blob: 3a1d899019af00bb2b99a15b43f2f4f5a5b11661 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_MM_H
3#define _LINUX_SCHED_MM_H
4
5#include <linux/kernel.h>
6#include <linux/atomic.h>
7#include <linux/sched.h>
8#include <linux/mm_types.h>
9#include <linux/gfp.h>
10#include <linux/sync_core.h>
11
12/*
13 * Routines for handling mm_structs
14 */
15extern struct mm_struct *mm_alloc(void);
16
17/**
18 * mmgrab() - Pin a &struct mm_struct.
19 * @mm: The &struct mm_struct to pin.
20 *
21 * Make sure that @mm will not get freed even after the owning task
22 * exits. This doesn't guarantee that the associated address space
23 * will still exist later on and mmget_not_zero() has to be used before
24 * accessing it.
25 *
26 * This is a preferred way to to pin @mm for a longer/unbounded amount
27 * of time.
28 *
29 * Use mmdrop() to release the reference acquired by mmgrab().
30 *
31 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32 * of &mm_struct.mm_count vs &mm_struct.mm_users.
33 */
34static inline void mmgrab(struct mm_struct *mm)
35{
36 atomic_inc(&mm->mm_count);
37}
38
39extern void __mmdrop(struct mm_struct *mm);
40
41static inline void mmdrop(struct mm_struct *mm)
42{
43 /*
44 * The implicit full barrier implied by atomic_dec_and_test() is
45 * required by the membarrier system call before returning to
46 * user-space, after storing to rq->curr.
47 */
48 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49 __mmdrop(mm);
50}
51
Olivier Deprez0e641232021-09-23 10:07:05 +020052void mmdrop(struct mm_struct *mm);
53
David Brazdil0f672f62019-12-10 10:32:29 +000054/*
55 * This has to be called after a get_task_mm()/mmget_not_zero()
56 * followed by taking the mmap_sem for writing before modifying the
57 * vmas or anything the coredump pretends not to change from under it.
58 *
59 * It also has to be called when mmgrab() is used in the context of
60 * the process, but then the mm_count refcount is transferred outside
61 * the context of the process to run down_write() on that pinned mm.
62 *
63 * NOTE: find_extend_vma() called from GUP context is the only place
64 * that can modify the "mm" (notably the vm_start/end) under mmap_sem
65 * for reading and outside the context of the process, so it is also
66 * the only case that holds the mmap_sem for reading that must call
67 * this function. Generally if the mmap_sem is hold for reading
68 * there's no need of this check after get_task_mm()/mmget_not_zero().
69 *
70 * This function can be obsoleted and the check can be removed, after
71 * the coredump code will hold the mmap_sem for writing before
72 * invoking the ->core_dump methods.
73 */
74static inline bool mmget_still_valid(struct mm_struct *mm)
75{
76 return likely(!mm->core_state);
77}
78
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000079/**
80 * mmget() - Pin the address space associated with a &struct mm_struct.
81 * @mm: The address space to pin.
82 *
83 * Make sure that the address space of the given &struct mm_struct doesn't
84 * go away. This does not protect against parts of the address space being
85 * modified or freed, however.
86 *
87 * Never use this function to pin this address space for an
88 * unbounded/indefinite amount of time.
89 *
90 * Use mmput() to release the reference acquired by mmget().
91 *
92 * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
93 * of &mm_struct.mm_count vs &mm_struct.mm_users.
94 */
95static inline void mmget(struct mm_struct *mm)
96{
97 atomic_inc(&mm->mm_users);
98}
99
100static inline bool mmget_not_zero(struct mm_struct *mm)
101{
102 return atomic_inc_not_zero(&mm->mm_users);
103}
104
105/* mmput gets rid of the mappings and all user-space */
106extern void mmput(struct mm_struct *);
107#ifdef CONFIG_MMU
108/* same as above but performs the slow path from the async context. Can
109 * be called from the atomic context as well
110 */
111void mmput_async(struct mm_struct *);
112#endif
113
114/* Grab a reference to a task's mm, if it is not already going away */
115extern struct mm_struct *get_task_mm(struct task_struct *task);
116/*
117 * Grab a reference to a task's mm, if it is not already going away
118 * and ptrace_may_access with the mode parameter passed to it
119 * succeeds.
120 */
121extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
David Brazdil0f672f62019-12-10 10:32:29 +0000122/* Remove the current tasks stale references to the old mm_struct on exit() */
123extern void exit_mm_release(struct task_struct *, struct mm_struct *);
124/* Remove the current tasks stale references to the old mm_struct on exec() */
125extern void exec_mm_release(struct task_struct *, struct mm_struct *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000126
127#ifdef CONFIG_MEMCG
128extern void mm_update_next_owner(struct mm_struct *mm);
129#else
130static inline void mm_update_next_owner(struct mm_struct *mm)
131{
132}
133#endif /* CONFIG_MEMCG */
134
135#ifdef CONFIG_MMU
136extern void arch_pick_mmap_layout(struct mm_struct *mm,
137 struct rlimit *rlim_stack);
138extern unsigned long
139arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
140 unsigned long, unsigned long);
141extern unsigned long
142arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
143 unsigned long len, unsigned long pgoff,
144 unsigned long flags);
145#else
146static inline void arch_pick_mmap_layout(struct mm_struct *mm,
147 struct rlimit *rlim_stack) {}
148#endif
149
150static inline bool in_vfork(struct task_struct *tsk)
151{
152 bool ret;
153
154 /*
155 * need RCU to access ->real_parent if CLONE_VM was used along with
156 * CLONE_PARENT.
157 *
158 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
159 * imply CLONE_VM
160 *
161 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
162 * ->real_parent is not necessarily the task doing vfork(), so in
163 * theory we can't rely on task_lock() if we want to dereference it.
164 *
165 * And in this case we can't trust the real_parent->mm == tsk->mm
166 * check, it can be false negative. But we do not care, if init or
167 * another oom-unkillable task does this it should blame itself.
168 */
169 rcu_read_lock();
Olivier Deprez0e641232021-09-23 10:07:05 +0200170 ret = tsk->vfork_done &&
171 rcu_dereference(tsk->real_parent)->mm == tsk->mm;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000172 rcu_read_unlock();
173
174 return ret;
175}
176
177/*
178 * Applies per-task gfp context to the given allocation flags.
179 * PF_MEMALLOC_NOIO implies GFP_NOIO
180 * PF_MEMALLOC_NOFS implies GFP_NOFS
David Brazdil0f672f62019-12-10 10:32:29 +0000181 * PF_MEMALLOC_NOCMA implies no allocation from CMA region.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000182 */
183static inline gfp_t current_gfp_context(gfp_t flags)
184{
David Brazdil0f672f62019-12-10 10:32:29 +0000185 if (unlikely(current->flags &
186 (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
187 /*
188 * NOIO implies both NOIO and NOFS and it is a weaker context
189 * so always make sure it makes precedence
190 */
191 if (current->flags & PF_MEMALLOC_NOIO)
192 flags &= ~(__GFP_IO | __GFP_FS);
193 else if (current->flags & PF_MEMALLOC_NOFS)
194 flags &= ~__GFP_FS;
195#ifdef CONFIG_CMA
196 if (current->flags & PF_MEMALLOC_NOCMA)
197 flags &= ~__GFP_MOVABLE;
198#endif
199 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000200 return flags;
201}
202
203#ifdef CONFIG_LOCKDEP
204extern void __fs_reclaim_acquire(void);
205extern void __fs_reclaim_release(void);
206extern void fs_reclaim_acquire(gfp_t gfp_mask);
207extern void fs_reclaim_release(gfp_t gfp_mask);
208#else
209static inline void __fs_reclaim_acquire(void) { }
210static inline void __fs_reclaim_release(void) { }
211static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
212static inline void fs_reclaim_release(gfp_t gfp_mask) { }
213#endif
214
215/**
216 * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
217 *
218 * This functions marks the beginning of the GFP_NOIO allocation scope.
219 * All further allocations will implicitly drop __GFP_IO flag and so
220 * they are safe for the IO critical section from the allocation recursion
221 * point of view. Use memalloc_noio_restore to end the scope with flags
222 * returned by this function.
223 *
224 * This function is safe to be used from any context.
225 */
226static inline unsigned int memalloc_noio_save(void)
227{
228 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
229 current->flags |= PF_MEMALLOC_NOIO;
230 return flags;
231}
232
233/**
234 * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
235 * @flags: Flags to restore.
236 *
237 * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
238 * Always make sure that that the given flags is the return value from the
239 * pairing memalloc_noio_save call.
240 */
241static inline void memalloc_noio_restore(unsigned int flags)
242{
243 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
244}
245
246/**
247 * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
248 *
249 * This functions marks the beginning of the GFP_NOFS allocation scope.
250 * All further allocations will implicitly drop __GFP_FS flag and so
251 * they are safe for the FS critical section from the allocation recursion
252 * point of view. Use memalloc_nofs_restore to end the scope with flags
253 * returned by this function.
254 *
255 * This function is safe to be used from any context.
256 */
257static inline unsigned int memalloc_nofs_save(void)
258{
259 unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
260 current->flags |= PF_MEMALLOC_NOFS;
261 return flags;
262}
263
264/**
265 * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
266 * @flags: Flags to restore.
267 *
268 * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
269 * Always make sure that that the given flags is the return value from the
270 * pairing memalloc_nofs_save call.
271 */
272static inline void memalloc_nofs_restore(unsigned int flags)
273{
274 current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
275}
276
277static inline unsigned int memalloc_noreclaim_save(void)
278{
279 unsigned int flags = current->flags & PF_MEMALLOC;
280 current->flags |= PF_MEMALLOC;
281 return flags;
282}
283
284static inline void memalloc_noreclaim_restore(unsigned int flags)
285{
286 current->flags = (current->flags & ~PF_MEMALLOC) | flags;
287}
288
David Brazdil0f672f62019-12-10 10:32:29 +0000289#ifdef CONFIG_CMA
290static inline unsigned int memalloc_nocma_save(void)
291{
292 unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
293
294 current->flags |= PF_MEMALLOC_NOCMA;
295 return flags;
296}
297
298static inline void memalloc_nocma_restore(unsigned int flags)
299{
300 current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
301}
302#else
303static inline unsigned int memalloc_nocma_save(void)
304{
305 return 0;
306}
307
308static inline void memalloc_nocma_restore(unsigned int flags)
309{
310}
311#endif
312
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000313#ifdef CONFIG_MEMCG
314/**
315 * memalloc_use_memcg - Starts the remote memcg charging scope.
316 * @memcg: memcg to charge.
317 *
318 * This function marks the beginning of the remote memcg charging scope. All the
319 * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
320 * given memcg.
321 *
322 * NOTE: This function is not nesting safe.
323 */
324static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
325{
326 WARN_ON_ONCE(current->active_memcg);
327 current->active_memcg = memcg;
328}
329
330/**
331 * memalloc_unuse_memcg - Ends the remote memcg charging scope.
332 *
333 * This function marks the end of the remote memcg charging scope started by
334 * memalloc_use_memcg().
335 */
336static inline void memalloc_unuse_memcg(void)
337{
338 current->active_memcg = NULL;
339}
340#else
341static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
342{
343}
344
345static inline void memalloc_unuse_memcg(void)
346{
347}
348#endif
349
350#ifdef CONFIG_MEMBARRIER
351enum {
352 MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
353 MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
354 MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
355 MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
356 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
357 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
358};
359
360enum {
361 MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
362};
363
364#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
365#include <asm/membarrier.h>
366#endif
367
368static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
369{
David Brazdil0f672f62019-12-10 10:32:29 +0000370 if (current->mm != mm)
371 return;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000372 if (likely(!(atomic_read(&mm->membarrier_state) &
373 MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
374 return;
375 sync_core_before_usermode();
376}
377
David Brazdil0f672f62019-12-10 10:32:29 +0000378extern void membarrier_exec_mmap(struct mm_struct *mm);
379
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000380#else
381#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
382static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
383 struct mm_struct *next,
384 struct task_struct *tsk)
385{
386}
387#endif
David Brazdil0f672f62019-12-10 10:32:29 +0000388static inline void membarrier_exec_mmap(struct mm_struct *mm)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000389{
390}
391static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
392{
393}
394#endif
395
396#endif /* _LINUX_SCHED_MM_H */