Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
| 4 | * All Rights Reserved. |
| 5 | */ |
| 6 | #include <linux/log2.h> |
| 7 | #include <linux/iversion.h> |
| 8 | |
| 9 | #include "xfs.h" |
| 10 | #include "xfs_fs.h" |
| 11 | #include "xfs_shared.h" |
| 12 | #include "xfs_format.h" |
| 13 | #include "xfs_log_format.h" |
| 14 | #include "xfs_trans_resv.h" |
| 15 | #include "xfs_sb.h" |
| 16 | #include "xfs_mount.h" |
| 17 | #include "xfs_defer.h" |
| 18 | #include "xfs_inode.h" |
| 19 | #include "xfs_da_format.h" |
| 20 | #include "xfs_da_btree.h" |
| 21 | #include "xfs_dir2.h" |
| 22 | #include "xfs_attr_sf.h" |
| 23 | #include "xfs_attr.h" |
| 24 | #include "xfs_trans_space.h" |
| 25 | #include "xfs_trans.h" |
| 26 | #include "xfs_buf_item.h" |
| 27 | #include "xfs_inode_item.h" |
| 28 | #include "xfs_ialloc.h" |
| 29 | #include "xfs_bmap.h" |
| 30 | #include "xfs_bmap_util.h" |
| 31 | #include "xfs_errortag.h" |
| 32 | #include "xfs_error.h" |
| 33 | #include "xfs_quota.h" |
| 34 | #include "xfs_filestream.h" |
| 35 | #include "xfs_cksum.h" |
| 36 | #include "xfs_trace.h" |
| 37 | #include "xfs_icache.h" |
| 38 | #include "xfs_symlink.h" |
| 39 | #include "xfs_trans_priv.h" |
| 40 | #include "xfs_log.h" |
| 41 | #include "xfs_bmap_btree.h" |
| 42 | #include "xfs_reflink.h" |
| 43 | #include "xfs_dir2_priv.h" |
| 44 | |
| 45 | kmem_zone_t *xfs_inode_zone; |
| 46 | |
| 47 | /* |
| 48 | * Used in xfs_itruncate_extents(). This is the maximum number of extents |
| 49 | * freed from a file in a single transaction. |
| 50 | */ |
| 51 | #define XFS_ITRUNC_MAX_EXTENTS 2 |
| 52 | |
| 53 | STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *); |
| 54 | STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *); |
| 55 | STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *); |
| 56 | |
| 57 | /* |
| 58 | * helper function to extract extent size hint from inode |
| 59 | */ |
| 60 | xfs_extlen_t |
| 61 | xfs_get_extsz_hint( |
| 62 | struct xfs_inode *ip) |
| 63 | { |
| 64 | if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize) |
| 65 | return ip->i_d.di_extsize; |
| 66 | if (XFS_IS_REALTIME_INODE(ip)) |
| 67 | return ip->i_mount->m_sb.sb_rextsize; |
| 68 | return 0; |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * Helper function to extract CoW extent size hint from inode. |
| 73 | * Between the extent size hint and the CoW extent size hint, we |
| 74 | * return the greater of the two. If the value is zero (automatic), |
| 75 | * use the default size. |
| 76 | */ |
| 77 | xfs_extlen_t |
| 78 | xfs_get_cowextsz_hint( |
| 79 | struct xfs_inode *ip) |
| 80 | { |
| 81 | xfs_extlen_t a, b; |
| 82 | |
| 83 | a = 0; |
| 84 | if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) |
| 85 | a = ip->i_d.di_cowextsize; |
| 86 | b = xfs_get_extsz_hint(ip); |
| 87 | |
| 88 | a = max(a, b); |
| 89 | if (a == 0) |
| 90 | return XFS_DEFAULT_COWEXTSZ_HINT; |
| 91 | return a; |
| 92 | } |
| 93 | |
| 94 | /* |
| 95 | * These two are wrapper routines around the xfs_ilock() routine used to |
| 96 | * centralize some grungy code. They are used in places that wish to lock the |
| 97 | * inode solely for reading the extents. The reason these places can't just |
| 98 | * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to |
| 99 | * bringing in of the extents from disk for a file in b-tree format. If the |
| 100 | * inode is in b-tree format, then we need to lock the inode exclusively until |
| 101 | * the extents are read in. Locking it exclusively all the time would limit |
| 102 | * our parallelism unnecessarily, though. What we do instead is check to see |
| 103 | * if the extents have been read in yet, and only lock the inode exclusively |
| 104 | * if they have not. |
| 105 | * |
| 106 | * The functions return a value which should be given to the corresponding |
| 107 | * xfs_iunlock() call. |
| 108 | */ |
| 109 | uint |
| 110 | xfs_ilock_data_map_shared( |
| 111 | struct xfs_inode *ip) |
| 112 | { |
| 113 | uint lock_mode = XFS_ILOCK_SHARED; |
| 114 | |
| 115 | if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE && |
| 116 | (ip->i_df.if_flags & XFS_IFEXTENTS) == 0) |
| 117 | lock_mode = XFS_ILOCK_EXCL; |
| 118 | xfs_ilock(ip, lock_mode); |
| 119 | return lock_mode; |
| 120 | } |
| 121 | |
| 122 | uint |
| 123 | xfs_ilock_attr_map_shared( |
| 124 | struct xfs_inode *ip) |
| 125 | { |
| 126 | uint lock_mode = XFS_ILOCK_SHARED; |
| 127 | |
| 128 | if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE && |
| 129 | (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0) |
| 130 | lock_mode = XFS_ILOCK_EXCL; |
| 131 | xfs_ilock(ip, lock_mode); |
| 132 | return lock_mode; |
| 133 | } |
| 134 | |
| 135 | /* |
| 136 | * In addition to i_rwsem in the VFS inode, the xfs inode contains 2 |
| 137 | * multi-reader locks: i_mmap_lock and the i_lock. This routine allows |
| 138 | * various combinations of the locks to be obtained. |
| 139 | * |
| 140 | * The 3 locks should always be ordered so that the IO lock is obtained first, |
| 141 | * the mmap lock second and the ilock last in order to prevent deadlock. |
| 142 | * |
| 143 | * Basic locking order: |
| 144 | * |
| 145 | * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock |
| 146 | * |
| 147 | * mmap_sem locking order: |
| 148 | * |
| 149 | * i_rwsem -> page lock -> mmap_sem |
| 150 | * mmap_sem -> i_mmap_lock -> page_lock |
| 151 | * |
| 152 | * The difference in mmap_sem locking order mean that we cannot hold the |
| 153 | * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can |
| 154 | * fault in pages during copy in/out (for buffered IO) or require the mmap_sem |
| 155 | * in get_user_pages() to map the user pages into the kernel address space for |
| 156 | * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because |
| 157 | * page faults already hold the mmap_sem. |
| 158 | * |
| 159 | * Hence to serialise fully against both syscall and mmap based IO, we need to |
| 160 | * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both |
| 161 | * taken in places where we need to invalidate the page cache in a race |
| 162 | * free manner (e.g. truncate, hole punch and other extent manipulation |
| 163 | * functions). |
| 164 | */ |
| 165 | void |
| 166 | xfs_ilock( |
| 167 | xfs_inode_t *ip, |
| 168 | uint lock_flags) |
| 169 | { |
| 170 | trace_xfs_ilock(ip, lock_flags, _RET_IP_); |
| 171 | |
| 172 | /* |
| 173 | * You can't set both SHARED and EXCL for the same lock, |
| 174 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| 175 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| 176 | */ |
| 177 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| 178 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| 179 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| 180 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| 181 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| 182 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| 183 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| 184 | |
| 185 | if (lock_flags & XFS_IOLOCK_EXCL) { |
| 186 | down_write_nested(&VFS_I(ip)->i_rwsem, |
| 187 | XFS_IOLOCK_DEP(lock_flags)); |
| 188 | } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| 189 | down_read_nested(&VFS_I(ip)->i_rwsem, |
| 190 | XFS_IOLOCK_DEP(lock_flags)); |
| 191 | } |
| 192 | |
| 193 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 194 | mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| 195 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| 196 | mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags)); |
| 197 | |
| 198 | if (lock_flags & XFS_ILOCK_EXCL) |
| 199 | mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| 200 | else if (lock_flags & XFS_ILOCK_SHARED) |
| 201 | mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags)); |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * This is just like xfs_ilock(), except that the caller |
| 206 | * is guaranteed not to sleep. It returns 1 if it gets |
| 207 | * the requested locks and 0 otherwise. If the IO lock is |
| 208 | * obtained but the inode lock cannot be, then the IO lock |
| 209 | * is dropped before returning. |
| 210 | * |
| 211 | * ip -- the inode being locked |
| 212 | * lock_flags -- this parameter indicates the inode's locks to be |
| 213 | * to be locked. See the comment for xfs_ilock() for a list |
| 214 | * of valid values. |
| 215 | */ |
| 216 | int |
| 217 | xfs_ilock_nowait( |
| 218 | xfs_inode_t *ip, |
| 219 | uint lock_flags) |
| 220 | { |
| 221 | trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_); |
| 222 | |
| 223 | /* |
| 224 | * You can't set both SHARED and EXCL for the same lock, |
| 225 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| 226 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| 227 | */ |
| 228 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| 229 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| 230 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| 231 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| 232 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| 233 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| 234 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| 235 | |
| 236 | if (lock_flags & XFS_IOLOCK_EXCL) { |
| 237 | if (!down_write_trylock(&VFS_I(ip)->i_rwsem)) |
| 238 | goto out; |
| 239 | } else if (lock_flags & XFS_IOLOCK_SHARED) { |
| 240 | if (!down_read_trylock(&VFS_I(ip)->i_rwsem)) |
| 241 | goto out; |
| 242 | } |
| 243 | |
| 244 | if (lock_flags & XFS_MMAPLOCK_EXCL) { |
| 245 | if (!mrtryupdate(&ip->i_mmaplock)) |
| 246 | goto out_undo_iolock; |
| 247 | } else if (lock_flags & XFS_MMAPLOCK_SHARED) { |
| 248 | if (!mrtryaccess(&ip->i_mmaplock)) |
| 249 | goto out_undo_iolock; |
| 250 | } |
| 251 | |
| 252 | if (lock_flags & XFS_ILOCK_EXCL) { |
| 253 | if (!mrtryupdate(&ip->i_lock)) |
| 254 | goto out_undo_mmaplock; |
| 255 | } else if (lock_flags & XFS_ILOCK_SHARED) { |
| 256 | if (!mrtryaccess(&ip->i_lock)) |
| 257 | goto out_undo_mmaplock; |
| 258 | } |
| 259 | return 1; |
| 260 | |
| 261 | out_undo_mmaplock: |
| 262 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 263 | mrunlock_excl(&ip->i_mmaplock); |
| 264 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| 265 | mrunlock_shared(&ip->i_mmaplock); |
| 266 | out_undo_iolock: |
| 267 | if (lock_flags & XFS_IOLOCK_EXCL) |
| 268 | up_write(&VFS_I(ip)->i_rwsem); |
| 269 | else if (lock_flags & XFS_IOLOCK_SHARED) |
| 270 | up_read(&VFS_I(ip)->i_rwsem); |
| 271 | out: |
| 272 | return 0; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * xfs_iunlock() is used to drop the inode locks acquired with |
| 277 | * xfs_ilock() and xfs_ilock_nowait(). The caller must pass |
| 278 | * in the flags given to xfs_ilock() or xfs_ilock_nowait() so |
| 279 | * that we know which locks to drop. |
| 280 | * |
| 281 | * ip -- the inode being unlocked |
| 282 | * lock_flags -- this parameter indicates the inode's locks to be |
| 283 | * to be unlocked. See the comment for xfs_ilock() for a list |
| 284 | * of valid values for this parameter. |
| 285 | * |
| 286 | */ |
| 287 | void |
| 288 | xfs_iunlock( |
| 289 | xfs_inode_t *ip, |
| 290 | uint lock_flags) |
| 291 | { |
| 292 | /* |
| 293 | * You can't set both SHARED and EXCL for the same lock, |
| 294 | * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED, |
| 295 | * and XFS_ILOCK_EXCL are valid values to set in lock_flags. |
| 296 | */ |
| 297 | ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) != |
| 298 | (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)); |
| 299 | ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) != |
| 300 | (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)); |
| 301 | ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) != |
| 302 | (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)); |
| 303 | ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0); |
| 304 | ASSERT(lock_flags != 0); |
| 305 | |
| 306 | if (lock_flags & XFS_IOLOCK_EXCL) |
| 307 | up_write(&VFS_I(ip)->i_rwsem); |
| 308 | else if (lock_flags & XFS_IOLOCK_SHARED) |
| 309 | up_read(&VFS_I(ip)->i_rwsem); |
| 310 | |
| 311 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 312 | mrunlock_excl(&ip->i_mmaplock); |
| 313 | else if (lock_flags & XFS_MMAPLOCK_SHARED) |
| 314 | mrunlock_shared(&ip->i_mmaplock); |
| 315 | |
| 316 | if (lock_flags & XFS_ILOCK_EXCL) |
| 317 | mrunlock_excl(&ip->i_lock); |
| 318 | else if (lock_flags & XFS_ILOCK_SHARED) |
| 319 | mrunlock_shared(&ip->i_lock); |
| 320 | |
| 321 | trace_xfs_iunlock(ip, lock_flags, _RET_IP_); |
| 322 | } |
| 323 | |
| 324 | /* |
| 325 | * give up write locks. the i/o lock cannot be held nested |
| 326 | * if it is being demoted. |
| 327 | */ |
| 328 | void |
| 329 | xfs_ilock_demote( |
| 330 | xfs_inode_t *ip, |
| 331 | uint lock_flags) |
| 332 | { |
| 333 | ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)); |
| 334 | ASSERT((lock_flags & |
| 335 | ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0); |
| 336 | |
| 337 | if (lock_flags & XFS_ILOCK_EXCL) |
| 338 | mrdemote(&ip->i_lock); |
| 339 | if (lock_flags & XFS_MMAPLOCK_EXCL) |
| 340 | mrdemote(&ip->i_mmaplock); |
| 341 | if (lock_flags & XFS_IOLOCK_EXCL) |
| 342 | downgrade_write(&VFS_I(ip)->i_rwsem); |
| 343 | |
| 344 | trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_); |
| 345 | } |
| 346 | |
| 347 | #if defined(DEBUG) || defined(XFS_WARN) |
| 348 | int |
| 349 | xfs_isilocked( |
| 350 | xfs_inode_t *ip, |
| 351 | uint lock_flags) |
| 352 | { |
| 353 | if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) { |
| 354 | if (!(lock_flags & XFS_ILOCK_SHARED)) |
| 355 | return !!ip->i_lock.mr_writer; |
| 356 | return rwsem_is_locked(&ip->i_lock.mr_lock); |
| 357 | } |
| 358 | |
| 359 | if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) { |
| 360 | if (!(lock_flags & XFS_MMAPLOCK_SHARED)) |
| 361 | return !!ip->i_mmaplock.mr_writer; |
| 362 | return rwsem_is_locked(&ip->i_mmaplock.mr_lock); |
| 363 | } |
| 364 | |
| 365 | if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) { |
| 366 | if (!(lock_flags & XFS_IOLOCK_SHARED)) |
| 367 | return !debug_locks || |
| 368 | lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0); |
| 369 | return rwsem_is_locked(&VFS_I(ip)->i_rwsem); |
| 370 | } |
| 371 | |
| 372 | ASSERT(0); |
| 373 | return 0; |
| 374 | } |
| 375 | #endif |
| 376 | |
| 377 | /* |
| 378 | * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when |
| 379 | * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined |
| 380 | * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build |
| 381 | * errors and warnings. |
| 382 | */ |
| 383 | #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP) |
| 384 | static bool |
| 385 | xfs_lockdep_subclass_ok( |
| 386 | int subclass) |
| 387 | { |
| 388 | return subclass < MAX_LOCKDEP_SUBCLASSES; |
| 389 | } |
| 390 | #else |
| 391 | #define xfs_lockdep_subclass_ok(subclass) (true) |
| 392 | #endif |
| 393 | |
| 394 | /* |
| 395 | * Bump the subclass so xfs_lock_inodes() acquires each lock with a different |
| 396 | * value. This can be called for any type of inode lock combination, including |
| 397 | * parent locking. Care must be taken to ensure we don't overrun the subclass |
| 398 | * storage fields in the class mask we build. |
| 399 | */ |
| 400 | static inline int |
| 401 | xfs_lock_inumorder(int lock_mode, int subclass) |
| 402 | { |
| 403 | int class = 0; |
| 404 | |
| 405 | ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP | |
| 406 | XFS_ILOCK_RTSUM))); |
| 407 | ASSERT(xfs_lockdep_subclass_ok(subclass)); |
| 408 | |
| 409 | if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) { |
| 410 | ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS); |
| 411 | class += subclass << XFS_IOLOCK_SHIFT; |
| 412 | } |
| 413 | |
| 414 | if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) { |
| 415 | ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS); |
| 416 | class += subclass << XFS_MMAPLOCK_SHIFT; |
| 417 | } |
| 418 | |
| 419 | if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) { |
| 420 | ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS); |
| 421 | class += subclass << XFS_ILOCK_SHIFT; |
| 422 | } |
| 423 | |
| 424 | return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class; |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * The following routine will lock n inodes in exclusive mode. We assume the |
| 429 | * caller calls us with the inodes in i_ino order. |
| 430 | * |
| 431 | * We need to detect deadlock where an inode that we lock is in the AIL and we |
| 432 | * start waiting for another inode that is locked by a thread in a long running |
| 433 | * transaction (such as truncate). This can result in deadlock since the long |
| 434 | * running trans might need to wait for the inode we just locked in order to |
| 435 | * push the tail and free space in the log. |
| 436 | * |
| 437 | * xfs_lock_inodes() can only be used to lock one type of lock at a time - |
| 438 | * the iolock, the mmaplock or the ilock, but not more than one at a time. If we |
| 439 | * lock more than one at a time, lockdep will report false positives saying we |
| 440 | * have violated locking orders. |
| 441 | */ |
| 442 | static void |
| 443 | xfs_lock_inodes( |
| 444 | xfs_inode_t **ips, |
| 445 | int inodes, |
| 446 | uint lock_mode) |
| 447 | { |
| 448 | int attempts = 0, i, j, try_lock; |
| 449 | xfs_log_item_t *lp; |
| 450 | |
| 451 | /* |
| 452 | * Currently supports between 2 and 5 inodes with exclusive locking. We |
| 453 | * support an arbitrary depth of locking here, but absolute limits on |
| 454 | * inodes depend on the the type of locking and the limits placed by |
| 455 | * lockdep annotations in xfs_lock_inumorder. These are all checked by |
| 456 | * the asserts. |
| 457 | */ |
| 458 | ASSERT(ips && inodes >= 2 && inodes <= 5); |
| 459 | ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL | |
| 460 | XFS_ILOCK_EXCL)); |
| 461 | ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED | |
| 462 | XFS_ILOCK_SHARED))); |
| 463 | ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) || |
| 464 | inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1); |
| 465 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL) || |
| 466 | inodes <= XFS_ILOCK_MAX_SUBCLASS + 1); |
| 467 | |
| 468 | if (lock_mode & XFS_IOLOCK_EXCL) { |
| 469 | ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL))); |
| 470 | } else if (lock_mode & XFS_MMAPLOCK_EXCL) |
| 471 | ASSERT(!(lock_mode & XFS_ILOCK_EXCL)); |
| 472 | |
| 473 | try_lock = 0; |
| 474 | i = 0; |
| 475 | again: |
| 476 | for (; i < inodes; i++) { |
| 477 | ASSERT(ips[i]); |
| 478 | |
| 479 | if (i && (ips[i] == ips[i - 1])) /* Already locked */ |
| 480 | continue; |
| 481 | |
| 482 | /* |
| 483 | * If try_lock is not set yet, make sure all locked inodes are |
| 484 | * not in the AIL. If any are, set try_lock to be used later. |
| 485 | */ |
| 486 | if (!try_lock) { |
| 487 | for (j = (i - 1); j >= 0 && !try_lock; j--) { |
| 488 | lp = (xfs_log_item_t *)ips[j]->i_itemp; |
| 489 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) |
| 490 | try_lock++; |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | /* |
| 495 | * If any of the previous locks we have locked is in the AIL, |
| 496 | * we must TRY to get the second and subsequent locks. If |
| 497 | * we can't get any, we must release all we have |
| 498 | * and try again. |
| 499 | */ |
| 500 | if (!try_lock) { |
| 501 | xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i)); |
| 502 | continue; |
| 503 | } |
| 504 | |
| 505 | /* try_lock means we have an inode locked that is in the AIL. */ |
| 506 | ASSERT(i != 0); |
| 507 | if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) |
| 508 | continue; |
| 509 | |
| 510 | /* |
| 511 | * Unlock all previous guys and try again. xfs_iunlock will try |
| 512 | * to push the tail if the inode is in the AIL. |
| 513 | */ |
| 514 | attempts++; |
| 515 | for (j = i - 1; j >= 0; j--) { |
| 516 | /* |
| 517 | * Check to see if we've already unlocked this one. Not |
| 518 | * the first one going back, and the inode ptr is the |
| 519 | * same. |
| 520 | */ |
| 521 | if (j != (i - 1) && ips[j] == ips[j + 1]) |
| 522 | continue; |
| 523 | |
| 524 | xfs_iunlock(ips[j], lock_mode); |
| 525 | } |
| 526 | |
| 527 | if ((attempts % 5) == 0) { |
| 528 | delay(1); /* Don't just spin the CPU */ |
| 529 | } |
| 530 | i = 0; |
| 531 | try_lock = 0; |
| 532 | goto again; |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * xfs_lock_two_inodes() can only be used to lock one type of lock at a time - |
| 538 | * the mmaplock or the ilock, but not more than one type at a time. If we lock |
| 539 | * more than one at a time, lockdep will report false positives saying we have |
| 540 | * violated locking orders. The iolock must be double-locked separately since |
| 541 | * we use i_rwsem for that. We now support taking one lock EXCL and the other |
| 542 | * SHARED. |
| 543 | */ |
| 544 | void |
| 545 | xfs_lock_two_inodes( |
| 546 | struct xfs_inode *ip0, |
| 547 | uint ip0_mode, |
| 548 | struct xfs_inode *ip1, |
| 549 | uint ip1_mode) |
| 550 | { |
| 551 | struct xfs_inode *temp; |
| 552 | uint mode_temp; |
| 553 | int attempts = 0; |
| 554 | xfs_log_item_t *lp; |
| 555 | |
| 556 | ASSERT(hweight32(ip0_mode) == 1); |
| 557 | ASSERT(hweight32(ip1_mode) == 1); |
| 558 | ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
| 559 | ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))); |
| 560 | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 561 | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 562 | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 563 | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 564 | ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 565 | !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 566 | ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) || |
| 567 | !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))); |
| 568 | |
| 569 | ASSERT(ip0->i_ino != ip1->i_ino); |
| 570 | |
| 571 | if (ip0->i_ino > ip1->i_ino) { |
| 572 | temp = ip0; |
| 573 | ip0 = ip1; |
| 574 | ip1 = temp; |
| 575 | mode_temp = ip0_mode; |
| 576 | ip0_mode = ip1_mode; |
| 577 | ip1_mode = mode_temp; |
| 578 | } |
| 579 | |
| 580 | again: |
| 581 | xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0)); |
| 582 | |
| 583 | /* |
| 584 | * If the first lock we have locked is in the AIL, we must TRY to get |
| 585 | * the second lock. If we can't get it, we must release the first one |
| 586 | * and try again. |
| 587 | */ |
| 588 | lp = (xfs_log_item_t *)ip0->i_itemp; |
| 589 | if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) { |
| 590 | if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) { |
| 591 | xfs_iunlock(ip0, ip0_mode); |
| 592 | if ((++attempts % 5) == 0) |
| 593 | delay(1); /* Don't just spin the CPU */ |
| 594 | goto again; |
| 595 | } |
| 596 | } else { |
| 597 | xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1)); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | void |
| 602 | __xfs_iflock( |
| 603 | struct xfs_inode *ip) |
| 604 | { |
| 605 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT); |
| 606 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT); |
| 607 | |
| 608 | do { |
| 609 | prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| 610 | if (xfs_isiflocked(ip)) |
| 611 | io_schedule(); |
| 612 | } while (!xfs_iflock_nowait(ip)); |
| 613 | |
| 614 | finish_wait(wq, &wait.wq_entry); |
| 615 | } |
| 616 | |
| 617 | STATIC uint |
| 618 | _xfs_dic2xflags( |
| 619 | uint16_t di_flags, |
| 620 | uint64_t di_flags2, |
| 621 | bool has_attr) |
| 622 | { |
| 623 | uint flags = 0; |
| 624 | |
| 625 | if (di_flags & XFS_DIFLAG_ANY) { |
| 626 | if (di_flags & XFS_DIFLAG_REALTIME) |
| 627 | flags |= FS_XFLAG_REALTIME; |
| 628 | if (di_flags & XFS_DIFLAG_PREALLOC) |
| 629 | flags |= FS_XFLAG_PREALLOC; |
| 630 | if (di_flags & XFS_DIFLAG_IMMUTABLE) |
| 631 | flags |= FS_XFLAG_IMMUTABLE; |
| 632 | if (di_flags & XFS_DIFLAG_APPEND) |
| 633 | flags |= FS_XFLAG_APPEND; |
| 634 | if (di_flags & XFS_DIFLAG_SYNC) |
| 635 | flags |= FS_XFLAG_SYNC; |
| 636 | if (di_flags & XFS_DIFLAG_NOATIME) |
| 637 | flags |= FS_XFLAG_NOATIME; |
| 638 | if (di_flags & XFS_DIFLAG_NODUMP) |
| 639 | flags |= FS_XFLAG_NODUMP; |
| 640 | if (di_flags & XFS_DIFLAG_RTINHERIT) |
| 641 | flags |= FS_XFLAG_RTINHERIT; |
| 642 | if (di_flags & XFS_DIFLAG_PROJINHERIT) |
| 643 | flags |= FS_XFLAG_PROJINHERIT; |
| 644 | if (di_flags & XFS_DIFLAG_NOSYMLINKS) |
| 645 | flags |= FS_XFLAG_NOSYMLINKS; |
| 646 | if (di_flags & XFS_DIFLAG_EXTSIZE) |
| 647 | flags |= FS_XFLAG_EXTSIZE; |
| 648 | if (di_flags & XFS_DIFLAG_EXTSZINHERIT) |
| 649 | flags |= FS_XFLAG_EXTSZINHERIT; |
| 650 | if (di_flags & XFS_DIFLAG_NODEFRAG) |
| 651 | flags |= FS_XFLAG_NODEFRAG; |
| 652 | if (di_flags & XFS_DIFLAG_FILESTREAM) |
| 653 | flags |= FS_XFLAG_FILESTREAM; |
| 654 | } |
| 655 | |
| 656 | if (di_flags2 & XFS_DIFLAG2_ANY) { |
| 657 | if (di_flags2 & XFS_DIFLAG2_DAX) |
| 658 | flags |= FS_XFLAG_DAX; |
| 659 | if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE) |
| 660 | flags |= FS_XFLAG_COWEXTSIZE; |
| 661 | } |
| 662 | |
| 663 | if (has_attr) |
| 664 | flags |= FS_XFLAG_HASATTR; |
| 665 | |
| 666 | return flags; |
| 667 | } |
| 668 | |
| 669 | uint |
| 670 | xfs_ip2xflags( |
| 671 | struct xfs_inode *ip) |
| 672 | { |
| 673 | struct xfs_icdinode *dic = &ip->i_d; |
| 674 | |
| 675 | return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip)); |
| 676 | } |
| 677 | |
| 678 | /* |
| 679 | * Lookups up an inode from "name". If ci_name is not NULL, then a CI match |
| 680 | * is allowed, otherwise it has to be an exact match. If a CI match is found, |
| 681 | * ci_name->name will point to a the actual name (caller must free) or |
| 682 | * will be set to NULL if an exact match is found. |
| 683 | */ |
| 684 | int |
| 685 | xfs_lookup( |
| 686 | xfs_inode_t *dp, |
| 687 | struct xfs_name *name, |
| 688 | xfs_inode_t **ipp, |
| 689 | struct xfs_name *ci_name) |
| 690 | { |
| 691 | xfs_ino_t inum; |
| 692 | int error; |
| 693 | |
| 694 | trace_xfs_lookup(dp, name); |
| 695 | |
| 696 | if (XFS_FORCED_SHUTDOWN(dp->i_mount)) |
| 697 | return -EIO; |
| 698 | |
| 699 | error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name); |
| 700 | if (error) |
| 701 | goto out_unlock; |
| 702 | |
| 703 | error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp); |
| 704 | if (error) |
| 705 | goto out_free_name; |
| 706 | |
| 707 | return 0; |
| 708 | |
| 709 | out_free_name: |
| 710 | if (ci_name) |
| 711 | kmem_free(ci_name->name); |
| 712 | out_unlock: |
| 713 | *ipp = NULL; |
| 714 | return error; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * Allocate an inode on disk and return a copy of its in-core version. |
| 719 | * The in-core inode is locked exclusively. Set mode, nlink, and rdev |
| 720 | * appropriately within the inode. The uid and gid for the inode are |
| 721 | * set according to the contents of the given cred structure. |
| 722 | * |
| 723 | * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc() |
| 724 | * has a free inode available, call xfs_iget() to obtain the in-core |
| 725 | * version of the allocated inode. Finally, fill in the inode and |
| 726 | * log its initial contents. In this case, ialloc_context would be |
| 727 | * set to NULL. |
| 728 | * |
| 729 | * If xfs_dialloc() does not have an available inode, it will replenish |
| 730 | * its supply by doing an allocation. Since we can only do one |
| 731 | * allocation within a transaction without deadlocks, we must commit |
| 732 | * the current transaction before returning the inode itself. |
| 733 | * In this case, therefore, we will set ialloc_context and return. |
| 734 | * The caller should then commit the current transaction, start a new |
| 735 | * transaction, and call xfs_ialloc() again to actually get the inode. |
| 736 | * |
| 737 | * To ensure that some other process does not grab the inode that |
| 738 | * was allocated during the first call to xfs_ialloc(), this routine |
| 739 | * also returns the [locked] bp pointing to the head of the freelist |
| 740 | * as ialloc_context. The caller should hold this buffer across |
| 741 | * the commit and pass it back into this routine on the second call. |
| 742 | * |
| 743 | * If we are allocating quota inodes, we do not have a parent inode |
| 744 | * to attach to or associate with (i.e. pip == NULL) because they |
| 745 | * are not linked into the directory structure - they are attached |
| 746 | * directly to the superblock - and so have no parent. |
| 747 | */ |
| 748 | static int |
| 749 | xfs_ialloc( |
| 750 | xfs_trans_t *tp, |
| 751 | xfs_inode_t *pip, |
| 752 | umode_t mode, |
| 753 | xfs_nlink_t nlink, |
| 754 | dev_t rdev, |
| 755 | prid_t prid, |
| 756 | xfs_buf_t **ialloc_context, |
| 757 | xfs_inode_t **ipp) |
| 758 | { |
| 759 | struct xfs_mount *mp = tp->t_mountp; |
| 760 | xfs_ino_t ino; |
| 761 | xfs_inode_t *ip; |
| 762 | uint flags; |
| 763 | int error; |
| 764 | struct timespec64 tv; |
| 765 | struct inode *inode; |
| 766 | |
| 767 | /* |
| 768 | * Call the space management code to pick |
| 769 | * the on-disk inode to be allocated. |
| 770 | */ |
| 771 | error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, |
| 772 | ialloc_context, &ino); |
| 773 | if (error) |
| 774 | return error; |
| 775 | if (*ialloc_context || ino == NULLFSINO) { |
| 776 | *ipp = NULL; |
| 777 | return 0; |
| 778 | } |
| 779 | ASSERT(*ialloc_context == NULL); |
| 780 | |
| 781 | /* |
| 782 | * Protect against obviously corrupt allocation btree records. Later |
| 783 | * xfs_iget checks will catch re-allocation of other active in-memory |
| 784 | * and on-disk inodes. If we don't catch reallocating the parent inode |
| 785 | * here we will deadlock in xfs_iget() so we have to do these checks |
| 786 | * first. |
| 787 | */ |
| 788 | if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) { |
| 789 | xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); |
| 790 | return -EFSCORRUPTED; |
| 791 | } |
| 792 | |
| 793 | /* |
| 794 | * Get the in-core inode with the lock held exclusively. |
| 795 | * This is because we're setting fields here we need |
| 796 | * to prevent others from looking at until we're done. |
| 797 | */ |
| 798 | error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, |
| 799 | XFS_ILOCK_EXCL, &ip); |
| 800 | if (error) |
| 801 | return error; |
| 802 | ASSERT(ip != NULL); |
| 803 | inode = VFS_I(ip); |
| 804 | |
| 805 | /* |
| 806 | * We always convert v1 inodes to v2 now - we only support filesystems |
| 807 | * with >= v2 inode capability, so there is no reason for ever leaving |
| 808 | * an inode in v1 format. |
| 809 | */ |
| 810 | if (ip->i_d.di_version == 1) |
| 811 | ip->i_d.di_version = 2; |
| 812 | |
| 813 | inode->i_mode = mode; |
| 814 | set_nlink(inode, nlink); |
| 815 | ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid()); |
| 816 | ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid()); |
| 817 | inode->i_rdev = rdev; |
| 818 | xfs_set_projid(ip, prid); |
| 819 | |
| 820 | if (pip && XFS_INHERIT_GID(pip)) { |
| 821 | ip->i_d.di_gid = pip->i_d.di_gid; |
| 822 | if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode)) |
| 823 | inode->i_mode |= S_ISGID; |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | * If the group ID of the new file does not match the effective group |
| 828 | * ID or one of the supplementary group IDs, the S_ISGID bit is cleared |
| 829 | * (and only if the irix_sgid_inherit compatibility variable is set). |
| 830 | */ |
| 831 | if ((irix_sgid_inherit) && |
| 832 | (inode->i_mode & S_ISGID) && |
| 833 | (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) |
| 834 | inode->i_mode &= ~S_ISGID; |
| 835 | |
| 836 | ip->i_d.di_size = 0; |
| 837 | ip->i_d.di_nextents = 0; |
| 838 | ASSERT(ip->i_d.di_nblocks == 0); |
| 839 | |
| 840 | tv = current_time(inode); |
| 841 | inode->i_mtime = tv; |
| 842 | inode->i_atime = tv; |
| 843 | inode->i_ctime = tv; |
| 844 | |
| 845 | ip->i_d.di_extsize = 0; |
| 846 | ip->i_d.di_dmevmask = 0; |
| 847 | ip->i_d.di_dmstate = 0; |
| 848 | ip->i_d.di_flags = 0; |
| 849 | |
| 850 | if (ip->i_d.di_version == 3) { |
| 851 | inode_set_iversion(inode, 1); |
| 852 | ip->i_d.di_flags2 = 0; |
| 853 | ip->i_d.di_cowextsize = 0; |
| 854 | ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec; |
| 855 | ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec; |
| 856 | } |
| 857 | |
| 858 | |
| 859 | flags = XFS_ILOG_CORE; |
| 860 | switch (mode & S_IFMT) { |
| 861 | case S_IFIFO: |
| 862 | case S_IFCHR: |
| 863 | case S_IFBLK: |
| 864 | case S_IFSOCK: |
| 865 | ip->i_d.di_format = XFS_DINODE_FMT_DEV; |
| 866 | ip->i_df.if_flags = 0; |
| 867 | flags |= XFS_ILOG_DEV; |
| 868 | break; |
| 869 | case S_IFREG: |
| 870 | case S_IFDIR: |
| 871 | if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) { |
| 872 | uint di_flags = 0; |
| 873 | |
| 874 | if (S_ISDIR(mode)) { |
| 875 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| 876 | di_flags |= XFS_DIFLAG_RTINHERIT; |
| 877 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| 878 | di_flags |= XFS_DIFLAG_EXTSZINHERIT; |
| 879 | ip->i_d.di_extsize = pip->i_d.di_extsize; |
| 880 | } |
| 881 | if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) |
| 882 | di_flags |= XFS_DIFLAG_PROJINHERIT; |
| 883 | } else if (S_ISREG(mode)) { |
| 884 | if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) |
| 885 | di_flags |= XFS_DIFLAG_REALTIME; |
| 886 | if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) { |
| 887 | di_flags |= XFS_DIFLAG_EXTSIZE; |
| 888 | ip->i_d.di_extsize = pip->i_d.di_extsize; |
| 889 | } |
| 890 | } |
| 891 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) && |
| 892 | xfs_inherit_noatime) |
| 893 | di_flags |= XFS_DIFLAG_NOATIME; |
| 894 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) && |
| 895 | xfs_inherit_nodump) |
| 896 | di_flags |= XFS_DIFLAG_NODUMP; |
| 897 | if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) && |
| 898 | xfs_inherit_sync) |
| 899 | di_flags |= XFS_DIFLAG_SYNC; |
| 900 | if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) && |
| 901 | xfs_inherit_nosymlinks) |
| 902 | di_flags |= XFS_DIFLAG_NOSYMLINKS; |
| 903 | if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) && |
| 904 | xfs_inherit_nodefrag) |
| 905 | di_flags |= XFS_DIFLAG_NODEFRAG; |
| 906 | if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM) |
| 907 | di_flags |= XFS_DIFLAG_FILESTREAM; |
| 908 | |
| 909 | ip->i_d.di_flags |= di_flags; |
| 910 | } |
| 911 | if (pip && |
| 912 | (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) && |
| 913 | pip->i_d.di_version == 3 && |
| 914 | ip->i_d.di_version == 3) { |
| 915 | uint64_t di_flags2 = 0; |
| 916 | |
| 917 | if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) { |
| 918 | di_flags2 |= XFS_DIFLAG2_COWEXTSIZE; |
| 919 | ip->i_d.di_cowextsize = pip->i_d.di_cowextsize; |
| 920 | } |
| 921 | if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX) |
| 922 | di_flags2 |= XFS_DIFLAG2_DAX; |
| 923 | |
| 924 | ip->i_d.di_flags2 |= di_flags2; |
| 925 | } |
| 926 | /* FALLTHROUGH */ |
| 927 | case S_IFLNK: |
| 928 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| 929 | ip->i_df.if_flags = XFS_IFEXTENTS; |
| 930 | ip->i_df.if_bytes = 0; |
| 931 | ip->i_df.if_u1.if_root = NULL; |
| 932 | break; |
| 933 | default: |
| 934 | ASSERT(0); |
| 935 | } |
| 936 | /* |
| 937 | * Attribute fork settings for new inode. |
| 938 | */ |
| 939 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| 940 | ip->i_d.di_anextents = 0; |
| 941 | |
| 942 | /* |
| 943 | * Log the new values stuffed into the inode. |
| 944 | */ |
| 945 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| 946 | xfs_trans_log_inode(tp, ip, flags); |
| 947 | |
| 948 | /* now that we have an i_mode we can setup the inode structure */ |
| 949 | xfs_setup_inode(ip); |
| 950 | |
| 951 | *ipp = ip; |
| 952 | return 0; |
| 953 | } |
| 954 | |
| 955 | /* |
| 956 | * Allocates a new inode from disk and return a pointer to the |
| 957 | * incore copy. This routine will internally commit the current |
| 958 | * transaction and allocate a new one if the Space Manager needed |
| 959 | * to do an allocation to replenish the inode free-list. |
| 960 | * |
| 961 | * This routine is designed to be called from xfs_create and |
| 962 | * xfs_create_dir. |
| 963 | * |
| 964 | */ |
| 965 | int |
| 966 | xfs_dir_ialloc( |
| 967 | xfs_trans_t **tpp, /* input: current transaction; |
| 968 | output: may be a new transaction. */ |
| 969 | xfs_inode_t *dp, /* directory within whose allocate |
| 970 | the inode. */ |
| 971 | umode_t mode, |
| 972 | xfs_nlink_t nlink, |
| 973 | dev_t rdev, |
| 974 | prid_t prid, /* project id */ |
| 975 | xfs_inode_t **ipp) /* pointer to inode; it will be |
| 976 | locked. */ |
| 977 | { |
| 978 | xfs_trans_t *tp; |
| 979 | xfs_inode_t *ip; |
| 980 | xfs_buf_t *ialloc_context = NULL; |
| 981 | int code; |
| 982 | void *dqinfo; |
| 983 | uint tflags; |
| 984 | |
| 985 | tp = *tpp; |
| 986 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 987 | |
| 988 | /* |
| 989 | * xfs_ialloc will return a pointer to an incore inode if |
| 990 | * the Space Manager has an available inode on the free |
| 991 | * list. Otherwise, it will do an allocation and replenish |
| 992 | * the freelist. Since we can only do one allocation per |
| 993 | * transaction without deadlocks, we will need to commit the |
| 994 | * current transaction and start a new one. We will then |
| 995 | * need to call xfs_ialloc again to get the inode. |
| 996 | * |
| 997 | * If xfs_ialloc did an allocation to replenish the freelist, |
| 998 | * it returns the bp containing the head of the freelist as |
| 999 | * ialloc_context. We will hold a lock on it across the |
| 1000 | * transaction commit so that no other process can steal |
| 1001 | * the inode(s) that we've just allocated. |
| 1002 | */ |
| 1003 | code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context, |
| 1004 | &ip); |
| 1005 | |
| 1006 | /* |
| 1007 | * Return an error if we were unable to allocate a new inode. |
| 1008 | * This should only happen if we run out of space on disk or |
| 1009 | * encounter a disk error. |
| 1010 | */ |
| 1011 | if (code) { |
| 1012 | *ipp = NULL; |
| 1013 | return code; |
| 1014 | } |
| 1015 | if (!ialloc_context && !ip) { |
| 1016 | *ipp = NULL; |
| 1017 | return -ENOSPC; |
| 1018 | } |
| 1019 | |
| 1020 | /* |
| 1021 | * If the AGI buffer is non-NULL, then we were unable to get an |
| 1022 | * inode in one operation. We need to commit the current |
| 1023 | * transaction and call xfs_ialloc() again. It is guaranteed |
| 1024 | * to succeed the second time. |
| 1025 | */ |
| 1026 | if (ialloc_context) { |
| 1027 | /* |
| 1028 | * Normally, xfs_trans_commit releases all the locks. |
| 1029 | * We call bhold to hang on to the ialloc_context across |
| 1030 | * the commit. Holding this buffer prevents any other |
| 1031 | * processes from doing any allocations in this |
| 1032 | * allocation group. |
| 1033 | */ |
| 1034 | xfs_trans_bhold(tp, ialloc_context); |
| 1035 | |
| 1036 | /* |
| 1037 | * We want the quota changes to be associated with the next |
| 1038 | * transaction, NOT this one. So, detach the dqinfo from this |
| 1039 | * and attach it to the next transaction. |
| 1040 | */ |
| 1041 | dqinfo = NULL; |
| 1042 | tflags = 0; |
| 1043 | if (tp->t_dqinfo) { |
| 1044 | dqinfo = (void *)tp->t_dqinfo; |
| 1045 | tp->t_dqinfo = NULL; |
| 1046 | tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY; |
| 1047 | tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY); |
| 1048 | } |
| 1049 | |
| 1050 | code = xfs_trans_roll(&tp); |
| 1051 | |
| 1052 | /* |
| 1053 | * Re-attach the quota info that we detached from prev trx. |
| 1054 | */ |
| 1055 | if (dqinfo) { |
| 1056 | tp->t_dqinfo = dqinfo; |
| 1057 | tp->t_flags |= tflags; |
| 1058 | } |
| 1059 | |
| 1060 | if (code) { |
| 1061 | xfs_buf_relse(ialloc_context); |
| 1062 | *tpp = tp; |
| 1063 | *ipp = NULL; |
| 1064 | return code; |
| 1065 | } |
| 1066 | xfs_trans_bjoin(tp, ialloc_context); |
| 1067 | |
| 1068 | /* |
| 1069 | * Call ialloc again. Since we've locked out all |
| 1070 | * other allocations in this allocation group, |
| 1071 | * this call should always succeed. |
| 1072 | */ |
| 1073 | code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, |
| 1074 | &ialloc_context, &ip); |
| 1075 | |
| 1076 | /* |
| 1077 | * If we get an error at this point, return to the caller |
| 1078 | * so that the current transaction can be aborted. |
| 1079 | */ |
| 1080 | if (code) { |
| 1081 | *tpp = tp; |
| 1082 | *ipp = NULL; |
| 1083 | return code; |
| 1084 | } |
| 1085 | ASSERT(!ialloc_context && ip); |
| 1086 | |
| 1087 | } |
| 1088 | |
| 1089 | *ipp = ip; |
| 1090 | *tpp = tp; |
| 1091 | |
| 1092 | return 0; |
| 1093 | } |
| 1094 | |
| 1095 | /* |
| 1096 | * Decrement the link count on an inode & log the change. If this causes the |
| 1097 | * link count to go to zero, move the inode to AGI unlinked list so that it can |
| 1098 | * be freed when the last active reference goes away via xfs_inactive(). |
| 1099 | */ |
| 1100 | static int /* error */ |
| 1101 | xfs_droplink( |
| 1102 | xfs_trans_t *tp, |
| 1103 | xfs_inode_t *ip) |
| 1104 | { |
| 1105 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| 1106 | |
| 1107 | drop_nlink(VFS_I(ip)); |
| 1108 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1109 | |
| 1110 | if (VFS_I(ip)->i_nlink) |
| 1111 | return 0; |
| 1112 | |
| 1113 | return xfs_iunlink(tp, ip); |
| 1114 | } |
| 1115 | |
| 1116 | /* |
| 1117 | * Increment the link count on an inode & log the change. |
| 1118 | */ |
| 1119 | static int |
| 1120 | xfs_bumplink( |
| 1121 | xfs_trans_t *tp, |
| 1122 | xfs_inode_t *ip) |
| 1123 | { |
| 1124 | xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG); |
| 1125 | |
| 1126 | ASSERT(ip->i_d.di_version > 1); |
| 1127 | inc_nlink(VFS_I(ip)); |
| 1128 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1129 | return 0; |
| 1130 | } |
| 1131 | |
| 1132 | int |
| 1133 | xfs_create( |
| 1134 | xfs_inode_t *dp, |
| 1135 | struct xfs_name *name, |
| 1136 | umode_t mode, |
| 1137 | dev_t rdev, |
| 1138 | xfs_inode_t **ipp) |
| 1139 | { |
| 1140 | int is_dir = S_ISDIR(mode); |
| 1141 | struct xfs_mount *mp = dp->i_mount; |
| 1142 | struct xfs_inode *ip = NULL; |
| 1143 | struct xfs_trans *tp = NULL; |
| 1144 | int error; |
| 1145 | bool unlock_dp_on_error = false; |
| 1146 | prid_t prid; |
| 1147 | struct xfs_dquot *udqp = NULL; |
| 1148 | struct xfs_dquot *gdqp = NULL; |
| 1149 | struct xfs_dquot *pdqp = NULL; |
| 1150 | struct xfs_trans_res *tres; |
| 1151 | uint resblks; |
| 1152 | |
| 1153 | trace_xfs_create(dp, name); |
| 1154 | |
| 1155 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1156 | return -EIO; |
| 1157 | |
| 1158 | prid = xfs_get_initial_prid(dp); |
| 1159 | |
| 1160 | /* |
| 1161 | * Make sure that we have allocated dquot(s) on disk. |
| 1162 | */ |
| 1163 | error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), |
| 1164 | xfs_kgid_to_gid(current_fsgid()), prid, |
| 1165 | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| 1166 | &udqp, &gdqp, &pdqp); |
| 1167 | if (error) |
| 1168 | return error; |
| 1169 | |
| 1170 | if (is_dir) { |
| 1171 | resblks = XFS_MKDIR_SPACE_RES(mp, name->len); |
| 1172 | tres = &M_RES(mp)->tr_mkdir; |
| 1173 | } else { |
| 1174 | resblks = XFS_CREATE_SPACE_RES(mp, name->len); |
| 1175 | tres = &M_RES(mp)->tr_create; |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * Initially assume that the file does not exist and |
| 1180 | * reserve the resources for that case. If that is not |
| 1181 | * the case we'll drop the one we have and get a more |
| 1182 | * appropriate transaction later. |
| 1183 | */ |
| 1184 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| 1185 | if (error == -ENOSPC) { |
| 1186 | /* flush outstanding delalloc blocks and retry */ |
| 1187 | xfs_flush_inodes(mp); |
| 1188 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| 1189 | } |
| 1190 | if (error) |
| 1191 | goto out_release_inode; |
| 1192 | |
| 1193 | xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT); |
| 1194 | unlock_dp_on_error = true; |
| 1195 | |
| 1196 | /* |
| 1197 | * Reserve disk quota and the inode. |
| 1198 | */ |
| 1199 | error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, |
| 1200 | pdqp, resblks, 1, 0); |
| 1201 | if (error) |
| 1202 | goto out_trans_cancel; |
| 1203 | |
| 1204 | /* |
| 1205 | * A newly created regular or special file just has one directory |
| 1206 | * entry pointing to them, but a directory also the "." entry |
| 1207 | * pointing to itself. |
| 1208 | */ |
| 1209 | error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip); |
| 1210 | if (error) |
| 1211 | goto out_trans_cancel; |
| 1212 | |
| 1213 | /* |
| 1214 | * Now we join the directory inode to the transaction. We do not do it |
| 1215 | * earlier because xfs_dir_ialloc might commit the previous transaction |
| 1216 | * (and release all the locks). An error from here on will result in |
| 1217 | * the transaction cancel unlocking dp so don't do it explicitly in the |
| 1218 | * error path. |
| 1219 | */ |
| 1220 | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| 1221 | unlock_dp_on_error = false; |
| 1222 | |
| 1223 | error = xfs_dir_createname(tp, dp, name, ip->i_ino, |
| 1224 | resblks ? |
| 1225 | resblks - XFS_IALLOC_SPACE_RES(mp) : 0); |
| 1226 | if (error) { |
| 1227 | ASSERT(error != -ENOSPC); |
| 1228 | goto out_trans_cancel; |
| 1229 | } |
| 1230 | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 1231 | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| 1232 | |
| 1233 | if (is_dir) { |
| 1234 | error = xfs_dir_init(tp, ip, dp); |
| 1235 | if (error) |
| 1236 | goto out_trans_cancel; |
| 1237 | |
| 1238 | error = xfs_bumplink(tp, dp); |
| 1239 | if (error) |
| 1240 | goto out_trans_cancel; |
| 1241 | } |
| 1242 | |
| 1243 | /* |
| 1244 | * If this is a synchronous mount, make sure that the |
| 1245 | * create transaction goes to disk before returning to |
| 1246 | * the user. |
| 1247 | */ |
| 1248 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 1249 | xfs_trans_set_sync(tp); |
| 1250 | |
| 1251 | /* |
| 1252 | * Attach the dquot(s) to the inodes and modify them incore. |
| 1253 | * These ids of the inode couldn't have changed since the new |
| 1254 | * inode has been locked ever since it was created. |
| 1255 | */ |
| 1256 | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| 1257 | |
| 1258 | error = xfs_trans_commit(tp); |
| 1259 | if (error) |
| 1260 | goto out_release_inode; |
| 1261 | |
| 1262 | xfs_qm_dqrele(udqp); |
| 1263 | xfs_qm_dqrele(gdqp); |
| 1264 | xfs_qm_dqrele(pdqp); |
| 1265 | |
| 1266 | *ipp = ip; |
| 1267 | return 0; |
| 1268 | |
| 1269 | out_trans_cancel: |
| 1270 | xfs_trans_cancel(tp); |
| 1271 | out_release_inode: |
| 1272 | /* |
| 1273 | * Wait until after the current transaction is aborted to finish the |
| 1274 | * setup of the inode and release the inode. This prevents recursive |
| 1275 | * transactions and deadlocks from xfs_inactive. |
| 1276 | */ |
| 1277 | if (ip) { |
| 1278 | xfs_finish_inode_setup(ip); |
| 1279 | xfs_irele(ip); |
| 1280 | } |
| 1281 | |
| 1282 | xfs_qm_dqrele(udqp); |
| 1283 | xfs_qm_dqrele(gdqp); |
| 1284 | xfs_qm_dqrele(pdqp); |
| 1285 | |
| 1286 | if (unlock_dp_on_error) |
| 1287 | xfs_iunlock(dp, XFS_ILOCK_EXCL); |
| 1288 | return error; |
| 1289 | } |
| 1290 | |
| 1291 | int |
| 1292 | xfs_create_tmpfile( |
| 1293 | struct xfs_inode *dp, |
| 1294 | umode_t mode, |
| 1295 | struct xfs_inode **ipp) |
| 1296 | { |
| 1297 | struct xfs_mount *mp = dp->i_mount; |
| 1298 | struct xfs_inode *ip = NULL; |
| 1299 | struct xfs_trans *tp = NULL; |
| 1300 | int error; |
| 1301 | prid_t prid; |
| 1302 | struct xfs_dquot *udqp = NULL; |
| 1303 | struct xfs_dquot *gdqp = NULL; |
| 1304 | struct xfs_dquot *pdqp = NULL; |
| 1305 | struct xfs_trans_res *tres; |
| 1306 | uint resblks; |
| 1307 | |
| 1308 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1309 | return -EIO; |
| 1310 | |
| 1311 | prid = xfs_get_initial_prid(dp); |
| 1312 | |
| 1313 | /* |
| 1314 | * Make sure that we have allocated dquot(s) on disk. |
| 1315 | */ |
| 1316 | error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()), |
| 1317 | xfs_kgid_to_gid(current_fsgid()), prid, |
| 1318 | XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, |
| 1319 | &udqp, &gdqp, &pdqp); |
| 1320 | if (error) |
| 1321 | return error; |
| 1322 | |
| 1323 | resblks = XFS_IALLOC_SPACE_RES(mp); |
| 1324 | tres = &M_RES(mp)->tr_create_tmpfile; |
| 1325 | |
| 1326 | error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp); |
| 1327 | if (error) |
| 1328 | goto out_release_inode; |
| 1329 | |
| 1330 | error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, |
| 1331 | pdqp, resblks, 1, 0); |
| 1332 | if (error) |
| 1333 | goto out_trans_cancel; |
| 1334 | |
| 1335 | error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip); |
| 1336 | if (error) |
| 1337 | goto out_trans_cancel; |
| 1338 | |
| 1339 | if (mp->m_flags & XFS_MOUNT_WSYNC) |
| 1340 | xfs_trans_set_sync(tp); |
| 1341 | |
| 1342 | /* |
| 1343 | * Attach the dquot(s) to the inodes and modify them incore. |
| 1344 | * These ids of the inode couldn't have changed since the new |
| 1345 | * inode has been locked ever since it was created. |
| 1346 | */ |
| 1347 | xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp); |
| 1348 | |
| 1349 | error = xfs_iunlink(tp, ip); |
| 1350 | if (error) |
| 1351 | goto out_trans_cancel; |
| 1352 | |
| 1353 | error = xfs_trans_commit(tp); |
| 1354 | if (error) |
| 1355 | goto out_release_inode; |
| 1356 | |
| 1357 | xfs_qm_dqrele(udqp); |
| 1358 | xfs_qm_dqrele(gdqp); |
| 1359 | xfs_qm_dqrele(pdqp); |
| 1360 | |
| 1361 | *ipp = ip; |
| 1362 | return 0; |
| 1363 | |
| 1364 | out_trans_cancel: |
| 1365 | xfs_trans_cancel(tp); |
| 1366 | out_release_inode: |
| 1367 | /* |
| 1368 | * Wait until after the current transaction is aborted to finish the |
| 1369 | * setup of the inode and release the inode. This prevents recursive |
| 1370 | * transactions and deadlocks from xfs_inactive. |
| 1371 | */ |
| 1372 | if (ip) { |
| 1373 | xfs_finish_inode_setup(ip); |
| 1374 | xfs_irele(ip); |
| 1375 | } |
| 1376 | |
| 1377 | xfs_qm_dqrele(udqp); |
| 1378 | xfs_qm_dqrele(gdqp); |
| 1379 | xfs_qm_dqrele(pdqp); |
| 1380 | |
| 1381 | return error; |
| 1382 | } |
| 1383 | |
| 1384 | int |
| 1385 | xfs_link( |
| 1386 | xfs_inode_t *tdp, |
| 1387 | xfs_inode_t *sip, |
| 1388 | struct xfs_name *target_name) |
| 1389 | { |
| 1390 | xfs_mount_t *mp = tdp->i_mount; |
| 1391 | xfs_trans_t *tp; |
| 1392 | int error; |
| 1393 | int resblks; |
| 1394 | |
| 1395 | trace_xfs_link(tdp, target_name); |
| 1396 | |
| 1397 | ASSERT(!S_ISDIR(VFS_I(sip)->i_mode)); |
| 1398 | |
| 1399 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 1400 | return -EIO; |
| 1401 | |
| 1402 | error = xfs_qm_dqattach(sip); |
| 1403 | if (error) |
| 1404 | goto std_return; |
| 1405 | |
| 1406 | error = xfs_qm_dqattach(tdp); |
| 1407 | if (error) |
| 1408 | goto std_return; |
| 1409 | |
| 1410 | resblks = XFS_LINK_SPACE_RES(mp, target_name->len); |
| 1411 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp); |
| 1412 | if (error == -ENOSPC) { |
| 1413 | resblks = 0; |
| 1414 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp); |
| 1415 | } |
| 1416 | if (error) |
| 1417 | goto std_return; |
| 1418 | |
| 1419 | xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL); |
| 1420 | |
| 1421 | xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL); |
| 1422 | xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL); |
| 1423 | |
| 1424 | /* |
| 1425 | * If we are using project inheritance, we only allow hard link |
| 1426 | * creation in our tree when the project IDs are the same; else |
| 1427 | * the tree quota mechanism could be circumvented. |
| 1428 | */ |
| 1429 | if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && |
| 1430 | (xfs_get_projid(tdp) != xfs_get_projid(sip)))) { |
| 1431 | error = -EXDEV; |
| 1432 | goto error_return; |
| 1433 | } |
| 1434 | |
| 1435 | if (!resblks) { |
| 1436 | error = xfs_dir_canenter(tp, tdp, target_name); |
| 1437 | if (error) |
| 1438 | goto error_return; |
| 1439 | } |
| 1440 | |
| 1441 | /* |
| 1442 | * Handle initial link state of O_TMPFILE inode |
| 1443 | */ |
| 1444 | if (VFS_I(sip)->i_nlink == 0) { |
| 1445 | error = xfs_iunlink_remove(tp, sip); |
| 1446 | if (error) |
| 1447 | goto error_return; |
| 1448 | } |
| 1449 | |
| 1450 | error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino, |
| 1451 | resblks); |
| 1452 | if (error) |
| 1453 | goto error_return; |
| 1454 | xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 1455 | xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE); |
| 1456 | |
| 1457 | error = xfs_bumplink(tp, sip); |
| 1458 | if (error) |
| 1459 | goto error_return; |
| 1460 | |
| 1461 | /* |
| 1462 | * If this is a synchronous mount, make sure that the |
| 1463 | * link transaction goes to disk before returning to |
| 1464 | * the user. |
| 1465 | */ |
| 1466 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 1467 | xfs_trans_set_sync(tp); |
| 1468 | |
| 1469 | return xfs_trans_commit(tp); |
| 1470 | |
| 1471 | error_return: |
| 1472 | xfs_trans_cancel(tp); |
| 1473 | std_return: |
| 1474 | return error; |
| 1475 | } |
| 1476 | |
| 1477 | /* Clear the reflink flag and the cowblocks tag if possible. */ |
| 1478 | static void |
| 1479 | xfs_itruncate_clear_reflink_flags( |
| 1480 | struct xfs_inode *ip) |
| 1481 | { |
| 1482 | struct xfs_ifork *dfork; |
| 1483 | struct xfs_ifork *cfork; |
| 1484 | |
| 1485 | if (!xfs_is_reflink_inode(ip)) |
| 1486 | return; |
| 1487 | dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK); |
| 1488 | cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK); |
| 1489 | if (dfork->if_bytes == 0 && cfork->if_bytes == 0) |
| 1490 | ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; |
| 1491 | if (cfork->if_bytes == 0) |
| 1492 | xfs_inode_clear_cowblocks_tag(ip); |
| 1493 | } |
| 1494 | |
| 1495 | /* |
| 1496 | * Free up the underlying blocks past new_size. The new size must be smaller |
| 1497 | * than the current size. This routine can be used both for the attribute and |
| 1498 | * data fork, and does not modify the inode size, which is left to the caller. |
| 1499 | * |
| 1500 | * The transaction passed to this routine must have made a permanent log |
| 1501 | * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the |
| 1502 | * given transaction and start new ones, so make sure everything involved in |
| 1503 | * the transaction is tidy before calling here. Some transaction will be |
| 1504 | * returned to the caller to be committed. The incoming transaction must |
| 1505 | * already include the inode, and both inode locks must be held exclusively. |
| 1506 | * The inode must also be "held" within the transaction. On return the inode |
| 1507 | * will be "held" within the returned transaction. This routine does NOT |
| 1508 | * require any disk space to be reserved for it within the transaction. |
| 1509 | * |
| 1510 | * If we get an error, we must return with the inode locked and linked into the |
| 1511 | * current transaction. This keeps things simple for the higher level code, |
| 1512 | * because it always knows that the inode is locked and held in the transaction |
| 1513 | * that returns to it whether errors occur or not. We don't mark the inode |
| 1514 | * dirty on error so that transactions can be easily aborted if possible. |
| 1515 | */ |
| 1516 | int |
| 1517 | xfs_itruncate_extents_flags( |
| 1518 | struct xfs_trans **tpp, |
| 1519 | struct xfs_inode *ip, |
| 1520 | int whichfork, |
| 1521 | xfs_fsize_t new_size, |
| 1522 | int flags) |
| 1523 | { |
| 1524 | struct xfs_mount *mp = ip->i_mount; |
| 1525 | struct xfs_trans *tp = *tpp; |
| 1526 | xfs_fileoff_t first_unmap_block; |
| 1527 | xfs_fileoff_t last_block; |
| 1528 | xfs_filblks_t unmap_len; |
| 1529 | int error = 0; |
| 1530 | int done = 0; |
| 1531 | |
| 1532 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| 1533 | ASSERT(!atomic_read(&VFS_I(ip)->i_count) || |
| 1534 | xfs_isilocked(ip, XFS_IOLOCK_EXCL)); |
| 1535 | ASSERT(new_size <= XFS_ISIZE(ip)); |
| 1536 | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); |
| 1537 | ASSERT(ip->i_itemp != NULL); |
| 1538 | ASSERT(ip->i_itemp->ili_lock_flags == 0); |
| 1539 | ASSERT(!XFS_NOT_DQATTACHED(mp, ip)); |
| 1540 | |
| 1541 | trace_xfs_itruncate_extents_start(ip, new_size); |
| 1542 | |
| 1543 | flags |= xfs_bmapi_aflag(whichfork); |
| 1544 | |
| 1545 | /* |
| 1546 | * Since it is possible for space to become allocated beyond |
| 1547 | * the end of the file (in a crash where the space is allocated |
| 1548 | * but the inode size is not yet updated), simply remove any |
| 1549 | * blocks which show up between the new EOF and the maximum |
| 1550 | * possible file size. If the first block to be removed is |
| 1551 | * beyond the maximum file size (ie it is the same as last_block), |
| 1552 | * then there is nothing to do. |
| 1553 | */ |
| 1554 | first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size); |
| 1555 | last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); |
| 1556 | if (first_unmap_block == last_block) |
| 1557 | return 0; |
| 1558 | |
| 1559 | ASSERT(first_unmap_block < last_block); |
| 1560 | unmap_len = last_block - first_unmap_block + 1; |
| 1561 | while (!done) { |
| 1562 | ASSERT(tp->t_firstblock == NULLFSBLOCK); |
| 1563 | error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags, |
| 1564 | XFS_ITRUNC_MAX_EXTENTS, &done); |
| 1565 | if (error) |
| 1566 | goto out; |
| 1567 | |
| 1568 | /* |
| 1569 | * Duplicate the transaction that has the permanent |
| 1570 | * reservation and commit the old transaction. |
| 1571 | */ |
| 1572 | error = xfs_defer_finish(&tp); |
| 1573 | if (error) |
| 1574 | goto out; |
| 1575 | |
| 1576 | error = xfs_trans_roll_inode(&tp, ip); |
| 1577 | if (error) |
| 1578 | goto out; |
| 1579 | } |
| 1580 | |
| 1581 | if (whichfork == XFS_DATA_FORK) { |
| 1582 | /* Remove all pending CoW reservations. */ |
| 1583 | error = xfs_reflink_cancel_cow_blocks(ip, &tp, |
| 1584 | first_unmap_block, last_block, true); |
| 1585 | if (error) |
| 1586 | goto out; |
| 1587 | |
| 1588 | xfs_itruncate_clear_reflink_flags(ip); |
| 1589 | } |
| 1590 | |
| 1591 | /* |
| 1592 | * Always re-log the inode so that our permanent transaction can keep |
| 1593 | * on rolling it forward in the log. |
| 1594 | */ |
| 1595 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1596 | |
| 1597 | trace_xfs_itruncate_extents_end(ip, new_size); |
| 1598 | |
| 1599 | out: |
| 1600 | *tpp = tp; |
| 1601 | return error; |
| 1602 | } |
| 1603 | |
| 1604 | int |
| 1605 | xfs_release( |
| 1606 | xfs_inode_t *ip) |
| 1607 | { |
| 1608 | xfs_mount_t *mp = ip->i_mount; |
| 1609 | int error; |
| 1610 | |
| 1611 | if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0)) |
| 1612 | return 0; |
| 1613 | |
| 1614 | /* If this is a read-only mount, don't do this (would generate I/O) */ |
| 1615 | if (mp->m_flags & XFS_MOUNT_RDONLY) |
| 1616 | return 0; |
| 1617 | |
| 1618 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
| 1619 | int truncated; |
| 1620 | |
| 1621 | /* |
| 1622 | * If we previously truncated this file and removed old data |
| 1623 | * in the process, we want to initiate "early" writeout on |
| 1624 | * the last close. This is an attempt to combat the notorious |
| 1625 | * NULL files problem which is particularly noticeable from a |
| 1626 | * truncate down, buffered (re-)write (delalloc), followed by |
| 1627 | * a crash. What we are effectively doing here is |
| 1628 | * significantly reducing the time window where we'd otherwise |
| 1629 | * be exposed to that problem. |
| 1630 | */ |
| 1631 | truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED); |
| 1632 | if (truncated) { |
| 1633 | xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE); |
| 1634 | if (ip->i_delayed_blks > 0) { |
| 1635 | error = filemap_flush(VFS_I(ip)->i_mapping); |
| 1636 | if (error) |
| 1637 | return error; |
| 1638 | } |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | if (VFS_I(ip)->i_nlink == 0) |
| 1643 | return 0; |
| 1644 | |
| 1645 | if (xfs_can_free_eofblocks(ip, false)) { |
| 1646 | |
| 1647 | /* |
| 1648 | * Check if the inode is being opened, written and closed |
| 1649 | * frequently and we have delayed allocation blocks outstanding |
| 1650 | * (e.g. streaming writes from the NFS server), truncating the |
| 1651 | * blocks past EOF will cause fragmentation to occur. |
| 1652 | * |
| 1653 | * In this case don't do the truncation, but we have to be |
| 1654 | * careful how we detect this case. Blocks beyond EOF show up as |
| 1655 | * i_delayed_blks even when the inode is clean, so we need to |
| 1656 | * truncate them away first before checking for a dirty release. |
| 1657 | * Hence on the first dirty close we will still remove the |
| 1658 | * speculative allocation, but after that we will leave it in |
| 1659 | * place. |
| 1660 | */ |
| 1661 | if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE)) |
| 1662 | return 0; |
| 1663 | /* |
| 1664 | * If we can't get the iolock just skip truncating the blocks |
| 1665 | * past EOF because we could deadlock with the mmap_sem |
| 1666 | * otherwise. We'll get another chance to drop them once the |
| 1667 | * last reference to the inode is dropped, so we'll never leak |
| 1668 | * blocks permanently. |
| 1669 | */ |
| 1670 | if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) { |
| 1671 | error = xfs_free_eofblocks(ip); |
| 1672 | xfs_iunlock(ip, XFS_IOLOCK_EXCL); |
| 1673 | if (error) |
| 1674 | return error; |
| 1675 | } |
| 1676 | |
| 1677 | /* delalloc blocks after truncation means it really is dirty */ |
| 1678 | if (ip->i_delayed_blks) |
| 1679 | xfs_iflags_set(ip, XFS_IDIRTY_RELEASE); |
| 1680 | } |
| 1681 | return 0; |
| 1682 | } |
| 1683 | |
| 1684 | /* |
| 1685 | * xfs_inactive_truncate |
| 1686 | * |
| 1687 | * Called to perform a truncate when an inode becomes unlinked. |
| 1688 | */ |
| 1689 | STATIC int |
| 1690 | xfs_inactive_truncate( |
| 1691 | struct xfs_inode *ip) |
| 1692 | { |
| 1693 | struct xfs_mount *mp = ip->i_mount; |
| 1694 | struct xfs_trans *tp; |
| 1695 | int error; |
| 1696 | |
| 1697 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); |
| 1698 | if (error) { |
| 1699 | ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| 1700 | return error; |
| 1701 | } |
| 1702 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1703 | xfs_trans_ijoin(tp, ip, 0); |
| 1704 | |
| 1705 | /* |
| 1706 | * Log the inode size first to prevent stale data exposure in the event |
| 1707 | * of a system crash before the truncate completes. See the related |
| 1708 | * comment in xfs_vn_setattr_size() for details. |
| 1709 | */ |
| 1710 | ip->i_d.di_size = 0; |
| 1711 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 1712 | |
| 1713 | error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0); |
| 1714 | if (error) |
| 1715 | goto error_trans_cancel; |
| 1716 | |
| 1717 | ASSERT(ip->i_d.di_nextents == 0); |
| 1718 | |
| 1719 | error = xfs_trans_commit(tp); |
| 1720 | if (error) |
| 1721 | goto error_unlock; |
| 1722 | |
| 1723 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1724 | return 0; |
| 1725 | |
| 1726 | error_trans_cancel: |
| 1727 | xfs_trans_cancel(tp); |
| 1728 | error_unlock: |
| 1729 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1730 | return error; |
| 1731 | } |
| 1732 | |
| 1733 | /* |
| 1734 | * xfs_inactive_ifree() |
| 1735 | * |
| 1736 | * Perform the inode free when an inode is unlinked. |
| 1737 | */ |
| 1738 | STATIC int |
| 1739 | xfs_inactive_ifree( |
| 1740 | struct xfs_inode *ip) |
| 1741 | { |
| 1742 | struct xfs_mount *mp = ip->i_mount; |
| 1743 | struct xfs_trans *tp; |
| 1744 | int error; |
| 1745 | |
| 1746 | /* |
| 1747 | * We try to use a per-AG reservation for any block needed by the finobt |
| 1748 | * tree, but as the finobt feature predates the per-AG reservation |
| 1749 | * support a degraded file system might not have enough space for the |
| 1750 | * reservation at mount time. In that case try to dip into the reserved |
| 1751 | * pool and pray. |
| 1752 | * |
| 1753 | * Send a warning if the reservation does happen to fail, as the inode |
| 1754 | * now remains allocated and sits on the unlinked list until the fs is |
| 1755 | * repaired. |
| 1756 | */ |
| 1757 | if (unlikely(mp->m_inotbt_nores)) { |
| 1758 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, |
| 1759 | XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, |
| 1760 | &tp); |
| 1761 | } else { |
| 1762 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp); |
| 1763 | } |
| 1764 | if (error) { |
| 1765 | if (error == -ENOSPC) { |
| 1766 | xfs_warn_ratelimited(mp, |
| 1767 | "Failed to remove inode(s) from unlinked list. " |
| 1768 | "Please free space, unmount and run xfs_repair."); |
| 1769 | } else { |
| 1770 | ASSERT(XFS_FORCED_SHUTDOWN(mp)); |
| 1771 | } |
| 1772 | return error; |
| 1773 | } |
| 1774 | |
| 1775 | xfs_ilock(ip, XFS_ILOCK_EXCL); |
| 1776 | xfs_trans_ijoin(tp, ip, 0); |
| 1777 | |
| 1778 | error = xfs_ifree(tp, ip); |
| 1779 | if (error) { |
| 1780 | /* |
| 1781 | * If we fail to free the inode, shut down. The cancel |
| 1782 | * might do that, we need to make sure. Otherwise the |
| 1783 | * inode might be lost for a long time or forever. |
| 1784 | */ |
| 1785 | if (!XFS_FORCED_SHUTDOWN(mp)) { |
| 1786 | xfs_notice(mp, "%s: xfs_ifree returned error %d", |
| 1787 | __func__, error); |
| 1788 | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); |
| 1789 | } |
| 1790 | xfs_trans_cancel(tp); |
| 1791 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1792 | return error; |
| 1793 | } |
| 1794 | |
| 1795 | /* |
| 1796 | * Credit the quota account(s). The inode is gone. |
| 1797 | */ |
| 1798 | xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1); |
| 1799 | |
| 1800 | /* |
| 1801 | * Just ignore errors at this point. There is nothing we can do except |
| 1802 | * to try to keep going. Make sure it's not a silent error. |
| 1803 | */ |
| 1804 | error = xfs_trans_commit(tp); |
| 1805 | if (error) |
| 1806 | xfs_notice(mp, "%s: xfs_trans_commit returned error %d", |
| 1807 | __func__, error); |
| 1808 | |
| 1809 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 1810 | return 0; |
| 1811 | } |
| 1812 | |
| 1813 | /* |
| 1814 | * xfs_inactive |
| 1815 | * |
| 1816 | * This is called when the vnode reference count for the vnode |
| 1817 | * goes to zero. If the file has been unlinked, then it must |
| 1818 | * now be truncated. Also, we clear all of the read-ahead state |
| 1819 | * kept for the inode here since the file is now closed. |
| 1820 | */ |
| 1821 | void |
| 1822 | xfs_inactive( |
| 1823 | xfs_inode_t *ip) |
| 1824 | { |
| 1825 | struct xfs_mount *mp; |
| 1826 | int error; |
| 1827 | int truncate = 0; |
| 1828 | |
| 1829 | /* |
| 1830 | * If the inode is already free, then there can be nothing |
| 1831 | * to clean up here. |
| 1832 | */ |
| 1833 | if (VFS_I(ip)->i_mode == 0) { |
| 1834 | ASSERT(ip->i_df.if_broot_bytes == 0); |
| 1835 | return; |
| 1836 | } |
| 1837 | |
| 1838 | mp = ip->i_mount; |
| 1839 | ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY)); |
| 1840 | |
| 1841 | /* If this is a read-only mount, don't do this (would generate I/O) */ |
| 1842 | if (mp->m_flags & XFS_MOUNT_RDONLY) |
| 1843 | return; |
| 1844 | |
| 1845 | /* Try to clean out the cow blocks if there are any. */ |
| 1846 | if (xfs_inode_has_cow_data(ip)) |
| 1847 | xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true); |
| 1848 | |
| 1849 | if (VFS_I(ip)->i_nlink != 0) { |
| 1850 | /* |
| 1851 | * force is true because we are evicting an inode from the |
| 1852 | * cache. Post-eof blocks must be freed, lest we end up with |
| 1853 | * broken free space accounting. |
| 1854 | * |
| 1855 | * Note: don't bother with iolock here since lockdep complains |
| 1856 | * about acquiring it in reclaim context. We have the only |
| 1857 | * reference to the inode at this point anyways. |
| 1858 | */ |
| 1859 | if (xfs_can_free_eofblocks(ip, true)) |
| 1860 | xfs_free_eofblocks(ip); |
| 1861 | |
| 1862 | return; |
| 1863 | } |
| 1864 | |
| 1865 | if (S_ISREG(VFS_I(ip)->i_mode) && |
| 1866 | (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 || |
| 1867 | ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0)) |
| 1868 | truncate = 1; |
| 1869 | |
| 1870 | error = xfs_qm_dqattach(ip); |
| 1871 | if (error) |
| 1872 | return; |
| 1873 | |
| 1874 | if (S_ISLNK(VFS_I(ip)->i_mode)) |
| 1875 | error = xfs_inactive_symlink(ip); |
| 1876 | else if (truncate) |
| 1877 | error = xfs_inactive_truncate(ip); |
| 1878 | if (error) |
| 1879 | return; |
| 1880 | |
| 1881 | /* |
| 1882 | * If there are attributes associated with the file then blow them away |
| 1883 | * now. The code calls a routine that recursively deconstructs the |
| 1884 | * attribute fork. If also blows away the in-core attribute fork. |
| 1885 | */ |
| 1886 | if (XFS_IFORK_Q(ip)) { |
| 1887 | error = xfs_attr_inactive(ip); |
| 1888 | if (error) |
| 1889 | return; |
| 1890 | } |
| 1891 | |
| 1892 | ASSERT(!ip->i_afp); |
| 1893 | ASSERT(ip->i_d.di_anextents == 0); |
| 1894 | ASSERT(ip->i_d.di_forkoff == 0); |
| 1895 | |
| 1896 | /* |
| 1897 | * Free the inode. |
| 1898 | */ |
| 1899 | error = xfs_inactive_ifree(ip); |
| 1900 | if (error) |
| 1901 | return; |
| 1902 | |
| 1903 | /* |
| 1904 | * Release the dquots held by inode, if any. |
| 1905 | */ |
| 1906 | xfs_qm_dqdetach(ip); |
| 1907 | } |
| 1908 | |
| 1909 | /* |
| 1910 | * This is called when the inode's link count goes to 0 or we are creating a |
| 1911 | * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be |
| 1912 | * set to true as the link count is dropped to zero by the VFS after we've |
| 1913 | * created the file successfully, so we have to add it to the unlinked list |
| 1914 | * while the link count is non-zero. |
| 1915 | * |
| 1916 | * We place the on-disk inode on a list in the AGI. It will be pulled from this |
| 1917 | * list when the inode is freed. |
| 1918 | */ |
| 1919 | STATIC int |
| 1920 | xfs_iunlink( |
| 1921 | struct xfs_trans *tp, |
| 1922 | struct xfs_inode *ip) |
| 1923 | { |
| 1924 | xfs_mount_t *mp = tp->t_mountp; |
| 1925 | xfs_agi_t *agi; |
| 1926 | xfs_dinode_t *dip; |
| 1927 | xfs_buf_t *agibp; |
| 1928 | xfs_buf_t *ibp; |
| 1929 | xfs_agino_t agino; |
| 1930 | short bucket_index; |
| 1931 | int offset; |
| 1932 | int error; |
| 1933 | |
| 1934 | ASSERT(VFS_I(ip)->i_mode != 0); |
| 1935 | |
| 1936 | /* |
| 1937 | * Get the agi buffer first. It ensures lock ordering |
| 1938 | * on the list. |
| 1939 | */ |
| 1940 | error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp); |
| 1941 | if (error) |
| 1942 | return error; |
| 1943 | agi = XFS_BUF_TO_AGI(agibp); |
| 1944 | |
| 1945 | /* |
| 1946 | * Get the index into the agi hash table for the |
| 1947 | * list this inode will go on. |
| 1948 | */ |
| 1949 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| 1950 | ASSERT(agino != 0); |
| 1951 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| 1952 | ASSERT(agi->agi_unlinked[bucket_index]); |
| 1953 | ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino); |
| 1954 | |
| 1955 | if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) { |
| 1956 | /* |
| 1957 | * There is already another inode in the bucket we need |
| 1958 | * to add ourselves to. Add us at the front of the list. |
| 1959 | * Here we put the head pointer into our next pointer, |
| 1960 | * and then we fall through to point the head at us. |
| 1961 | */ |
| 1962 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
| 1963 | 0, 0); |
| 1964 | if (error) |
| 1965 | return error; |
| 1966 | |
| 1967 | ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO)); |
| 1968 | dip->di_next_unlinked = agi->agi_unlinked[bucket_index]; |
| 1969 | offset = ip->i_imap.im_boffset + |
| 1970 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 1971 | |
| 1972 | /* need to recalc the inode CRC if appropriate */ |
| 1973 | xfs_dinode_calc_crc(mp, dip); |
| 1974 | |
| 1975 | xfs_trans_inode_buf(tp, ibp); |
| 1976 | xfs_trans_log_buf(tp, ibp, offset, |
| 1977 | (offset + sizeof(xfs_agino_t) - 1)); |
| 1978 | xfs_inobp_check(mp, ibp); |
| 1979 | } |
| 1980 | |
| 1981 | /* |
| 1982 | * Point the bucket head pointer at the inode being inserted. |
| 1983 | */ |
| 1984 | ASSERT(agino != 0); |
| 1985 | agi->agi_unlinked[bucket_index] = cpu_to_be32(agino); |
| 1986 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
| 1987 | (sizeof(xfs_agino_t) * bucket_index); |
| 1988 | xfs_trans_log_buf(tp, agibp, offset, |
| 1989 | (offset + sizeof(xfs_agino_t) - 1)); |
| 1990 | return 0; |
| 1991 | } |
| 1992 | |
| 1993 | /* |
| 1994 | * Pull the on-disk inode from the AGI unlinked list. |
| 1995 | */ |
| 1996 | STATIC int |
| 1997 | xfs_iunlink_remove( |
| 1998 | xfs_trans_t *tp, |
| 1999 | xfs_inode_t *ip) |
| 2000 | { |
| 2001 | xfs_ino_t next_ino; |
| 2002 | xfs_mount_t *mp; |
| 2003 | xfs_agi_t *agi; |
| 2004 | xfs_dinode_t *dip; |
| 2005 | xfs_buf_t *agibp; |
| 2006 | xfs_buf_t *ibp; |
| 2007 | xfs_agnumber_t agno; |
| 2008 | xfs_agino_t agino; |
| 2009 | xfs_agino_t next_agino; |
| 2010 | xfs_buf_t *last_ibp; |
| 2011 | xfs_dinode_t *last_dip = NULL; |
| 2012 | short bucket_index; |
| 2013 | int offset, last_offset = 0; |
| 2014 | int error; |
| 2015 | |
| 2016 | mp = tp->t_mountp; |
| 2017 | agno = XFS_INO_TO_AGNO(mp, ip->i_ino); |
| 2018 | |
| 2019 | /* |
| 2020 | * Get the agi buffer first. It ensures lock ordering |
| 2021 | * on the list. |
| 2022 | */ |
| 2023 | error = xfs_read_agi(mp, tp, agno, &agibp); |
| 2024 | if (error) |
| 2025 | return error; |
| 2026 | |
| 2027 | agi = XFS_BUF_TO_AGI(agibp); |
| 2028 | |
| 2029 | /* |
| 2030 | * Get the index into the agi hash table for the |
| 2031 | * list this inode will go on. |
| 2032 | */ |
| 2033 | agino = XFS_INO_TO_AGINO(mp, ip->i_ino); |
| 2034 | if (!xfs_verify_agino(mp, agno, agino)) |
| 2035 | return -EFSCORRUPTED; |
| 2036 | bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS; |
| 2037 | if (!xfs_verify_agino(mp, agno, |
| 2038 | be32_to_cpu(agi->agi_unlinked[bucket_index]))) { |
| 2039 | XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, |
| 2040 | agi, sizeof(*agi)); |
| 2041 | return -EFSCORRUPTED; |
| 2042 | } |
| 2043 | |
| 2044 | if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) { |
| 2045 | /* |
| 2046 | * We're at the head of the list. Get the inode's on-disk |
| 2047 | * buffer to see if there is anyone after us on the list. |
| 2048 | * Only modify our next pointer if it is not already NULLAGINO. |
| 2049 | * This saves us the overhead of dealing with the buffer when |
| 2050 | * there is no need to change it. |
| 2051 | */ |
| 2052 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
| 2053 | 0, 0); |
| 2054 | if (error) { |
| 2055 | xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.", |
| 2056 | __func__, error); |
| 2057 | return error; |
| 2058 | } |
| 2059 | next_agino = be32_to_cpu(dip->di_next_unlinked); |
| 2060 | ASSERT(next_agino != 0); |
| 2061 | if (next_agino != NULLAGINO) { |
| 2062 | dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
| 2063 | offset = ip->i_imap.im_boffset + |
| 2064 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 2065 | |
| 2066 | /* need to recalc the inode CRC if appropriate */ |
| 2067 | xfs_dinode_calc_crc(mp, dip); |
| 2068 | |
| 2069 | xfs_trans_inode_buf(tp, ibp); |
| 2070 | xfs_trans_log_buf(tp, ibp, offset, |
| 2071 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2072 | xfs_inobp_check(mp, ibp); |
| 2073 | } else { |
| 2074 | xfs_trans_brelse(tp, ibp); |
| 2075 | } |
| 2076 | /* |
| 2077 | * Point the bucket head pointer at the next inode. |
| 2078 | */ |
| 2079 | ASSERT(next_agino != 0); |
| 2080 | ASSERT(next_agino != agino); |
| 2081 | agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino); |
| 2082 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
| 2083 | (sizeof(xfs_agino_t) * bucket_index); |
| 2084 | xfs_trans_log_buf(tp, agibp, offset, |
| 2085 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2086 | } else { |
| 2087 | /* |
| 2088 | * We need to search the list for the inode being freed. |
| 2089 | */ |
| 2090 | next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]); |
| 2091 | last_ibp = NULL; |
| 2092 | while (next_agino != agino) { |
| 2093 | struct xfs_imap imap; |
| 2094 | |
| 2095 | if (last_ibp) |
| 2096 | xfs_trans_brelse(tp, last_ibp); |
| 2097 | |
| 2098 | imap.im_blkno = 0; |
| 2099 | next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino); |
| 2100 | |
| 2101 | error = xfs_imap(mp, tp, next_ino, &imap, 0); |
| 2102 | if (error) { |
| 2103 | xfs_warn(mp, |
| 2104 | "%s: xfs_imap returned error %d.", |
| 2105 | __func__, error); |
| 2106 | return error; |
| 2107 | } |
| 2108 | |
| 2109 | error = xfs_imap_to_bp(mp, tp, &imap, &last_dip, |
| 2110 | &last_ibp, 0, 0); |
| 2111 | if (error) { |
| 2112 | xfs_warn(mp, |
| 2113 | "%s: xfs_imap_to_bp returned error %d.", |
| 2114 | __func__, error); |
| 2115 | return error; |
| 2116 | } |
| 2117 | |
| 2118 | last_offset = imap.im_boffset; |
| 2119 | next_agino = be32_to_cpu(last_dip->di_next_unlinked); |
| 2120 | if (!xfs_verify_agino(mp, agno, next_agino)) { |
| 2121 | XFS_CORRUPTION_ERROR(__func__, |
| 2122 | XFS_ERRLEVEL_LOW, mp, |
| 2123 | last_dip, sizeof(*last_dip)); |
| 2124 | return -EFSCORRUPTED; |
| 2125 | } |
| 2126 | } |
| 2127 | |
| 2128 | /* |
| 2129 | * Now last_ibp points to the buffer previous to us on the |
| 2130 | * unlinked list. Pull us from the list. |
| 2131 | */ |
| 2132 | error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, |
| 2133 | 0, 0); |
| 2134 | if (error) { |
| 2135 | xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.", |
| 2136 | __func__, error); |
| 2137 | return error; |
| 2138 | } |
| 2139 | next_agino = be32_to_cpu(dip->di_next_unlinked); |
| 2140 | ASSERT(next_agino != 0); |
| 2141 | ASSERT(next_agino != agino); |
| 2142 | if (next_agino != NULLAGINO) { |
| 2143 | dip->di_next_unlinked = cpu_to_be32(NULLAGINO); |
| 2144 | offset = ip->i_imap.im_boffset + |
| 2145 | offsetof(xfs_dinode_t, di_next_unlinked); |
| 2146 | |
| 2147 | /* need to recalc the inode CRC if appropriate */ |
| 2148 | xfs_dinode_calc_crc(mp, dip); |
| 2149 | |
| 2150 | xfs_trans_inode_buf(tp, ibp); |
| 2151 | xfs_trans_log_buf(tp, ibp, offset, |
| 2152 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2153 | xfs_inobp_check(mp, ibp); |
| 2154 | } else { |
| 2155 | xfs_trans_brelse(tp, ibp); |
| 2156 | } |
| 2157 | /* |
| 2158 | * Point the previous inode on the list to the next inode. |
| 2159 | */ |
| 2160 | last_dip->di_next_unlinked = cpu_to_be32(next_agino); |
| 2161 | ASSERT(next_agino != 0); |
| 2162 | offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked); |
| 2163 | |
| 2164 | /* need to recalc the inode CRC if appropriate */ |
| 2165 | xfs_dinode_calc_crc(mp, last_dip); |
| 2166 | |
| 2167 | xfs_trans_inode_buf(tp, last_ibp); |
| 2168 | xfs_trans_log_buf(tp, last_ibp, offset, |
| 2169 | (offset + sizeof(xfs_agino_t) - 1)); |
| 2170 | xfs_inobp_check(mp, last_ibp); |
| 2171 | } |
| 2172 | return 0; |
| 2173 | } |
| 2174 | |
| 2175 | /* |
| 2176 | * A big issue when freeing the inode cluster is that we _cannot_ skip any |
| 2177 | * inodes that are in memory - they all must be marked stale and attached to |
| 2178 | * the cluster buffer. |
| 2179 | */ |
| 2180 | STATIC int |
| 2181 | xfs_ifree_cluster( |
| 2182 | xfs_inode_t *free_ip, |
| 2183 | xfs_trans_t *tp, |
| 2184 | struct xfs_icluster *xic) |
| 2185 | { |
| 2186 | xfs_mount_t *mp = free_ip->i_mount; |
| 2187 | int blks_per_cluster; |
| 2188 | int inodes_per_cluster; |
| 2189 | int nbufs; |
| 2190 | int i, j; |
| 2191 | int ioffset; |
| 2192 | xfs_daddr_t blkno; |
| 2193 | xfs_buf_t *bp; |
| 2194 | xfs_inode_t *ip; |
| 2195 | xfs_inode_log_item_t *iip; |
| 2196 | struct xfs_log_item *lip; |
| 2197 | struct xfs_perag *pag; |
| 2198 | xfs_ino_t inum; |
| 2199 | |
| 2200 | inum = xic->first_ino; |
| 2201 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum)); |
| 2202 | blks_per_cluster = xfs_icluster_size_fsb(mp); |
| 2203 | inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; |
| 2204 | nbufs = mp->m_ialloc_blks / blks_per_cluster; |
| 2205 | |
| 2206 | for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) { |
| 2207 | /* |
| 2208 | * The allocation bitmap tells us which inodes of the chunk were |
| 2209 | * physically allocated. Skip the cluster if an inode falls into |
| 2210 | * a sparse region. |
| 2211 | */ |
| 2212 | ioffset = inum - xic->first_ino; |
| 2213 | if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) { |
| 2214 | ASSERT(ioffset % inodes_per_cluster == 0); |
| 2215 | continue; |
| 2216 | } |
| 2217 | |
| 2218 | blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum), |
| 2219 | XFS_INO_TO_AGBNO(mp, inum)); |
| 2220 | |
| 2221 | /* |
| 2222 | * We obtain and lock the backing buffer first in the process |
| 2223 | * here, as we have to ensure that any dirty inode that we |
| 2224 | * can't get the flush lock on is attached to the buffer. |
| 2225 | * If we scan the in-memory inodes first, then buffer IO can |
| 2226 | * complete before we get a lock on it, and hence we may fail |
| 2227 | * to mark all the active inodes on the buffer stale. |
| 2228 | */ |
| 2229 | bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, |
| 2230 | mp->m_bsize * blks_per_cluster, |
| 2231 | XBF_UNMAPPED); |
| 2232 | |
| 2233 | if (!bp) |
| 2234 | return -ENOMEM; |
| 2235 | |
| 2236 | /* |
| 2237 | * This buffer may not have been correctly initialised as we |
| 2238 | * didn't read it from disk. That's not important because we are |
| 2239 | * only using to mark the buffer as stale in the log, and to |
| 2240 | * attach stale cached inodes on it. That means it will never be |
| 2241 | * dispatched for IO. If it is, we want to know about it, and we |
| 2242 | * want it to fail. We can acheive this by adding a write |
| 2243 | * verifier to the buffer. |
| 2244 | */ |
| 2245 | bp->b_ops = &xfs_inode_buf_ops; |
| 2246 | |
| 2247 | /* |
| 2248 | * Walk the inodes already attached to the buffer and mark them |
| 2249 | * stale. These will all have the flush locks held, so an |
| 2250 | * in-memory inode walk can't lock them. By marking them all |
| 2251 | * stale first, we will not attempt to lock them in the loop |
| 2252 | * below as the XFS_ISTALE flag will be set. |
| 2253 | */ |
| 2254 | list_for_each_entry(lip, &bp->b_li_list, li_bio_list) { |
| 2255 | if (lip->li_type == XFS_LI_INODE) { |
| 2256 | iip = (xfs_inode_log_item_t *)lip; |
| 2257 | ASSERT(iip->ili_logged == 1); |
| 2258 | lip->li_cb = xfs_istale_done; |
| 2259 | xfs_trans_ail_copy_lsn(mp->m_ail, |
| 2260 | &iip->ili_flush_lsn, |
| 2261 | &iip->ili_item.li_lsn); |
| 2262 | xfs_iflags_set(iip->ili_inode, XFS_ISTALE); |
| 2263 | } |
| 2264 | } |
| 2265 | |
| 2266 | |
| 2267 | /* |
| 2268 | * For each inode in memory attempt to add it to the inode |
| 2269 | * buffer and set it up for being staled on buffer IO |
| 2270 | * completion. This is safe as we've locked out tail pushing |
| 2271 | * and flushing by locking the buffer. |
| 2272 | * |
| 2273 | * We have already marked every inode that was part of a |
| 2274 | * transaction stale above, which means there is no point in |
| 2275 | * even trying to lock them. |
| 2276 | */ |
| 2277 | for (i = 0; i < inodes_per_cluster; i++) { |
| 2278 | retry: |
| 2279 | rcu_read_lock(); |
| 2280 | ip = radix_tree_lookup(&pag->pag_ici_root, |
| 2281 | XFS_INO_TO_AGINO(mp, (inum + i))); |
| 2282 | |
| 2283 | /* Inode not in memory, nothing to do */ |
| 2284 | if (!ip) { |
| 2285 | rcu_read_unlock(); |
| 2286 | continue; |
| 2287 | } |
| 2288 | |
| 2289 | /* |
| 2290 | * because this is an RCU protected lookup, we could |
| 2291 | * find a recently freed or even reallocated inode |
| 2292 | * during the lookup. We need to check under the |
| 2293 | * i_flags_lock for a valid inode here. Skip it if it |
| 2294 | * is not valid, the wrong inode or stale. |
| 2295 | */ |
| 2296 | spin_lock(&ip->i_flags_lock); |
| 2297 | if (ip->i_ino != inum + i || |
| 2298 | __xfs_iflags_test(ip, XFS_ISTALE)) { |
| 2299 | spin_unlock(&ip->i_flags_lock); |
| 2300 | rcu_read_unlock(); |
| 2301 | continue; |
| 2302 | } |
| 2303 | spin_unlock(&ip->i_flags_lock); |
| 2304 | |
| 2305 | /* |
| 2306 | * Don't try to lock/unlock the current inode, but we |
| 2307 | * _cannot_ skip the other inodes that we did not find |
| 2308 | * in the list attached to the buffer and are not |
| 2309 | * already marked stale. If we can't lock it, back off |
| 2310 | * and retry. |
| 2311 | */ |
| 2312 | if (ip != free_ip) { |
| 2313 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) { |
| 2314 | rcu_read_unlock(); |
| 2315 | delay(1); |
| 2316 | goto retry; |
| 2317 | } |
| 2318 | |
| 2319 | /* |
| 2320 | * Check the inode number again in case we're |
| 2321 | * racing with freeing in xfs_reclaim_inode(). |
| 2322 | * See the comments in that function for more |
| 2323 | * information as to why the initial check is |
| 2324 | * not sufficient. |
| 2325 | */ |
| 2326 | if (ip->i_ino != inum + i) { |
| 2327 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2328 | rcu_read_unlock(); |
| 2329 | continue; |
| 2330 | } |
| 2331 | } |
| 2332 | rcu_read_unlock(); |
| 2333 | |
| 2334 | xfs_iflock(ip); |
| 2335 | xfs_iflags_set(ip, XFS_ISTALE); |
| 2336 | |
| 2337 | /* |
| 2338 | * we don't need to attach clean inodes or those only |
| 2339 | * with unlogged changes (which we throw away, anyway). |
| 2340 | */ |
| 2341 | iip = ip->i_itemp; |
| 2342 | if (!iip || xfs_inode_clean(ip)) { |
| 2343 | ASSERT(ip != free_ip); |
| 2344 | xfs_ifunlock(ip); |
| 2345 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2346 | continue; |
| 2347 | } |
| 2348 | |
| 2349 | iip->ili_last_fields = iip->ili_fields; |
| 2350 | iip->ili_fields = 0; |
| 2351 | iip->ili_fsync_fields = 0; |
| 2352 | iip->ili_logged = 1; |
| 2353 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
| 2354 | &iip->ili_item.li_lsn); |
| 2355 | |
| 2356 | xfs_buf_attach_iodone(bp, xfs_istale_done, |
| 2357 | &iip->ili_item); |
| 2358 | |
| 2359 | if (ip != free_ip) |
| 2360 | xfs_iunlock(ip, XFS_ILOCK_EXCL); |
| 2361 | } |
| 2362 | |
| 2363 | xfs_trans_stale_inode_buf(tp, bp); |
| 2364 | xfs_trans_binval(tp, bp); |
| 2365 | } |
| 2366 | |
| 2367 | xfs_perag_put(pag); |
| 2368 | return 0; |
| 2369 | } |
| 2370 | |
| 2371 | /* |
| 2372 | * Free any local-format buffers sitting around before we reset to |
| 2373 | * extents format. |
| 2374 | */ |
| 2375 | static inline void |
| 2376 | xfs_ifree_local_data( |
| 2377 | struct xfs_inode *ip, |
| 2378 | int whichfork) |
| 2379 | { |
| 2380 | struct xfs_ifork *ifp; |
| 2381 | |
| 2382 | if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL) |
| 2383 | return; |
| 2384 | |
| 2385 | ifp = XFS_IFORK_PTR(ip, whichfork); |
| 2386 | xfs_idata_realloc(ip, -ifp->if_bytes, whichfork); |
| 2387 | } |
| 2388 | |
| 2389 | /* |
| 2390 | * This is called to return an inode to the inode free list. |
| 2391 | * The inode should already be truncated to 0 length and have |
| 2392 | * no pages associated with it. This routine also assumes that |
| 2393 | * the inode is already a part of the transaction. |
| 2394 | * |
| 2395 | * The on-disk copy of the inode will have been added to the list |
| 2396 | * of unlinked inodes in the AGI. We need to remove the inode from |
| 2397 | * that list atomically with respect to freeing it here. |
| 2398 | */ |
| 2399 | int |
| 2400 | xfs_ifree( |
| 2401 | struct xfs_trans *tp, |
| 2402 | struct xfs_inode *ip) |
| 2403 | { |
| 2404 | int error; |
| 2405 | struct xfs_icluster xic = { 0 }; |
| 2406 | |
| 2407 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); |
| 2408 | ASSERT(VFS_I(ip)->i_nlink == 0); |
| 2409 | ASSERT(ip->i_d.di_nextents == 0); |
| 2410 | ASSERT(ip->i_d.di_anextents == 0); |
| 2411 | ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode)); |
| 2412 | ASSERT(ip->i_d.di_nblocks == 0); |
| 2413 | |
| 2414 | /* |
| 2415 | * Pull the on-disk inode from the AGI unlinked list. |
| 2416 | */ |
| 2417 | error = xfs_iunlink_remove(tp, ip); |
| 2418 | if (error) |
| 2419 | return error; |
| 2420 | |
| 2421 | error = xfs_difree(tp, ip->i_ino, &xic); |
| 2422 | if (error) |
| 2423 | return error; |
| 2424 | |
| 2425 | xfs_ifree_local_data(ip, XFS_DATA_FORK); |
| 2426 | xfs_ifree_local_data(ip, XFS_ATTR_FORK); |
| 2427 | |
| 2428 | VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ |
| 2429 | ip->i_d.di_flags = 0; |
| 2430 | ip->i_d.di_flags2 = 0; |
| 2431 | ip->i_d.di_dmevmask = 0; |
| 2432 | ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ |
| 2433 | ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS; |
| 2434 | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; |
| 2435 | |
| 2436 | /* Don't attempt to replay owner changes for a deleted inode */ |
| 2437 | ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER); |
| 2438 | |
| 2439 | /* |
| 2440 | * Bump the generation count so no one will be confused |
| 2441 | * by reincarnations of this inode. |
| 2442 | */ |
| 2443 | VFS_I(ip)->i_generation++; |
| 2444 | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); |
| 2445 | |
| 2446 | if (xic.deleted) |
| 2447 | error = xfs_ifree_cluster(ip, tp, &xic); |
| 2448 | |
| 2449 | return error; |
| 2450 | } |
| 2451 | |
| 2452 | /* |
| 2453 | * This is called to unpin an inode. The caller must have the inode locked |
| 2454 | * in at least shared mode so that the buffer cannot be subsequently pinned |
| 2455 | * once someone is waiting for it to be unpinned. |
| 2456 | */ |
| 2457 | static void |
| 2458 | xfs_iunpin( |
| 2459 | struct xfs_inode *ip) |
| 2460 | { |
| 2461 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| 2462 | |
| 2463 | trace_xfs_inode_unpin_nowait(ip, _RET_IP_); |
| 2464 | |
| 2465 | /* Give the log a push to start the unpinning I/O */ |
| 2466 | xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL); |
| 2467 | |
| 2468 | } |
| 2469 | |
| 2470 | static void |
| 2471 | __xfs_iunpin_wait( |
| 2472 | struct xfs_inode *ip) |
| 2473 | { |
| 2474 | wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT); |
| 2475 | DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT); |
| 2476 | |
| 2477 | xfs_iunpin(ip); |
| 2478 | |
| 2479 | do { |
| 2480 | prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); |
| 2481 | if (xfs_ipincount(ip)) |
| 2482 | io_schedule(); |
| 2483 | } while (xfs_ipincount(ip)); |
| 2484 | finish_wait(wq, &wait.wq_entry); |
| 2485 | } |
| 2486 | |
| 2487 | void |
| 2488 | xfs_iunpin_wait( |
| 2489 | struct xfs_inode *ip) |
| 2490 | { |
| 2491 | if (xfs_ipincount(ip)) |
| 2492 | __xfs_iunpin_wait(ip); |
| 2493 | } |
| 2494 | |
| 2495 | /* |
| 2496 | * Removing an inode from the namespace involves removing the directory entry |
| 2497 | * and dropping the link count on the inode. Removing the directory entry can |
| 2498 | * result in locking an AGF (directory blocks were freed) and removing a link |
| 2499 | * count can result in placing the inode on an unlinked list which results in |
| 2500 | * locking an AGI. |
| 2501 | * |
| 2502 | * The big problem here is that we have an ordering constraint on AGF and AGI |
| 2503 | * locking - inode allocation locks the AGI, then can allocate a new extent for |
| 2504 | * new inodes, locking the AGF after the AGI. Similarly, freeing the inode |
| 2505 | * removes the inode from the unlinked list, requiring that we lock the AGI |
| 2506 | * first, and then freeing the inode can result in an inode chunk being freed |
| 2507 | * and hence freeing disk space requiring that we lock an AGF. |
| 2508 | * |
| 2509 | * Hence the ordering that is imposed by other parts of the code is AGI before |
| 2510 | * AGF. This means we cannot remove the directory entry before we drop the inode |
| 2511 | * reference count and put it on the unlinked list as this results in a lock |
| 2512 | * order of AGF then AGI, and this can deadlock against inode allocation and |
| 2513 | * freeing. Therefore we must drop the link counts before we remove the |
| 2514 | * directory entry. |
| 2515 | * |
| 2516 | * This is still safe from a transactional point of view - it is not until we |
| 2517 | * get to xfs_defer_finish() that we have the possibility of multiple |
| 2518 | * transactions in this operation. Hence as long as we remove the directory |
| 2519 | * entry and drop the link count in the first transaction of the remove |
| 2520 | * operation, there are no transactional constraints on the ordering here. |
| 2521 | */ |
| 2522 | int |
| 2523 | xfs_remove( |
| 2524 | xfs_inode_t *dp, |
| 2525 | struct xfs_name *name, |
| 2526 | xfs_inode_t *ip) |
| 2527 | { |
| 2528 | xfs_mount_t *mp = dp->i_mount; |
| 2529 | xfs_trans_t *tp = NULL; |
| 2530 | int is_dir = S_ISDIR(VFS_I(ip)->i_mode); |
| 2531 | int error = 0; |
| 2532 | uint resblks; |
| 2533 | |
| 2534 | trace_xfs_remove(dp, name); |
| 2535 | |
| 2536 | if (XFS_FORCED_SHUTDOWN(mp)) |
| 2537 | return -EIO; |
| 2538 | |
| 2539 | error = xfs_qm_dqattach(dp); |
| 2540 | if (error) |
| 2541 | goto std_return; |
| 2542 | |
| 2543 | error = xfs_qm_dqattach(ip); |
| 2544 | if (error) |
| 2545 | goto std_return; |
| 2546 | |
| 2547 | /* |
| 2548 | * We try to get the real space reservation first, |
| 2549 | * allowing for directory btree deletion(s) implying |
| 2550 | * possible bmap insert(s). If we can't get the space |
| 2551 | * reservation then we use 0 instead, and avoid the bmap |
| 2552 | * btree insert(s) in the directory code by, if the bmap |
| 2553 | * insert tries to happen, instead trimming the LAST |
| 2554 | * block from the directory. |
| 2555 | */ |
| 2556 | resblks = XFS_REMOVE_SPACE_RES(mp); |
| 2557 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp); |
| 2558 | if (error == -ENOSPC) { |
| 2559 | resblks = 0; |
| 2560 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0, |
| 2561 | &tp); |
| 2562 | } |
| 2563 | if (error) { |
| 2564 | ASSERT(error != -ENOSPC); |
| 2565 | goto std_return; |
| 2566 | } |
| 2567 | |
| 2568 | xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL); |
| 2569 | |
| 2570 | xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL); |
| 2571 | xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); |
| 2572 | |
| 2573 | /* |
| 2574 | * If we're removing a directory perform some additional validation. |
| 2575 | */ |
| 2576 | if (is_dir) { |
| 2577 | ASSERT(VFS_I(ip)->i_nlink >= 2); |
| 2578 | if (VFS_I(ip)->i_nlink != 2) { |
| 2579 | error = -ENOTEMPTY; |
| 2580 | goto out_trans_cancel; |
| 2581 | } |
| 2582 | if (!xfs_dir_isempty(ip)) { |
| 2583 | error = -ENOTEMPTY; |
| 2584 | goto out_trans_cancel; |
| 2585 | } |
| 2586 | |
| 2587 | /* Drop the link from ip's "..". */ |
| 2588 | error = xfs_droplink(tp, dp); |
| 2589 | if (error) |
| 2590 | goto out_trans_cancel; |
| 2591 | |
| 2592 | /* Drop the "." link from ip to self. */ |
| 2593 | error = xfs_droplink(tp, ip); |
| 2594 | if (error) |
| 2595 | goto out_trans_cancel; |
| 2596 | } else { |
| 2597 | /* |
| 2598 | * When removing a non-directory we need to log the parent |
| 2599 | * inode here. For a directory this is done implicitly |
| 2600 | * by the xfs_droplink call for the ".." entry. |
| 2601 | */ |
| 2602 | xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE); |
| 2603 | } |
| 2604 | xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 2605 | |
| 2606 | /* Drop the link from dp to ip. */ |
| 2607 | error = xfs_droplink(tp, ip); |
| 2608 | if (error) |
| 2609 | goto out_trans_cancel; |
| 2610 | |
| 2611 | error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks); |
| 2612 | if (error) { |
| 2613 | ASSERT(error != -ENOENT); |
| 2614 | goto out_trans_cancel; |
| 2615 | } |
| 2616 | |
| 2617 | /* |
| 2618 | * If this is a synchronous mount, make sure that the |
| 2619 | * remove transaction goes to disk before returning to |
| 2620 | * the user. |
| 2621 | */ |
| 2622 | if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 2623 | xfs_trans_set_sync(tp); |
| 2624 | |
| 2625 | error = xfs_trans_commit(tp); |
| 2626 | if (error) |
| 2627 | goto std_return; |
| 2628 | |
| 2629 | if (is_dir && xfs_inode_is_filestream(ip)) |
| 2630 | xfs_filestream_deassociate(ip); |
| 2631 | |
| 2632 | return 0; |
| 2633 | |
| 2634 | out_trans_cancel: |
| 2635 | xfs_trans_cancel(tp); |
| 2636 | std_return: |
| 2637 | return error; |
| 2638 | } |
| 2639 | |
| 2640 | /* |
| 2641 | * Enter all inodes for a rename transaction into a sorted array. |
| 2642 | */ |
| 2643 | #define __XFS_SORT_INODES 5 |
| 2644 | STATIC void |
| 2645 | xfs_sort_for_rename( |
| 2646 | struct xfs_inode *dp1, /* in: old (source) directory inode */ |
| 2647 | struct xfs_inode *dp2, /* in: new (target) directory inode */ |
| 2648 | struct xfs_inode *ip1, /* in: inode of old entry */ |
| 2649 | struct xfs_inode *ip2, /* in: inode of new entry */ |
| 2650 | struct xfs_inode *wip, /* in: whiteout inode */ |
| 2651 | struct xfs_inode **i_tab,/* out: sorted array of inodes */ |
| 2652 | int *num_inodes) /* in/out: inodes in array */ |
| 2653 | { |
| 2654 | int i, j; |
| 2655 | |
| 2656 | ASSERT(*num_inodes == __XFS_SORT_INODES); |
| 2657 | memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *)); |
| 2658 | |
| 2659 | /* |
| 2660 | * i_tab contains a list of pointers to inodes. We initialize |
| 2661 | * the table here & we'll sort it. We will then use it to |
| 2662 | * order the acquisition of the inode locks. |
| 2663 | * |
| 2664 | * Note that the table may contain duplicates. e.g., dp1 == dp2. |
| 2665 | */ |
| 2666 | i = 0; |
| 2667 | i_tab[i++] = dp1; |
| 2668 | i_tab[i++] = dp2; |
| 2669 | i_tab[i++] = ip1; |
| 2670 | if (ip2) |
| 2671 | i_tab[i++] = ip2; |
| 2672 | if (wip) |
| 2673 | i_tab[i++] = wip; |
| 2674 | *num_inodes = i; |
| 2675 | |
| 2676 | /* |
| 2677 | * Sort the elements via bubble sort. (Remember, there are at |
| 2678 | * most 5 elements to sort, so this is adequate.) |
| 2679 | */ |
| 2680 | for (i = 0; i < *num_inodes; i++) { |
| 2681 | for (j = 1; j < *num_inodes; j++) { |
| 2682 | if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) { |
| 2683 | struct xfs_inode *temp = i_tab[j]; |
| 2684 | i_tab[j] = i_tab[j-1]; |
| 2685 | i_tab[j-1] = temp; |
| 2686 | } |
| 2687 | } |
| 2688 | } |
| 2689 | } |
| 2690 | |
| 2691 | static int |
| 2692 | xfs_finish_rename( |
| 2693 | struct xfs_trans *tp) |
| 2694 | { |
| 2695 | /* |
| 2696 | * If this is a synchronous mount, make sure that the rename transaction |
| 2697 | * goes to disk before returning to the user. |
| 2698 | */ |
| 2699 | if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) |
| 2700 | xfs_trans_set_sync(tp); |
| 2701 | |
| 2702 | return xfs_trans_commit(tp); |
| 2703 | } |
| 2704 | |
| 2705 | /* |
| 2706 | * xfs_cross_rename() |
| 2707 | * |
| 2708 | * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall |
| 2709 | */ |
| 2710 | STATIC int |
| 2711 | xfs_cross_rename( |
| 2712 | struct xfs_trans *tp, |
| 2713 | struct xfs_inode *dp1, |
| 2714 | struct xfs_name *name1, |
| 2715 | struct xfs_inode *ip1, |
| 2716 | struct xfs_inode *dp2, |
| 2717 | struct xfs_name *name2, |
| 2718 | struct xfs_inode *ip2, |
| 2719 | int spaceres) |
| 2720 | { |
| 2721 | int error = 0; |
| 2722 | int ip1_flags = 0; |
| 2723 | int ip2_flags = 0; |
| 2724 | int dp2_flags = 0; |
| 2725 | |
| 2726 | /* Swap inode number for dirent in first parent */ |
| 2727 | error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres); |
| 2728 | if (error) |
| 2729 | goto out_trans_abort; |
| 2730 | |
| 2731 | /* Swap inode number for dirent in second parent */ |
| 2732 | error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres); |
| 2733 | if (error) |
| 2734 | goto out_trans_abort; |
| 2735 | |
| 2736 | /* |
| 2737 | * If we're renaming one or more directories across different parents, |
| 2738 | * update the respective ".." entries (and link counts) to match the new |
| 2739 | * parents. |
| 2740 | */ |
| 2741 | if (dp1 != dp2) { |
| 2742 | dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| 2743 | |
| 2744 | if (S_ISDIR(VFS_I(ip2)->i_mode)) { |
| 2745 | error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot, |
| 2746 | dp1->i_ino, spaceres); |
| 2747 | if (error) |
| 2748 | goto out_trans_abort; |
| 2749 | |
| 2750 | /* transfer ip2 ".." reference to dp1 */ |
| 2751 | if (!S_ISDIR(VFS_I(ip1)->i_mode)) { |
| 2752 | error = xfs_droplink(tp, dp2); |
| 2753 | if (error) |
| 2754 | goto out_trans_abort; |
| 2755 | error = xfs_bumplink(tp, dp1); |
| 2756 | if (error) |
| 2757 | goto out_trans_abort; |
| 2758 | } |
| 2759 | |
| 2760 | /* |
| 2761 | * Although ip1 isn't changed here, userspace needs |
| 2762 | * to be warned about the change, so that applications |
| 2763 | * relying on it (like backup ones), will properly |
| 2764 | * notify the change |
| 2765 | */ |
| 2766 | ip1_flags |= XFS_ICHGTIME_CHG; |
| 2767 | ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| 2768 | } |
| 2769 | |
| 2770 | if (S_ISDIR(VFS_I(ip1)->i_mode)) { |
| 2771 | error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot, |
| 2772 | dp2->i_ino, spaceres); |
| 2773 | if (error) |
| 2774 | goto out_trans_abort; |
| 2775 | |
| 2776 | /* transfer ip1 ".." reference to dp2 */ |
| 2777 | if (!S_ISDIR(VFS_I(ip2)->i_mode)) { |
| 2778 | error = xfs_droplink(tp, dp1); |
| 2779 | if (error) |
| 2780 | goto out_trans_abort; |
| 2781 | error = xfs_bumplink(tp, dp2); |
| 2782 | if (error) |
| 2783 | goto out_trans_abort; |
| 2784 | } |
| 2785 | |
| 2786 | /* |
| 2787 | * Although ip2 isn't changed here, userspace needs |
| 2788 | * to be warned about the change, so that applications |
| 2789 | * relying on it (like backup ones), will properly |
| 2790 | * notify the change |
| 2791 | */ |
| 2792 | ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG; |
| 2793 | ip2_flags |= XFS_ICHGTIME_CHG; |
| 2794 | } |
| 2795 | } |
| 2796 | |
| 2797 | if (ip1_flags) { |
| 2798 | xfs_trans_ichgtime(tp, ip1, ip1_flags); |
| 2799 | xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE); |
| 2800 | } |
| 2801 | if (ip2_flags) { |
| 2802 | xfs_trans_ichgtime(tp, ip2, ip2_flags); |
| 2803 | xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE); |
| 2804 | } |
| 2805 | if (dp2_flags) { |
| 2806 | xfs_trans_ichgtime(tp, dp2, dp2_flags); |
| 2807 | xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE); |
| 2808 | } |
| 2809 | xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 2810 | xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE); |
| 2811 | return xfs_finish_rename(tp); |
| 2812 | |
| 2813 | out_trans_abort: |
| 2814 | xfs_trans_cancel(tp); |
| 2815 | return error; |
| 2816 | } |
| 2817 | |
| 2818 | /* |
| 2819 | * xfs_rename_alloc_whiteout() |
| 2820 | * |
| 2821 | * Return a referenced, unlinked, unlocked inode that that can be used as a |
| 2822 | * whiteout in a rename transaction. We use a tmpfile inode here so that if we |
| 2823 | * crash between allocating the inode and linking it into the rename transaction |
| 2824 | * recovery will free the inode and we won't leak it. |
| 2825 | */ |
| 2826 | static int |
| 2827 | xfs_rename_alloc_whiteout( |
| 2828 | struct xfs_inode *dp, |
| 2829 | struct xfs_inode **wip) |
| 2830 | { |
| 2831 | struct xfs_inode *tmpfile; |
| 2832 | int error; |
| 2833 | |
| 2834 | error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile); |
| 2835 | if (error) |
| 2836 | return error; |
| 2837 | |
| 2838 | /* |
| 2839 | * Prepare the tmpfile inode as if it were created through the VFS. |
| 2840 | * Otherwise, the link increment paths will complain about nlink 0->1. |
| 2841 | * Drop the link count as done by d_tmpfile(), complete the inode setup |
| 2842 | * and flag it as linkable. |
| 2843 | */ |
| 2844 | drop_nlink(VFS_I(tmpfile)); |
| 2845 | xfs_setup_iops(tmpfile); |
| 2846 | xfs_finish_inode_setup(tmpfile); |
| 2847 | VFS_I(tmpfile)->i_state |= I_LINKABLE; |
| 2848 | |
| 2849 | *wip = tmpfile; |
| 2850 | return 0; |
| 2851 | } |
| 2852 | |
| 2853 | /* |
| 2854 | * xfs_rename |
| 2855 | */ |
| 2856 | int |
| 2857 | xfs_rename( |
| 2858 | struct xfs_inode *src_dp, |
| 2859 | struct xfs_name *src_name, |
| 2860 | struct xfs_inode *src_ip, |
| 2861 | struct xfs_inode *target_dp, |
| 2862 | struct xfs_name *target_name, |
| 2863 | struct xfs_inode *target_ip, |
| 2864 | unsigned int flags) |
| 2865 | { |
| 2866 | struct xfs_mount *mp = src_dp->i_mount; |
| 2867 | struct xfs_trans *tp; |
| 2868 | struct xfs_inode *wip = NULL; /* whiteout inode */ |
| 2869 | struct xfs_inode *inodes[__XFS_SORT_INODES]; |
| 2870 | int num_inodes = __XFS_SORT_INODES; |
| 2871 | bool new_parent = (src_dp != target_dp); |
| 2872 | bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode); |
| 2873 | int spaceres; |
| 2874 | int error; |
| 2875 | |
| 2876 | trace_xfs_rename(src_dp, target_dp, src_name, target_name); |
| 2877 | |
| 2878 | if ((flags & RENAME_EXCHANGE) && !target_ip) |
| 2879 | return -EINVAL; |
| 2880 | |
| 2881 | /* |
| 2882 | * If we are doing a whiteout operation, allocate the whiteout inode |
| 2883 | * we will be placing at the target and ensure the type is set |
| 2884 | * appropriately. |
| 2885 | */ |
| 2886 | if (flags & RENAME_WHITEOUT) { |
| 2887 | ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE))); |
| 2888 | error = xfs_rename_alloc_whiteout(target_dp, &wip); |
| 2889 | if (error) |
| 2890 | return error; |
| 2891 | |
| 2892 | /* setup target dirent info as whiteout */ |
| 2893 | src_name->type = XFS_DIR3_FT_CHRDEV; |
| 2894 | } |
| 2895 | |
| 2896 | xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip, |
| 2897 | inodes, &num_inodes); |
| 2898 | |
| 2899 | spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len); |
| 2900 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp); |
| 2901 | if (error == -ENOSPC) { |
| 2902 | spaceres = 0; |
| 2903 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0, |
| 2904 | &tp); |
| 2905 | } |
| 2906 | if (error) |
| 2907 | goto out_release_wip; |
| 2908 | |
| 2909 | /* |
| 2910 | * Attach the dquots to the inodes |
| 2911 | */ |
| 2912 | error = xfs_qm_vop_rename_dqattach(inodes); |
| 2913 | if (error) |
| 2914 | goto out_trans_cancel; |
| 2915 | |
| 2916 | /* |
| 2917 | * Lock all the participating inodes. Depending upon whether |
| 2918 | * the target_name exists in the target directory, and |
| 2919 | * whether the target directory is the same as the source |
| 2920 | * directory, we can lock from 2 to 4 inodes. |
| 2921 | */ |
| 2922 | xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL); |
| 2923 | |
| 2924 | /* |
| 2925 | * Join all the inodes to the transaction. From this point on, |
| 2926 | * we can rely on either trans_commit or trans_cancel to unlock |
| 2927 | * them. |
| 2928 | */ |
| 2929 | xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL); |
| 2930 | if (new_parent) |
| 2931 | xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL); |
| 2932 | xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL); |
| 2933 | if (target_ip) |
| 2934 | xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL); |
| 2935 | if (wip) |
| 2936 | xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL); |
| 2937 | |
| 2938 | /* |
| 2939 | * If we are using project inheritance, we only allow renames |
| 2940 | * into our tree when the project IDs are the same; else the |
| 2941 | * tree quota mechanism would be circumvented. |
| 2942 | */ |
| 2943 | if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && |
| 2944 | (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) { |
| 2945 | error = -EXDEV; |
| 2946 | goto out_trans_cancel; |
| 2947 | } |
| 2948 | |
| 2949 | /* RENAME_EXCHANGE is unique from here on. */ |
| 2950 | if (flags & RENAME_EXCHANGE) |
| 2951 | return xfs_cross_rename(tp, src_dp, src_name, src_ip, |
| 2952 | target_dp, target_name, target_ip, |
| 2953 | spaceres); |
| 2954 | |
| 2955 | /* |
| 2956 | * Set up the target. |
| 2957 | */ |
| 2958 | if (target_ip == NULL) { |
| 2959 | /* |
| 2960 | * If there's no space reservation, check the entry will |
| 2961 | * fit before actually inserting it. |
| 2962 | */ |
| 2963 | if (!spaceres) { |
| 2964 | error = xfs_dir_canenter(tp, target_dp, target_name); |
| 2965 | if (error) |
| 2966 | goto out_trans_cancel; |
| 2967 | } |
| 2968 | /* |
| 2969 | * If target does not exist and the rename crosses |
| 2970 | * directories, adjust the target directory link count |
| 2971 | * to account for the ".." reference from the new entry. |
| 2972 | */ |
| 2973 | error = xfs_dir_createname(tp, target_dp, target_name, |
| 2974 | src_ip->i_ino, spaceres); |
| 2975 | if (error) |
| 2976 | goto out_trans_cancel; |
| 2977 | |
| 2978 | xfs_trans_ichgtime(tp, target_dp, |
| 2979 | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 2980 | |
| 2981 | if (new_parent && src_is_directory) { |
| 2982 | error = xfs_bumplink(tp, target_dp); |
| 2983 | if (error) |
| 2984 | goto out_trans_cancel; |
| 2985 | } |
| 2986 | } else { /* target_ip != NULL */ |
| 2987 | /* |
| 2988 | * If target exists and it's a directory, check that both |
| 2989 | * target and source are directories and that target can be |
| 2990 | * destroyed, or that neither is a directory. |
| 2991 | */ |
| 2992 | if (S_ISDIR(VFS_I(target_ip)->i_mode)) { |
| 2993 | /* |
| 2994 | * Make sure target dir is empty. |
| 2995 | */ |
| 2996 | if (!(xfs_dir_isempty(target_ip)) || |
| 2997 | (VFS_I(target_ip)->i_nlink > 2)) { |
| 2998 | error = -EEXIST; |
| 2999 | goto out_trans_cancel; |
| 3000 | } |
| 3001 | } |
| 3002 | |
| 3003 | /* |
| 3004 | * Link the source inode under the target name. |
| 3005 | * If the source inode is a directory and we are moving |
| 3006 | * it across directories, its ".." entry will be |
| 3007 | * inconsistent until we replace that down below. |
| 3008 | * |
| 3009 | * In case there is already an entry with the same |
| 3010 | * name at the destination directory, remove it first. |
| 3011 | */ |
| 3012 | error = xfs_dir_replace(tp, target_dp, target_name, |
| 3013 | src_ip->i_ino, spaceres); |
| 3014 | if (error) |
| 3015 | goto out_trans_cancel; |
| 3016 | |
| 3017 | xfs_trans_ichgtime(tp, target_dp, |
| 3018 | XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 3019 | |
| 3020 | /* |
| 3021 | * Decrement the link count on the target since the target |
| 3022 | * dir no longer points to it. |
| 3023 | */ |
| 3024 | error = xfs_droplink(tp, target_ip); |
| 3025 | if (error) |
| 3026 | goto out_trans_cancel; |
| 3027 | |
| 3028 | if (src_is_directory) { |
| 3029 | /* |
| 3030 | * Drop the link from the old "." entry. |
| 3031 | */ |
| 3032 | error = xfs_droplink(tp, target_ip); |
| 3033 | if (error) |
| 3034 | goto out_trans_cancel; |
| 3035 | } |
| 3036 | } /* target_ip != NULL */ |
| 3037 | |
| 3038 | /* |
| 3039 | * Remove the source. |
| 3040 | */ |
| 3041 | if (new_parent && src_is_directory) { |
| 3042 | /* |
| 3043 | * Rewrite the ".." entry to point to the new |
| 3044 | * directory. |
| 3045 | */ |
| 3046 | error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot, |
| 3047 | target_dp->i_ino, spaceres); |
| 3048 | ASSERT(error != -EEXIST); |
| 3049 | if (error) |
| 3050 | goto out_trans_cancel; |
| 3051 | } |
| 3052 | |
| 3053 | /* |
| 3054 | * We always want to hit the ctime on the source inode. |
| 3055 | * |
| 3056 | * This isn't strictly required by the standards since the source |
| 3057 | * inode isn't really being changed, but old unix file systems did |
| 3058 | * it and some incremental backup programs won't work without it. |
| 3059 | */ |
| 3060 | xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG); |
| 3061 | xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE); |
| 3062 | |
| 3063 | /* |
| 3064 | * Adjust the link count on src_dp. This is necessary when |
| 3065 | * renaming a directory, either within one parent when |
| 3066 | * the target existed, or across two parent directories. |
| 3067 | */ |
| 3068 | if (src_is_directory && (new_parent || target_ip != NULL)) { |
| 3069 | |
| 3070 | /* |
| 3071 | * Decrement link count on src_directory since the |
| 3072 | * entry that's moved no longer points to it. |
| 3073 | */ |
| 3074 | error = xfs_droplink(tp, src_dp); |
| 3075 | if (error) |
| 3076 | goto out_trans_cancel; |
| 3077 | } |
| 3078 | |
| 3079 | /* |
| 3080 | * For whiteouts, we only need to update the source dirent with the |
| 3081 | * inode number of the whiteout inode rather than removing it |
| 3082 | * altogether. |
| 3083 | */ |
| 3084 | if (wip) { |
| 3085 | error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino, |
| 3086 | spaceres); |
| 3087 | } else |
| 3088 | error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino, |
| 3089 | spaceres); |
| 3090 | if (error) |
| 3091 | goto out_trans_cancel; |
| 3092 | |
| 3093 | /* |
| 3094 | * For whiteouts, we need to bump the link count on the whiteout inode. |
| 3095 | * This means that failures all the way up to this point leave the inode |
| 3096 | * on the unlinked list and so cleanup is a simple matter of dropping |
| 3097 | * the remaining reference to it. If we fail here after bumping the link |
| 3098 | * count, we're shutting down the filesystem so we'll never see the |
| 3099 | * intermediate state on disk. |
| 3100 | */ |
| 3101 | if (wip) { |
| 3102 | ASSERT(VFS_I(wip)->i_nlink == 0); |
| 3103 | error = xfs_bumplink(tp, wip); |
| 3104 | if (error) |
| 3105 | goto out_trans_cancel; |
| 3106 | error = xfs_iunlink_remove(tp, wip); |
| 3107 | if (error) |
| 3108 | goto out_trans_cancel; |
| 3109 | xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE); |
| 3110 | |
| 3111 | /* |
| 3112 | * Now we have a real link, clear the "I'm a tmpfile" state |
| 3113 | * flag from the inode so it doesn't accidentally get misused in |
| 3114 | * future. |
| 3115 | */ |
| 3116 | VFS_I(wip)->i_state &= ~I_LINKABLE; |
| 3117 | } |
| 3118 | |
| 3119 | xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG); |
| 3120 | xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE); |
| 3121 | if (new_parent) |
| 3122 | xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE); |
| 3123 | |
| 3124 | error = xfs_finish_rename(tp); |
| 3125 | if (wip) |
| 3126 | xfs_irele(wip); |
| 3127 | return error; |
| 3128 | |
| 3129 | out_trans_cancel: |
| 3130 | xfs_trans_cancel(tp); |
| 3131 | out_release_wip: |
| 3132 | if (wip) |
| 3133 | xfs_irele(wip); |
| 3134 | return error; |
| 3135 | } |
| 3136 | |
| 3137 | STATIC int |
| 3138 | xfs_iflush_cluster( |
| 3139 | struct xfs_inode *ip, |
| 3140 | struct xfs_buf *bp) |
| 3141 | { |
| 3142 | struct xfs_mount *mp = ip->i_mount; |
| 3143 | struct xfs_perag *pag; |
| 3144 | unsigned long first_index, mask; |
| 3145 | unsigned long inodes_per_cluster; |
| 3146 | int cilist_size; |
| 3147 | struct xfs_inode **cilist; |
| 3148 | struct xfs_inode *cip; |
| 3149 | int nr_found; |
| 3150 | int clcount = 0; |
| 3151 | int i; |
| 3152 | |
| 3153 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); |
| 3154 | |
| 3155 | inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog; |
| 3156 | cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *); |
| 3157 | cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS); |
| 3158 | if (!cilist) |
| 3159 | goto out_put; |
| 3160 | |
| 3161 | mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1); |
| 3162 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask; |
| 3163 | rcu_read_lock(); |
| 3164 | /* really need a gang lookup range call here */ |
| 3165 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist, |
| 3166 | first_index, inodes_per_cluster); |
| 3167 | if (nr_found == 0) |
| 3168 | goto out_free; |
| 3169 | |
| 3170 | for (i = 0; i < nr_found; i++) { |
| 3171 | cip = cilist[i]; |
| 3172 | if (cip == ip) |
| 3173 | continue; |
| 3174 | |
| 3175 | /* |
| 3176 | * because this is an RCU protected lookup, we could find a |
| 3177 | * recently freed or even reallocated inode during the lookup. |
| 3178 | * We need to check under the i_flags_lock for a valid inode |
| 3179 | * here. Skip it if it is not valid or the wrong inode. |
| 3180 | */ |
| 3181 | spin_lock(&cip->i_flags_lock); |
| 3182 | if (!cip->i_ino || |
| 3183 | __xfs_iflags_test(cip, XFS_ISTALE)) { |
| 3184 | spin_unlock(&cip->i_flags_lock); |
| 3185 | continue; |
| 3186 | } |
| 3187 | |
| 3188 | /* |
| 3189 | * Once we fall off the end of the cluster, no point checking |
| 3190 | * any more inodes in the list because they will also all be |
| 3191 | * outside the cluster. |
| 3192 | */ |
| 3193 | if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) { |
| 3194 | spin_unlock(&cip->i_flags_lock); |
| 3195 | break; |
| 3196 | } |
| 3197 | spin_unlock(&cip->i_flags_lock); |
| 3198 | |
| 3199 | /* |
| 3200 | * Do an un-protected check to see if the inode is dirty and |
| 3201 | * is a candidate for flushing. These checks will be repeated |
| 3202 | * later after the appropriate locks are acquired. |
| 3203 | */ |
| 3204 | if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0) |
| 3205 | continue; |
| 3206 | |
| 3207 | /* |
| 3208 | * Try to get locks. If any are unavailable or it is pinned, |
| 3209 | * then this inode cannot be flushed and is skipped. |
| 3210 | */ |
| 3211 | |
| 3212 | if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED)) |
| 3213 | continue; |
| 3214 | if (!xfs_iflock_nowait(cip)) { |
| 3215 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3216 | continue; |
| 3217 | } |
| 3218 | if (xfs_ipincount(cip)) { |
| 3219 | xfs_ifunlock(cip); |
| 3220 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3221 | continue; |
| 3222 | } |
| 3223 | |
| 3224 | |
| 3225 | /* |
| 3226 | * Check the inode number again, just to be certain we are not |
| 3227 | * racing with freeing in xfs_reclaim_inode(). See the comments |
| 3228 | * in that function for more information as to why the initial |
| 3229 | * check is not sufficient. |
| 3230 | */ |
| 3231 | if (!cip->i_ino) { |
| 3232 | xfs_ifunlock(cip); |
| 3233 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3234 | continue; |
| 3235 | } |
| 3236 | |
| 3237 | /* |
| 3238 | * arriving here means that this inode can be flushed. First |
| 3239 | * re-check that it's dirty before flushing. |
| 3240 | */ |
| 3241 | if (!xfs_inode_clean(cip)) { |
| 3242 | int error; |
| 3243 | error = xfs_iflush_int(cip, bp); |
| 3244 | if (error) { |
| 3245 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3246 | goto cluster_corrupt_out; |
| 3247 | } |
| 3248 | clcount++; |
| 3249 | } else { |
| 3250 | xfs_ifunlock(cip); |
| 3251 | } |
| 3252 | xfs_iunlock(cip, XFS_ILOCK_SHARED); |
| 3253 | } |
| 3254 | |
| 3255 | if (clcount) { |
| 3256 | XFS_STATS_INC(mp, xs_icluster_flushcnt); |
| 3257 | XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount); |
| 3258 | } |
| 3259 | |
| 3260 | out_free: |
| 3261 | rcu_read_unlock(); |
| 3262 | kmem_free(cilist); |
| 3263 | out_put: |
| 3264 | xfs_perag_put(pag); |
| 3265 | return 0; |
| 3266 | |
| 3267 | |
| 3268 | cluster_corrupt_out: |
| 3269 | /* |
| 3270 | * Corruption detected in the clustering loop. Invalidate the |
| 3271 | * inode buffer and shut down the filesystem. |
| 3272 | */ |
| 3273 | rcu_read_unlock(); |
| 3274 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| 3275 | |
| 3276 | /* |
| 3277 | * We'll always have an inode attached to the buffer for completion |
| 3278 | * process by the time we are called from xfs_iflush(). Hence we have |
| 3279 | * always need to do IO completion processing to abort the inodes |
| 3280 | * attached to the buffer. handle them just like the shutdown case in |
| 3281 | * xfs_buf_submit(). |
| 3282 | */ |
| 3283 | ASSERT(bp->b_iodone); |
| 3284 | bp->b_flags &= ~XBF_DONE; |
| 3285 | xfs_buf_stale(bp); |
| 3286 | xfs_buf_ioerror(bp, -EIO); |
| 3287 | xfs_buf_ioend(bp); |
| 3288 | |
| 3289 | /* abort the corrupt inode, as it was not attached to the buffer */ |
| 3290 | xfs_iflush_abort(cip, false); |
| 3291 | kmem_free(cilist); |
| 3292 | xfs_perag_put(pag); |
| 3293 | return -EFSCORRUPTED; |
| 3294 | } |
| 3295 | |
| 3296 | /* |
| 3297 | * Flush dirty inode metadata into the backing buffer. |
| 3298 | * |
| 3299 | * The caller must have the inode lock and the inode flush lock held. The |
| 3300 | * inode lock will still be held upon return to the caller, and the inode |
| 3301 | * flush lock will be released after the inode has reached the disk. |
| 3302 | * |
| 3303 | * The caller must write out the buffer returned in *bpp and release it. |
| 3304 | */ |
| 3305 | int |
| 3306 | xfs_iflush( |
| 3307 | struct xfs_inode *ip, |
| 3308 | struct xfs_buf **bpp) |
| 3309 | { |
| 3310 | struct xfs_mount *mp = ip->i_mount; |
| 3311 | struct xfs_buf *bp = NULL; |
| 3312 | struct xfs_dinode *dip; |
| 3313 | int error; |
| 3314 | |
| 3315 | XFS_STATS_INC(mp, xs_iflush_count); |
| 3316 | |
| 3317 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| 3318 | ASSERT(xfs_isiflocked(ip)); |
| 3319 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| 3320 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
| 3321 | |
| 3322 | *bpp = NULL; |
| 3323 | |
| 3324 | xfs_iunpin_wait(ip); |
| 3325 | |
| 3326 | /* |
| 3327 | * For stale inodes we cannot rely on the backing buffer remaining |
| 3328 | * stale in cache for the remaining life of the stale inode and so |
| 3329 | * xfs_imap_to_bp() below may give us a buffer that no longer contains |
| 3330 | * inodes below. We have to check this after ensuring the inode is |
| 3331 | * unpinned so that it is safe to reclaim the stale inode after the |
| 3332 | * flush call. |
| 3333 | */ |
| 3334 | if (xfs_iflags_test(ip, XFS_ISTALE)) { |
| 3335 | xfs_ifunlock(ip); |
| 3336 | return 0; |
| 3337 | } |
| 3338 | |
| 3339 | /* |
| 3340 | * This may have been unpinned because the filesystem is shutting |
| 3341 | * down forcibly. If that's the case we must not write this inode |
| 3342 | * to disk, because the log record didn't make it to disk. |
| 3343 | * |
| 3344 | * We also have to remove the log item from the AIL in this case, |
| 3345 | * as we wait for an empty AIL as part of the unmount process. |
| 3346 | */ |
| 3347 | if (XFS_FORCED_SHUTDOWN(mp)) { |
| 3348 | error = -EIO; |
| 3349 | goto abort_out; |
| 3350 | } |
| 3351 | |
| 3352 | /* |
| 3353 | * Get the buffer containing the on-disk inode. We are doing a try-lock |
| 3354 | * operation here, so we may get an EAGAIN error. In that case, we |
| 3355 | * simply want to return with the inode still dirty. |
| 3356 | * |
| 3357 | * If we get any other error, we effectively have a corruption situation |
| 3358 | * and we cannot flush the inode, so we treat it the same as failing |
| 3359 | * xfs_iflush_int(). |
| 3360 | */ |
| 3361 | error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK, |
| 3362 | 0); |
| 3363 | if (error == -EAGAIN) { |
| 3364 | xfs_ifunlock(ip); |
| 3365 | return error; |
| 3366 | } |
| 3367 | if (error) |
| 3368 | goto corrupt_out; |
| 3369 | |
| 3370 | /* |
| 3371 | * First flush out the inode that xfs_iflush was called with. |
| 3372 | */ |
| 3373 | error = xfs_iflush_int(ip, bp); |
| 3374 | if (error) |
| 3375 | goto corrupt_out; |
| 3376 | |
| 3377 | /* |
| 3378 | * If the buffer is pinned then push on the log now so we won't |
| 3379 | * get stuck waiting in the write for too long. |
| 3380 | */ |
| 3381 | if (xfs_buf_ispinned(bp)) |
| 3382 | xfs_log_force(mp, 0); |
| 3383 | |
| 3384 | /* |
| 3385 | * inode clustering: try to gather other inodes into this write |
| 3386 | * |
| 3387 | * Note: Any error during clustering will result in the filesystem |
| 3388 | * being shut down and completion callbacks run on the cluster buffer. |
| 3389 | * As we have already flushed and attached this inode to the buffer, |
| 3390 | * it has already been aborted and released by xfs_iflush_cluster() and |
| 3391 | * so we have no further error handling to do here. |
| 3392 | */ |
| 3393 | error = xfs_iflush_cluster(ip, bp); |
| 3394 | if (error) |
| 3395 | return error; |
| 3396 | |
| 3397 | *bpp = bp; |
| 3398 | return 0; |
| 3399 | |
| 3400 | corrupt_out: |
| 3401 | if (bp) |
| 3402 | xfs_buf_relse(bp); |
| 3403 | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); |
| 3404 | abort_out: |
| 3405 | /* abort the corrupt inode, as it was not attached to the buffer */ |
| 3406 | xfs_iflush_abort(ip, false); |
| 3407 | return error; |
| 3408 | } |
| 3409 | |
| 3410 | /* |
| 3411 | * If there are inline format data / attr forks attached to this inode, |
| 3412 | * make sure they're not corrupt. |
| 3413 | */ |
| 3414 | bool |
| 3415 | xfs_inode_verify_forks( |
| 3416 | struct xfs_inode *ip) |
| 3417 | { |
| 3418 | struct xfs_ifork *ifp; |
| 3419 | xfs_failaddr_t fa; |
| 3420 | |
| 3421 | fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops); |
| 3422 | if (fa) { |
| 3423 | ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); |
| 3424 | xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", |
| 3425 | ifp->if_u1.if_data, ifp->if_bytes, fa); |
| 3426 | return false; |
| 3427 | } |
| 3428 | |
| 3429 | fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops); |
| 3430 | if (fa) { |
| 3431 | ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK); |
| 3432 | xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", |
| 3433 | ifp ? ifp->if_u1.if_data : NULL, |
| 3434 | ifp ? ifp->if_bytes : 0, fa); |
| 3435 | return false; |
| 3436 | } |
| 3437 | return true; |
| 3438 | } |
| 3439 | |
| 3440 | STATIC int |
| 3441 | xfs_iflush_int( |
| 3442 | struct xfs_inode *ip, |
| 3443 | struct xfs_buf *bp) |
| 3444 | { |
| 3445 | struct xfs_inode_log_item *iip = ip->i_itemp; |
| 3446 | struct xfs_dinode *dip; |
| 3447 | struct xfs_mount *mp = ip->i_mount; |
| 3448 | |
| 3449 | ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); |
| 3450 | ASSERT(xfs_isiflocked(ip)); |
| 3451 | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || |
| 3452 | ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); |
| 3453 | ASSERT(iip != NULL && iip->ili_fields != 0); |
| 3454 | ASSERT(ip->i_d.di_version > 1); |
| 3455 | |
| 3456 | /* set *dip = inode's place in the buffer */ |
| 3457 | dip = xfs_buf_offset(bp, ip->i_imap.im_boffset); |
| 3458 | |
| 3459 | if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC), |
| 3460 | mp, XFS_ERRTAG_IFLUSH_1)) { |
| 3461 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3462 | "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT, |
| 3463 | __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip); |
| 3464 | goto corrupt_out; |
| 3465 | } |
| 3466 | if (S_ISREG(VFS_I(ip)->i_mode)) { |
| 3467 | if (XFS_TEST_ERROR( |
| 3468 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3469 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE), |
| 3470 | mp, XFS_ERRTAG_IFLUSH_3)) { |
| 3471 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3472 | "%s: Bad regular inode %Lu, ptr "PTR_FMT, |
| 3473 | __func__, ip->i_ino, ip); |
| 3474 | goto corrupt_out; |
| 3475 | } |
| 3476 | } else if (S_ISDIR(VFS_I(ip)->i_mode)) { |
| 3477 | if (XFS_TEST_ERROR( |
| 3478 | (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) && |
| 3479 | (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) && |
| 3480 | (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL), |
| 3481 | mp, XFS_ERRTAG_IFLUSH_4)) { |
| 3482 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3483 | "%s: Bad directory inode %Lu, ptr "PTR_FMT, |
| 3484 | __func__, ip->i_ino, ip); |
| 3485 | goto corrupt_out; |
| 3486 | } |
| 3487 | } |
| 3488 | if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents > |
| 3489 | ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) { |
| 3490 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3491 | "%s: detected corrupt incore inode %Lu, " |
| 3492 | "total extents = %d, nblocks = %Ld, ptr "PTR_FMT, |
| 3493 | __func__, ip->i_ino, |
| 3494 | ip->i_d.di_nextents + ip->i_d.di_anextents, |
| 3495 | ip->i_d.di_nblocks, ip); |
| 3496 | goto corrupt_out; |
| 3497 | } |
| 3498 | if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize, |
| 3499 | mp, XFS_ERRTAG_IFLUSH_6)) { |
| 3500 | xfs_alert_tag(mp, XFS_PTAG_IFLUSH, |
| 3501 | "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT, |
| 3502 | __func__, ip->i_ino, ip->i_d.di_forkoff, ip); |
| 3503 | goto corrupt_out; |
| 3504 | } |
| 3505 | |
| 3506 | /* |
| 3507 | * Inode item log recovery for v2 inodes are dependent on the |
| 3508 | * di_flushiter count for correct sequencing. We bump the flush |
| 3509 | * iteration count so we can detect flushes which postdate a log record |
| 3510 | * during recovery. This is redundant as we now log every change and |
| 3511 | * hence this can't happen but we need to still do it to ensure |
| 3512 | * backwards compatibility with old kernels that predate logging all |
| 3513 | * inode changes. |
| 3514 | */ |
| 3515 | if (ip->i_d.di_version < 3) |
| 3516 | ip->i_d.di_flushiter++; |
| 3517 | |
| 3518 | /* Check the inline fork data before we write out. */ |
| 3519 | if (!xfs_inode_verify_forks(ip)) |
| 3520 | goto corrupt_out; |
| 3521 | |
| 3522 | /* |
| 3523 | * Copy the dirty parts of the inode into the on-disk inode. We always |
| 3524 | * copy out the core of the inode, because if the inode is dirty at all |
| 3525 | * the core must be. |
| 3526 | */ |
| 3527 | xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn); |
| 3528 | |
| 3529 | /* Wrap, we never let the log put out DI_MAX_FLUSH */ |
| 3530 | if (ip->i_d.di_flushiter == DI_MAX_FLUSH) |
| 3531 | ip->i_d.di_flushiter = 0; |
| 3532 | |
| 3533 | xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK); |
| 3534 | if (XFS_IFORK_Q(ip)) |
| 3535 | xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK); |
| 3536 | xfs_inobp_check(mp, bp); |
| 3537 | |
| 3538 | /* |
| 3539 | * We've recorded everything logged in the inode, so we'd like to clear |
| 3540 | * the ili_fields bits so we don't log and flush things unnecessarily. |
| 3541 | * However, we can't stop logging all this information until the data |
| 3542 | * we've copied into the disk buffer is written to disk. If we did we |
| 3543 | * might overwrite the copy of the inode in the log with all the data |
| 3544 | * after re-logging only part of it, and in the face of a crash we |
| 3545 | * wouldn't have all the data we need to recover. |
| 3546 | * |
| 3547 | * What we do is move the bits to the ili_last_fields field. When |
| 3548 | * logging the inode, these bits are moved back to the ili_fields field. |
| 3549 | * In the xfs_iflush_done() routine we clear ili_last_fields, since we |
| 3550 | * know that the information those bits represent is permanently on |
| 3551 | * disk. As long as the flush completes before the inode is logged |
| 3552 | * again, then both ili_fields and ili_last_fields will be cleared. |
| 3553 | * |
| 3554 | * We can play with the ili_fields bits here, because the inode lock |
| 3555 | * must be held exclusively in order to set bits there and the flush |
| 3556 | * lock protects the ili_last_fields bits. Set ili_logged so the flush |
| 3557 | * done routine can tell whether or not to look in the AIL. Also, store |
| 3558 | * the current LSN of the inode so that we can tell whether the item has |
| 3559 | * moved in the AIL from xfs_iflush_done(). In order to read the lsn we |
| 3560 | * need the AIL lock, because it is a 64 bit value that cannot be read |
| 3561 | * atomically. |
| 3562 | */ |
| 3563 | iip->ili_last_fields = iip->ili_fields; |
| 3564 | iip->ili_fields = 0; |
| 3565 | iip->ili_fsync_fields = 0; |
| 3566 | iip->ili_logged = 1; |
| 3567 | |
| 3568 | xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, |
| 3569 | &iip->ili_item.li_lsn); |
| 3570 | |
| 3571 | /* |
| 3572 | * Attach the function xfs_iflush_done to the inode's |
| 3573 | * buffer. This will remove the inode from the AIL |
| 3574 | * and unlock the inode's flush lock when the inode is |
| 3575 | * completely written to disk. |
| 3576 | */ |
| 3577 | xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item); |
| 3578 | |
| 3579 | /* generate the checksum. */ |
| 3580 | xfs_dinode_calc_crc(mp, dip); |
| 3581 | |
| 3582 | ASSERT(!list_empty(&bp->b_li_list)); |
| 3583 | ASSERT(bp->b_iodone != NULL); |
| 3584 | return 0; |
| 3585 | |
| 3586 | corrupt_out: |
| 3587 | return -EFSCORRUPTED; |
| 3588 | } |
| 3589 | |
| 3590 | /* Release an inode. */ |
| 3591 | void |
| 3592 | xfs_irele( |
| 3593 | struct xfs_inode *ip) |
| 3594 | { |
| 3595 | trace_xfs_irele(ip, _RET_IP_); |
| 3596 | iput(VFS_I(ip)); |
| 3597 | } |