blob: 3232afb6fdc00be7da29c521068d3ba08e08e500 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * linux/arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/extable.h>
12#include <linux/signal.h>
13#include <linux/mm.h>
14#include <linux/hardirq.h>
15#include <linux/init.h>
16#include <linux/kprobes.h>
17#include <linux/uaccess.h>
18#include <linux/page-flags.h>
19#include <linux/sched/signal.h>
20#include <linux/sched/debug.h>
21#include <linux/highmem.h>
22#include <linux/perf_event.h>
23
24#include <asm/pgtable.h>
25#include <asm/system_misc.h>
26#include <asm/system_info.h>
27#include <asm/tlbflush.h>
28
29#include "fault.h"
30
31#ifdef CONFIG_MMU
32
33#ifdef CONFIG_KPROBES
34static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35{
36 int ret = 0;
37
38 if (!user_mode(regs)) {
39 /* kprobe_running() needs smp_processor_id() */
40 preempt_disable();
41 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 ret = 1;
43 preempt_enable();
44 }
45
46 return ret;
47}
48#else
49static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50{
51 return 0;
52}
53#endif
54
55/*
56 * This is useful to dump out the page tables associated with
57 * 'addr' in mm 'mm'.
58 */
59void show_pte(struct mm_struct *mm, unsigned long addr)
60{
61 pgd_t *pgd;
62
63 if (!mm)
64 mm = &init_mm;
65
66 pr_alert("pgd = %p\n", mm->pgd);
67 pgd = pgd_offset(mm, addr);
68 pr_alert("[%08lx] *pgd=%08llx",
69 addr, (long long)pgd_val(*pgd));
70
71 do {
72 pud_t *pud;
73 pmd_t *pmd;
74 pte_t *pte;
75
76 if (pgd_none(*pgd))
77 break;
78
79 if (pgd_bad(*pgd)) {
80 pr_cont("(bad)");
81 break;
82 }
83
84 pud = pud_offset(pgd, addr);
85 if (PTRS_PER_PUD != 1)
86 pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
87
88 if (pud_none(*pud))
89 break;
90
91 if (pud_bad(*pud)) {
92 pr_cont("(bad)");
93 break;
94 }
95
96 pmd = pmd_offset(pud, addr);
97 if (PTRS_PER_PMD != 1)
98 pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
99
100 if (pmd_none(*pmd))
101 break;
102
103 if (pmd_bad(*pmd)) {
104 pr_cont("(bad)");
105 break;
106 }
107
108 /* We must not map this if we have highmem enabled */
109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 break;
111
112 pte = pte_offset_map(pmd, addr);
113 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
114#ifndef CONFIG_ARM_LPAE
115 pr_cont(", *ppte=%08llx",
116 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117#endif
118 pte_unmap(pte);
119 } while(0);
120
121 pr_cont("\n");
122}
123#else /* CONFIG_MMU */
124void show_pte(struct mm_struct *mm, unsigned long addr)
125{ }
126#endif /* CONFIG_MMU */
127
128/*
129 * Oops. The kernel tried to access some page that wasn't present.
130 */
131static void
132__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
134{
135 /*
136 * Are we prepared to handle this kernel fault?
137 */
138 if (fixup_exception(regs))
139 return;
140
141 /*
142 * No handler, we'll have to terminate things with extreme prejudice.
143 */
144 bust_spinlocks(1);
145 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
146 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
147 "paging request", addr);
148
149 show_pte(mm, addr);
150 die("Oops", regs, fsr);
151 bust_spinlocks(0);
152 do_exit(SIGKILL);
153}
154
155/*
156 * Something tried to access memory that isn't in our memory map..
157 * User mode accesses just cause a SIGSEGV
158 */
159static void
160__do_user_fault(struct task_struct *tsk, unsigned long addr,
161 unsigned int fsr, unsigned int sig, int code,
162 struct pt_regs *regs)
163{
164 struct siginfo si;
165
166 if (addr > TASK_SIZE)
167 harden_branch_predictor();
168
169 clear_siginfo(&si);
170
171#ifdef CONFIG_DEBUG_USER
172 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
173 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
174 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
175 tsk->comm, sig, addr, fsr);
176 show_pte(tsk->mm, addr);
177 show_regs(regs);
178 }
179#endif
180
181 tsk->thread.address = addr;
182 tsk->thread.error_code = fsr;
183 tsk->thread.trap_no = 14;
184 si.si_signo = sig;
185 si.si_errno = 0;
186 si.si_code = code;
187 si.si_addr = (void __user *)addr;
188 force_sig_info(sig, &si, tsk);
189}
190
191void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
192{
193 struct task_struct *tsk = current;
194 struct mm_struct *mm = tsk->active_mm;
195
196 /*
197 * If we are in kernel mode at this point, we
198 * have no context to handle this fault with.
199 */
200 if (user_mode(regs))
201 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
202 else
203 __do_kernel_fault(mm, addr, fsr, regs);
204}
205
206#ifdef CONFIG_MMU
207#define VM_FAULT_BADMAP 0x010000
208#define VM_FAULT_BADACCESS 0x020000
209
210/*
211 * Check that the permissions on the VMA allow for the fault which occurred.
212 * If we encountered a write fault, we must have write permission, otherwise
213 * we allow any permission.
214 */
215static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
216{
217 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
218
219 if (fsr & FSR_WRITE)
220 mask = VM_WRITE;
221 if (fsr & FSR_LNX_PF)
222 mask = VM_EXEC;
223
224 return vma->vm_flags & mask ? false : true;
225}
226
227static vm_fault_t __kprobes
228__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
229 unsigned int flags, struct task_struct *tsk)
230{
231 struct vm_area_struct *vma;
232 vm_fault_t fault;
233
234 vma = find_vma(mm, addr);
235 fault = VM_FAULT_BADMAP;
236 if (unlikely(!vma))
237 goto out;
238 if (unlikely(vma->vm_start > addr))
239 goto check_stack;
240
241 /*
242 * Ok, we have a good vm_area for this
243 * memory access, so we can handle it.
244 */
245good_area:
246 if (access_error(fsr, vma)) {
247 fault = VM_FAULT_BADACCESS;
248 goto out;
249 }
250
251 return handle_mm_fault(vma, addr & PAGE_MASK, flags);
252
253check_stack:
254 /* Don't allow expansion below FIRST_USER_ADDRESS */
255 if (vma->vm_flags & VM_GROWSDOWN &&
256 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
257 goto good_area;
258out:
259 return fault;
260}
261
262static int __kprobes
263do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
264{
265 struct task_struct *tsk;
266 struct mm_struct *mm;
267 int sig, code;
268 vm_fault_t fault;
269 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
270
271 if (notify_page_fault(regs, fsr))
272 return 0;
273
274 tsk = current;
275 mm = tsk->mm;
276
277 /* Enable interrupts if they were enabled in the parent context. */
278 if (interrupts_enabled(regs))
279 local_irq_enable();
280
281 /*
282 * If we're in an interrupt or have no user
283 * context, we must not take the fault..
284 */
285 if (faulthandler_disabled() || !mm)
286 goto no_context;
287
288 if (user_mode(regs))
289 flags |= FAULT_FLAG_USER;
290 if (fsr & FSR_WRITE)
291 flags |= FAULT_FLAG_WRITE;
292
293 /*
294 * As per x86, we may deadlock here. However, since the kernel only
295 * validly references user space from well defined areas of the code,
296 * we can bug out early if this is from code which shouldn't.
297 */
298 if (!down_read_trylock(&mm->mmap_sem)) {
299 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
300 goto no_context;
301retry:
302 down_read(&mm->mmap_sem);
303 } else {
304 /*
305 * The above down_read_trylock() might have succeeded in
306 * which case, we'll have missed the might_sleep() from
307 * down_read()
308 */
309 might_sleep();
310#ifdef CONFIG_DEBUG_VM
311 if (!user_mode(regs) &&
312 !search_exception_tables(regs->ARM_pc))
313 goto no_context;
314#endif
315 }
316
317 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
318
319 /* If we need to retry but a fatal signal is pending, handle the
320 * signal first. We do not need to release the mmap_sem because
321 * it would already be released in __lock_page_or_retry in
322 * mm/filemap.c. */
323 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
324 if (!user_mode(regs))
325 goto no_context;
326 return 0;
327 }
328
329 /*
330 * Major/minor page fault accounting is only done on the
331 * initial attempt. If we go through a retry, it is extremely
332 * likely that the page will be found in page cache at that point.
333 */
334
335 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
336 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
337 if (fault & VM_FAULT_MAJOR) {
338 tsk->maj_flt++;
339 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
340 regs, addr);
341 } else {
342 tsk->min_flt++;
343 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
344 regs, addr);
345 }
346 if (fault & VM_FAULT_RETRY) {
347 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
348 * of starvation. */
349 flags &= ~FAULT_FLAG_ALLOW_RETRY;
350 flags |= FAULT_FLAG_TRIED;
351 goto retry;
352 }
353 }
354
355 up_read(&mm->mmap_sem);
356
357 /*
358 * Handle the "normal" case first - VM_FAULT_MAJOR
359 */
360 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
361 return 0;
362
363 /*
364 * If we are in kernel mode at this point, we
365 * have no context to handle this fault with.
366 */
367 if (!user_mode(regs))
368 goto no_context;
369
370 if (fault & VM_FAULT_OOM) {
371 /*
372 * We ran out of memory, call the OOM killer, and return to
373 * userspace (which will retry the fault, or kill us if we
374 * got oom-killed)
375 */
376 pagefault_out_of_memory();
377 return 0;
378 }
379
380 if (fault & VM_FAULT_SIGBUS) {
381 /*
382 * We had some memory, but were unable to
383 * successfully fix up this page fault.
384 */
385 sig = SIGBUS;
386 code = BUS_ADRERR;
387 } else {
388 /*
389 * Something tried to access memory that
390 * isn't in our memory map..
391 */
392 sig = SIGSEGV;
393 code = fault == VM_FAULT_BADACCESS ?
394 SEGV_ACCERR : SEGV_MAPERR;
395 }
396
397 __do_user_fault(tsk, addr, fsr, sig, code, regs);
398 return 0;
399
400no_context:
401 __do_kernel_fault(mm, addr, fsr, regs);
402 return 0;
403}
404#else /* CONFIG_MMU */
405static int
406do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
407{
408 return 0;
409}
410#endif /* CONFIG_MMU */
411
412/*
413 * First Level Translation Fault Handler
414 *
415 * We enter here because the first level page table doesn't contain
416 * a valid entry for the address.
417 *
418 * If the address is in kernel space (>= TASK_SIZE), then we are
419 * probably faulting in the vmalloc() area.
420 *
421 * If the init_task's first level page tables contains the relevant
422 * entry, we copy the it to this task. If not, we send the process
423 * a signal, fixup the exception, or oops the kernel.
424 *
425 * NOTE! We MUST NOT take any locks for this case. We may be in an
426 * interrupt or a critical region, and should only copy the information
427 * from the master page table, nothing more.
428 */
429#ifdef CONFIG_MMU
430static int __kprobes
431do_translation_fault(unsigned long addr, unsigned int fsr,
432 struct pt_regs *regs)
433{
434 unsigned int index;
435 pgd_t *pgd, *pgd_k;
436 pud_t *pud, *pud_k;
437 pmd_t *pmd, *pmd_k;
438
439 if (addr < TASK_SIZE)
440 return do_page_fault(addr, fsr, regs);
441
442 if (user_mode(regs))
443 goto bad_area;
444
445 index = pgd_index(addr);
446
447 pgd = cpu_get_pgd() + index;
448 pgd_k = init_mm.pgd + index;
449
450 if (pgd_none(*pgd_k))
451 goto bad_area;
452 if (!pgd_present(*pgd))
453 set_pgd(pgd, *pgd_k);
454
455 pud = pud_offset(pgd, addr);
456 pud_k = pud_offset(pgd_k, addr);
457
458 if (pud_none(*pud_k))
459 goto bad_area;
460 if (!pud_present(*pud))
461 set_pud(pud, *pud_k);
462
463 pmd = pmd_offset(pud, addr);
464 pmd_k = pmd_offset(pud_k, addr);
465
466#ifdef CONFIG_ARM_LPAE
467 /*
468 * Only one hardware entry per PMD with LPAE.
469 */
470 index = 0;
471#else
472 /*
473 * On ARM one Linux PGD entry contains two hardware entries (see page
474 * tables layout in pgtable.h). We normally guarantee that we always
475 * fill both L1 entries. But create_mapping() doesn't follow the rule.
476 * It can create inidividual L1 entries, so here we have to call
477 * pmd_none() check for the entry really corresponded to address, not
478 * for the first of pair.
479 */
480 index = (addr >> SECTION_SHIFT) & 1;
481#endif
482 if (pmd_none(pmd_k[index]))
483 goto bad_area;
484
485 copy_pmd(pmd, pmd_k);
486 return 0;
487
488bad_area:
489 do_bad_area(addr, fsr, regs);
490 return 0;
491}
492#else /* CONFIG_MMU */
493static int
494do_translation_fault(unsigned long addr, unsigned int fsr,
495 struct pt_regs *regs)
496{
497 return 0;
498}
499#endif /* CONFIG_MMU */
500
501/*
502 * Some section permission faults need to be handled gracefully.
503 * They can happen due to a __{get,put}_user during an oops.
504 */
505#ifndef CONFIG_ARM_LPAE
506static int
507do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
508{
509 do_bad_area(addr, fsr, regs);
510 return 0;
511}
512#endif /* CONFIG_ARM_LPAE */
513
514/*
515 * This abort handler always returns "fault".
516 */
517static int
518do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
519{
520 return 1;
521}
522
523struct fsr_info {
524 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
525 int sig;
526 int code;
527 const char *name;
528};
529
530/* FSR definition */
531#ifdef CONFIG_ARM_LPAE
532#include "fsr-3level.c"
533#else
534#include "fsr-2level.c"
535#endif
536
537void __init
538hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
539 int sig, int code, const char *name)
540{
541 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
542 BUG();
543
544 fsr_info[nr].fn = fn;
545 fsr_info[nr].sig = sig;
546 fsr_info[nr].code = code;
547 fsr_info[nr].name = name;
548}
549
550/*
551 * Dispatch a data abort to the relevant handler.
552 */
553asmlinkage void
554do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
555{
556 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
557 struct siginfo info;
558
559 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
560 return;
561
562 pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
563 inf->name, fsr, addr);
564 show_pte(current->mm, addr);
565
566 clear_siginfo(&info);
567 info.si_signo = inf->sig;
568 info.si_errno = 0;
569 info.si_code = inf->code;
570 info.si_addr = (void __user *)addr;
571 arm_notify_die("", regs, &info, fsr, 0);
572}
573
574void __init
575hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
576 int sig, int code, const char *name)
577{
578 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
579 BUG();
580
581 ifsr_info[nr].fn = fn;
582 ifsr_info[nr].sig = sig;
583 ifsr_info[nr].code = code;
584 ifsr_info[nr].name = name;
585}
586
587asmlinkage void
588do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
589{
590 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
591 struct siginfo info;
592
593 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
594 return;
595
596 pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
597 inf->name, ifsr, addr);
598
599 clear_siginfo(&info);
600 info.si_signo = inf->sig;
601 info.si_errno = 0;
602 info.si_code = inf->code;
603 info.si_addr = (void __user *)addr;
604 arm_notify_die("", regs, &info, ifsr, 0);
605}
606
607/*
608 * Abort handler to be used only during first unmasking of asynchronous aborts
609 * on the boot CPU. This makes sure that the machine will not die if the
610 * firmware/bootloader left an imprecise abort pending for us to trip over.
611 */
612static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
613 struct pt_regs *regs)
614{
615 pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
616 "first unmask, this is most likely caused by a "
617 "firmware/bootloader bug.\n", fsr);
618
619 return 0;
620}
621
622void __init early_abt_enable(void)
623{
624 fsr_info[FSR_FS_AEA].fn = early_abort_handler;
625 local_abt_enable();
626 fsr_info[FSR_FS_AEA].fn = do_bad;
627}
628
629#ifndef CONFIG_ARM_LPAE
630static int __init exceptions_init(void)
631{
632 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
633 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
634 "I-cache maintenance fault");
635 }
636
637 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
638 /*
639 * TODO: Access flag faults introduced in ARMv6K.
640 * Runtime check for 'K' extension is needed
641 */
642 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
643 "section access flag fault");
644 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
645 "section access flag fault");
646 }
647
648 return 0;
649}
650
651arch_initcall(exceptions_init);
652#endif