v4.19.13 snapshot.
diff --git a/include/linux/sched.h b/include/linux/sched.h
new file mode 100644
index 0000000..4abb5bd
--- /dev/null
+++ b/include/linux/sched.h
@@ -0,0 +1,1903 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _LINUX_SCHED_H
+#define _LINUX_SCHED_H
+
+/*
+ * Define 'struct task_struct' and provide the main scheduler
+ * APIs (schedule(), wakeup variants, etc.)
+ */
+
+#include <uapi/linux/sched.h>
+
+#include <asm/current.h>
+
+#include <linux/pid.h>
+#include <linux/sem.h>
+#include <linux/shm.h>
+#include <linux/kcov.h>
+#include <linux/mutex.h>
+#include <linux/plist.h>
+#include <linux/hrtimer.h>
+#include <linux/seccomp.h>
+#include <linux/nodemask.h>
+#include <linux/rcupdate.h>
+#include <linux/resource.h>
+#include <linux/latencytop.h>
+#include <linux/sched/prio.h>
+#include <linux/signal_types.h>
+#include <linux/mm_types_task.h>
+#include <linux/task_io_accounting.h>
+#include <linux/rseq.h>
+
+/* task_struct member predeclarations (sorted alphabetically): */
+struct audit_context;
+struct backing_dev_info;
+struct bio_list;
+struct blk_plug;
+struct cfs_rq;
+struct fs_struct;
+struct futex_pi_state;
+struct io_context;
+struct mempolicy;
+struct nameidata;
+struct nsproxy;
+struct perf_event_context;
+struct pid_namespace;
+struct pipe_inode_info;
+struct rcu_node;
+struct reclaim_state;
+struct robust_list_head;
+struct sched_attr;
+struct sched_param;
+struct seq_file;
+struct sighand_struct;
+struct signal_struct;
+struct task_delay_info;
+struct task_group;
+
+/*
+ * Task state bitmask. NOTE! These bits are also
+ * encoded in fs/proc/array.c: get_task_state().
+ *
+ * We have two separate sets of flags: task->state
+ * is about runnability, while task->exit_state are
+ * about the task exiting. Confusing, but this way
+ * modifying one set can't modify the other one by
+ * mistake.
+ */
+
+/* Used in tsk->state: */
+#define TASK_RUNNING			0x0000
+#define TASK_INTERRUPTIBLE		0x0001
+#define TASK_UNINTERRUPTIBLE		0x0002
+#define __TASK_STOPPED			0x0004
+#define __TASK_TRACED			0x0008
+/* Used in tsk->exit_state: */
+#define EXIT_DEAD			0x0010
+#define EXIT_ZOMBIE			0x0020
+#define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
+/* Used in tsk->state again: */
+#define TASK_PARKED			0x0040
+#define TASK_DEAD			0x0080
+#define TASK_WAKEKILL			0x0100
+#define TASK_WAKING			0x0200
+#define TASK_NOLOAD			0x0400
+#define TASK_NEW			0x0800
+#define TASK_STATE_MAX			0x1000
+
+/* Convenience macros for the sake of set_current_state: */
+#define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
+#define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
+#define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
+
+#define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
+
+/* Convenience macros for the sake of wake_up(): */
+#define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
+
+/* get_task_state(): */
+#define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
+					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
+					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
+					 TASK_PARKED)
+
+#define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
+
+#define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
+
+#define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
+
+#define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
+					 (task->flags & PF_FROZEN) == 0 && \
+					 (task->state & TASK_NOLOAD) == 0)
+
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+
+/*
+ * Special states are those that do not use the normal wait-loop pattern. See
+ * the comment with set_special_state().
+ */
+#define is_special_task_state(state)				\
+	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
+
+#define __set_current_state(state_value)			\
+	do {							\
+		WARN_ON_ONCE(is_special_task_state(state_value));\
+		current->task_state_change = _THIS_IP_;		\
+		current->state = (state_value);			\
+	} while (0)
+
+#define set_current_state(state_value)				\
+	do {							\
+		WARN_ON_ONCE(is_special_task_state(state_value));\
+		current->task_state_change = _THIS_IP_;		\
+		smp_store_mb(current->state, (state_value));	\
+	} while (0)
+
+#define set_special_state(state_value)					\
+	do {								\
+		unsigned long flags; /* may shadow */			\
+		WARN_ON_ONCE(!is_special_task_state(state_value));	\
+		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
+		current->task_state_change = _THIS_IP_;			\
+		current->state = (state_value);				\
+		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
+	} while (0)
+#else
+/*
+ * set_current_state() includes a barrier so that the write of current->state
+ * is correctly serialised wrt the caller's subsequent test of whether to
+ * actually sleep:
+ *
+ *   for (;;) {
+ *	set_current_state(TASK_UNINTERRUPTIBLE);
+ *	if (!need_sleep)
+ *		break;
+ *
+ *	schedule();
+ *   }
+ *   __set_current_state(TASK_RUNNING);
+ *
+ * If the caller does not need such serialisation (because, for instance, the
+ * condition test and condition change and wakeup are under the same lock) then
+ * use __set_current_state().
+ *
+ * The above is typically ordered against the wakeup, which does:
+ *
+ *   need_sleep = false;
+ *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
+ *
+ * where wake_up_state() executes a full memory barrier before accessing the
+ * task state.
+ *
+ * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
+ * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
+ * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
+ *
+ * However, with slightly different timing the wakeup TASK_RUNNING store can
+ * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
+ * a problem either because that will result in one extra go around the loop
+ * and our @cond test will save the day.
+ *
+ * Also see the comments of try_to_wake_up().
+ */
+#define __set_current_state(state_value)				\
+	current->state = (state_value)
+
+#define set_current_state(state_value)					\
+	smp_store_mb(current->state, (state_value))
+
+/*
+ * set_special_state() should be used for those states when the blocking task
+ * can not use the regular condition based wait-loop. In that case we must
+ * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
+ * will not collide with our state change.
+ */
+#define set_special_state(state_value)					\
+	do {								\
+		unsigned long flags; /* may shadow */			\
+		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
+		current->state = (state_value);				\
+		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
+	} while (0)
+
+#endif
+
+/* Task command name length: */
+#define TASK_COMM_LEN			16
+
+extern void scheduler_tick(void);
+
+#define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
+
+extern long schedule_timeout(long timeout);
+extern long schedule_timeout_interruptible(long timeout);
+extern long schedule_timeout_killable(long timeout);
+extern long schedule_timeout_uninterruptible(long timeout);
+extern long schedule_timeout_idle(long timeout);
+asmlinkage void schedule(void);
+extern void schedule_preempt_disabled(void);
+
+extern int __must_check io_schedule_prepare(void);
+extern void io_schedule_finish(int token);
+extern long io_schedule_timeout(long timeout);
+extern void io_schedule(void);
+
+/**
+ * struct prev_cputime - snapshot of system and user cputime
+ * @utime: time spent in user mode
+ * @stime: time spent in system mode
+ * @lock: protects the above two fields
+ *
+ * Stores previous user/system time values such that we can guarantee
+ * monotonicity.
+ */
+struct prev_cputime {
+#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
+	u64				utime;
+	u64				stime;
+	raw_spinlock_t			lock;
+#endif
+};
+
+/**
+ * struct task_cputime - collected CPU time counts
+ * @utime:		time spent in user mode, in nanoseconds
+ * @stime:		time spent in kernel mode, in nanoseconds
+ * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
+ *
+ * This structure groups together three kinds of CPU time that are tracked for
+ * threads and thread groups.  Most things considering CPU time want to group
+ * these counts together and treat all three of them in parallel.
+ */
+struct task_cputime {
+	u64				utime;
+	u64				stime;
+	unsigned long long		sum_exec_runtime;
+};
+
+/* Alternate field names when used on cache expirations: */
+#define virt_exp			utime
+#define prof_exp			stime
+#define sched_exp			sum_exec_runtime
+
+enum vtime_state {
+	/* Task is sleeping or running in a CPU with VTIME inactive: */
+	VTIME_INACTIVE = 0,
+	/* Task runs in userspace in a CPU with VTIME active: */
+	VTIME_USER,
+	/* Task runs in kernelspace in a CPU with VTIME active: */
+	VTIME_SYS,
+};
+
+struct vtime {
+	seqcount_t		seqcount;
+	unsigned long long	starttime;
+	enum vtime_state	state;
+	u64			utime;
+	u64			stime;
+	u64			gtime;
+};
+
+struct sched_info {
+#ifdef CONFIG_SCHED_INFO
+	/* Cumulative counters: */
+
+	/* # of times we have run on this CPU: */
+	unsigned long			pcount;
+
+	/* Time spent waiting on a runqueue: */
+	unsigned long long		run_delay;
+
+	/* Timestamps: */
+
+	/* When did we last run on a CPU? */
+	unsigned long long		last_arrival;
+
+	/* When were we last queued to run? */
+	unsigned long long		last_queued;
+
+#endif /* CONFIG_SCHED_INFO */
+};
+
+/*
+ * Integer metrics need fixed point arithmetic, e.g., sched/fair
+ * has a few: load, load_avg, util_avg, freq, and capacity.
+ *
+ * We define a basic fixed point arithmetic range, and then formalize
+ * all these metrics based on that basic range.
+ */
+# define SCHED_FIXEDPOINT_SHIFT		10
+# define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
+
+struct load_weight {
+	unsigned long			weight;
+	u32				inv_weight;
+};
+
+/**
+ * struct util_est - Estimation utilization of FAIR tasks
+ * @enqueued: instantaneous estimated utilization of a task/cpu
+ * @ewma:     the Exponential Weighted Moving Average (EWMA)
+ *            utilization of a task
+ *
+ * Support data structure to track an Exponential Weighted Moving Average
+ * (EWMA) of a FAIR task's utilization. New samples are added to the moving
+ * average each time a task completes an activation. Sample's weight is chosen
+ * so that the EWMA will be relatively insensitive to transient changes to the
+ * task's workload.
+ *
+ * The enqueued attribute has a slightly different meaning for tasks and cpus:
+ * - task:   the task's util_avg at last task dequeue time
+ * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
+ * Thus, the util_est.enqueued of a task represents the contribution on the
+ * estimated utilization of the CPU where that task is currently enqueued.
+ *
+ * Only for tasks we track a moving average of the past instantaneous
+ * estimated utilization. This allows to absorb sporadic drops in utilization
+ * of an otherwise almost periodic task.
+ */
+struct util_est {
+	unsigned int			enqueued;
+	unsigned int			ewma;
+#define UTIL_EST_WEIGHT_SHIFT		2
+} __attribute__((__aligned__(sizeof(u64))));
+
+/*
+ * The load_avg/util_avg accumulates an infinite geometric series
+ * (see __update_load_avg() in kernel/sched/fair.c).
+ *
+ * [load_avg definition]
+ *
+ *   load_avg = runnable% * scale_load_down(load)
+ *
+ * where runnable% is the time ratio that a sched_entity is runnable.
+ * For cfs_rq, it is the aggregated load_avg of all runnable and
+ * blocked sched_entities.
+ *
+ * load_avg may also take frequency scaling into account:
+ *
+ *   load_avg = runnable% * scale_load_down(load) * freq%
+ *
+ * where freq% is the CPU frequency normalized to the highest frequency.
+ *
+ * [util_avg definition]
+ *
+ *   util_avg = running% * SCHED_CAPACITY_SCALE
+ *
+ * where running% is the time ratio that a sched_entity is running on
+ * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
+ * and blocked sched_entities.
+ *
+ * util_avg may also factor frequency scaling and CPU capacity scaling:
+ *
+ *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
+ *
+ * where freq% is the same as above, and capacity% is the CPU capacity
+ * normalized to the greatest capacity (due to uarch differences, etc).
+ *
+ * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
+ * themselves are in the range of [0, 1]. To do fixed point arithmetics,
+ * we therefore scale them to as large a range as necessary. This is for
+ * example reflected by util_avg's SCHED_CAPACITY_SCALE.
+ *
+ * [Overflow issue]
+ *
+ * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
+ * with the highest load (=88761), always runnable on a single cfs_rq,
+ * and should not overflow as the number already hits PID_MAX_LIMIT.
+ *
+ * For all other cases (including 32-bit kernels), struct load_weight's
+ * weight will overflow first before we do, because:
+ *
+ *    Max(load_avg) <= Max(load.weight)
+ *
+ * Then it is the load_weight's responsibility to consider overflow
+ * issues.
+ */
+struct sched_avg {
+	u64				last_update_time;
+	u64				load_sum;
+	u64				runnable_load_sum;
+	u32				util_sum;
+	u32				period_contrib;
+	unsigned long			load_avg;
+	unsigned long			runnable_load_avg;
+	unsigned long			util_avg;
+	struct util_est			util_est;
+} ____cacheline_aligned;
+
+struct sched_statistics {
+#ifdef CONFIG_SCHEDSTATS
+	u64				wait_start;
+	u64				wait_max;
+	u64				wait_count;
+	u64				wait_sum;
+	u64				iowait_count;
+	u64				iowait_sum;
+
+	u64				sleep_start;
+	u64				sleep_max;
+	s64				sum_sleep_runtime;
+
+	u64				block_start;
+	u64				block_max;
+	u64				exec_max;
+	u64				slice_max;
+
+	u64				nr_migrations_cold;
+	u64				nr_failed_migrations_affine;
+	u64				nr_failed_migrations_running;
+	u64				nr_failed_migrations_hot;
+	u64				nr_forced_migrations;
+
+	u64				nr_wakeups;
+	u64				nr_wakeups_sync;
+	u64				nr_wakeups_migrate;
+	u64				nr_wakeups_local;
+	u64				nr_wakeups_remote;
+	u64				nr_wakeups_affine;
+	u64				nr_wakeups_affine_attempts;
+	u64				nr_wakeups_passive;
+	u64				nr_wakeups_idle;
+#endif
+};
+
+struct sched_entity {
+	/* For load-balancing: */
+	struct load_weight		load;
+	unsigned long			runnable_weight;
+	struct rb_node			run_node;
+	struct list_head		group_node;
+	unsigned int			on_rq;
+
+	u64				exec_start;
+	u64				sum_exec_runtime;
+	u64				vruntime;
+	u64				prev_sum_exec_runtime;
+
+	u64				nr_migrations;
+
+	struct sched_statistics		statistics;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
+	int				depth;
+	struct sched_entity		*parent;
+	/* rq on which this entity is (to be) queued: */
+	struct cfs_rq			*cfs_rq;
+	/* rq "owned" by this entity/group: */
+	struct cfs_rq			*my_q;
+#endif
+
+#ifdef CONFIG_SMP
+	/*
+	 * Per entity load average tracking.
+	 *
+	 * Put into separate cache line so it does not
+	 * collide with read-mostly values above.
+	 */
+	struct sched_avg		avg;
+#endif
+};
+
+struct sched_rt_entity {
+	struct list_head		run_list;
+	unsigned long			timeout;
+	unsigned long			watchdog_stamp;
+	unsigned int			time_slice;
+	unsigned short			on_rq;
+	unsigned short			on_list;
+
+	struct sched_rt_entity		*back;
+#ifdef CONFIG_RT_GROUP_SCHED
+	struct sched_rt_entity		*parent;
+	/* rq on which this entity is (to be) queued: */
+	struct rt_rq			*rt_rq;
+	/* rq "owned" by this entity/group: */
+	struct rt_rq			*my_q;
+#endif
+} __randomize_layout;
+
+struct sched_dl_entity {
+	struct rb_node			rb_node;
+
+	/*
+	 * Original scheduling parameters. Copied here from sched_attr
+	 * during sched_setattr(), they will remain the same until
+	 * the next sched_setattr().
+	 */
+	u64				dl_runtime;	/* Maximum runtime for each instance	*/
+	u64				dl_deadline;	/* Relative deadline of each instance	*/
+	u64				dl_period;	/* Separation of two instances (period) */
+	u64				dl_bw;		/* dl_runtime / dl_period		*/
+	u64				dl_density;	/* dl_runtime / dl_deadline		*/
+
+	/*
+	 * Actual scheduling parameters. Initialized with the values above,
+	 * they are continously updated during task execution. Note that
+	 * the remaining runtime could be < 0 in case we are in overrun.
+	 */
+	s64				runtime;	/* Remaining runtime for this instance	*/
+	u64				deadline;	/* Absolute deadline for this instance	*/
+	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
+
+	/*
+	 * Some bool flags:
+	 *
+	 * @dl_throttled tells if we exhausted the runtime. If so, the
+	 * task has to wait for a replenishment to be performed at the
+	 * next firing of dl_timer.
+	 *
+	 * @dl_boosted tells if we are boosted due to DI. If so we are
+	 * outside bandwidth enforcement mechanism (but only until we
+	 * exit the critical section);
+	 *
+	 * @dl_yielded tells if task gave up the CPU before consuming
+	 * all its available runtime during the last job.
+	 *
+	 * @dl_non_contending tells if the task is inactive while still
+	 * contributing to the active utilization. In other words, it
+	 * indicates if the inactive timer has been armed and its handler
+	 * has not been executed yet. This flag is useful to avoid race
+	 * conditions between the inactive timer handler and the wakeup
+	 * code.
+	 *
+	 * @dl_overrun tells if the task asked to be informed about runtime
+	 * overruns.
+	 */
+	unsigned int			dl_throttled      : 1;
+	unsigned int			dl_boosted        : 1;
+	unsigned int			dl_yielded        : 1;
+	unsigned int			dl_non_contending : 1;
+	unsigned int			dl_overrun	  : 1;
+
+	/*
+	 * Bandwidth enforcement timer. Each -deadline task has its
+	 * own bandwidth to be enforced, thus we need one timer per task.
+	 */
+	struct hrtimer			dl_timer;
+
+	/*
+	 * Inactive timer, responsible for decreasing the active utilization
+	 * at the "0-lag time". When a -deadline task blocks, it contributes
+	 * to GRUB's active utilization until the "0-lag time", hence a
+	 * timer is needed to decrease the active utilization at the correct
+	 * time.
+	 */
+	struct hrtimer inactive_timer;
+};
+
+union rcu_special {
+	struct {
+		u8			blocked;
+		u8			need_qs;
+		u8			exp_need_qs;
+
+		/* Otherwise the compiler can store garbage here: */
+		u8			pad;
+	} b; /* Bits. */
+	u32 s; /* Set of bits. */
+};
+
+enum perf_event_task_context {
+	perf_invalid_context = -1,
+	perf_hw_context = 0,
+	perf_sw_context,
+	perf_nr_task_contexts,
+};
+
+struct wake_q_node {
+	struct wake_q_node *next;
+};
+
+struct task_struct {
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+	/*
+	 * For reasons of header soup (see current_thread_info()), this
+	 * must be the first element of task_struct.
+	 */
+	struct thread_info		thread_info;
+#endif
+	/* -1 unrunnable, 0 runnable, >0 stopped: */
+	volatile long			state;
+
+	/*
+	 * This begins the randomizable portion of task_struct. Only
+	 * scheduling-critical items should be added above here.
+	 */
+	randomized_struct_fields_start
+
+	void				*stack;
+	atomic_t			usage;
+	/* Per task flags (PF_*), defined further below: */
+	unsigned int			flags;
+	unsigned int			ptrace;
+
+#ifdef CONFIG_SMP
+	struct llist_node		wake_entry;
+	int				on_cpu;
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+	/* Current CPU: */
+	unsigned int			cpu;
+#endif
+	unsigned int			wakee_flips;
+	unsigned long			wakee_flip_decay_ts;
+	struct task_struct		*last_wakee;
+
+	/*
+	 * recent_used_cpu is initially set as the last CPU used by a task
+	 * that wakes affine another task. Waker/wakee relationships can
+	 * push tasks around a CPU where each wakeup moves to the next one.
+	 * Tracking a recently used CPU allows a quick search for a recently
+	 * used CPU that may be idle.
+	 */
+	int				recent_used_cpu;
+	int				wake_cpu;
+#endif
+	int				on_rq;
+
+	int				prio;
+	int				static_prio;
+	int				normal_prio;
+	unsigned int			rt_priority;
+
+	const struct sched_class	*sched_class;
+	struct sched_entity		se;
+	struct sched_rt_entity		rt;
+#ifdef CONFIG_CGROUP_SCHED
+	struct task_group		*sched_task_group;
+#endif
+	struct sched_dl_entity		dl;
+
+#ifdef CONFIG_PREEMPT_NOTIFIERS
+	/* List of struct preempt_notifier: */
+	struct hlist_head		preempt_notifiers;
+#endif
+
+#ifdef CONFIG_BLK_DEV_IO_TRACE
+	unsigned int			btrace_seq;
+#endif
+
+	unsigned int			policy;
+	int				nr_cpus_allowed;
+	cpumask_t			cpus_allowed;
+
+#ifdef CONFIG_PREEMPT_RCU
+	int				rcu_read_lock_nesting;
+	union rcu_special		rcu_read_unlock_special;
+	struct list_head		rcu_node_entry;
+	struct rcu_node			*rcu_blocked_node;
+#endif /* #ifdef CONFIG_PREEMPT_RCU */
+
+#ifdef CONFIG_TASKS_RCU
+	unsigned long			rcu_tasks_nvcsw;
+	u8				rcu_tasks_holdout;
+	u8				rcu_tasks_idx;
+	int				rcu_tasks_idle_cpu;
+	struct list_head		rcu_tasks_holdout_list;
+#endif /* #ifdef CONFIG_TASKS_RCU */
+
+	struct sched_info		sched_info;
+
+	struct list_head		tasks;
+#ifdef CONFIG_SMP
+	struct plist_node		pushable_tasks;
+	struct rb_node			pushable_dl_tasks;
+#endif
+
+	struct mm_struct		*mm;
+	struct mm_struct		*active_mm;
+
+	/* Per-thread vma caching: */
+	struct vmacache			vmacache;
+
+#ifdef SPLIT_RSS_COUNTING
+	struct task_rss_stat		rss_stat;
+#endif
+	int				exit_state;
+	int				exit_code;
+	int				exit_signal;
+	/* The signal sent when the parent dies: */
+	int				pdeath_signal;
+	/* JOBCTL_*, siglock protected: */
+	unsigned long			jobctl;
+
+	/* Used for emulating ABI behavior of previous Linux versions: */
+	unsigned int			personality;
+
+	/* Scheduler bits, serialized by scheduler locks: */
+	unsigned			sched_reset_on_fork:1;
+	unsigned			sched_contributes_to_load:1;
+	unsigned			sched_migrated:1;
+	unsigned			sched_remote_wakeup:1;
+	/* Force alignment to the next boundary: */
+	unsigned			:0;
+
+	/* Unserialized, strictly 'current' */
+
+	/* Bit to tell LSMs we're in execve(): */
+	unsigned			in_execve:1;
+	unsigned			in_iowait:1;
+#ifndef TIF_RESTORE_SIGMASK
+	unsigned			restore_sigmask:1;
+#endif
+#ifdef CONFIG_MEMCG
+	unsigned			in_user_fault:1;
+#ifdef CONFIG_MEMCG_KMEM
+	unsigned			memcg_kmem_skip_account:1;
+#endif
+#endif
+#ifdef CONFIG_COMPAT_BRK
+	unsigned			brk_randomized:1;
+#endif
+#ifdef CONFIG_CGROUPS
+	/* disallow userland-initiated cgroup migration */
+	unsigned			no_cgroup_migration:1;
+#endif
+#ifdef CONFIG_BLK_CGROUP
+	/* to be used once the psi infrastructure lands upstream. */
+	unsigned			use_memdelay:1;
+#endif
+
+	unsigned long			atomic_flags; /* Flags requiring atomic access. */
+
+	struct restart_block		restart_block;
+
+	pid_t				pid;
+	pid_t				tgid;
+
+#ifdef CONFIG_STACKPROTECTOR
+	/* Canary value for the -fstack-protector GCC feature: */
+	unsigned long			stack_canary;
+#endif
+	/*
+	 * Pointers to the (original) parent process, youngest child, younger sibling,
+	 * older sibling, respectively.  (p->father can be replaced with
+	 * p->real_parent->pid)
+	 */
+
+	/* Real parent process: */
+	struct task_struct __rcu	*real_parent;
+
+	/* Recipient of SIGCHLD, wait4() reports: */
+	struct task_struct __rcu	*parent;
+
+	/*
+	 * Children/sibling form the list of natural children:
+	 */
+	struct list_head		children;
+	struct list_head		sibling;
+	struct task_struct		*group_leader;
+
+	/*
+	 * 'ptraced' is the list of tasks this task is using ptrace() on.
+	 *
+	 * This includes both natural children and PTRACE_ATTACH targets.
+	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
+	 */
+	struct list_head		ptraced;
+	struct list_head		ptrace_entry;
+
+	/* PID/PID hash table linkage. */
+	struct pid			*thread_pid;
+	struct hlist_node		pid_links[PIDTYPE_MAX];
+	struct list_head		thread_group;
+	struct list_head		thread_node;
+
+	struct completion		*vfork_done;
+
+	/* CLONE_CHILD_SETTID: */
+	int __user			*set_child_tid;
+
+	/* CLONE_CHILD_CLEARTID: */
+	int __user			*clear_child_tid;
+
+	u64				utime;
+	u64				stime;
+#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
+	u64				utimescaled;
+	u64				stimescaled;
+#endif
+	u64				gtime;
+	struct prev_cputime		prev_cputime;
+#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
+	struct vtime			vtime;
+#endif
+
+#ifdef CONFIG_NO_HZ_FULL
+	atomic_t			tick_dep_mask;
+#endif
+	/* Context switch counts: */
+	unsigned long			nvcsw;
+	unsigned long			nivcsw;
+
+	/* Monotonic time in nsecs: */
+	u64				start_time;
+
+	/* Boot based time in nsecs: */
+	u64				real_start_time;
+
+	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
+	unsigned long			min_flt;
+	unsigned long			maj_flt;
+
+#ifdef CONFIG_POSIX_TIMERS
+	struct task_cputime		cputime_expires;
+	struct list_head		cpu_timers[3];
+#endif
+
+	/* Process credentials: */
+
+	/* Tracer's credentials at attach: */
+	const struct cred __rcu		*ptracer_cred;
+
+	/* Objective and real subjective task credentials (COW): */
+	const struct cred __rcu		*real_cred;
+
+	/* Effective (overridable) subjective task credentials (COW): */
+	const struct cred __rcu		*cred;
+
+	/*
+	 * executable name, excluding path.
+	 *
+	 * - normally initialized setup_new_exec()
+	 * - access it with [gs]et_task_comm()
+	 * - lock it with task_lock()
+	 */
+	char				comm[TASK_COMM_LEN];
+
+	struct nameidata		*nameidata;
+
+#ifdef CONFIG_SYSVIPC
+	struct sysv_sem			sysvsem;
+	struct sysv_shm			sysvshm;
+#endif
+#ifdef CONFIG_DETECT_HUNG_TASK
+	unsigned long			last_switch_count;
+	unsigned long			last_switch_time;
+#endif
+	/* Filesystem information: */
+	struct fs_struct		*fs;
+
+	/* Open file information: */
+	struct files_struct		*files;
+
+	/* Namespaces: */
+	struct nsproxy			*nsproxy;
+
+	/* Signal handlers: */
+	struct signal_struct		*signal;
+	struct sighand_struct		*sighand;
+	sigset_t			blocked;
+	sigset_t			real_blocked;
+	/* Restored if set_restore_sigmask() was used: */
+	sigset_t			saved_sigmask;
+	struct sigpending		pending;
+	unsigned long			sas_ss_sp;
+	size_t				sas_ss_size;
+	unsigned int			sas_ss_flags;
+
+	struct callback_head		*task_works;
+
+	struct audit_context		*audit_context;
+#ifdef CONFIG_AUDITSYSCALL
+	kuid_t				loginuid;
+	unsigned int			sessionid;
+#endif
+	struct seccomp			seccomp;
+
+	/* Thread group tracking: */
+	u32				parent_exec_id;
+	u32				self_exec_id;
+
+	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
+	spinlock_t			alloc_lock;
+
+	/* Protection of the PI data structures: */
+	raw_spinlock_t			pi_lock;
+
+	struct wake_q_node		wake_q;
+
+#ifdef CONFIG_RT_MUTEXES
+	/* PI waiters blocked on a rt_mutex held by this task: */
+	struct rb_root_cached		pi_waiters;
+	/* Updated under owner's pi_lock and rq lock */
+	struct task_struct		*pi_top_task;
+	/* Deadlock detection and priority inheritance handling: */
+	struct rt_mutex_waiter		*pi_blocked_on;
+#endif
+
+#ifdef CONFIG_DEBUG_MUTEXES
+	/* Mutex deadlock detection: */
+	struct mutex_waiter		*blocked_on;
+#endif
+
+#ifdef CONFIG_TRACE_IRQFLAGS
+	unsigned int			irq_events;
+	unsigned long			hardirq_enable_ip;
+	unsigned long			hardirq_disable_ip;
+	unsigned int			hardirq_enable_event;
+	unsigned int			hardirq_disable_event;
+	int				hardirqs_enabled;
+	int				hardirq_context;
+	unsigned long			softirq_disable_ip;
+	unsigned long			softirq_enable_ip;
+	unsigned int			softirq_disable_event;
+	unsigned int			softirq_enable_event;
+	int				softirqs_enabled;
+	int				softirq_context;
+#endif
+
+#ifdef CONFIG_LOCKDEP
+# define MAX_LOCK_DEPTH			48UL
+	u64				curr_chain_key;
+	int				lockdep_depth;
+	unsigned int			lockdep_recursion;
+	struct held_lock		held_locks[MAX_LOCK_DEPTH];
+#endif
+
+#ifdef CONFIG_UBSAN
+	unsigned int			in_ubsan;
+#endif
+
+	/* Journalling filesystem info: */
+	void				*journal_info;
+
+	/* Stacked block device info: */
+	struct bio_list			*bio_list;
+
+#ifdef CONFIG_BLOCK
+	/* Stack plugging: */
+	struct blk_plug			*plug;
+#endif
+
+	/* VM state: */
+	struct reclaim_state		*reclaim_state;
+
+	struct backing_dev_info		*backing_dev_info;
+
+	struct io_context		*io_context;
+
+	/* Ptrace state: */
+	unsigned long			ptrace_message;
+	siginfo_t			*last_siginfo;
+
+	struct task_io_accounting	ioac;
+#ifdef CONFIG_TASK_XACCT
+	/* Accumulated RSS usage: */
+	u64				acct_rss_mem1;
+	/* Accumulated virtual memory usage: */
+	u64				acct_vm_mem1;
+	/* stime + utime since last update: */
+	u64				acct_timexpd;
+#endif
+#ifdef CONFIG_CPUSETS
+	/* Protected by ->alloc_lock: */
+	nodemask_t			mems_allowed;
+	/* Seqence number to catch updates: */
+	seqcount_t			mems_allowed_seq;
+	int				cpuset_mem_spread_rotor;
+	int				cpuset_slab_spread_rotor;
+#endif
+#ifdef CONFIG_CGROUPS
+	/* Control Group info protected by css_set_lock: */
+	struct css_set __rcu		*cgroups;
+	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
+	struct list_head		cg_list;
+#endif
+#ifdef CONFIG_INTEL_RDT
+	u32				closid;
+	u32				rmid;
+#endif
+#ifdef CONFIG_FUTEX
+	struct robust_list_head __user	*robust_list;
+#ifdef CONFIG_COMPAT
+	struct compat_robust_list_head __user *compat_robust_list;
+#endif
+	struct list_head		pi_state_list;
+	struct futex_pi_state		*pi_state_cache;
+#endif
+#ifdef CONFIG_PERF_EVENTS
+	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
+	struct mutex			perf_event_mutex;
+	struct list_head		perf_event_list;
+#endif
+#ifdef CONFIG_DEBUG_PREEMPT
+	unsigned long			preempt_disable_ip;
+#endif
+#ifdef CONFIG_NUMA
+	/* Protected by alloc_lock: */
+	struct mempolicy		*mempolicy;
+	short				il_prev;
+	short				pref_node_fork;
+#endif
+#ifdef CONFIG_NUMA_BALANCING
+	int				numa_scan_seq;
+	unsigned int			numa_scan_period;
+	unsigned int			numa_scan_period_max;
+	int				numa_preferred_nid;
+	unsigned long			numa_migrate_retry;
+	/* Migration stamp: */
+	u64				node_stamp;
+	u64				last_task_numa_placement;
+	u64				last_sum_exec_runtime;
+	struct callback_head		numa_work;
+
+	struct numa_group		*numa_group;
+
+	/*
+	 * numa_faults is an array split into four regions:
+	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
+	 * in this precise order.
+	 *
+	 * faults_memory: Exponential decaying average of faults on a per-node
+	 * basis. Scheduling placement decisions are made based on these
+	 * counts. The values remain static for the duration of a PTE scan.
+	 * faults_cpu: Track the nodes the process was running on when a NUMA
+	 * hinting fault was incurred.
+	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
+	 * during the current scan window. When the scan completes, the counts
+	 * in faults_memory and faults_cpu decay and these values are copied.
+	 */
+	unsigned long			*numa_faults;
+	unsigned long			total_numa_faults;
+
+	/*
+	 * numa_faults_locality tracks if faults recorded during the last
+	 * scan window were remote/local or failed to migrate. The task scan
+	 * period is adapted based on the locality of the faults with different
+	 * weights depending on whether they were shared or private faults
+	 */
+	unsigned long			numa_faults_locality[3];
+
+	unsigned long			numa_pages_migrated;
+#endif /* CONFIG_NUMA_BALANCING */
+
+#ifdef CONFIG_RSEQ
+	struct rseq __user *rseq;
+	u32 rseq_len;
+	u32 rseq_sig;
+	/*
+	 * RmW on rseq_event_mask must be performed atomically
+	 * with respect to preemption.
+	 */
+	unsigned long rseq_event_mask;
+#endif
+
+	struct tlbflush_unmap_batch	tlb_ubc;
+
+	struct rcu_head			rcu;
+
+	/* Cache last used pipe for splice(): */
+	struct pipe_inode_info		*splice_pipe;
+
+	struct page_frag		task_frag;
+
+#ifdef CONFIG_TASK_DELAY_ACCT
+	struct task_delay_info		*delays;
+#endif
+
+#ifdef CONFIG_FAULT_INJECTION
+	int				make_it_fail;
+	unsigned int			fail_nth;
+#endif
+	/*
+	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
+	 * balance_dirty_pages() for a dirty throttling pause:
+	 */
+	int				nr_dirtied;
+	int				nr_dirtied_pause;
+	/* Start of a write-and-pause period: */
+	unsigned long			dirty_paused_when;
+
+#ifdef CONFIG_LATENCYTOP
+	int				latency_record_count;
+	struct latency_record		latency_record[LT_SAVECOUNT];
+#endif
+	/*
+	 * Time slack values; these are used to round up poll() and
+	 * select() etc timeout values. These are in nanoseconds.
+	 */
+	u64				timer_slack_ns;
+	u64				default_timer_slack_ns;
+
+#ifdef CONFIG_KASAN
+	unsigned int			kasan_depth;
+#endif
+
+#ifdef CONFIG_FUNCTION_GRAPH_TRACER
+	/* Index of current stored address in ret_stack: */
+	int				curr_ret_stack;
+	int				curr_ret_depth;
+
+	/* Stack of return addresses for return function tracing: */
+	struct ftrace_ret_stack		*ret_stack;
+
+	/* Timestamp for last schedule: */
+	unsigned long long		ftrace_timestamp;
+
+	/*
+	 * Number of functions that haven't been traced
+	 * because of depth overrun:
+	 */
+	atomic_t			trace_overrun;
+
+	/* Pause tracing: */
+	atomic_t			tracing_graph_pause;
+#endif
+
+#ifdef CONFIG_TRACING
+	/* State flags for use by tracers: */
+	unsigned long			trace;
+
+	/* Bitmask and counter of trace recursion: */
+	unsigned long			trace_recursion;
+#endif /* CONFIG_TRACING */
+
+#ifdef CONFIG_KCOV
+	/* Coverage collection mode enabled for this task (0 if disabled): */
+	unsigned int			kcov_mode;
+
+	/* Size of the kcov_area: */
+	unsigned int			kcov_size;
+
+	/* Buffer for coverage collection: */
+	void				*kcov_area;
+
+	/* KCOV descriptor wired with this task or NULL: */
+	struct kcov			*kcov;
+#endif
+
+#ifdef CONFIG_MEMCG
+	struct mem_cgroup		*memcg_in_oom;
+	gfp_t				memcg_oom_gfp_mask;
+	int				memcg_oom_order;
+
+	/* Number of pages to reclaim on returning to userland: */
+	unsigned int			memcg_nr_pages_over_high;
+
+	/* Used by memcontrol for targeted memcg charge: */
+	struct mem_cgroup		*active_memcg;
+#endif
+
+#ifdef CONFIG_BLK_CGROUP
+	struct request_queue		*throttle_queue;
+#endif
+
+#ifdef CONFIG_UPROBES
+	struct uprobe_task		*utask;
+#endif
+#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
+	unsigned int			sequential_io;
+	unsigned int			sequential_io_avg;
+#endif
+#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
+	unsigned long			task_state_change;
+#endif
+	int				pagefault_disabled;
+#ifdef CONFIG_MMU
+	struct task_struct		*oom_reaper_list;
+#endif
+#ifdef CONFIG_VMAP_STACK
+	struct vm_struct		*stack_vm_area;
+#endif
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+	/* A live task holds one reference: */
+	atomic_t			stack_refcount;
+#endif
+#ifdef CONFIG_LIVEPATCH
+	int patch_state;
+#endif
+#ifdef CONFIG_SECURITY
+	/* Used by LSM modules for access restriction: */
+	void				*security;
+#endif
+
+	/*
+	 * New fields for task_struct should be added above here, so that
+	 * they are included in the randomized portion of task_struct.
+	 */
+	randomized_struct_fields_end
+
+	/* CPU-specific state of this task: */
+	struct thread_struct		thread;
+
+	/*
+	 * WARNING: on x86, 'thread_struct' contains a variable-sized
+	 * structure.  It *MUST* be at the end of 'task_struct'.
+	 *
+	 * Do not put anything below here!
+	 */
+};
+
+static inline struct pid *task_pid(struct task_struct *task)
+{
+	return task->thread_pid;
+}
+
+/*
+ * the helpers to get the task's different pids as they are seen
+ * from various namespaces
+ *
+ * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
+ * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
+ *                     current.
+ * task_xid_nr_ns()  : id seen from the ns specified;
+ *
+ * see also pid_nr() etc in include/linux/pid.h
+ */
+pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
+
+static inline pid_t task_pid_nr(struct task_struct *tsk)
+{
+	return tsk->pid;
+}
+
+static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
+}
+
+static inline pid_t task_pid_vnr(struct task_struct *tsk)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
+}
+
+
+static inline pid_t task_tgid_nr(struct task_struct *tsk)
+{
+	return tsk->tgid;
+}
+
+/**
+ * pid_alive - check that a task structure is not stale
+ * @p: Task structure to be checked.
+ *
+ * Test if a process is not yet dead (at most zombie state)
+ * If pid_alive fails, then pointers within the task structure
+ * can be stale and must not be dereferenced.
+ *
+ * Return: 1 if the process is alive. 0 otherwise.
+ */
+static inline int pid_alive(const struct task_struct *p)
+{
+	return p->thread_pid != NULL;
+}
+
+static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
+}
+
+static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
+}
+
+
+static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
+}
+
+static inline pid_t task_session_vnr(struct task_struct *tsk)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
+}
+
+static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
+}
+
+static inline pid_t task_tgid_vnr(struct task_struct *tsk)
+{
+	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
+}
+
+static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
+{
+	pid_t pid = 0;
+
+	rcu_read_lock();
+	if (pid_alive(tsk))
+		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
+	rcu_read_unlock();
+
+	return pid;
+}
+
+static inline pid_t task_ppid_nr(const struct task_struct *tsk)
+{
+	return task_ppid_nr_ns(tsk, &init_pid_ns);
+}
+
+/* Obsolete, do not use: */
+static inline pid_t task_pgrp_nr(struct task_struct *tsk)
+{
+	return task_pgrp_nr_ns(tsk, &init_pid_ns);
+}
+
+#define TASK_REPORT_IDLE	(TASK_REPORT + 1)
+#define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
+
+static inline unsigned int task_state_index(struct task_struct *tsk)
+{
+	unsigned int tsk_state = READ_ONCE(tsk->state);
+	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
+
+	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
+
+	if (tsk_state == TASK_IDLE)
+		state = TASK_REPORT_IDLE;
+
+	return fls(state);
+}
+
+static inline char task_index_to_char(unsigned int state)
+{
+	static const char state_char[] = "RSDTtXZPI";
+
+	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
+
+	return state_char[state];
+}
+
+static inline char task_state_to_char(struct task_struct *tsk)
+{
+	return task_index_to_char(task_state_index(tsk));
+}
+
+/**
+ * is_global_init - check if a task structure is init. Since init
+ * is free to have sub-threads we need to check tgid.
+ * @tsk: Task structure to be checked.
+ *
+ * Check if a task structure is the first user space task the kernel created.
+ *
+ * Return: 1 if the task structure is init. 0 otherwise.
+ */
+static inline int is_global_init(struct task_struct *tsk)
+{
+	return task_tgid_nr(tsk) == 1;
+}
+
+extern struct pid *cad_pid;
+
+/*
+ * Per process flags
+ */
+#define PF_IDLE			0x00000002	/* I am an IDLE thread */
+#define PF_EXITING		0x00000004	/* Getting shut down */
+#define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
+#define PF_VCPU			0x00000010	/* I'm a virtual CPU */
+#define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
+#define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
+#define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
+#define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
+#define PF_DUMPCORE		0x00000200	/* Dumped core */
+#define PF_SIGNALED		0x00000400	/* Killed by a signal */
+#define PF_MEMALLOC		0x00000800	/* Allocating memory */
+#define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
+#define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
+#define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
+#define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
+#define PF_FROZEN		0x00010000	/* Frozen for system suspend */
+#define PF_KSWAPD		0x00020000	/* I am kswapd */
+#define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
+#define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
+#define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
+#define PF_KTHREAD		0x00200000	/* I am a kernel thread */
+#define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
+#define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
+#define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
+#define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
+#define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
+#define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
+#define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
+
+/*
+ * Only the _current_ task can read/write to tsk->flags, but other
+ * tasks can access tsk->flags in readonly mode for example
+ * with tsk_used_math (like during threaded core dumping).
+ * There is however an exception to this rule during ptrace
+ * or during fork: the ptracer task is allowed to write to the
+ * child->flags of its traced child (same goes for fork, the parent
+ * can write to the child->flags), because we're guaranteed the
+ * child is not running and in turn not changing child->flags
+ * at the same time the parent does it.
+ */
+#define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
+#define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
+#define clear_used_math()			clear_stopped_child_used_math(current)
+#define set_used_math()				set_stopped_child_used_math(current)
+
+#define conditional_stopped_child_used_math(condition, child) \
+	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
+
+#define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
+
+#define copy_to_stopped_child_used_math(child) \
+	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
+
+/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
+#define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
+#define used_math()				tsk_used_math(current)
+
+static inline bool is_percpu_thread(void)
+{
+#ifdef CONFIG_SMP
+	return (current->flags & PF_NO_SETAFFINITY) &&
+		(current->nr_cpus_allowed  == 1);
+#else
+	return true;
+#endif
+}
+
+/* Per-process atomic flags. */
+#define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
+#define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
+#define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
+#define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
+#define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
+#define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
+#define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
+
+#define TASK_PFA_TEST(name, func)					\
+	static inline bool task_##func(struct task_struct *p)		\
+	{ return test_bit(PFA_##name, &p->atomic_flags); }
+
+#define TASK_PFA_SET(name, func)					\
+	static inline void task_set_##func(struct task_struct *p)	\
+	{ set_bit(PFA_##name, &p->atomic_flags); }
+
+#define TASK_PFA_CLEAR(name, func)					\
+	static inline void task_clear_##func(struct task_struct *p)	\
+	{ clear_bit(PFA_##name, &p->atomic_flags); }
+
+TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
+TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
+
+TASK_PFA_TEST(SPREAD_PAGE, spread_page)
+TASK_PFA_SET(SPREAD_PAGE, spread_page)
+TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
+
+TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
+TASK_PFA_SET(SPREAD_SLAB, spread_slab)
+TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
+
+TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
+TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
+TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
+
+TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
+TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
+
+TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
+TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
+TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
+
+TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
+TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
+
+static inline void
+current_restore_flags(unsigned long orig_flags, unsigned long flags)
+{
+	current->flags &= ~flags;
+	current->flags |= orig_flags & flags;
+}
+
+extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
+extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
+#ifdef CONFIG_SMP
+extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
+extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
+#else
+static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+}
+static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+{
+	if (!cpumask_test_cpu(0, new_mask))
+		return -EINVAL;
+	return 0;
+}
+#endif
+
+#ifndef cpu_relax_yield
+#define cpu_relax_yield() cpu_relax()
+#endif
+
+extern int yield_to(struct task_struct *p, bool preempt);
+extern void set_user_nice(struct task_struct *p, long nice);
+extern int task_prio(const struct task_struct *p);
+
+/**
+ * task_nice - return the nice value of a given task.
+ * @p: the task in question.
+ *
+ * Return: The nice value [ -20 ... 0 ... 19 ].
+ */
+static inline int task_nice(const struct task_struct *p)
+{
+	return PRIO_TO_NICE((p)->static_prio);
+}
+
+extern int can_nice(const struct task_struct *p, const int nice);
+extern int task_curr(const struct task_struct *p);
+extern int idle_cpu(int cpu);
+extern int available_idle_cpu(int cpu);
+extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
+extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
+extern int sched_setattr(struct task_struct *, const struct sched_attr *);
+extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
+extern struct task_struct *idle_task(int cpu);
+
+/**
+ * is_idle_task - is the specified task an idle task?
+ * @p: the task in question.
+ *
+ * Return: 1 if @p is an idle task. 0 otherwise.
+ */
+static inline bool is_idle_task(const struct task_struct *p)
+{
+	return !!(p->flags & PF_IDLE);
+}
+
+extern struct task_struct *curr_task(int cpu);
+extern void ia64_set_curr_task(int cpu, struct task_struct *p);
+
+void yield(void);
+
+union thread_union {
+#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
+	struct task_struct task;
+#endif
+#ifndef CONFIG_THREAD_INFO_IN_TASK
+	struct thread_info thread_info;
+#endif
+	unsigned long stack[THREAD_SIZE/sizeof(long)];
+};
+
+#ifndef CONFIG_THREAD_INFO_IN_TASK
+extern struct thread_info init_thread_info;
+#endif
+
+extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
+
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+static inline struct thread_info *task_thread_info(struct task_struct *task)
+{
+	return &task->thread_info;
+}
+#elif !defined(__HAVE_THREAD_FUNCTIONS)
+# define task_thread_info(task)	((struct thread_info *)(task)->stack)
+#endif
+
+/*
+ * find a task by one of its numerical ids
+ *
+ * find_task_by_pid_ns():
+ *      finds a task by its pid in the specified namespace
+ * find_task_by_vpid():
+ *      finds a task by its virtual pid
+ *
+ * see also find_vpid() etc in include/linux/pid.h
+ */
+
+extern struct task_struct *find_task_by_vpid(pid_t nr);
+extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
+
+/*
+ * find a task by its virtual pid and get the task struct
+ */
+extern struct task_struct *find_get_task_by_vpid(pid_t nr);
+
+extern int wake_up_state(struct task_struct *tsk, unsigned int state);
+extern int wake_up_process(struct task_struct *tsk);
+extern void wake_up_new_task(struct task_struct *tsk);
+
+#ifdef CONFIG_SMP
+extern void kick_process(struct task_struct *tsk);
+#else
+static inline void kick_process(struct task_struct *tsk) { }
+#endif
+
+extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
+
+static inline void set_task_comm(struct task_struct *tsk, const char *from)
+{
+	__set_task_comm(tsk, from, false);
+}
+
+extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
+#define get_task_comm(buf, tsk) ({			\
+	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
+	__get_task_comm(buf, sizeof(buf), tsk);		\
+})
+
+#ifdef CONFIG_SMP
+void scheduler_ipi(void);
+extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
+#else
+static inline void scheduler_ipi(void) { }
+static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
+{
+	return 1;
+}
+#endif
+
+/*
+ * Set thread flags in other task's structures.
+ * See asm/thread_info.h for TIF_xxxx flags available:
+ */
+static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+	set_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+	clear_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
+					  bool value)
+{
+	update_ti_thread_flag(task_thread_info(tsk), flag, value);
+}
+
+static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
+{
+	return test_ti_thread_flag(task_thread_info(tsk), flag);
+}
+
+static inline void set_tsk_need_resched(struct task_struct *tsk)
+{
+	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
+}
+
+static inline void clear_tsk_need_resched(struct task_struct *tsk)
+{
+	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
+}
+
+static inline int test_tsk_need_resched(struct task_struct *tsk)
+{
+	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
+}
+
+/*
+ * cond_resched() and cond_resched_lock(): latency reduction via
+ * explicit rescheduling in places that are safe. The return
+ * value indicates whether a reschedule was done in fact.
+ * cond_resched_lock() will drop the spinlock before scheduling,
+ */
+#ifndef CONFIG_PREEMPT
+extern int _cond_resched(void);
+#else
+static inline int _cond_resched(void) { return 0; }
+#endif
+
+#define cond_resched() ({			\
+	___might_sleep(__FILE__, __LINE__, 0);	\
+	_cond_resched();			\
+})
+
+extern int __cond_resched_lock(spinlock_t *lock);
+
+#define cond_resched_lock(lock) ({				\
+	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
+	__cond_resched_lock(lock);				\
+})
+
+static inline void cond_resched_rcu(void)
+{
+#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
+	rcu_read_unlock();
+	cond_resched();
+	rcu_read_lock();
+#endif
+}
+
+/*
+ * Does a critical section need to be broken due to another
+ * task waiting?: (technically does not depend on CONFIG_PREEMPT,
+ * but a general need for low latency)
+ */
+static inline int spin_needbreak(spinlock_t *lock)
+{
+#ifdef CONFIG_PREEMPT
+	return spin_is_contended(lock);
+#else
+	return 0;
+#endif
+}
+
+static __always_inline bool need_resched(void)
+{
+	return unlikely(tif_need_resched());
+}
+
+/*
+ * Wrappers for p->thread_info->cpu access. No-op on UP.
+ */
+#ifdef CONFIG_SMP
+
+static inline unsigned int task_cpu(const struct task_struct *p)
+{
+#ifdef CONFIG_THREAD_INFO_IN_TASK
+	return p->cpu;
+#else
+	return task_thread_info(p)->cpu;
+#endif
+}
+
+extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
+
+#else
+
+static inline unsigned int task_cpu(const struct task_struct *p)
+{
+	return 0;
+}
+
+static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
+{
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * In order to reduce various lock holder preemption latencies provide an
+ * interface to see if a vCPU is currently running or not.
+ *
+ * This allows us to terminate optimistic spin loops and block, analogous to
+ * the native optimistic spin heuristic of testing if the lock owner task is
+ * running or not.
+ */
+#ifndef vcpu_is_preempted
+# define vcpu_is_preempted(cpu)	false
+#endif
+
+extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
+extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
+
+#ifndef TASK_SIZE_OF
+#define TASK_SIZE_OF(tsk)	TASK_SIZE
+#endif
+
+#ifdef CONFIG_RSEQ
+
+/*
+ * Map the event mask on the user-space ABI enum rseq_cs_flags
+ * for direct mask checks.
+ */
+enum rseq_event_mask_bits {
+	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
+	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
+	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
+};
+
+enum rseq_event_mask {
+	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
+	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
+	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
+};
+
+static inline void rseq_set_notify_resume(struct task_struct *t)
+{
+	if (t->rseq)
+		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
+}
+
+void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
+
+static inline void rseq_handle_notify_resume(struct ksignal *ksig,
+					     struct pt_regs *regs)
+{
+	if (current->rseq)
+		__rseq_handle_notify_resume(ksig, regs);
+}
+
+static inline void rseq_signal_deliver(struct ksignal *ksig,
+				       struct pt_regs *regs)
+{
+	preempt_disable();
+	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
+	preempt_enable();
+	rseq_handle_notify_resume(ksig, regs);
+}
+
+/* rseq_preempt() requires preemption to be disabled. */
+static inline void rseq_preempt(struct task_struct *t)
+{
+	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
+	rseq_set_notify_resume(t);
+}
+
+/* rseq_migrate() requires preemption to be disabled. */
+static inline void rseq_migrate(struct task_struct *t)
+{
+	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
+	rseq_set_notify_resume(t);
+}
+
+/*
+ * If parent process has a registered restartable sequences area, the
+ * child inherits. Only applies when forking a process, not a thread.
+ */
+static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
+{
+	if (clone_flags & CLONE_THREAD) {
+		t->rseq = NULL;
+		t->rseq_len = 0;
+		t->rseq_sig = 0;
+		t->rseq_event_mask = 0;
+	} else {
+		t->rseq = current->rseq;
+		t->rseq_len = current->rseq_len;
+		t->rseq_sig = current->rseq_sig;
+		t->rseq_event_mask = current->rseq_event_mask;
+	}
+}
+
+static inline void rseq_execve(struct task_struct *t)
+{
+	t->rseq = NULL;
+	t->rseq_len = 0;
+	t->rseq_sig = 0;
+	t->rseq_event_mask = 0;
+}
+
+#else
+
+static inline void rseq_set_notify_resume(struct task_struct *t)
+{
+}
+static inline void rseq_handle_notify_resume(struct ksignal *ksig,
+					     struct pt_regs *regs)
+{
+}
+static inline void rseq_signal_deliver(struct ksignal *ksig,
+				       struct pt_regs *regs)
+{
+}
+static inline void rseq_preempt(struct task_struct *t)
+{
+}
+static inline void rseq_migrate(struct task_struct *t)
+{
+}
+static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
+{
+}
+static inline void rseq_execve(struct task_struct *t)
+{
+}
+
+#endif
+
+#ifdef CONFIG_DEBUG_RSEQ
+
+void rseq_syscall(struct pt_regs *regs);
+
+#else
+
+static inline void rseq_syscall(struct pt_regs *regs)
+{
+}
+
+#endif
+
+#endif