accumulates an infinite geometric series
348 * (see __update_load_avg() in kernel/sched/fair.c).
349 *
350 * [load_avg definition]
351 *
352 * load_avg = runnable% * scale_load_down(load)
353 *
354 * where runnable% is the time ratio that a sched_entity is runnable.
355 * For cfs_rq, it is the aggregated load_avg of all runnable and
356 * blocked sched_entities.
357 *
358 * load_avg may also take frequency scaling into account:
359 *
360 * load_avg = runnable% * scale_load_down(load) * freq%
361 *
362 * where freq% is the CPU frequency normalized to the highest frequency.
363 *
364 * [util_avg definition]
365 *
366 * util_avg = running% * SCHED_CAPACITY_SCALE
367 *
368 * where running% is the time ratio that a sched_entity is running on
369 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
370 * and blocked sched_entities.
371 *
372 * util_avg may also factor frequency scaling and CPU capacity scaling:
373 *
374 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
375 *
376 * where freq% is the same as above, and capacity% is the CPU capacity
377 * normalized to the greatest capacity (due to uarch differences, etc).
378 *
379 * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
380 * themselves are in the range of [0, 1]. To do fixed point arithmetics,
381 * we therefore scale them to as large a range as necessary. This is for
382 * example reflected by util_avg's SCHED_CAPACITY_SCALE.
383 *
384 * [Overflow issue]
385 *
386 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
387 * with the highest load (=88761), always runnable on a single cfs_rq,
388 * and should not overflow as the number already hits PID_MAX_LIMIT.
389 *
390 * For all other cases (including 32-bit kernels), struct load_weight's
391 * weight will overflow first before we do, because:
392 *
393 * Max(load_avg) <= Max(load.weight)
394 *
395 * Then it is the load_weight's responsibility to consider overflow
396 * issues.
397 */
398struct sched_avg {
399 u64 last_update_time;
400 u64 load_sum;
401 u64 runnable_load_sum;
402 u32 util_sum;
403 u32 period_contrib;
404 unsigned long load_avg;
405 unsigned long runnable_load_avg;
406 unsigned long util_avg;
407 struct util_est util_est;
408} ____cacheline_aligned;
409
410struct sched_statistics {
411#ifdef CONFIG_SCHEDSTATS
412 u64 wait_start;
413 u64 wait_max;
414 u64 wait_count;
415 u64 wait_sum;
416 u64 iowait_count;
417 u64 iowait_sum;
418
419 u64 sleep_start;
420 u64 sleep_max;
421 s64 sum_sleep_runtime;
422
423 u64 block_start;
424 u64 block_max;
425 u64 exec_max;
426 u64 slice_max;
427
428 u64 nr_migrations_cold;
429 u64 nr_failed_migrations_affine;
430 u64 nr_failed_migrations_running;
431 u64 nr_failed_migrations_hot;
432 u64 nr_forced_migrations;
433
434 u64 nr_wakeups;
435 u64 nr_wakeups_sync;
436 u64 nr_wakeups_migrate;
437 u64 nr_wakeups_local;
438 u64 nr_wakeups_remote;
439 u64 nr_wakeups_affine;
440 u64 nr_wakeups_affine_attempts;
441 u64 nr_wakeups_passive;
442 u64 nr_wakeups_idle;
443#endif
444};
445
446struct sched_entity {
447 /* For load-balancing: */
448 struct load_weight load;
449 unsigned long runnable_weight;
450 struct rb_node run_node;
451 struct list_head group_node;
452 unsigned int on_rq;
453
454 u64 exec_start;
455 u64 sum_exec_runtime;
456 u64 vruntime;
457 u64 prev_sum_exec_runtime;
458
459 u64 nr_migrations;
460
461 struct sched_statistics statistics;
462
463#ifdef CONFIG_FAIR_GROUP_SCHED
464 int depth;
465 struct sched_entity *parent;
466 /* rq on which this entity is (to be) queued: */
467 struct cfs_rq *cfs_rq;
468 /* rq "owned" by this entity/group: */
469 struct cfs_rq *my_q;
470#endif
471
472#ifdef CONFIG_SMP
473 /*
474 * Per entity load average tracking.
475 *
476 * Put into separate cache line so it does not
477 * collide with read-mostly values above.
478 */
479 struct sched_avg avg;
480#endif
481};
482
483struct sched_rt_entity {
484 struct list_head run_list;
485 unsigned long timeout;
486 unsigned long watchdog_stamp;
487 unsigned int time_slice;
488 unsigned short on_rq;
489 unsigned short on_list;
490
491 struct sched_rt_entity *back;
492#ifdef CONFIG_RT_GROUP_SCHED
493 struct sched_rt_entity *parent;
494 /* rq on which this entity is (to be) queued: */
495 struct rt_rq *rt_rq;
496 /* rq "owned" by this entity/group: */
497 struct rt_rq *my_q;
498#endif
499} __randomize_layout;
500
501struct sched_dl_entity {
502 struct rb_node rb_node;
503
504 /*
505 * Original scheduling parameters. Copied here from sched_attr
506 * during sched_setattr(), they will remain the same until
507 * the next sched_setattr().
508 */
509 u64 dl_runtime; /* Maximum runtime for each instance */
510 u64 dl_deadline; /* Relative deadline of each instance */
511 u64 dl_period; /* Separation of two instances (period) */
512 u64 dl_bw; /* dl_runtime / dl_period */
513 u64 dl_density; /* dl_runtime / dl_deadline */
514
515 /*
516 * Actual scheduling parameters. Initialized with the values above,
517 * they are continously updated during task execution. Note that
518 * the remaining runtime could be < 0 in case we are in overrun.
519 */
520 s64 runtime; /* Remaining runtime for this instance */
521 u64 deadline; /* Absolute deadline for this instance */
522 unsigned int flags; /* Specifying the scheduler behaviour */
523
524 /*
525 * Some bool flags:
526 *
527 * @dl_throttled tells if we exhausted the runtime. If so, the
528 * task has to wait for a replenishment to be performed at the
529 * next firing of dl_timer.
530 *
531 * @dl_boosted tells if we are boosted due to DI. If so we are
532 * outside bandwidth enforcement mechanism (but only until we
533 * exit the critical section);
534 *
535 * @dl_yielded tells if task gave up the CPU before consuming
536 * all its available runtime during the last job.
537 *
538 * @dl_non_contending tells if the task is inactive while still
539 * contributing to the active utilization. In other words, it
540 * indicates if the inactive timer has been armed and its handler
541 * has not been executed yet. This flag is useful to avoid race
542 * conditions between the inactive timer handler and the wakeup
543 * code.
544 *
545 * @dl_overrun tells if the task asked to be informed about runtime
546 * overruns.
547 */
548 unsigned int dl_throttled : 1;
549 unsigned int dl_boosted : 1;
550 unsigned int dl_yielded : 1;
551 unsigned int dl_non_contending : 1;
552 unsigned int dl_overrun : 1;
553
554 /*
555 * Bandwidth enforcement timer. Each -deadline task has its
556 * own bandwidth to be enforced, thus we need one timer per task.
557 */
558 struct hrtimer dl_timer;
559
560 /*
561 * Inactive timer, responsible for decreasing the active utilization
562 * at the "0-lag time". When a -deadline task blocks, it contributes
563 * to GRUB's active utilization until the "0-lag time", hence a
564 * timer is needed to decrease the active utilization at the correct
565 * time.
566 */
567 struct hrtimer inactive_timer;
568};
569
570union rcu_special {
571 struct {
572 u8 blocked;
573 u8 need_qs;
574 u8 exp_need_qs;
575
576 /* Otherwise the compiler can store garbage here: */
577 u8 pad;
578 } b; /* Bits. */
579 u32 s; /* Set of bits. */
580};
581
582enum perf_event_task_context {
583 perf_invalid_context = -1,
584 perf_hw_context = 0,
585 perf_sw_context,
586 perf_nr_task_contexts,
587};
588
589struct wake_q_node {
590 struct wake_q_node *next;
591};
592
593struct task_struct {
594#ifdef CONFIG_THREAD_INFO_IN_TASK
595 /*
596 * For reasons of header soup (see current_thread_info()), this
597 * must be the first element of task_struct.
598 */
599 struct thread_info thread_info;
600#endif
601 /* -1 unrunnable, 0 runnable, >0 stopped: */
602 volatile long state;
603
604 /*
605 * This begins the randomizable portion of task_struct. Only
606 * scheduling-critical items should be added above here.
607 */
608 randomized_struct_fields_start
609
610 void *stack;
611 atomic_t usage;
612 /* Per task flags (PF_*), defined further below: */
613 unsigned int flags;
614 unsigned int ptrace;
615
616#ifdef CONFIG_SMP
617 struct llist_node wake_entry;
618 int on_cpu;
619#ifdef CONFIG_THREAD_INFO_IN_TASK
620 /* Current CPU: */
621 unsigned int cpu;
622#endif
623 unsigned int wakee_flips;
624 unsigned long wakee_flip_decay_ts;
625 struct task_struct *last_wakee;
626
627 /*
628 * recent_used_cpu is initially set as the last CPU used by a task
629 * that wakes affine another task. Waker/wakee relationships can
630 * push tasks around a CPU where each wakeup moves to the next one.
631 * Tracking a recently used CPU allows a quick search for a recently
632 * used CPU that may be idle.
633 */
634 int recent_used_cpu;
635 int wake_cpu;
636#endif
637 int on_rq;
638
639 int prio;
640 int static_prio;
641 int normal_prio;
642 unsigned int rt_priority;
643
644 const struct sched_class *sched_class;
645 struct sched_entity se;
646 struct sched_rt_entity rt;
647#ifdef CONFIG_CGROUP_SCHED
648 struct task_group *sched_task_group;
649#endif
650 struct sched_dl_entity dl;
651
652#ifdef CONFIG_PREEMPT_NOTIFIERS
653 /* List of struct preempt_notifier: */
654 struct hlist_head preempt_notifiers;
655#endif
656
657#ifdef CONFIG_BLK_DEV_IO_TRACE
658 unsigned int btrace_seq;
659#endif
660
661 unsigned int policy;
662 int nr_cpus_allowed;
663 cpumask_t cpus_allowed;
664
665#ifdef CONFIG_PREEMPT_RCU
666 int rcu_read_lock_nesting;
667 union rcu_special rcu_read_unlock_special;
668 struct list_head rcu_node_entry;
669 struct rcu_node *rcu_blocked_node;
670#endif /* #ifdef CONFIG_PREEMPT_RCU */
671
672#ifdef CONFIG_TASKS_RCU
673 unsigned long rcu_tasks_nvcsw;
674 u8 rcu_tasks_holdout;
675 u8 rcu_tasks_idx;
676 int rcu_tasks_idle_cpu;
677 struct list_head rcu_tasks_holdout_list;
678#endif /* #ifdef CONFIG_TASKS_RCU */
679
680 struct sched_info sched_info;
681
682 struct list_head tasks;
683#ifdef CONFIG_SMP
684 struct plist_node pushable_tasks;
685 struct rb_node pushable_dl_tasks;
686#endif
687
688 struct mm_struct *mm;
689 struct mm_struct *active_mm;
690
691 /* Per-thread vma caching: */
692 struct vmacache vmacache;
693
694#ifdef SPLIT_RSS_COUNTING
695 struct task_rss_stat rss_stat;
696#endif
697 int exit_state;
698 int exit_code;
699 int exit_signal;
700 /* The signal sent when the parent dies: */
701 int pdeath_signal;
702 /* JOBCTL_*, siglock protected: */
703 unsigned long jobctl;
704
705 /* Used for emulating ABI behavior of previous Linux versions: */
706 unsigned int personality;
707
708 /* Scheduler bits, serialized by scheduler locks: */
709 unsigned sched_reset_on_fork:1;
710 unsigned sched_contributes_to_load:1;
711 unsigned sched_migrated:1;
712 unsigned sched_remote_wakeup:1;
713 /* Force alignment to the next boundary: */
714 unsigned :0;
715
716 /* Unserialized, strictly 'current' */
717
718 /* Bit to tell LSMs we're in execve(): */
719 unsigned in_execve:1;
720 unsigned in_iowait:1;
721#ifndef TIF_RESTORE_SIGMASK
722 unsigned restore_sigmask:1;
723#endif
724#ifdef CONFIG_MEMCG
725 unsigned in_user_fault:1;
726#ifdef CONFIG_MEMCG_KMEM
727 unsigned memcg_kmem_skip_account:1;
728#endif
729#endif
730#ifdef CONFIG_COMPAT_BRK
731 unsigned brk_randomized:1;
732#endif
733#ifdef CONFIG_CGROUPS
734 /* disallow userland-initiated cgroup migration */
735 unsigned no_cgroup_migration:1;
736#endif
737#ifdef CONFIG_BLK_CGROUP
738 /* to be used once the psi infrastructure lands upstream. */
739 unsigned use_memdelay:1;
740#endif
741
742 unsigned long atomic_flags; /* Flags requiring atomic access. */
743
744 struct restart_block restart_block;
745
746 pid_t pid;
747 pid_t tgid;
748
749#ifdef CONFIG_STACKPROTECTOR
750 /* Canary value for the -fstack-protector GCC feature: */
751 unsigned long stack_canary;
752#endif
753 /*
754 * Pointers to the (original) parent process, youngest child, younger sibling,
755 * older sibling, respectively. (p->father can be replaced with
756 * p->real_parent->pid)
757 */
758
759 /* Real parent process: */
760 struct task_struct __rcu *real_parent;
761
762 /* Recipient of SIGCHLD, wait4() reports: */
763 struct task_struct __rcu *parent;
764
765 /*
766 * Children/sibling form the list of natural children:
767 */
768 struct list_head children;
769 struct list_head sibling;
770 struct task_struct *group_leader;
771
772 /*
773 * 'ptraced' is the list of tasks this task is using ptrace() on.
774 *
775 * This includes both natural children and PTRACE_ATTACH targets.
776 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
777 */
778 struct list_head ptraced;
779 struct list_head ptrace_entry;
780
781 /* PID/PID hash table linkage. */
782 struct pid *thread_pid;
783 struct hlist_node pid_links[PIDTYPE_MAX];
784 struct list_head thread_group;
785 struct list_head thread_node;
786
787 struct completion *vfork_done;
788
789 /* CLONE_CHILD_SETTID: */
790 int __user *set_child_tid;
791
792 /* CLONE_CHILD_CLEARTID: */
793 int __user *clear_child_tid;
794
795 u64 utime;
796 u64 stime;
797#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
798 u64 utimescaled;
799 u64 stimescaled;
800#endif
801 u64 gtime;
802 struct prev_cputime prev_cputime;
803#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
804 struct vtime vtime;
805#endif
806
807#ifdef CONFIG_NO_HZ_FULL
808 atomic_t tick_dep_mask;
809#endif
810 /* Context switch counts: */
811 unsigned long nvcsw;
812 unsigned long nivcsw;
813
814 /* Monotonic time in nsecs: */
815 u64 start_time;
816
817 /* Boot based time in nsecs: */
818 u64 real_start_time;
819
820 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
821 unsigned long min_flt;
822 unsigned long maj_flt;
823
824#ifdef CONFIG_POSIX_TIMERS
825 struct task_cputime cputime_expires;
826 struct list_head cpu_timers[3];
827#endif
828
829 /* Process credentials: */
830
831 /* Tracer's credentials at attach: */
832 const struct cred __rcu *ptracer_cred;
833
834 /* Objective and real subjective task credentials (COW): */
835 const struct cred __rcu *real_cred;
836
837 /* Effective (overridable) subjective task credentials (COW): */
838 const struct cred __rcu *cred;
839
840 /*
841 * executable name, excluding path.
842 *
843 * - normally initialized setup_new_exec()
844 * - access it with [gs]et_task_comm()
845 * - lock it with task_lock()
846 */
847 char comm[TASK_COMM_LEN];
848
849 struct nameidata *nameidata;
850
851#ifdef CONFIG_SYSVIPC
852 struct sysv_sem sysvsem;
853 struct sysv_shm sysvshm;
854#endif
855#ifdef CONFIG_DETECT_HUNG_TASK
856 unsigned long last_switch_count;
857 unsigned long last_switch_time;
858#endif
859 /* Filesystem information: */
860 struct fs_struct *fs;
861
862 /* Open file information: */
863 struct files_struct *files;
864
865 /* Namespaces: */
866 struct nsproxy *nsproxy;
867
868 /* Signal handlers: */
869 struct signal_struct *signal;
870 struct sighand_struct *sighand;
871 sigset_t blocked;
872 sigset_t real_blocked;
873 /* Restored if set_restore_sigmask() was used: */
874 sigset_t saved_sigmask;
875 struct sigpending pending;
876 unsigned long sas_ss_sp;
877 size_t sas_ss_size;
878 unsigned int sas_ss_flags;
879
880 struct callback_head *task_works;
881
882 struct audit_context *audit_context;
883#ifdef CONFIG_AUDITSYSCALL
884 kuid_t loginuid;
885 unsigned int sessionid;
886#endif
887 struct seccomp seccomp;
888
889 /* Thread group tracking: */
890 u32 parent_exec_id;
891 u32 self_exec_id;
892
893 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
894 spinlock_t alloc_lock;
895
896 /* Protection of the PI data structures: */
897 raw_spinlock_t pi_lock;
898
899 struct wake_q_node wake_q;
900
901#ifdef CONFIG_RT_MUTEXES
902 /* PI waiters blocked on a rt_mutex held by this task: */
903 struct rb_root_cached pi_waiters;
904 /* Updated under owner's pi_lock and rq lock */
905 struct task_struct *pi_top_task;
906 /* Deadlock detection and priority inheritance handling: */
907 struct rt_mutex_waiter *pi_blocked_on;
908#endif
909
910#ifdef CONFIG_DEBUG_MUTEXES
911 /* Mutex deadlock detection: */
912 struct mutex_waiter *blocked_on;
913#endif
914
915#ifdef CONFIG_TRACE_IRQFLAGS
916 unsigned int irq_events;
917 unsigned long hardirq_enable_ip;
918 unsigned long hardirq_disable_ip;
919 unsigned int hardirq_enable_event;
920 unsigned int hardirq_disable_event;
921 int hardirqs_enabled;
922 int hardirq_context;
923 unsigned long softirq_disable_ip;
924 unsigned long softirq_enable_ip;
925 unsigned int softirq_disable_event;
926 unsigned int softirq_enable_event;
927 int softirqs_enabled;
928 int softirq_context;
929#endif
930
931#ifdef CONFIG_LOCKDEP
932# define MAX_LOCK_DEPTH 48UL
933 u64 curr_chain_key;
934 int lockdep_depth;
935 unsigned int lockdep_recursion;
936 struct held_lock held_locks[MAX_LOCK_DEPTH];
937#endif
938
939#ifdef CONFIG_UBSAN
940 unsigned int in_ubsan;
941#endif
942
943 /* Journalling filesystem info: */
944 void *journal_info;
945
946 /* Stacked block device info: */
947 struct bio_list *bio_list;
948
949#ifdef CONFIG_BLOCK
950 /* Stack plugging: */
951 struct blk_plug *plug;
952#endif
953
954 /* VM state: */
955 struct reclaim_state *reclaim_state;
956
957 struct backing_dev_info *backing_dev_info;
958
959 struct io_context *io_context;
960
961 /* Ptrace state: */
962 unsigned long ptrace_message;
963 siginfo_t *last_siginfo;
964
965 struct task_io_accounting ioac;
966#ifdef CONFIG_TASK_XACCT
967 /* Accumulated RSS usage: */
968 u64 acct_rss_mem1;
969 /* Accumulated virtual memory usage: */
970 u64 acct_vm_mem1;
971 /* stime + utime since last update: */
972 u64 acct_timexpd;
973#endif
974#ifdef CONFIG_CPUSETS
975 /* Protected by ->alloc_lock: */
976 nodemask_t mems_allowed;
977 /* Seqence number to catch updates: */
978 seqcount_t mems_allowed_seq;
979 int cpuset_mem_spread_rotor;
980 int cpuset_slab_spread_rotor;
981#endif
982#ifdef CONFIG_CGROUPS
983 /* Control Group info protected by css_set_lock: */
984 struct css_set __rcu *cgroups;
985 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
986 struct list_head cg_list;
987#endif
988#ifdef CONFIG_INTEL_RDT
989 u32 closid;
990 u32 rmid;
991#endif
992#ifdef CONFIG_FUTEX
993 struct robust_list_head __user *robust_list;
994#ifdef CONFIG_COMPAT
995 struct compat_robust_list_head __user *compat_robust_list;
996#endif
997 struct list_head pi_state_list;
998 struct futex_pi_state *pi_state_cache;
999#endif
1000#ifdef CONFIG_PERF_EVENTS
1001 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1002 struct mutex perf_event_mutex;
1003 struct list_head perf_event_list;
1004#endif
1005#ifdef CONFIG_DEBUG_PREEMPT
1006 unsigned long preempt_disable_ip;
1007#endif
1008#ifdef CONFIG_NUMA
1009 /* Protected by alloc_lock: */
1010 struct mempolicy *mempolicy;
1011 short il_prev;
1012 short pref_node_fork;
1013#endif
1014#ifdef CONFIG_NUMA_BALANCING
1015 int numa_scan_seq;
1016 unsigned int numa_scan_period;
1017 unsigned int numa_scan_period_max;
1018 int numa_preferred_nid;
1019 unsigned long numa_migrate_retry;
1020 /* Migration stamp: */
1021 u64 node_stamp;
1022 u64 last_task_numa_placement;
1023 u64 last_sum_exec_runtime;
1024 struct callback_head numa_work;
1025
1026 struct numa_group *numa_group;
1027
1028 /*
1029 * numa_faults is an array split into four regions:
1030 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1031 * in this precise order.
1032 *
1033 * faults_memory: Exponential decaying average of faults on a per-node
1034 * basis. Scheduling placement decisions are made based on these
1035 * counts. The values remain static for the duration of a PTE scan.
1036 * faults_cpu: Track the nodes the process was running on when a NUMA
1037 * hinting fault was incurred.
1038 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1039 * during the current scan window. When the scan completes, the counts
1040 * in faults_memory and faults_cpu decay and these values are copied.
1041 */
1042 unsigned long *numa_faults;
1043 unsigned long total_numa_faults;
1044
1045 /*
1046 * numa_faults_locality tracks if faults recorded during the last
1047 * scan window were remote/local or failed to migrate. The task scan
1048 * period is adapted based on the locality of the faults with different
1049 * weights depending on whether they were shared or private faults
1050 */
1051 unsigned long numa_faults_locality[3];
1052
1053 unsigned long numa_pages_migrated;
1054#endif /* CONFIG_NUMA_BALANCING */
1055
1056#ifdef CONFIG_RSEQ
1057 struct rseq __user *rseq;
1058 u32 rseq_len;
1059 u32 rseq_sig;
1060 /*
1061 * RmW on rseq_event_mask must be performed atomically
1062 * with respect to preemption.
1063 */
1064 unsigned long rseq_event_mask;
1065#endif
1066
1067 struct tlbflush_unmap_batch tlb_ubc;
1068
1069 struct rcu_head rcu;
1070
1071 /* Cache last used pipe for splice(): */
1072 struct pipe_inode_info *splice_pipe;
1073
1074 struct page_frag task_frag;
1075
1076#ifdef CONFIG_TASK_DELAY_ACCT
1077 struct task_delay_info *delays;
1078#endif
1079
1080#ifdef CONFIG_FAULT_INJECTION
1081 int make_it_fail;
1082 unsigned int fail_nth;
1083#endif
1084 /*
1085 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1086 * balance_dirty_pages() for a dirty throttling pause:
1087 */
1088 int nr_dirtied;
1089 int nr_dirtied_pause;
1090 /* Start of a write-and-pause period: */
1091 unsigned long dirty_paused_when;
1092
1093#ifdef CONFIG_LATENCYTOP
1094 int latency_record_count;
1095 struct latency_record latency_record[LT_SAVECOUNT];
1096#endif
1097 /*
1098 * Time slack values; these are used to round up poll() and
1099 * select() etc timeout values. These are in nanoseconds.
1100 */
1101 u64 timer_slack_ns;
1102 u64 default_timer_slack_ns;
1103
1104#ifdef CONFIG_KASAN
1105 unsigned int kasan_depth;
1106#endif
1107
1108#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1109 /* Index of current stored address in ret_stack: */
1110 int curr_ret_stack;
1111 int curr_ret_depth;
1112
1113 /* Stack of return addresses for return function tracing: */
1114 struct ftrace_ret_stack *ret_stack;
1115
1116 /* Timestamp for last schedule: */
1117 unsigned long long ftrace_timestamp;
1118
1119 /*
1120 * Number of functions that haven't been traced
1121 * because of depth overrun:
1122 */
1123 atomic_t trace_overrun;
1124
1125 /* Pause tracing: */
1126 atomic_t tracing_graph_pause;
1127#endif
1128
1129#ifdef CONFIG_TRACING
1130 /* State flags for use by tracers: */
1131 unsigned long trace;
1132
1133 /* Bitmask and counter of trace recursion: */
1134 unsigned long trace_recursion;
1135#endif /* CONFIG_TRACING */
1136
1137#ifdef CONFIG_KCOV
1138 /* Coverage collection mode enabled for this task (0 if disabled): */
1139 unsigned int kcov_mode;
1140
1141 /* Size of the kcov_area: */
1142 unsigned int kcov_size;
1143
1144 /* Buffer for coverage collection: */
1145 void *kcov_area;
1146
1147 /* KCOV descriptor wired with this task or NULL: */
1148 struct kcov *kcov;
1149#endif
1150
1151#ifdef CONFIG_MEMCG
1152 struct mem_cgroup *memcg_in_oom;
1153 gfp_t memcg_oom_gfp_mask;
1154 int memcg_oom_order;
1155
1156 /* Number of pages to reclaim on returning to userland: */
1157 unsigned int memcg_nr_pages_over_high;
1158
1159 /* Used by memcontrol for targeted memcg charge: */
1160 struct mem_cgroup *active_memcg;
1161#endif
1162
1163#ifdef CONFIG_BLK_CGROUP
1164 struct request_queue *throttle_queue;
1165#endif
1166
1167#ifdef CONFIG_UPROBES
1168 struct uprobe_task *utask;
1169#endif
1170#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1171 unsigned int sequential_io;
1172 unsigned int sequential_io_avg;
1173#endif
1174#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1175 unsigned long task_state_change;
1176#endif
1177 int pagefault_disabled;
1178#ifdef CONFIG_MMU
1179 struct task_struct *oom_reaper_list;
1180#endif
1181#ifdef CONFIG_VMAP_STACK
1182 struct vm_struct *stack_vm_area;
1183#endif
1184#ifdef CONFIG_THREAD_INFO_IN_TASK
1185 /* A live task holds one reference: */
1186 atomic_t stack_refcount;
1187#endif
1188#ifdef CONFIG_LIVEPATCH
1189 int patch_state;
1190#endif
1191#ifdef CONFIG_SECURITY
1192 /* Used by LSM modules for access restriction: */
1193 void *security;
1194#endif
1195
1196 /*
1197 * New fields for task_struct should be added above here, so that
1198 * they are included in the randomized portion of task_struct.
1199 */
1200 randomized_struct_fields_end
1201
1202 /* CPU-specific state of this task: */
1203 struct thread_struct thread;
1204
1205 /*
1206 * WARNING: on x86, 'thread_struct' contains a variable-sized
1207 * structure. It *MUST* be at the end of 'task_struct'.
1208 *
1209 * Do not put anything below here!
1210 */
1211};
1212
1213static inline struct pid *task_pid(struct task_struct *task)
1214{
1215 return task->thread_pid;
1216}
1217
1218/*
1219 * the helpers to get the task's different pids as they are seen
1220 * from various namespaces
1221 *
1222 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1223 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1224 * current.
1225 * task_xid_nr_ns() : id seen from the ns specified;
1226 *
1227 * see also pid_nr() etc in include/linux/pid.h
1228 */
1229pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1230
1231static inline pid_t task_pid_nr(struct task_struct *tsk)
1232{
1233 return tsk->pid;
1234}
1235
1236static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1237{
1238 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1239}
1240
1241static inline pid_t task_pid_vnr(struct task_struct *tsk)
1242{
1243 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1244}
1245
1246
1247static inline pid_t task_tgid_nr(struct task_struct *tsk)
1248{
1249 return tsk->tgid;
1250}
1251
1252/**
1253 * pid_alive - check that a task structure is not stale
1254 * @p: Task structure to be checked.
1255 *
1256 * Test if a process is not yet dead (at most zombie state)
1257 * If pid_alive fails, then pointers within the task structure
1258 * can be stale and must not be dereferenced.
1259 *
1260 * Return: 1 if the process is alive. 0 otherwise.
1261 */
1262static inline int pid_alive(const struct task_struct *p)
1263{
1264 return p->thread_pid != NULL;
1265}
1266
1267static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1268{
1269 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1270}
1271
1272static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1273{
1274 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1275}
1276
1277
1278static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1279{
1280 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1281}
1282
1283static inline pid_t task_session_vnr(struct task_struct *tsk)
1284{
1285 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1286}
1287
1288static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1289{
1290 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1291}
1292
1293static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1294{
1295 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1296}
1297
1298static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1299{
1300 pid_t pid = 0;
1301
1302 rcu_read_lock();
1303 if (pid_alive(tsk))
1304 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1305 rcu_read_unlock();
1306
1307 return pid;
1308}
1309
1310static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1311{
1312 return task_ppid_nr_ns(tsk, &init_pid_ns);
1313}
1314
1315/* Obsolete, do not use: */
1316static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1317{
1318 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1319}
1320
1321#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1322#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1323
1324static inline unsigned int task_state_index(struct task_struct *tsk)
1325{
1326 unsigned int tsk_state = READ_ONCE(tsk->state);
1327 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1328
1329 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1330
1331 if (tsk_state == TASK_IDLE)
1332 state = TASK_REPORT_IDLE;
1333
1334 return fls(state);
1335}
1336
1337static inline char task_index_to_char(unsigned int state)
1338{
1339 static const char state_char[] = "RSDTtXZPI";
1340
1341 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1342
1343 return state_char[state];
1344}
1345
1346static inline char task_state_to_char(struct task_struct *tsk)
1347{
1348 return task_index_to_char(task_state_index(tsk));
1349}
1350
1351/**
1352 * is_global_init - check if a task structure is init. Since init
1353 * is free to have sub-threads we need to check tgid.
1354 * @tsk: Task structure to be checked.
1355 *
1356 * Check if a task structure is the first user space task the kernel created.
1357 *
1358 * Return: 1 if the task structure is init. 0 otherwise.
1359 */
1360static inline int is_global_init(struct task_struct *tsk)
1361{
1362 return task_tgid_nr(tsk) == 1;
1363}
1364
1365extern struct pid *cad_pid;
1366
1367/*
1368 * Per process flags
1369 */
1370#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1371#define PF_EXITING 0x00000004 /* Getting shut down */
1372#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1373#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1374#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1375#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1376#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1377#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1378#define PF_DUMPCORE 0x00000200 /* Dumped core */
1379#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1380#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1381#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1382#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1383#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1384#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1385#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1386#define PF_KSWAPD 0x00020000 /* I am kswapd */
1387#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1388#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1389#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1390#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1391#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1392#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1393#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1394#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1395#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1396#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1397#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1398
1399/*
1400 * Only the _current_ task can read/write to tsk->flags, but other
1401 * tasks can access tsk->flags in readonly mode for example
1402 * with tsk_used_math (like during threaded core dumping).
1403 * There is however an exception to this rule during ptrace
1404 * or during fork: the ptracer task is allowed to write to the
1405 * child->flags of its traced child (same goes for fork, the parent
1406 * can write to the child->flags), because we're guaranteed the
1407 * child is not running and in turn not changing child->flags
1408 * at the same time the parent does it.
1409 */
1410#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1411#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1412#define clear_used_math() clear_stopped_child_used_math(current)
1413#define set_used_math() set_stopped_child_used_math(current)
1414
1415#define conditional_stopped_child_used_math(condition, child) \
1416 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1417
1418#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1419
1420#define copy_to_stopped_child_used_math(child) \
1421 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1422
1423/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1424#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1425#define used_math() tsk_used_math(current)
1426
1427static inline bool is_percpu_thread(void)
1428{
1429#ifdef CONFIG_SMP
1430 return (current->flags & PF_NO_SETAFFINITY) &&
1431 (current->nr_cpus_allowed == 1);
1432#else
1433 return true;
1434#endif
1435}
1436
1437/* Per-process atomic flags. */
1438#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1439#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1440#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1441#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1442#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1443#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1444#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1445
1446#define TASK_PFA_TEST(name, func) \
1447 static inline bool task_##func(struct task_struct *p) \
1448 { return test_bit(PFA_##name, &p->atomic_flags); }
1449
1450#define TASK_PFA_SET(name, func) \
1451 static inline void task_set_##func(struct task_struct *p) \
1452 { set_bit(PFA_##name, &p->atomic_flags); }
1453
1454#define TASK_PFA_CLEAR(name, func) \
1455 static inline void task_clear_##func(struct task_struct *p) \
1456 { clear_bit(PFA_##name, &p->atomic_flags); }
1457
1458TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1459TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1460
1461TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1462TASK_PFA_SET(SPREAD_PAGE, spread_page)
1463TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1464
1465TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1466TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1467TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1468
1469TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1470TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1471TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1472
1473TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1474TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1475
1476TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1477TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1478TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1479
1480TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1481TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1482
1483static inline void
1484current_restore_flags(unsigned long orig_flags, unsigned long flags)
1485{
1486 current->flags &= ~flags;
1487 current->flags |= orig_flags & flags;
1488}
1489
1490extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1491extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1492#ifdef CONFIG_SMP
1493extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1494extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1495#else
1496static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1497{
1498}
1499static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1500{
1501 if (!cpumask_test_cpu(0, new_mask))
1502 return -EINVAL;
1503 return 0;
1504}
1505#endif
1506
1507#ifndef cpu_relax_yield
1508#define cpu_relax_yield() cpu_relax()
1509#endif
1510
1511extern int yield_to(struct task_struct *p, bool preempt);
1512extern void set_user_nice(struct task_struct *p, long nice);
1513extern int task_prio(const struct task_struct *p);
1514
1515/**
1516 * task_nice - return the nice value of a given task.
1517 * @p: the task in question.
1518 *
1519 * Return: The nice value [ -20 ... 0 ... 19 ].
1520 */
1521static inline int task_nice(const struct task_struct *p)
1522{
1523 return PRIO_TO_NICE((p)->static_prio);
1524}
1525
1526extern int can_nice(const struct task_struct *p, const int nice);
1527extern int task_curr(const struct task_struct *p);
1528extern int idle_cpu(int cpu);
1529extern int available_idle_cpu(int cpu);
1530extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1531extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1532extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1533extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1534extern struct task_struct *idle_task(int cpu);
1535
1536/**
1537 * is_idle_task - is the specified task an idle task?
1538 * @p: the task in question.
1539 *
1540 * Return: 1 if @p is an idle task. 0 otherwise.
1541 */
1542static inline bool is_idle_task(const struct task_struct *p)
1543{
1544 return !!(p->flags & PF_IDLE);
1545}
1546
1547extern struct task_struct *curr_task(int cpu);
1548extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1549
1550void yield(void);
1551
1552union thread_union {
1553#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1554 struct task_struct task;
1555#endif
1556#ifndef CONFIG_THREAD_INFO_IN_TASK
1557 struct thread_info thread_info;
1558#endif
1559 unsigned long stack[THREAD_SIZE/sizeof(long)];
1560};
1561
1562#ifndef CONFIG_THREAD_INFO_IN_TASK
1563extern struct thread_info init_thread_info;
1564#endif
1565
1566extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1567
1568#ifdef CONFIG_THREAD_INFO_IN_TASK
1569static inline struct thread_info *task_thread_info(struct task_struct *task)
1570{
1571 return &task->thread_info;
1572}
1573#elif !defined(__HAVE_THREAD_FUNCTIONS)
1574# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1575#endif
1576
1577/*
1578 * find a task by one of its numerical ids
1579 *
1580 * find_task_by_pid_ns():
1581 * finds a task by its pid in the specified namespace
1582 * find_task_by_vpid():
1583 * finds a task by its virtual pid
1584 *
1585 * see also find_vpid() etc in include/linux/pid.h
1586 */
1587
1588extern struct task_struct *find_task_by_vpid(pid_t nr);
1589extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1590
1591/*
1592 * find a task by its virtual pid and get the task struct
1593 */
1594extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1595
1596extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1597extern int wake_up_process(struct task_struct *tsk);
1598extern void wake_up_new_task(struct task_struct *tsk);
1599
1600#ifdef CONFIG_SMP
1601extern void kick_process(struct task_struct *tsk);
1602#else
1603static inline void kick_process(struct task_struct *tsk) { }
1604#endif
1605
1606extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1607
1608static inline void set_task_comm(struct task_struct *tsk, const char *from)
1609{
1610 __set_task_comm(tsk, from, false);
1611}
1612
1613extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1614#define get_task_comm(buf, tsk) ({ \
1615 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1616 __get_task_comm(buf, sizeof(buf), tsk); \
1617})
1618
1619#ifdef CONFIG_SMP
1620void scheduler_ipi(void);
1621extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1622#else
1623static inline void scheduler_ipi(void) { }
1624static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1625{
1626 return 1;
1627}
1628#endif
1629
1630/*
1631 * Set thread flags in other task's structures.
1632 * See asm/thread_info.h for TIF_xxxx flags available:
1633 */
1634static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1635{
1636 set_ti_thread_flag(task_thread_info(tsk), flag);
1637}
1638
1639static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1640{
1641 clear_ti_thread_flag(task_thread_info(tsk), flag);
1642}
1643
1644static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1645 bool value)
1646{
1647 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1648}
1649
1650static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1651{
1652 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1653}
1654
1655static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1656{
1657 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1658}
1659
1660static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1661{
1662 return test_ti_thread_flag(task_thread_info(tsk), flag);
1663}
1664
1665static inline void set_tsk_need_resched(struct task_struct *tsk)
1666{
1667 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1668}
1669
1670static inline void clear_tsk_need_resched(struct task_struct *tsk)
1671{
1672 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1673}
1674
1675static inline int test_tsk_need_resched(struct task_struct *tsk)
1676{
1677 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1678}
1679
1680/*
1681 * cond_resched() and cond_resched_lock(): latency reduction via
1682 * explicit rescheduling in places that are safe. The return
1683 * value indicates whether a reschedule was done in fact.
1684 * cond_resched_lock() will drop the spinlock before scheduling,
1685 */
1686#ifndef CONFIG_PREEMPT
1687extern int _cond_resched(void);
1688#else
1689static inline int _cond_resched(void) { return 0; }
1690#endif
1691
1692#define cond_resched() ({ \
1693 ___might_sleep(__FILE__, __LINE__, 0); \
1694 _cond_resched(); \
1695})
1696
1697extern int __cond_resched_lock(spinlock_t *lock);
1698
1699#define cond_resched_lock(lock) ({ \
1700 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1701 __cond_resched_lock(lock); \
1702})
1703
1704static inline void cond_resched_rcu(void)
1705{
1706#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1707 rcu_read_unlock();
1708 cond_resched();
1709 rcu_read_lock();
1710#endif
1711}
1712
1713/*
1714 * Does a critical section need to be broken due to another
1715 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1716 * but a general need for low latency)
1717 */
1718static inline int spin_needbreak(spinlock_t *lock)
1719{
1720#ifdef CONFIG_PREEMPT
1721 return spin_is_contended(lock);
1722#else
1723 return 0;
1724#endif
1725}
1726
1727static __always_inline bool need_resched(void)
1728{
1729 return unlikely(tif_need_resched());
1730}
1731
1732/*
1733 * Wrappers for p->thread_info->cpu access. No-op on UP.
1734 */
1735#ifdef CONFIG_SMP
1736
1737static inline unsigned int task_cpu(const struct task_struct *p)
1738{
1739#ifdef CONFIG_THREAD_INFO_IN_TASK
1740 return p->cpu;
1741#else
1742 return task_thread_info(p)->cpu;
1743#endif
1744}
1745
1746extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1747
1748#else
1749
1750static inline unsigned int task_cpu(const struct task_struct *p)
1751{
1752 return 0;
1753}
1754
1755static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1756{
1757}
1758
1759#endif /* CONFIG_SMP */
1760
1761/*
1762 * In order to reduce various lock holder preemption latencies provide an
1763 * interface to see if a vCPU is currently running or not.
1764 *
1765 * This allows us to terminate optimistic spin loops and block, analogous to
1766 * the native optimistic spin heuristic of testing if the lock owner task is
1767 * running or not.
1768 */
1769#ifndef vcpu_is_preempted
1770# define vcpu_is_preempted(cpu) false
1771#endif
1772
1773extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1774extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1775
1776#ifndef TASK_SIZE_OF
1777#define TASK_SIZE_OF(tsk) TASK_SIZE
1778#endif
1779
1780#ifdef CONFIG_RSEQ
1781
1782/*
1783 * Map the event mask on the user-space ABI enum rseq_cs_flags
1784 * for direct mask checks.
1785 */
1786enum rseq_event_mask_bits {
1787 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1788 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1789 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1790};
1791
1792enum rseq_event_mask {
1793 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1794 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1795 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1796};
1797
1798static inline void rseq_set_notify_resume(struct task_struct *t)
1799{
1800 if (t->rseq)
1801 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1802}
1803
1804void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1805
1806static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1807 struct pt_regs *regs)
1808{
1809 if (current->rseq)
1810 __rseq_handle_notify_resume(ksig, regs);
1811}
1812
1813static inline void rseq_signal_deliver(struct ksignal *ksig,
1814 struct pt_regs *regs)
1815{
1816 preempt_disable();
1817 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1818 preempt_enable();
1819 rseq_handle_notify_resume(ksig, regs);
1820}
1821
1822/* rseq_preempt() requires preemption to be disabled. */
1823static inline void rseq_preempt(struct task_struct *t)
1824{
1825 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1826 rseq_set_notify_resume(t);
1827}
1828
1829/* rseq_migrate() requires preemption to be disabled. */
1830static inline void rseq_migrate(struct task_struct *t)
1831{
1832 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1833 rseq_set_notify_resume(t);
1834}
1835
1836/*
1837 * If parent process has a registered restartable sequences area, the
1838 * child inherits. Only applies when forking a process, not a thread.
1839 */
1840static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1841{
1842 if (clone_flags & CLONE_THREAD) {
1843 t->rseq = NULL;
1844 t->rseq_len = 0;
1845 t->rseq_sig = 0;
1846 t->rseq_event_mask = 0;
1847 } else {
1848 t->rseq = current->rseq;
1849 t->rseq_len = current->rseq_len;
1850 t->rseq_sig = current->rseq_sig;
1851 t->rseq_event_mask = current->rseq_event_mask;
1852 }
1853}
1854
1855static inline void rseq_execve(struct task_struct *t)
1856{
1857 t->rseq = NULL;
1858 t->rseq_len = 0;
1859 t->rseq_sig = 0;
1860 t->rseq_event_mask = 0;
1861}
1862
1863#else
1864
1865static inline void rseq_set_notify_resume(struct task_struct *t)
1866{
1867}
1868static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1869 struct pt_regs *regs)
1870{
1871}
1872static inline void rseq_signal_deliver(struct ksignal *ksig,
1873 struct pt_regs *regs)
1874{
1875}
1876static inline void rseq_preempt(struct task_struct *t)
1877{
1878}
1879static inline void rseq_migrate(struct task_struct *t)
1880{
1881}
1882static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1883{
1884}
1885static inline void rseq_execve(struct task_struct *t)
1886{
1887}
1888
1889#endif
1890
1891#ifdef CONFIG_DEBUG_RSEQ
1892
1893void rseq_syscall(struct pt_regs *regs);
1894
1895#else
1896
1897static inline void rseq_syscall(struct pt_regs *regs)
1898{
1899}
1900
1901#endif
1902
1903#endif