blob: a90aba3d6afb4b6b2facfef0d29705af365207ae [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/bitops.h>
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
16#include <linux/seqlock.h>
17#include <linux/nodemask.h>
18#include <linux/pageblock-flags.h>
19#include <linux/page-flags-layout.h>
20#include <linux/atomic.h>
David Brazdil0f672f62019-12-10 10:32:29 +000021#include <linux/mm_types.h>
22#include <linux/page-flags.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000023#include <asm/page.h>
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
41enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
63#ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65#endif
66 MIGRATE_TYPES
67};
68
69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
David Brazdil0f672f62019-12-10 10:32:29 +000070extern const char * const migratetype_names[MIGRATE_TYPES];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000071
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75#else
76# define is_migrate_cma(migratetype) false
77# define is_migrate_cma_page(_page) false
78#endif
79
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89extern int page_group_by_mobility_disabled;
90
91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
98struct free_area {
99 struct list_head free_list[MIGRATE_TYPES];
100 unsigned long nr_free;
101};
102
David Brazdil0f672f62019-12-10 10:32:29 +0000103/* Used for pages not on another list */
104static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106{
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109}
110
111/* Used for pages not on another list */
112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114{
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117}
118
119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120/* Used to preserve page allocation order entropy */
121void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123#else
124static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126{
127 add_to_free_area(page, area, migratetype);
128}
129#endif
130
131/* Used for pages which are on another list */
132static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134{
135 list_move(&page->lru, &area->free_list[migratetype]);
136}
137
138static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140{
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143}
144
145static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147{
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152}
153
154static inline bool free_area_empty(struct free_area *area, int migratetype)
155{
156 return list_empty(&area->free_list[migratetype]);
157}
158
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000159struct pglist_data;
160
161/*
162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167#if defined(CONFIG_SMP)
168struct zone_padding {
169 char x[0];
170} ____cacheline_internodealigned_in_smp;
171#define ZONE_PADDING(name) struct zone_padding name;
172#else
173#define ZONE_PADDING(name)
174#endif
175
176#ifdef CONFIG_NUMA
177enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185};
186#else
187#define NR_VM_NUMA_STAT_ITEMS 0
188#endif
189
190enum zone_stat_item {
191 /* First 128 byte cacheline (assuming 64 bit words) */
192 NR_FREE_PAGES,
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
201 NR_PAGETABLE, /* used for pagetables */
202 NR_KERNEL_STACK_KB, /* measured in KiB */
203 /* Second 128 byte cacheline */
204 NR_BOUNCE,
205#if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
207#endif
208 NR_FREE_CMA_PAGES,
209 NR_VM_ZONE_STAT_ITEMS };
210
211enum node_stat_item {
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
Olivier Deprez0e641232021-09-23 10:07:05 +0200218 NR_SLAB_RECLAIMABLE,
219 NR_SLAB_UNRECLAIMABLE,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000220 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
221 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
David Brazdil0f672f62019-12-10 10:32:29 +0000222 WORKINGSET_NODES,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000223 WORKINGSET_REFAULT,
224 WORKINGSET_ACTIVATE,
David Brazdil0f672f62019-12-10 10:32:29 +0000225 WORKINGSET_RESTORE,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000226 WORKINGSET_NODERECLAIM,
227 NR_ANON_MAPPED, /* Mapped anonymous pages */
228 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
229 only modified from process context */
230 NR_FILE_PAGES,
231 NR_FILE_DIRTY,
232 NR_WRITEBACK,
233 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
234 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
235 NR_SHMEM_THPS,
236 NR_SHMEM_PMDMAPPED,
David Brazdil0f672f62019-12-10 10:32:29 +0000237 NR_FILE_THPS,
238 NR_FILE_PMDMAPPED,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000239 NR_ANON_THPS,
240 NR_UNSTABLE_NFS, /* NFS unstable pages */
241 NR_VMSCAN_WRITE,
242 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
243 NR_DIRTIED, /* page dirtyings since bootup */
244 NR_WRITTEN, /* page writings since bootup */
David Brazdil0f672f62019-12-10 10:32:29 +0000245 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000246 NR_VM_NODE_STAT_ITEMS
247};
248
249/*
250 * We do arithmetic on the LRU lists in various places in the code,
251 * so it is important to keep the active lists LRU_ACTIVE higher in
252 * the array than the corresponding inactive lists, and to keep
253 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
254 *
255 * This has to be kept in sync with the statistics in zone_stat_item
256 * above and the descriptions in vmstat_text in mm/vmstat.c
257 */
258#define LRU_BASE 0
259#define LRU_ACTIVE 1
260#define LRU_FILE 2
261
262enum lru_list {
263 LRU_INACTIVE_ANON = LRU_BASE,
264 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
265 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
266 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
267 LRU_UNEVICTABLE,
268 NR_LRU_LISTS
269};
270
271#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
272
273#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
274
275static inline int is_file_lru(enum lru_list lru)
276{
277 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
278}
279
280static inline int is_active_lru(enum lru_list lru)
281{
282 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
283}
284
285struct zone_reclaim_stat {
286 /*
287 * The pageout code in vmscan.c keeps track of how many of the
288 * mem/swap backed and file backed pages are referenced.
289 * The higher the rotated/scanned ratio, the more valuable
290 * that cache is.
291 *
292 * The anon LRU stats live in [0], file LRU stats in [1]
293 */
294 unsigned long recent_rotated[2];
295 unsigned long recent_scanned[2];
296};
297
298struct lruvec {
299 struct list_head lists[NR_LRU_LISTS];
300 struct zone_reclaim_stat reclaim_stat;
301 /* Evictions & activations on the inactive file list */
302 atomic_long_t inactive_age;
303 /* Refaults at the time of last reclaim cycle */
304 unsigned long refaults;
305#ifdef CONFIG_MEMCG
306 struct pglist_data *pgdat;
307#endif
308};
309
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000310/* Isolate unmapped file */
311#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
312/* Isolate for asynchronous migration */
313#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
314/* Isolate unevictable pages */
315#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
316
317/* LRU Isolation modes. */
318typedef unsigned __bitwise isolate_mode_t;
319
320enum zone_watermarks {
321 WMARK_MIN,
322 WMARK_LOW,
323 WMARK_HIGH,
324 NR_WMARK
325};
326
David Brazdil0f672f62019-12-10 10:32:29 +0000327#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
328#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
329#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
330#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000331
332struct per_cpu_pages {
333 int count; /* number of pages in the list */
334 int high; /* high watermark, emptying needed */
335 int batch; /* chunk size for buddy add/remove */
336
337 /* Lists of pages, one per migrate type stored on the pcp-lists */
338 struct list_head lists[MIGRATE_PCPTYPES];
339};
340
341struct per_cpu_pageset {
342 struct per_cpu_pages pcp;
343#ifdef CONFIG_NUMA
344 s8 expire;
345 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
346#endif
347#ifdef CONFIG_SMP
348 s8 stat_threshold;
349 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
350#endif
351};
352
353struct per_cpu_nodestat {
354 s8 stat_threshold;
355 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
356};
357
358#endif /* !__GENERATING_BOUNDS.H */
359
360enum zone_type {
361#ifdef CONFIG_ZONE_DMA
362 /*
363 * ZONE_DMA is used when there are devices that are not able
364 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
365 * carve out the portion of memory that is needed for these devices.
366 * The range is arch specific.
367 *
368 * Some examples
369 *
370 * Architecture Limit
371 * ---------------------------
372 * parisc, ia64, sparc <4G
David Brazdil0f672f62019-12-10 10:32:29 +0000373 * s390, powerpc <2G
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000374 * arm Various
375 * alpha Unlimited or 0-16MB.
376 *
377 * i386, x86_64 and multiple other arches
378 * <16M.
379 */
380 ZONE_DMA,
381#endif
382#ifdef CONFIG_ZONE_DMA32
383 /*
384 * x86_64 needs two ZONE_DMAs because it supports devices that are
385 * only able to do DMA to the lower 16M but also 32 bit devices that
386 * can only do DMA areas below 4G.
387 */
388 ZONE_DMA32,
389#endif
390 /*
391 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
392 * performed on pages in ZONE_NORMAL if the DMA devices support
393 * transfers to all addressable memory.
394 */
395 ZONE_NORMAL,
396#ifdef CONFIG_HIGHMEM
397 /*
398 * A memory area that is only addressable by the kernel through
399 * mapping portions into its own address space. This is for example
400 * used by i386 to allow the kernel to address the memory beyond
401 * 900MB. The kernel will set up special mappings (page
402 * table entries on i386) for each page that the kernel needs to
403 * access.
404 */
405 ZONE_HIGHMEM,
406#endif
407 ZONE_MOVABLE,
408#ifdef CONFIG_ZONE_DEVICE
409 ZONE_DEVICE,
410#endif
411 __MAX_NR_ZONES
412
413};
414
415#ifndef __GENERATING_BOUNDS_H
416
417struct zone {
418 /* Read-mostly fields */
419
420 /* zone watermarks, access with *_wmark_pages(zone) macros */
David Brazdil0f672f62019-12-10 10:32:29 +0000421 unsigned long _watermark[NR_WMARK];
422 unsigned long watermark_boost;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000423
424 unsigned long nr_reserved_highatomic;
425
426 /*
427 * We don't know if the memory that we're going to allocate will be
428 * freeable or/and it will be released eventually, so to avoid totally
429 * wasting several GB of ram we must reserve some of the lower zone
430 * memory (otherwise we risk to run OOM on the lower zones despite
431 * there being tons of freeable ram on the higher zones). This array is
432 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
433 * changes.
434 */
435 long lowmem_reserve[MAX_NR_ZONES];
436
437#ifdef CONFIG_NUMA
438 int node;
439#endif
440 struct pglist_data *zone_pgdat;
441 struct per_cpu_pageset __percpu *pageset;
442
443#ifndef CONFIG_SPARSEMEM
444 /*
445 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
446 * In SPARSEMEM, this map is stored in struct mem_section
447 */
448 unsigned long *pageblock_flags;
449#endif /* CONFIG_SPARSEMEM */
450
451 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
452 unsigned long zone_start_pfn;
453
454 /*
455 * spanned_pages is the total pages spanned by the zone, including
456 * holes, which is calculated as:
457 * spanned_pages = zone_end_pfn - zone_start_pfn;
458 *
459 * present_pages is physical pages existing within the zone, which
460 * is calculated as:
461 * present_pages = spanned_pages - absent_pages(pages in holes);
462 *
463 * managed_pages is present pages managed by the buddy system, which
464 * is calculated as (reserved_pages includes pages allocated by the
465 * bootmem allocator):
466 * managed_pages = present_pages - reserved_pages;
467 *
468 * So present_pages may be used by memory hotplug or memory power
469 * management logic to figure out unmanaged pages by checking
470 * (present_pages - managed_pages). And managed_pages should be used
471 * by page allocator and vm scanner to calculate all kinds of watermarks
472 * and thresholds.
473 *
474 * Locking rules:
475 *
476 * zone_start_pfn and spanned_pages are protected by span_seqlock.
477 * It is a seqlock because it has to be read outside of zone->lock,
478 * and it is done in the main allocator path. But, it is written
479 * quite infrequently.
480 *
481 * The span_seq lock is declared along with zone->lock because it is
482 * frequently read in proximity to zone->lock. It's good to
483 * give them a chance of being in the same cacheline.
484 *
485 * Write access to present_pages at runtime should be protected by
486 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
487 * present_pages should get_online_mems() to get a stable value.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000488 */
David Brazdil0f672f62019-12-10 10:32:29 +0000489 atomic_long_t managed_pages;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000490 unsigned long spanned_pages;
491 unsigned long present_pages;
492
493 const char *name;
494
495#ifdef CONFIG_MEMORY_ISOLATION
496 /*
497 * Number of isolated pageblock. It is used to solve incorrect
498 * freepage counting problem due to racy retrieving migratetype
499 * of pageblock. Protected by zone->lock.
500 */
501 unsigned long nr_isolate_pageblock;
502#endif
503
504#ifdef CONFIG_MEMORY_HOTPLUG
505 /* see spanned/present_pages for more description */
506 seqlock_t span_seqlock;
507#endif
508
509 int initialized;
510
511 /* Write-intensive fields used from the page allocator */
512 ZONE_PADDING(_pad1_)
513
514 /* free areas of different sizes */
515 struct free_area free_area[MAX_ORDER];
516
517 /* zone flags, see below */
518 unsigned long flags;
519
520 /* Primarily protects free_area */
521 spinlock_t lock;
522
523 /* Write-intensive fields used by compaction and vmstats. */
524 ZONE_PADDING(_pad2_)
525
526 /*
527 * When free pages are below this point, additional steps are taken
528 * when reading the number of free pages to avoid per-cpu counter
529 * drift allowing watermarks to be breached
530 */
531 unsigned long percpu_drift_mark;
532
533#if defined CONFIG_COMPACTION || defined CONFIG_CMA
534 /* pfn where compaction free scanner should start */
535 unsigned long compact_cached_free_pfn;
536 /* pfn where async and sync compaction migration scanner should start */
537 unsigned long compact_cached_migrate_pfn[2];
David Brazdil0f672f62019-12-10 10:32:29 +0000538 unsigned long compact_init_migrate_pfn;
539 unsigned long compact_init_free_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000540#endif
541
542#ifdef CONFIG_COMPACTION
543 /*
544 * On compaction failure, 1<<compact_defer_shift compactions
545 * are skipped before trying again. The number attempted since
546 * last failure is tracked with compact_considered.
547 */
548 unsigned int compact_considered;
549 unsigned int compact_defer_shift;
550 int compact_order_failed;
551#endif
552
553#if defined CONFIG_COMPACTION || defined CONFIG_CMA
554 /* Set to true when the PG_migrate_skip bits should be cleared */
555 bool compact_blockskip_flush;
556#endif
557
558 bool contiguous;
559
560 ZONE_PADDING(_pad3_)
561 /* Zone statistics */
562 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
563 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
564} ____cacheline_internodealigned_in_smp;
565
566enum pgdat_flags {
567 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
568 * a congested BDI
569 */
570 PGDAT_DIRTY, /* reclaim scanning has recently found
571 * many dirty file pages at the tail
572 * of the LRU.
573 */
574 PGDAT_WRITEBACK, /* reclaim scanning has recently found
575 * many pages under writeback
576 */
577 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
578};
579
David Brazdil0f672f62019-12-10 10:32:29 +0000580enum zone_flags {
581 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
582 * Cleared when kswapd is woken.
583 */
584};
585
586static inline unsigned long zone_managed_pages(struct zone *zone)
587{
588 return (unsigned long)atomic_long_read(&zone->managed_pages);
589}
590
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000591static inline unsigned long zone_end_pfn(const struct zone *zone)
592{
593 return zone->zone_start_pfn + zone->spanned_pages;
594}
595
596static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
597{
598 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
599}
600
601static inline bool zone_is_initialized(struct zone *zone)
602{
603 return zone->initialized;
604}
605
606static inline bool zone_is_empty(struct zone *zone)
607{
608 return zone->spanned_pages == 0;
609}
610
611/*
612 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
613 * intersection with the given zone
614 */
615static inline bool zone_intersects(struct zone *zone,
616 unsigned long start_pfn, unsigned long nr_pages)
617{
618 if (zone_is_empty(zone))
619 return false;
620 if (start_pfn >= zone_end_pfn(zone) ||
621 start_pfn + nr_pages <= zone->zone_start_pfn)
622 return false;
623
624 return true;
625}
626
627/*
628 * The "priority" of VM scanning is how much of the queues we will scan in one
629 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
630 * queues ("queue_length >> 12") during an aging round.
631 */
632#define DEF_PRIORITY 12
633
634/* Maximum number of zones on a zonelist */
635#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
636
637enum {
638 ZONELIST_FALLBACK, /* zonelist with fallback */
639#ifdef CONFIG_NUMA
640 /*
641 * The NUMA zonelists are doubled because we need zonelists that
642 * restrict the allocations to a single node for __GFP_THISNODE.
643 */
644 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
645#endif
646 MAX_ZONELISTS
647};
648
649/*
650 * This struct contains information about a zone in a zonelist. It is stored
651 * here to avoid dereferences into large structures and lookups of tables
652 */
653struct zoneref {
654 struct zone *zone; /* Pointer to actual zone */
655 int zone_idx; /* zone_idx(zoneref->zone) */
656};
657
658/*
659 * One allocation request operates on a zonelist. A zonelist
660 * is a list of zones, the first one is the 'goal' of the
661 * allocation, the other zones are fallback zones, in decreasing
662 * priority.
663 *
664 * To speed the reading of the zonelist, the zonerefs contain the zone index
665 * of the entry being read. Helper functions to access information given
666 * a struct zoneref are
667 *
668 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
669 * zonelist_zone_idx() - Return the index of the zone for an entry
670 * zonelist_node_idx() - Return the index of the node for an entry
671 */
672struct zonelist {
673 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
674};
675
676#ifndef CONFIG_DISCONTIGMEM
677/* The array of struct pages - for discontigmem use pgdat->lmem_map */
678extern struct page *mem_map;
679#endif
680
David Brazdil0f672f62019-12-10 10:32:29 +0000681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
682struct deferred_split {
683 spinlock_t split_queue_lock;
684 struct list_head split_queue;
685 unsigned long split_queue_len;
686};
687#endif
688
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000689/*
690 * On NUMA machines, each NUMA node would have a pg_data_t to describe
691 * it's memory layout. On UMA machines there is a single pglist_data which
692 * describes the whole memory.
693 *
694 * Memory statistics and page replacement data structures are maintained on a
695 * per-zone basis.
696 */
697struct bootmem_data;
698typedef struct pglist_data {
699 struct zone node_zones[MAX_NR_ZONES];
700 struct zonelist node_zonelists[MAX_ZONELISTS];
701 int nr_zones;
702#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
703 struct page *node_mem_map;
704#ifdef CONFIG_PAGE_EXTENSION
705 struct page_ext *node_page_ext;
706#endif
707#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
709 /*
David Brazdil0f672f62019-12-10 10:32:29 +0000710 * Must be held any time you expect node_start_pfn,
711 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
Olivier Deprez0e641232021-09-23 10:07:05 +0200712 * Also synchronizes pgdat->first_deferred_pfn during deferred page
713 * init.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000714 *
715 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
716 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
717 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
718 *
719 * Nests above zone->lock and zone->span_seqlock
720 */
721 spinlock_t node_size_lock;
722#endif
723 unsigned long node_start_pfn;
724 unsigned long node_present_pages; /* total number of physical pages */
725 unsigned long node_spanned_pages; /* total size of physical page
726 range, including holes */
727 int node_id;
728 wait_queue_head_t kswapd_wait;
729 wait_queue_head_t pfmemalloc_wait;
730 struct task_struct *kswapd; /* Protected by
731 mem_hotplug_begin/end() */
732 int kswapd_order;
733 enum zone_type kswapd_classzone_idx;
734
735 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
736
737#ifdef CONFIG_COMPACTION
738 int kcompactd_max_order;
739 enum zone_type kcompactd_classzone_idx;
740 wait_queue_head_t kcompactd_wait;
741 struct task_struct *kcompactd;
742#endif
743 /*
744 * This is a per-node reserve of pages that are not available
745 * to userspace allocations.
746 */
747 unsigned long totalreserve_pages;
748
749#ifdef CONFIG_NUMA
750 /*
751 * zone reclaim becomes active if more unmapped pages exist.
752 */
753 unsigned long min_unmapped_pages;
754 unsigned long min_slab_pages;
755#endif /* CONFIG_NUMA */
756
757 /* Write-intensive fields used by page reclaim */
758 ZONE_PADDING(_pad1_)
759 spinlock_t lru_lock;
760
761#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
762 /*
763 * If memory initialisation on large machines is deferred then this
764 * is the first PFN that needs to be initialised.
765 */
766 unsigned long first_deferred_pfn;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000767#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
768
769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
David Brazdil0f672f62019-12-10 10:32:29 +0000770 struct deferred_split deferred_split_queue;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000771#endif
772
773 /* Fields commonly accessed by the page reclaim scanner */
774 struct lruvec lruvec;
775
776 unsigned long flags;
777
778 ZONE_PADDING(_pad2_)
779
780 /* Per-node vmstats */
781 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
782 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
783} pg_data_t;
784
785#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
786#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
787#ifdef CONFIG_FLAT_NODE_MEM_MAP
788#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
789#else
790#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
791#endif
792#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
793
794#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
795#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000796
797static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
798{
799 return &pgdat->lruvec;
800}
801
802static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
803{
804 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
805}
806
807static inline bool pgdat_is_empty(pg_data_t *pgdat)
808{
809 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
810}
811
812#include <linux/memory_hotplug.h>
813
814void build_all_zonelists(pg_data_t *pgdat);
815void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
816 enum zone_type classzone_idx);
817bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
818 int classzone_idx, unsigned int alloc_flags,
819 long free_pages);
820bool zone_watermark_ok(struct zone *z, unsigned int order,
821 unsigned long mark, int classzone_idx,
822 unsigned int alloc_flags);
823bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
824 unsigned long mark, int classzone_idx);
Olivier Deprez0e641232021-09-23 10:07:05 +0200825/*
826 * Memory initialization context, use to differentiate memory added by
827 * the platform statically or via memory hotplug interface.
828 */
829enum meminit_context {
830 MEMINIT_EARLY,
831 MEMINIT_HOTPLUG,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000832};
Olivier Deprez0e641232021-09-23 10:07:05 +0200833
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000834extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
835 unsigned long size);
836
837extern void lruvec_init(struct lruvec *lruvec);
838
839static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
840{
841#ifdef CONFIG_MEMCG
842 return lruvec->pgdat;
843#else
844 return container_of(lruvec, struct pglist_data, lruvec);
845#endif
846}
847
848extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
849
850#ifdef CONFIG_HAVE_MEMORY_PRESENT
851void memory_present(int nid, unsigned long start, unsigned long end);
852#else
853static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
854#endif
855
David Brazdil0f672f62019-12-10 10:32:29 +0000856#if defined(CONFIG_SPARSEMEM)
857void memblocks_present(void);
858#else
859static inline void memblocks_present(void) {}
860#endif
861
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000862#ifdef CONFIG_HAVE_MEMORYLESS_NODES
863int local_memory_node(int node_id);
864#else
865static inline int local_memory_node(int node_id) { return node_id; };
866#endif
867
868/*
869 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
870 */
871#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
872
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000873/*
874 * Returns true if a zone has pages managed by the buddy allocator.
875 * All the reclaim decisions have to use this function rather than
876 * populated_zone(). If the whole zone is reserved then we can easily
877 * end up with populated_zone() && !managed_zone().
878 */
879static inline bool managed_zone(struct zone *zone)
880{
David Brazdil0f672f62019-12-10 10:32:29 +0000881 return zone_managed_pages(zone);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000882}
883
884/* Returns true if a zone has memory */
885static inline bool populated_zone(struct zone *zone)
886{
887 return zone->present_pages;
888}
889
890#ifdef CONFIG_NUMA
891static inline int zone_to_nid(struct zone *zone)
892{
893 return zone->node;
894}
895
896static inline void zone_set_nid(struct zone *zone, int nid)
897{
898 zone->node = nid;
899}
900#else
901static inline int zone_to_nid(struct zone *zone)
902{
903 return 0;
904}
905
906static inline void zone_set_nid(struct zone *zone, int nid) {}
907#endif
908
909extern int movable_zone;
910
911#ifdef CONFIG_HIGHMEM
912static inline int zone_movable_is_highmem(void)
913{
914#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
915 return movable_zone == ZONE_HIGHMEM;
916#else
917 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
918#endif
919}
920#endif
921
922static inline int is_highmem_idx(enum zone_type idx)
923{
924#ifdef CONFIG_HIGHMEM
925 return (idx == ZONE_HIGHMEM ||
926 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
927#else
928 return 0;
929#endif
930}
931
932/**
David Brazdil0f672f62019-12-10 10:32:29 +0000933 * is_highmem - helper function to quickly check if a struct zone is a
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000934 * highmem zone or not. This is an attempt to keep references
935 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
936 * @zone - pointer to struct zone variable
937 */
938static inline int is_highmem(struct zone *zone)
939{
940#ifdef CONFIG_HIGHMEM
941 return is_highmem_idx(zone_idx(zone));
942#else
943 return 0;
944#endif
945}
946
947/* These two functions are used to setup the per zone pages min values */
948struct ctl_table;
949int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
950 void __user *, size_t *, loff_t *);
David Brazdil0f672f62019-12-10 10:32:29 +0000951int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
952 void __user *, size_t *, loff_t *);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000953int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
954 void __user *, size_t *, loff_t *);
955extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
956int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
957 void __user *, size_t *, loff_t *);
958int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
959 void __user *, size_t *, loff_t *);
960int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
961 void __user *, size_t *, loff_t *);
962int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
963 void __user *, size_t *, loff_t *);
964
965extern int numa_zonelist_order_handler(struct ctl_table *, int,
966 void __user *, size_t *, loff_t *);
967extern char numa_zonelist_order[];
968#define NUMA_ZONELIST_ORDER_LEN 16
969
970#ifndef CONFIG_NEED_MULTIPLE_NODES
971
972extern struct pglist_data contig_page_data;
973#define NODE_DATA(nid) (&contig_page_data)
974#define NODE_MEM_MAP(nid) mem_map
975
976#else /* CONFIG_NEED_MULTIPLE_NODES */
977
978#include <asm/mmzone.h>
979
980#endif /* !CONFIG_NEED_MULTIPLE_NODES */
981
982extern struct pglist_data *first_online_pgdat(void);
983extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
984extern struct zone *next_zone(struct zone *zone);
985
986/**
987 * for_each_online_pgdat - helper macro to iterate over all online nodes
988 * @pgdat - pointer to a pg_data_t variable
989 */
990#define for_each_online_pgdat(pgdat) \
991 for (pgdat = first_online_pgdat(); \
992 pgdat; \
993 pgdat = next_online_pgdat(pgdat))
994/**
995 * for_each_zone - helper macro to iterate over all memory zones
996 * @zone - pointer to struct zone variable
997 *
998 * The user only needs to declare the zone variable, for_each_zone
999 * fills it in.
1000 */
1001#define for_each_zone(zone) \
1002 for (zone = (first_online_pgdat())->node_zones; \
1003 zone; \
1004 zone = next_zone(zone))
1005
1006#define for_each_populated_zone(zone) \
1007 for (zone = (first_online_pgdat())->node_zones; \
1008 zone; \
1009 zone = next_zone(zone)) \
1010 if (!populated_zone(zone)) \
1011 ; /* do nothing */ \
1012 else
1013
1014static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1015{
1016 return zoneref->zone;
1017}
1018
1019static inline int zonelist_zone_idx(struct zoneref *zoneref)
1020{
1021 return zoneref->zone_idx;
1022}
1023
1024static inline int zonelist_node_idx(struct zoneref *zoneref)
1025{
1026 return zone_to_nid(zoneref->zone);
1027}
1028
1029struct zoneref *__next_zones_zonelist(struct zoneref *z,
1030 enum zone_type highest_zoneidx,
1031 nodemask_t *nodes);
1032
1033/**
1034 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1035 * @z - The cursor used as a starting point for the search
1036 * @highest_zoneidx - The zone index of the highest zone to return
1037 * @nodes - An optional nodemask to filter the zonelist with
1038 *
1039 * This function returns the next zone at or below a given zone index that is
1040 * within the allowed nodemask using a cursor as the starting point for the
1041 * search. The zoneref returned is a cursor that represents the current zone
1042 * being examined. It should be advanced by one before calling
1043 * next_zones_zonelist again.
1044 */
1045static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1046 enum zone_type highest_zoneidx,
1047 nodemask_t *nodes)
1048{
1049 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1050 return z;
1051 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1052}
1053
1054/**
1055 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1056 * @zonelist - The zonelist to search for a suitable zone
1057 * @highest_zoneidx - The zone index of the highest zone to return
1058 * @nodes - An optional nodemask to filter the zonelist with
1059 * @return - Zoneref pointer for the first suitable zone found (see below)
1060 *
1061 * This function returns the first zone at or below a given zone index that is
1062 * within the allowed nodemask. The zoneref returned is a cursor that can be
1063 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1064 * one before calling.
1065 *
1066 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1067 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1068 * update due to cpuset modification.
1069 */
1070static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1071 enum zone_type highest_zoneidx,
1072 nodemask_t *nodes)
1073{
1074 return next_zones_zonelist(zonelist->_zonerefs,
1075 highest_zoneidx, nodes);
1076}
1077
1078/**
1079 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1080 * @zone - The current zone in the iterator
1081 * @z - The current pointer within zonelist->zones being iterated
1082 * @zlist - The zonelist being iterated
1083 * @highidx - The zone index of the highest zone to return
1084 * @nodemask - Nodemask allowed by the allocator
1085 *
1086 * This iterator iterates though all zones at or below a given zone index and
1087 * within a given nodemask
1088 */
1089#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1090 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1091 zone; \
1092 z = next_zones_zonelist(++z, highidx, nodemask), \
1093 zone = zonelist_zone(z))
1094
1095#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1096 for (zone = z->zone; \
1097 zone; \
1098 z = next_zones_zonelist(++z, highidx, nodemask), \
1099 zone = zonelist_zone(z))
1100
1101
1102/**
1103 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1104 * @zone - The current zone in the iterator
1105 * @z - The current pointer within zonelist->zones being iterated
1106 * @zlist - The zonelist being iterated
1107 * @highidx - The zone index of the highest zone to return
1108 *
1109 * This iterator iterates though all zones at or below a given zone index.
1110 */
1111#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1112 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1113
1114#ifdef CONFIG_SPARSEMEM
1115#include <asm/sparsemem.h>
1116#endif
1117
1118#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1119 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1120static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1121{
1122 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1123 return 0;
1124}
1125#endif
1126
1127#ifdef CONFIG_FLATMEM
1128#define pfn_to_nid(pfn) (0)
1129#endif
1130
1131#ifdef CONFIG_SPARSEMEM
1132
1133/*
1134 * SECTION_SHIFT #bits space required to store a section #
1135 *
1136 * PA_SECTION_SHIFT physical address to/from section number
1137 * PFN_SECTION_SHIFT pfn to/from section number
1138 */
1139#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1140#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1141
1142#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1143
1144#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1145#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1146
1147#define SECTION_BLOCKFLAGS_BITS \
1148 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1149
1150#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1151#error Allocator MAX_ORDER exceeds SECTION_SIZE
1152#endif
1153
1154static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1155{
1156 return pfn >> PFN_SECTION_SHIFT;
1157}
1158static inline unsigned long section_nr_to_pfn(unsigned long sec)
1159{
1160 return sec << PFN_SECTION_SHIFT;
1161}
1162
1163#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1164#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1165
David Brazdil0f672f62019-12-10 10:32:29 +00001166#define SUBSECTION_SHIFT 21
1167
1168#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1169#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1170#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1171
1172#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1173#error Subsection size exceeds section size
1174#else
1175#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1176#endif
1177
1178#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1179#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1180
1181struct mem_section_usage {
1182 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1183 /* See declaration of similar field in struct zone */
1184 unsigned long pageblock_flags[0];
1185};
1186
1187void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1188
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001189struct page;
1190struct page_ext;
1191struct mem_section {
1192 /*
1193 * This is, logically, a pointer to an array of struct
1194 * pages. However, it is stored with some other magic.
1195 * (see sparse.c::sparse_init_one_section())
1196 *
1197 * Additionally during early boot we encode node id of
1198 * the location of the section here to guide allocation.
1199 * (see sparse.c::memory_present())
1200 *
1201 * Making it a UL at least makes someone do a cast
1202 * before using it wrong.
1203 */
1204 unsigned long section_mem_map;
1205
David Brazdil0f672f62019-12-10 10:32:29 +00001206 struct mem_section_usage *usage;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001207#ifdef CONFIG_PAGE_EXTENSION
1208 /*
1209 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1210 * section. (see page_ext.h about this.)
1211 */
1212 struct page_ext *page_ext;
1213 unsigned long pad;
1214#endif
1215 /*
1216 * WARNING: mem_section must be a power-of-2 in size for the
1217 * calculation and use of SECTION_ROOT_MASK to make sense.
1218 */
1219};
1220
1221#ifdef CONFIG_SPARSEMEM_EXTREME
1222#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1223#else
1224#define SECTIONS_PER_ROOT 1
1225#endif
1226
1227#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1228#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1229#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1230
1231#ifdef CONFIG_SPARSEMEM_EXTREME
1232extern struct mem_section **mem_section;
1233#else
1234extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1235#endif
1236
David Brazdil0f672f62019-12-10 10:32:29 +00001237static inline unsigned long *section_to_usemap(struct mem_section *ms)
1238{
1239 return ms->usage->pageblock_flags;
1240}
1241
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001242static inline struct mem_section *__nr_to_section(unsigned long nr)
1243{
1244#ifdef CONFIG_SPARSEMEM_EXTREME
1245 if (!mem_section)
1246 return NULL;
1247#endif
1248 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1249 return NULL;
1250 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1251}
David Brazdil0f672f62019-12-10 10:32:29 +00001252extern unsigned long __section_nr(struct mem_section *ms);
1253extern size_t mem_section_usage_size(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001254
1255/*
1256 * We use the lower bits of the mem_map pointer to store
1257 * a little bit of information. The pointer is calculated
1258 * as mem_map - section_nr_to_pfn(pnum). The result is
1259 * aligned to the minimum alignment of the two values:
1260 * 1. All mem_map arrays are page-aligned.
1261 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1262 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1263 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1264 * worst combination is powerpc with 256k pages,
1265 * which results in PFN_SECTION_SHIFT equal 6.
1266 * To sum it up, at least 6 bits are available.
1267 */
1268#define SECTION_MARKED_PRESENT (1UL<<0)
1269#define SECTION_HAS_MEM_MAP (1UL<<1)
1270#define SECTION_IS_ONLINE (1UL<<2)
David Brazdil0f672f62019-12-10 10:32:29 +00001271#define SECTION_IS_EARLY (1UL<<3)
1272#define SECTION_MAP_LAST_BIT (1UL<<4)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001273#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1274#define SECTION_NID_SHIFT 3
1275
1276static inline struct page *__section_mem_map_addr(struct mem_section *section)
1277{
1278 unsigned long map = section->section_mem_map;
1279 map &= SECTION_MAP_MASK;
1280 return (struct page *)map;
1281}
1282
1283static inline int present_section(struct mem_section *section)
1284{
1285 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1286}
1287
1288static inline int present_section_nr(unsigned long nr)
1289{
1290 return present_section(__nr_to_section(nr));
1291}
1292
1293static inline int valid_section(struct mem_section *section)
1294{
1295 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1296}
1297
David Brazdil0f672f62019-12-10 10:32:29 +00001298static inline int early_section(struct mem_section *section)
1299{
1300 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1301}
1302
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001303static inline int valid_section_nr(unsigned long nr)
1304{
1305 return valid_section(__nr_to_section(nr));
1306}
1307
1308static inline int online_section(struct mem_section *section)
1309{
1310 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1311}
1312
1313static inline int online_section_nr(unsigned long nr)
1314{
1315 return online_section(__nr_to_section(nr));
1316}
1317
1318#ifdef CONFIG_MEMORY_HOTPLUG
1319void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1320#ifdef CONFIG_MEMORY_HOTREMOVE
1321void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1322#endif
1323#endif
1324
1325static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1326{
1327 return __nr_to_section(pfn_to_section_nr(pfn));
1328}
1329
David Brazdil0f672f62019-12-10 10:32:29 +00001330extern unsigned long __highest_present_section_nr;
1331
1332static inline int subsection_map_index(unsigned long pfn)
1333{
1334 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1335}
1336
1337#ifdef CONFIG_SPARSEMEM_VMEMMAP
1338static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1339{
1340 int idx = subsection_map_index(pfn);
1341
1342 return test_bit(idx, ms->usage->subsection_map);
1343}
1344#else
1345static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1346{
1347 return 1;
1348}
1349#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001350
1351#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1352static inline int pfn_valid(unsigned long pfn)
1353{
David Brazdil0f672f62019-12-10 10:32:29 +00001354 struct mem_section *ms;
1355
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001356 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1357 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +00001358 ms = __nr_to_section(pfn_to_section_nr(pfn));
1359 if (!valid_section(ms))
1360 return 0;
1361 /*
1362 * Traditionally early sections always returned pfn_valid() for
1363 * the entire section-sized span.
1364 */
1365 return early_section(ms) || pfn_section_valid(ms, pfn);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001366}
1367#endif
1368
1369static inline int pfn_present(unsigned long pfn)
1370{
1371 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1372 return 0;
1373 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1374}
1375
1376/*
1377 * These are _only_ used during initialisation, therefore they
1378 * can use __initdata ... They could have names to indicate
1379 * this restriction.
1380 */
1381#ifdef CONFIG_NUMA
1382#define pfn_to_nid(pfn) \
1383({ \
1384 unsigned long __pfn_to_nid_pfn = (pfn); \
1385 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1386})
1387#else
1388#define pfn_to_nid(pfn) (0)
1389#endif
1390
1391#define early_pfn_valid(pfn) pfn_valid(pfn)
1392void sparse_init(void);
1393#else
1394#define sparse_init() do {} while (0)
1395#define sparse_index_init(_sec, _nid) do {} while (0)
David Brazdil0f672f62019-12-10 10:32:29 +00001396#define pfn_present pfn_valid
1397#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001398#endif /* CONFIG_SPARSEMEM */
1399
1400/*
1401 * During memory init memblocks map pfns to nids. The search is expensive and
1402 * this caches recent lookups. The implementation of __early_pfn_to_nid
1403 * may treat start/end as pfns or sections.
1404 */
1405struct mminit_pfnnid_cache {
1406 unsigned long last_start;
1407 unsigned long last_end;
1408 int last_nid;
1409};
1410
1411#ifndef early_pfn_valid
1412#define early_pfn_valid(pfn) (1)
1413#endif
1414
1415void memory_present(int nid, unsigned long start, unsigned long end);
1416
1417/*
1418 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
David Brazdil0f672f62019-12-10 10:32:29 +00001419 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001420 * pfn_valid_within() should be used in this case; we optimise this away
1421 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1422 */
1423#ifdef CONFIG_HOLES_IN_ZONE
1424#define pfn_valid_within(pfn) pfn_valid(pfn)
1425#else
1426#define pfn_valid_within(pfn) (1)
1427#endif
1428
1429#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1430/*
1431 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1432 * associated with it or not. This means that a struct page exists for this
1433 * pfn. The caller cannot assume the page is fully initialized in general.
1434 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1435 * will ensure the struct page is fully online and initialized. Special pages
1436 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1437 *
1438 * In FLATMEM, it is expected that holes always have valid memmap as long as
1439 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1440 * that a valid section has a memmap for the entire section.
1441 *
1442 * However, an ARM, and maybe other embedded architectures in the future
1443 * free memmap backing holes to save memory on the assumption the memmap is
1444 * never used. The page_zone linkages are then broken even though pfn_valid()
1445 * returns true. A walker of the full memmap must then do this additional
1446 * check to ensure the memmap they are looking at is sane by making sure
1447 * the zone and PFN linkages are still valid. This is expensive, but walkers
1448 * of the full memmap are extremely rare.
1449 */
1450bool memmap_valid_within(unsigned long pfn,
1451 struct page *page, struct zone *zone);
1452#else
1453static inline bool memmap_valid_within(unsigned long pfn,
1454 struct page *page, struct zone *zone)
1455{
1456 return true;
1457}
1458#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1459
1460#endif /* !__GENERATING_BOUNDS.H */
1461#endif /* !__ASSEMBLY__ */
1462#endif /* _LINUX_MMZONE_H */