David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| 4 | * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 5 | */ |
| 6 | |
| 7 | #include <linux/mman.h> |
| 8 | #include <linux/kvm_host.h> |
| 9 | #include <linux/io.h> |
| 10 | #include <linux/hugetlb.h> |
| 11 | #include <linux/sched/signal.h> |
| 12 | #include <trace/events/kvm.h> |
| 13 | #include <asm/pgalloc.h> |
| 14 | #include <asm/cacheflush.h> |
| 15 | #include <asm/kvm_arm.h> |
| 16 | #include <asm/kvm_mmu.h> |
| 17 | #include <asm/kvm_mmio.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 18 | #include <asm/kvm_ras.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 19 | #include <asm/kvm_asm.h> |
| 20 | #include <asm/kvm_emulate.h> |
| 21 | #include <asm/virt.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 22 | |
| 23 | #include "trace.h" |
| 24 | |
| 25 | static pgd_t *boot_hyp_pgd; |
| 26 | static pgd_t *hyp_pgd; |
| 27 | static pgd_t *merged_hyp_pgd; |
| 28 | static DEFINE_MUTEX(kvm_hyp_pgd_mutex); |
| 29 | |
| 30 | static unsigned long hyp_idmap_start; |
| 31 | static unsigned long hyp_idmap_end; |
| 32 | static phys_addr_t hyp_idmap_vector; |
| 33 | |
| 34 | static unsigned long io_map_base; |
| 35 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 36 | #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t)) |
| 37 | |
| 38 | #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0) |
| 39 | #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1) |
| 40 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 41 | static bool is_iomap(unsigned long flags) |
| 42 | { |
| 43 | return flags & KVM_S2PTE_FLAG_IS_IOMAP; |
| 44 | } |
| 45 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 46 | static bool memslot_is_logging(struct kvm_memory_slot *memslot) |
| 47 | { |
| 48 | return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY); |
| 49 | } |
| 50 | |
| 51 | /** |
| 52 | * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8 |
| 53 | * @kvm: pointer to kvm structure. |
| 54 | * |
| 55 | * Interface to HYP function to flush all VM TLB entries |
| 56 | */ |
| 57 | void kvm_flush_remote_tlbs(struct kvm *kvm) |
| 58 | { |
| 59 | kvm_call_hyp(__kvm_tlb_flush_vmid, kvm); |
| 60 | } |
| 61 | |
| 62 | static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa) |
| 63 | { |
| 64 | kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa); |
| 65 | } |
| 66 | |
| 67 | /* |
| 68 | * D-Cache management functions. They take the page table entries by |
| 69 | * value, as they are flushing the cache using the kernel mapping (or |
| 70 | * kmap on 32bit). |
| 71 | */ |
| 72 | static void kvm_flush_dcache_pte(pte_t pte) |
| 73 | { |
| 74 | __kvm_flush_dcache_pte(pte); |
| 75 | } |
| 76 | |
| 77 | static void kvm_flush_dcache_pmd(pmd_t pmd) |
| 78 | { |
| 79 | __kvm_flush_dcache_pmd(pmd); |
| 80 | } |
| 81 | |
| 82 | static void kvm_flush_dcache_pud(pud_t pud) |
| 83 | { |
| 84 | __kvm_flush_dcache_pud(pud); |
| 85 | } |
| 86 | |
| 87 | static bool kvm_is_device_pfn(unsigned long pfn) |
| 88 | { |
| 89 | return !pfn_valid(pfn); |
| 90 | } |
| 91 | |
| 92 | /** |
| 93 | * stage2_dissolve_pmd() - clear and flush huge PMD entry |
| 94 | * @kvm: pointer to kvm structure. |
| 95 | * @addr: IPA |
| 96 | * @pmd: pmd pointer for IPA |
| 97 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 98 | * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 99 | */ |
| 100 | static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd) |
| 101 | { |
| 102 | if (!pmd_thp_or_huge(*pmd)) |
| 103 | return; |
| 104 | |
| 105 | pmd_clear(pmd); |
| 106 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 107 | put_page(virt_to_page(pmd)); |
| 108 | } |
| 109 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 110 | /** |
| 111 | * stage2_dissolve_pud() - clear and flush huge PUD entry |
| 112 | * @kvm: pointer to kvm structure. |
| 113 | * @addr: IPA |
| 114 | * @pud: pud pointer for IPA |
| 115 | * |
| 116 | * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. |
| 117 | */ |
| 118 | static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp) |
| 119 | { |
| 120 | if (!stage2_pud_huge(kvm, *pudp)) |
| 121 | return; |
| 122 | |
| 123 | stage2_pud_clear(kvm, pudp); |
| 124 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 125 | put_page(virt_to_page(pudp)); |
| 126 | } |
| 127 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 128 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| 129 | int min, int max) |
| 130 | { |
| 131 | void *page; |
| 132 | |
| 133 | BUG_ON(max > KVM_NR_MEM_OBJS); |
| 134 | if (cache->nobjs >= min) |
| 135 | return 0; |
| 136 | while (cache->nobjs < max) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 137 | page = (void *)__get_free_page(GFP_PGTABLE_USER); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 138 | if (!page) |
| 139 | return -ENOMEM; |
| 140 | cache->objects[cache->nobjs++] = page; |
| 141 | } |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) |
| 146 | { |
| 147 | while (mc->nobjs) |
| 148 | free_page((unsigned long)mc->objects[--mc->nobjs]); |
| 149 | } |
| 150 | |
| 151 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
| 152 | { |
| 153 | void *p; |
| 154 | |
| 155 | BUG_ON(!mc || !mc->nobjs); |
| 156 | p = mc->objects[--mc->nobjs]; |
| 157 | return p; |
| 158 | } |
| 159 | |
| 160 | static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr) |
| 161 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 162 | pud_t *pud_table __maybe_unused = stage2_pud_offset(kvm, pgd, 0UL); |
| 163 | stage2_pgd_clear(kvm, pgd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 164 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 165 | stage2_pud_free(kvm, pud_table); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 166 | put_page(virt_to_page(pgd)); |
| 167 | } |
| 168 | |
| 169 | static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr) |
| 170 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 171 | pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(kvm, pud, 0); |
| 172 | VM_BUG_ON(stage2_pud_huge(kvm, *pud)); |
| 173 | stage2_pud_clear(kvm, pud); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 174 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 175 | stage2_pmd_free(kvm, pmd_table); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 176 | put_page(virt_to_page(pud)); |
| 177 | } |
| 178 | |
| 179 | static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr) |
| 180 | { |
| 181 | pte_t *pte_table = pte_offset_kernel(pmd, 0); |
| 182 | VM_BUG_ON(pmd_thp_or_huge(*pmd)); |
| 183 | pmd_clear(pmd); |
| 184 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 185 | free_page((unsigned long)pte_table); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 186 | put_page(virt_to_page(pmd)); |
| 187 | } |
| 188 | |
| 189 | static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte) |
| 190 | { |
| 191 | WRITE_ONCE(*ptep, new_pte); |
| 192 | dsb(ishst); |
| 193 | } |
| 194 | |
| 195 | static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd) |
| 196 | { |
| 197 | WRITE_ONCE(*pmdp, new_pmd); |
| 198 | dsb(ishst); |
| 199 | } |
| 200 | |
| 201 | static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep) |
| 202 | { |
| 203 | kvm_set_pmd(pmdp, kvm_mk_pmd(ptep)); |
| 204 | } |
| 205 | |
| 206 | static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp) |
| 207 | { |
| 208 | WRITE_ONCE(*pudp, kvm_mk_pud(pmdp)); |
| 209 | dsb(ishst); |
| 210 | } |
| 211 | |
| 212 | static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp) |
| 213 | { |
| 214 | WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp)); |
| 215 | dsb(ishst); |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * Unmapping vs dcache management: |
| 220 | * |
| 221 | * If a guest maps certain memory pages as uncached, all writes will |
| 222 | * bypass the data cache and go directly to RAM. However, the CPUs |
| 223 | * can still speculate reads (not writes) and fill cache lines with |
| 224 | * data. |
| 225 | * |
| 226 | * Those cache lines will be *clean* cache lines though, so a |
| 227 | * clean+invalidate operation is equivalent to an invalidate |
| 228 | * operation, because no cache lines are marked dirty. |
| 229 | * |
| 230 | * Those clean cache lines could be filled prior to an uncached write |
| 231 | * by the guest, and the cache coherent IO subsystem would therefore |
| 232 | * end up writing old data to disk. |
| 233 | * |
| 234 | * This is why right after unmapping a page/section and invalidating |
| 235 | * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure |
| 236 | * the IO subsystem will never hit in the cache. |
| 237 | * |
| 238 | * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as |
| 239 | * we then fully enforce cacheability of RAM, no matter what the guest |
| 240 | * does. |
| 241 | */ |
| 242 | static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd, |
| 243 | phys_addr_t addr, phys_addr_t end) |
| 244 | { |
| 245 | phys_addr_t start_addr = addr; |
| 246 | pte_t *pte, *start_pte; |
| 247 | |
| 248 | start_pte = pte = pte_offset_kernel(pmd, addr); |
| 249 | do { |
| 250 | if (!pte_none(*pte)) { |
| 251 | pte_t old_pte = *pte; |
| 252 | |
| 253 | kvm_set_pte(pte, __pte(0)); |
| 254 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 255 | |
| 256 | /* No need to invalidate the cache for device mappings */ |
| 257 | if (!kvm_is_device_pfn(pte_pfn(old_pte))) |
| 258 | kvm_flush_dcache_pte(old_pte); |
| 259 | |
| 260 | put_page(virt_to_page(pte)); |
| 261 | } |
| 262 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 263 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 264 | if (stage2_pte_table_empty(kvm, start_pte)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 265 | clear_stage2_pmd_entry(kvm, pmd, start_addr); |
| 266 | } |
| 267 | |
| 268 | static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud, |
| 269 | phys_addr_t addr, phys_addr_t end) |
| 270 | { |
| 271 | phys_addr_t next, start_addr = addr; |
| 272 | pmd_t *pmd, *start_pmd; |
| 273 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 274 | start_pmd = pmd = stage2_pmd_offset(kvm, pud, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 275 | do { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 276 | next = stage2_pmd_addr_end(kvm, addr, end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 277 | if (!pmd_none(*pmd)) { |
| 278 | if (pmd_thp_or_huge(*pmd)) { |
| 279 | pmd_t old_pmd = *pmd; |
| 280 | |
| 281 | pmd_clear(pmd); |
| 282 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 283 | |
| 284 | kvm_flush_dcache_pmd(old_pmd); |
| 285 | |
| 286 | put_page(virt_to_page(pmd)); |
| 287 | } else { |
| 288 | unmap_stage2_ptes(kvm, pmd, addr, next); |
| 289 | } |
| 290 | } |
| 291 | } while (pmd++, addr = next, addr != end); |
| 292 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 293 | if (stage2_pmd_table_empty(kvm, start_pmd)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 294 | clear_stage2_pud_entry(kvm, pud, start_addr); |
| 295 | } |
| 296 | |
| 297 | static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd, |
| 298 | phys_addr_t addr, phys_addr_t end) |
| 299 | { |
| 300 | phys_addr_t next, start_addr = addr; |
| 301 | pud_t *pud, *start_pud; |
| 302 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 303 | start_pud = pud = stage2_pud_offset(kvm, pgd, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 304 | do { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 305 | next = stage2_pud_addr_end(kvm, addr, end); |
| 306 | if (!stage2_pud_none(kvm, *pud)) { |
| 307 | if (stage2_pud_huge(kvm, *pud)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 308 | pud_t old_pud = *pud; |
| 309 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 310 | stage2_pud_clear(kvm, pud); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 311 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 312 | kvm_flush_dcache_pud(old_pud); |
| 313 | put_page(virt_to_page(pud)); |
| 314 | } else { |
| 315 | unmap_stage2_pmds(kvm, pud, addr, next); |
| 316 | } |
| 317 | } |
| 318 | } while (pud++, addr = next, addr != end); |
| 319 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 320 | if (stage2_pud_table_empty(kvm, start_pud)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 321 | clear_stage2_pgd_entry(kvm, pgd, start_addr); |
| 322 | } |
| 323 | |
| 324 | /** |
| 325 | * unmap_stage2_range -- Clear stage2 page table entries to unmap a range |
| 326 | * @kvm: The VM pointer |
| 327 | * @start: The intermediate physical base address of the range to unmap |
| 328 | * @size: The size of the area to unmap |
| 329 | * |
| 330 | * Clear a range of stage-2 mappings, lowering the various ref-counts. Must |
| 331 | * be called while holding mmu_lock (unless for freeing the stage2 pgd before |
| 332 | * destroying the VM), otherwise another faulting VCPU may come in and mess |
| 333 | * with things behind our backs. |
| 334 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 335 | static void __unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size, |
| 336 | bool may_block) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 337 | { |
| 338 | pgd_t *pgd; |
| 339 | phys_addr_t addr = start, end = start + size; |
| 340 | phys_addr_t next; |
| 341 | |
| 342 | assert_spin_locked(&kvm->mmu_lock); |
| 343 | WARN_ON(size & ~PAGE_MASK); |
| 344 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 345 | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 346 | do { |
| 347 | /* |
| 348 | * Make sure the page table is still active, as another thread |
| 349 | * could have possibly freed the page table, while we released |
| 350 | * the lock. |
| 351 | */ |
| 352 | if (!READ_ONCE(kvm->arch.pgd)) |
| 353 | break; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 354 | next = stage2_pgd_addr_end(kvm, addr, end); |
| 355 | if (!stage2_pgd_none(kvm, *pgd)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 356 | unmap_stage2_puds(kvm, pgd, addr, next); |
| 357 | /* |
| 358 | * If the range is too large, release the kvm->mmu_lock |
| 359 | * to prevent starvation and lockup detector warnings. |
| 360 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 361 | if (may_block && next != end) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 362 | cond_resched_lock(&kvm->mmu_lock); |
| 363 | } while (pgd++, addr = next, addr != end); |
| 364 | } |
| 365 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 366 | static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size) |
| 367 | { |
| 368 | __unmap_stage2_range(kvm, start, size, true); |
| 369 | } |
| 370 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 371 | static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd, |
| 372 | phys_addr_t addr, phys_addr_t end) |
| 373 | { |
| 374 | pte_t *pte; |
| 375 | |
| 376 | pte = pte_offset_kernel(pmd, addr); |
| 377 | do { |
| 378 | if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte))) |
| 379 | kvm_flush_dcache_pte(*pte); |
| 380 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 381 | } |
| 382 | |
| 383 | static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud, |
| 384 | phys_addr_t addr, phys_addr_t end) |
| 385 | { |
| 386 | pmd_t *pmd; |
| 387 | phys_addr_t next; |
| 388 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 389 | pmd = stage2_pmd_offset(kvm, pud, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 390 | do { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 391 | next = stage2_pmd_addr_end(kvm, addr, end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 392 | if (!pmd_none(*pmd)) { |
| 393 | if (pmd_thp_or_huge(*pmd)) |
| 394 | kvm_flush_dcache_pmd(*pmd); |
| 395 | else |
| 396 | stage2_flush_ptes(kvm, pmd, addr, next); |
| 397 | } |
| 398 | } while (pmd++, addr = next, addr != end); |
| 399 | } |
| 400 | |
| 401 | static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd, |
| 402 | phys_addr_t addr, phys_addr_t end) |
| 403 | { |
| 404 | pud_t *pud; |
| 405 | phys_addr_t next; |
| 406 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 407 | pud = stage2_pud_offset(kvm, pgd, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 408 | do { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 409 | next = stage2_pud_addr_end(kvm, addr, end); |
| 410 | if (!stage2_pud_none(kvm, *pud)) { |
| 411 | if (stage2_pud_huge(kvm, *pud)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 412 | kvm_flush_dcache_pud(*pud); |
| 413 | else |
| 414 | stage2_flush_pmds(kvm, pud, addr, next); |
| 415 | } |
| 416 | } while (pud++, addr = next, addr != end); |
| 417 | } |
| 418 | |
| 419 | static void stage2_flush_memslot(struct kvm *kvm, |
| 420 | struct kvm_memory_slot *memslot) |
| 421 | { |
| 422 | phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; |
| 423 | phys_addr_t end = addr + PAGE_SIZE * memslot->npages; |
| 424 | phys_addr_t next; |
| 425 | pgd_t *pgd; |
| 426 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 427 | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 428 | do { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 429 | next = stage2_pgd_addr_end(kvm, addr, end); |
| 430 | if (!stage2_pgd_none(kvm, *pgd)) |
| 431 | stage2_flush_puds(kvm, pgd, addr, next); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 432 | } while (pgd++, addr = next, addr != end); |
| 433 | } |
| 434 | |
| 435 | /** |
| 436 | * stage2_flush_vm - Invalidate cache for pages mapped in stage 2 |
| 437 | * @kvm: The struct kvm pointer |
| 438 | * |
| 439 | * Go through the stage 2 page tables and invalidate any cache lines |
| 440 | * backing memory already mapped to the VM. |
| 441 | */ |
| 442 | static void stage2_flush_vm(struct kvm *kvm) |
| 443 | { |
| 444 | struct kvm_memslots *slots; |
| 445 | struct kvm_memory_slot *memslot; |
| 446 | int idx; |
| 447 | |
| 448 | idx = srcu_read_lock(&kvm->srcu); |
| 449 | spin_lock(&kvm->mmu_lock); |
| 450 | |
| 451 | slots = kvm_memslots(kvm); |
| 452 | kvm_for_each_memslot(memslot, slots) |
| 453 | stage2_flush_memslot(kvm, memslot); |
| 454 | |
| 455 | spin_unlock(&kvm->mmu_lock); |
| 456 | srcu_read_unlock(&kvm->srcu, idx); |
| 457 | } |
| 458 | |
| 459 | static void clear_hyp_pgd_entry(pgd_t *pgd) |
| 460 | { |
| 461 | pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL); |
| 462 | pgd_clear(pgd); |
| 463 | pud_free(NULL, pud_table); |
| 464 | put_page(virt_to_page(pgd)); |
| 465 | } |
| 466 | |
| 467 | static void clear_hyp_pud_entry(pud_t *pud) |
| 468 | { |
| 469 | pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0); |
| 470 | VM_BUG_ON(pud_huge(*pud)); |
| 471 | pud_clear(pud); |
| 472 | pmd_free(NULL, pmd_table); |
| 473 | put_page(virt_to_page(pud)); |
| 474 | } |
| 475 | |
| 476 | static void clear_hyp_pmd_entry(pmd_t *pmd) |
| 477 | { |
| 478 | pte_t *pte_table = pte_offset_kernel(pmd, 0); |
| 479 | VM_BUG_ON(pmd_thp_or_huge(*pmd)); |
| 480 | pmd_clear(pmd); |
| 481 | pte_free_kernel(NULL, pte_table); |
| 482 | put_page(virt_to_page(pmd)); |
| 483 | } |
| 484 | |
| 485 | static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) |
| 486 | { |
| 487 | pte_t *pte, *start_pte; |
| 488 | |
| 489 | start_pte = pte = pte_offset_kernel(pmd, addr); |
| 490 | do { |
| 491 | if (!pte_none(*pte)) { |
| 492 | kvm_set_pte(pte, __pte(0)); |
| 493 | put_page(virt_to_page(pte)); |
| 494 | } |
| 495 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 496 | |
| 497 | if (hyp_pte_table_empty(start_pte)) |
| 498 | clear_hyp_pmd_entry(pmd); |
| 499 | } |
| 500 | |
| 501 | static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end) |
| 502 | { |
| 503 | phys_addr_t next; |
| 504 | pmd_t *pmd, *start_pmd; |
| 505 | |
| 506 | start_pmd = pmd = pmd_offset(pud, addr); |
| 507 | do { |
| 508 | next = pmd_addr_end(addr, end); |
| 509 | /* Hyp doesn't use huge pmds */ |
| 510 | if (!pmd_none(*pmd)) |
| 511 | unmap_hyp_ptes(pmd, addr, next); |
| 512 | } while (pmd++, addr = next, addr != end); |
| 513 | |
| 514 | if (hyp_pmd_table_empty(start_pmd)) |
| 515 | clear_hyp_pud_entry(pud); |
| 516 | } |
| 517 | |
| 518 | static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end) |
| 519 | { |
| 520 | phys_addr_t next; |
| 521 | pud_t *pud, *start_pud; |
| 522 | |
| 523 | start_pud = pud = pud_offset(pgd, addr); |
| 524 | do { |
| 525 | next = pud_addr_end(addr, end); |
| 526 | /* Hyp doesn't use huge puds */ |
| 527 | if (!pud_none(*pud)) |
| 528 | unmap_hyp_pmds(pud, addr, next); |
| 529 | } while (pud++, addr = next, addr != end); |
| 530 | |
| 531 | if (hyp_pud_table_empty(start_pud)) |
| 532 | clear_hyp_pgd_entry(pgd); |
| 533 | } |
| 534 | |
| 535 | static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd) |
| 536 | { |
| 537 | return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1); |
| 538 | } |
| 539 | |
| 540 | static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd, |
| 541 | phys_addr_t start, u64 size) |
| 542 | { |
| 543 | pgd_t *pgd; |
| 544 | phys_addr_t addr = start, end = start + size; |
| 545 | phys_addr_t next; |
| 546 | |
| 547 | /* |
| 548 | * We don't unmap anything from HYP, except at the hyp tear down. |
| 549 | * Hence, we don't have to invalidate the TLBs here. |
| 550 | */ |
| 551 | pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); |
| 552 | do { |
| 553 | next = pgd_addr_end(addr, end); |
| 554 | if (!pgd_none(*pgd)) |
| 555 | unmap_hyp_puds(pgd, addr, next); |
| 556 | } while (pgd++, addr = next, addr != end); |
| 557 | } |
| 558 | |
| 559 | static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size) |
| 560 | { |
| 561 | __unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size); |
| 562 | } |
| 563 | |
| 564 | static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size) |
| 565 | { |
| 566 | __unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size); |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * free_hyp_pgds - free Hyp-mode page tables |
| 571 | * |
| 572 | * Assumes hyp_pgd is a page table used strictly in Hyp-mode and |
| 573 | * therefore contains either mappings in the kernel memory area (above |
| 574 | * PAGE_OFFSET), or device mappings in the idmap range. |
| 575 | * |
| 576 | * boot_hyp_pgd should only map the idmap range, and is only used in |
| 577 | * the extended idmap case. |
| 578 | */ |
| 579 | void free_hyp_pgds(void) |
| 580 | { |
| 581 | pgd_t *id_pgd; |
| 582 | |
| 583 | mutex_lock(&kvm_hyp_pgd_mutex); |
| 584 | |
| 585 | id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd; |
| 586 | |
| 587 | if (id_pgd) { |
| 588 | /* In case we never called hyp_mmu_init() */ |
| 589 | if (!io_map_base) |
| 590 | io_map_base = hyp_idmap_start; |
| 591 | unmap_hyp_idmap_range(id_pgd, io_map_base, |
| 592 | hyp_idmap_start + PAGE_SIZE - io_map_base); |
| 593 | } |
| 594 | |
| 595 | if (boot_hyp_pgd) { |
| 596 | free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order); |
| 597 | boot_hyp_pgd = NULL; |
| 598 | } |
| 599 | |
| 600 | if (hyp_pgd) { |
| 601 | unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET), |
| 602 | (uintptr_t)high_memory - PAGE_OFFSET); |
| 603 | |
| 604 | free_pages((unsigned long)hyp_pgd, hyp_pgd_order); |
| 605 | hyp_pgd = NULL; |
| 606 | } |
| 607 | if (merged_hyp_pgd) { |
| 608 | clear_page(merged_hyp_pgd); |
| 609 | free_page((unsigned long)merged_hyp_pgd); |
| 610 | merged_hyp_pgd = NULL; |
| 611 | } |
| 612 | |
| 613 | mutex_unlock(&kvm_hyp_pgd_mutex); |
| 614 | } |
| 615 | |
| 616 | static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start, |
| 617 | unsigned long end, unsigned long pfn, |
| 618 | pgprot_t prot) |
| 619 | { |
| 620 | pte_t *pte; |
| 621 | unsigned long addr; |
| 622 | |
| 623 | addr = start; |
| 624 | do { |
| 625 | pte = pte_offset_kernel(pmd, addr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 626 | kvm_set_pte(pte, kvm_pfn_pte(pfn, prot)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 627 | get_page(virt_to_page(pte)); |
| 628 | pfn++; |
| 629 | } while (addr += PAGE_SIZE, addr != end); |
| 630 | } |
| 631 | |
| 632 | static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start, |
| 633 | unsigned long end, unsigned long pfn, |
| 634 | pgprot_t prot) |
| 635 | { |
| 636 | pmd_t *pmd; |
| 637 | pte_t *pte; |
| 638 | unsigned long addr, next; |
| 639 | |
| 640 | addr = start; |
| 641 | do { |
| 642 | pmd = pmd_offset(pud, addr); |
| 643 | |
| 644 | BUG_ON(pmd_sect(*pmd)); |
| 645 | |
| 646 | if (pmd_none(*pmd)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 647 | pte = pte_alloc_one_kernel(NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 648 | if (!pte) { |
| 649 | kvm_err("Cannot allocate Hyp pte\n"); |
| 650 | return -ENOMEM; |
| 651 | } |
| 652 | kvm_pmd_populate(pmd, pte); |
| 653 | get_page(virt_to_page(pmd)); |
| 654 | } |
| 655 | |
| 656 | next = pmd_addr_end(addr, end); |
| 657 | |
| 658 | create_hyp_pte_mappings(pmd, addr, next, pfn, prot); |
| 659 | pfn += (next - addr) >> PAGE_SHIFT; |
| 660 | } while (addr = next, addr != end); |
| 661 | |
| 662 | return 0; |
| 663 | } |
| 664 | |
| 665 | static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start, |
| 666 | unsigned long end, unsigned long pfn, |
| 667 | pgprot_t prot) |
| 668 | { |
| 669 | pud_t *pud; |
| 670 | pmd_t *pmd; |
| 671 | unsigned long addr, next; |
| 672 | int ret; |
| 673 | |
| 674 | addr = start; |
| 675 | do { |
| 676 | pud = pud_offset(pgd, addr); |
| 677 | |
| 678 | if (pud_none_or_clear_bad(pud)) { |
| 679 | pmd = pmd_alloc_one(NULL, addr); |
| 680 | if (!pmd) { |
| 681 | kvm_err("Cannot allocate Hyp pmd\n"); |
| 682 | return -ENOMEM; |
| 683 | } |
| 684 | kvm_pud_populate(pud, pmd); |
| 685 | get_page(virt_to_page(pud)); |
| 686 | } |
| 687 | |
| 688 | next = pud_addr_end(addr, end); |
| 689 | ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot); |
| 690 | if (ret) |
| 691 | return ret; |
| 692 | pfn += (next - addr) >> PAGE_SHIFT; |
| 693 | } while (addr = next, addr != end); |
| 694 | |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd, |
| 699 | unsigned long start, unsigned long end, |
| 700 | unsigned long pfn, pgprot_t prot) |
| 701 | { |
| 702 | pgd_t *pgd; |
| 703 | pud_t *pud; |
| 704 | unsigned long addr, next; |
| 705 | int err = 0; |
| 706 | |
| 707 | mutex_lock(&kvm_hyp_pgd_mutex); |
| 708 | addr = start & PAGE_MASK; |
| 709 | end = PAGE_ALIGN(end); |
| 710 | do { |
| 711 | pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd); |
| 712 | |
| 713 | if (pgd_none(*pgd)) { |
| 714 | pud = pud_alloc_one(NULL, addr); |
| 715 | if (!pud) { |
| 716 | kvm_err("Cannot allocate Hyp pud\n"); |
| 717 | err = -ENOMEM; |
| 718 | goto out; |
| 719 | } |
| 720 | kvm_pgd_populate(pgd, pud); |
| 721 | get_page(virt_to_page(pgd)); |
| 722 | } |
| 723 | |
| 724 | next = pgd_addr_end(addr, end); |
| 725 | err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot); |
| 726 | if (err) |
| 727 | goto out; |
| 728 | pfn += (next - addr) >> PAGE_SHIFT; |
| 729 | } while (addr = next, addr != end); |
| 730 | out: |
| 731 | mutex_unlock(&kvm_hyp_pgd_mutex); |
| 732 | return err; |
| 733 | } |
| 734 | |
| 735 | static phys_addr_t kvm_kaddr_to_phys(void *kaddr) |
| 736 | { |
| 737 | if (!is_vmalloc_addr(kaddr)) { |
| 738 | BUG_ON(!virt_addr_valid(kaddr)); |
| 739 | return __pa(kaddr); |
| 740 | } else { |
| 741 | return page_to_phys(vmalloc_to_page(kaddr)) + |
| 742 | offset_in_page(kaddr); |
| 743 | } |
| 744 | } |
| 745 | |
| 746 | /** |
| 747 | * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode |
| 748 | * @from: The virtual kernel start address of the range |
| 749 | * @to: The virtual kernel end address of the range (exclusive) |
| 750 | * @prot: The protection to be applied to this range |
| 751 | * |
| 752 | * The same virtual address as the kernel virtual address is also used |
| 753 | * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying |
| 754 | * physical pages. |
| 755 | */ |
| 756 | int create_hyp_mappings(void *from, void *to, pgprot_t prot) |
| 757 | { |
| 758 | phys_addr_t phys_addr; |
| 759 | unsigned long virt_addr; |
| 760 | unsigned long start = kern_hyp_va((unsigned long)from); |
| 761 | unsigned long end = kern_hyp_va((unsigned long)to); |
| 762 | |
| 763 | if (is_kernel_in_hyp_mode()) |
| 764 | return 0; |
| 765 | |
| 766 | start = start & PAGE_MASK; |
| 767 | end = PAGE_ALIGN(end); |
| 768 | |
| 769 | for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { |
| 770 | int err; |
| 771 | |
| 772 | phys_addr = kvm_kaddr_to_phys(from + virt_addr - start); |
| 773 | err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD, |
| 774 | virt_addr, virt_addr + PAGE_SIZE, |
| 775 | __phys_to_pfn(phys_addr), |
| 776 | prot); |
| 777 | if (err) |
| 778 | return err; |
| 779 | } |
| 780 | |
| 781 | return 0; |
| 782 | } |
| 783 | |
| 784 | static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size, |
| 785 | unsigned long *haddr, pgprot_t prot) |
| 786 | { |
| 787 | pgd_t *pgd = hyp_pgd; |
| 788 | unsigned long base; |
| 789 | int ret = 0; |
| 790 | |
| 791 | mutex_lock(&kvm_hyp_pgd_mutex); |
| 792 | |
| 793 | /* |
| 794 | * This assumes that we we have enough space below the idmap |
| 795 | * page to allocate our VAs. If not, the check below will |
| 796 | * kick. A potential alternative would be to detect that |
| 797 | * overflow and switch to an allocation above the idmap. |
| 798 | * |
| 799 | * The allocated size is always a multiple of PAGE_SIZE. |
| 800 | */ |
| 801 | size = PAGE_ALIGN(size + offset_in_page(phys_addr)); |
| 802 | base = io_map_base - size; |
| 803 | |
| 804 | /* |
| 805 | * Verify that BIT(VA_BITS - 1) hasn't been flipped by |
| 806 | * allocating the new area, as it would indicate we've |
| 807 | * overflowed the idmap/IO address range. |
| 808 | */ |
| 809 | if ((base ^ io_map_base) & BIT(VA_BITS - 1)) |
| 810 | ret = -ENOMEM; |
| 811 | else |
| 812 | io_map_base = base; |
| 813 | |
| 814 | mutex_unlock(&kvm_hyp_pgd_mutex); |
| 815 | |
| 816 | if (ret) |
| 817 | goto out; |
| 818 | |
| 819 | if (__kvm_cpu_uses_extended_idmap()) |
| 820 | pgd = boot_hyp_pgd; |
| 821 | |
| 822 | ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), |
| 823 | base, base + size, |
| 824 | __phys_to_pfn(phys_addr), prot); |
| 825 | if (ret) |
| 826 | goto out; |
| 827 | |
| 828 | *haddr = base + offset_in_page(phys_addr); |
| 829 | |
| 830 | out: |
| 831 | return ret; |
| 832 | } |
| 833 | |
| 834 | /** |
| 835 | * create_hyp_io_mappings - Map IO into both kernel and HYP |
| 836 | * @phys_addr: The physical start address which gets mapped |
| 837 | * @size: Size of the region being mapped |
| 838 | * @kaddr: Kernel VA for this mapping |
| 839 | * @haddr: HYP VA for this mapping |
| 840 | */ |
| 841 | int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, |
| 842 | void __iomem **kaddr, |
| 843 | void __iomem **haddr) |
| 844 | { |
| 845 | unsigned long addr; |
| 846 | int ret; |
| 847 | |
| 848 | *kaddr = ioremap(phys_addr, size); |
| 849 | if (!*kaddr) |
| 850 | return -ENOMEM; |
| 851 | |
| 852 | if (is_kernel_in_hyp_mode()) { |
| 853 | *haddr = *kaddr; |
| 854 | return 0; |
| 855 | } |
| 856 | |
| 857 | ret = __create_hyp_private_mapping(phys_addr, size, |
| 858 | &addr, PAGE_HYP_DEVICE); |
| 859 | if (ret) { |
| 860 | iounmap(*kaddr); |
| 861 | *kaddr = NULL; |
| 862 | *haddr = NULL; |
| 863 | return ret; |
| 864 | } |
| 865 | |
| 866 | *haddr = (void __iomem *)addr; |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | /** |
| 871 | * create_hyp_exec_mappings - Map an executable range into HYP |
| 872 | * @phys_addr: The physical start address which gets mapped |
| 873 | * @size: Size of the region being mapped |
| 874 | * @haddr: HYP VA for this mapping |
| 875 | */ |
| 876 | int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, |
| 877 | void **haddr) |
| 878 | { |
| 879 | unsigned long addr; |
| 880 | int ret; |
| 881 | |
| 882 | BUG_ON(is_kernel_in_hyp_mode()); |
| 883 | |
| 884 | ret = __create_hyp_private_mapping(phys_addr, size, |
| 885 | &addr, PAGE_HYP_EXEC); |
| 886 | if (ret) { |
| 887 | *haddr = NULL; |
| 888 | return ret; |
| 889 | } |
| 890 | |
| 891 | *haddr = (void *)addr; |
| 892 | return 0; |
| 893 | } |
| 894 | |
| 895 | /** |
| 896 | * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation. |
| 897 | * @kvm: The KVM struct pointer for the VM. |
| 898 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 899 | * Allocates only the stage-2 HW PGD level table(s) of size defined by |
| 900 | * stage2_pgd_size(kvm). |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 901 | * |
| 902 | * Note we don't need locking here as this is only called when the VM is |
| 903 | * created, which can only be done once. |
| 904 | */ |
| 905 | int kvm_alloc_stage2_pgd(struct kvm *kvm) |
| 906 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 907 | phys_addr_t pgd_phys; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 908 | pgd_t *pgd; |
| 909 | |
| 910 | if (kvm->arch.pgd != NULL) { |
| 911 | kvm_err("kvm_arch already initialized?\n"); |
| 912 | return -EINVAL; |
| 913 | } |
| 914 | |
| 915 | /* Allocate the HW PGD, making sure that each page gets its own refcount */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 916 | pgd = alloc_pages_exact(stage2_pgd_size(kvm), GFP_KERNEL | __GFP_ZERO); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 917 | if (!pgd) |
| 918 | return -ENOMEM; |
| 919 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 920 | pgd_phys = virt_to_phys(pgd); |
| 921 | if (WARN_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm))) |
| 922 | return -EINVAL; |
| 923 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 924 | kvm->arch.pgd = pgd; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 925 | kvm->arch.pgd_phys = pgd_phys; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 926 | return 0; |
| 927 | } |
| 928 | |
| 929 | static void stage2_unmap_memslot(struct kvm *kvm, |
| 930 | struct kvm_memory_slot *memslot) |
| 931 | { |
| 932 | hva_t hva = memslot->userspace_addr; |
| 933 | phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT; |
| 934 | phys_addr_t size = PAGE_SIZE * memslot->npages; |
| 935 | hva_t reg_end = hva + size; |
| 936 | |
| 937 | /* |
| 938 | * A memory region could potentially cover multiple VMAs, and any holes |
| 939 | * between them, so iterate over all of them to find out if we should |
| 940 | * unmap any of them. |
| 941 | * |
| 942 | * +--------------------------------------------+ |
| 943 | * +---------------+----------------+ +----------------+ |
| 944 | * | : VMA 1 | VMA 2 | | VMA 3 : | |
| 945 | * +---------------+----------------+ +----------------+ |
| 946 | * | memory region | |
| 947 | * +--------------------------------------------+ |
| 948 | */ |
| 949 | do { |
| 950 | struct vm_area_struct *vma = find_vma(current->mm, hva); |
| 951 | hva_t vm_start, vm_end; |
| 952 | |
| 953 | if (!vma || vma->vm_start >= reg_end) |
| 954 | break; |
| 955 | |
| 956 | /* |
| 957 | * Take the intersection of this VMA with the memory region |
| 958 | */ |
| 959 | vm_start = max(hva, vma->vm_start); |
| 960 | vm_end = min(reg_end, vma->vm_end); |
| 961 | |
| 962 | if (!(vma->vm_flags & VM_PFNMAP)) { |
| 963 | gpa_t gpa = addr + (vm_start - memslot->userspace_addr); |
| 964 | unmap_stage2_range(kvm, gpa, vm_end - vm_start); |
| 965 | } |
| 966 | hva = vm_end; |
| 967 | } while (hva < reg_end); |
| 968 | } |
| 969 | |
| 970 | /** |
| 971 | * stage2_unmap_vm - Unmap Stage-2 RAM mappings |
| 972 | * @kvm: The struct kvm pointer |
| 973 | * |
| 974 | * Go through the memregions and unmap any reguler RAM |
| 975 | * backing memory already mapped to the VM. |
| 976 | */ |
| 977 | void stage2_unmap_vm(struct kvm *kvm) |
| 978 | { |
| 979 | struct kvm_memslots *slots; |
| 980 | struct kvm_memory_slot *memslot; |
| 981 | int idx; |
| 982 | |
| 983 | idx = srcu_read_lock(&kvm->srcu); |
| 984 | down_read(¤t->mm->mmap_sem); |
| 985 | spin_lock(&kvm->mmu_lock); |
| 986 | |
| 987 | slots = kvm_memslots(kvm); |
| 988 | kvm_for_each_memslot(memslot, slots) |
| 989 | stage2_unmap_memslot(kvm, memslot); |
| 990 | |
| 991 | spin_unlock(&kvm->mmu_lock); |
| 992 | up_read(¤t->mm->mmap_sem); |
| 993 | srcu_read_unlock(&kvm->srcu, idx); |
| 994 | } |
| 995 | |
| 996 | /** |
| 997 | * kvm_free_stage2_pgd - free all stage-2 tables |
| 998 | * @kvm: The KVM struct pointer for the VM. |
| 999 | * |
| 1000 | * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all |
| 1001 | * underlying level-2 and level-3 tables before freeing the actual level-1 table |
| 1002 | * and setting the struct pointer to NULL. |
| 1003 | */ |
| 1004 | void kvm_free_stage2_pgd(struct kvm *kvm) |
| 1005 | { |
| 1006 | void *pgd = NULL; |
| 1007 | |
| 1008 | spin_lock(&kvm->mmu_lock); |
| 1009 | if (kvm->arch.pgd) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1010 | unmap_stage2_range(kvm, 0, kvm_phys_size(kvm)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1011 | pgd = READ_ONCE(kvm->arch.pgd); |
| 1012 | kvm->arch.pgd = NULL; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1013 | kvm->arch.pgd_phys = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1014 | } |
| 1015 | spin_unlock(&kvm->mmu_lock); |
| 1016 | |
| 1017 | /* Free the HW pgd, one page at a time */ |
| 1018 | if (pgd) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1019 | free_pages_exact(pgd, stage2_pgd_size(kvm)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1020 | } |
| 1021 | |
| 1022 | static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, |
| 1023 | phys_addr_t addr) |
| 1024 | { |
| 1025 | pgd_t *pgd; |
| 1026 | pud_t *pud; |
| 1027 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1028 | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); |
| 1029 | if (stage2_pgd_none(kvm, *pgd)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1030 | if (!cache) |
| 1031 | return NULL; |
| 1032 | pud = mmu_memory_cache_alloc(cache); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1033 | stage2_pgd_populate(kvm, pgd, pud); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1034 | get_page(virt_to_page(pgd)); |
| 1035 | } |
| 1036 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1037 | return stage2_pud_offset(kvm, pgd, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1038 | } |
| 1039 | |
| 1040 | static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, |
| 1041 | phys_addr_t addr) |
| 1042 | { |
| 1043 | pud_t *pud; |
| 1044 | pmd_t *pmd; |
| 1045 | |
| 1046 | pud = stage2_get_pud(kvm, cache, addr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1047 | if (!pud || stage2_pud_huge(kvm, *pud)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1048 | return NULL; |
| 1049 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1050 | if (stage2_pud_none(kvm, *pud)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1051 | if (!cache) |
| 1052 | return NULL; |
| 1053 | pmd = mmu_memory_cache_alloc(cache); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1054 | stage2_pud_populate(kvm, pud, pmd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1055 | get_page(virt_to_page(pud)); |
| 1056 | } |
| 1057 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1058 | return stage2_pmd_offset(kvm, pud, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1059 | } |
| 1060 | |
| 1061 | static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache |
| 1062 | *cache, phys_addr_t addr, const pmd_t *new_pmd) |
| 1063 | { |
| 1064 | pmd_t *pmd, old_pmd; |
| 1065 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1066 | retry: |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1067 | pmd = stage2_get_pmd(kvm, cache, addr); |
| 1068 | VM_BUG_ON(!pmd); |
| 1069 | |
| 1070 | old_pmd = *pmd; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1071 | /* |
| 1072 | * Multiple vcpus faulting on the same PMD entry, can |
| 1073 | * lead to them sequentially updating the PMD with the |
| 1074 | * same value. Following the break-before-make |
| 1075 | * (pmd_clear() followed by tlb_flush()) process can |
| 1076 | * hinder forward progress due to refaults generated |
| 1077 | * on missing translations. |
| 1078 | * |
| 1079 | * Skip updating the page table if the entry is |
| 1080 | * unchanged. |
| 1081 | */ |
| 1082 | if (pmd_val(old_pmd) == pmd_val(*new_pmd)) |
| 1083 | return 0; |
| 1084 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1085 | if (pmd_present(old_pmd)) { |
| 1086 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1087 | * If we already have PTE level mapping for this block, |
| 1088 | * we must unmap it to avoid inconsistent TLB state and |
| 1089 | * leaking the table page. We could end up in this situation |
| 1090 | * if the memory slot was marked for dirty logging and was |
| 1091 | * reverted, leaving PTE level mappings for the pages accessed |
| 1092 | * during the period. So, unmap the PTE level mapping for this |
| 1093 | * block and retry, as we could have released the upper level |
| 1094 | * table in the process. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1095 | * |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1096 | * Normal THP split/merge follows mmu_notifier callbacks and do |
| 1097 | * get handled accordingly. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1098 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1099 | if (!pmd_thp_or_huge(old_pmd)) { |
| 1100 | unmap_stage2_range(kvm, addr & S2_PMD_MASK, S2_PMD_SIZE); |
| 1101 | goto retry; |
| 1102 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1103 | /* |
| 1104 | * Mapping in huge pages should only happen through a |
| 1105 | * fault. If a page is merged into a transparent huge |
| 1106 | * page, the individual subpages of that huge page |
| 1107 | * should be unmapped through MMU notifiers before we |
| 1108 | * get here. |
| 1109 | * |
| 1110 | * Merging of CompoundPages is not supported; they |
| 1111 | * should become splitting first, unmapped, merged, |
| 1112 | * and mapped back in on-demand. |
| 1113 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1114 | WARN_ON_ONCE(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1115 | pmd_clear(pmd); |
| 1116 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 1117 | } else { |
| 1118 | get_page(virt_to_page(pmd)); |
| 1119 | } |
| 1120 | |
| 1121 | kvm_set_pmd(pmd, *new_pmd); |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1125 | static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, |
| 1126 | phys_addr_t addr, const pud_t *new_pudp) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1127 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1128 | pud_t *pudp, old_pud; |
| 1129 | |
| 1130 | retry: |
| 1131 | pudp = stage2_get_pud(kvm, cache, addr); |
| 1132 | VM_BUG_ON(!pudp); |
| 1133 | |
| 1134 | old_pud = *pudp; |
| 1135 | |
| 1136 | /* |
| 1137 | * A large number of vcpus faulting on the same stage 2 entry, |
| 1138 | * can lead to a refault due to the stage2_pud_clear()/tlb_flush(). |
| 1139 | * Skip updating the page tables if there is no change. |
| 1140 | */ |
| 1141 | if (pud_val(old_pud) == pud_val(*new_pudp)) |
| 1142 | return 0; |
| 1143 | |
| 1144 | if (stage2_pud_present(kvm, old_pud)) { |
| 1145 | /* |
| 1146 | * If we already have table level mapping for this block, unmap |
| 1147 | * the range for this block and retry. |
| 1148 | */ |
| 1149 | if (!stage2_pud_huge(kvm, old_pud)) { |
| 1150 | unmap_stage2_range(kvm, addr & S2_PUD_MASK, S2_PUD_SIZE); |
| 1151 | goto retry; |
| 1152 | } |
| 1153 | |
| 1154 | WARN_ON_ONCE(kvm_pud_pfn(old_pud) != kvm_pud_pfn(*new_pudp)); |
| 1155 | stage2_pud_clear(kvm, pudp); |
| 1156 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 1157 | } else { |
| 1158 | get_page(virt_to_page(pudp)); |
| 1159 | } |
| 1160 | |
| 1161 | kvm_set_pud(pudp, *new_pudp); |
| 1162 | return 0; |
| 1163 | } |
| 1164 | |
| 1165 | /* |
| 1166 | * stage2_get_leaf_entry - walk the stage2 VM page tables and return |
| 1167 | * true if a valid and present leaf-entry is found. A pointer to the |
| 1168 | * leaf-entry is returned in the appropriate level variable - pudpp, |
| 1169 | * pmdpp, ptepp. |
| 1170 | */ |
| 1171 | static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr, |
| 1172 | pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp) |
| 1173 | { |
| 1174 | pud_t *pudp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1175 | pmd_t *pmdp; |
| 1176 | pte_t *ptep; |
| 1177 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1178 | *pudpp = NULL; |
| 1179 | *pmdpp = NULL; |
| 1180 | *ptepp = NULL; |
| 1181 | |
| 1182 | pudp = stage2_get_pud(kvm, NULL, addr); |
| 1183 | if (!pudp || stage2_pud_none(kvm, *pudp) || !stage2_pud_present(kvm, *pudp)) |
| 1184 | return false; |
| 1185 | |
| 1186 | if (stage2_pud_huge(kvm, *pudp)) { |
| 1187 | *pudpp = pudp; |
| 1188 | return true; |
| 1189 | } |
| 1190 | |
| 1191 | pmdp = stage2_pmd_offset(kvm, pudp, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1192 | if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp)) |
| 1193 | return false; |
| 1194 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1195 | if (pmd_thp_or_huge(*pmdp)) { |
| 1196 | *pmdpp = pmdp; |
| 1197 | return true; |
| 1198 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1199 | |
| 1200 | ptep = pte_offset_kernel(pmdp, addr); |
| 1201 | if (!ptep || pte_none(*ptep) || !pte_present(*ptep)) |
| 1202 | return false; |
| 1203 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1204 | *ptepp = ptep; |
| 1205 | return true; |
| 1206 | } |
| 1207 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1208 | static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr, unsigned long sz) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1209 | { |
| 1210 | pud_t *pudp; |
| 1211 | pmd_t *pmdp; |
| 1212 | pte_t *ptep; |
| 1213 | bool found; |
| 1214 | |
| 1215 | found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep); |
| 1216 | if (!found) |
| 1217 | return false; |
| 1218 | |
| 1219 | if (pudp) |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1220 | return sz <= PUD_SIZE && kvm_s2pud_exec(pudp); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1221 | else if (pmdp) |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1222 | return sz <= PMD_SIZE && kvm_s2pmd_exec(pmdp); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1223 | else |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1224 | return sz == PAGE_SIZE && kvm_s2pte_exec(ptep); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1225 | } |
| 1226 | |
| 1227 | static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache, |
| 1228 | phys_addr_t addr, const pte_t *new_pte, |
| 1229 | unsigned long flags) |
| 1230 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1231 | pud_t *pud; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1232 | pmd_t *pmd; |
| 1233 | pte_t *pte, old_pte; |
| 1234 | bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP; |
| 1235 | bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE; |
| 1236 | |
| 1237 | VM_BUG_ON(logging_active && !cache); |
| 1238 | |
| 1239 | /* Create stage-2 page table mapping - Levels 0 and 1 */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1240 | pud = stage2_get_pud(kvm, cache, addr); |
| 1241 | if (!pud) { |
| 1242 | /* |
| 1243 | * Ignore calls from kvm_set_spte_hva for unallocated |
| 1244 | * address ranges. |
| 1245 | */ |
| 1246 | return 0; |
| 1247 | } |
| 1248 | |
| 1249 | /* |
| 1250 | * While dirty page logging - dissolve huge PUD, then continue |
| 1251 | * on to allocate page. |
| 1252 | */ |
| 1253 | if (logging_active) |
| 1254 | stage2_dissolve_pud(kvm, addr, pud); |
| 1255 | |
| 1256 | if (stage2_pud_none(kvm, *pud)) { |
| 1257 | if (!cache) |
| 1258 | return 0; /* ignore calls from kvm_set_spte_hva */ |
| 1259 | pmd = mmu_memory_cache_alloc(cache); |
| 1260 | stage2_pud_populate(kvm, pud, pmd); |
| 1261 | get_page(virt_to_page(pud)); |
| 1262 | } |
| 1263 | |
| 1264 | pmd = stage2_pmd_offset(kvm, pud, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1265 | if (!pmd) { |
| 1266 | /* |
| 1267 | * Ignore calls from kvm_set_spte_hva for unallocated |
| 1268 | * address ranges. |
| 1269 | */ |
| 1270 | return 0; |
| 1271 | } |
| 1272 | |
| 1273 | /* |
| 1274 | * While dirty page logging - dissolve huge PMD, then continue on to |
| 1275 | * allocate page. |
| 1276 | */ |
| 1277 | if (logging_active) |
| 1278 | stage2_dissolve_pmd(kvm, addr, pmd); |
| 1279 | |
| 1280 | /* Create stage-2 page mappings - Level 2 */ |
| 1281 | if (pmd_none(*pmd)) { |
| 1282 | if (!cache) |
| 1283 | return 0; /* ignore calls from kvm_set_spte_hva */ |
| 1284 | pte = mmu_memory_cache_alloc(cache); |
| 1285 | kvm_pmd_populate(pmd, pte); |
| 1286 | get_page(virt_to_page(pmd)); |
| 1287 | } |
| 1288 | |
| 1289 | pte = pte_offset_kernel(pmd, addr); |
| 1290 | |
| 1291 | if (iomap && pte_present(*pte)) |
| 1292 | return -EFAULT; |
| 1293 | |
| 1294 | /* Create 2nd stage page table mapping - Level 3 */ |
| 1295 | old_pte = *pte; |
| 1296 | if (pte_present(old_pte)) { |
| 1297 | /* Skip page table update if there is no change */ |
| 1298 | if (pte_val(old_pte) == pte_val(*new_pte)) |
| 1299 | return 0; |
| 1300 | |
| 1301 | kvm_set_pte(pte, __pte(0)); |
| 1302 | kvm_tlb_flush_vmid_ipa(kvm, addr); |
| 1303 | } else { |
| 1304 | get_page(virt_to_page(pte)); |
| 1305 | } |
| 1306 | |
| 1307 | kvm_set_pte(pte, *new_pte); |
| 1308 | return 0; |
| 1309 | } |
| 1310 | |
| 1311 | #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| 1312 | static int stage2_ptep_test_and_clear_young(pte_t *pte) |
| 1313 | { |
| 1314 | if (pte_young(*pte)) { |
| 1315 | *pte = pte_mkold(*pte); |
| 1316 | return 1; |
| 1317 | } |
| 1318 | return 0; |
| 1319 | } |
| 1320 | #else |
| 1321 | static int stage2_ptep_test_and_clear_young(pte_t *pte) |
| 1322 | { |
| 1323 | return __ptep_test_and_clear_young(pte); |
| 1324 | } |
| 1325 | #endif |
| 1326 | |
| 1327 | static int stage2_pmdp_test_and_clear_young(pmd_t *pmd) |
| 1328 | { |
| 1329 | return stage2_ptep_test_and_clear_young((pte_t *)pmd); |
| 1330 | } |
| 1331 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1332 | static int stage2_pudp_test_and_clear_young(pud_t *pud) |
| 1333 | { |
| 1334 | return stage2_ptep_test_and_clear_young((pte_t *)pud); |
| 1335 | } |
| 1336 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1337 | /** |
| 1338 | * kvm_phys_addr_ioremap - map a device range to guest IPA |
| 1339 | * |
| 1340 | * @kvm: The KVM pointer |
| 1341 | * @guest_ipa: The IPA at which to insert the mapping |
| 1342 | * @pa: The physical address of the device |
| 1343 | * @size: The size of the mapping |
| 1344 | */ |
| 1345 | int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| 1346 | phys_addr_t pa, unsigned long size, bool writable) |
| 1347 | { |
| 1348 | phys_addr_t addr, end; |
| 1349 | int ret = 0; |
| 1350 | unsigned long pfn; |
| 1351 | struct kvm_mmu_memory_cache cache = { 0, }; |
| 1352 | |
| 1353 | end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK; |
| 1354 | pfn = __phys_to_pfn(pa); |
| 1355 | |
| 1356 | for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1357 | pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1358 | |
| 1359 | if (writable) |
| 1360 | pte = kvm_s2pte_mkwrite(pte); |
| 1361 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1362 | ret = mmu_topup_memory_cache(&cache, |
| 1363 | kvm_mmu_cache_min_pages(kvm), |
| 1364 | KVM_NR_MEM_OBJS); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1365 | if (ret) |
| 1366 | goto out; |
| 1367 | spin_lock(&kvm->mmu_lock); |
| 1368 | ret = stage2_set_pte(kvm, &cache, addr, &pte, |
| 1369 | KVM_S2PTE_FLAG_IS_IOMAP); |
| 1370 | spin_unlock(&kvm->mmu_lock); |
| 1371 | if (ret) |
| 1372 | goto out; |
| 1373 | |
| 1374 | pfn++; |
| 1375 | } |
| 1376 | |
| 1377 | out: |
| 1378 | mmu_free_memory_cache(&cache); |
| 1379 | return ret; |
| 1380 | } |
| 1381 | |
| 1382 | static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap) |
| 1383 | { |
| 1384 | kvm_pfn_t pfn = *pfnp; |
| 1385 | gfn_t gfn = *ipap >> PAGE_SHIFT; |
| 1386 | struct page *page = pfn_to_page(pfn); |
| 1387 | |
| 1388 | /* |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1389 | * PageTransCompoundMap() returns true for THP and |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1390 | * hugetlbfs. Make sure the adjustment is done only for THP |
| 1391 | * pages. |
| 1392 | */ |
| 1393 | if (!PageHuge(page) && PageTransCompoundMap(page)) { |
| 1394 | unsigned long mask; |
| 1395 | /* |
| 1396 | * The address we faulted on is backed by a transparent huge |
| 1397 | * page. However, because we map the compound huge page and |
| 1398 | * not the individual tail page, we need to transfer the |
| 1399 | * refcount to the head page. We have to be careful that the |
| 1400 | * THP doesn't start to split while we are adjusting the |
| 1401 | * refcounts. |
| 1402 | * |
| 1403 | * We are sure this doesn't happen, because mmu_notifier_retry |
| 1404 | * was successful and we are holding the mmu_lock, so if this |
| 1405 | * THP is trying to split, it will be blocked in the mmu |
| 1406 | * notifier before touching any of the pages, specifically |
| 1407 | * before being able to call __split_huge_page_refcount(). |
| 1408 | * |
| 1409 | * We can therefore safely transfer the refcount from PG_tail |
| 1410 | * to PG_head and switch the pfn from a tail page to the head |
| 1411 | * page accordingly. |
| 1412 | */ |
| 1413 | mask = PTRS_PER_PMD - 1; |
| 1414 | VM_BUG_ON((gfn & mask) != (pfn & mask)); |
| 1415 | if (pfn & mask) { |
| 1416 | *ipap &= PMD_MASK; |
| 1417 | kvm_release_pfn_clean(pfn); |
| 1418 | pfn &= ~mask; |
| 1419 | kvm_get_pfn(pfn); |
| 1420 | *pfnp = pfn; |
| 1421 | } |
| 1422 | |
| 1423 | return true; |
| 1424 | } |
| 1425 | |
| 1426 | return false; |
| 1427 | } |
| 1428 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1429 | /** |
| 1430 | * stage2_wp_ptes - write protect PMD range |
| 1431 | * @pmd: pointer to pmd entry |
| 1432 | * @addr: range start address |
| 1433 | * @end: range end address |
| 1434 | */ |
| 1435 | static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end) |
| 1436 | { |
| 1437 | pte_t *pte; |
| 1438 | |
| 1439 | pte = pte_offset_kernel(pmd, addr); |
| 1440 | do { |
| 1441 | if (!pte_none(*pte)) { |
| 1442 | if (!kvm_s2pte_readonly(pte)) |
| 1443 | kvm_set_s2pte_readonly(pte); |
| 1444 | } |
| 1445 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 1446 | } |
| 1447 | |
| 1448 | /** |
| 1449 | * stage2_wp_pmds - write protect PUD range |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1450 | * kvm: kvm instance for the VM |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1451 | * @pud: pointer to pud entry |
| 1452 | * @addr: range start address |
| 1453 | * @end: range end address |
| 1454 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1455 | static void stage2_wp_pmds(struct kvm *kvm, pud_t *pud, |
| 1456 | phys_addr_t addr, phys_addr_t end) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1457 | { |
| 1458 | pmd_t *pmd; |
| 1459 | phys_addr_t next; |
| 1460 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1461 | pmd = stage2_pmd_offset(kvm, pud, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1462 | |
| 1463 | do { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1464 | next = stage2_pmd_addr_end(kvm, addr, end); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1465 | if (!pmd_none(*pmd)) { |
| 1466 | if (pmd_thp_or_huge(*pmd)) { |
| 1467 | if (!kvm_s2pmd_readonly(pmd)) |
| 1468 | kvm_set_s2pmd_readonly(pmd); |
| 1469 | } else { |
| 1470 | stage2_wp_ptes(pmd, addr, next); |
| 1471 | } |
| 1472 | } |
| 1473 | } while (pmd++, addr = next, addr != end); |
| 1474 | } |
| 1475 | |
| 1476 | /** |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1477 | * stage2_wp_puds - write protect PGD range |
| 1478 | * @pgd: pointer to pgd entry |
| 1479 | * @addr: range start address |
| 1480 | * @end: range end address |
| 1481 | */ |
| 1482 | static void stage2_wp_puds(struct kvm *kvm, pgd_t *pgd, |
| 1483 | phys_addr_t addr, phys_addr_t end) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1484 | { |
| 1485 | pud_t *pud; |
| 1486 | phys_addr_t next; |
| 1487 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1488 | pud = stage2_pud_offset(kvm, pgd, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1489 | do { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1490 | next = stage2_pud_addr_end(kvm, addr, end); |
| 1491 | if (!stage2_pud_none(kvm, *pud)) { |
| 1492 | if (stage2_pud_huge(kvm, *pud)) { |
| 1493 | if (!kvm_s2pud_readonly(pud)) |
| 1494 | kvm_set_s2pud_readonly(pud); |
| 1495 | } else { |
| 1496 | stage2_wp_pmds(kvm, pud, addr, next); |
| 1497 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1498 | } |
| 1499 | } while (pud++, addr = next, addr != end); |
| 1500 | } |
| 1501 | |
| 1502 | /** |
| 1503 | * stage2_wp_range() - write protect stage2 memory region range |
| 1504 | * @kvm: The KVM pointer |
| 1505 | * @addr: Start address of range |
| 1506 | * @end: End address of range |
| 1507 | */ |
| 1508 | static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end) |
| 1509 | { |
| 1510 | pgd_t *pgd; |
| 1511 | phys_addr_t next; |
| 1512 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1513 | pgd = kvm->arch.pgd + stage2_pgd_index(kvm, addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1514 | do { |
| 1515 | /* |
| 1516 | * Release kvm_mmu_lock periodically if the memory region is |
| 1517 | * large. Otherwise, we may see kernel panics with |
| 1518 | * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR, |
| 1519 | * CONFIG_LOCKDEP. Additionally, holding the lock too long |
| 1520 | * will also starve other vCPUs. We have to also make sure |
| 1521 | * that the page tables are not freed while we released |
| 1522 | * the lock. |
| 1523 | */ |
| 1524 | cond_resched_lock(&kvm->mmu_lock); |
| 1525 | if (!READ_ONCE(kvm->arch.pgd)) |
| 1526 | break; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1527 | next = stage2_pgd_addr_end(kvm, addr, end); |
| 1528 | if (stage2_pgd_present(kvm, *pgd)) |
| 1529 | stage2_wp_puds(kvm, pgd, addr, next); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1530 | } while (pgd++, addr = next, addr != end); |
| 1531 | } |
| 1532 | |
| 1533 | /** |
| 1534 | * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot |
| 1535 | * @kvm: The KVM pointer |
| 1536 | * @slot: The memory slot to write protect |
| 1537 | * |
| 1538 | * Called to start logging dirty pages after memory region |
| 1539 | * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1540 | * all present PUD, PMD and PTEs are write protected in the memory region. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1541 | * Afterwards read of dirty page log can be called. |
| 1542 | * |
| 1543 | * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired, |
| 1544 | * serializing operations for VM memory regions. |
| 1545 | */ |
| 1546 | void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot) |
| 1547 | { |
| 1548 | struct kvm_memslots *slots = kvm_memslots(kvm); |
| 1549 | struct kvm_memory_slot *memslot = id_to_memslot(slots, slot); |
| 1550 | phys_addr_t start = memslot->base_gfn << PAGE_SHIFT; |
| 1551 | phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT; |
| 1552 | |
| 1553 | spin_lock(&kvm->mmu_lock); |
| 1554 | stage2_wp_range(kvm, start, end); |
| 1555 | spin_unlock(&kvm->mmu_lock); |
| 1556 | kvm_flush_remote_tlbs(kvm); |
| 1557 | } |
| 1558 | |
| 1559 | /** |
| 1560 | * kvm_mmu_write_protect_pt_masked() - write protect dirty pages |
| 1561 | * @kvm: The KVM pointer |
| 1562 | * @slot: The memory slot associated with mask |
| 1563 | * @gfn_offset: The gfn offset in memory slot |
| 1564 | * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory |
| 1565 | * slot to be write protected |
| 1566 | * |
| 1567 | * Walks bits set in mask write protects the associated pte's. Caller must |
| 1568 | * acquire kvm_mmu_lock. |
| 1569 | */ |
| 1570 | static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, |
| 1571 | struct kvm_memory_slot *slot, |
| 1572 | gfn_t gfn_offset, unsigned long mask) |
| 1573 | { |
| 1574 | phys_addr_t base_gfn = slot->base_gfn + gfn_offset; |
| 1575 | phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT; |
| 1576 | phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT; |
| 1577 | |
| 1578 | stage2_wp_range(kvm, start, end); |
| 1579 | } |
| 1580 | |
| 1581 | /* |
| 1582 | * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected |
| 1583 | * dirty pages. |
| 1584 | * |
| 1585 | * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to |
| 1586 | * enable dirty logging for them. |
| 1587 | */ |
| 1588 | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| 1589 | struct kvm_memory_slot *slot, |
| 1590 | gfn_t gfn_offset, unsigned long mask) |
| 1591 | { |
| 1592 | kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); |
| 1593 | } |
| 1594 | |
| 1595 | static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) |
| 1596 | { |
| 1597 | __clean_dcache_guest_page(pfn, size); |
| 1598 | } |
| 1599 | |
| 1600 | static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size) |
| 1601 | { |
| 1602 | __invalidate_icache_guest_page(pfn, size); |
| 1603 | } |
| 1604 | |
| 1605 | static void kvm_send_hwpoison_signal(unsigned long address, |
| 1606 | struct vm_area_struct *vma) |
| 1607 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1608 | short lsb; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1609 | |
| 1610 | if (is_vm_hugetlb_page(vma)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1611 | lsb = huge_page_shift(hstate_vma(vma)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1612 | else |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1613 | lsb = PAGE_SHIFT; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1614 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1615 | send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current); |
| 1616 | } |
| 1617 | |
| 1618 | static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot, |
| 1619 | unsigned long hva, |
| 1620 | unsigned long map_size) |
| 1621 | { |
| 1622 | gpa_t gpa_start; |
| 1623 | hva_t uaddr_start, uaddr_end; |
| 1624 | size_t size; |
| 1625 | |
| 1626 | size = memslot->npages * PAGE_SIZE; |
| 1627 | |
| 1628 | gpa_start = memslot->base_gfn << PAGE_SHIFT; |
| 1629 | |
| 1630 | uaddr_start = memslot->userspace_addr; |
| 1631 | uaddr_end = uaddr_start + size; |
| 1632 | |
| 1633 | /* |
| 1634 | * Pages belonging to memslots that don't have the same alignment |
| 1635 | * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2 |
| 1636 | * PMD/PUD entries, because we'll end up mapping the wrong pages. |
| 1637 | * |
| 1638 | * Consider a layout like the following: |
| 1639 | * |
| 1640 | * memslot->userspace_addr: |
| 1641 | * +-----+--------------------+--------------------+---+ |
| 1642 | * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz| |
| 1643 | * +-----+--------------------+--------------------+---+ |
| 1644 | * |
| 1645 | * memslot->base_gfn << PAGE_SIZE: |
| 1646 | * +---+--------------------+--------------------+-----+ |
| 1647 | * |abc|def Stage-2 block | Stage-2 block |tvxyz| |
| 1648 | * +---+--------------------+--------------------+-----+ |
| 1649 | * |
| 1650 | * If we create those stage-2 blocks, we'll end up with this incorrect |
| 1651 | * mapping: |
| 1652 | * d -> f |
| 1653 | * e -> g |
| 1654 | * f -> h |
| 1655 | */ |
| 1656 | if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1))) |
| 1657 | return false; |
| 1658 | |
| 1659 | /* |
| 1660 | * Next, let's make sure we're not trying to map anything not covered |
| 1661 | * by the memslot. This means we have to prohibit block size mappings |
| 1662 | * for the beginning and end of a non-block aligned and non-block sized |
| 1663 | * memory slot (illustrated by the head and tail parts of the |
| 1664 | * userspace view above containing pages 'abcde' and 'xyz', |
| 1665 | * respectively). |
| 1666 | * |
| 1667 | * Note that it doesn't matter if we do the check using the |
| 1668 | * userspace_addr or the base_gfn, as both are equally aligned (per |
| 1669 | * the check above) and equally sized. |
| 1670 | */ |
| 1671 | return (hva & ~(map_size - 1)) >= uaddr_start && |
| 1672 | (hva & ~(map_size - 1)) + map_size <= uaddr_end; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1673 | } |
| 1674 | |
| 1675 | static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa, |
| 1676 | struct kvm_memory_slot *memslot, unsigned long hva, |
| 1677 | unsigned long fault_status) |
| 1678 | { |
| 1679 | int ret; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1680 | bool write_fault, writable, force_pte = false; |
| 1681 | bool exec_fault, needs_exec; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1682 | unsigned long mmu_seq; |
| 1683 | gfn_t gfn = fault_ipa >> PAGE_SHIFT; |
| 1684 | struct kvm *kvm = vcpu->kvm; |
| 1685 | struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; |
| 1686 | struct vm_area_struct *vma; |
| 1687 | kvm_pfn_t pfn; |
| 1688 | pgprot_t mem_type = PAGE_S2; |
| 1689 | bool logging_active = memslot_is_logging(memslot); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1690 | unsigned long vma_pagesize, flags = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1691 | |
| 1692 | write_fault = kvm_is_write_fault(vcpu); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1693 | exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1694 | VM_BUG_ON(write_fault && exec_fault); |
| 1695 | |
| 1696 | if (fault_status == FSC_PERM && !write_fault && !exec_fault) { |
| 1697 | kvm_err("Unexpected L2 read permission error\n"); |
| 1698 | return -EFAULT; |
| 1699 | } |
| 1700 | |
| 1701 | /* Let's check if we will get back a huge page backed by hugetlbfs */ |
| 1702 | down_read(¤t->mm->mmap_sem); |
| 1703 | vma = find_vma_intersection(current->mm, hva, hva + 1); |
| 1704 | if (unlikely(!vma)) { |
| 1705 | kvm_err("Failed to find VMA for hva 0x%lx\n", hva); |
| 1706 | up_read(¤t->mm->mmap_sem); |
| 1707 | return -EFAULT; |
| 1708 | } |
| 1709 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1710 | vma_pagesize = vma_kernel_pagesize(vma); |
| 1711 | if (logging_active || |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1712 | (vma->vm_flags & VM_PFNMAP) || |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1713 | !fault_supports_stage2_huge_mapping(memslot, hva, vma_pagesize)) { |
| 1714 | force_pte = true; |
| 1715 | vma_pagesize = PAGE_SIZE; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1716 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1717 | |
| 1718 | /* |
| 1719 | * The stage2 has a minimum of 2 level table (For arm64 see |
| 1720 | * kvm_arm_setup_stage2()). Hence, we are guaranteed that we can |
| 1721 | * use PMD_SIZE huge mappings (even when the PMD is folded into PGD). |
| 1722 | * As for PUD huge maps, we must make sure that we have at least |
| 1723 | * 3 levels, i.e, PMD is not folded. |
| 1724 | */ |
| 1725 | if (vma_pagesize == PMD_SIZE || |
| 1726 | (vma_pagesize == PUD_SIZE && kvm_stage2_has_pmd(kvm))) |
| 1727 | gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1728 | up_read(¤t->mm->mmap_sem); |
| 1729 | |
| 1730 | /* We need minimum second+third level pages */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1731 | ret = mmu_topup_memory_cache(memcache, kvm_mmu_cache_min_pages(kvm), |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1732 | KVM_NR_MEM_OBJS); |
| 1733 | if (ret) |
| 1734 | return ret; |
| 1735 | |
| 1736 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| 1737 | /* |
| 1738 | * Ensure the read of mmu_notifier_seq happens before we call |
| 1739 | * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk |
| 1740 | * the page we just got a reference to gets unmapped before we have a |
| 1741 | * chance to grab the mmu_lock, which ensure that if the page gets |
| 1742 | * unmapped afterwards, the call to kvm_unmap_hva will take it away |
| 1743 | * from us again properly. This smp_rmb() interacts with the smp_wmb() |
| 1744 | * in kvm_mmu_notifier_invalidate_<page|range_end>. |
| 1745 | */ |
| 1746 | smp_rmb(); |
| 1747 | |
| 1748 | pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable); |
| 1749 | if (pfn == KVM_PFN_ERR_HWPOISON) { |
| 1750 | kvm_send_hwpoison_signal(hva, vma); |
| 1751 | return 0; |
| 1752 | } |
| 1753 | if (is_error_noslot_pfn(pfn)) |
| 1754 | return -EFAULT; |
| 1755 | |
| 1756 | if (kvm_is_device_pfn(pfn)) { |
| 1757 | mem_type = PAGE_S2_DEVICE; |
| 1758 | flags |= KVM_S2PTE_FLAG_IS_IOMAP; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1759 | force_pte = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1760 | } else if (logging_active) { |
| 1761 | /* |
| 1762 | * Faults on pages in a memslot with logging enabled |
| 1763 | * should not be mapped with huge pages (it introduces churn |
| 1764 | * and performance degradation), so force a pte mapping. |
| 1765 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1766 | flags |= KVM_S2_FLAG_LOGGING_ACTIVE; |
| 1767 | |
| 1768 | /* |
| 1769 | * Only actually map the page as writable if this was a write |
| 1770 | * fault. |
| 1771 | */ |
| 1772 | if (!write_fault) |
| 1773 | writable = false; |
| 1774 | } |
| 1775 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1776 | if (exec_fault && is_iomap(flags)) |
| 1777 | return -ENOEXEC; |
| 1778 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1779 | spin_lock(&kvm->mmu_lock); |
| 1780 | if (mmu_notifier_retry(kvm, mmu_seq)) |
| 1781 | goto out_unlock; |
| 1782 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1783 | if (vma_pagesize == PAGE_SIZE && !force_pte) { |
| 1784 | /* |
| 1785 | * Only PMD_SIZE transparent hugepages(THP) are |
| 1786 | * currently supported. This code will need to be |
| 1787 | * updated to support other THP sizes. |
| 1788 | * |
| 1789 | * Make sure the host VA and the guest IPA are sufficiently |
| 1790 | * aligned and that the block is contained within the memslot. |
| 1791 | */ |
| 1792 | if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) && |
| 1793 | transparent_hugepage_adjust(&pfn, &fault_ipa)) |
| 1794 | vma_pagesize = PMD_SIZE; |
| 1795 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1796 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1797 | if (writable) |
| 1798 | kvm_set_pfn_dirty(pfn); |
| 1799 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1800 | if (fault_status != FSC_PERM && !is_iomap(flags)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1801 | clean_dcache_guest_page(pfn, vma_pagesize); |
| 1802 | |
| 1803 | if (exec_fault) |
| 1804 | invalidate_icache_guest_page(pfn, vma_pagesize); |
| 1805 | |
| 1806 | /* |
| 1807 | * If we took an execution fault we have made the |
| 1808 | * icache/dcache coherent above and should now let the s2 |
| 1809 | * mapping be executable. |
| 1810 | * |
| 1811 | * Write faults (!exec_fault && FSC_PERM) are orthogonal to |
| 1812 | * execute permissions, and we preserve whatever we have. |
| 1813 | */ |
| 1814 | needs_exec = exec_fault || |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1815 | (fault_status == FSC_PERM && |
| 1816 | stage2_is_exec(kvm, fault_ipa, vma_pagesize)); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1817 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1818 | /* |
| 1819 | * If PUD_SIZE == PMD_SIZE, there is no real PUD level, and |
| 1820 | * all we have is a 2-level page table. Trying to map a PUD in |
| 1821 | * this case would be fatally wrong. |
| 1822 | */ |
| 1823 | if (PUD_SIZE != PMD_SIZE && vma_pagesize == PUD_SIZE) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1824 | pud_t new_pud = kvm_pfn_pud(pfn, mem_type); |
| 1825 | |
| 1826 | new_pud = kvm_pud_mkhuge(new_pud); |
| 1827 | if (writable) |
| 1828 | new_pud = kvm_s2pud_mkwrite(new_pud); |
| 1829 | |
| 1830 | if (needs_exec) |
| 1831 | new_pud = kvm_s2pud_mkexec(new_pud); |
| 1832 | |
| 1833 | ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud); |
| 1834 | } else if (vma_pagesize == PMD_SIZE) { |
| 1835 | pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type); |
| 1836 | |
| 1837 | new_pmd = kvm_pmd_mkhuge(new_pmd); |
| 1838 | |
| 1839 | if (writable) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1840 | new_pmd = kvm_s2pmd_mkwrite(new_pmd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1841 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1842 | if (needs_exec) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1843 | new_pmd = kvm_s2pmd_mkexec(new_pmd); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1844 | |
| 1845 | ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd); |
| 1846 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1847 | pte_t new_pte = kvm_pfn_pte(pfn, mem_type); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1848 | |
| 1849 | if (writable) { |
| 1850 | new_pte = kvm_s2pte_mkwrite(new_pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1851 | mark_page_dirty(kvm, gfn); |
| 1852 | } |
| 1853 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1854 | if (needs_exec) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1855 | new_pte = kvm_s2pte_mkexec(new_pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1856 | |
| 1857 | ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags); |
| 1858 | } |
| 1859 | |
| 1860 | out_unlock: |
| 1861 | spin_unlock(&kvm->mmu_lock); |
| 1862 | kvm_set_pfn_accessed(pfn); |
| 1863 | kvm_release_pfn_clean(pfn); |
| 1864 | return ret; |
| 1865 | } |
| 1866 | |
| 1867 | /* |
| 1868 | * Resolve the access fault by making the page young again. |
| 1869 | * Note that because the faulting entry is guaranteed not to be |
| 1870 | * cached in the TLB, we don't need to invalidate anything. |
| 1871 | * Only the HW Access Flag updates are supported for Stage 2 (no DBM), |
| 1872 | * so there is no need for atomic (pte|pmd)_mkyoung operations. |
| 1873 | */ |
| 1874 | static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa) |
| 1875 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1876 | pud_t *pud; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1877 | pmd_t *pmd; |
| 1878 | pte_t *pte; |
| 1879 | kvm_pfn_t pfn; |
| 1880 | bool pfn_valid = false; |
| 1881 | |
| 1882 | trace_kvm_access_fault(fault_ipa); |
| 1883 | |
| 1884 | spin_lock(&vcpu->kvm->mmu_lock); |
| 1885 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1886 | if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1887 | goto out; |
| 1888 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1889 | if (pud) { /* HugeTLB */ |
| 1890 | *pud = kvm_s2pud_mkyoung(*pud); |
| 1891 | pfn = kvm_pud_pfn(*pud); |
| 1892 | pfn_valid = true; |
| 1893 | } else if (pmd) { /* THP, HugeTLB */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1894 | *pmd = pmd_mkyoung(*pmd); |
| 1895 | pfn = pmd_pfn(*pmd); |
| 1896 | pfn_valid = true; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1897 | } else { |
| 1898 | *pte = pte_mkyoung(*pte); /* Just a page... */ |
| 1899 | pfn = pte_pfn(*pte); |
| 1900 | pfn_valid = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1901 | } |
| 1902 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1903 | out: |
| 1904 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 1905 | if (pfn_valid) |
| 1906 | kvm_set_pfn_accessed(pfn); |
| 1907 | } |
| 1908 | |
| 1909 | /** |
| 1910 | * kvm_handle_guest_abort - handles all 2nd stage aborts |
| 1911 | * @vcpu: the VCPU pointer |
| 1912 | * @run: the kvm_run structure |
| 1913 | * |
| 1914 | * Any abort that gets to the host is almost guaranteed to be caused by a |
| 1915 | * missing second stage translation table entry, which can mean that either the |
| 1916 | * guest simply needs more memory and we must allocate an appropriate page or it |
| 1917 | * can mean that the guest tried to access I/O memory, which is emulated by user |
| 1918 | * space. The distinction is based on the IPA causing the fault and whether this |
| 1919 | * memory region has been registered as standard RAM by user space. |
| 1920 | */ |
| 1921 | int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 1922 | { |
| 1923 | unsigned long fault_status; |
| 1924 | phys_addr_t fault_ipa; |
| 1925 | struct kvm_memory_slot *memslot; |
| 1926 | unsigned long hva; |
| 1927 | bool is_iabt, write_fault, writable; |
| 1928 | gfn_t gfn; |
| 1929 | int ret, idx; |
| 1930 | |
| 1931 | fault_status = kvm_vcpu_trap_get_fault_type(vcpu); |
| 1932 | |
| 1933 | fault_ipa = kvm_vcpu_get_fault_ipa(vcpu); |
| 1934 | is_iabt = kvm_vcpu_trap_is_iabt(vcpu); |
| 1935 | |
| 1936 | /* Synchronous External Abort? */ |
| 1937 | if (kvm_vcpu_dabt_isextabt(vcpu)) { |
| 1938 | /* |
| 1939 | * For RAS the host kernel may handle this abort. |
| 1940 | * There is no need to pass the error into the guest. |
| 1941 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1942 | if (!kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1943 | return 1; |
| 1944 | |
| 1945 | if (unlikely(!is_iabt)) { |
| 1946 | kvm_inject_vabt(vcpu); |
| 1947 | return 1; |
| 1948 | } |
| 1949 | } |
| 1950 | |
| 1951 | trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu), |
| 1952 | kvm_vcpu_get_hfar(vcpu), fault_ipa); |
| 1953 | |
| 1954 | /* Check the stage-2 fault is trans. fault or write fault */ |
| 1955 | if (fault_status != FSC_FAULT && fault_status != FSC_PERM && |
| 1956 | fault_status != FSC_ACCESS) { |
| 1957 | kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n", |
| 1958 | kvm_vcpu_trap_get_class(vcpu), |
| 1959 | (unsigned long)kvm_vcpu_trap_get_fault(vcpu), |
| 1960 | (unsigned long)kvm_vcpu_get_hsr(vcpu)); |
| 1961 | return -EFAULT; |
| 1962 | } |
| 1963 | |
| 1964 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 1965 | |
| 1966 | gfn = fault_ipa >> PAGE_SHIFT; |
| 1967 | memslot = gfn_to_memslot(vcpu->kvm, gfn); |
| 1968 | hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable); |
| 1969 | write_fault = kvm_is_write_fault(vcpu); |
| 1970 | if (kvm_is_error_hva(hva) || (write_fault && !writable)) { |
| 1971 | if (is_iabt) { |
| 1972 | /* Prefetch Abort on I/O address */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1973 | ret = -ENOEXEC; |
| 1974 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1975 | } |
| 1976 | |
| 1977 | /* |
| 1978 | * Check for a cache maintenance operation. Since we |
| 1979 | * ended-up here, we know it is outside of any memory |
| 1980 | * slot. But we can't find out if that is for a device, |
| 1981 | * or if the guest is just being stupid. The only thing |
| 1982 | * we know for sure is that this range cannot be cached. |
| 1983 | * |
| 1984 | * So let's assume that the guest is just being |
| 1985 | * cautious, and skip the instruction. |
| 1986 | */ |
| 1987 | if (kvm_vcpu_dabt_is_cm(vcpu)) { |
| 1988 | kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu)); |
| 1989 | ret = 1; |
| 1990 | goto out_unlock; |
| 1991 | } |
| 1992 | |
| 1993 | /* |
| 1994 | * The IPA is reported as [MAX:12], so we need to |
| 1995 | * complement it with the bottom 12 bits from the |
| 1996 | * faulting VA. This is always 12 bits, irrespective |
| 1997 | * of the page size. |
| 1998 | */ |
| 1999 | fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1); |
| 2000 | ret = io_mem_abort(vcpu, run, fault_ipa); |
| 2001 | goto out_unlock; |
| 2002 | } |
| 2003 | |
| 2004 | /* Userspace should not be able to register out-of-bounds IPAs */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2005 | VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2006 | |
| 2007 | if (fault_status == FSC_ACCESS) { |
| 2008 | handle_access_fault(vcpu, fault_ipa); |
| 2009 | ret = 1; |
| 2010 | goto out_unlock; |
| 2011 | } |
| 2012 | |
| 2013 | ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status); |
| 2014 | if (ret == 0) |
| 2015 | ret = 1; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2016 | out: |
| 2017 | if (ret == -ENOEXEC) { |
| 2018 | kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu)); |
| 2019 | ret = 1; |
| 2020 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2021 | out_unlock: |
| 2022 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| 2023 | return ret; |
| 2024 | } |
| 2025 | |
| 2026 | static int handle_hva_to_gpa(struct kvm *kvm, |
| 2027 | unsigned long start, |
| 2028 | unsigned long end, |
| 2029 | int (*handler)(struct kvm *kvm, |
| 2030 | gpa_t gpa, u64 size, |
| 2031 | void *data), |
| 2032 | void *data) |
| 2033 | { |
| 2034 | struct kvm_memslots *slots; |
| 2035 | struct kvm_memory_slot *memslot; |
| 2036 | int ret = 0; |
| 2037 | |
| 2038 | slots = kvm_memslots(kvm); |
| 2039 | |
| 2040 | /* we only care about the pages that the guest sees */ |
| 2041 | kvm_for_each_memslot(memslot, slots) { |
| 2042 | unsigned long hva_start, hva_end; |
| 2043 | gfn_t gpa; |
| 2044 | |
| 2045 | hva_start = max(start, memslot->userspace_addr); |
| 2046 | hva_end = min(end, memslot->userspace_addr + |
| 2047 | (memslot->npages << PAGE_SHIFT)); |
| 2048 | if (hva_start >= hva_end) |
| 2049 | continue; |
| 2050 | |
| 2051 | gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT; |
| 2052 | ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data); |
| 2053 | } |
| 2054 | |
| 2055 | return ret; |
| 2056 | } |
| 2057 | |
| 2058 | static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) |
| 2059 | { |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2060 | unsigned flags = *(unsigned *)data; |
| 2061 | bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE; |
| 2062 | |
| 2063 | __unmap_stage2_range(kvm, gpa, size, may_block); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2064 | return 0; |
| 2065 | } |
| 2066 | |
| 2067 | int kvm_unmap_hva_range(struct kvm *kvm, |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2068 | unsigned long start, unsigned long end, unsigned flags) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2069 | { |
| 2070 | if (!kvm->arch.pgd) |
| 2071 | return 0; |
| 2072 | |
| 2073 | trace_kvm_unmap_hva_range(start, end); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2074 | handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2075 | return 0; |
| 2076 | } |
| 2077 | |
| 2078 | static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) |
| 2079 | { |
| 2080 | pte_t *pte = (pte_t *)data; |
| 2081 | |
| 2082 | WARN_ON(size != PAGE_SIZE); |
| 2083 | /* |
| 2084 | * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE |
| 2085 | * flag clear because MMU notifiers will have unmapped a huge PMD before |
| 2086 | * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and |
| 2087 | * therefore stage2_set_pte() never needs to clear out a huge PMD |
| 2088 | * through this calling path. |
| 2089 | */ |
| 2090 | stage2_set_pte(kvm, NULL, gpa, pte, 0); |
| 2091 | return 0; |
| 2092 | } |
| 2093 | |
| 2094 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2095 | int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2096 | { |
| 2097 | unsigned long end = hva + PAGE_SIZE; |
| 2098 | kvm_pfn_t pfn = pte_pfn(pte); |
| 2099 | pte_t stage2_pte; |
| 2100 | |
| 2101 | if (!kvm->arch.pgd) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2102 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2103 | |
| 2104 | trace_kvm_set_spte_hva(hva); |
| 2105 | |
| 2106 | /* |
| 2107 | * We've moved a page around, probably through CoW, so let's treat it |
| 2108 | * just like a translation fault and clean the cache to the PoC. |
| 2109 | */ |
| 2110 | clean_dcache_guest_page(pfn, PAGE_SIZE); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2111 | stage2_pte = kvm_pfn_pte(pfn, PAGE_S2); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2112 | handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2113 | |
| 2114 | return 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2115 | } |
| 2116 | |
| 2117 | static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) |
| 2118 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2119 | pud_t *pud; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2120 | pmd_t *pmd; |
| 2121 | pte_t *pte; |
| 2122 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2123 | WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); |
| 2124 | if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2125 | return 0; |
| 2126 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2127 | if (pud) |
| 2128 | return stage2_pudp_test_and_clear_young(pud); |
| 2129 | else if (pmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2130 | return stage2_pmdp_test_and_clear_young(pmd); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2131 | else |
| 2132 | return stage2_ptep_test_and_clear_young(pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2133 | } |
| 2134 | |
| 2135 | static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data) |
| 2136 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2137 | pud_t *pud; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2138 | pmd_t *pmd; |
| 2139 | pte_t *pte; |
| 2140 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2141 | WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE); |
| 2142 | if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2143 | return 0; |
| 2144 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2145 | if (pud) |
| 2146 | return kvm_s2pud_young(*pud); |
| 2147 | else if (pmd) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2148 | return pmd_young(*pmd); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2149 | else |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2150 | return pte_young(*pte); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2151 | } |
| 2152 | |
| 2153 | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) |
| 2154 | { |
| 2155 | if (!kvm->arch.pgd) |
| 2156 | return 0; |
| 2157 | trace_kvm_age_hva(start, end); |
| 2158 | return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); |
| 2159 | } |
| 2160 | |
| 2161 | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
| 2162 | { |
| 2163 | if (!kvm->arch.pgd) |
| 2164 | return 0; |
| 2165 | trace_kvm_test_age_hva(hva); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2166 | return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE, |
| 2167 | kvm_test_age_hva_handler, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2168 | } |
| 2169 | |
| 2170 | void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| 2171 | { |
| 2172 | mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); |
| 2173 | } |
| 2174 | |
| 2175 | phys_addr_t kvm_mmu_get_httbr(void) |
| 2176 | { |
| 2177 | if (__kvm_cpu_uses_extended_idmap()) |
| 2178 | return virt_to_phys(merged_hyp_pgd); |
| 2179 | else |
| 2180 | return virt_to_phys(hyp_pgd); |
| 2181 | } |
| 2182 | |
| 2183 | phys_addr_t kvm_get_idmap_vector(void) |
| 2184 | { |
| 2185 | return hyp_idmap_vector; |
| 2186 | } |
| 2187 | |
| 2188 | static int kvm_map_idmap_text(pgd_t *pgd) |
| 2189 | { |
| 2190 | int err; |
| 2191 | |
| 2192 | /* Create the idmap in the boot page tables */ |
| 2193 | err = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(), |
| 2194 | hyp_idmap_start, hyp_idmap_end, |
| 2195 | __phys_to_pfn(hyp_idmap_start), |
| 2196 | PAGE_HYP_EXEC); |
| 2197 | if (err) |
| 2198 | kvm_err("Failed to idmap %lx-%lx\n", |
| 2199 | hyp_idmap_start, hyp_idmap_end); |
| 2200 | |
| 2201 | return err; |
| 2202 | } |
| 2203 | |
| 2204 | int kvm_mmu_init(void) |
| 2205 | { |
| 2206 | int err; |
| 2207 | |
| 2208 | hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start); |
| 2209 | hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE); |
| 2210 | hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end); |
| 2211 | hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE); |
| 2212 | hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init); |
| 2213 | |
| 2214 | /* |
| 2215 | * We rely on the linker script to ensure at build time that the HYP |
| 2216 | * init code does not cross a page boundary. |
| 2217 | */ |
| 2218 | BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK); |
| 2219 | |
| 2220 | kvm_debug("IDMAP page: %lx\n", hyp_idmap_start); |
| 2221 | kvm_debug("HYP VA range: %lx:%lx\n", |
| 2222 | kern_hyp_va(PAGE_OFFSET), |
| 2223 | kern_hyp_va((unsigned long)high_memory - 1)); |
| 2224 | |
| 2225 | if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) && |
| 2226 | hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) && |
| 2227 | hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) { |
| 2228 | /* |
| 2229 | * The idmap page is intersecting with the VA space, |
| 2230 | * it is not safe to continue further. |
| 2231 | */ |
| 2232 | kvm_err("IDMAP intersecting with HYP VA, unable to continue\n"); |
| 2233 | err = -EINVAL; |
| 2234 | goto out; |
| 2235 | } |
| 2236 | |
| 2237 | hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order); |
| 2238 | if (!hyp_pgd) { |
| 2239 | kvm_err("Hyp mode PGD not allocated\n"); |
| 2240 | err = -ENOMEM; |
| 2241 | goto out; |
| 2242 | } |
| 2243 | |
| 2244 | if (__kvm_cpu_uses_extended_idmap()) { |
| 2245 | boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| 2246 | hyp_pgd_order); |
| 2247 | if (!boot_hyp_pgd) { |
| 2248 | kvm_err("Hyp boot PGD not allocated\n"); |
| 2249 | err = -ENOMEM; |
| 2250 | goto out; |
| 2251 | } |
| 2252 | |
| 2253 | err = kvm_map_idmap_text(boot_hyp_pgd); |
| 2254 | if (err) |
| 2255 | goto out; |
| 2256 | |
| 2257 | merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); |
| 2258 | if (!merged_hyp_pgd) { |
| 2259 | kvm_err("Failed to allocate extra HYP pgd\n"); |
| 2260 | goto out; |
| 2261 | } |
| 2262 | __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd, |
| 2263 | hyp_idmap_start); |
| 2264 | } else { |
| 2265 | err = kvm_map_idmap_text(hyp_pgd); |
| 2266 | if (err) |
| 2267 | goto out; |
| 2268 | } |
| 2269 | |
| 2270 | io_map_base = hyp_idmap_start; |
| 2271 | return 0; |
| 2272 | out: |
| 2273 | free_hyp_pgds(); |
| 2274 | return err; |
| 2275 | } |
| 2276 | |
| 2277 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
| 2278 | const struct kvm_userspace_memory_region *mem, |
| 2279 | const struct kvm_memory_slot *old, |
| 2280 | const struct kvm_memory_slot *new, |
| 2281 | enum kvm_mr_change change) |
| 2282 | { |
| 2283 | /* |
| 2284 | * At this point memslot has been committed and there is an |
| 2285 | * allocated dirty_bitmap[], dirty pages will be be tracked while the |
| 2286 | * memory slot is write protected. |
| 2287 | */ |
| 2288 | if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) |
| 2289 | kvm_mmu_wp_memory_region(kvm, mem->slot); |
| 2290 | } |
| 2291 | |
| 2292 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
| 2293 | struct kvm_memory_slot *memslot, |
| 2294 | const struct kvm_userspace_memory_region *mem, |
| 2295 | enum kvm_mr_change change) |
| 2296 | { |
| 2297 | hva_t hva = mem->userspace_addr; |
| 2298 | hva_t reg_end = hva + mem->memory_size; |
| 2299 | bool writable = !(mem->flags & KVM_MEM_READONLY); |
| 2300 | int ret = 0; |
| 2301 | |
| 2302 | if (change != KVM_MR_CREATE && change != KVM_MR_MOVE && |
| 2303 | change != KVM_MR_FLAGS_ONLY) |
| 2304 | return 0; |
| 2305 | |
| 2306 | /* |
| 2307 | * Prevent userspace from creating a memory region outside of the IPA |
| 2308 | * space addressable by the KVM guest IPA space. |
| 2309 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2310 | if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2311 | return -EFAULT; |
| 2312 | |
| 2313 | down_read(¤t->mm->mmap_sem); |
| 2314 | /* |
| 2315 | * A memory region could potentially cover multiple VMAs, and any holes |
| 2316 | * between them, so iterate over all of them to find out if we can map |
| 2317 | * any of them right now. |
| 2318 | * |
| 2319 | * +--------------------------------------------+ |
| 2320 | * +---------------+----------------+ +----------------+ |
| 2321 | * | : VMA 1 | VMA 2 | | VMA 3 : | |
| 2322 | * +---------------+----------------+ +----------------+ |
| 2323 | * | memory region | |
| 2324 | * +--------------------------------------------+ |
| 2325 | */ |
| 2326 | do { |
| 2327 | struct vm_area_struct *vma = find_vma(current->mm, hva); |
| 2328 | hva_t vm_start, vm_end; |
| 2329 | |
| 2330 | if (!vma || vma->vm_start >= reg_end) |
| 2331 | break; |
| 2332 | |
| 2333 | /* |
| 2334 | * Mapping a read-only VMA is only allowed if the |
| 2335 | * memory region is configured as read-only. |
| 2336 | */ |
| 2337 | if (writable && !(vma->vm_flags & VM_WRITE)) { |
| 2338 | ret = -EPERM; |
| 2339 | break; |
| 2340 | } |
| 2341 | |
| 2342 | /* |
| 2343 | * Take the intersection of this VMA with the memory region |
| 2344 | */ |
| 2345 | vm_start = max(hva, vma->vm_start); |
| 2346 | vm_end = min(reg_end, vma->vm_end); |
| 2347 | |
| 2348 | if (vma->vm_flags & VM_PFNMAP) { |
| 2349 | gpa_t gpa = mem->guest_phys_addr + |
| 2350 | (vm_start - mem->userspace_addr); |
| 2351 | phys_addr_t pa; |
| 2352 | |
| 2353 | pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; |
| 2354 | pa += vm_start - vma->vm_start; |
| 2355 | |
| 2356 | /* IO region dirty page logging not allowed */ |
| 2357 | if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) { |
| 2358 | ret = -EINVAL; |
| 2359 | goto out; |
| 2360 | } |
| 2361 | |
| 2362 | ret = kvm_phys_addr_ioremap(kvm, gpa, pa, |
| 2363 | vm_end - vm_start, |
| 2364 | writable); |
| 2365 | if (ret) |
| 2366 | break; |
| 2367 | } |
| 2368 | hva = vm_end; |
| 2369 | } while (hva < reg_end); |
| 2370 | |
| 2371 | if (change == KVM_MR_FLAGS_ONLY) |
| 2372 | goto out; |
| 2373 | |
| 2374 | spin_lock(&kvm->mmu_lock); |
| 2375 | if (ret) |
| 2376 | unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size); |
| 2377 | else |
| 2378 | stage2_flush_memslot(kvm, memslot); |
| 2379 | spin_unlock(&kvm->mmu_lock); |
| 2380 | out: |
| 2381 | up_read(¤t->mm->mmap_sem); |
| 2382 | return ret; |
| 2383 | } |
| 2384 | |
| 2385 | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, |
| 2386 | struct kvm_memory_slot *dont) |
| 2387 | { |
| 2388 | } |
| 2389 | |
| 2390 | int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 2391 | unsigned long npages) |
| 2392 | { |
| 2393 | return 0; |
| 2394 | } |
| 2395 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2396 | void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2397 | { |
| 2398 | } |
| 2399 | |
| 2400 | void kvm_arch_flush_shadow_all(struct kvm *kvm) |
| 2401 | { |
| 2402 | kvm_free_stage2_pgd(kvm); |
| 2403 | } |
| 2404 | |
| 2405 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, |
| 2406 | struct kvm_memory_slot *slot) |
| 2407 | { |
| 2408 | gpa_t gpa = slot->base_gfn << PAGE_SHIFT; |
| 2409 | phys_addr_t size = slot->npages << PAGE_SHIFT; |
| 2410 | |
| 2411 | spin_lock(&kvm->mmu_lock); |
| 2412 | unmap_stage2_range(kvm, gpa, size); |
| 2413 | spin_unlock(&kvm->mmu_lock); |
| 2414 | } |
| 2415 | |
| 2416 | /* |
| 2417 | * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). |
| 2418 | * |
| 2419 | * Main problems: |
| 2420 | * - S/W ops are local to a CPU (not broadcast) |
| 2421 | * - We have line migration behind our back (speculation) |
| 2422 | * - System caches don't support S/W at all (damn!) |
| 2423 | * |
| 2424 | * In the face of the above, the best we can do is to try and convert |
| 2425 | * S/W ops to VA ops. Because the guest is not allowed to infer the |
| 2426 | * S/W to PA mapping, it can only use S/W to nuke the whole cache, |
| 2427 | * which is a rather good thing for us. |
| 2428 | * |
| 2429 | * Also, it is only used when turning caches on/off ("The expected |
| 2430 | * usage of the cache maintenance instructions that operate by set/way |
| 2431 | * is associated with the cache maintenance instructions associated |
| 2432 | * with the powerdown and powerup of caches, if this is required by |
| 2433 | * the implementation."). |
| 2434 | * |
| 2435 | * We use the following policy: |
| 2436 | * |
| 2437 | * - If we trap a S/W operation, we enable VM trapping to detect |
| 2438 | * caches being turned on/off, and do a full clean. |
| 2439 | * |
| 2440 | * - We flush the caches on both caches being turned on and off. |
| 2441 | * |
| 2442 | * - Once the caches are enabled, we stop trapping VM ops. |
| 2443 | */ |
| 2444 | void kvm_set_way_flush(struct kvm_vcpu *vcpu) |
| 2445 | { |
| 2446 | unsigned long hcr = *vcpu_hcr(vcpu); |
| 2447 | |
| 2448 | /* |
| 2449 | * If this is the first time we do a S/W operation |
| 2450 | * (i.e. HCR_TVM not set) flush the whole memory, and set the |
| 2451 | * VM trapping. |
| 2452 | * |
| 2453 | * Otherwise, rely on the VM trapping to wait for the MMU + |
| 2454 | * Caches to be turned off. At that point, we'll be able to |
| 2455 | * clean the caches again. |
| 2456 | */ |
| 2457 | if (!(hcr & HCR_TVM)) { |
| 2458 | trace_kvm_set_way_flush(*vcpu_pc(vcpu), |
| 2459 | vcpu_has_cache_enabled(vcpu)); |
| 2460 | stage2_flush_vm(vcpu->kvm); |
| 2461 | *vcpu_hcr(vcpu) = hcr | HCR_TVM; |
| 2462 | } |
| 2463 | } |
| 2464 | |
| 2465 | void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled) |
| 2466 | { |
| 2467 | bool now_enabled = vcpu_has_cache_enabled(vcpu); |
| 2468 | |
| 2469 | /* |
| 2470 | * If switching the MMU+caches on, need to invalidate the caches. |
| 2471 | * If switching it off, need to clean the caches. |
| 2472 | * Clean + invalidate does the trick always. |
| 2473 | */ |
| 2474 | if (now_enabled != was_enabled) |
| 2475 | stage2_flush_vm(vcpu->kvm); |
| 2476 | |
| 2477 | /* Caches are now on, stop trapping VM ops (until a S/W op) */ |
| 2478 | if (now_enabled) |
| 2479 | *vcpu_hcr(vcpu) &= ~HCR_TVM; |
| 2480 | |
| 2481 | trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled); |
| 2482 | } |