v4.19.13 snapshot.
diff --git a/fs/xfs/xfs_inode.c b/fs/xfs/xfs_inode.c
new file mode 100644
index 0000000..05db954
--- /dev/null
+++ b/fs/xfs/xfs_inode.c
@@ -0,0 +1,3597 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2006 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include <linux/log2.h>
+#include <linux/iversion.h>
+
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_sb.h"
+#include "xfs_mount.h"
+#include "xfs_defer.h"
+#include "xfs_inode.h"
+#include "xfs_da_format.h"
+#include "xfs_da_btree.h"
+#include "xfs_dir2.h"
+#include "xfs_attr_sf.h"
+#include "xfs_attr.h"
+#include "xfs_trans_space.h"
+#include "xfs_trans.h"
+#include "xfs_buf_item.h"
+#include "xfs_inode_item.h"
+#include "xfs_ialloc.h"
+#include "xfs_bmap.h"
+#include "xfs_bmap_util.h"
+#include "xfs_errortag.h"
+#include "xfs_error.h"
+#include "xfs_quota.h"
+#include "xfs_filestream.h"
+#include "xfs_cksum.h"
+#include "xfs_trace.h"
+#include "xfs_icache.h"
+#include "xfs_symlink.h"
+#include "xfs_trans_priv.h"
+#include "xfs_log.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_reflink.h"
+#include "xfs_dir2_priv.h"
+
+kmem_zone_t *xfs_inode_zone;
+
+/*
+ * Used in xfs_itruncate_extents().  This is the maximum number of extents
+ * freed from a file in a single transaction.
+ */
+#define	XFS_ITRUNC_MAX_EXTENTS	2
+
+STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
+STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
+STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
+
+/*
+ * helper function to extract extent size hint from inode
+ */
+xfs_extlen_t
+xfs_get_extsz_hint(
+	struct xfs_inode	*ip)
+{
+	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
+		return ip->i_d.di_extsize;
+	if (XFS_IS_REALTIME_INODE(ip))
+		return ip->i_mount->m_sb.sb_rextsize;
+	return 0;
+}
+
+/*
+ * Helper function to extract CoW extent size hint from inode.
+ * Between the extent size hint and the CoW extent size hint, we
+ * return the greater of the two.  If the value is zero (automatic),
+ * use the default size.
+ */
+xfs_extlen_t
+xfs_get_cowextsz_hint(
+	struct xfs_inode	*ip)
+{
+	xfs_extlen_t		a, b;
+
+	a = 0;
+	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
+		a = ip->i_d.di_cowextsize;
+	b = xfs_get_extsz_hint(ip);
+
+	a = max(a, b);
+	if (a == 0)
+		return XFS_DEFAULT_COWEXTSZ_HINT;
+	return a;
+}
+
+/*
+ * These two are wrapper routines around the xfs_ilock() routine used to
+ * centralize some grungy code.  They are used in places that wish to lock the
+ * inode solely for reading the extents.  The reason these places can't just
+ * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
+ * bringing in of the extents from disk for a file in b-tree format.  If the
+ * inode is in b-tree format, then we need to lock the inode exclusively until
+ * the extents are read in.  Locking it exclusively all the time would limit
+ * our parallelism unnecessarily, though.  What we do instead is check to see
+ * if the extents have been read in yet, and only lock the inode exclusively
+ * if they have not.
+ *
+ * The functions return a value which should be given to the corresponding
+ * xfs_iunlock() call.
+ */
+uint
+xfs_ilock_data_map_shared(
+	struct xfs_inode	*ip)
+{
+	uint			lock_mode = XFS_ILOCK_SHARED;
+
+	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
+	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
+		lock_mode = XFS_ILOCK_EXCL;
+	xfs_ilock(ip, lock_mode);
+	return lock_mode;
+}
+
+uint
+xfs_ilock_attr_map_shared(
+	struct xfs_inode	*ip)
+{
+	uint			lock_mode = XFS_ILOCK_SHARED;
+
+	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
+	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
+		lock_mode = XFS_ILOCK_EXCL;
+	xfs_ilock(ip, lock_mode);
+	return lock_mode;
+}
+
+/*
+ * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
+ * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
+ * various combinations of the locks to be obtained.
+ *
+ * The 3 locks should always be ordered so that the IO lock is obtained first,
+ * the mmap lock second and the ilock last in order to prevent deadlock.
+ *
+ * Basic locking order:
+ *
+ * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
+ *
+ * mmap_sem locking order:
+ *
+ * i_rwsem -> page lock -> mmap_sem
+ * mmap_sem -> i_mmap_lock -> page_lock
+ *
+ * The difference in mmap_sem locking order mean that we cannot hold the
+ * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
+ * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
+ * in get_user_pages() to map the user pages into the kernel address space for
+ * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
+ * page faults already hold the mmap_sem.
+ *
+ * Hence to serialise fully against both syscall and mmap based IO, we need to
+ * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
+ * taken in places where we need to invalidate the page cache in a race
+ * free manner (e.g. truncate, hole punch and other extent manipulation
+ * functions).
+ */
+void
+xfs_ilock(
+	xfs_inode_t		*ip,
+	uint			lock_flags)
+{
+	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
+
+	/*
+	 * You can't set both SHARED and EXCL for the same lock,
+	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
+	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
+	 */
+	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
+	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
+	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
+	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
+	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
+	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
+	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
+
+	if (lock_flags & XFS_IOLOCK_EXCL) {
+		down_write_nested(&VFS_I(ip)->i_rwsem,
+				  XFS_IOLOCK_DEP(lock_flags));
+	} else if (lock_flags & XFS_IOLOCK_SHARED) {
+		down_read_nested(&VFS_I(ip)->i_rwsem,
+				 XFS_IOLOCK_DEP(lock_flags));
+	}
+
+	if (lock_flags & XFS_MMAPLOCK_EXCL)
+		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
+	else if (lock_flags & XFS_MMAPLOCK_SHARED)
+		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
+
+	if (lock_flags & XFS_ILOCK_EXCL)
+		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
+	else if (lock_flags & XFS_ILOCK_SHARED)
+		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
+}
+
+/*
+ * This is just like xfs_ilock(), except that the caller
+ * is guaranteed not to sleep.  It returns 1 if it gets
+ * the requested locks and 0 otherwise.  If the IO lock is
+ * obtained but the inode lock cannot be, then the IO lock
+ * is dropped before returning.
+ *
+ * ip -- the inode being locked
+ * lock_flags -- this parameter indicates the inode's locks to be
+ *       to be locked.  See the comment for xfs_ilock() for a list
+ *	 of valid values.
+ */
+int
+xfs_ilock_nowait(
+	xfs_inode_t		*ip,
+	uint			lock_flags)
+{
+	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
+
+	/*
+	 * You can't set both SHARED and EXCL for the same lock,
+	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
+	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
+	 */
+	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
+	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
+	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
+	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
+	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
+	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
+	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
+
+	if (lock_flags & XFS_IOLOCK_EXCL) {
+		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
+			goto out;
+	} else if (lock_flags & XFS_IOLOCK_SHARED) {
+		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
+			goto out;
+	}
+
+	if (lock_flags & XFS_MMAPLOCK_EXCL) {
+		if (!mrtryupdate(&ip->i_mmaplock))
+			goto out_undo_iolock;
+	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
+		if (!mrtryaccess(&ip->i_mmaplock))
+			goto out_undo_iolock;
+	}
+
+	if (lock_flags & XFS_ILOCK_EXCL) {
+		if (!mrtryupdate(&ip->i_lock))
+			goto out_undo_mmaplock;
+	} else if (lock_flags & XFS_ILOCK_SHARED) {
+		if (!mrtryaccess(&ip->i_lock))
+			goto out_undo_mmaplock;
+	}
+	return 1;
+
+out_undo_mmaplock:
+	if (lock_flags & XFS_MMAPLOCK_EXCL)
+		mrunlock_excl(&ip->i_mmaplock);
+	else if (lock_flags & XFS_MMAPLOCK_SHARED)
+		mrunlock_shared(&ip->i_mmaplock);
+out_undo_iolock:
+	if (lock_flags & XFS_IOLOCK_EXCL)
+		up_write(&VFS_I(ip)->i_rwsem);
+	else if (lock_flags & XFS_IOLOCK_SHARED)
+		up_read(&VFS_I(ip)->i_rwsem);
+out:
+	return 0;
+}
+
+/*
+ * xfs_iunlock() is used to drop the inode locks acquired with
+ * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
+ * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
+ * that we know which locks to drop.
+ *
+ * ip -- the inode being unlocked
+ * lock_flags -- this parameter indicates the inode's locks to be
+ *       to be unlocked.  See the comment for xfs_ilock() for a list
+ *	 of valid values for this parameter.
+ *
+ */
+void
+xfs_iunlock(
+	xfs_inode_t		*ip,
+	uint			lock_flags)
+{
+	/*
+	 * You can't set both SHARED and EXCL for the same lock,
+	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
+	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
+	 */
+	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
+	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
+	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
+	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
+	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
+	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
+	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
+	ASSERT(lock_flags != 0);
+
+	if (lock_flags & XFS_IOLOCK_EXCL)
+		up_write(&VFS_I(ip)->i_rwsem);
+	else if (lock_flags & XFS_IOLOCK_SHARED)
+		up_read(&VFS_I(ip)->i_rwsem);
+
+	if (lock_flags & XFS_MMAPLOCK_EXCL)
+		mrunlock_excl(&ip->i_mmaplock);
+	else if (lock_flags & XFS_MMAPLOCK_SHARED)
+		mrunlock_shared(&ip->i_mmaplock);
+
+	if (lock_flags & XFS_ILOCK_EXCL)
+		mrunlock_excl(&ip->i_lock);
+	else if (lock_flags & XFS_ILOCK_SHARED)
+		mrunlock_shared(&ip->i_lock);
+
+	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
+}
+
+/*
+ * give up write locks.  the i/o lock cannot be held nested
+ * if it is being demoted.
+ */
+void
+xfs_ilock_demote(
+	xfs_inode_t		*ip,
+	uint			lock_flags)
+{
+	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
+	ASSERT((lock_flags &
+		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
+
+	if (lock_flags & XFS_ILOCK_EXCL)
+		mrdemote(&ip->i_lock);
+	if (lock_flags & XFS_MMAPLOCK_EXCL)
+		mrdemote(&ip->i_mmaplock);
+	if (lock_flags & XFS_IOLOCK_EXCL)
+		downgrade_write(&VFS_I(ip)->i_rwsem);
+
+	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
+}
+
+#if defined(DEBUG) || defined(XFS_WARN)
+int
+xfs_isilocked(
+	xfs_inode_t		*ip,
+	uint			lock_flags)
+{
+	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
+		if (!(lock_flags & XFS_ILOCK_SHARED))
+			return !!ip->i_lock.mr_writer;
+		return rwsem_is_locked(&ip->i_lock.mr_lock);
+	}
+
+	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
+		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
+			return !!ip->i_mmaplock.mr_writer;
+		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
+	}
+
+	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
+		if (!(lock_flags & XFS_IOLOCK_SHARED))
+			return !debug_locks ||
+				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
+		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
+	}
+
+	ASSERT(0);
+	return 0;
+}
+#endif
+
+/*
+ * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
+ * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
+ * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
+ * errors and warnings.
+ */
+#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
+static bool
+xfs_lockdep_subclass_ok(
+	int subclass)
+{
+	return subclass < MAX_LOCKDEP_SUBCLASSES;
+}
+#else
+#define xfs_lockdep_subclass_ok(subclass)	(true)
+#endif
+
+/*
+ * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
+ * value. This can be called for any type of inode lock combination, including
+ * parent locking. Care must be taken to ensure we don't overrun the subclass
+ * storage fields in the class mask we build.
+ */
+static inline int
+xfs_lock_inumorder(int lock_mode, int subclass)
+{
+	int	class = 0;
+
+	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
+			      XFS_ILOCK_RTSUM)));
+	ASSERT(xfs_lockdep_subclass_ok(subclass));
+
+	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
+		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
+		class += subclass << XFS_IOLOCK_SHIFT;
+	}
+
+	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
+		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
+		class += subclass << XFS_MMAPLOCK_SHIFT;
+	}
+
+	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
+		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
+		class += subclass << XFS_ILOCK_SHIFT;
+	}
+
+	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
+}
+
+/*
+ * The following routine will lock n inodes in exclusive mode.  We assume the
+ * caller calls us with the inodes in i_ino order.
+ *
+ * We need to detect deadlock where an inode that we lock is in the AIL and we
+ * start waiting for another inode that is locked by a thread in a long running
+ * transaction (such as truncate). This can result in deadlock since the long
+ * running trans might need to wait for the inode we just locked in order to
+ * push the tail and free space in the log.
+ *
+ * xfs_lock_inodes() can only be used to lock one type of lock at a time -
+ * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
+ * lock more than one at a time, lockdep will report false positives saying we
+ * have violated locking orders.
+ */
+static void
+xfs_lock_inodes(
+	xfs_inode_t	**ips,
+	int		inodes,
+	uint		lock_mode)
+{
+	int		attempts = 0, i, j, try_lock;
+	xfs_log_item_t	*lp;
+
+	/*
+	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
+	 * support an arbitrary depth of locking here, but absolute limits on
+	 * inodes depend on the the type of locking and the limits placed by
+	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
+	 * the asserts.
+	 */
+	ASSERT(ips && inodes >= 2 && inodes <= 5);
+	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
+			    XFS_ILOCK_EXCL));
+	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
+			      XFS_ILOCK_SHARED)));
+	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
+		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
+	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
+		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
+
+	if (lock_mode & XFS_IOLOCK_EXCL) {
+		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
+	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
+		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
+
+	try_lock = 0;
+	i = 0;
+again:
+	for (; i < inodes; i++) {
+		ASSERT(ips[i]);
+
+		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
+			continue;
+
+		/*
+		 * If try_lock is not set yet, make sure all locked inodes are
+		 * not in the AIL.  If any are, set try_lock to be used later.
+		 */
+		if (!try_lock) {
+			for (j = (i - 1); j >= 0 && !try_lock; j--) {
+				lp = (xfs_log_item_t *)ips[j]->i_itemp;
+				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
+					try_lock++;
+			}
+		}
+
+		/*
+		 * If any of the previous locks we have locked is in the AIL,
+		 * we must TRY to get the second and subsequent locks. If
+		 * we can't get any, we must release all we have
+		 * and try again.
+		 */
+		if (!try_lock) {
+			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
+			continue;
+		}
+
+		/* try_lock means we have an inode locked that is in the AIL. */
+		ASSERT(i != 0);
+		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
+			continue;
+
+		/*
+		 * Unlock all previous guys and try again.  xfs_iunlock will try
+		 * to push the tail if the inode is in the AIL.
+		 */
+		attempts++;
+		for (j = i - 1; j >= 0; j--) {
+			/*
+			 * Check to see if we've already unlocked this one.  Not
+			 * the first one going back, and the inode ptr is the
+			 * same.
+			 */
+			if (j != (i - 1) && ips[j] == ips[j + 1])
+				continue;
+
+			xfs_iunlock(ips[j], lock_mode);
+		}
+
+		if ((attempts % 5) == 0) {
+			delay(1); /* Don't just spin the CPU */
+		}
+		i = 0;
+		try_lock = 0;
+		goto again;
+	}
+}
+
+/*
+ * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
+ * the mmaplock or the ilock, but not more than one type at a time. If we lock
+ * more than one at a time, lockdep will report false positives saying we have
+ * violated locking orders.  The iolock must be double-locked separately since
+ * we use i_rwsem for that.  We now support taking one lock EXCL and the other
+ * SHARED.
+ */
+void
+xfs_lock_two_inodes(
+	struct xfs_inode	*ip0,
+	uint			ip0_mode,
+	struct xfs_inode	*ip1,
+	uint			ip1_mode)
+{
+	struct xfs_inode	*temp;
+	uint			mode_temp;
+	int			attempts = 0;
+	xfs_log_item_t		*lp;
+
+	ASSERT(hweight32(ip0_mode) == 1);
+	ASSERT(hweight32(ip1_mode) == 1);
+	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
+	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
+	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
+	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
+	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
+	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
+	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
+	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
+	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
+	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
+
+	ASSERT(ip0->i_ino != ip1->i_ino);
+
+	if (ip0->i_ino > ip1->i_ino) {
+		temp = ip0;
+		ip0 = ip1;
+		ip1 = temp;
+		mode_temp = ip0_mode;
+		ip0_mode = ip1_mode;
+		ip1_mode = mode_temp;
+	}
+
+ again:
+	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
+
+	/*
+	 * If the first lock we have locked is in the AIL, we must TRY to get
+	 * the second lock. If we can't get it, we must release the first one
+	 * and try again.
+	 */
+	lp = (xfs_log_item_t *)ip0->i_itemp;
+	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
+		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
+			xfs_iunlock(ip0, ip0_mode);
+			if ((++attempts % 5) == 0)
+				delay(1); /* Don't just spin the CPU */
+			goto again;
+		}
+	} else {
+		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
+	}
+}
+
+void
+__xfs_iflock(
+	struct xfs_inode	*ip)
+{
+	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
+	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
+
+	do {
+		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
+		if (xfs_isiflocked(ip))
+			io_schedule();
+	} while (!xfs_iflock_nowait(ip));
+
+	finish_wait(wq, &wait.wq_entry);
+}
+
+STATIC uint
+_xfs_dic2xflags(
+	uint16_t		di_flags,
+	uint64_t		di_flags2,
+	bool			has_attr)
+{
+	uint			flags = 0;
+
+	if (di_flags & XFS_DIFLAG_ANY) {
+		if (di_flags & XFS_DIFLAG_REALTIME)
+			flags |= FS_XFLAG_REALTIME;
+		if (di_flags & XFS_DIFLAG_PREALLOC)
+			flags |= FS_XFLAG_PREALLOC;
+		if (di_flags & XFS_DIFLAG_IMMUTABLE)
+			flags |= FS_XFLAG_IMMUTABLE;
+		if (di_flags & XFS_DIFLAG_APPEND)
+			flags |= FS_XFLAG_APPEND;
+		if (di_flags & XFS_DIFLAG_SYNC)
+			flags |= FS_XFLAG_SYNC;
+		if (di_flags & XFS_DIFLAG_NOATIME)
+			flags |= FS_XFLAG_NOATIME;
+		if (di_flags & XFS_DIFLAG_NODUMP)
+			flags |= FS_XFLAG_NODUMP;
+		if (di_flags & XFS_DIFLAG_RTINHERIT)
+			flags |= FS_XFLAG_RTINHERIT;
+		if (di_flags & XFS_DIFLAG_PROJINHERIT)
+			flags |= FS_XFLAG_PROJINHERIT;
+		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
+			flags |= FS_XFLAG_NOSYMLINKS;
+		if (di_flags & XFS_DIFLAG_EXTSIZE)
+			flags |= FS_XFLAG_EXTSIZE;
+		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
+			flags |= FS_XFLAG_EXTSZINHERIT;
+		if (di_flags & XFS_DIFLAG_NODEFRAG)
+			flags |= FS_XFLAG_NODEFRAG;
+		if (di_flags & XFS_DIFLAG_FILESTREAM)
+			flags |= FS_XFLAG_FILESTREAM;
+	}
+
+	if (di_flags2 & XFS_DIFLAG2_ANY) {
+		if (di_flags2 & XFS_DIFLAG2_DAX)
+			flags |= FS_XFLAG_DAX;
+		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
+			flags |= FS_XFLAG_COWEXTSIZE;
+	}
+
+	if (has_attr)
+		flags |= FS_XFLAG_HASATTR;
+
+	return flags;
+}
+
+uint
+xfs_ip2xflags(
+	struct xfs_inode	*ip)
+{
+	struct xfs_icdinode	*dic = &ip->i_d;
+
+	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
+}
+
+/*
+ * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
+ * is allowed, otherwise it has to be an exact match. If a CI match is found,
+ * ci_name->name will point to a the actual name (caller must free) or
+ * will be set to NULL if an exact match is found.
+ */
+int
+xfs_lookup(
+	xfs_inode_t		*dp,
+	struct xfs_name		*name,
+	xfs_inode_t		**ipp,
+	struct xfs_name		*ci_name)
+{
+	xfs_ino_t		inum;
+	int			error;
+
+	trace_xfs_lookup(dp, name);
+
+	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
+		return -EIO;
+
+	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
+	if (error)
+		goto out_unlock;
+
+	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
+	if (error)
+		goto out_free_name;
+
+	return 0;
+
+out_free_name:
+	if (ci_name)
+		kmem_free(ci_name->name);
+out_unlock:
+	*ipp = NULL;
+	return error;
+}
+
+/*
+ * Allocate an inode on disk and return a copy of its in-core version.
+ * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
+ * appropriately within the inode.  The uid and gid for the inode are
+ * set according to the contents of the given cred structure.
+ *
+ * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
+ * has a free inode available, call xfs_iget() to obtain the in-core
+ * version of the allocated inode.  Finally, fill in the inode and
+ * log its initial contents.  In this case, ialloc_context would be
+ * set to NULL.
+ *
+ * If xfs_dialloc() does not have an available inode, it will replenish
+ * its supply by doing an allocation. Since we can only do one
+ * allocation within a transaction without deadlocks, we must commit
+ * the current transaction before returning the inode itself.
+ * In this case, therefore, we will set ialloc_context and return.
+ * The caller should then commit the current transaction, start a new
+ * transaction, and call xfs_ialloc() again to actually get the inode.
+ *
+ * To ensure that some other process does not grab the inode that
+ * was allocated during the first call to xfs_ialloc(), this routine
+ * also returns the [locked] bp pointing to the head of the freelist
+ * as ialloc_context.  The caller should hold this buffer across
+ * the commit and pass it back into this routine on the second call.
+ *
+ * If we are allocating quota inodes, we do not have a parent inode
+ * to attach to or associate with (i.e. pip == NULL) because they
+ * are not linked into the directory structure - they are attached
+ * directly to the superblock - and so have no parent.
+ */
+static int
+xfs_ialloc(
+	xfs_trans_t	*tp,
+	xfs_inode_t	*pip,
+	umode_t		mode,
+	xfs_nlink_t	nlink,
+	dev_t		rdev,
+	prid_t		prid,
+	xfs_buf_t	**ialloc_context,
+	xfs_inode_t	**ipp)
+{
+	struct xfs_mount *mp = tp->t_mountp;
+	xfs_ino_t	ino;
+	xfs_inode_t	*ip;
+	uint		flags;
+	int		error;
+	struct timespec64 tv;
+	struct inode	*inode;
+
+	/*
+	 * Call the space management code to pick
+	 * the on-disk inode to be allocated.
+	 */
+	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
+			    ialloc_context, &ino);
+	if (error)
+		return error;
+	if (*ialloc_context || ino == NULLFSINO) {
+		*ipp = NULL;
+		return 0;
+	}
+	ASSERT(*ialloc_context == NULL);
+
+	/*
+	 * Protect against obviously corrupt allocation btree records. Later
+	 * xfs_iget checks will catch re-allocation of other active in-memory
+	 * and on-disk inodes. If we don't catch reallocating the parent inode
+	 * here we will deadlock in xfs_iget() so we have to do these checks
+	 * first.
+	 */
+	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
+		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
+		return -EFSCORRUPTED;
+	}
+
+	/*
+	 * Get the in-core inode with the lock held exclusively.
+	 * This is because we're setting fields here we need
+	 * to prevent others from looking at until we're done.
+	 */
+	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
+			 XFS_ILOCK_EXCL, &ip);
+	if (error)
+		return error;
+	ASSERT(ip != NULL);
+	inode = VFS_I(ip);
+
+	/*
+	 * We always convert v1 inodes to v2 now - we only support filesystems
+	 * with >= v2 inode capability, so there is no reason for ever leaving
+	 * an inode in v1 format.
+	 */
+	if (ip->i_d.di_version == 1)
+		ip->i_d.di_version = 2;
+
+	inode->i_mode = mode;
+	set_nlink(inode, nlink);
+	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
+	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
+	inode->i_rdev = rdev;
+	xfs_set_projid(ip, prid);
+
+	if (pip && XFS_INHERIT_GID(pip)) {
+		ip->i_d.di_gid = pip->i_d.di_gid;
+		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
+			inode->i_mode |= S_ISGID;
+	}
+
+	/*
+	 * If the group ID of the new file does not match the effective group
+	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
+	 * (and only if the irix_sgid_inherit compatibility variable is set).
+	 */
+	if ((irix_sgid_inherit) &&
+	    (inode->i_mode & S_ISGID) &&
+	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
+		inode->i_mode &= ~S_ISGID;
+
+	ip->i_d.di_size = 0;
+	ip->i_d.di_nextents = 0;
+	ASSERT(ip->i_d.di_nblocks == 0);
+
+	tv = current_time(inode);
+	inode->i_mtime = tv;
+	inode->i_atime = tv;
+	inode->i_ctime = tv;
+
+	ip->i_d.di_extsize = 0;
+	ip->i_d.di_dmevmask = 0;
+	ip->i_d.di_dmstate = 0;
+	ip->i_d.di_flags = 0;
+
+	if (ip->i_d.di_version == 3) {
+		inode_set_iversion(inode, 1);
+		ip->i_d.di_flags2 = 0;
+		ip->i_d.di_cowextsize = 0;
+		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
+		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
+	}
+
+
+	flags = XFS_ILOG_CORE;
+	switch (mode & S_IFMT) {
+	case S_IFIFO:
+	case S_IFCHR:
+	case S_IFBLK:
+	case S_IFSOCK:
+		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
+		ip->i_df.if_flags = 0;
+		flags |= XFS_ILOG_DEV;
+		break;
+	case S_IFREG:
+	case S_IFDIR:
+		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
+			uint		di_flags = 0;
+
+			if (S_ISDIR(mode)) {
+				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
+					di_flags |= XFS_DIFLAG_RTINHERIT;
+				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
+					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
+					ip->i_d.di_extsize = pip->i_d.di_extsize;
+				}
+				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
+					di_flags |= XFS_DIFLAG_PROJINHERIT;
+			} else if (S_ISREG(mode)) {
+				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
+					di_flags |= XFS_DIFLAG_REALTIME;
+				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
+					di_flags |= XFS_DIFLAG_EXTSIZE;
+					ip->i_d.di_extsize = pip->i_d.di_extsize;
+				}
+			}
+			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
+			    xfs_inherit_noatime)
+				di_flags |= XFS_DIFLAG_NOATIME;
+			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
+			    xfs_inherit_nodump)
+				di_flags |= XFS_DIFLAG_NODUMP;
+			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
+			    xfs_inherit_sync)
+				di_flags |= XFS_DIFLAG_SYNC;
+			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
+			    xfs_inherit_nosymlinks)
+				di_flags |= XFS_DIFLAG_NOSYMLINKS;
+			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
+			    xfs_inherit_nodefrag)
+				di_flags |= XFS_DIFLAG_NODEFRAG;
+			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
+				di_flags |= XFS_DIFLAG_FILESTREAM;
+
+			ip->i_d.di_flags |= di_flags;
+		}
+		if (pip &&
+		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
+		    pip->i_d.di_version == 3 &&
+		    ip->i_d.di_version == 3) {
+			uint64_t	di_flags2 = 0;
+
+			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
+				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
+				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
+			}
+			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
+				di_flags2 |= XFS_DIFLAG2_DAX;
+
+			ip->i_d.di_flags2 |= di_flags2;
+		}
+		/* FALLTHROUGH */
+	case S_IFLNK:
+		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
+		ip->i_df.if_flags = XFS_IFEXTENTS;
+		ip->i_df.if_bytes = 0;
+		ip->i_df.if_u1.if_root = NULL;
+		break;
+	default:
+		ASSERT(0);
+	}
+	/*
+	 * Attribute fork settings for new inode.
+	 */
+	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
+	ip->i_d.di_anextents = 0;
+
+	/*
+	 * Log the new values stuffed into the inode.
+	 */
+	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
+	xfs_trans_log_inode(tp, ip, flags);
+
+	/* now that we have an i_mode we can setup the inode structure */
+	xfs_setup_inode(ip);
+
+	*ipp = ip;
+	return 0;
+}
+
+/*
+ * Allocates a new inode from disk and return a pointer to the
+ * incore copy. This routine will internally commit the current
+ * transaction and allocate a new one if the Space Manager needed
+ * to do an allocation to replenish the inode free-list.
+ *
+ * This routine is designed to be called from xfs_create and
+ * xfs_create_dir.
+ *
+ */
+int
+xfs_dir_ialloc(
+	xfs_trans_t	**tpp,		/* input: current transaction;
+					   output: may be a new transaction. */
+	xfs_inode_t	*dp,		/* directory within whose allocate
+					   the inode. */
+	umode_t		mode,
+	xfs_nlink_t	nlink,
+	dev_t		rdev,
+	prid_t		prid,		/* project id */
+	xfs_inode_t	**ipp)		/* pointer to inode; it will be
+					   locked. */
+{
+	xfs_trans_t	*tp;
+	xfs_inode_t	*ip;
+	xfs_buf_t	*ialloc_context = NULL;
+	int		code;
+	void		*dqinfo;
+	uint		tflags;
+
+	tp = *tpp;
+	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
+
+	/*
+	 * xfs_ialloc will return a pointer to an incore inode if
+	 * the Space Manager has an available inode on the free
+	 * list. Otherwise, it will do an allocation and replenish
+	 * the freelist.  Since we can only do one allocation per
+	 * transaction without deadlocks, we will need to commit the
+	 * current transaction and start a new one.  We will then
+	 * need to call xfs_ialloc again to get the inode.
+	 *
+	 * If xfs_ialloc did an allocation to replenish the freelist,
+	 * it returns the bp containing the head of the freelist as
+	 * ialloc_context. We will hold a lock on it across the
+	 * transaction commit so that no other process can steal
+	 * the inode(s) that we've just allocated.
+	 */
+	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
+			&ip);
+
+	/*
+	 * Return an error if we were unable to allocate a new inode.
+	 * This should only happen if we run out of space on disk or
+	 * encounter a disk error.
+	 */
+	if (code) {
+		*ipp = NULL;
+		return code;
+	}
+	if (!ialloc_context && !ip) {
+		*ipp = NULL;
+		return -ENOSPC;
+	}
+
+	/*
+	 * If the AGI buffer is non-NULL, then we were unable to get an
+	 * inode in one operation.  We need to commit the current
+	 * transaction and call xfs_ialloc() again.  It is guaranteed
+	 * to succeed the second time.
+	 */
+	if (ialloc_context) {
+		/*
+		 * Normally, xfs_trans_commit releases all the locks.
+		 * We call bhold to hang on to the ialloc_context across
+		 * the commit.  Holding this buffer prevents any other
+		 * processes from doing any allocations in this
+		 * allocation group.
+		 */
+		xfs_trans_bhold(tp, ialloc_context);
+
+		/*
+		 * We want the quota changes to be associated with the next
+		 * transaction, NOT this one. So, detach the dqinfo from this
+		 * and attach it to the next transaction.
+		 */
+		dqinfo = NULL;
+		tflags = 0;
+		if (tp->t_dqinfo) {
+			dqinfo = (void *)tp->t_dqinfo;
+			tp->t_dqinfo = NULL;
+			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
+			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
+		}
+
+		code = xfs_trans_roll(&tp);
+
+		/*
+		 * Re-attach the quota info that we detached from prev trx.
+		 */
+		if (dqinfo) {
+			tp->t_dqinfo = dqinfo;
+			tp->t_flags |= tflags;
+		}
+
+		if (code) {
+			xfs_buf_relse(ialloc_context);
+			*tpp = tp;
+			*ipp = NULL;
+			return code;
+		}
+		xfs_trans_bjoin(tp, ialloc_context);
+
+		/*
+		 * Call ialloc again. Since we've locked out all
+		 * other allocations in this allocation group,
+		 * this call should always succeed.
+		 */
+		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
+				  &ialloc_context, &ip);
+
+		/*
+		 * If we get an error at this point, return to the caller
+		 * so that the current transaction can be aborted.
+		 */
+		if (code) {
+			*tpp = tp;
+			*ipp = NULL;
+			return code;
+		}
+		ASSERT(!ialloc_context && ip);
+
+	}
+
+	*ipp = ip;
+	*tpp = tp;
+
+	return 0;
+}
+
+/*
+ * Decrement the link count on an inode & log the change.  If this causes the
+ * link count to go to zero, move the inode to AGI unlinked list so that it can
+ * be freed when the last active reference goes away via xfs_inactive().
+ */
+static int			/* error */
+xfs_droplink(
+	xfs_trans_t *tp,
+	xfs_inode_t *ip)
+{
+	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
+
+	drop_nlink(VFS_I(ip));
+	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+	if (VFS_I(ip)->i_nlink)
+		return 0;
+
+	return xfs_iunlink(tp, ip);
+}
+
+/*
+ * Increment the link count on an inode & log the change.
+ */
+static int
+xfs_bumplink(
+	xfs_trans_t *tp,
+	xfs_inode_t *ip)
+{
+	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
+
+	ASSERT(ip->i_d.di_version > 1);
+	inc_nlink(VFS_I(ip));
+	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+	return 0;
+}
+
+int
+xfs_create(
+	xfs_inode_t		*dp,
+	struct xfs_name		*name,
+	umode_t			mode,
+	dev_t			rdev,
+	xfs_inode_t		**ipp)
+{
+	int			is_dir = S_ISDIR(mode);
+	struct xfs_mount	*mp = dp->i_mount;
+	struct xfs_inode	*ip = NULL;
+	struct xfs_trans	*tp = NULL;
+	int			error;
+	bool                    unlock_dp_on_error = false;
+	prid_t			prid;
+	struct xfs_dquot	*udqp = NULL;
+	struct xfs_dquot	*gdqp = NULL;
+	struct xfs_dquot	*pdqp = NULL;
+	struct xfs_trans_res	*tres;
+	uint			resblks;
+
+	trace_xfs_create(dp, name);
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	prid = xfs_get_initial_prid(dp);
+
+	/*
+	 * Make sure that we have allocated dquot(s) on disk.
+	 */
+	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
+					xfs_kgid_to_gid(current_fsgid()), prid,
+					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
+					&udqp, &gdqp, &pdqp);
+	if (error)
+		return error;
+
+	if (is_dir) {
+		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
+		tres = &M_RES(mp)->tr_mkdir;
+	} else {
+		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
+		tres = &M_RES(mp)->tr_create;
+	}
+
+	/*
+	 * Initially assume that the file does not exist and
+	 * reserve the resources for that case.  If that is not
+	 * the case we'll drop the one we have and get a more
+	 * appropriate transaction later.
+	 */
+	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
+	if (error == -ENOSPC) {
+		/* flush outstanding delalloc blocks and retry */
+		xfs_flush_inodes(mp);
+		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
+	}
+	if (error)
+		goto out_release_inode;
+
+	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
+	unlock_dp_on_error = true;
+
+	/*
+	 * Reserve disk quota and the inode.
+	 */
+	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
+						pdqp, resblks, 1, 0);
+	if (error)
+		goto out_trans_cancel;
+
+	/*
+	 * A newly created regular or special file just has one directory
+	 * entry pointing to them, but a directory also the "." entry
+	 * pointing to itself.
+	 */
+	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
+	if (error)
+		goto out_trans_cancel;
+
+	/*
+	 * Now we join the directory inode to the transaction.  We do not do it
+	 * earlier because xfs_dir_ialloc might commit the previous transaction
+	 * (and release all the locks).  An error from here on will result in
+	 * the transaction cancel unlocking dp so don't do it explicitly in the
+	 * error path.
+	 */
+	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
+	unlock_dp_on_error = false;
+
+	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
+				   resblks ?
+					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
+	if (error) {
+		ASSERT(error != -ENOSPC);
+		goto out_trans_cancel;
+	}
+	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
+
+	if (is_dir) {
+		error = xfs_dir_init(tp, ip, dp);
+		if (error)
+			goto out_trans_cancel;
+
+		error = xfs_bumplink(tp, dp);
+		if (error)
+			goto out_trans_cancel;
+	}
+
+	/*
+	 * If this is a synchronous mount, make sure that the
+	 * create transaction goes to disk before returning to
+	 * the user.
+	 */
+	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
+		xfs_trans_set_sync(tp);
+
+	/*
+	 * Attach the dquot(s) to the inodes and modify them incore.
+	 * These ids of the inode couldn't have changed since the new
+	 * inode has been locked ever since it was created.
+	 */
+	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
+
+	error = xfs_trans_commit(tp);
+	if (error)
+		goto out_release_inode;
+
+	xfs_qm_dqrele(udqp);
+	xfs_qm_dqrele(gdqp);
+	xfs_qm_dqrele(pdqp);
+
+	*ipp = ip;
+	return 0;
+
+ out_trans_cancel:
+	xfs_trans_cancel(tp);
+ out_release_inode:
+	/*
+	 * Wait until after the current transaction is aborted to finish the
+	 * setup of the inode and release the inode.  This prevents recursive
+	 * transactions and deadlocks from xfs_inactive.
+	 */
+	if (ip) {
+		xfs_finish_inode_setup(ip);
+		xfs_irele(ip);
+	}
+
+	xfs_qm_dqrele(udqp);
+	xfs_qm_dqrele(gdqp);
+	xfs_qm_dqrele(pdqp);
+
+	if (unlock_dp_on_error)
+		xfs_iunlock(dp, XFS_ILOCK_EXCL);
+	return error;
+}
+
+int
+xfs_create_tmpfile(
+	struct xfs_inode	*dp,
+	umode_t			mode,
+	struct xfs_inode	**ipp)
+{
+	struct xfs_mount	*mp = dp->i_mount;
+	struct xfs_inode	*ip = NULL;
+	struct xfs_trans	*tp = NULL;
+	int			error;
+	prid_t                  prid;
+	struct xfs_dquot	*udqp = NULL;
+	struct xfs_dquot	*gdqp = NULL;
+	struct xfs_dquot	*pdqp = NULL;
+	struct xfs_trans_res	*tres;
+	uint			resblks;
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	prid = xfs_get_initial_prid(dp);
+
+	/*
+	 * Make sure that we have allocated dquot(s) on disk.
+	 */
+	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
+				xfs_kgid_to_gid(current_fsgid()), prid,
+				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
+				&udqp, &gdqp, &pdqp);
+	if (error)
+		return error;
+
+	resblks = XFS_IALLOC_SPACE_RES(mp);
+	tres = &M_RES(mp)->tr_create_tmpfile;
+
+	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
+	if (error)
+		goto out_release_inode;
+
+	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
+						pdqp, resblks, 1, 0);
+	if (error)
+		goto out_trans_cancel;
+
+	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
+	if (error)
+		goto out_trans_cancel;
+
+	if (mp->m_flags & XFS_MOUNT_WSYNC)
+		xfs_trans_set_sync(tp);
+
+	/*
+	 * Attach the dquot(s) to the inodes and modify them incore.
+	 * These ids of the inode couldn't have changed since the new
+	 * inode has been locked ever since it was created.
+	 */
+	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
+
+	error = xfs_iunlink(tp, ip);
+	if (error)
+		goto out_trans_cancel;
+
+	error = xfs_trans_commit(tp);
+	if (error)
+		goto out_release_inode;
+
+	xfs_qm_dqrele(udqp);
+	xfs_qm_dqrele(gdqp);
+	xfs_qm_dqrele(pdqp);
+
+	*ipp = ip;
+	return 0;
+
+ out_trans_cancel:
+	xfs_trans_cancel(tp);
+ out_release_inode:
+	/*
+	 * Wait until after the current transaction is aborted to finish the
+	 * setup of the inode and release the inode.  This prevents recursive
+	 * transactions and deadlocks from xfs_inactive.
+	 */
+	if (ip) {
+		xfs_finish_inode_setup(ip);
+		xfs_irele(ip);
+	}
+
+	xfs_qm_dqrele(udqp);
+	xfs_qm_dqrele(gdqp);
+	xfs_qm_dqrele(pdqp);
+
+	return error;
+}
+
+int
+xfs_link(
+	xfs_inode_t		*tdp,
+	xfs_inode_t		*sip,
+	struct xfs_name		*target_name)
+{
+	xfs_mount_t		*mp = tdp->i_mount;
+	xfs_trans_t		*tp;
+	int			error;
+	int			resblks;
+
+	trace_xfs_link(tdp, target_name);
+
+	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	error = xfs_qm_dqattach(sip);
+	if (error)
+		goto std_return;
+
+	error = xfs_qm_dqattach(tdp);
+	if (error)
+		goto std_return;
+
+	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
+	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
+	if (error == -ENOSPC) {
+		resblks = 0;
+		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
+	}
+	if (error)
+		goto std_return;
+
+	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
+
+	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
+	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
+
+	/*
+	 * If we are using project inheritance, we only allow hard link
+	 * creation in our tree when the project IDs are the same; else
+	 * the tree quota mechanism could be circumvented.
+	 */
+	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
+		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
+		error = -EXDEV;
+		goto error_return;
+	}
+
+	if (!resblks) {
+		error = xfs_dir_canenter(tp, tdp, target_name);
+		if (error)
+			goto error_return;
+	}
+
+	/*
+	 * Handle initial link state of O_TMPFILE inode
+	 */
+	if (VFS_I(sip)->i_nlink == 0) {
+		error = xfs_iunlink_remove(tp, sip);
+		if (error)
+			goto error_return;
+	}
+
+	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
+				   resblks);
+	if (error)
+		goto error_return;
+	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
+
+	error = xfs_bumplink(tp, sip);
+	if (error)
+		goto error_return;
+
+	/*
+	 * If this is a synchronous mount, make sure that the
+	 * link transaction goes to disk before returning to
+	 * the user.
+	 */
+	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
+		xfs_trans_set_sync(tp);
+
+	return xfs_trans_commit(tp);
+
+ error_return:
+	xfs_trans_cancel(tp);
+ std_return:
+	return error;
+}
+
+/* Clear the reflink flag and the cowblocks tag if possible. */
+static void
+xfs_itruncate_clear_reflink_flags(
+	struct xfs_inode	*ip)
+{
+	struct xfs_ifork	*dfork;
+	struct xfs_ifork	*cfork;
+
+	if (!xfs_is_reflink_inode(ip))
+		return;
+	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
+	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
+	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
+		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
+	if (cfork->if_bytes == 0)
+		xfs_inode_clear_cowblocks_tag(ip);
+}
+
+/*
+ * Free up the underlying blocks past new_size.  The new size must be smaller
+ * than the current size.  This routine can be used both for the attribute and
+ * data fork, and does not modify the inode size, which is left to the caller.
+ *
+ * The transaction passed to this routine must have made a permanent log
+ * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
+ * given transaction and start new ones, so make sure everything involved in
+ * the transaction is tidy before calling here.  Some transaction will be
+ * returned to the caller to be committed.  The incoming transaction must
+ * already include the inode, and both inode locks must be held exclusively.
+ * The inode must also be "held" within the transaction.  On return the inode
+ * will be "held" within the returned transaction.  This routine does NOT
+ * require any disk space to be reserved for it within the transaction.
+ *
+ * If we get an error, we must return with the inode locked and linked into the
+ * current transaction. This keeps things simple for the higher level code,
+ * because it always knows that the inode is locked and held in the transaction
+ * that returns to it whether errors occur or not.  We don't mark the inode
+ * dirty on error so that transactions can be easily aborted if possible.
+ */
+int
+xfs_itruncate_extents_flags(
+	struct xfs_trans	**tpp,
+	struct xfs_inode	*ip,
+	int			whichfork,
+	xfs_fsize_t		new_size,
+	int			flags)
+{
+	struct xfs_mount	*mp = ip->i_mount;
+	struct xfs_trans	*tp = *tpp;
+	xfs_fileoff_t		first_unmap_block;
+	xfs_fileoff_t		last_block;
+	xfs_filblks_t		unmap_len;
+	int			error = 0;
+	int			done = 0;
+
+	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
+	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
+	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
+	ASSERT(new_size <= XFS_ISIZE(ip));
+	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
+	ASSERT(ip->i_itemp != NULL);
+	ASSERT(ip->i_itemp->ili_lock_flags == 0);
+	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
+
+	trace_xfs_itruncate_extents_start(ip, new_size);
+
+	flags |= xfs_bmapi_aflag(whichfork);
+
+	/*
+	 * Since it is possible for space to become allocated beyond
+	 * the end of the file (in a crash where the space is allocated
+	 * but the inode size is not yet updated), simply remove any
+	 * blocks which show up between the new EOF and the maximum
+	 * possible file size.  If the first block to be removed is
+	 * beyond the maximum file size (ie it is the same as last_block),
+	 * then there is nothing to do.
+	 */
+	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
+	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
+	if (first_unmap_block == last_block)
+		return 0;
+
+	ASSERT(first_unmap_block < last_block);
+	unmap_len = last_block - first_unmap_block + 1;
+	while (!done) {
+		ASSERT(tp->t_firstblock == NULLFSBLOCK);
+		error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
+				    XFS_ITRUNC_MAX_EXTENTS, &done);
+		if (error)
+			goto out;
+
+		/*
+		 * Duplicate the transaction that has the permanent
+		 * reservation and commit the old transaction.
+		 */
+		error = xfs_defer_finish(&tp);
+		if (error)
+			goto out;
+
+		error = xfs_trans_roll_inode(&tp, ip);
+		if (error)
+			goto out;
+	}
+
+	if (whichfork == XFS_DATA_FORK) {
+		/* Remove all pending CoW reservations. */
+		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
+				first_unmap_block, last_block, true);
+		if (error)
+			goto out;
+
+		xfs_itruncate_clear_reflink_flags(ip);
+	}
+
+	/*
+	 * Always re-log the inode so that our permanent transaction can keep
+	 * on rolling it forward in the log.
+	 */
+	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+	trace_xfs_itruncate_extents_end(ip, new_size);
+
+out:
+	*tpp = tp;
+	return error;
+}
+
+int
+xfs_release(
+	xfs_inode_t	*ip)
+{
+	xfs_mount_t	*mp = ip->i_mount;
+	int		error;
+
+	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
+		return 0;
+
+	/* If this is a read-only mount, don't do this (would generate I/O) */
+	if (mp->m_flags & XFS_MOUNT_RDONLY)
+		return 0;
+
+	if (!XFS_FORCED_SHUTDOWN(mp)) {
+		int truncated;
+
+		/*
+		 * If we previously truncated this file and removed old data
+		 * in the process, we want to initiate "early" writeout on
+		 * the last close.  This is an attempt to combat the notorious
+		 * NULL files problem which is particularly noticeable from a
+		 * truncate down, buffered (re-)write (delalloc), followed by
+		 * a crash.  What we are effectively doing here is
+		 * significantly reducing the time window where we'd otherwise
+		 * be exposed to that problem.
+		 */
+		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
+		if (truncated) {
+			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
+			if (ip->i_delayed_blks > 0) {
+				error = filemap_flush(VFS_I(ip)->i_mapping);
+				if (error)
+					return error;
+			}
+		}
+	}
+
+	if (VFS_I(ip)->i_nlink == 0)
+		return 0;
+
+	if (xfs_can_free_eofblocks(ip, false)) {
+
+		/*
+		 * Check if the inode is being opened, written and closed
+		 * frequently and we have delayed allocation blocks outstanding
+		 * (e.g. streaming writes from the NFS server), truncating the
+		 * blocks past EOF will cause fragmentation to occur.
+		 *
+		 * In this case don't do the truncation, but we have to be
+		 * careful how we detect this case. Blocks beyond EOF show up as
+		 * i_delayed_blks even when the inode is clean, so we need to
+		 * truncate them away first before checking for a dirty release.
+		 * Hence on the first dirty close we will still remove the
+		 * speculative allocation, but after that we will leave it in
+		 * place.
+		 */
+		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
+			return 0;
+		/*
+		 * If we can't get the iolock just skip truncating the blocks
+		 * past EOF because we could deadlock with the mmap_sem
+		 * otherwise. We'll get another chance to drop them once the
+		 * last reference to the inode is dropped, so we'll never leak
+		 * blocks permanently.
+		 */
+		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
+			error = xfs_free_eofblocks(ip);
+			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
+			if (error)
+				return error;
+		}
+
+		/* delalloc blocks after truncation means it really is dirty */
+		if (ip->i_delayed_blks)
+			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
+	}
+	return 0;
+}
+
+/*
+ * xfs_inactive_truncate
+ *
+ * Called to perform a truncate when an inode becomes unlinked.
+ */
+STATIC int
+xfs_inactive_truncate(
+	struct xfs_inode *ip)
+{
+	struct xfs_mount	*mp = ip->i_mount;
+	struct xfs_trans	*tp;
+	int			error;
+
+	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
+	if (error) {
+		ASSERT(XFS_FORCED_SHUTDOWN(mp));
+		return error;
+	}
+	xfs_ilock(ip, XFS_ILOCK_EXCL);
+	xfs_trans_ijoin(tp, ip, 0);
+
+	/*
+	 * Log the inode size first to prevent stale data exposure in the event
+	 * of a system crash before the truncate completes. See the related
+	 * comment in xfs_vn_setattr_size() for details.
+	 */
+	ip->i_d.di_size = 0;
+	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
+	if (error)
+		goto error_trans_cancel;
+
+	ASSERT(ip->i_d.di_nextents == 0);
+
+	error = xfs_trans_commit(tp);
+	if (error)
+		goto error_unlock;
+
+	xfs_iunlock(ip, XFS_ILOCK_EXCL);
+	return 0;
+
+error_trans_cancel:
+	xfs_trans_cancel(tp);
+error_unlock:
+	xfs_iunlock(ip, XFS_ILOCK_EXCL);
+	return error;
+}
+
+/*
+ * xfs_inactive_ifree()
+ *
+ * Perform the inode free when an inode is unlinked.
+ */
+STATIC int
+xfs_inactive_ifree(
+	struct xfs_inode *ip)
+{
+	struct xfs_mount	*mp = ip->i_mount;
+	struct xfs_trans	*tp;
+	int			error;
+
+	/*
+	 * We try to use a per-AG reservation for any block needed by the finobt
+	 * tree, but as the finobt feature predates the per-AG reservation
+	 * support a degraded file system might not have enough space for the
+	 * reservation at mount time.  In that case try to dip into the reserved
+	 * pool and pray.
+	 *
+	 * Send a warning if the reservation does happen to fail, as the inode
+	 * now remains allocated and sits on the unlinked list until the fs is
+	 * repaired.
+	 */
+	if (unlikely(mp->m_inotbt_nores)) {
+		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
+				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
+				&tp);
+	} else {
+		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
+	}
+	if (error) {
+		if (error == -ENOSPC) {
+			xfs_warn_ratelimited(mp,
+			"Failed to remove inode(s) from unlinked list. "
+			"Please free space, unmount and run xfs_repair.");
+		} else {
+			ASSERT(XFS_FORCED_SHUTDOWN(mp));
+		}
+		return error;
+	}
+
+	xfs_ilock(ip, XFS_ILOCK_EXCL);
+	xfs_trans_ijoin(tp, ip, 0);
+
+	error = xfs_ifree(tp, ip);
+	if (error) {
+		/*
+		 * If we fail to free the inode, shut down.  The cancel
+		 * might do that, we need to make sure.  Otherwise the
+		 * inode might be lost for a long time or forever.
+		 */
+		if (!XFS_FORCED_SHUTDOWN(mp)) {
+			xfs_notice(mp, "%s: xfs_ifree returned error %d",
+				__func__, error);
+			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
+		}
+		xfs_trans_cancel(tp);
+		xfs_iunlock(ip, XFS_ILOCK_EXCL);
+		return error;
+	}
+
+	/*
+	 * Credit the quota account(s). The inode is gone.
+	 */
+	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
+
+	/*
+	 * Just ignore errors at this point.  There is nothing we can do except
+	 * to try to keep going. Make sure it's not a silent error.
+	 */
+	error = xfs_trans_commit(tp);
+	if (error)
+		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
+			__func__, error);
+
+	xfs_iunlock(ip, XFS_ILOCK_EXCL);
+	return 0;
+}
+
+/*
+ * xfs_inactive
+ *
+ * This is called when the vnode reference count for the vnode
+ * goes to zero.  If the file has been unlinked, then it must
+ * now be truncated.  Also, we clear all of the read-ahead state
+ * kept for the inode here since the file is now closed.
+ */
+void
+xfs_inactive(
+	xfs_inode_t	*ip)
+{
+	struct xfs_mount	*mp;
+	int			error;
+	int			truncate = 0;
+
+	/*
+	 * If the inode is already free, then there can be nothing
+	 * to clean up here.
+	 */
+	if (VFS_I(ip)->i_mode == 0) {
+		ASSERT(ip->i_df.if_broot_bytes == 0);
+		return;
+	}
+
+	mp = ip->i_mount;
+	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
+
+	/* If this is a read-only mount, don't do this (would generate I/O) */
+	if (mp->m_flags & XFS_MOUNT_RDONLY)
+		return;
+
+	/* Try to clean out the cow blocks if there are any. */
+	if (xfs_inode_has_cow_data(ip))
+		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
+
+	if (VFS_I(ip)->i_nlink != 0) {
+		/*
+		 * force is true because we are evicting an inode from the
+		 * cache. Post-eof blocks must be freed, lest we end up with
+		 * broken free space accounting.
+		 *
+		 * Note: don't bother with iolock here since lockdep complains
+		 * about acquiring it in reclaim context. We have the only
+		 * reference to the inode at this point anyways.
+		 */
+		if (xfs_can_free_eofblocks(ip, true))
+			xfs_free_eofblocks(ip);
+
+		return;
+	}
+
+	if (S_ISREG(VFS_I(ip)->i_mode) &&
+	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
+	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
+		truncate = 1;
+
+	error = xfs_qm_dqattach(ip);
+	if (error)
+		return;
+
+	if (S_ISLNK(VFS_I(ip)->i_mode))
+		error = xfs_inactive_symlink(ip);
+	else if (truncate)
+		error = xfs_inactive_truncate(ip);
+	if (error)
+		return;
+
+	/*
+	 * If there are attributes associated with the file then blow them away
+	 * now.  The code calls a routine that recursively deconstructs the
+	 * attribute fork. If also blows away the in-core attribute fork.
+	 */
+	if (XFS_IFORK_Q(ip)) {
+		error = xfs_attr_inactive(ip);
+		if (error)
+			return;
+	}
+
+	ASSERT(!ip->i_afp);
+	ASSERT(ip->i_d.di_anextents == 0);
+	ASSERT(ip->i_d.di_forkoff == 0);
+
+	/*
+	 * Free the inode.
+	 */
+	error = xfs_inactive_ifree(ip);
+	if (error)
+		return;
+
+	/*
+	 * Release the dquots held by inode, if any.
+	 */
+	xfs_qm_dqdetach(ip);
+}
+
+/*
+ * This is called when the inode's link count goes to 0 or we are creating a
+ * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
+ * set to true as the link count is dropped to zero by the VFS after we've
+ * created the file successfully, so we have to add it to the unlinked list
+ * while the link count is non-zero.
+ *
+ * We place the on-disk inode on a list in the AGI.  It will be pulled from this
+ * list when the inode is freed.
+ */
+STATIC int
+xfs_iunlink(
+	struct xfs_trans *tp,
+	struct xfs_inode *ip)
+{
+	xfs_mount_t	*mp = tp->t_mountp;
+	xfs_agi_t	*agi;
+	xfs_dinode_t	*dip;
+	xfs_buf_t	*agibp;
+	xfs_buf_t	*ibp;
+	xfs_agino_t	agino;
+	short		bucket_index;
+	int		offset;
+	int		error;
+
+	ASSERT(VFS_I(ip)->i_mode != 0);
+
+	/*
+	 * Get the agi buffer first.  It ensures lock ordering
+	 * on the list.
+	 */
+	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
+	if (error)
+		return error;
+	agi = XFS_BUF_TO_AGI(agibp);
+
+	/*
+	 * Get the index into the agi hash table for the
+	 * list this inode will go on.
+	 */
+	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
+	ASSERT(agino != 0);
+	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
+	ASSERT(agi->agi_unlinked[bucket_index]);
+	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
+
+	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
+		/*
+		 * There is already another inode in the bucket we need
+		 * to add ourselves to.  Add us at the front of the list.
+		 * Here we put the head pointer into our next pointer,
+		 * and then we fall through to point the head at us.
+		 */
+		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
+				       0, 0);
+		if (error)
+			return error;
+
+		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
+		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
+		offset = ip->i_imap.im_boffset +
+			offsetof(xfs_dinode_t, di_next_unlinked);
+
+		/* need to recalc the inode CRC if appropriate */
+		xfs_dinode_calc_crc(mp, dip);
+
+		xfs_trans_inode_buf(tp, ibp);
+		xfs_trans_log_buf(tp, ibp, offset,
+				  (offset + sizeof(xfs_agino_t) - 1));
+		xfs_inobp_check(mp, ibp);
+	}
+
+	/*
+	 * Point the bucket head pointer at the inode being inserted.
+	 */
+	ASSERT(agino != 0);
+	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
+	offset = offsetof(xfs_agi_t, agi_unlinked) +
+		(sizeof(xfs_agino_t) * bucket_index);
+	xfs_trans_log_buf(tp, agibp, offset,
+			  (offset + sizeof(xfs_agino_t) - 1));
+	return 0;
+}
+
+/*
+ * Pull the on-disk inode from the AGI unlinked list.
+ */
+STATIC int
+xfs_iunlink_remove(
+	xfs_trans_t	*tp,
+	xfs_inode_t	*ip)
+{
+	xfs_ino_t	next_ino;
+	xfs_mount_t	*mp;
+	xfs_agi_t	*agi;
+	xfs_dinode_t	*dip;
+	xfs_buf_t	*agibp;
+	xfs_buf_t	*ibp;
+	xfs_agnumber_t	agno;
+	xfs_agino_t	agino;
+	xfs_agino_t	next_agino;
+	xfs_buf_t	*last_ibp;
+	xfs_dinode_t	*last_dip = NULL;
+	short		bucket_index;
+	int		offset, last_offset = 0;
+	int		error;
+
+	mp = tp->t_mountp;
+	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
+
+	/*
+	 * Get the agi buffer first.  It ensures lock ordering
+	 * on the list.
+	 */
+	error = xfs_read_agi(mp, tp, agno, &agibp);
+	if (error)
+		return error;
+
+	agi = XFS_BUF_TO_AGI(agibp);
+
+	/*
+	 * Get the index into the agi hash table for the
+	 * list this inode will go on.
+	 */
+	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
+	if (!xfs_verify_agino(mp, agno, agino))
+		return -EFSCORRUPTED;
+	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
+	if (!xfs_verify_agino(mp, agno,
+			be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
+		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
+				agi, sizeof(*agi));
+		return -EFSCORRUPTED;
+	}
+
+	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
+		/*
+		 * We're at the head of the list.  Get the inode's on-disk
+		 * buffer to see if there is anyone after us on the list.
+		 * Only modify our next pointer if it is not already NULLAGINO.
+		 * This saves us the overhead of dealing with the buffer when
+		 * there is no need to change it.
+		 */
+		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
+				       0, 0);
+		if (error) {
+			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
+				__func__, error);
+			return error;
+		}
+		next_agino = be32_to_cpu(dip->di_next_unlinked);
+		ASSERT(next_agino != 0);
+		if (next_agino != NULLAGINO) {
+			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
+			offset = ip->i_imap.im_boffset +
+				offsetof(xfs_dinode_t, di_next_unlinked);
+
+			/* need to recalc the inode CRC if appropriate */
+			xfs_dinode_calc_crc(mp, dip);
+
+			xfs_trans_inode_buf(tp, ibp);
+			xfs_trans_log_buf(tp, ibp, offset,
+					  (offset + sizeof(xfs_agino_t) - 1));
+			xfs_inobp_check(mp, ibp);
+		} else {
+			xfs_trans_brelse(tp, ibp);
+		}
+		/*
+		 * Point the bucket head pointer at the next inode.
+		 */
+		ASSERT(next_agino != 0);
+		ASSERT(next_agino != agino);
+		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
+		offset = offsetof(xfs_agi_t, agi_unlinked) +
+			(sizeof(xfs_agino_t) * bucket_index);
+		xfs_trans_log_buf(tp, agibp, offset,
+				  (offset + sizeof(xfs_agino_t) - 1));
+	} else {
+		/*
+		 * We need to search the list for the inode being freed.
+		 */
+		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
+		last_ibp = NULL;
+		while (next_agino != agino) {
+			struct xfs_imap	imap;
+
+			if (last_ibp)
+				xfs_trans_brelse(tp, last_ibp);
+
+			imap.im_blkno = 0;
+			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
+
+			error = xfs_imap(mp, tp, next_ino, &imap, 0);
+			if (error) {
+				xfs_warn(mp,
+	"%s: xfs_imap returned error %d.",
+					 __func__, error);
+				return error;
+			}
+
+			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
+					       &last_ibp, 0, 0);
+			if (error) {
+				xfs_warn(mp,
+	"%s: xfs_imap_to_bp returned error %d.",
+					__func__, error);
+				return error;
+			}
+
+			last_offset = imap.im_boffset;
+			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
+			if (!xfs_verify_agino(mp, agno, next_agino)) {
+				XFS_CORRUPTION_ERROR(__func__,
+						XFS_ERRLEVEL_LOW, mp,
+						last_dip, sizeof(*last_dip));
+				return -EFSCORRUPTED;
+			}
+		}
+
+		/*
+		 * Now last_ibp points to the buffer previous to us on the
+		 * unlinked list.  Pull us from the list.
+		 */
+		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
+				       0, 0);
+		if (error) {
+			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
+				__func__, error);
+			return error;
+		}
+		next_agino = be32_to_cpu(dip->di_next_unlinked);
+		ASSERT(next_agino != 0);
+		ASSERT(next_agino != agino);
+		if (next_agino != NULLAGINO) {
+			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
+			offset = ip->i_imap.im_boffset +
+				offsetof(xfs_dinode_t, di_next_unlinked);
+
+			/* need to recalc the inode CRC if appropriate */
+			xfs_dinode_calc_crc(mp, dip);
+
+			xfs_trans_inode_buf(tp, ibp);
+			xfs_trans_log_buf(tp, ibp, offset,
+					  (offset + sizeof(xfs_agino_t) - 1));
+			xfs_inobp_check(mp, ibp);
+		} else {
+			xfs_trans_brelse(tp, ibp);
+		}
+		/*
+		 * Point the previous inode on the list to the next inode.
+		 */
+		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
+		ASSERT(next_agino != 0);
+		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
+
+		/* need to recalc the inode CRC if appropriate */
+		xfs_dinode_calc_crc(mp, last_dip);
+
+		xfs_trans_inode_buf(tp, last_ibp);
+		xfs_trans_log_buf(tp, last_ibp, offset,
+				  (offset + sizeof(xfs_agino_t) - 1));
+		xfs_inobp_check(mp, last_ibp);
+	}
+	return 0;
+}
+
+/*
+ * A big issue when freeing the inode cluster is that we _cannot_ skip any
+ * inodes that are in memory - they all must be marked stale and attached to
+ * the cluster buffer.
+ */
+STATIC int
+xfs_ifree_cluster(
+	xfs_inode_t		*free_ip,
+	xfs_trans_t		*tp,
+	struct xfs_icluster	*xic)
+{
+	xfs_mount_t		*mp = free_ip->i_mount;
+	int			blks_per_cluster;
+	int			inodes_per_cluster;
+	int			nbufs;
+	int			i, j;
+	int			ioffset;
+	xfs_daddr_t		blkno;
+	xfs_buf_t		*bp;
+	xfs_inode_t		*ip;
+	xfs_inode_log_item_t	*iip;
+	struct xfs_log_item	*lip;
+	struct xfs_perag	*pag;
+	xfs_ino_t		inum;
+
+	inum = xic->first_ino;
+	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
+	blks_per_cluster = xfs_icluster_size_fsb(mp);
+	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
+	nbufs = mp->m_ialloc_blks / blks_per_cluster;
+
+	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
+		/*
+		 * The allocation bitmap tells us which inodes of the chunk were
+		 * physically allocated. Skip the cluster if an inode falls into
+		 * a sparse region.
+		 */
+		ioffset = inum - xic->first_ino;
+		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
+			ASSERT(ioffset % inodes_per_cluster == 0);
+			continue;
+		}
+
+		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
+					 XFS_INO_TO_AGBNO(mp, inum));
+
+		/*
+		 * We obtain and lock the backing buffer first in the process
+		 * here, as we have to ensure that any dirty inode that we
+		 * can't get the flush lock on is attached to the buffer.
+		 * If we scan the in-memory inodes first, then buffer IO can
+		 * complete before we get a lock on it, and hence we may fail
+		 * to mark all the active inodes on the buffer stale.
+		 */
+		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
+					mp->m_bsize * blks_per_cluster,
+					XBF_UNMAPPED);
+
+		if (!bp)
+			return -ENOMEM;
+
+		/*
+		 * This buffer may not have been correctly initialised as we
+		 * didn't read it from disk. That's not important because we are
+		 * only using to mark the buffer as stale in the log, and to
+		 * attach stale cached inodes on it. That means it will never be
+		 * dispatched for IO. If it is, we want to know about it, and we
+		 * want it to fail. We can acheive this by adding a write
+		 * verifier to the buffer.
+		 */
+		 bp->b_ops = &xfs_inode_buf_ops;
+
+		/*
+		 * Walk the inodes already attached to the buffer and mark them
+		 * stale. These will all have the flush locks held, so an
+		 * in-memory inode walk can't lock them. By marking them all
+		 * stale first, we will not attempt to lock them in the loop
+		 * below as the XFS_ISTALE flag will be set.
+		 */
+		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
+			if (lip->li_type == XFS_LI_INODE) {
+				iip = (xfs_inode_log_item_t *)lip;
+				ASSERT(iip->ili_logged == 1);
+				lip->li_cb = xfs_istale_done;
+				xfs_trans_ail_copy_lsn(mp->m_ail,
+							&iip->ili_flush_lsn,
+							&iip->ili_item.li_lsn);
+				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
+			}
+		}
+
+
+		/*
+		 * For each inode in memory attempt to add it to the inode
+		 * buffer and set it up for being staled on buffer IO
+		 * completion.  This is safe as we've locked out tail pushing
+		 * and flushing by locking the buffer.
+		 *
+		 * We have already marked every inode that was part of a
+		 * transaction stale above, which means there is no point in
+		 * even trying to lock them.
+		 */
+		for (i = 0; i < inodes_per_cluster; i++) {
+retry:
+			rcu_read_lock();
+			ip = radix_tree_lookup(&pag->pag_ici_root,
+					XFS_INO_TO_AGINO(mp, (inum + i)));
+
+			/* Inode not in memory, nothing to do */
+			if (!ip) {
+				rcu_read_unlock();
+				continue;
+			}
+
+			/*
+			 * because this is an RCU protected lookup, we could
+			 * find a recently freed or even reallocated inode
+			 * during the lookup. We need to check under the
+			 * i_flags_lock for a valid inode here. Skip it if it
+			 * is not valid, the wrong inode or stale.
+			 */
+			spin_lock(&ip->i_flags_lock);
+			if (ip->i_ino != inum + i ||
+			    __xfs_iflags_test(ip, XFS_ISTALE)) {
+				spin_unlock(&ip->i_flags_lock);
+				rcu_read_unlock();
+				continue;
+			}
+			spin_unlock(&ip->i_flags_lock);
+
+			/*
+			 * Don't try to lock/unlock the current inode, but we
+			 * _cannot_ skip the other inodes that we did not find
+			 * in the list attached to the buffer and are not
+			 * already marked stale. If we can't lock it, back off
+			 * and retry.
+			 */
+			if (ip != free_ip) {
+				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
+					rcu_read_unlock();
+					delay(1);
+					goto retry;
+				}
+
+				/*
+				 * Check the inode number again in case we're
+				 * racing with freeing in xfs_reclaim_inode().
+				 * See the comments in that function for more
+				 * information as to why the initial check is
+				 * not sufficient.
+				 */
+				if (ip->i_ino != inum + i) {
+					xfs_iunlock(ip, XFS_ILOCK_EXCL);
+					rcu_read_unlock();
+					continue;
+				}
+			}
+			rcu_read_unlock();
+
+			xfs_iflock(ip);
+			xfs_iflags_set(ip, XFS_ISTALE);
+
+			/*
+			 * we don't need to attach clean inodes or those only
+			 * with unlogged changes (which we throw away, anyway).
+			 */
+			iip = ip->i_itemp;
+			if (!iip || xfs_inode_clean(ip)) {
+				ASSERT(ip != free_ip);
+				xfs_ifunlock(ip);
+				xfs_iunlock(ip, XFS_ILOCK_EXCL);
+				continue;
+			}
+
+			iip->ili_last_fields = iip->ili_fields;
+			iip->ili_fields = 0;
+			iip->ili_fsync_fields = 0;
+			iip->ili_logged = 1;
+			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
+						&iip->ili_item.li_lsn);
+
+			xfs_buf_attach_iodone(bp, xfs_istale_done,
+						  &iip->ili_item);
+
+			if (ip != free_ip)
+				xfs_iunlock(ip, XFS_ILOCK_EXCL);
+		}
+
+		xfs_trans_stale_inode_buf(tp, bp);
+		xfs_trans_binval(tp, bp);
+	}
+
+	xfs_perag_put(pag);
+	return 0;
+}
+
+/*
+ * Free any local-format buffers sitting around before we reset to
+ * extents format.
+ */
+static inline void
+xfs_ifree_local_data(
+	struct xfs_inode	*ip,
+	int			whichfork)
+{
+	struct xfs_ifork	*ifp;
+
+	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
+		return;
+
+	ifp = XFS_IFORK_PTR(ip, whichfork);
+	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
+}
+
+/*
+ * This is called to return an inode to the inode free list.
+ * The inode should already be truncated to 0 length and have
+ * no pages associated with it.  This routine also assumes that
+ * the inode is already a part of the transaction.
+ *
+ * The on-disk copy of the inode will have been added to the list
+ * of unlinked inodes in the AGI. We need to remove the inode from
+ * that list atomically with respect to freeing it here.
+ */
+int
+xfs_ifree(
+	struct xfs_trans	*tp,
+	struct xfs_inode	*ip)
+{
+	int			error;
+	struct xfs_icluster	xic = { 0 };
+
+	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
+	ASSERT(VFS_I(ip)->i_nlink == 0);
+	ASSERT(ip->i_d.di_nextents == 0);
+	ASSERT(ip->i_d.di_anextents == 0);
+	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
+	ASSERT(ip->i_d.di_nblocks == 0);
+
+	/*
+	 * Pull the on-disk inode from the AGI unlinked list.
+	 */
+	error = xfs_iunlink_remove(tp, ip);
+	if (error)
+		return error;
+
+	error = xfs_difree(tp, ip->i_ino, &xic);
+	if (error)
+		return error;
+
+	xfs_ifree_local_data(ip, XFS_DATA_FORK);
+	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
+
+	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
+	ip->i_d.di_flags = 0;
+	ip->i_d.di_flags2 = 0;
+	ip->i_d.di_dmevmask = 0;
+	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
+	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
+	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
+
+	/* Don't attempt to replay owner changes for a deleted inode */
+	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
+
+	/*
+	 * Bump the generation count so no one will be confused
+	 * by reincarnations of this inode.
+	 */
+	VFS_I(ip)->i_generation++;
+	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
+
+	if (xic.deleted)
+		error = xfs_ifree_cluster(ip, tp, &xic);
+
+	return error;
+}
+
+/*
+ * This is called to unpin an inode.  The caller must have the inode locked
+ * in at least shared mode so that the buffer cannot be subsequently pinned
+ * once someone is waiting for it to be unpinned.
+ */
+static void
+xfs_iunpin(
+	struct xfs_inode	*ip)
+{
+	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
+
+	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
+
+	/* Give the log a push to start the unpinning I/O */
+	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
+
+}
+
+static void
+__xfs_iunpin_wait(
+	struct xfs_inode	*ip)
+{
+	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
+	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
+
+	xfs_iunpin(ip);
+
+	do {
+		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
+		if (xfs_ipincount(ip))
+			io_schedule();
+	} while (xfs_ipincount(ip));
+	finish_wait(wq, &wait.wq_entry);
+}
+
+void
+xfs_iunpin_wait(
+	struct xfs_inode	*ip)
+{
+	if (xfs_ipincount(ip))
+		__xfs_iunpin_wait(ip);
+}
+
+/*
+ * Removing an inode from the namespace involves removing the directory entry
+ * and dropping the link count on the inode. Removing the directory entry can
+ * result in locking an AGF (directory blocks were freed) and removing a link
+ * count can result in placing the inode on an unlinked list which results in
+ * locking an AGI.
+ *
+ * The big problem here is that we have an ordering constraint on AGF and AGI
+ * locking - inode allocation locks the AGI, then can allocate a new extent for
+ * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
+ * removes the inode from the unlinked list, requiring that we lock the AGI
+ * first, and then freeing the inode can result in an inode chunk being freed
+ * and hence freeing disk space requiring that we lock an AGF.
+ *
+ * Hence the ordering that is imposed by other parts of the code is AGI before
+ * AGF. This means we cannot remove the directory entry before we drop the inode
+ * reference count and put it on the unlinked list as this results in a lock
+ * order of AGF then AGI, and this can deadlock against inode allocation and
+ * freeing. Therefore we must drop the link counts before we remove the
+ * directory entry.
+ *
+ * This is still safe from a transactional point of view - it is not until we
+ * get to xfs_defer_finish() that we have the possibility of multiple
+ * transactions in this operation. Hence as long as we remove the directory
+ * entry and drop the link count in the first transaction of the remove
+ * operation, there are no transactional constraints on the ordering here.
+ */
+int
+xfs_remove(
+	xfs_inode_t             *dp,
+	struct xfs_name		*name,
+	xfs_inode_t		*ip)
+{
+	xfs_mount_t		*mp = dp->i_mount;
+	xfs_trans_t             *tp = NULL;
+	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
+	int                     error = 0;
+	uint			resblks;
+
+	trace_xfs_remove(dp, name);
+
+	if (XFS_FORCED_SHUTDOWN(mp))
+		return -EIO;
+
+	error = xfs_qm_dqattach(dp);
+	if (error)
+		goto std_return;
+
+	error = xfs_qm_dqattach(ip);
+	if (error)
+		goto std_return;
+
+	/*
+	 * We try to get the real space reservation first,
+	 * allowing for directory btree deletion(s) implying
+	 * possible bmap insert(s).  If we can't get the space
+	 * reservation then we use 0 instead, and avoid the bmap
+	 * btree insert(s) in the directory code by, if the bmap
+	 * insert tries to happen, instead trimming the LAST
+	 * block from the directory.
+	 */
+	resblks = XFS_REMOVE_SPACE_RES(mp);
+	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
+	if (error == -ENOSPC) {
+		resblks = 0;
+		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
+				&tp);
+	}
+	if (error) {
+		ASSERT(error != -ENOSPC);
+		goto std_return;
+	}
+
+	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
+
+	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
+	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
+
+	/*
+	 * If we're removing a directory perform some additional validation.
+	 */
+	if (is_dir) {
+		ASSERT(VFS_I(ip)->i_nlink >= 2);
+		if (VFS_I(ip)->i_nlink != 2) {
+			error = -ENOTEMPTY;
+			goto out_trans_cancel;
+		}
+		if (!xfs_dir_isempty(ip)) {
+			error = -ENOTEMPTY;
+			goto out_trans_cancel;
+		}
+
+		/* Drop the link from ip's "..".  */
+		error = xfs_droplink(tp, dp);
+		if (error)
+			goto out_trans_cancel;
+
+		/* Drop the "." link from ip to self.  */
+		error = xfs_droplink(tp, ip);
+		if (error)
+			goto out_trans_cancel;
+	} else {
+		/*
+		 * When removing a non-directory we need to log the parent
+		 * inode here.  For a directory this is done implicitly
+		 * by the xfs_droplink call for the ".." entry.
+		 */
+		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
+	}
+	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+
+	/* Drop the link from dp to ip. */
+	error = xfs_droplink(tp, ip);
+	if (error)
+		goto out_trans_cancel;
+
+	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
+	if (error) {
+		ASSERT(error != -ENOENT);
+		goto out_trans_cancel;
+	}
+
+	/*
+	 * If this is a synchronous mount, make sure that the
+	 * remove transaction goes to disk before returning to
+	 * the user.
+	 */
+	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
+		xfs_trans_set_sync(tp);
+
+	error = xfs_trans_commit(tp);
+	if (error)
+		goto std_return;
+
+	if (is_dir && xfs_inode_is_filestream(ip))
+		xfs_filestream_deassociate(ip);
+
+	return 0;
+
+ out_trans_cancel:
+	xfs_trans_cancel(tp);
+ std_return:
+	return error;
+}
+
+/*
+ * Enter all inodes for a rename transaction into a sorted array.
+ */
+#define __XFS_SORT_INODES	5
+STATIC void
+xfs_sort_for_rename(
+	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
+	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
+	struct xfs_inode	*ip1,	/* in: inode of old entry */
+	struct xfs_inode	*ip2,	/* in: inode of new entry */
+	struct xfs_inode	*wip,	/* in: whiteout inode */
+	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
+	int			*num_inodes)  /* in/out: inodes in array */
+{
+	int			i, j;
+
+	ASSERT(*num_inodes == __XFS_SORT_INODES);
+	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
+
+	/*
+	 * i_tab contains a list of pointers to inodes.  We initialize
+	 * the table here & we'll sort it.  We will then use it to
+	 * order the acquisition of the inode locks.
+	 *
+	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
+	 */
+	i = 0;
+	i_tab[i++] = dp1;
+	i_tab[i++] = dp2;
+	i_tab[i++] = ip1;
+	if (ip2)
+		i_tab[i++] = ip2;
+	if (wip)
+		i_tab[i++] = wip;
+	*num_inodes = i;
+
+	/*
+	 * Sort the elements via bubble sort.  (Remember, there are at
+	 * most 5 elements to sort, so this is adequate.)
+	 */
+	for (i = 0; i < *num_inodes; i++) {
+		for (j = 1; j < *num_inodes; j++) {
+			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
+				struct xfs_inode *temp = i_tab[j];
+				i_tab[j] = i_tab[j-1];
+				i_tab[j-1] = temp;
+			}
+		}
+	}
+}
+
+static int
+xfs_finish_rename(
+	struct xfs_trans	*tp)
+{
+	/*
+	 * If this is a synchronous mount, make sure that the rename transaction
+	 * goes to disk before returning to the user.
+	 */
+	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
+		xfs_trans_set_sync(tp);
+
+	return xfs_trans_commit(tp);
+}
+
+/*
+ * xfs_cross_rename()
+ *
+ * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
+ */
+STATIC int
+xfs_cross_rename(
+	struct xfs_trans	*tp,
+	struct xfs_inode	*dp1,
+	struct xfs_name		*name1,
+	struct xfs_inode	*ip1,
+	struct xfs_inode	*dp2,
+	struct xfs_name		*name2,
+	struct xfs_inode	*ip2,
+	int			spaceres)
+{
+	int		error = 0;
+	int		ip1_flags = 0;
+	int		ip2_flags = 0;
+	int		dp2_flags = 0;
+
+	/* Swap inode number for dirent in first parent */
+	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
+	if (error)
+		goto out_trans_abort;
+
+	/* Swap inode number for dirent in second parent */
+	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
+	if (error)
+		goto out_trans_abort;
+
+	/*
+	 * If we're renaming one or more directories across different parents,
+	 * update the respective ".." entries (and link counts) to match the new
+	 * parents.
+	 */
+	if (dp1 != dp2) {
+		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
+
+		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
+			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
+						dp1->i_ino, spaceres);
+			if (error)
+				goto out_trans_abort;
+
+			/* transfer ip2 ".." reference to dp1 */
+			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
+				error = xfs_droplink(tp, dp2);
+				if (error)
+					goto out_trans_abort;
+				error = xfs_bumplink(tp, dp1);
+				if (error)
+					goto out_trans_abort;
+			}
+
+			/*
+			 * Although ip1 isn't changed here, userspace needs
+			 * to be warned about the change, so that applications
+			 * relying on it (like backup ones), will properly
+			 * notify the change
+			 */
+			ip1_flags |= XFS_ICHGTIME_CHG;
+			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
+		}
+
+		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
+			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
+						dp2->i_ino, spaceres);
+			if (error)
+				goto out_trans_abort;
+
+			/* transfer ip1 ".." reference to dp2 */
+			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
+				error = xfs_droplink(tp, dp1);
+				if (error)
+					goto out_trans_abort;
+				error = xfs_bumplink(tp, dp2);
+				if (error)
+					goto out_trans_abort;
+			}
+
+			/*
+			 * Although ip2 isn't changed here, userspace needs
+			 * to be warned about the change, so that applications
+			 * relying on it (like backup ones), will properly
+			 * notify the change
+			 */
+			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
+			ip2_flags |= XFS_ICHGTIME_CHG;
+		}
+	}
+
+	if (ip1_flags) {
+		xfs_trans_ichgtime(tp, ip1, ip1_flags);
+		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
+	}
+	if (ip2_flags) {
+		xfs_trans_ichgtime(tp, ip2, ip2_flags);
+		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
+	}
+	if (dp2_flags) {
+		xfs_trans_ichgtime(tp, dp2, dp2_flags);
+		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
+	}
+	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
+	return xfs_finish_rename(tp);
+
+out_trans_abort:
+	xfs_trans_cancel(tp);
+	return error;
+}
+
+/*
+ * xfs_rename_alloc_whiteout()
+ *
+ * Return a referenced, unlinked, unlocked inode that that can be used as a
+ * whiteout in a rename transaction. We use a tmpfile inode here so that if we
+ * crash between allocating the inode and linking it into the rename transaction
+ * recovery will free the inode and we won't leak it.
+ */
+static int
+xfs_rename_alloc_whiteout(
+	struct xfs_inode	*dp,
+	struct xfs_inode	**wip)
+{
+	struct xfs_inode	*tmpfile;
+	int			error;
+
+	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
+	if (error)
+		return error;
+
+	/*
+	 * Prepare the tmpfile inode as if it were created through the VFS.
+	 * Otherwise, the link increment paths will complain about nlink 0->1.
+	 * Drop the link count as done by d_tmpfile(), complete the inode setup
+	 * and flag it as linkable.
+	 */
+	drop_nlink(VFS_I(tmpfile));
+	xfs_setup_iops(tmpfile);
+	xfs_finish_inode_setup(tmpfile);
+	VFS_I(tmpfile)->i_state |= I_LINKABLE;
+
+	*wip = tmpfile;
+	return 0;
+}
+
+/*
+ * xfs_rename
+ */
+int
+xfs_rename(
+	struct xfs_inode	*src_dp,
+	struct xfs_name		*src_name,
+	struct xfs_inode	*src_ip,
+	struct xfs_inode	*target_dp,
+	struct xfs_name		*target_name,
+	struct xfs_inode	*target_ip,
+	unsigned int		flags)
+{
+	struct xfs_mount	*mp = src_dp->i_mount;
+	struct xfs_trans	*tp;
+	struct xfs_inode	*wip = NULL;		/* whiteout inode */
+	struct xfs_inode	*inodes[__XFS_SORT_INODES];
+	int			num_inodes = __XFS_SORT_INODES;
+	bool			new_parent = (src_dp != target_dp);
+	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
+	int			spaceres;
+	int			error;
+
+	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
+
+	if ((flags & RENAME_EXCHANGE) && !target_ip)
+		return -EINVAL;
+
+	/*
+	 * If we are doing a whiteout operation, allocate the whiteout inode
+	 * we will be placing at the target and ensure the type is set
+	 * appropriately.
+	 */
+	if (flags & RENAME_WHITEOUT) {
+		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
+		error = xfs_rename_alloc_whiteout(target_dp, &wip);
+		if (error)
+			return error;
+
+		/* setup target dirent info as whiteout */
+		src_name->type = XFS_DIR3_FT_CHRDEV;
+	}
+
+	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
+				inodes, &num_inodes);
+
+	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
+	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
+	if (error == -ENOSPC) {
+		spaceres = 0;
+		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
+				&tp);
+	}
+	if (error)
+		goto out_release_wip;
+
+	/*
+	 * Attach the dquots to the inodes
+	 */
+	error = xfs_qm_vop_rename_dqattach(inodes);
+	if (error)
+		goto out_trans_cancel;
+
+	/*
+	 * Lock all the participating inodes. Depending upon whether
+	 * the target_name exists in the target directory, and
+	 * whether the target directory is the same as the source
+	 * directory, we can lock from 2 to 4 inodes.
+	 */
+	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
+
+	/*
+	 * Join all the inodes to the transaction. From this point on,
+	 * we can rely on either trans_commit or trans_cancel to unlock
+	 * them.
+	 */
+	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
+	if (new_parent)
+		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
+	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
+	if (target_ip)
+		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
+	if (wip)
+		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
+
+	/*
+	 * If we are using project inheritance, we only allow renames
+	 * into our tree when the project IDs are the same; else the
+	 * tree quota mechanism would be circumvented.
+	 */
+	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
+		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
+		error = -EXDEV;
+		goto out_trans_cancel;
+	}
+
+	/* RENAME_EXCHANGE is unique from here on. */
+	if (flags & RENAME_EXCHANGE)
+		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
+					target_dp, target_name, target_ip,
+					spaceres);
+
+	/*
+	 * Set up the target.
+	 */
+	if (target_ip == NULL) {
+		/*
+		 * If there's no space reservation, check the entry will
+		 * fit before actually inserting it.
+		 */
+		if (!spaceres) {
+			error = xfs_dir_canenter(tp, target_dp, target_name);
+			if (error)
+				goto out_trans_cancel;
+		}
+		/*
+		 * If target does not exist and the rename crosses
+		 * directories, adjust the target directory link count
+		 * to account for the ".." reference from the new entry.
+		 */
+		error = xfs_dir_createname(tp, target_dp, target_name,
+					   src_ip->i_ino, spaceres);
+		if (error)
+			goto out_trans_cancel;
+
+		xfs_trans_ichgtime(tp, target_dp,
+					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+
+		if (new_parent && src_is_directory) {
+			error = xfs_bumplink(tp, target_dp);
+			if (error)
+				goto out_trans_cancel;
+		}
+	} else { /* target_ip != NULL */
+		/*
+		 * If target exists and it's a directory, check that both
+		 * target and source are directories and that target can be
+		 * destroyed, or that neither is a directory.
+		 */
+		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
+			/*
+			 * Make sure target dir is empty.
+			 */
+			if (!(xfs_dir_isempty(target_ip)) ||
+			    (VFS_I(target_ip)->i_nlink > 2)) {
+				error = -EEXIST;
+				goto out_trans_cancel;
+			}
+		}
+
+		/*
+		 * Link the source inode under the target name.
+		 * If the source inode is a directory and we are moving
+		 * it across directories, its ".." entry will be
+		 * inconsistent until we replace that down below.
+		 *
+		 * In case there is already an entry with the same
+		 * name at the destination directory, remove it first.
+		 */
+		error = xfs_dir_replace(tp, target_dp, target_name,
+					src_ip->i_ino, spaceres);
+		if (error)
+			goto out_trans_cancel;
+
+		xfs_trans_ichgtime(tp, target_dp,
+					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+
+		/*
+		 * Decrement the link count on the target since the target
+		 * dir no longer points to it.
+		 */
+		error = xfs_droplink(tp, target_ip);
+		if (error)
+			goto out_trans_cancel;
+
+		if (src_is_directory) {
+			/*
+			 * Drop the link from the old "." entry.
+			 */
+			error = xfs_droplink(tp, target_ip);
+			if (error)
+				goto out_trans_cancel;
+		}
+	} /* target_ip != NULL */
+
+	/*
+	 * Remove the source.
+	 */
+	if (new_parent && src_is_directory) {
+		/*
+		 * Rewrite the ".." entry to point to the new
+		 * directory.
+		 */
+		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
+					target_dp->i_ino, spaceres);
+		ASSERT(error != -EEXIST);
+		if (error)
+			goto out_trans_cancel;
+	}
+
+	/*
+	 * We always want to hit the ctime on the source inode.
+	 *
+	 * This isn't strictly required by the standards since the source
+	 * inode isn't really being changed, but old unix file systems did
+	 * it and some incremental backup programs won't work without it.
+	 */
+	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
+	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
+
+	/*
+	 * Adjust the link count on src_dp.  This is necessary when
+	 * renaming a directory, either within one parent when
+	 * the target existed, or across two parent directories.
+	 */
+	if (src_is_directory && (new_parent || target_ip != NULL)) {
+
+		/*
+		 * Decrement link count on src_directory since the
+		 * entry that's moved no longer points to it.
+		 */
+		error = xfs_droplink(tp, src_dp);
+		if (error)
+			goto out_trans_cancel;
+	}
+
+	/*
+	 * For whiteouts, we only need to update the source dirent with the
+	 * inode number of the whiteout inode rather than removing it
+	 * altogether.
+	 */
+	if (wip) {
+		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
+					spaceres);
+	} else
+		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
+					   spaceres);
+	if (error)
+		goto out_trans_cancel;
+
+	/*
+	 * For whiteouts, we need to bump the link count on the whiteout inode.
+	 * This means that failures all the way up to this point leave the inode
+	 * on the unlinked list and so cleanup is a simple matter of dropping
+	 * the remaining reference to it. If we fail here after bumping the link
+	 * count, we're shutting down the filesystem so we'll never see the
+	 * intermediate state on disk.
+	 */
+	if (wip) {
+		ASSERT(VFS_I(wip)->i_nlink == 0);
+		error = xfs_bumplink(tp, wip);
+		if (error)
+			goto out_trans_cancel;
+		error = xfs_iunlink_remove(tp, wip);
+		if (error)
+			goto out_trans_cancel;
+		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
+
+		/*
+		 * Now we have a real link, clear the "I'm a tmpfile" state
+		 * flag from the inode so it doesn't accidentally get misused in
+		 * future.
+		 */
+		VFS_I(wip)->i_state &= ~I_LINKABLE;
+	}
+
+	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
+	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
+	if (new_parent)
+		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
+
+	error = xfs_finish_rename(tp);
+	if (wip)
+		xfs_irele(wip);
+	return error;
+
+out_trans_cancel:
+	xfs_trans_cancel(tp);
+out_release_wip:
+	if (wip)
+		xfs_irele(wip);
+	return error;
+}
+
+STATIC int
+xfs_iflush_cluster(
+	struct xfs_inode	*ip,
+	struct xfs_buf		*bp)
+{
+	struct xfs_mount	*mp = ip->i_mount;
+	struct xfs_perag	*pag;
+	unsigned long		first_index, mask;
+	unsigned long		inodes_per_cluster;
+	int			cilist_size;
+	struct xfs_inode	**cilist;
+	struct xfs_inode	*cip;
+	int			nr_found;
+	int			clcount = 0;
+	int			i;
+
+	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
+
+	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
+	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
+	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
+	if (!cilist)
+		goto out_put;
+
+	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
+	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
+	rcu_read_lock();
+	/* really need a gang lookup range call here */
+	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
+					first_index, inodes_per_cluster);
+	if (nr_found == 0)
+		goto out_free;
+
+	for (i = 0; i < nr_found; i++) {
+		cip = cilist[i];
+		if (cip == ip)
+			continue;
+
+		/*
+		 * because this is an RCU protected lookup, we could find a
+		 * recently freed or even reallocated inode during the lookup.
+		 * We need to check under the i_flags_lock for a valid inode
+		 * here. Skip it if it is not valid or the wrong inode.
+		 */
+		spin_lock(&cip->i_flags_lock);
+		if (!cip->i_ino ||
+		    __xfs_iflags_test(cip, XFS_ISTALE)) {
+			spin_unlock(&cip->i_flags_lock);
+			continue;
+		}
+
+		/*
+		 * Once we fall off the end of the cluster, no point checking
+		 * any more inodes in the list because they will also all be
+		 * outside the cluster.
+		 */
+		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
+			spin_unlock(&cip->i_flags_lock);
+			break;
+		}
+		spin_unlock(&cip->i_flags_lock);
+
+		/*
+		 * Do an un-protected check to see if the inode is dirty and
+		 * is a candidate for flushing.  These checks will be repeated
+		 * later after the appropriate locks are acquired.
+		 */
+		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
+			continue;
+
+		/*
+		 * Try to get locks.  If any are unavailable or it is pinned,
+		 * then this inode cannot be flushed and is skipped.
+		 */
+
+		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
+			continue;
+		if (!xfs_iflock_nowait(cip)) {
+			xfs_iunlock(cip, XFS_ILOCK_SHARED);
+			continue;
+		}
+		if (xfs_ipincount(cip)) {
+			xfs_ifunlock(cip);
+			xfs_iunlock(cip, XFS_ILOCK_SHARED);
+			continue;
+		}
+
+
+		/*
+		 * Check the inode number again, just to be certain we are not
+		 * racing with freeing in xfs_reclaim_inode(). See the comments
+		 * in that function for more information as to why the initial
+		 * check is not sufficient.
+		 */
+		if (!cip->i_ino) {
+			xfs_ifunlock(cip);
+			xfs_iunlock(cip, XFS_ILOCK_SHARED);
+			continue;
+		}
+
+		/*
+		 * arriving here means that this inode can be flushed.  First
+		 * re-check that it's dirty before flushing.
+		 */
+		if (!xfs_inode_clean(cip)) {
+			int	error;
+			error = xfs_iflush_int(cip, bp);
+			if (error) {
+				xfs_iunlock(cip, XFS_ILOCK_SHARED);
+				goto cluster_corrupt_out;
+			}
+			clcount++;
+		} else {
+			xfs_ifunlock(cip);
+		}
+		xfs_iunlock(cip, XFS_ILOCK_SHARED);
+	}
+
+	if (clcount) {
+		XFS_STATS_INC(mp, xs_icluster_flushcnt);
+		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
+	}
+
+out_free:
+	rcu_read_unlock();
+	kmem_free(cilist);
+out_put:
+	xfs_perag_put(pag);
+	return 0;
+
+
+cluster_corrupt_out:
+	/*
+	 * Corruption detected in the clustering loop.  Invalidate the
+	 * inode buffer and shut down the filesystem.
+	 */
+	rcu_read_unlock();
+	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
+
+	/*
+	 * We'll always have an inode attached to the buffer for completion
+	 * process by the time we are called from xfs_iflush(). Hence we have
+	 * always need to do IO completion processing to abort the inodes
+	 * attached to the buffer.  handle them just like the shutdown case in
+	 * xfs_buf_submit().
+	 */
+	ASSERT(bp->b_iodone);
+	bp->b_flags &= ~XBF_DONE;
+	xfs_buf_stale(bp);
+	xfs_buf_ioerror(bp, -EIO);
+	xfs_buf_ioend(bp);
+
+	/* abort the corrupt inode, as it was not attached to the buffer */
+	xfs_iflush_abort(cip, false);
+	kmem_free(cilist);
+	xfs_perag_put(pag);
+	return -EFSCORRUPTED;
+}
+
+/*
+ * Flush dirty inode metadata into the backing buffer.
+ *
+ * The caller must have the inode lock and the inode flush lock held.  The
+ * inode lock will still be held upon return to the caller, and the inode
+ * flush lock will be released after the inode has reached the disk.
+ *
+ * The caller must write out the buffer returned in *bpp and release it.
+ */
+int
+xfs_iflush(
+	struct xfs_inode	*ip,
+	struct xfs_buf		**bpp)
+{
+	struct xfs_mount	*mp = ip->i_mount;
+	struct xfs_buf		*bp = NULL;
+	struct xfs_dinode	*dip;
+	int			error;
+
+	XFS_STATS_INC(mp, xs_iflush_count);
+
+	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
+	ASSERT(xfs_isiflocked(ip));
+	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
+	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
+
+	*bpp = NULL;
+
+	xfs_iunpin_wait(ip);
+
+	/*
+	 * For stale inodes we cannot rely on the backing buffer remaining
+	 * stale in cache for the remaining life of the stale inode and so
+	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
+	 * inodes below. We have to check this after ensuring the inode is
+	 * unpinned so that it is safe to reclaim the stale inode after the
+	 * flush call.
+	 */
+	if (xfs_iflags_test(ip, XFS_ISTALE)) {
+		xfs_ifunlock(ip);
+		return 0;
+	}
+
+	/*
+	 * This may have been unpinned because the filesystem is shutting
+	 * down forcibly. If that's the case we must not write this inode
+	 * to disk, because the log record didn't make it to disk.
+	 *
+	 * We also have to remove the log item from the AIL in this case,
+	 * as we wait for an empty AIL as part of the unmount process.
+	 */
+	if (XFS_FORCED_SHUTDOWN(mp)) {
+		error = -EIO;
+		goto abort_out;
+	}
+
+	/*
+	 * Get the buffer containing the on-disk inode. We are doing a try-lock
+	 * operation here, so we may get  an EAGAIN error. In that case, we
+	 * simply want to return with the inode still dirty.
+	 *
+	 * If we get any other error, we effectively have a corruption situation
+	 * and we cannot flush the inode, so we treat it the same as failing
+	 * xfs_iflush_int().
+	 */
+	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
+			       0);
+	if (error == -EAGAIN) {
+		xfs_ifunlock(ip);
+		return error;
+	}
+	if (error)
+		goto corrupt_out;
+
+	/*
+	 * First flush out the inode that xfs_iflush was called with.
+	 */
+	error = xfs_iflush_int(ip, bp);
+	if (error)
+		goto corrupt_out;
+
+	/*
+	 * If the buffer is pinned then push on the log now so we won't
+	 * get stuck waiting in the write for too long.
+	 */
+	if (xfs_buf_ispinned(bp))
+		xfs_log_force(mp, 0);
+
+	/*
+	 * inode clustering: try to gather other inodes into this write
+	 *
+	 * Note: Any error during clustering will result in the filesystem
+	 * being shut down and completion callbacks run on the cluster buffer.
+	 * As we have already flushed and attached this inode to the buffer,
+	 * it has already been aborted and released by xfs_iflush_cluster() and
+	 * so we have no further error handling to do here.
+	 */
+	error = xfs_iflush_cluster(ip, bp);
+	if (error)
+		return error;
+
+	*bpp = bp;
+	return 0;
+
+corrupt_out:
+	if (bp)
+		xfs_buf_relse(bp);
+	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
+abort_out:
+	/* abort the corrupt inode, as it was not attached to the buffer */
+	xfs_iflush_abort(ip, false);
+	return error;
+}
+
+/*
+ * If there are inline format data / attr forks attached to this inode,
+ * make sure they're not corrupt.
+ */
+bool
+xfs_inode_verify_forks(
+	struct xfs_inode	*ip)
+{
+	struct xfs_ifork	*ifp;
+	xfs_failaddr_t		fa;
+
+	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
+	if (fa) {
+		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
+		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
+				ifp->if_u1.if_data, ifp->if_bytes, fa);
+		return false;
+	}
+
+	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
+	if (fa) {
+		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
+		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
+				ifp ? ifp->if_u1.if_data : NULL,
+				ifp ? ifp->if_bytes : 0, fa);
+		return false;
+	}
+	return true;
+}
+
+STATIC int
+xfs_iflush_int(
+	struct xfs_inode	*ip,
+	struct xfs_buf		*bp)
+{
+	struct xfs_inode_log_item *iip = ip->i_itemp;
+	struct xfs_dinode	*dip;
+	struct xfs_mount	*mp = ip->i_mount;
+
+	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
+	ASSERT(xfs_isiflocked(ip));
+	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
+	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
+	ASSERT(iip != NULL && iip->ili_fields != 0);
+	ASSERT(ip->i_d.di_version > 1);
+
+	/* set *dip = inode's place in the buffer */
+	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
+
+	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
+			       mp, XFS_ERRTAG_IFLUSH_1)) {
+		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
+			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
+		goto corrupt_out;
+	}
+	if (S_ISREG(VFS_I(ip)->i_mode)) {
+		if (XFS_TEST_ERROR(
+		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
+		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
+		    mp, XFS_ERRTAG_IFLUSH_3)) {
+			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
+				__func__, ip->i_ino, ip);
+			goto corrupt_out;
+		}
+	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
+		if (XFS_TEST_ERROR(
+		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
+		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
+		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
+		    mp, XFS_ERRTAG_IFLUSH_4)) {
+			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
+				__func__, ip->i_ino, ip);
+			goto corrupt_out;
+		}
+	}
+	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
+				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
+		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+			"%s: detected corrupt incore inode %Lu, "
+			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
+			__func__, ip->i_ino,
+			ip->i_d.di_nextents + ip->i_d.di_anextents,
+			ip->i_d.di_nblocks, ip);
+		goto corrupt_out;
+	}
+	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
+				mp, XFS_ERRTAG_IFLUSH_6)) {
+		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
+			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
+			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
+		goto corrupt_out;
+	}
+
+	/*
+	 * Inode item log recovery for v2 inodes are dependent on the
+	 * di_flushiter count for correct sequencing. We bump the flush
+	 * iteration count so we can detect flushes which postdate a log record
+	 * during recovery. This is redundant as we now log every change and
+	 * hence this can't happen but we need to still do it to ensure
+	 * backwards compatibility with old kernels that predate logging all
+	 * inode changes.
+	 */
+	if (ip->i_d.di_version < 3)
+		ip->i_d.di_flushiter++;
+
+	/* Check the inline fork data before we write out. */
+	if (!xfs_inode_verify_forks(ip))
+		goto corrupt_out;
+
+	/*
+	 * Copy the dirty parts of the inode into the on-disk inode.  We always
+	 * copy out the core of the inode, because if the inode is dirty at all
+	 * the core must be.
+	 */
+	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
+
+	/* Wrap, we never let the log put out DI_MAX_FLUSH */
+	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
+		ip->i_d.di_flushiter = 0;
+
+	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
+	if (XFS_IFORK_Q(ip))
+		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
+	xfs_inobp_check(mp, bp);
+
+	/*
+	 * We've recorded everything logged in the inode, so we'd like to clear
+	 * the ili_fields bits so we don't log and flush things unnecessarily.
+	 * However, we can't stop logging all this information until the data
+	 * we've copied into the disk buffer is written to disk.  If we did we
+	 * might overwrite the copy of the inode in the log with all the data
+	 * after re-logging only part of it, and in the face of a crash we
+	 * wouldn't have all the data we need to recover.
+	 *
+	 * What we do is move the bits to the ili_last_fields field.  When
+	 * logging the inode, these bits are moved back to the ili_fields field.
+	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
+	 * know that the information those bits represent is permanently on
+	 * disk.  As long as the flush completes before the inode is logged
+	 * again, then both ili_fields and ili_last_fields will be cleared.
+	 *
+	 * We can play with the ili_fields bits here, because the inode lock
+	 * must be held exclusively in order to set bits there and the flush
+	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
+	 * done routine can tell whether or not to look in the AIL.  Also, store
+	 * the current LSN of the inode so that we can tell whether the item has
+	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
+	 * need the AIL lock, because it is a 64 bit value that cannot be read
+	 * atomically.
+	 */
+	iip->ili_last_fields = iip->ili_fields;
+	iip->ili_fields = 0;
+	iip->ili_fsync_fields = 0;
+	iip->ili_logged = 1;
+
+	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
+				&iip->ili_item.li_lsn);
+
+	/*
+	 * Attach the function xfs_iflush_done to the inode's
+	 * buffer.  This will remove the inode from the AIL
+	 * and unlock the inode's flush lock when the inode is
+	 * completely written to disk.
+	 */
+	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
+
+	/* generate the checksum. */
+	xfs_dinode_calc_crc(mp, dip);
+
+	ASSERT(!list_empty(&bp->b_li_list));
+	ASSERT(bp->b_iodone != NULL);
+	return 0;
+
+corrupt_out:
+	return -EFSCORRUPTED;
+}
+
+/* Release an inode. */
+void
+xfs_irele(
+	struct xfs_inode	*ip)
+{
+	trace_xfs_irele(ip, _RET_IP_);
+	iput(VFS_I(ip));
+}