v4.19.13 snapshot.
diff --git a/drivers/mtd/nand/onenand/Kconfig b/drivers/mtd/nand/onenand/Kconfig
new file mode 100644
index 0000000..9dc1574
--- /dev/null
+++ b/drivers/mtd/nand/onenand/Kconfig
@@ -0,0 +1,71 @@
+menuconfig MTD_ONENAND
+	tristate "OneNAND Device Support"
+	depends on MTD
+	depends on HAS_IOMEM
+	help
+	  This enables support for accessing all type of OneNAND flash
+	  devices.
+
+if MTD_ONENAND
+
+config MTD_ONENAND_VERIFY_WRITE
+	bool "Verify OneNAND page writes"
+	help
+	  This adds an extra check when data is written to the flash. The
+	  OneNAND flash device internally checks only bits transitioning
+	  from 1 to 0. There is a rare possibility that even though the
+	  device thinks the write was successful, a bit could have been
+	  flipped accidentally due to device wear or something else.
+
+config MTD_ONENAND_GENERIC
+	tristate "OneNAND Flash device via platform device driver"
+	help
+	  Support for OneNAND flash via platform device driver.
+
+config MTD_ONENAND_OMAP2
+	tristate "OneNAND on OMAP2/OMAP3 support"
+	depends on ARCH_OMAP2 || ARCH_OMAP3
+	depends on OF || COMPILE_TEST
+	help
+	  Support for a OneNAND flash device connected to an OMAP2/OMAP3 SoC
+	  via the GPMC memory controller.
+	  Enable dmaengine and gpiolib for better performance.
+
+config MTD_ONENAND_SAMSUNG
+        tristate "OneNAND on Samsung SOC controller support"
+        depends on ARCH_S3C64XX || ARCH_S5PV210 || ARCH_EXYNOS4
+        help
+          Support for a OneNAND flash device connected to an Samsung SOC.
+          S3C64XX uses command mapping method.
+          S5PC110/S5PC210 use generic OneNAND method.
+
+config MTD_ONENAND_OTP
+	bool "OneNAND OTP Support"
+	help
+	  One Block of the NAND Flash Array memory is reserved as
+	  a One-Time Programmable Block memory area.
+	  Also, 1st Block of NAND Flash Array can be used as OTP.
+
+	  The OTP block can be read, programmed and locked using the same
+	  operations as any other NAND Flash Array memory block.
+	  OTP block cannot be erased.
+
+	  OTP block is fully-guaranteed to be a valid block.
+
+config MTD_ONENAND_2X_PROGRAM
+	bool "OneNAND 2X program support"
+	help
+	  The 2X Program is an extension of Program Operation.
+	  Since the device is equipped with two DataRAMs, and two-plane NAND
+	  Flash memory array, these two component enables simultaneous program
+	  of 4KiB. Plane1 has only even blocks such as block0, block2, block4
+	  while Plane2 has only odd blocks such as block1, block3, block5.
+	  So MTD regards it as 4KiB page size and 256KiB block size
+
+	  Now the following chips support it. (KFXXX16Q2M)
+	    Demux: KFG2G16Q2M, KFH4G16Q2M, KFW8G16Q2M,
+	    Mux:   KFM2G16Q2M, KFN4G16Q2M,
+
+	  And more recent chips
+
+endif # MTD_ONENAND
diff --git a/drivers/mtd/nand/onenand/Makefile b/drivers/mtd/nand/onenand/Makefile
new file mode 100644
index 0000000..f8b624a
--- /dev/null
+++ b/drivers/mtd/nand/onenand/Makefile
@@ -0,0 +1,14 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for the OneNAND MTD
+#
+
+# Core functionality.
+obj-$(CONFIG_MTD_ONENAND)		+= onenand.o
+
+# Board specific.
+obj-$(CONFIG_MTD_ONENAND_GENERIC)	+= generic.o
+obj-$(CONFIG_MTD_ONENAND_OMAP2)		+= omap2.o
+obj-$(CONFIG_MTD_ONENAND_SAMSUNG)       += samsung.o
+
+onenand-objs = onenand_base.o onenand_bbt.o
diff --git a/drivers/mtd/nand/onenand/generic.c b/drivers/mtd/nand/onenand/generic.c
new file mode 100644
index 0000000..acad17e
--- /dev/null
+++ b/drivers/mtd/nand/onenand/generic.c
@@ -0,0 +1,115 @@
+/*
+ *  Copyright (c) 2005 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Overview:
+ *   This is a device driver for the OneNAND flash for generic boards.
+ */
+
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+
+/*
+ * Note: Driver name and platform data format have been updated!
+ *
+ * This version of the driver is named "onenand-flash" and takes struct
+ * onenand_platform_data as platform data. The old ARM-specific version
+ * with the name "onenand" used to take struct flash_platform_data.
+ */
+#define DRIVER_NAME	"onenand-flash"
+
+struct onenand_info {
+	struct mtd_info		mtd;
+	struct onenand_chip	onenand;
+};
+
+static int generic_onenand_probe(struct platform_device *pdev)
+{
+	struct onenand_info *info;
+	struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev);
+	struct resource *res = pdev->resource;
+	unsigned long size = resource_size(res);
+	int err;
+
+	info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) {
+		err = -EBUSY;
+		goto out_free_info;
+	}
+
+	info->onenand.base = ioremap(res->start, size);
+	if (!info->onenand.base) {
+		err = -ENOMEM;
+		goto out_release_mem_region;
+	}
+
+	info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL;
+	info->onenand.irq = platform_get_irq(pdev, 0);
+
+	info->mtd.dev.parent = &pdev->dev;
+	info->mtd.priv = &info->onenand;
+
+	if (onenand_scan(&info->mtd, 1)) {
+		err = -ENXIO;
+		goto out_iounmap;
+	}
+
+	err = mtd_device_register(&info->mtd, pdata ? pdata->parts : NULL,
+				  pdata ? pdata->nr_parts : 0);
+
+	platform_set_drvdata(pdev, info);
+
+	return 0;
+
+out_iounmap:
+	iounmap(info->onenand.base);
+out_release_mem_region:
+	release_mem_region(res->start, size);
+out_free_info:
+	kfree(info);
+
+	return err;
+}
+
+static int generic_onenand_remove(struct platform_device *pdev)
+{
+	struct onenand_info *info = platform_get_drvdata(pdev);
+	struct resource *res = pdev->resource;
+	unsigned long size = resource_size(res);
+
+	if (info) {
+		onenand_release(&info->mtd);
+		release_mem_region(res->start, size);
+		iounmap(info->onenand.base);
+		kfree(info);
+	}
+
+	return 0;
+}
+
+static struct platform_driver generic_onenand_driver = {
+	.driver = {
+		.name		= DRIVER_NAME,
+	},
+	.probe		= generic_onenand_probe,
+	.remove		= generic_onenand_remove,
+};
+
+module_platform_driver(generic_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards");
+MODULE_ALIAS("platform:" DRIVER_NAME);
diff --git a/drivers/mtd/nand/onenand/omap2.c b/drivers/mtd/nand/onenand/omap2.c
new file mode 100644
index 0000000..3211371
--- /dev/null
+++ b/drivers/mtd/nand/onenand/omap2.c
@@ -0,0 +1,631 @@
+/*
+ *  OneNAND driver for OMAP2 / OMAP3
+ *
+ *  Copyright © 2005-2006 Nokia Corporation
+ *
+ *  Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
+ *  IRQ and DMA support written by Timo Teras
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; see the file COPYING. If not, write to the Free Software
+ * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ */
+
+#include <linux/device.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_device.h>
+#include <linux/omap-gpmc.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/gpio/consumer.h>
+
+#include <asm/mach/flash.h>
+
+#define DRIVER_NAME "omap2-onenand"
+
+#define ONENAND_BUFRAM_SIZE	(1024 * 5)
+
+struct omap2_onenand {
+	struct platform_device *pdev;
+	int gpmc_cs;
+	unsigned long phys_base;
+	struct gpio_desc *int_gpiod;
+	struct mtd_info mtd;
+	struct onenand_chip onenand;
+	struct completion irq_done;
+	struct completion dma_done;
+	struct dma_chan *dma_chan;
+};
+
+static void omap2_onenand_dma_complete_func(void *completion)
+{
+	complete(completion);
+}
+
+static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id)
+{
+	struct omap2_onenand *c = dev_id;
+
+	complete(&c->irq_done);
+
+	return IRQ_HANDLED;
+}
+
+static inline unsigned short read_reg(struct omap2_onenand *c, int reg)
+{
+	return readw(c->onenand.base + reg);
+}
+
+static inline void write_reg(struct omap2_onenand *c, unsigned short value,
+			     int reg)
+{
+	writew(value, c->onenand.base + reg);
+}
+
+static int omap2_onenand_set_cfg(struct omap2_onenand *c,
+				 bool sr, bool sw,
+				 int latency, int burst_len)
+{
+	unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT;
+
+	reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT;
+
+	switch (burst_len) {
+	case 0:		/* continuous */
+		break;
+	case 4:
+		reg |= ONENAND_SYS_CFG1_BL_4;
+		break;
+	case 8:
+		reg |= ONENAND_SYS_CFG1_BL_8;
+		break;
+	case 16:
+		reg |= ONENAND_SYS_CFG1_BL_16;
+		break;
+	case 32:
+		reg |= ONENAND_SYS_CFG1_BL_32;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	if (latency > 5)
+		reg |= ONENAND_SYS_CFG1_HF;
+	if (latency > 7)
+		reg |= ONENAND_SYS_CFG1_VHF;
+	if (sr)
+		reg |= ONENAND_SYS_CFG1_SYNC_READ;
+	if (sw)
+		reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
+
+	write_reg(c, reg, ONENAND_REG_SYS_CFG1);
+
+	return 0;
+}
+
+static int omap2_onenand_get_freq(int ver)
+{
+	switch ((ver >> 4) & 0xf) {
+	case 0:
+		return 40;
+	case 1:
+		return 54;
+	case 2:
+		return 66;
+	case 3:
+		return 83;
+	case 4:
+		return 104;
+	}
+
+	return -EINVAL;
+}
+
+static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
+{
+	printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
+	       msg, state, ctrl, intr);
+}
+
+static void wait_warn(char *msg, int state, unsigned int ctrl,
+		      unsigned int intr)
+{
+	printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x "
+	       "intr 0x%04x\n", msg, state, ctrl, intr);
+}
+
+static int omap2_onenand_wait(struct mtd_info *mtd, int state)
+{
+	struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+	struct onenand_chip *this = mtd->priv;
+	unsigned int intr = 0;
+	unsigned int ctrl, ctrl_mask;
+	unsigned long timeout;
+	u32 syscfg;
+
+	if (state == FL_RESETING || state == FL_PREPARING_ERASE ||
+	    state == FL_VERIFYING_ERASE) {
+		int i = 21;
+		unsigned int intr_flags = ONENAND_INT_MASTER;
+
+		switch (state) {
+		case FL_RESETING:
+			intr_flags |= ONENAND_INT_RESET;
+			break;
+		case FL_PREPARING_ERASE:
+			intr_flags |= ONENAND_INT_ERASE;
+			break;
+		case FL_VERIFYING_ERASE:
+			i = 101;
+			break;
+		}
+
+		while (--i) {
+			udelay(1);
+			intr = read_reg(c, ONENAND_REG_INTERRUPT);
+			if (intr & ONENAND_INT_MASTER)
+				break;
+		}
+		ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+		if (ctrl & ONENAND_CTRL_ERROR) {
+			wait_err("controller error", state, ctrl, intr);
+			return -EIO;
+		}
+		if ((intr & intr_flags) == intr_flags)
+			return 0;
+		/* Continue in wait for interrupt branch */
+	}
+
+	if (state != FL_READING) {
+		int result;
+
+		/* Turn interrupts on */
+		syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+		if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) {
+			syscfg |= ONENAND_SYS_CFG1_IOBE;
+			write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+			/* Add a delay to let GPIO settle */
+			syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+		}
+
+		reinit_completion(&c->irq_done);
+		result = gpiod_get_value(c->int_gpiod);
+		if (result < 0) {
+			ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+			intr = read_reg(c, ONENAND_REG_INTERRUPT);
+			wait_err("gpio error", state, ctrl, intr);
+			return result;
+		} else if (result == 0) {
+			int retry_cnt = 0;
+retry:
+			if (!wait_for_completion_io_timeout(&c->irq_done,
+						msecs_to_jiffies(20))) {
+				/* Timeout after 20ms */
+				ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+				if (ctrl & ONENAND_CTRL_ONGO &&
+				    !this->ongoing) {
+					/*
+					 * The operation seems to be still going
+					 * so give it some more time.
+					 */
+					retry_cnt += 1;
+					if (retry_cnt < 3)
+						goto retry;
+					intr = read_reg(c,
+							ONENAND_REG_INTERRUPT);
+					wait_err("timeout", state, ctrl, intr);
+					return -EIO;
+				}
+				intr = read_reg(c, ONENAND_REG_INTERRUPT);
+				if ((intr & ONENAND_INT_MASTER) == 0)
+					wait_warn("timeout", state, ctrl, intr);
+			}
+		}
+	} else {
+		int retry_cnt = 0;
+
+		/* Turn interrupts off */
+		syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+		syscfg &= ~ONENAND_SYS_CFG1_IOBE;
+		write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+
+		timeout = jiffies + msecs_to_jiffies(20);
+		while (1) {
+			if (time_before(jiffies, timeout)) {
+				intr = read_reg(c, ONENAND_REG_INTERRUPT);
+				if (intr & ONENAND_INT_MASTER)
+					break;
+			} else {
+				/* Timeout after 20ms */
+				ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+				if (ctrl & ONENAND_CTRL_ONGO) {
+					/*
+					 * The operation seems to be still going
+					 * so give it some more time.
+					 */
+					retry_cnt += 1;
+					if (retry_cnt < 3) {
+						timeout = jiffies +
+							  msecs_to_jiffies(20);
+						continue;
+					}
+				}
+				break;
+			}
+		}
+	}
+
+	intr = read_reg(c, ONENAND_REG_INTERRUPT);
+	ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+
+	if (intr & ONENAND_INT_READ) {
+		int ecc = read_reg(c, ONENAND_REG_ECC_STATUS);
+
+		if (ecc) {
+			unsigned int addr1, addr8;
+
+			addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1);
+			addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8);
+			if (ecc & ONENAND_ECC_2BIT_ALL) {
+				printk(KERN_ERR "onenand_wait: ECC error = "
+				       "0x%04x, addr1 %#x, addr8 %#x\n",
+				       ecc, addr1, addr8);
+				mtd->ecc_stats.failed++;
+				return -EBADMSG;
+			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
+				printk(KERN_NOTICE "onenand_wait: correctable "
+				       "ECC error = 0x%04x, addr1 %#x, "
+				       "addr8 %#x\n", ecc, addr1, addr8);
+				mtd->ecc_stats.corrected++;
+			}
+		}
+	} else if (state == FL_READING) {
+		wait_err("timeout", state, ctrl, intr);
+		return -EIO;
+	}
+
+	if (ctrl & ONENAND_CTRL_ERROR) {
+		wait_err("controller error", state, ctrl, intr);
+		if (ctrl & ONENAND_CTRL_LOCK)
+			printk(KERN_ERR "onenand_wait: "
+					"Device is write protected!!!\n");
+		return -EIO;
+	}
+
+	ctrl_mask = 0xFE9F;
+	if (this->ongoing)
+		ctrl_mask &= ~0x8000;
+
+	if (ctrl & ctrl_mask)
+		wait_warn("unexpected controller status", state, ctrl, intr);
+
+	return 0;
+}
+
+static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (ONENAND_CURRENT_BUFFERRAM(this)) {
+		if (area == ONENAND_DATARAM)
+			return this->writesize;
+		if (area == ONENAND_SPARERAM)
+			return mtd->oobsize;
+	}
+
+	return 0;
+}
+
+static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c,
+					     dma_addr_t src, dma_addr_t dst,
+					     size_t count)
+{
+	struct dma_async_tx_descriptor *tx;
+	dma_cookie_t cookie;
+
+	tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count, 0);
+	if (!tx) {
+		dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n");
+		return -EIO;
+	}
+
+	reinit_completion(&c->dma_done);
+
+	tx->callback = omap2_onenand_dma_complete_func;
+	tx->callback_param = &c->dma_done;
+
+	cookie = tx->tx_submit(tx);
+	if (dma_submit_error(cookie)) {
+		dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n");
+		return -EIO;
+	}
+
+	dma_async_issue_pending(c->dma_chan);
+
+	if (!wait_for_completion_io_timeout(&c->dma_done,
+					    msecs_to_jiffies(20))) {
+		dmaengine_terminate_sync(c->dma_chan);
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
+					unsigned char *buffer, int offset,
+					size_t count)
+{
+	struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+	struct onenand_chip *this = mtd->priv;
+	struct device *dev = &c->pdev->dev;
+	void *buf = (void *)buffer;
+	dma_addr_t dma_src, dma_dst;
+	int bram_offset, err;
+	size_t xtra;
+
+	bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+	/*
+	 * If the buffer address is not DMA-able, len is not long enough to make
+	 * DMA transfers profitable or panic_write() may be in an interrupt
+	 * context fallback to PIO mode.
+	 */
+	if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 ||
+	    count < 384 || in_interrupt() || oops_in_progress )
+		goto out_copy;
+
+	xtra = count & 3;
+	if (xtra) {
+		count -= xtra;
+		memcpy(buf + count, this->base + bram_offset + count, xtra);
+	}
+
+	dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
+	dma_src = c->phys_base + bram_offset;
+
+	if (dma_mapping_error(dev, dma_dst)) {
+		dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count);
+		goto out_copy;
+	}
+
+	err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
+	dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
+	if (!err)
+		return 0;
+
+	dev_err(dev, "timeout waiting for DMA\n");
+
+out_copy:
+	memcpy(buf, this->base + bram_offset, count);
+	return 0;
+}
+
+static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
+					 const unsigned char *buffer,
+					 int offset, size_t count)
+{
+	struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+	struct onenand_chip *this = mtd->priv;
+	struct device *dev = &c->pdev->dev;
+	void *buf = (void *)buffer;
+	dma_addr_t dma_src, dma_dst;
+	int bram_offset, err;
+
+	bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+	/*
+	 * If the buffer address is not DMA-able, len is not long enough to make
+	 * DMA transfers profitable or panic_write() may be in an interrupt
+	 * context fallback to PIO mode.
+	 */
+	if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 ||
+	    count < 384 || in_interrupt() || oops_in_progress )
+		goto out_copy;
+
+	dma_src = dma_map_single(dev, buf, count, DMA_TO_DEVICE);
+	dma_dst = c->phys_base + bram_offset;
+	if (dma_mapping_error(dev, dma_src)) {
+		dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count);
+		goto out_copy;
+	}
+
+	err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
+	dma_unmap_page(dev, dma_src, count, DMA_TO_DEVICE);
+	if (!err)
+		return 0;
+
+	dev_err(dev, "timeout waiting for DMA\n");
+
+out_copy:
+	memcpy(this->base + bram_offset, buf, count);
+	return 0;
+}
+
+static void omap2_onenand_shutdown(struct platform_device *pdev)
+{
+	struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+	/* With certain content in the buffer RAM, the OMAP boot ROM code
+	 * can recognize the flash chip incorrectly. Zero it out before
+	 * soft reset.
+	 */
+	memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE);
+}
+
+static int omap2_onenand_probe(struct platform_device *pdev)
+{
+	u32 val;
+	dma_cap_mask_t mask;
+	int freq, latency, r;
+	struct resource *res;
+	struct omap2_onenand *c;
+	struct gpmc_onenand_info info;
+	struct device *dev = &pdev->dev;
+	struct device_node *np = dev->of_node;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res) {
+		dev_err(dev, "error getting memory resource\n");
+		return -EINVAL;
+	}
+
+	r = of_property_read_u32(np, "reg", &val);
+	if (r) {
+		dev_err(dev, "reg not found in DT\n");
+		return r;
+	}
+
+	c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL);
+	if (!c)
+		return -ENOMEM;
+
+	init_completion(&c->irq_done);
+	init_completion(&c->dma_done);
+	c->gpmc_cs = val;
+	c->phys_base = res->start;
+
+	c->onenand.base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(c->onenand.base))
+		return PTR_ERR(c->onenand.base);
+
+	c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN);
+	if (IS_ERR(c->int_gpiod)) {
+		r = PTR_ERR(c->int_gpiod);
+		/* Just try again if this happens */
+		if (r != -EPROBE_DEFER)
+			dev_err(dev, "error getting gpio: %d\n", r);
+		return r;
+	}
+
+	if (c->int_gpiod) {
+		r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod),
+				     omap2_onenand_interrupt,
+				     IRQF_TRIGGER_RISING, "onenand", c);
+		if (r)
+			return r;
+
+		c->onenand.wait = omap2_onenand_wait;
+	}
+
+	dma_cap_zero(mask);
+	dma_cap_set(DMA_MEMCPY, mask);
+
+	c->dma_chan = dma_request_channel(mask, NULL, NULL);
+	if (c->dma_chan) {
+		c->onenand.read_bufferram = omap2_onenand_read_bufferram;
+		c->onenand.write_bufferram = omap2_onenand_write_bufferram;
+	}
+
+	c->pdev = pdev;
+	c->mtd.priv = &c->onenand;
+	c->mtd.dev.parent = dev;
+	mtd_set_of_node(&c->mtd, dev->of_node);
+
+	dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n",
+		 c->gpmc_cs, c->phys_base, c->onenand.base,
+		 c->dma_chan ? "DMA" : "PIO");
+
+	if ((r = onenand_scan(&c->mtd, 1)) < 0)
+		goto err_release_dma;
+
+	freq = omap2_onenand_get_freq(c->onenand.version_id);
+	if (freq > 0) {
+		switch (freq) {
+		case 104:
+			latency = 7;
+			break;
+		case 83:
+			latency = 6;
+			break;
+		case 66:
+			latency = 5;
+			break;
+		case 56:
+			latency = 4;
+			break;
+		default:	/* 40 MHz or lower */
+			latency = 3;
+			break;
+		}
+
+		r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs,
+						  freq, latency, &info);
+		if (r)
+			goto err_release_onenand;
+
+		r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write,
+					  latency, info.burst_len);
+		if (r)
+			goto err_release_onenand;
+
+		if (info.sync_read || info.sync_write)
+			dev_info(dev, "optimized timings for %d MHz\n", freq);
+	}
+
+	r = mtd_device_register(&c->mtd, NULL, 0);
+	if (r)
+		goto err_release_onenand;
+
+	platform_set_drvdata(pdev, c);
+
+	return 0;
+
+err_release_onenand:
+	onenand_release(&c->mtd);
+err_release_dma:
+	if (c->dma_chan)
+		dma_release_channel(c->dma_chan);
+
+	return r;
+}
+
+static int omap2_onenand_remove(struct platform_device *pdev)
+{
+	struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+	onenand_release(&c->mtd);
+	if (c->dma_chan)
+		dma_release_channel(c->dma_chan);
+	omap2_onenand_shutdown(pdev);
+
+	return 0;
+}
+
+static const struct of_device_id omap2_onenand_id_table[] = {
+	{ .compatible = "ti,omap2-onenand", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, omap2_onenand_id_table);
+
+static struct platform_driver omap2_onenand_driver = {
+	.probe		= omap2_onenand_probe,
+	.remove		= omap2_onenand_remove,
+	.shutdown	= omap2_onenand_shutdown,
+	.driver		= {
+		.name	= DRIVER_NAME,
+		.of_match_table = omap2_onenand_id_table,
+	},
+};
+
+module_platform_driver(omap2_onenand_driver);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");
diff --git a/drivers/mtd/nand/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c
new file mode 100644
index 0000000..4ca4b19
--- /dev/null
+++ b/drivers/mtd/nand/onenand/onenand_base.c
@@ -0,0 +1,4016 @@
+/*
+ *  Copyright © 2005-2009 Samsung Electronics
+ *  Copyright © 2007 Nokia Corporation
+ *
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ *  Credits:
+ *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
+ *	auto-placement support, read-while load support, various fixes
+ *
+ *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
+ *	Flex-OneNAND support
+ *	Amul Kumar Saha <amul.saha at samsung.com>
+ *	OTP support
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/jiffies.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+
+/*
+ * Multiblock erase if number of blocks to erase is 2 or more.
+ * Maximum number of blocks for simultaneous erase is 64.
+ */
+#define MB_ERASE_MIN_BLK_COUNT 2
+#define MB_ERASE_MAX_BLK_COUNT 64
+
+/* Default Flex-OneNAND boundary and lock respectively */
+static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
+
+module_param_array(flex_bdry, int, NULL, 0400);
+MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
+				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
+				"DIE_BDRY: SLC boundary of the die"
+				"LOCK: Locking information for SLC boundary"
+				"    : 0->Set boundary in unlocked status"
+				"    : 1->Set boundary in locked status");
+
+/* Default OneNAND/Flex-OneNAND OTP options*/
+static int otp;
+
+module_param(otp, int, 0400);
+MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
+			"Syntax : otp=LOCK_TYPE"
+			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
+			"	   : 0 -> Default (No Blocks Locked)"
+			"	   : 1 -> OTP Block lock"
+			"	   : 2 -> 1st Block lock"
+			"	   : 3 -> BOTH OTP Block and 1st Block lock");
+
+/*
+ * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
+ * For now, we expose only 64 out of 80 ecc bytes
+ */
+static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	if (section > 7)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 6;
+	oobregion->length = 10;
+
+	return 0;
+}
+
+static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	if (section > 7)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 2;
+	oobregion->length = 4;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
+	.ecc = flexonenand_ooblayout_ecc,
+	.free = flexonenand_ooblayout_free,
+};
+
+/*
+ * onenand_oob_128 - oob info for OneNAND with 4KB page
+ *
+ * Based on specification:
+ * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
+ *
+ */
+static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	if (section > 7)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 7;
+	oobregion->length = 9;
+
+	return 0;
+}
+
+static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	if (section >= 8)
+		return -ERANGE;
+
+	/*
+	 * free bytes are using the spare area fields marked as
+	 * "Managed by internal ECC logic for Logical Sector Number area"
+	 */
+	oobregion->offset = (section * 16) + 2;
+	oobregion->length = 3;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
+	.ecc = onenand_ooblayout_128_ecc,
+	.free = onenand_ooblayout_128_free,
+};
+
+/**
+ * onenand_oob_32_64 - oob info for large (2KB) page
+ */
+static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *oobregion)
+{
+	if (section > 3)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 8;
+	oobregion->length = 5;
+
+	return 0;
+}
+
+static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *oobregion)
+{
+	int sections = (mtd->oobsize / 32) * 2;
+
+	if (section >= sections)
+		return -ERANGE;
+
+	if (section & 1) {
+		oobregion->offset = ((section - 1) * 16) + 14;
+		oobregion->length = 2;
+	} else  {
+		oobregion->offset = (section * 16) + 2;
+		oobregion->length = 3;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
+	.ecc = onenand_ooblayout_32_64_ecc,
+	.free = onenand_ooblayout_32_64_free,
+};
+
+static const unsigned char ffchars[] = {
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
+};
+
+/**
+ * onenand_readw - [OneNAND Interface] Read OneNAND register
+ * @param addr		address to read
+ *
+ * Read OneNAND register
+ */
+static unsigned short onenand_readw(void __iomem *addr)
+{
+	return readw(addr);
+}
+
+/**
+ * onenand_writew - [OneNAND Interface] Write OneNAND register with value
+ * @param value		value to write
+ * @param addr		address to write
+ *
+ * Write OneNAND register with value
+ */
+static void onenand_writew(unsigned short value, void __iomem *addr)
+{
+	writew(value, addr);
+}
+
+/**
+ * onenand_block_address - [DEFAULT] Get block address
+ * @param this		onenand chip data structure
+ * @param block		the block
+ * @return		translated block address if DDP, otherwise same
+ *
+ * Setup Start Address 1 Register (F100h)
+ */
+static int onenand_block_address(struct onenand_chip *this, int block)
+{
+	/* Device Flash Core select, NAND Flash Block Address */
+	if (block & this->density_mask)
+		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
+
+	return block;
+}
+
+/**
+ * onenand_bufferram_address - [DEFAULT] Get bufferram address
+ * @param this		onenand chip data structure
+ * @param block		the block
+ * @return		set DBS value if DDP, otherwise 0
+ *
+ * Setup Start Address 2 Register (F101h) for DDP
+ */
+static int onenand_bufferram_address(struct onenand_chip *this, int block)
+{
+	/* Device BufferRAM Select */
+	if (block & this->density_mask)
+		return ONENAND_DDP_CHIP1;
+
+	return ONENAND_DDP_CHIP0;
+}
+
+/**
+ * onenand_page_address - [DEFAULT] Get page address
+ * @param page		the page address
+ * @param sector	the sector address
+ * @return		combined page and sector address
+ *
+ * Setup Start Address 8 Register (F107h)
+ */
+static int onenand_page_address(int page, int sector)
+{
+	/* Flash Page Address, Flash Sector Address */
+	int fpa, fsa;
+
+	fpa = page & ONENAND_FPA_MASK;
+	fsa = sector & ONENAND_FSA_MASK;
+
+	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
+}
+
+/**
+ * onenand_buffer_address - [DEFAULT] Get buffer address
+ * @param dataram1	DataRAM index
+ * @param sectors	the sector address
+ * @param count		the number of sectors
+ * @return		the start buffer value
+ *
+ * Setup Start Buffer Register (F200h)
+ */
+static int onenand_buffer_address(int dataram1, int sectors, int count)
+{
+	int bsa, bsc;
+
+	/* BufferRAM Sector Address */
+	bsa = sectors & ONENAND_BSA_MASK;
+
+	if (dataram1)
+		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
+	else
+		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
+
+	/* BufferRAM Sector Count */
+	bsc = count & ONENAND_BSC_MASK;
+
+	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
+}
+
+/**
+ * flexonenand_block- For given address return block number
+ * @param this         - OneNAND device structure
+ * @param addr		- Address for which block number is needed
+ */
+static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
+{
+	unsigned boundary, blk, die = 0;
+
+	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
+		die = 1;
+		addr -= this->diesize[0];
+	}
+
+	boundary = this->boundary[die];
+
+	blk = addr >> (this->erase_shift - 1);
+	if (blk > boundary)
+		blk = (blk + boundary + 1) >> 1;
+
+	blk += die ? this->density_mask : 0;
+	return blk;
+}
+
+inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
+{
+	if (!FLEXONENAND(this))
+		return addr >> this->erase_shift;
+	return flexonenand_block(this, addr);
+}
+
+/**
+ * flexonenand_addr - Return address of the block
+ * @this:		OneNAND device structure
+ * @block:		Block number on Flex-OneNAND
+ *
+ * Return address of the block
+ */
+static loff_t flexonenand_addr(struct onenand_chip *this, int block)
+{
+	loff_t ofs = 0;
+	int die = 0, boundary;
+
+	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
+		block -= this->density_mask;
+		die = 1;
+		ofs = this->diesize[0];
+	}
+
+	boundary = this->boundary[die];
+	ofs += (loff_t)block << (this->erase_shift - 1);
+	if (block > (boundary + 1))
+		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
+	return ofs;
+}
+
+loff_t onenand_addr(struct onenand_chip *this, int block)
+{
+	if (!FLEXONENAND(this))
+		return (loff_t)block << this->erase_shift;
+	return flexonenand_addr(this, block);
+}
+EXPORT_SYMBOL(onenand_addr);
+
+/**
+ * onenand_get_density - [DEFAULT] Get OneNAND density
+ * @param dev_id	OneNAND device ID
+ *
+ * Get OneNAND density from device ID
+ */
+static inline int onenand_get_density(int dev_id)
+{
+	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
+	return (density & ONENAND_DEVICE_DENSITY_MASK);
+}
+
+/**
+ * flexonenand_region - [Flex-OneNAND] Return erase region of addr
+ * @param mtd		MTD device structure
+ * @param addr		address whose erase region needs to be identified
+ */
+int flexonenand_region(struct mtd_info *mtd, loff_t addr)
+{
+	int i;
+
+	for (i = 0; i < mtd->numeraseregions; i++)
+		if (addr < mtd->eraseregions[i].offset)
+			break;
+	return i - 1;
+}
+EXPORT_SYMBOL(flexonenand_region);
+
+/**
+ * onenand_command - [DEFAULT] Send command to OneNAND device
+ * @param mtd		MTD device structure
+ * @param cmd		the command to be sent
+ * @param addr		offset to read from or write to
+ * @param len		number of bytes to read or write
+ *
+ * Send command to OneNAND device. This function is used for middle/large page
+ * devices (1KB/2KB Bytes per page)
+ */
+static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int value, block, page;
+
+	/* Address translation */
+	switch (cmd) {
+	case ONENAND_CMD_UNLOCK:
+	case ONENAND_CMD_LOCK:
+	case ONENAND_CMD_LOCK_TIGHT:
+	case ONENAND_CMD_UNLOCK_ALL:
+		block = -1;
+		page = -1;
+		break;
+
+	case FLEXONENAND_CMD_PI_ACCESS:
+		/* addr contains die index */
+		block = addr * this->density_mask;
+		page = -1;
+		break;
+
+	case ONENAND_CMD_ERASE:
+	case ONENAND_CMD_MULTIBLOCK_ERASE:
+	case ONENAND_CMD_ERASE_VERIFY:
+	case ONENAND_CMD_BUFFERRAM:
+	case ONENAND_CMD_OTP_ACCESS:
+		block = onenand_block(this, addr);
+		page = -1;
+		break;
+
+	case FLEXONENAND_CMD_READ_PI:
+		cmd = ONENAND_CMD_READ;
+		block = addr * this->density_mask;
+		page = 0;
+		break;
+
+	default:
+		block = onenand_block(this, addr);
+		if (FLEXONENAND(this))
+			page = (int) (addr - onenand_addr(this, block))>>\
+				this->page_shift;
+		else
+			page = (int) (addr >> this->page_shift);
+		if (ONENAND_IS_2PLANE(this)) {
+			/* Make the even block number */
+			block &= ~1;
+			/* Is it the odd plane? */
+			if (addr & this->writesize)
+				block++;
+			page >>= 1;
+		}
+		page &= this->page_mask;
+		break;
+	}
+
+	/* NOTE: The setting order of the registers is very important! */
+	if (cmd == ONENAND_CMD_BUFFERRAM) {
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+
+		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
+			/* It is always BufferRAM0 */
+			ONENAND_SET_BUFFERRAM0(this);
+		else
+			/* Switch to the next data buffer */
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+
+		return 0;
+	}
+
+	if (block != -1) {
+		/* Write 'DFS, FBA' of Flash */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+	}
+
+	if (page != -1) {
+		/* Now we use page size operation */
+		int sectors = 0, count = 0;
+		int dataram;
+
+		switch (cmd) {
+		case FLEXONENAND_CMD_RECOVER_LSB:
+		case ONENAND_CMD_READ:
+		case ONENAND_CMD_READOOB:
+			if (ONENAND_IS_4KB_PAGE(this))
+				/* It is always BufferRAM0 */
+				dataram = ONENAND_SET_BUFFERRAM0(this);
+			else
+				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
+			break;
+
+		default:
+			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+				cmd = ONENAND_CMD_2X_PROG;
+			dataram = ONENAND_CURRENT_BUFFERRAM(this);
+			break;
+		}
+
+		/* Write 'FPA, FSA' of Flash */
+		value = onenand_page_address(page, sectors);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
+
+		/* Write 'BSA, BSC' of DataRAM */
+		value = onenand_buffer_address(dataram, sectors, count);
+		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+	}
+
+	/* Interrupt clear */
+	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+	/* Write command */
+	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+	return 0;
+}
+
+/**
+ * onenand_read_ecc - return ecc status
+ * @param this		onenand chip structure
+ */
+static inline int onenand_read_ecc(struct onenand_chip *this)
+{
+	int ecc, i, result = 0;
+
+	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
+		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+
+	for (i = 0; i < 4; i++) {
+		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
+		if (likely(!ecc))
+			continue;
+		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
+			return ONENAND_ECC_2BIT_ALL;
+		else
+			result = ONENAND_ECC_1BIT_ALL;
+	}
+
+	return result;
+}
+
+/**
+ * onenand_wait - [DEFAULT] wait until the command is done
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Wait for command done. This applies to all OneNAND command
+ * Read can take up to 30us, erase up to 2ms and program up to 350us
+ * according to general OneNAND specs
+ */
+static int onenand_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip * this = mtd->priv;
+	unsigned long timeout;
+	unsigned int flags = ONENAND_INT_MASTER;
+	unsigned int interrupt = 0;
+	unsigned int ctrl;
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+		if (interrupt & flags)
+			break;
+
+		if (state != FL_READING && state != FL_PREPARING_ERASE)
+			cond_resched();
+	}
+	/* To get correct interrupt status in timeout case */
+	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+
+	/*
+	 * In the Spec. it checks the controller status first
+	 * However if you get the correct information in case of
+	 * power off recovery (POR) test, it should read ECC status first
+	 */
+	if (interrupt & ONENAND_INT_READ) {
+		int ecc = onenand_read_ecc(this);
+		if (ecc) {
+			if (ecc & ONENAND_ECC_2BIT_ALL) {
+				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
+					__func__, ecc);
+				mtd->ecc_stats.failed++;
+				return -EBADMSG;
+			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
+				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
+					__func__, ecc);
+				mtd->ecc_stats.corrected++;
+			}
+		}
+	} else if (state == FL_READING) {
+		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
+			__func__, ctrl, interrupt);
+		return -EIO;
+	}
+
+	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
+		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
+		       __func__, ctrl, interrupt);
+		return -EIO;
+	}
+
+	if (!(interrupt & ONENAND_INT_MASTER)) {
+		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
+		       __func__, ctrl, interrupt);
+		return -EIO;
+	}
+
+	/* If there's controller error, it's a real error */
+	if (ctrl & ONENAND_CTRL_ERROR) {
+		printk(KERN_ERR "%s: controller error = 0x%04x\n",
+			__func__, ctrl);
+		if (ctrl & ONENAND_CTRL_LOCK)
+			printk(KERN_ERR "%s: it's locked error.\n", __func__);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+/*
+ * onenand_interrupt - [DEFAULT] onenand interrupt handler
+ * @param irq		onenand interrupt number
+ * @param dev_id	interrupt data
+ *
+ * complete the work
+ */
+static irqreturn_t onenand_interrupt(int irq, void *data)
+{
+	struct onenand_chip *this = data;
+
+	/* To handle shared interrupt */
+	if (!this->complete.done)
+		complete(&this->complete);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * onenand_interrupt_wait - [DEFAULT] wait until the command is done
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	wait_for_completion(&this->complete);
+
+	return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Try interrupt based wait (It is used one-time)
+ */
+static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned long remain, timeout;
+
+	/* We use interrupt wait first */
+	this->wait = onenand_interrupt_wait;
+
+	timeout = msecs_to_jiffies(100);
+	remain = wait_for_completion_timeout(&this->complete, timeout);
+	if (!remain) {
+		printk(KERN_INFO "OneNAND: There's no interrupt. "
+				"We use the normal wait\n");
+
+		/* Release the irq */
+		free_irq(this->irq, this);
+
+		this->wait = onenand_wait;
+	}
+
+	return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
+ * @param mtd		MTD device structure
+ *
+ * There's two method to wait onenand work
+ * 1. polling - read interrupt status register
+ * 2. interrupt - use the kernel interrupt method
+ */
+static void onenand_setup_wait(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int syscfg;
+
+	init_completion(&this->complete);
+
+	if (this->irq <= 0) {
+		this->wait = onenand_wait;
+		return;
+	}
+
+	if (request_irq(this->irq, &onenand_interrupt,
+				IRQF_SHARED, "onenand", this)) {
+		/* If we can't get irq, use the normal wait */
+		this->wait = onenand_wait;
+		return;
+	}
+
+	/* Enable interrupt */
+	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+	syscfg |= ONENAND_SYS_CFG1_IOBE;
+	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+	this->wait = onenand_try_interrupt_wait;
+}
+
+/**
+ * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @return		offset given area
+ *
+ * Return BufferRAM offset given area
+ */
+static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (ONENAND_CURRENT_BUFFERRAM(this)) {
+		/* Note: the 'this->writesize' is a real page size */
+		if (area == ONENAND_DATARAM)
+			return this->writesize;
+		if (area == ONENAND_SPARERAM)
+			return mtd->oobsize;
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @param buffer	the databuffer to put/get data
+ * @param offset	offset to read from or write to
+ * @param count		number of bytes to read/write
+ *
+ * Read the BufferRAM area
+ */
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+		unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *bufferram;
+
+	bufferram = this->base + area;
+
+	bufferram += onenand_bufferram_offset(mtd, area);
+
+	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+		unsigned short word;
+
+		/* Align with word(16-bit) size */
+		count--;
+
+		/* Read word and save byte */
+		word = this->read_word(bufferram + offset + count);
+		buffer[count] = (word & 0xff);
+	}
+
+	memcpy(buffer, bufferram + offset, count);
+
+	return 0;
+}
+
+/**
+ * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @param buffer	the databuffer to put/get data
+ * @param offset	offset to read from or write to
+ * @param count		number of bytes to read/write
+ *
+ * Read the BufferRAM area with Sync. Burst Mode
+ */
+static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
+		unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *bufferram;
+
+	bufferram = this->base + area;
+
+	bufferram += onenand_bufferram_offset(mtd, area);
+
+	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
+
+	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+		unsigned short word;
+
+		/* Align with word(16-bit) size */
+		count--;
+
+		/* Read word and save byte */
+		word = this->read_word(bufferram + offset + count);
+		buffer[count] = (word & 0xff);
+	}
+
+	memcpy(buffer, bufferram + offset, count);
+
+	this->mmcontrol(mtd, 0);
+
+	return 0;
+}
+
+/**
+ * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @param buffer	the databuffer to put/get data
+ * @param offset	offset to read from or write to
+ * @param count		number of bytes to read/write
+ *
+ * Write the BufferRAM area
+ */
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+		const unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *bufferram;
+
+	bufferram = this->base + area;
+
+	bufferram += onenand_bufferram_offset(mtd, area);
+
+	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+		unsigned short word;
+		int byte_offset;
+
+		/* Align with word(16-bit) size */
+		count--;
+
+		/* Calculate byte access offset */
+		byte_offset = offset + count;
+
+		/* Read word and save byte */
+		word = this->read_word(bufferram + byte_offset);
+		word = (word & ~0xff) | buffer[count];
+		this->write_word(word, bufferram + byte_offset);
+	}
+
+	memcpy(bufferram + offset, buffer, count);
+
+	return 0;
+}
+
+/**
+ * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
+ * @param mtd		MTD data structure
+ * @param addr		address to check
+ * @return		blockpage address
+ *
+ * Get blockpage address at 2x program mode
+ */
+static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
+{
+	struct onenand_chip *this = mtd->priv;
+	int blockpage, block, page;
+
+	/* Calculate the even block number */
+	block = (int) (addr >> this->erase_shift) & ~1;
+	/* Is it the odd plane? */
+	if (addr & this->writesize)
+		block++;
+	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
+	blockpage = (block << 7) | page;
+
+	return blockpage;
+}
+
+/**
+ * onenand_check_bufferram - [GENERIC] Check BufferRAM information
+ * @param mtd		MTD data structure
+ * @param addr		address to check
+ * @return		1 if there are valid data, otherwise 0
+ *
+ * Check bufferram if there is data we required
+ */
+static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
+{
+	struct onenand_chip *this = mtd->priv;
+	int blockpage, found = 0;
+	unsigned int i;
+
+	if (ONENAND_IS_2PLANE(this))
+		blockpage = onenand_get_2x_blockpage(mtd, addr);
+	else
+		blockpage = (int) (addr >> this->page_shift);
+
+	/* Is there valid data? */
+	i = ONENAND_CURRENT_BUFFERRAM(this);
+	if (this->bufferram[i].blockpage == blockpage)
+		found = 1;
+	else {
+		/* Check another BufferRAM */
+		i = ONENAND_NEXT_BUFFERRAM(this);
+		if (this->bufferram[i].blockpage == blockpage) {
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+			found = 1;
+		}
+	}
+
+	if (found && ONENAND_IS_DDP(this)) {
+		/* Select DataRAM for DDP */
+		int block = onenand_block(this, addr);
+		int value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+	}
+
+	return found;
+}
+
+/**
+ * onenand_update_bufferram - [GENERIC] Update BufferRAM information
+ * @param mtd		MTD data structure
+ * @param addr		address to update
+ * @param valid		valid flag
+ *
+ * Update BufferRAM information
+ */
+static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
+		int valid)
+{
+	struct onenand_chip *this = mtd->priv;
+	int blockpage;
+	unsigned int i;
+
+	if (ONENAND_IS_2PLANE(this))
+		blockpage = onenand_get_2x_blockpage(mtd, addr);
+	else
+		blockpage = (int) (addr >> this->page_shift);
+
+	/* Invalidate another BufferRAM */
+	i = ONENAND_NEXT_BUFFERRAM(this);
+	if (this->bufferram[i].blockpage == blockpage)
+		this->bufferram[i].blockpage = -1;
+
+	/* Update BufferRAM */
+	i = ONENAND_CURRENT_BUFFERRAM(this);
+	if (valid)
+		this->bufferram[i].blockpage = blockpage;
+	else
+		this->bufferram[i].blockpage = -1;
+}
+
+/**
+ * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
+ * @param mtd		MTD data structure
+ * @param addr		start address to invalidate
+ * @param len		length to invalidate
+ *
+ * Invalidate BufferRAM information
+ */
+static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
+		unsigned int len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i;
+	loff_t end_addr = addr + len;
+
+	/* Invalidate BufferRAM */
+	for (i = 0; i < MAX_BUFFERRAM; i++) {
+		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
+		if (buf_addr >= addr && buf_addr < end_addr)
+			this->bufferram[i].blockpage = -1;
+	}
+}
+
+/**
+ * onenand_get_device - [GENERIC] Get chip for selected access
+ * @param mtd		MTD device structure
+ * @param new_state	the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int onenand_get_device(struct mtd_info *mtd, int new_state)
+{
+	struct onenand_chip *this = mtd->priv;
+	DECLARE_WAITQUEUE(wait, current);
+
+	/*
+	 * Grab the lock and see if the device is available
+	 */
+	while (1) {
+		spin_lock(&this->chip_lock);
+		if (this->state == FL_READY) {
+			this->state = new_state;
+			spin_unlock(&this->chip_lock);
+			if (new_state != FL_PM_SUSPENDED && this->enable)
+				this->enable(mtd);
+			break;
+		}
+		if (new_state == FL_PM_SUSPENDED) {
+			spin_unlock(&this->chip_lock);
+			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
+		}
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&this->wq, &wait);
+		spin_unlock(&this->chip_lock);
+		schedule();
+		remove_wait_queue(&this->wq, &wait);
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_release_device - [GENERIC] release chip
+ * @param mtd		MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void onenand_release_device(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (this->state != FL_PM_SUSPENDED && this->disable)
+		this->disable(mtd);
+	/* Release the chip */
+	spin_lock(&this->chip_lock);
+	this->state = FL_READY;
+	wake_up(&this->wq);
+	spin_unlock(&this->chip_lock);
+}
+
+/**
+ * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd		MTD device structure
+ * @param buf		destination address
+ * @param column	oob offset to read from
+ * @param thislen	oob length to read
+ */
+static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
+				int thislen)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret;
+
+	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
+			     mtd->oobsize);
+	ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
+					  column, thislen);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+/**
+ * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
+ * @param mtd		MTD device structure
+ * @param addr		address to recover
+ * @param status	return value from onenand_wait / onenand_bbt_wait
+ *
+ * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
+ * lower page address and MSB page has higher page address in paired pages.
+ * If power off occurs during MSB page program, the paired LSB page data can
+ * become corrupt. LSB page recovery read is a way to read LSB page though page
+ * data are corrupted. When uncorrectable error occurs as a result of LSB page
+ * read after power up, issue LSB page recovery read.
+ */
+static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i;
+
+	/* Recovery is only for Flex-OneNAND */
+	if (!FLEXONENAND(this))
+		return status;
+
+	/* check if we failed due to uncorrectable error */
+	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
+		return status;
+
+	/* check if address lies in MLC region */
+	i = flexonenand_region(mtd, addr);
+	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
+		return status;
+
+	/* We are attempting to reread, so decrement stats.failed
+	 * which was incremented by onenand_wait due to read failure
+	 */
+	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
+		__func__);
+	mtd->ecc_stats.failed--;
+
+	/* Issue the LSB page recovery command */
+	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
+	return this->wait(mtd, FL_READING);
+}
+
+/**
+ * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops:		oob operation description structure
+ *
+ * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
+ * So, read-while-load is not present.
+ */
+static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+				struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_ecc_stats stats;
+	size_t len = ops->len;
+	size_t ooblen = ops->ooblen;
+	u_char *buf = ops->datbuf;
+	u_char *oobbuf = ops->oobbuf;
+	int read = 0, column, thislen;
+	int oobread = 0, oobcolumn, thisooblen, oobsize;
+	int ret = 0;
+	int writesize = this->writesize;
+
+	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+			(int)len);
+
+	oobsize = mtd_oobavail(mtd, ops);
+	oobcolumn = from & (mtd->oobsize - 1);
+
+	/* Do not allow reads past end of device */
+	if (from + len > mtd->size) {
+		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+			__func__);
+		ops->retlen = 0;
+		ops->oobretlen = 0;
+		return -EINVAL;
+	}
+
+	stats = mtd->ecc_stats;
+
+	while (read < len) {
+		cond_resched();
+
+		thislen = min_t(int, writesize, len - read);
+
+		column = from & (writesize - 1);
+		if (column + thislen > writesize)
+			thislen = writesize - column;
+
+		if (!onenand_check_bufferram(mtd, from)) {
+			this->command(mtd, ONENAND_CMD_READ, from, writesize);
+
+			ret = this->wait(mtd, FL_READING);
+			if (unlikely(ret))
+				ret = onenand_recover_lsb(mtd, from, ret);
+			onenand_update_bufferram(mtd, from, !ret);
+			if (mtd_is_eccerr(ret))
+				ret = 0;
+			if (ret)
+				break;
+		}
+
+		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+		if (oobbuf) {
+			thisooblen = oobsize - oobcolumn;
+			thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+			if (ops->mode == MTD_OPS_AUTO_OOB)
+				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+			else
+				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+			oobread += thisooblen;
+			oobbuf += thisooblen;
+			oobcolumn = 0;
+		}
+
+		read += thislen;
+		if (read == len)
+			break;
+
+		from += thislen;
+		buf += thislen;
+	}
+
+	/*
+	 * Return success, if no ECC failures, else -EBADMSG
+	 * fs driver will take care of that, because
+	 * retlen == desired len and result == -EBADMSG
+	 */
+	ops->retlen = read;
+	ops->oobretlen = oobread;
+
+	if (ret)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
+	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
+}
+
+/**
+ * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops:		oob operation description structure
+ *
+ * OneNAND read main and/or out-of-band data
+ */
+static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+				struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_ecc_stats stats;
+	size_t len = ops->len;
+	size_t ooblen = ops->ooblen;
+	u_char *buf = ops->datbuf;
+	u_char *oobbuf = ops->oobbuf;
+	int read = 0, column, thislen;
+	int oobread = 0, oobcolumn, thisooblen, oobsize;
+	int ret = 0, boundary = 0;
+	int writesize = this->writesize;
+
+	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+			(int)len);
+
+	oobsize = mtd_oobavail(mtd, ops);
+	oobcolumn = from & (mtd->oobsize - 1);
+
+	/* Do not allow reads past end of device */
+	if ((from + len) > mtd->size) {
+		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+			__func__);
+		ops->retlen = 0;
+		ops->oobretlen = 0;
+		return -EINVAL;
+	}
+
+	stats = mtd->ecc_stats;
+
+ 	/* Read-while-load method */
+
+ 	/* Do first load to bufferRAM */
+ 	if (read < len) {
+ 		if (!onenand_check_bufferram(mtd, from)) {
+			this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ 			ret = this->wait(mtd, FL_READING);
+ 			onenand_update_bufferram(mtd, from, !ret);
+			if (mtd_is_eccerr(ret))
+				ret = 0;
+ 		}
+ 	}
+
+	thislen = min_t(int, writesize, len - read);
+	column = from & (writesize - 1);
+	if (column + thislen > writesize)
+		thislen = writesize - column;
+
+ 	while (!ret) {
+ 		/* If there is more to load then start next load */
+ 		from += thislen;
+ 		if (read + thislen < len) {
+			this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ 			/*
+ 			 * Chip boundary handling in DDP
+ 			 * Now we issued chip 1 read and pointed chip 1
+			 * bufferram so we have to point chip 0 bufferram.
+ 			 */
+ 			if (ONENAND_IS_DDP(this) &&
+ 			    unlikely(from == (this->chipsize >> 1))) {
+ 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
+ 				boundary = 1;
+ 			} else
+ 				boundary = 0;
+ 			ONENAND_SET_PREV_BUFFERRAM(this);
+ 		}
+ 		/* While load is going, read from last bufferRAM */
+ 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+
+		/* Read oob area if needed */
+		if (oobbuf) {
+			thisooblen = oobsize - oobcolumn;
+			thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+			if (ops->mode == MTD_OPS_AUTO_OOB)
+				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+			else
+				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+			oobread += thisooblen;
+			oobbuf += thisooblen;
+			oobcolumn = 0;
+		}
+
+ 		/* See if we are done */
+ 		read += thislen;
+ 		if (read == len)
+ 			break;
+ 		/* Set up for next read from bufferRAM */
+ 		if (unlikely(boundary))
+ 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
+ 		ONENAND_SET_NEXT_BUFFERRAM(this);
+ 		buf += thislen;
+		thislen = min_t(int, writesize, len - read);
+ 		column = 0;
+ 		cond_resched();
+ 		/* Now wait for load */
+ 		ret = this->wait(mtd, FL_READING);
+ 		onenand_update_bufferram(mtd, from, !ret);
+		if (mtd_is_eccerr(ret))
+			ret = 0;
+ 	}
+
+	/*
+	 * Return success, if no ECC failures, else -EBADMSG
+	 * fs driver will take care of that, because
+	 * retlen == desired len and result == -EBADMSG
+	 */
+	ops->retlen = read;
+	ops->oobretlen = oobread;
+
+	if (ret)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
+	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
+}
+
+/**
+ * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops:		oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area
+ */
+static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
+			struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_ecc_stats stats;
+	int read = 0, thislen, column, oobsize;
+	size_t len = ops->ooblen;
+	unsigned int mode = ops->mode;
+	u_char *buf = ops->oobbuf;
+	int ret = 0, readcmd;
+
+	from += ops->ooboffs;
+
+	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+			(int)len);
+
+	/* Initialize return length value */
+	ops->oobretlen = 0;
+
+	if (mode == MTD_OPS_AUTO_OOB)
+		oobsize = mtd->oobavail;
+	else
+		oobsize = mtd->oobsize;
+
+	column = from & (mtd->oobsize - 1);
+
+	if (unlikely(column >= oobsize)) {
+		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	stats = mtd->ecc_stats;
+
+	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+	while (read < len) {
+		cond_resched();
+
+		thislen = oobsize - column;
+		thislen = min_t(int, thislen, len);
+
+		this->command(mtd, readcmd, from, mtd->oobsize);
+
+		onenand_update_bufferram(mtd, from, 0);
+
+		ret = this->wait(mtd, FL_READING);
+		if (unlikely(ret))
+			ret = onenand_recover_lsb(mtd, from, ret);
+
+		if (ret && !mtd_is_eccerr(ret)) {
+			printk(KERN_ERR "%s: read failed = 0x%x\n",
+				__func__, ret);
+			break;
+		}
+
+		if (mode == MTD_OPS_AUTO_OOB)
+			onenand_transfer_auto_oob(mtd, buf, column, thislen);
+		else
+			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+
+		read += thislen;
+
+		if (read == len)
+			break;
+
+		buf += thislen;
+
+		/* Read more? */
+		if (read < len) {
+			/* Page size */
+			from += mtd->writesize;
+			column = 0;
+		}
+	}
+
+	ops->oobretlen = read;
+
+	if (ret)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	return 0;
+}
+
+/**
+ * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
+ * @param mtd:		MTD device structure
+ * @param from:		offset to read from
+ * @param ops:		oob operation description structure
+
+ * Read main and/or out-of-band
+ */
+static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
+			    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret;
+
+	switch (ops->mode) {
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_AUTO_OOB:
+		break;
+	case MTD_OPS_RAW:
+		/* Not implemented yet */
+	default:
+		return -EINVAL;
+	}
+
+	onenand_get_device(mtd, FL_READING);
+	if (ops->datbuf)
+		ret = ONENAND_IS_4KB_PAGE(this) ?
+			onenand_mlc_read_ops_nolock(mtd, from, ops) :
+			onenand_read_ops_nolock(mtd, from, ops);
+	else
+		ret = onenand_read_oob_nolock(mtd, from, ops);
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_bbt_wait - [DEFAULT] wait until the command is done
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned long timeout;
+	unsigned int interrupt, ctrl, ecc, addr1, addr8;
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+		if (interrupt & ONENAND_INT_MASTER)
+			break;
+	}
+	/* To get correct interrupt status in timeout case */
+	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
+	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
+
+	if (interrupt & ONENAND_INT_READ) {
+		ecc = onenand_read_ecc(this);
+		if (ecc & ONENAND_ECC_2BIT_ALL) {
+			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
+			       "intr 0x%04x addr1 %#x addr8 %#x\n",
+			       __func__, ecc, ctrl, interrupt, addr1, addr8);
+			return ONENAND_BBT_READ_ECC_ERROR;
+		}
+	} else {
+		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
+		       "intr 0x%04x addr1 %#x addr8 %#x\n",
+		       __func__, ctrl, interrupt, addr1, addr8);
+		return ONENAND_BBT_READ_FATAL_ERROR;
+	}
+
+	/* Initial bad block case: 0x2400 or 0x0400 */
+	if (ctrl & ONENAND_CTRL_ERROR) {
+		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
+		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
+		return ONENAND_BBT_READ_ERROR;
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops		oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area for bbt scan
+ */
+int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
+			    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int read = 0, thislen, column;
+	int ret = 0, readcmd;
+	size_t len = ops->ooblen;
+	u_char *buf = ops->oobbuf;
+
+	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
+			len);
+
+	/* Initialize return value */
+	ops->oobretlen = 0;
+
+	/* Do not allow reads past end of device */
+	if (unlikely((from + len) > mtd->size)) {
+		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+			__func__);
+		return ONENAND_BBT_READ_FATAL_ERROR;
+	}
+
+	/* Grab the lock and see if the device is available */
+	onenand_get_device(mtd, FL_READING);
+
+	column = from & (mtd->oobsize - 1);
+
+	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+	while (read < len) {
+		cond_resched();
+
+		thislen = mtd->oobsize - column;
+		thislen = min_t(int, thislen, len);
+
+		this->command(mtd, readcmd, from, mtd->oobsize);
+
+		onenand_update_bufferram(mtd, from, 0);
+
+		ret = this->bbt_wait(mtd, FL_READING);
+		if (unlikely(ret))
+			ret = onenand_recover_lsb(mtd, from, ret);
+
+		if (ret)
+			break;
+
+		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+		read += thislen;
+		if (read == len)
+			break;
+
+		buf += thislen;
+
+		/* Read more? */
+		if (read < len) {
+			/* Update Page size */
+			from += this->writesize;
+			column = 0;
+		}
+	}
+
+	/* Deselect and wake up anyone waiting on the device */
+	onenand_release_device(mtd);
+
+	ops->oobretlen = read;
+	return ret;
+}
+
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+/**
+ * onenand_verify_oob - [GENERIC] verify the oob contents after a write
+ * @param mtd		MTD device structure
+ * @param buf		the databuffer to verify
+ * @param to		offset to read from
+ */
+static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
+{
+	struct onenand_chip *this = mtd->priv;
+	u_char *oob_buf = this->oob_buf;
+	int status, i, readcmd;
+
+	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+	this->command(mtd, readcmd, to, mtd->oobsize);
+	onenand_update_bufferram(mtd, to, 0);
+	status = this->wait(mtd, FL_READING);
+	if (status)
+		return status;
+
+	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
+	for (i = 0; i < mtd->oobsize; i++)
+		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
+			return -EBADMSG;
+
+	return 0;
+}
+
+/**
+ * onenand_verify - [GENERIC] verify the chip contents after a write
+ * @param mtd          MTD device structure
+ * @param buf          the databuffer to verify
+ * @param addr         offset to read from
+ * @param len          number of bytes to read and compare
+ */
+static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret = 0;
+	int thislen, column;
+
+	column = addr & (this->writesize - 1);
+
+	while (len != 0) {
+		thislen = min_t(int, this->writesize - column, len);
+
+		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
+
+		onenand_update_bufferram(mtd, addr, 0);
+
+		ret = this->wait(mtd, FL_READING);
+		if (ret)
+			return ret;
+
+		onenand_update_bufferram(mtd, addr, 1);
+
+		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
+
+		if (memcmp(buf, this->verify_buf + column, thislen))
+			return -EBADMSG;
+
+		len -= thislen;
+		buf += thislen;
+		addr += thislen;
+		column = 0;
+	}
+
+	return 0;
+}
+#else
+#define onenand_verify(...)		(0)
+#define onenand_verify_oob(...)		(0)
+#endif
+
+#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
+
+static void onenand_panic_wait(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int interrupt;
+	int i;
+	
+	for (i = 0; i < 2000; i++) {
+		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+		if (interrupt & ONENAND_INT_MASTER)
+			break;
+		udelay(10);
+	}
+}
+
+/**
+ * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of written bytes
+ * @param buf		the data to write
+ *
+ * Write with ECC
+ */
+static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
+			 size_t *retlen, const u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	int column, subpage;
+	int written = 0;
+
+	if (this->state == FL_PM_SUSPENDED)
+		return -EBUSY;
+
+	/* Wait for any existing operation to clear */
+	onenand_panic_wait(mtd);
+
+	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+			(int)len);
+
+	/* Reject writes, which are not page aligned */
+        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+			__func__);
+                return -EINVAL;
+        }
+
+	column = to & (mtd->writesize - 1);
+
+	/* Loop until all data write */
+	while (written < len) {
+		int thislen = min_t(int, mtd->writesize - column, len - written);
+		u_char *wbuf = (u_char *) buf;
+
+		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+		/* Partial page write */
+		subpage = thislen < mtd->writesize;
+		if (subpage) {
+			memset(this->page_buf, 0xff, mtd->writesize);
+			memcpy(this->page_buf + column, buf, thislen);
+			wbuf = this->page_buf;
+		}
+
+		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
+
+		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
+
+		onenand_panic_wait(mtd);
+
+		/* In partial page write we don't update bufferram */
+		onenand_update_bufferram(mtd, to, !subpage);
+		if (ONENAND_IS_2PLANE(this)) {
+			ONENAND_SET_BUFFERRAM1(this);
+			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
+		}
+
+		written += thislen;
+
+		if (written == len)
+			break;
+
+		column = 0;
+		to += thislen;
+		buf += thislen;
+	}
+
+	*retlen = written;
+	return 0;
+}
+
+/**
+ * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd		MTD device structure
+ * @param oob_buf	oob buffer
+ * @param buf		source address
+ * @param column	oob offset to write to
+ * @param thislen	oob length to write
+ */
+static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
+				  const u_char *buf, int column, int thislen)
+{
+	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
+}
+
+/**
+ * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param ops		oob operation description structure
+ *
+ * Write main and/or oob with ECC
+ */
+static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
+				struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int written = 0, column, thislen = 0, subpage = 0;
+	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
+	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
+	size_t len = ops->len;
+	size_t ooblen = ops->ooblen;
+	const u_char *buf = ops->datbuf;
+	const u_char *oob = ops->oobbuf;
+	u_char *oobbuf;
+	int ret = 0, cmd;
+
+	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+			(int)len);
+
+	/* Initialize retlen, in case of early exit */
+	ops->retlen = 0;
+	ops->oobretlen = 0;
+
+	/* Reject writes, which are not page aligned */
+        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+			__func__);
+                return -EINVAL;
+        }
+
+	/* Check zero length */
+	if (!len)
+		return 0;
+	oobsize = mtd_oobavail(mtd, ops);
+	oobcolumn = to & (mtd->oobsize - 1);
+
+	column = to & (mtd->writesize - 1);
+
+	/* Loop until all data write */
+	while (1) {
+		if (written < len) {
+			u_char *wbuf = (u_char *) buf;
+
+			thislen = min_t(int, mtd->writesize - column, len - written);
+			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
+
+			cond_resched();
+
+			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+			/* Partial page write */
+			subpage = thislen < mtd->writesize;
+			if (subpage) {
+				memset(this->page_buf, 0xff, mtd->writesize);
+				memcpy(this->page_buf + column, buf, thislen);
+				wbuf = this->page_buf;
+			}
+
+			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+
+			if (oob) {
+				oobbuf = this->oob_buf;
+
+				/* We send data to spare ram with oobsize
+				 * to prevent byte access */
+				memset(oobbuf, 0xff, mtd->oobsize);
+				if (ops->mode == MTD_OPS_AUTO_OOB)
+					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
+				else
+					memcpy(oobbuf + oobcolumn, oob, thisooblen);
+
+				oobwritten += thisooblen;
+				oob += thisooblen;
+				oobcolumn = 0;
+			} else
+				oobbuf = (u_char *) ffchars;
+
+			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+		} else
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+
+		/*
+		 * 2 PLANE, MLC, and Flex-OneNAND do not support
+		 * write-while-program feature.
+		 */
+		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
+			ONENAND_SET_PREV_BUFFERRAM(this);
+
+			ret = this->wait(mtd, FL_WRITING);
+
+			/* In partial page write we don't update bufferram */
+			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
+			if (ret) {
+				written -= prevlen;
+				printk(KERN_ERR "%s: write failed %d\n",
+					__func__, ret);
+				break;
+			}
+
+			if (written == len) {
+				/* Only check verify write turn on */
+				ret = onenand_verify(mtd, buf - len, to - len, len);
+				if (ret)
+					printk(KERN_ERR "%s: verify failed %d\n",
+						__func__, ret);
+				break;
+			}
+
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+		}
+
+		this->ongoing = 0;
+		cmd = ONENAND_CMD_PROG;
+
+		/* Exclude 1st OTP and OTP blocks for cache program feature */
+		if (ONENAND_IS_CACHE_PROGRAM(this) &&
+		    likely(onenand_block(this, to) != 0) &&
+		    ONENAND_IS_4KB_PAGE(this) &&
+		    ((written + thislen) < len)) {
+			cmd = ONENAND_CMD_2X_CACHE_PROG;
+			this->ongoing = 1;
+		}
+
+		this->command(mtd, cmd, to, mtd->writesize);
+
+		/*
+		 * 2 PLANE, MLC, and Flex-OneNAND wait here
+		 */
+		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
+			ret = this->wait(mtd, FL_WRITING);
+
+			/* In partial page write we don't update bufferram */
+			onenand_update_bufferram(mtd, to, !ret && !subpage);
+			if (ret) {
+				printk(KERN_ERR "%s: write failed %d\n",
+					__func__, ret);
+				break;
+			}
+
+			/* Only check verify write turn on */
+			ret = onenand_verify(mtd, buf, to, thislen);
+			if (ret) {
+				printk(KERN_ERR "%s: verify failed %d\n",
+					__func__, ret);
+				break;
+			}
+
+			written += thislen;
+
+			if (written == len)
+				break;
+
+		} else
+			written += thislen;
+
+		column = 0;
+		prev_subpage = subpage;
+		prev = to;
+		prevlen = thislen;
+		to += thislen;
+		buf += thislen;
+		first = 0;
+	}
+
+	/* In error case, clear all bufferrams */
+	if (written != len)
+		onenand_invalidate_bufferram(mtd, 0, -1);
+
+	ops->retlen = written;
+	ops->oobretlen = oobwritten;
+
+	return ret;
+}
+
+
+/**
+ * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of written bytes
+ * @param buf		the data to write
+ * @param mode		operation mode
+ *
+ * OneNAND write out-of-band
+ */
+static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+				    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int column, ret = 0, oobsize;
+	int written = 0, oobcmd;
+	u_char *oobbuf;
+	size_t len = ops->ooblen;
+	const u_char *buf = ops->oobbuf;
+	unsigned int mode = ops->mode;
+
+	to += ops->ooboffs;
+
+	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+			(int)len);
+
+	/* Initialize retlen, in case of early exit */
+	ops->oobretlen = 0;
+
+	if (mode == MTD_OPS_AUTO_OOB)
+		oobsize = mtd->oobavail;
+	else
+		oobsize = mtd->oobsize;
+
+	column = to & (mtd->oobsize - 1);
+
+	if (unlikely(column >= oobsize)) {
+		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	/* For compatibility with NAND: Do not allow write past end of page */
+	if (unlikely(column + len > oobsize)) {
+		printk(KERN_ERR "%s: Attempt to write past end of page\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	oobbuf = this->oob_buf;
+
+	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
+
+	/* Loop until all data write */
+	while (written < len) {
+		int thislen = min_t(int, oobsize, len - written);
+
+		cond_resched();
+
+		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
+
+		/* We send data to spare ram with oobsize
+		 * to prevent byte access */
+		memset(oobbuf, 0xff, mtd->oobsize);
+		if (mode == MTD_OPS_AUTO_OOB)
+			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
+		else
+			memcpy(oobbuf + column, buf, thislen);
+		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+
+		if (ONENAND_IS_4KB_PAGE(this)) {
+			/* Set main area of DataRAM to 0xff*/
+			memset(this->page_buf, 0xff, mtd->writesize);
+			this->write_bufferram(mtd, ONENAND_DATARAM,
+					 this->page_buf, 0, mtd->writesize);
+		}
+
+		this->command(mtd, oobcmd, to, mtd->oobsize);
+
+		onenand_update_bufferram(mtd, to, 0);
+		if (ONENAND_IS_2PLANE(this)) {
+			ONENAND_SET_BUFFERRAM1(this);
+			onenand_update_bufferram(mtd, to + this->writesize, 0);
+		}
+
+		ret = this->wait(mtd, FL_WRITING);
+		if (ret) {
+			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+			break;
+		}
+
+		ret = onenand_verify_oob(mtd, oobbuf, to);
+		if (ret) {
+			printk(KERN_ERR "%s: verify failed %d\n",
+				__func__, ret);
+			break;
+		}
+
+		written += thislen;
+		if (written == len)
+			break;
+
+		to += mtd->writesize;
+		buf += thislen;
+		column = 0;
+	}
+
+	ops->oobretlen = written;
+
+	return ret;
+}
+
+/**
+ * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @param mtd:		MTD device structure
+ * @param to:		offset to write
+ * @param ops:		oob operation description structure
+ */
+static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	int ret;
+
+	switch (ops->mode) {
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_AUTO_OOB:
+		break;
+	case MTD_OPS_RAW:
+		/* Not implemented yet */
+	default:
+		return -EINVAL;
+	}
+
+	onenand_get_device(mtd, FL_WRITING);
+	if (ops->datbuf)
+		ret = onenand_write_ops_nolock(mtd, to, ops);
+	else
+		ret = onenand_write_oob_nolock(mtd, to, ops);
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset from device start
+ * @param allowbbt	1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+
+	/* Return info from the table */
+	return bbm->isbad_bbt(mtd, ofs, allowbbt);
+}
+
+
+static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
+					   struct erase_info *instr)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t addr = instr->addr;
+	int len = instr->len;
+	unsigned int block_size = (1 << this->erase_shift);
+	int ret = 0;
+
+	while (len) {
+		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
+		ret = this->wait(mtd, FL_VERIFYING_ERASE);
+		if (ret) {
+			printk(KERN_ERR "%s: Failed verify, block %d\n",
+			       __func__, onenand_block(this, addr));
+			instr->fail_addr = addr;
+			return -1;
+		}
+		len -= block_size;
+		addr += block_size;
+	}
+	return 0;
+}
+
+/**
+ * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
+ * @param mtd		MTD device structure
+ * @param instr		erase instruction
+ * @param region	erase region
+ *
+ * Erase one or more blocks up to 64 block at a time
+ */
+static int onenand_multiblock_erase(struct mtd_info *mtd,
+				    struct erase_info *instr,
+				    unsigned int block_size)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t addr = instr->addr;
+	int len = instr->len;
+	int eb_count = 0;
+	int ret = 0;
+	int bdry_block = 0;
+
+	if (ONENAND_IS_DDP(this)) {
+		loff_t bdry_addr = this->chipsize >> 1;
+		if (addr < bdry_addr && (addr + len) > bdry_addr)
+			bdry_block = bdry_addr >> this->erase_shift;
+	}
+
+	/* Pre-check bbs */
+	while (len) {
+		/* Check if we have a bad block, we do not erase bad blocks */
+		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+			printk(KERN_WARNING "%s: attempt to erase a bad block "
+			       "at addr 0x%012llx\n",
+			       __func__, (unsigned long long) addr);
+			return -EIO;
+		}
+		len -= block_size;
+		addr += block_size;
+	}
+
+	len = instr->len;
+	addr = instr->addr;
+
+	/* loop over 64 eb batches */
+	while (len) {
+		struct erase_info verify_instr = *instr;
+		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
+
+		verify_instr.addr = addr;
+		verify_instr.len = 0;
+
+		/* do not cross chip boundary */
+		if (bdry_block) {
+			int this_block = (addr >> this->erase_shift);
+
+			if (this_block < bdry_block) {
+				max_eb_count = min(max_eb_count,
+						   (bdry_block - this_block));
+			}
+		}
+
+		eb_count = 0;
+
+		while (len > block_size && eb_count < (max_eb_count - 1)) {
+			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
+				      addr, block_size);
+			onenand_invalidate_bufferram(mtd, addr, block_size);
+
+			ret = this->wait(mtd, FL_PREPARING_ERASE);
+			if (ret) {
+				printk(KERN_ERR "%s: Failed multiblock erase, "
+				       "block %d\n", __func__,
+				       onenand_block(this, addr));
+				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+				return -EIO;
+			}
+
+			len -= block_size;
+			addr += block_size;
+			eb_count++;
+		}
+
+		/* last block of 64-eb series */
+		cond_resched();
+		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+		onenand_invalidate_bufferram(mtd, addr, block_size);
+
+		ret = this->wait(mtd, FL_ERASING);
+		/* Check if it is write protected */
+		if (ret) {
+			printk(KERN_ERR "%s: Failed erase, block %d\n",
+			       __func__, onenand_block(this, addr));
+			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+			return -EIO;
+		}
+
+		len -= block_size;
+		addr += block_size;
+		eb_count++;
+
+		/* verify */
+		verify_instr.len = eb_count * block_size;
+		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
+			instr->fail_addr = verify_instr.fail_addr;
+			return -EIO;
+		}
+
+	}
+	return 0;
+}
+
+
+/**
+ * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
+ * @param mtd		MTD device structure
+ * @param instr		erase instruction
+ * @param region	erase region
+ * @param block_size	erase block size
+ *
+ * Erase one or more blocks one block at a time
+ */
+static int onenand_block_by_block_erase(struct mtd_info *mtd,
+					struct erase_info *instr,
+					struct mtd_erase_region_info *region,
+					unsigned int block_size)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t addr = instr->addr;
+	int len = instr->len;
+	loff_t region_end = 0;
+	int ret = 0;
+
+	if (region) {
+		/* region is set for Flex-OneNAND */
+		region_end = region->offset + region->erasesize * region->numblocks;
+	}
+
+	/* Loop through the blocks */
+	while (len) {
+		cond_resched();
+
+		/* Check if we have a bad block, we do not erase bad blocks */
+		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+			printk(KERN_WARNING "%s: attempt to erase a bad block "
+					"at addr 0x%012llx\n",
+					__func__, (unsigned long long) addr);
+			return -EIO;
+		}
+
+		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+
+		onenand_invalidate_bufferram(mtd, addr, block_size);
+
+		ret = this->wait(mtd, FL_ERASING);
+		/* Check, if it is write protected */
+		if (ret) {
+			printk(KERN_ERR "%s: Failed erase, block %d\n",
+				__func__, onenand_block(this, addr));
+			instr->fail_addr = addr;
+			return -EIO;
+		}
+
+		len -= block_size;
+		addr += block_size;
+
+		if (region && addr == region_end) {
+			if (!len)
+				break;
+			region++;
+
+			block_size = region->erasesize;
+			region_end = region->offset + region->erasesize * region->numblocks;
+
+			if (len & (block_size - 1)) {
+				/* FIXME: This should be handled at MTD partitioning level. */
+				printk(KERN_ERR "%s: Unaligned address\n",
+					__func__);
+				return -EIO;
+			}
+		}
+	}
+	return 0;
+}
+
+/**
+ * onenand_erase - [MTD Interface] erase block(s)
+ * @param mtd		MTD device structure
+ * @param instr		erase instruction
+ *
+ * Erase one or more blocks
+ */
+static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int block_size;
+	loff_t addr = instr->addr;
+	loff_t len = instr->len;
+	int ret = 0;
+	struct mtd_erase_region_info *region = NULL;
+	loff_t region_offset = 0;
+
+	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
+			(unsigned long long)instr->addr,
+			(unsigned long long)instr->len);
+
+	if (FLEXONENAND(this)) {
+		/* Find the eraseregion of this address */
+		int i = flexonenand_region(mtd, addr);
+
+		region = &mtd->eraseregions[i];
+		block_size = region->erasesize;
+
+		/* Start address within region must align on block boundary.
+		 * Erase region's start offset is always block start address.
+		 */
+		region_offset = region->offset;
+	} else
+		block_size = 1 << this->erase_shift;
+
+	/* Start address must align on block boundary */
+	if (unlikely((addr - region_offset) & (block_size - 1))) {
+		printk(KERN_ERR "%s: Unaligned address\n", __func__);
+		return -EINVAL;
+	}
+
+	/* Length must align on block boundary */
+	if (unlikely(len & (block_size - 1))) {
+		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	onenand_get_device(mtd, FL_ERASING);
+
+	if (ONENAND_IS_4KB_PAGE(this) || region ||
+	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
+		/* region is set for Flex-OneNAND (no mb erase) */
+		ret = onenand_block_by_block_erase(mtd, instr,
+						   region, block_size);
+	} else {
+		ret = onenand_multiblock_erase(mtd, instr, block_size);
+	}
+
+	/* Deselect and wake up anyone waiting on the device */
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_sync - [MTD Interface] sync
+ * @param mtd		MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void onenand_sync(struct mtd_info *mtd)
+{
+	pr_debug("%s: called\n", __func__);
+
+	/* Grab the lock and see if the device is available */
+	onenand_get_device(mtd, FL_SYNCING);
+
+	/* Release it and go back */
+	onenand_release_device(mtd);
+}
+
+/**
+ * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ *
+ * Check whether the block is bad
+ */
+static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
+{
+	int ret;
+
+	onenand_get_device(mtd, FL_READING);
+	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_default_block_markbad - [DEFAULT] mark a block bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+ */
+static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	u_char buf[2] = {0, 0};
+	struct mtd_oob_ops ops = {
+		.mode = MTD_OPS_PLACE_OOB,
+		.ooblen = 2,
+		.oobbuf = buf,
+		.ooboffs = 0,
+	};
+	int block;
+
+	/* Get block number */
+	block = onenand_block(this, ofs);
+        if (bbm->bbt)
+                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+        /* We write two bytes, so we don't have to mess with 16-bit access */
+        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
+	/* FIXME : What to do when marking SLC block in partition
+	 * 	   with MLC erasesize? For now, it is not advisable to
+	 *	   create partitions containing both SLC and MLC regions.
+	 */
+	return onenand_write_oob_nolock(mtd, ofs, &ops);
+}
+
+/**
+ * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ *
+ * Mark the block as bad
+ */
+static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret;
+
+	ret = onenand_block_isbad(mtd, ofs);
+	if (ret) {
+		/* If it was bad already, return success and do nothing */
+		if (ret > 0)
+			return 0;
+		return ret;
+	}
+
+	onenand_get_device(mtd, FL_WRITING);
+	ret = this->block_markbad(mtd, ofs);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ * @param len		number of bytes to lock or unlock
+ * @param cmd		lock or unlock command
+ *
+ * Lock or unlock one or more blocks
+ */
+static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int start, end, block, value, status;
+	int wp_status_mask;
+
+	start = onenand_block(this, ofs);
+	end = onenand_block(this, ofs + len) - 1;
+
+	if (cmd == ONENAND_CMD_LOCK)
+		wp_status_mask = ONENAND_WP_LS;
+	else
+		wp_status_mask = ONENAND_WP_US;
+
+	/* Continuous lock scheme */
+	if (this->options & ONENAND_HAS_CONT_LOCK) {
+		/* Set start block address */
+		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+		/* Set end block address */
+		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
+		/* Write lock command */
+		this->command(mtd, cmd, 0, 0);
+
+		/* There's no return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Sanity check */
+		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+		    & ONENAND_CTRL_ONGO)
+			continue;
+
+		/* Check lock status */
+		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+		if (!(status & wp_status_mask))
+			printk(KERN_ERR "%s: wp status = 0x%x\n",
+				__func__, status);
+
+		return 0;
+	}
+
+	/* Block lock scheme */
+	for (block = start; block < end + 1; block++) {
+		/* Set block address */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+		/* Set start block address */
+		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+		/* Write lock command */
+		this->command(mtd, cmd, 0, 0);
+
+		/* There's no return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Sanity check */
+		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+		    & ONENAND_CTRL_ONGO)
+			continue;
+
+		/* Check lock status */
+		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+		if (!(status & wp_status_mask))
+			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+				__func__, block, status);
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_lock - [MTD Interface] Lock block(s)
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ * @param len		number of bytes to unlock
+ *
+ * Lock one or more blocks
+ */
+static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+	onenand_get_device(mtd, FL_LOCKING);
+	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_unlock - [MTD Interface] Unlock block(s)
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ * @param len		number of bytes to unlock
+ *
+ * Unlock one or more blocks
+ */
+static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+	onenand_get_device(mtd, FL_LOCKING);
+	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_check_lock_status - [OneNAND Interface] Check lock status
+ * @param this		onenand chip data structure
+ *
+ * Check lock status
+ */
+static int onenand_check_lock_status(struct onenand_chip *this)
+{
+	unsigned int value, block, status;
+	unsigned int end;
+
+	end = this->chipsize >> this->erase_shift;
+	for (block = 0; block < end; block++) {
+		/* Set block address */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+		/* Set start block address */
+		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+
+		/* Check lock status */
+		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+		if (!(status & ONENAND_WP_US)) {
+			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+				__func__, block, status);
+			return 0;
+		}
+	}
+
+	return 1;
+}
+
+/**
+ * onenand_unlock_all - [OneNAND Interface] unlock all blocks
+ * @param mtd		MTD device structure
+ *
+ * Unlock all blocks
+ */
+static void onenand_unlock_all(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t ofs = 0;
+	loff_t len = mtd->size;
+
+	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+		/* Set start block address */
+		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+		/* Write unlock command */
+		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+		/* There's no return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Sanity check */
+		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+		    & ONENAND_CTRL_ONGO)
+			continue;
+
+		/* Don't check lock status */
+		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
+			return;
+
+		/* Check lock status */
+		if (onenand_check_lock_status(this))
+			return;
+
+		/* Workaround for all block unlock in DDP */
+		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
+			/* All blocks on another chip */
+			ofs = this->chipsize >> 1;
+			len = this->chipsize >> 1;
+		}
+	}
+
+	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+}
+
+#ifdef CONFIG_MTD_ONENAND_OTP
+
+/**
+ * onenand_otp_command - Send OTP specific command to OneNAND device
+ * @param mtd	 MTD device structure
+ * @param cmd	 the command to be sent
+ * @param addr	 offset to read from or write to
+ * @param len	 number of bytes to read or write
+ */
+static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
+				size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int value, block, page;
+
+	/* Address translation */
+	switch (cmd) {
+	case ONENAND_CMD_OTP_ACCESS:
+		block = (int) (addr >> this->erase_shift);
+		page = -1;
+		break;
+
+	default:
+		block = (int) (addr >> this->erase_shift);
+		page = (int) (addr >> this->page_shift);
+
+		if (ONENAND_IS_2PLANE(this)) {
+			/* Make the even block number */
+			block &= ~1;
+			/* Is it the odd plane? */
+			if (addr & this->writesize)
+				block++;
+			page >>= 1;
+		}
+		page &= this->page_mask;
+		break;
+	}
+
+	if (block != -1) {
+		/* Write 'DFS, FBA' of Flash */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS1);
+	}
+
+	if (page != -1) {
+		/* Now we use page size operation */
+		int sectors = 4, count = 4;
+		int dataram;
+
+		switch (cmd) {
+		default:
+			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+				cmd = ONENAND_CMD_2X_PROG;
+			dataram = ONENAND_CURRENT_BUFFERRAM(this);
+			break;
+		}
+
+		/* Write 'FPA, FSA' of Flash */
+		value = onenand_page_address(page, sectors);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS8);
+
+		/* Write 'BSA, BSC' of DataRAM */
+		value = onenand_buffer_address(dataram, sectors, count);
+		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+	}
+
+	/* Interrupt clear */
+	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+	/* Write command */
+	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+	return 0;
+}
+
+/**
+ * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of written bytes
+ * @param buf		the data to write
+ *
+ * OneNAND write out-of-band only for OTP
+ */
+static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+				    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int column, ret = 0, oobsize;
+	int written = 0;
+	u_char *oobbuf;
+	size_t len = ops->ooblen;
+	const u_char *buf = ops->oobbuf;
+	int block, value, status;
+
+	to += ops->ooboffs;
+
+	/* Initialize retlen, in case of early exit */
+	ops->oobretlen = 0;
+
+	oobsize = mtd->oobsize;
+
+	column = to & (mtd->oobsize - 1);
+
+	oobbuf = this->oob_buf;
+
+	/* Loop until all data write */
+	while (written < len) {
+		int thislen = min_t(int, oobsize, len - written);
+
+		cond_resched();
+
+		block = (int) (to >> this->erase_shift);
+		/*
+		 * Write 'DFS, FBA' of Flash
+		 * Add: F100h DQ=DFS, FBA
+		 */
+
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS1);
+
+		/*
+		 * Select DataRAM for DDP
+		 * Add: F101h DQ=DBS
+		 */
+
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS2);
+		ONENAND_SET_NEXT_BUFFERRAM(this);
+
+		/*
+		 * Enter OTP access mode
+		 */
+		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+		this->wait(mtd, FL_OTPING);
+
+		/* We send data to spare ram with oobsize
+		 * to prevent byte access */
+		memcpy(oobbuf + column, buf, thislen);
+
+		/*
+		 * Write Data into DataRAM
+		 * Add: 8th Word
+		 * in sector0/spare/page0
+		 * DQ=XXFCh
+		 */
+		this->write_bufferram(mtd, ONENAND_SPARERAM,
+					oobbuf, 0, mtd->oobsize);
+
+		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
+		onenand_update_bufferram(mtd, to, 0);
+		if (ONENAND_IS_2PLANE(this)) {
+			ONENAND_SET_BUFFERRAM1(this);
+			onenand_update_bufferram(mtd, to + this->writesize, 0);
+		}
+
+		ret = this->wait(mtd, FL_WRITING);
+		if (ret) {
+			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+			break;
+		}
+
+		/* Exit OTP access mode */
+		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+		this->wait(mtd, FL_RESETING);
+
+		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+		status &= 0x60;
+
+		if (status == 0x60) {
+			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+			printk(KERN_DEBUG "1st Block\tLOCKED\n");
+			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+		} else if (status == 0x20) {
+			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+			printk(KERN_DEBUG "1st Block\tLOCKED\n");
+			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
+		} else if (status == 0x40) {
+			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
+			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+		} else {
+			printk(KERN_DEBUG "Reboot to check\n");
+		}
+
+		written += thislen;
+		if (written == len)
+			break;
+
+		to += mtd->writesize;
+		buf += thislen;
+		column = 0;
+	}
+
+	ops->oobretlen = written;
+
+	return ret;
+}
+
+/* Internal OTP operation */
+typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
+		size_t *retlen, u_char *buf);
+
+/**
+ * do_otp_read - [DEFAULT] Read OTP block area
+ * @param mtd		MTD device structure
+ * @param from		The offset to read
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of readbytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read OTP block area.
+ */
+static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
+		size_t *retlen, u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_oob_ops ops = {
+		.len	= len,
+		.ooblen	= 0,
+		.datbuf	= buf,
+		.oobbuf	= NULL,
+	};
+	int ret;
+
+	/* Enter OTP access mode */
+	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+	this->wait(mtd, FL_OTPING);
+
+	ret = ONENAND_IS_4KB_PAGE(this) ?
+		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
+		onenand_read_ops_nolock(mtd, from, &ops);
+
+	/* Exit OTP access mode */
+	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+	this->wait(mtd, FL_RESETING);
+
+	return ret;
+}
+
+/**
+ * do_otp_write - [DEFAULT] Write OTP block area
+ * @param mtd		MTD device structure
+ * @param to		The offset to write
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of write bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Write OTP block area.
+ */
+static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
+		size_t *retlen, u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned char *pbuf = buf;
+	int ret;
+	struct mtd_oob_ops ops;
+
+	/* Force buffer page aligned */
+	if (len < mtd->writesize) {
+		memcpy(this->page_buf, buf, len);
+		memset(this->page_buf + len, 0xff, mtd->writesize - len);
+		pbuf = this->page_buf;
+		len = mtd->writesize;
+	}
+
+	/* Enter OTP access mode */
+	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+	this->wait(mtd, FL_OTPING);
+
+	ops.len = len;
+	ops.ooblen = 0;
+	ops.datbuf = pbuf;
+	ops.oobbuf = NULL;
+	ret = onenand_write_ops_nolock(mtd, to, &ops);
+	*retlen = ops.retlen;
+
+	/* Exit OTP access mode */
+	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+	this->wait(mtd, FL_RESETING);
+
+	return ret;
+}
+
+/**
+ * do_otp_lock - [DEFAULT] Lock OTP block area
+ * @param mtd		MTD device structure
+ * @param from		The offset to lock
+ * @param len		number of bytes to lock
+ * @param retlen	pointer to variable to store the number of lock bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Lock OTP block area.
+ */
+static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
+		size_t *retlen, u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_oob_ops ops;
+	int ret;
+
+	if (FLEXONENAND(this)) {
+
+		/* Enter OTP access mode */
+		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+		this->wait(mtd, FL_OTPING);
+		/*
+		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+		 * main area of page 49.
+		 */
+		ops.len = mtd->writesize;
+		ops.ooblen = 0;
+		ops.datbuf = buf;
+		ops.oobbuf = NULL;
+		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
+		*retlen = ops.retlen;
+
+		/* Exit OTP access mode */
+		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+		this->wait(mtd, FL_RESETING);
+	} else {
+		ops.mode = MTD_OPS_PLACE_OOB;
+		ops.ooblen = len;
+		ops.oobbuf = buf;
+		ops.ooboffs = 0;
+		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
+		*retlen = ops.oobretlen;
+	}
+
+	return ret;
+}
+
+/**
+ * onenand_otp_walk - [DEFAULT] Handle OTP operation
+ * @param mtd		MTD device structure
+ * @param from		The offset to read/write
+ * @param len		number of bytes to read/write
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ * @param action	do given action
+ * @param mode		specify user and factory
+ *
+ * Handle OTP operation.
+ */
+static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
+			size_t *retlen, u_char *buf,
+			otp_op_t action, int mode)
+{
+	struct onenand_chip *this = mtd->priv;
+	int otp_pages;
+	int density;
+	int ret = 0;
+
+	*retlen = 0;
+
+	density = onenand_get_density(this->device_id);
+	if (density < ONENAND_DEVICE_DENSITY_512Mb)
+		otp_pages = 20;
+	else
+		otp_pages = 50;
+
+	if (mode == MTD_OTP_FACTORY) {
+		from += mtd->writesize * otp_pages;
+		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
+	}
+
+	/* Check User/Factory boundary */
+	if (mode == MTD_OTP_USER) {
+		if (mtd->writesize * otp_pages < from + len)
+			return 0;
+	} else {
+		if (mtd->writesize * otp_pages <  len)
+			return 0;
+	}
+
+	onenand_get_device(mtd, FL_OTPING);
+	while (len > 0 && otp_pages > 0) {
+		if (!action) {	/* OTP Info functions */
+			struct otp_info *otpinfo;
+
+			len -= sizeof(struct otp_info);
+			if (len <= 0) {
+				ret = -ENOSPC;
+				break;
+			}
+
+			otpinfo = (struct otp_info *) buf;
+			otpinfo->start = from;
+			otpinfo->length = mtd->writesize;
+			otpinfo->locked = 0;
+
+			from += mtd->writesize;
+			buf += sizeof(struct otp_info);
+			*retlen += sizeof(struct otp_info);
+		} else {
+			size_t tmp_retlen;
+
+			ret = action(mtd, from, len, &tmp_retlen, buf);
+			if (ret)
+				break;
+
+			buf += tmp_retlen;
+			len -= tmp_retlen;
+			*retlen += tmp_retlen;
+
+		}
+		otp_pages--;
+	}
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
+ * @param mtd		MTD device structure
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read factory OTP info.
+ */
+static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
+				      size_t *retlen, struct otp_info *buf)
+{
+	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
+				MTD_OTP_FACTORY);
+}
+
+/**
+ * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to read
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read factory OTP area.
+ */
+static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len, size_t *retlen, u_char *buf)
+{
+	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
+}
+
+/**
+ * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
+ * @param mtd		MTD device structure
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param len		number of bytes to read
+ * @param buf		the databuffer to put/get data
+ *
+ * Read user OTP info.
+ */
+static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
+				      size_t *retlen, struct otp_info *buf)
+{
+	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
+				MTD_OTP_USER);
+}
+
+/**
+ * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to read
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read user OTP area.
+ */
+static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len, size_t *retlen, u_char *buf)
+{
+	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
+}
+
+/**
+ * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to write
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of write bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Write user OTP area.
+ */
+static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len, size_t *retlen, u_char *buf)
+{
+	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
+}
+
+/**
+ * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to lock
+ * @param len		number of bytes to unlock
+ *
+ * Write lock mark on spare area in page 0 in OTP block
+ */
+static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
+	size_t retlen;
+	int ret;
+	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
+
+	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
+						 : mtd->oobsize);
+	/*
+	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
+	 * We write 16 bytes spare area instead of 2 bytes.
+	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+	 * main area of page 49.
+	 */
+
+	from = 0;
+	len = FLEXONENAND(this) ? mtd->writesize : 16;
+
+	/*
+	 * Note: OTP lock operation
+	 *       OTP block : 0xXXFC			XX 1111 1100
+	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
+	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
+	 */
+	if (FLEXONENAND(this))
+		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
+
+	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
+	if (otp == 1)
+		buf[otp_lock_offset] = 0xFC;
+	else if (otp == 2)
+		buf[otp_lock_offset] = 0xF3;
+	else if (otp == 3)
+		buf[otp_lock_offset] = 0xF0;
+	else if (otp != 0)
+		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
+
+	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
+
+	return ret ? : retlen;
+}
+
+#endif	/* CONFIG_MTD_ONENAND_OTP */
+
+/**
+ * onenand_check_features - Check and set OneNAND features
+ * @param mtd		MTD data structure
+ *
+ * Check and set OneNAND features
+ * - lock scheme
+ * - two plane
+ */
+static void onenand_check_features(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int density, process, numbufs;
+
+	/* Lock scheme depends on density and process */
+	density = onenand_get_density(this->device_id);
+	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
+	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
+
+	/* Lock scheme */
+	switch (density) {
+	case ONENAND_DEVICE_DENSITY_4Gb:
+		if (ONENAND_IS_DDP(this))
+			this->options |= ONENAND_HAS_2PLANE;
+		else if (numbufs == 1) {
+			this->options |= ONENAND_HAS_4KB_PAGE;
+			this->options |= ONENAND_HAS_CACHE_PROGRAM;
+			/*
+			 * There are two different 4KiB pagesize chips
+			 * and no way to detect it by H/W config values.
+			 *
+			 * To detect the correct NOP for each chips,
+			 * It should check the version ID as workaround.
+			 *
+			 * Now it has as following
+			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
+			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
+			 */
+			if ((this->version_id & 0xf) == 0xe)
+				this->options |= ONENAND_HAS_NOP_1;
+		}
+
+	case ONENAND_DEVICE_DENSITY_2Gb:
+		/* 2Gb DDP does not have 2 plane */
+		if (!ONENAND_IS_DDP(this))
+			this->options |= ONENAND_HAS_2PLANE;
+		this->options |= ONENAND_HAS_UNLOCK_ALL;
+
+	case ONENAND_DEVICE_DENSITY_1Gb:
+		/* A-Die has all block unlock */
+		if (process)
+			this->options |= ONENAND_HAS_UNLOCK_ALL;
+		break;
+
+	default:
+		/* Some OneNAND has continuous lock scheme */
+		if (!process)
+			this->options |= ONENAND_HAS_CONT_LOCK;
+		break;
+	}
+
+	/* The MLC has 4KiB pagesize. */
+	if (ONENAND_IS_MLC(this))
+		this->options |= ONENAND_HAS_4KB_PAGE;
+
+	if (ONENAND_IS_4KB_PAGE(this))
+		this->options &= ~ONENAND_HAS_2PLANE;
+
+	if (FLEXONENAND(this)) {
+		this->options &= ~ONENAND_HAS_CONT_LOCK;
+		this->options |= ONENAND_HAS_UNLOCK_ALL;
+	}
+
+	if (this->options & ONENAND_HAS_CONT_LOCK)
+		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
+	if (this->options & ONENAND_HAS_UNLOCK_ALL)
+		printk(KERN_DEBUG "Chip support all block unlock\n");
+	if (this->options & ONENAND_HAS_2PLANE)
+		printk(KERN_DEBUG "Chip has 2 plane\n");
+	if (this->options & ONENAND_HAS_4KB_PAGE)
+		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
+	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
+		printk(KERN_DEBUG "Chip has cache program feature\n");
+}
+
+/**
+ * onenand_print_device_info - Print device & version ID
+ * @param device        device ID
+ * @param version	version ID
+ *
+ * Print device & version ID
+ */
+static void onenand_print_device_info(int device, int version)
+{
+	int vcc, demuxed, ddp, density, flexonenand;
+
+        vcc = device & ONENAND_DEVICE_VCC_MASK;
+        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
+        ddp = device & ONENAND_DEVICE_IS_DDP;
+        density = onenand_get_density(device);
+	flexonenand = device & DEVICE_IS_FLEXONENAND;
+	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
+		demuxed ? "" : "Muxed ",
+		flexonenand ? "Flex-" : "",
+                ddp ? "(DDP)" : "",
+                (16 << density),
+                vcc ? "2.65/3.3" : "1.8",
+                device);
+	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
+}
+
+static const struct onenand_manufacturers onenand_manuf_ids[] = {
+        {ONENAND_MFR_SAMSUNG, "Samsung"},
+	{ONENAND_MFR_NUMONYX, "Numonyx"},
+};
+
+/**
+ * onenand_check_maf - Check manufacturer ID
+ * @param manuf         manufacturer ID
+ *
+ * Check manufacturer ID
+ */
+static int onenand_check_maf(int manuf)
+{
+	int size = ARRAY_SIZE(onenand_manuf_ids);
+	char *name;
+        int i;
+
+	for (i = 0; i < size; i++)
+                if (manuf == onenand_manuf_ids[i].id)
+                        break;
+
+	if (i < size)
+		name = onenand_manuf_ids[i].name;
+	else
+		name = "Unknown";
+
+	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
+
+	return (i == size);
+}
+
+/**
+* flexonenand_get_boundary	- Reads the SLC boundary
+* @param onenand_info		- onenand info structure
+**/
+static int flexonenand_get_boundary(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned die, bdry;
+	int syscfg, locked;
+
+	/* Disable ECC */
+	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
+
+	for (die = 0; die < this->dies; die++) {
+		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+		this->wait(mtd, FL_SYNCING);
+
+		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+		this->wait(mtd, FL_READING);
+
+		bdry = this->read_word(this->base + ONENAND_DATARAM);
+		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
+			locked = 0;
+		else
+			locked = 1;
+		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
+
+		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+		this->wait(mtd, FL_RESETING);
+
+		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
+		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
+	}
+
+	/* Enable ECC */
+	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+	return 0;
+}
+
+/**
+ * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
+ * 			  boundary[], diesize[], mtd->size, mtd->erasesize
+ * @param mtd		- MTD device structure
+ */
+static void flexonenand_get_size(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int die, i, eraseshift, density;
+	int blksperdie, maxbdry;
+	loff_t ofs;
+
+	density = onenand_get_density(this->device_id);
+	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
+	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+	maxbdry = blksperdie - 1;
+	eraseshift = this->erase_shift - 1;
+
+	mtd->numeraseregions = this->dies << 1;
+
+	/* This fills up the device boundary */
+	flexonenand_get_boundary(mtd);
+	die = ofs = 0;
+	i = -1;
+	for (; die < this->dies; die++) {
+		if (!die || this->boundary[die-1] != maxbdry) {
+			i++;
+			mtd->eraseregions[i].offset = ofs;
+			mtd->eraseregions[i].erasesize = 1 << eraseshift;
+			mtd->eraseregions[i].numblocks =
+							this->boundary[die] + 1;
+			ofs += mtd->eraseregions[i].numblocks << eraseshift;
+			eraseshift++;
+		} else {
+			mtd->numeraseregions -= 1;
+			mtd->eraseregions[i].numblocks +=
+							this->boundary[die] + 1;
+			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
+		}
+		if (this->boundary[die] != maxbdry) {
+			i++;
+			mtd->eraseregions[i].offset = ofs;
+			mtd->eraseregions[i].erasesize = 1 << eraseshift;
+			mtd->eraseregions[i].numblocks = maxbdry ^
+							 this->boundary[die];
+			ofs += mtd->eraseregions[i].numblocks << eraseshift;
+			eraseshift--;
+		} else
+			mtd->numeraseregions -= 1;
+	}
+
+	/* Expose MLC erase size except when all blocks are SLC */
+	mtd->erasesize = 1 << this->erase_shift;
+	if (mtd->numeraseregions == 1)
+		mtd->erasesize >>= 1;
+
+	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
+	for (i = 0; i < mtd->numeraseregions; i++)
+		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
+			" numblocks: %04u]\n",
+			(unsigned int) mtd->eraseregions[i].offset,
+			mtd->eraseregions[i].erasesize,
+			mtd->eraseregions[i].numblocks);
+
+	for (die = 0, mtd->size = 0; die < this->dies; die++) {
+		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
+		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
+						 << (this->erase_shift - 1);
+		mtd->size += this->diesize[die];
+	}
+}
+
+/**
+ * flexonenand_check_blocks_erased - Check if blocks are erased
+ * @param mtd_info	- mtd info structure
+ * @param start		- first erase block to check
+ * @param end		- last erase block to check
+ *
+ * Converting an unerased block from MLC to SLC
+ * causes byte values to change. Since both data and its ECC
+ * have changed, reads on the block give uncorrectable error.
+ * This might lead to the block being detected as bad.
+ *
+ * Avoid this by ensuring that the block to be converted is
+ * erased.
+ */
+static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i, ret;
+	int block;
+	struct mtd_oob_ops ops = {
+		.mode = MTD_OPS_PLACE_OOB,
+		.ooboffs = 0,
+		.ooblen	= mtd->oobsize,
+		.datbuf	= NULL,
+		.oobbuf	= this->oob_buf,
+	};
+	loff_t addr;
+
+	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
+
+	for (block = start; block <= end; block++) {
+		addr = flexonenand_addr(this, block);
+		if (onenand_block_isbad_nolock(mtd, addr, 0))
+			continue;
+
+		/*
+		 * Since main area write results in ECC write to spare,
+		 * it is sufficient to check only ECC bytes for change.
+		 */
+		ret = onenand_read_oob_nolock(mtd, addr, &ops);
+		if (ret)
+			return ret;
+
+		for (i = 0; i < mtd->oobsize; i++)
+			if (this->oob_buf[i] != 0xff)
+				break;
+
+		if (i != mtd->oobsize) {
+			printk(KERN_WARNING "%s: Block %d not erased.\n",
+				__func__, block);
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * flexonenand_set_boundary	- Writes the SLC boundary
+ * @param mtd			- mtd info structure
+ */
+static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
+				    int boundary, int lock)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret, density, blksperdie, old, new, thisboundary;
+	loff_t addr;
+
+	/* Change only once for SDP Flex-OneNAND */
+	if (die && (!ONENAND_IS_DDP(this)))
+		return 0;
+
+	/* boundary value of -1 indicates no required change */
+	if (boundary < 0 || boundary == this->boundary[die])
+		return 0;
+
+	density = onenand_get_density(this->device_id);
+	blksperdie = ((16 << density) << 20) >> this->erase_shift;
+	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+
+	if (boundary >= blksperdie) {
+		printk(KERN_ERR "%s: Invalid boundary value. "
+				"Boundary not changed.\n", __func__);
+		return -EINVAL;
+	}
+
+	/* Check if converting blocks are erased */
+	old = this->boundary[die] + (die * this->density_mask);
+	new = boundary + (die * this->density_mask);
+	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
+	if (ret) {
+		printk(KERN_ERR "%s: Please erase blocks "
+				"before boundary change\n", __func__);
+		return ret;
+	}
+
+	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+	this->wait(mtd, FL_SYNCING);
+
+	/* Check is boundary is locked */
+	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+	this->wait(mtd, FL_READING);
+
+	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
+	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
+		printk(KERN_ERR "%s: boundary locked\n", __func__);
+		ret = 1;
+		goto out;
+	}
+
+	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
+			die, boundary, lock ? "(Locked)" : "(Unlocked)");
+
+	addr = die ? this->diesize[0] : 0;
+
+	boundary &= FLEXONENAND_PI_MASK;
+	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
+
+	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
+	ret = this->wait(mtd, FL_ERASING);
+	if (ret) {
+		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
+		       __func__, die);
+		goto out;
+	}
+
+	this->write_word(boundary, this->base + ONENAND_DATARAM);
+	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
+	ret = this->wait(mtd, FL_WRITING);
+	if (ret) {
+		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
+			__func__, die);
+		goto out;
+	}
+
+	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
+	ret = this->wait(mtd, FL_WRITING);
+out:
+	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
+	this->wait(mtd, FL_RESETING);
+	if (!ret)
+		/* Recalculate device size on boundary change*/
+		flexonenand_get_size(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_chip_probe - [OneNAND Interface] The generic chip probe
+ * @param mtd		MTD device structure
+ *
+ * OneNAND detection method:
+ *   Compare the values from command with ones from register
+ */
+static int onenand_chip_probe(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int bram_maf_id, bram_dev_id, maf_id, dev_id;
+	int syscfg;
+
+	/* Save system configuration 1 */
+	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+	/* Clear Sync. Burst Read mode to read BootRAM */
+	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
+
+	/* Send the command for reading device ID from BootRAM */
+	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
+
+	/* Read manufacturer and device IDs from BootRAM */
+	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
+	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
+
+	/* Reset OneNAND to read default register values */
+	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
+	/* Wait reset */
+	this->wait(mtd, FL_RESETING);
+
+	/* Restore system configuration 1 */
+	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+	/* Check manufacturer ID */
+	if (onenand_check_maf(bram_maf_id))
+		return -ENXIO;
+
+	/* Read manufacturer and device IDs from Register */
+	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
+	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+
+	/* Check OneNAND device */
+	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
+		return -ENXIO;
+
+	return 0;
+}
+
+/**
+ * onenand_probe - [OneNAND Interface] Probe the OneNAND device
+ * @param mtd		MTD device structure
+ */
+static int onenand_probe(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int dev_id, ver_id;
+	int density;
+	int ret;
+
+	ret = this->chip_probe(mtd);
+	if (ret)
+		return ret;
+
+	/* Device and version IDs from Register */
+	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
+	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
+
+	/* Flash device information */
+	onenand_print_device_info(dev_id, ver_id);
+	this->device_id = dev_id;
+	this->version_id = ver_id;
+
+	/* Check OneNAND features */
+	onenand_check_features(mtd);
+
+	density = onenand_get_density(dev_id);
+	if (FLEXONENAND(this)) {
+		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
+		/* Maximum possible erase regions */
+		mtd->numeraseregions = this->dies << 1;
+		mtd->eraseregions =
+			kcalloc(this->dies << 1,
+				sizeof(struct mtd_erase_region_info),
+				GFP_KERNEL);
+		if (!mtd->eraseregions)
+			return -ENOMEM;
+	}
+
+	/*
+	 * For Flex-OneNAND, chipsize represents maximum possible device size.
+	 * mtd->size represents the actual device size.
+	 */
+	this->chipsize = (16 << density) << 20;
+
+	/* OneNAND page size & block size */
+	/* The data buffer size is equal to page size */
+	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
+	/* We use the full BufferRAM */
+	if (ONENAND_IS_4KB_PAGE(this))
+		mtd->writesize <<= 1;
+
+	mtd->oobsize = mtd->writesize >> 5;
+	/* Pages per a block are always 64 in OneNAND */
+	mtd->erasesize = mtd->writesize << 6;
+	/*
+	 * Flex-OneNAND SLC area has 64 pages per block.
+	 * Flex-OneNAND MLC area has 128 pages per block.
+	 * Expose MLC erase size to find erase_shift and page_mask.
+	 */
+	if (FLEXONENAND(this))
+		mtd->erasesize <<= 1;
+
+	this->erase_shift = ffs(mtd->erasesize) - 1;
+	this->page_shift = ffs(mtd->writesize) - 1;
+	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
+	/* Set density mask. it is used for DDP */
+	if (ONENAND_IS_DDP(this))
+		this->density_mask = this->chipsize >> (this->erase_shift + 1);
+	/* It's real page size */
+	this->writesize = mtd->writesize;
+
+	/* REVISIT: Multichip handling */
+
+	if (FLEXONENAND(this))
+		flexonenand_get_size(mtd);
+	else
+		mtd->size = this->chipsize;
+
+	/*
+	 * We emulate the 4KiB page and 256KiB erase block size
+	 * But oobsize is still 64 bytes.
+	 * It is only valid if you turn on 2X program support,
+	 * Otherwise it will be ignored by compiler.
+	 */
+	if (ONENAND_IS_2PLANE(this)) {
+		mtd->writesize <<= 1;
+		mtd->erasesize <<= 1;
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
+ * @param mtd		MTD device structure
+ */
+static int onenand_suspend(struct mtd_info *mtd)
+{
+	return onenand_get_device(mtd, FL_PM_SUSPENDED);
+}
+
+/**
+ * onenand_resume - [MTD Interface] Resume the OneNAND flash
+ * @param mtd		MTD device structure
+ */
+static void onenand_resume(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (this->state == FL_PM_SUSPENDED)
+		onenand_release_device(mtd);
+	else
+		printk(KERN_ERR "%s: resume() called for the chip which is not "
+				"in suspended state\n", __func__);
+}
+
+/**
+ * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
+ * @param mtd		MTD device structure
+ * @param maxchips	Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values.
+ */
+int onenand_scan(struct mtd_info *mtd, int maxchips)
+{
+	int i, ret;
+	struct onenand_chip *this = mtd->priv;
+
+	if (!this->read_word)
+		this->read_word = onenand_readw;
+	if (!this->write_word)
+		this->write_word = onenand_writew;
+
+	if (!this->command)
+		this->command = onenand_command;
+	if (!this->wait)
+		onenand_setup_wait(mtd);
+	if (!this->bbt_wait)
+		this->bbt_wait = onenand_bbt_wait;
+	if (!this->unlock_all)
+		this->unlock_all = onenand_unlock_all;
+
+	if (!this->chip_probe)
+		this->chip_probe = onenand_chip_probe;
+
+	if (!this->read_bufferram)
+		this->read_bufferram = onenand_read_bufferram;
+	if (!this->write_bufferram)
+		this->write_bufferram = onenand_write_bufferram;
+
+	if (!this->block_markbad)
+		this->block_markbad = onenand_default_block_markbad;
+	if (!this->scan_bbt)
+		this->scan_bbt = onenand_default_bbt;
+
+	if (onenand_probe(mtd))
+		return -ENXIO;
+
+	/* Set Sync. Burst Read after probing */
+	if (this->mmcontrol) {
+		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
+		this->read_bufferram = onenand_sync_read_bufferram;
+	}
+
+	/* Allocate buffers, if necessary */
+	if (!this->page_buf) {
+		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+		if (!this->page_buf)
+			return -ENOMEM;
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+		if (!this->verify_buf) {
+			kfree(this->page_buf);
+			return -ENOMEM;
+		}
+#endif
+		this->options |= ONENAND_PAGEBUF_ALLOC;
+	}
+	if (!this->oob_buf) {
+		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
+		if (!this->oob_buf) {
+			if (this->options & ONENAND_PAGEBUF_ALLOC) {
+				this->options &= ~ONENAND_PAGEBUF_ALLOC;
+				kfree(this->page_buf);
+			}
+			return -ENOMEM;
+		}
+		this->options |= ONENAND_OOBBUF_ALLOC;
+	}
+
+	this->state = FL_READY;
+	init_waitqueue_head(&this->wq);
+	spin_lock_init(&this->chip_lock);
+
+	/*
+	 * Allow subpage writes up to oobsize.
+	 */
+	switch (mtd->oobsize) {
+	case 128:
+		if (FLEXONENAND(this)) {
+			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
+			mtd->subpage_sft = 0;
+		} else {
+			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
+			mtd->subpage_sft = 2;
+		}
+		if (ONENAND_IS_NOP_1(this))
+			mtd->subpage_sft = 0;
+		break;
+	case 64:
+		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+		mtd->subpage_sft = 2;
+		break;
+
+	case 32:
+		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+		mtd->subpage_sft = 1;
+		break;
+
+	default:
+		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
+			__func__, mtd->oobsize);
+		mtd->subpage_sft = 0;
+		/* To prevent kernel oops */
+		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+		break;
+	}
+
+	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+	/*
+	 * The number of bytes available for a client to place data into
+	 * the out of band area
+	 */
+	ret = mtd_ooblayout_count_freebytes(mtd);
+	if (ret < 0)
+		ret = 0;
+
+	mtd->oobavail = ret;
+
+	mtd->ecc_strength = 1;
+
+	/* Fill in remaining MTD driver data */
+	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
+	mtd->flags = MTD_CAP_NANDFLASH;
+	mtd->_erase = onenand_erase;
+	mtd->_point = NULL;
+	mtd->_unpoint = NULL;
+	mtd->_read_oob = onenand_read_oob;
+	mtd->_write_oob = onenand_write_oob;
+	mtd->_panic_write = onenand_panic_write;
+#ifdef CONFIG_MTD_ONENAND_OTP
+	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
+	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
+	mtd->_get_user_prot_info = onenand_get_user_prot_info;
+	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
+	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
+	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
+#endif
+	mtd->_sync = onenand_sync;
+	mtd->_lock = onenand_lock;
+	mtd->_unlock = onenand_unlock;
+	mtd->_suspend = onenand_suspend;
+	mtd->_resume = onenand_resume;
+	mtd->_block_isbad = onenand_block_isbad;
+	mtd->_block_markbad = onenand_block_markbad;
+	mtd->owner = THIS_MODULE;
+	mtd->writebufsize = mtd->writesize;
+
+	/* Unlock whole block */
+	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
+		this->unlock_all(mtd);
+
+	ret = this->scan_bbt(mtd);
+	if ((!FLEXONENAND(this)) || ret)
+		return ret;
+
+	/* Change Flex-OneNAND boundaries if required */
+	for (i = 0; i < MAX_DIES; i++)
+		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
+						 flex_bdry[(2 * i) + 1]);
+
+	return 0;
+}
+
+/**
+ * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
+ * @param mtd		MTD device structure
+ */
+void onenand_release(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	/* Deregister partitions */
+	mtd_device_unregister(mtd);
+
+	/* Free bad block table memory, if allocated */
+	if (this->bbm) {
+		struct bbm_info *bbm = this->bbm;
+		kfree(bbm->bbt);
+		kfree(this->bbm);
+	}
+	/* Buffers allocated by onenand_scan */
+	if (this->options & ONENAND_PAGEBUF_ALLOC) {
+		kfree(this->page_buf);
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+		kfree(this->verify_buf);
+#endif
+	}
+	if (this->options & ONENAND_OOBBUF_ALLOC)
+		kfree(this->oob_buf);
+	kfree(mtd->eraseregions);
+}
+
+EXPORT_SYMBOL_GPL(onenand_scan);
+EXPORT_SYMBOL_GPL(onenand_release);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Generic OneNAND flash driver code");
diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c
new file mode 100644
index 0000000..dde2048
--- /dev/null
+++ b/drivers/mtd/nand/onenand/onenand_bbt.c
@@ -0,0 +1,248 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  Bad Block Table support for the OneNAND driver
+ *
+ *  Copyright(c) 2005 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ *  Derived from nand_bbt.c
+ *
+ *  TODO:
+ *    Split BBT core and chip specific BBT.
+ */
+
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/export.h>
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @param buf		the buffer to search
+ * @param len		the length of buffer to search
+ * @param paglen	the pagelength
+ * @param td		search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers. Same as check_pattern, but
+ * no optional empty check and the pattern is expected to start
+ * at offset 0.
+ *
+ */
+static int check_short_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+	int i;
+	uint8_t *p = buf;
+
+	/* Compare the pattern */
+	for (i = 0; i < td->len; i++) {
+		if (p[i] != td->pattern[i])
+			return -1;
+	}
+        return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @param mtd		MTD device structure
+ * @param buf		temporary buffer
+ * @param bd		descriptor for the good/bad block search pattern
+ * @param chip		create the table for a specific chip, -1 read all chips.
+ *              Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	int i, j, numblocks, len, scanlen;
+	int startblock;
+	loff_t from;
+	size_t readlen, ooblen;
+	struct mtd_oob_ops ops;
+	int rgn;
+
+	printk(KERN_INFO "Scanning device for bad blocks\n");
+
+	len = 2;
+
+	/* We need only read few bytes from the OOB area */
+	scanlen = ooblen = 0;
+	readlen = bd->len;
+
+	/* chip == -1 case only */
+	/* Note that numblocks is 2 * (real numblocks) here;
+	 * see i += 2 below as it makses shifting and masking less painful
+	 */
+	numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1);
+	startblock = 0;
+	from = 0;
+
+	ops.mode = MTD_OPS_PLACE_OOB;
+	ops.ooblen = readlen;
+	ops.oobbuf = buf;
+	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
+
+	for (i = startblock; i < numblocks; ) {
+		int ret;
+
+		for (j = 0; j < len; j++) {
+			/* No need to read pages fully,
+			 * just read required OOB bytes */
+			ret = onenand_bbt_read_oob(mtd,
+				from + j * this->writesize + bd->offs, &ops);
+
+			/* If it is a initial bad block, just ignore it */
+			if (ret == ONENAND_BBT_READ_FATAL_ERROR)
+				return -EIO;
+
+			if (ret || check_short_pattern(&buf[j * scanlen],
+					       scanlen, this->writesize, bd)) {
+				bbm->bbt[i >> 3] |= 0x03 << (i & 0x6);
+				printk(KERN_INFO "OneNAND eraseblock %d is an "
+					"initial bad block\n", i >> 1);
+				mtd->ecc_stats.badblocks++;
+				break;
+			}
+		}
+		i += 2;
+
+		if (FLEXONENAND(this)) {
+			rgn = flexonenand_region(mtd, from);
+			from += mtd->eraseregions[rgn].erasesize;
+		} else
+			from += (1 << bbm->bbt_erase_shift);
+	}
+
+	return 0;
+}
+
+
+/**
+ * onenand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @param mtd		MTD device structure
+ * @param bd		descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+ */
+static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	return create_bbt(mtd, this->page_buf, bd, -1);
+}
+
+/**
+ * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad
+ * @param mtd		MTD device structure
+ * @param offs		offset in the device
+ * @param allowbbt	allow access to bad block table region
+ */
+static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	int block;
+	uint8_t res;
+
+	/* Get block number * 2 */
+	block = (int) (onenand_block(this, offs) << 1);
+	res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+	pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+		(unsigned int) offs, block >> 1, res);
+
+	switch ((int) res) {
+	case 0x00:	return 0;
+	case 0x01:	return 1;
+	case 0x02:	return allowbbt ? 0 : 1;
+	}
+
+	return 1;
+}
+
+/**
+ * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s)
+ * @param mtd		MTD device structure
+ * @param bd		descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It is freed
+ * by the onenand_release function.
+ *
+ */
+static int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	int len, ret = 0;
+
+	len = this->chipsize >> (this->erase_shift + 2);
+	/* Allocate memory (2bit per block) and clear the memory bad block table */
+	bbm->bbt = kzalloc(len, GFP_KERNEL);
+	if (!bbm->bbt)
+		return -ENOMEM;
+
+	/* Set the bad block position */
+	bbm->badblockpos = ONENAND_BADBLOCK_POS;
+
+	/* Set erase shift */
+	bbm->bbt_erase_shift = this->erase_shift;
+
+	if (!bbm->isbad_bbt)
+		bbm->isbad_bbt = onenand_isbad_bbt;
+
+	/* Scan the device to build a memory based bad block table */
+	if ((ret = onenand_memory_bbt(mtd, bd))) {
+		printk(KERN_ERR "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n");
+		kfree(bbm->bbt);
+		bbm->bbt = NULL;
+	}
+
+	return ret;
+}
+
+/*
+ * Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks.
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr largepage_memorybased = {
+	.options = 0,
+	.offs = 0,
+	.len = 2,
+	.pattern = scan_ff_pattern,
+};
+
+/**
+ * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device
+ * @param mtd		MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the onenand_scan_bbt function
+ */
+int onenand_default_bbt(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm;
+
+	this->bbm = kzalloc(sizeof(struct bbm_info), GFP_KERNEL);
+	if (!this->bbm)
+		return -ENOMEM;
+
+	bbm = this->bbm;
+
+	/* 1KB page has same configuration as 2KB page */
+	if (!bbm->badblock_pattern)
+		bbm->badblock_pattern = &largepage_memorybased;
+
+	return onenand_scan_bbt(mtd, bbm->badblock_pattern);
+}
diff --git a/drivers/mtd/nand/onenand/samsung.c b/drivers/mtd/nand/onenand/samsung.c
new file mode 100644
index 0000000..e64d0fd
--- /dev/null
+++ b/drivers/mtd/nand/onenand/samsung.c
@@ -0,0 +1,1009 @@
+/*
+ * Samsung S3C64XX/S5PC1XX OneNAND driver
+ *
+ *  Copyright © 2008-2010 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *  Marek Szyprowski <m.szyprowski@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Implementation:
+ *	S3C64XX: emulate the pseudo BufferRAM
+ *	S5PC110: use DMA
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+
+#include "samsung.h"
+
+enum soc_type {
+	TYPE_S3C6400,
+	TYPE_S3C6410,
+	TYPE_S5PC110,
+};
+
+#define ONENAND_ERASE_STATUS		0x00
+#define ONENAND_MULTI_ERASE_SET		0x01
+#define ONENAND_ERASE_START		0x03
+#define ONENAND_UNLOCK_START		0x08
+#define ONENAND_UNLOCK_END		0x09
+#define ONENAND_LOCK_START		0x0A
+#define ONENAND_LOCK_END		0x0B
+#define ONENAND_LOCK_TIGHT_START	0x0C
+#define ONENAND_LOCK_TIGHT_END		0x0D
+#define ONENAND_UNLOCK_ALL		0x0E
+#define ONENAND_OTP_ACCESS		0x12
+#define ONENAND_SPARE_ACCESS_ONLY	0x13
+#define ONENAND_MAIN_ACCESS_ONLY	0x14
+#define ONENAND_ERASE_VERIFY		0x15
+#define ONENAND_MAIN_SPARE_ACCESS	0x16
+#define ONENAND_PIPELINE_READ		0x4000
+
+#define MAP_00				(0x0)
+#define MAP_01				(0x1)
+#define MAP_10				(0x2)
+#define MAP_11				(0x3)
+
+#define S3C64XX_CMD_MAP_SHIFT		24
+
+#define S3C6400_FBA_SHIFT		10
+#define S3C6400_FPA_SHIFT		4
+#define S3C6400_FSA_SHIFT		2
+
+#define S3C6410_FBA_SHIFT		12
+#define S3C6410_FPA_SHIFT		6
+#define S3C6410_FSA_SHIFT		4
+
+/* S5PC110 specific definitions */
+#define S5PC110_DMA_SRC_ADDR		0x400
+#define S5PC110_DMA_SRC_CFG		0x404
+#define S5PC110_DMA_DST_ADDR		0x408
+#define S5PC110_DMA_DST_CFG		0x40C
+#define S5PC110_DMA_TRANS_SIZE		0x414
+#define S5PC110_DMA_TRANS_CMD		0x418
+#define S5PC110_DMA_TRANS_STATUS	0x41C
+#define S5PC110_DMA_TRANS_DIR		0x420
+#define S5PC110_INTC_DMA_CLR		0x1004
+#define S5PC110_INTC_ONENAND_CLR	0x1008
+#define S5PC110_INTC_DMA_MASK		0x1024
+#define S5PC110_INTC_ONENAND_MASK	0x1028
+#define S5PC110_INTC_DMA_PEND		0x1044
+#define S5PC110_INTC_ONENAND_PEND	0x1048
+#define S5PC110_INTC_DMA_STATUS		0x1064
+#define S5PC110_INTC_ONENAND_STATUS	0x1068
+
+#define S5PC110_INTC_DMA_TD		(1 << 24)
+#define S5PC110_INTC_DMA_TE		(1 << 16)
+
+#define S5PC110_DMA_CFG_SINGLE		(0x0 << 16)
+#define S5PC110_DMA_CFG_4BURST		(0x2 << 16)
+#define S5PC110_DMA_CFG_8BURST		(0x3 << 16)
+#define S5PC110_DMA_CFG_16BURST		(0x4 << 16)
+
+#define S5PC110_DMA_CFG_INC		(0x0 << 8)
+#define S5PC110_DMA_CFG_CNT		(0x1 << 8)
+
+#define S5PC110_DMA_CFG_8BIT		(0x0 << 0)
+#define S5PC110_DMA_CFG_16BIT		(0x1 << 0)
+#define S5PC110_DMA_CFG_32BIT		(0x2 << 0)
+
+#define S5PC110_DMA_SRC_CFG_READ	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_16BIT)
+#define S5PC110_DMA_DST_CFG_READ	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_SRC_CFG_WRITE	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_DST_CFG_WRITE	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_16BIT)
+
+#define S5PC110_DMA_TRANS_CMD_TDC	(0x1 << 18)
+#define S5PC110_DMA_TRANS_CMD_TEC	(0x1 << 16)
+#define S5PC110_DMA_TRANS_CMD_TR	(0x1 << 0)
+
+#define S5PC110_DMA_TRANS_STATUS_TD	(0x1 << 18)
+#define S5PC110_DMA_TRANS_STATUS_TB	(0x1 << 17)
+#define S5PC110_DMA_TRANS_STATUS_TE	(0x1 << 16)
+
+#define S5PC110_DMA_DIR_READ		0x0
+#define S5PC110_DMA_DIR_WRITE		0x1
+
+struct s3c_onenand {
+	struct mtd_info	*mtd;
+	struct platform_device	*pdev;
+	enum soc_type	type;
+	void __iomem	*base;
+	void __iomem	*ahb_addr;
+	int		bootram_command;
+	void		*page_buf;
+	void		*oob_buf;
+	unsigned int	(*mem_addr)(int fba, int fpa, int fsa);
+	unsigned int	(*cmd_map)(unsigned int type, unsigned int val);
+	void __iomem	*dma_addr;
+	unsigned long	phys_base;
+	struct completion	complete;
+};
+
+#define CMD_MAP_00(dev, addr)		(dev->cmd_map(MAP_00, ((addr) << 1)))
+#define CMD_MAP_01(dev, mem_addr)	(dev->cmd_map(MAP_01, (mem_addr)))
+#define CMD_MAP_10(dev, mem_addr)	(dev->cmd_map(MAP_10, (mem_addr)))
+#define CMD_MAP_11(dev, addr)		(dev->cmd_map(MAP_11, ((addr) << 2)))
+
+static struct s3c_onenand *onenand;
+
+static inline int s3c_read_reg(int offset)
+{
+	return readl(onenand->base + offset);
+}
+
+static inline void s3c_write_reg(int value, int offset)
+{
+	writel(value, onenand->base + offset);
+}
+
+static inline int s3c_read_cmd(unsigned int cmd)
+{
+	return readl(onenand->ahb_addr + cmd);
+}
+
+static inline void s3c_write_cmd(int value, unsigned int cmd)
+{
+	writel(value, onenand->ahb_addr + cmd);
+}
+
+#ifdef SAMSUNG_DEBUG
+static void s3c_dump_reg(void)
+{
+	int i;
+
+	for (i = 0; i < 0x400; i += 0x40) {
+		printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
+			(unsigned int) onenand->base + i,
+			s3c_read_reg(i), s3c_read_reg(i + 0x10),
+			s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
+	}
+}
+#endif
+
+static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
+{
+	return (type << S3C64XX_CMD_MAP_SHIFT) | val;
+}
+
+static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
+{
+	return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
+		(fsa << S3C6400_FSA_SHIFT);
+}
+
+static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
+{
+	return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
+		(fsa << S3C6410_FSA_SHIFT);
+}
+
+static void s3c_onenand_reset(void)
+{
+	unsigned long timeout = 0x10000;
+	int stat;
+
+	s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+	while (1 && timeout--) {
+		stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+		if (stat & RST_CMP)
+			break;
+	}
+	stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+	s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+	/* Clear interrupt */
+	s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
+	/* Clear the ECC status */
+	s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
+}
+
+static unsigned short s3c_onenand_readw(void __iomem *addr)
+{
+	struct onenand_chip *this = onenand->mtd->priv;
+	struct device *dev = &onenand->pdev->dev;
+	int reg = addr - this->base;
+	int word_addr = reg >> 1;
+	int value;
+
+	/* It's used for probing time */
+	switch (reg) {
+	case ONENAND_REG_MANUFACTURER_ID:
+		return s3c_read_reg(MANUFACT_ID_OFFSET);
+	case ONENAND_REG_DEVICE_ID:
+		return s3c_read_reg(DEVICE_ID_OFFSET);
+	case ONENAND_REG_VERSION_ID:
+		return s3c_read_reg(FLASH_VER_ID_OFFSET);
+	case ONENAND_REG_DATA_BUFFER_SIZE:
+		return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
+	case ONENAND_REG_TECHNOLOGY:
+		return s3c_read_reg(TECH_OFFSET);
+	case ONENAND_REG_SYS_CFG1:
+		return s3c_read_reg(MEM_CFG_OFFSET);
+
+	/* Used at unlock all status */
+	case ONENAND_REG_CTRL_STATUS:
+		return 0;
+
+	case ONENAND_REG_WP_STATUS:
+		return ONENAND_WP_US;
+
+	default:
+		break;
+	}
+
+	/* BootRAM access control */
+	if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
+		if (word_addr == 0)
+			return s3c_read_reg(MANUFACT_ID_OFFSET);
+		if (word_addr == 1)
+			return s3c_read_reg(DEVICE_ID_OFFSET);
+		if (word_addr == 2)
+			return s3c_read_reg(FLASH_VER_ID_OFFSET);
+	}
+
+	value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
+	dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+		 word_addr, value);
+	return value;
+}
+
+static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
+{
+	struct onenand_chip *this = onenand->mtd->priv;
+	struct device *dev = &onenand->pdev->dev;
+	unsigned int reg = addr - this->base;
+	unsigned int word_addr = reg >> 1;
+
+	/* It's used for probing time */
+	switch (reg) {
+	case ONENAND_REG_SYS_CFG1:
+		s3c_write_reg(value, MEM_CFG_OFFSET);
+		return;
+
+	case ONENAND_REG_START_ADDRESS1:
+	case ONENAND_REG_START_ADDRESS2:
+		return;
+
+	/* Lock/lock-tight/unlock/unlock_all */
+	case ONENAND_REG_START_BLOCK_ADDRESS:
+		return;
+
+	default:
+		break;
+	}
+
+	/* BootRAM access control */
+	if ((unsigned int)addr < ONENAND_DATARAM) {
+		if (value == ONENAND_CMD_READID) {
+			onenand->bootram_command = 1;
+			return;
+		}
+		if (value == ONENAND_CMD_RESET) {
+			s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+			onenand->bootram_command = 0;
+			return;
+		}
+	}
+
+	dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+		 word_addr, value);
+
+	s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
+}
+
+static int s3c_onenand_wait(struct mtd_info *mtd, int state)
+{
+	struct device *dev = &onenand->pdev->dev;
+	unsigned int flags = INT_ACT;
+	unsigned int stat, ecc;
+	unsigned long timeout;
+
+	switch (state) {
+	case FL_READING:
+		flags |= BLK_RW_CMP | LOAD_CMP;
+		break;
+	case FL_WRITING:
+		flags |= BLK_RW_CMP | PGM_CMP;
+		break;
+	case FL_ERASING:
+		flags |= BLK_RW_CMP | ERS_CMP;
+		break;
+	case FL_LOCKING:
+		flags |= BLK_RW_CMP;
+		break;
+	default:
+		break;
+	}
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+		if (stat & flags)
+			break;
+
+		if (state != FL_READING)
+			cond_resched();
+	}
+	/* To get correct interrupt status in timeout case */
+	stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+	s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+	/*
+	 * In the Spec. it checks the controller status first
+	 * However if you get the correct information in case of
+	 * power off recovery (POR) test, it should read ECC status first
+	 */
+	if (stat & LOAD_CMP) {
+		ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+		if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+			dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
+				 ecc);
+			mtd->ecc_stats.failed++;
+			return -EBADMSG;
+		}
+	}
+
+	if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
+		dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
+			 stat);
+		if (stat & LOCKED_BLK)
+			dev_info(dev, "%s: it's locked error = 0x%04x\n",
+				 __func__, stat);
+
+		return -EIO;
+	}
+
+	return 0;
+}
+
+static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
+			       size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int *m, *s;
+	int fba, fpa, fsa = 0;
+	unsigned int mem_addr, cmd_map_01, cmd_map_10;
+	int i, mcount, scount;
+	int index;
+
+	fba = (int) (addr >> this->erase_shift);
+	fpa = (int) (addr >> this->page_shift);
+	fpa &= this->page_mask;
+
+	mem_addr = onenand->mem_addr(fba, fpa, fsa);
+	cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
+	cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
+
+	switch (cmd) {
+	case ONENAND_CMD_READ:
+	case ONENAND_CMD_READOOB:
+	case ONENAND_CMD_BUFFERRAM:
+		ONENAND_SET_NEXT_BUFFERRAM(this);
+	default:
+		break;
+	}
+
+	index = ONENAND_CURRENT_BUFFERRAM(this);
+
+	/*
+	 * Emulate Two BufferRAMs and access with 4 bytes pointer
+	 */
+	m = onenand->page_buf;
+	s = onenand->oob_buf;
+
+	if (index) {
+		m += (this->writesize >> 2);
+		s += (mtd->oobsize >> 2);
+	}
+
+	mcount = mtd->writesize >> 2;
+	scount = mtd->oobsize >> 2;
+
+	switch (cmd) {
+	case ONENAND_CMD_READ:
+		/* Main */
+		for (i = 0; i < mcount; i++)
+			*m++ = s3c_read_cmd(cmd_map_01);
+		return 0;
+
+	case ONENAND_CMD_READOOB:
+		s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+		/* Main */
+		for (i = 0; i < mcount; i++)
+			*m++ = s3c_read_cmd(cmd_map_01);
+
+		/* Spare */
+		for (i = 0; i < scount; i++)
+			*s++ = s3c_read_cmd(cmd_map_01);
+
+		s3c_write_reg(0, TRANS_SPARE_OFFSET);
+		return 0;
+
+	case ONENAND_CMD_PROG:
+		/* Main */
+		for (i = 0; i < mcount; i++)
+			s3c_write_cmd(*m++, cmd_map_01);
+		return 0;
+
+	case ONENAND_CMD_PROGOOB:
+		s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+
+		/* Main - dummy write */
+		for (i = 0; i < mcount; i++)
+			s3c_write_cmd(0xffffffff, cmd_map_01);
+
+		/* Spare */
+		for (i = 0; i < scount; i++)
+			s3c_write_cmd(*s++, cmd_map_01);
+
+		s3c_write_reg(0, TRANS_SPARE_OFFSET);
+		return 0;
+
+	case ONENAND_CMD_UNLOCK_ALL:
+		s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
+		return 0;
+
+	case ONENAND_CMD_ERASE:
+		s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
+		return 0;
+
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
+{
+	struct onenand_chip *this = mtd->priv;
+	int index = ONENAND_CURRENT_BUFFERRAM(this);
+	unsigned char *p;
+
+	if (area == ONENAND_DATARAM) {
+		p = onenand->page_buf;
+		if (index == 1)
+			p += this->writesize;
+	} else {
+		p = onenand->oob_buf;
+		if (index == 1)
+			p += mtd->oobsize;
+	}
+
+	return p;
+}
+
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+				  unsigned char *buffer, int offset,
+				  size_t count)
+{
+	unsigned char *p;
+
+	p = s3c_get_bufferram(mtd, area);
+	memcpy(buffer, p + offset, count);
+	return 0;
+}
+
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+				   const unsigned char *buffer, int offset,
+				   size_t count)
+{
+	unsigned char *p;
+
+	p = s3c_get_bufferram(mtd, area);
+	memcpy(p + offset, buffer, count);
+	return 0;
+}
+
+static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction);
+
+static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
+{
+	void __iomem *base = onenand->dma_addr;
+	int status;
+	unsigned long timeout;
+
+	writel(src, base + S5PC110_DMA_SRC_ADDR);
+	writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+	if (direction == S5PC110_DMA_DIR_READ) {
+		writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+	} else {
+		writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+	}
+
+	writel(count, base + S5PC110_DMA_TRANS_SIZE);
+	writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+	writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+	/*
+	 * There's no exact timeout values at Spec.
+	 * In real case it takes under 1 msec.
+	 * So 20 msecs are enough.
+	 */
+	timeout = jiffies + msecs_to_jiffies(20);
+
+	do {
+		status = readl(base + S5PC110_DMA_TRANS_STATUS);
+		if (status & S5PC110_DMA_TRANS_STATUS_TE) {
+			writel(S5PC110_DMA_TRANS_CMD_TEC,
+					base + S5PC110_DMA_TRANS_CMD);
+			return -EIO;
+		}
+	} while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
+		time_before(jiffies, timeout));
+
+	writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
+
+	return 0;
+}
+
+static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
+{
+	void __iomem *base = onenand->dma_addr;
+	int status, cmd = 0;
+
+	status = readl(base + S5PC110_INTC_DMA_STATUS);
+
+	if (likely(status & S5PC110_INTC_DMA_TD))
+		cmd = S5PC110_DMA_TRANS_CMD_TDC;
+
+	if (unlikely(status & S5PC110_INTC_DMA_TE))
+		cmd = S5PC110_DMA_TRANS_CMD_TEC;
+
+	writel(cmd, base + S5PC110_DMA_TRANS_CMD);
+	writel(status, base + S5PC110_INTC_DMA_CLR);
+
+	if (!onenand->complete.done)
+		complete(&onenand->complete);
+
+	return IRQ_HANDLED;
+}
+
+static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
+{
+	void __iomem *base = onenand->dma_addr;
+	int status;
+
+	status = readl(base + S5PC110_INTC_DMA_MASK);
+	if (status) {
+		status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
+		writel(status, base + S5PC110_INTC_DMA_MASK);
+	}
+
+	writel(src, base + S5PC110_DMA_SRC_ADDR);
+	writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+	if (direction == S5PC110_DMA_DIR_READ) {
+		writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+	} else {
+		writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+	}
+
+	writel(count, base + S5PC110_DMA_TRANS_SIZE);
+	writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+	writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+	wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
+
+	return 0;
+}
+
+static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
+		unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *p;
+	void *buf = (void *) buffer;
+	dma_addr_t dma_src, dma_dst;
+	int err, ofs, page_dma = 0;
+	struct device *dev = &onenand->pdev->dev;
+
+	p = this->base + area;
+	if (ONENAND_CURRENT_BUFFERRAM(this)) {
+		if (area == ONENAND_DATARAM)
+			p += this->writesize;
+		else
+			p += mtd->oobsize;
+	}
+
+	if (offset & 3 || (size_t) buf & 3 ||
+		!onenand->dma_addr || count != mtd->writesize)
+		goto normal;
+
+	/* Handle vmalloc address */
+	if (buf >= high_memory) {
+		struct page *page;
+
+		if (((size_t) buf & PAGE_MASK) !=
+		    ((size_t) (buf + count - 1) & PAGE_MASK))
+			goto normal;
+		page = vmalloc_to_page(buf);
+		if (!page)
+			goto normal;
+
+		/* Page offset */
+		ofs = ((size_t) buf & ~PAGE_MASK);
+		page_dma = 1;
+
+		/* DMA routine */
+		dma_src = onenand->phys_base + (p - this->base);
+		dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
+	} else {
+		/* DMA routine */
+		dma_src = onenand->phys_base + (p - this->base);
+		dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
+	}
+	if (dma_mapping_error(dev, dma_dst)) {
+		dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
+		goto normal;
+	}
+	err = s5pc110_dma_ops(dma_dst, dma_src,
+			count, S5PC110_DMA_DIR_READ);
+
+	if (page_dma)
+		dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
+	else
+		dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
+
+	if (!err)
+		return 0;
+
+normal:
+	if (count != mtd->writesize) {
+		/* Copy the bufferram to memory to prevent unaligned access */
+		memcpy(this->page_buf, p, mtd->writesize);
+		p = this->page_buf + offset;
+	}
+
+	memcpy(buffer, p, count);
+
+	return 0;
+}
+
+static int s5pc110_chip_probe(struct mtd_info *mtd)
+{
+	/* Now just return 0 */
+	return 0;
+}
+
+static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+	unsigned int flags = INT_ACT | LOAD_CMP;
+	unsigned int stat;
+	unsigned long timeout;
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+		if (stat & flags)
+			break;
+	}
+	/* To get correct interrupt status in timeout case */
+	stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+	s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+	if (stat & LD_FAIL_ECC_ERR) {
+		s3c_onenand_reset();
+		return ONENAND_BBT_READ_ERROR;
+	}
+
+	if (stat & LOAD_CMP) {
+		int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+		if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+			s3c_onenand_reset();
+			return ONENAND_BBT_READ_ERROR;
+		}
+	}
+
+	return 0;
+}
+
+static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct device *dev = &onenand->pdev->dev;
+	unsigned int block, end;
+	int tmp;
+
+	end = this->chipsize >> this->erase_shift;
+
+	for (block = 0; block < end; block++) {
+		unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
+		tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
+
+		if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
+			dev_err(dev, "block %d is write-protected!\n", block);
+			s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
+		}
+	}
+}
+
+static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
+				    size_t len, int cmd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int start, end, start_mem_addr, end_mem_addr;
+
+	start = ofs >> this->erase_shift;
+	start_mem_addr = onenand->mem_addr(start, 0, 0);
+	end = start + (len >> this->erase_shift) - 1;
+	end_mem_addr = onenand->mem_addr(end, 0, 0);
+
+	if (cmd == ONENAND_CMD_LOCK) {
+		s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
+							     start_mem_addr));
+		s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
+							   end_mem_addr));
+	} else {
+		s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
+							       start_mem_addr));
+		s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
+							     end_mem_addr));
+	}
+
+	this->wait(mtd, FL_LOCKING);
+}
+
+static void s3c_unlock_all(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t ofs = 0;
+	size_t len = this->chipsize;
+
+	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+		/* Write unlock command */
+		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+		/* No need to check return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Workaround for all block unlock in DDP */
+		if (!ONENAND_IS_DDP(this)) {
+			s3c_onenand_check_lock_status(mtd);
+			return;
+		}
+
+		/* All blocks on another chip */
+		ofs = this->chipsize >> 1;
+		len = this->chipsize >> 1;
+	}
+
+	s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+
+	s3c_onenand_check_lock_status(mtd);
+}
+
+static void s3c_onenand_setup(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	onenand->mtd = mtd;
+
+	if (onenand->type == TYPE_S3C6400) {
+		onenand->mem_addr = s3c6400_mem_addr;
+		onenand->cmd_map = s3c64xx_cmd_map;
+	} else if (onenand->type == TYPE_S3C6410) {
+		onenand->mem_addr = s3c6410_mem_addr;
+		onenand->cmd_map = s3c64xx_cmd_map;
+	} else if (onenand->type == TYPE_S5PC110) {
+		/* Use generic onenand functions */
+		this->read_bufferram = s5pc110_read_bufferram;
+		this->chip_probe = s5pc110_chip_probe;
+		return;
+	} else {
+		BUG();
+	}
+
+	this->read_word = s3c_onenand_readw;
+	this->write_word = s3c_onenand_writew;
+
+	this->wait = s3c_onenand_wait;
+	this->bbt_wait = s3c_onenand_bbt_wait;
+	this->unlock_all = s3c_unlock_all;
+	this->command = s3c_onenand_command;
+
+	this->read_bufferram = onenand_read_bufferram;
+	this->write_bufferram = onenand_write_bufferram;
+}
+
+static int s3c_onenand_probe(struct platform_device *pdev)
+{
+	struct onenand_platform_data *pdata;
+	struct onenand_chip *this;
+	struct mtd_info *mtd;
+	struct resource *r;
+	int size, err;
+
+	pdata = dev_get_platdata(&pdev->dev);
+	/* No need to check pdata. the platform data is optional */
+
+	size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
+	mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
+	if (!mtd)
+		return -ENOMEM;
+
+	onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand),
+			       GFP_KERNEL);
+	if (!onenand)
+		return -ENOMEM;
+
+	this = (struct onenand_chip *) &mtd[1];
+	mtd->priv = this;
+	mtd->dev.parent = &pdev->dev;
+	onenand->pdev = pdev;
+	onenand->type = platform_get_device_id(pdev)->driver_data;
+
+	s3c_onenand_setup(mtd);
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	onenand->base = devm_ioremap_resource(&pdev->dev, r);
+	if (IS_ERR(onenand->base))
+		return PTR_ERR(onenand->base);
+
+	onenand->phys_base = r->start;
+
+	/* Set onenand_chip also */
+	this->base = onenand->base;
+
+	/* Use runtime badblock check */
+	this->options |= ONENAND_SKIP_UNLOCK_CHECK;
+
+	if (onenand->type != TYPE_S5PC110) {
+		r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+		onenand->ahb_addr = devm_ioremap_resource(&pdev->dev, r);
+		if (IS_ERR(onenand->ahb_addr))
+			return PTR_ERR(onenand->ahb_addr);
+
+		/* Allocate 4KiB BufferRAM */
+		onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K,
+						 GFP_KERNEL);
+		if (!onenand->page_buf)
+			return -ENOMEM;
+
+		/* Allocate 128 SpareRAM */
+		onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL);
+		if (!onenand->oob_buf)
+			return -ENOMEM;
+
+		/* S3C doesn't handle subpage write */
+		mtd->subpage_sft = 0;
+		this->subpagesize = mtd->writesize;
+
+	} else { /* S5PC110 */
+		r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+		onenand->dma_addr = devm_ioremap_resource(&pdev->dev, r);
+		if (IS_ERR(onenand->dma_addr))
+			return PTR_ERR(onenand->dma_addr);
+
+		s5pc110_dma_ops = s5pc110_dma_poll;
+		/* Interrupt support */
+		r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+		if (r) {
+			init_completion(&onenand->complete);
+			s5pc110_dma_ops = s5pc110_dma_irq;
+			err = devm_request_irq(&pdev->dev, r->start,
+					       s5pc110_onenand_irq,
+					       IRQF_SHARED, "onenand",
+					       &onenand);
+			if (err) {
+				dev_err(&pdev->dev, "failed to get irq\n");
+				return err;
+			}
+		}
+	}
+
+	err = onenand_scan(mtd, 1);
+	if (err)
+		return err;
+
+	if (onenand->type != TYPE_S5PC110) {
+		/* S3C doesn't handle subpage write */
+		mtd->subpage_sft = 0;
+		this->subpagesize = mtd->writesize;
+	}
+
+	if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
+		dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
+
+	err = mtd_device_register(mtd, pdata ? pdata->parts : NULL,
+				  pdata ? pdata->nr_parts : 0);
+	if (err) {
+		dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n");
+		onenand_release(mtd);
+		return err;
+	}
+
+	platform_set_drvdata(pdev, mtd);
+
+	return 0;
+}
+
+static int s3c_onenand_remove(struct platform_device *pdev)
+{
+	struct mtd_info *mtd = platform_get_drvdata(pdev);
+
+	onenand_release(mtd);
+
+	return 0;
+}
+
+static int s3c_pm_ops_suspend(struct device *dev)
+{
+	struct mtd_info *mtd = dev_get_drvdata(dev);
+	struct onenand_chip *this = mtd->priv;
+
+	this->wait(mtd, FL_PM_SUSPENDED);
+	return 0;
+}
+
+static  int s3c_pm_ops_resume(struct device *dev)
+{
+	struct mtd_info *mtd = dev_get_drvdata(dev);
+	struct onenand_chip *this = mtd->priv;
+
+	this->unlock_all(mtd);
+	return 0;
+}
+
+static const struct dev_pm_ops s3c_pm_ops = {
+	.suspend	= s3c_pm_ops_suspend,
+	.resume		= s3c_pm_ops_resume,
+};
+
+static const struct platform_device_id s3c_onenand_driver_ids[] = {
+	{
+		.name		= "s3c6400-onenand",
+		.driver_data	= TYPE_S3C6400,
+	}, {
+		.name		= "s3c6410-onenand",
+		.driver_data	= TYPE_S3C6410,
+	}, {
+		.name		= "s5pc110-onenand",
+		.driver_data	= TYPE_S5PC110,
+	}, { },
+};
+MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
+
+static struct platform_driver s3c_onenand_driver = {
+	.driver         = {
+		.name	= "samsung-onenand",
+		.pm	= &s3c_pm_ops,
+	},
+	.id_table	= s3c_onenand_driver_ids,
+	.probe          = s3c_onenand_probe,
+	.remove         = s3c_onenand_remove,
+};
+
+module_platform_driver(s3c_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Samsung OneNAND controller support");
diff --git a/drivers/mtd/nand/onenand/samsung.h b/drivers/mtd/nand/onenand/samsung.h
new file mode 100644
index 0000000..9016dc0
--- /dev/null
+++ b/drivers/mtd/nand/onenand/samsung.h
@@ -0,0 +1,59 @@
+/*
+ *  Copyright (C) 2008-2010 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef __SAMSUNG_ONENAND_H__
+#define __SAMSUNG_ONENAND_H__
+
+/*
+ * OneNAND Controller
+ */
+#define MEM_CFG_OFFSET		0x0000
+#define BURST_LEN_OFFSET	0x0010
+#define MEM_RESET_OFFSET	0x0020
+#define INT_ERR_STAT_OFFSET	0x0030
+#define INT_ERR_MASK_OFFSET	0x0040
+#define INT_ERR_ACK_OFFSET	0x0050
+#define ECC_ERR_STAT_OFFSET	0x0060
+#define MANUFACT_ID_OFFSET	0x0070
+#define DEVICE_ID_OFFSET	0x0080
+#define DATA_BUF_SIZE_OFFSET	0x0090
+#define BOOT_BUF_SIZE_OFFSET	0x00A0
+#define BUF_AMOUNT_OFFSET	0x00B0
+#define TECH_OFFSET		0x00C0
+#define FBA_WIDTH_OFFSET	0x00D0
+#define FPA_WIDTH_OFFSET	0x00E0
+#define FSA_WIDTH_OFFSET	0x00F0
+#define TRANS_SPARE_OFFSET	0x0140
+#define DBS_DFS_WIDTH_OFFSET	0x0160
+#define INT_PIN_ENABLE_OFFSET	0x01A0
+#define ACC_CLOCK_OFFSET	0x01C0
+#define FLASH_VER_ID_OFFSET	0x01F0
+#define FLASH_AUX_CNTRL_OFFSET	0x0300		/* s3c64xx only */
+
+#define ONENAND_MEM_RESET_HOT	0x3
+#define ONENAND_MEM_RESET_COLD	0x2
+#define ONENAND_MEM_RESET_WARM	0x1
+
+#define CACHE_OP_ERR		(1 << 13)
+#define RST_CMP			(1 << 12)
+#define RDY_ACT			(1 << 11)
+#define INT_ACT			(1 << 10)
+#define UNSUP_CMD		(1 << 9)
+#define LOCKED_BLK		(1 << 8)
+#define BLK_RW_CMP		(1 << 7)
+#define ERS_CMP			(1 << 6)
+#define PGM_CMP			(1 << 5)
+#define LOAD_CMP		(1 << 4)
+#define ERS_FAIL		(1 << 3)
+#define PGM_FAIL		(1 << 2)
+#define INT_TO			(1 << 1)
+#define LD_FAIL_ECC_ERR		(1 << 0)
+
+#define TSRF			(1 << 0)
+
+#endif