v4.19.13 snapshot.
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
new file mode 100644
index 0000000..9033215
--- /dev/null
+++ b/drivers/mtd/nand/Kconfig
@@ -0,0 +1,7 @@
+config MTD_NAND_CORE
+	tristate
+
+source "drivers/mtd/nand/onenand/Kconfig"
+
+source "drivers/mtd/nand/raw/Kconfig"
+source "drivers/mtd/nand/spi/Kconfig"
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
new file mode 100644
index 0000000..7ecd80c
--- /dev/null
+++ b/drivers/mtd/nand/Makefile
@@ -0,0 +1,8 @@
+# SPDX-License-Identifier: GPL-2.0
+
+nandcore-objs := core.o bbt.o
+obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o
+
+obj-y	+= onenand/
+obj-y	+= raw/
+obj-y	+= spi/
diff --git a/drivers/mtd/nand/bbt.c b/drivers/mtd/nand/bbt.c
new file mode 100644
index 0000000..044adf9
--- /dev/null
+++ b/drivers/mtd/nand/bbt.c
@@ -0,0 +1,131 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ *	Boris Brezillon <boris.brezillon@free-electrons.com>
+ *	Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt)	"nand-bbt: " fmt
+
+#include <linux/mtd/nand.h>
+#include <linux/slab.h>
+
+/**
+ * nanddev_bbt_init() - Initialize the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Initialize the in-memory BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_init(struct nand_device *nand)
+{
+	unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+	unsigned int nblocks = nanddev_neraseblocks(nand);
+	unsigned int nwords = DIV_ROUND_UP(nblocks * bits_per_block,
+					   BITS_PER_LONG);
+
+	nand->bbt.cache = kcalloc(nwords, sizeof(*nand->bbt.cache),
+				  GFP_KERNEL);
+	if (!nand->bbt.cache)
+		return -ENOMEM;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_init);
+
+/**
+ * nanddev_bbt_cleanup() - Cleanup the BBT (Bad Block Table)
+ * @nand: NAND device
+ *
+ * Undoes what has been done in nanddev_bbt_init()
+ */
+void nanddev_bbt_cleanup(struct nand_device *nand)
+{
+	kfree(nand->bbt.cache);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_cleanup);
+
+/**
+ * nanddev_bbt_update() - Update a BBT
+ * @nand: nand device
+ *
+ * Update the BBT. Currently a NOP function since on-flash bbt is not yet
+ * supported.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_bbt_update(struct nand_device *nand)
+{
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_update);
+
+/**
+ * nanddev_bbt_get_block_status() - Return the status of an eraseblock
+ * @nand: nand device
+ * @entry: the BBT entry
+ *
+ * Return: a positive number nand_bbt_block_status status or -%ERANGE if @entry
+ *	   is bigger than the BBT size.
+ */
+int nanddev_bbt_get_block_status(const struct nand_device *nand,
+				 unsigned int entry)
+{
+	unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+	unsigned long *pos = nand->bbt.cache +
+			     ((entry * bits_per_block) / BITS_PER_LONG);
+	unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+	unsigned long status;
+
+	if (entry >= nanddev_neraseblocks(nand))
+		return -ERANGE;
+
+	status = pos[0] >> offs;
+	if (bits_per_block + offs > BITS_PER_LONG)
+		status |= pos[1] << (BITS_PER_LONG - offs);
+
+	return status & GENMASK(bits_per_block - 1, 0);
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_get_block_status);
+
+/**
+ * nanddev_bbt_set_block_status() - Update the status of an eraseblock in the
+ *				    in-memory BBT
+ * @nand: nand device
+ * @entry: the BBT entry to update
+ * @status: the new status
+ *
+ * Update an entry of the in-memory BBT. If you want to push the updated BBT
+ * the NAND you should call nanddev_bbt_update().
+ *
+ * Return: 0 in case of success or -%ERANGE if @entry is bigger than the BBT
+ *	   size.
+ */
+int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
+				 enum nand_bbt_block_status status)
+{
+	unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS);
+	unsigned long *pos = nand->bbt.cache +
+			     ((entry * bits_per_block) / BITS_PER_LONG);
+	unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG;
+	unsigned long val = status & GENMASK(bits_per_block - 1, 0);
+
+	if (entry >= nanddev_neraseblocks(nand))
+		return -ERANGE;
+
+	pos[0] &= ~GENMASK(offs + bits_per_block - 1, offs);
+	pos[0] |= val << offs;
+
+	if (bits_per_block + offs > BITS_PER_LONG) {
+		unsigned int rbits = bits_per_block + offs - BITS_PER_LONG;
+
+		pos[1] &= ~GENMASK(rbits - 1, 0);
+		pos[1] |= val >> rbits;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_bbt_set_block_status);
diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c
new file mode 100644
index 0000000..9c9f893
--- /dev/null
+++ b/drivers/mtd/nand/core.c
@@ -0,0 +1,241 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 Free Electrons
+ *
+ * Authors:
+ *	Boris Brezillon <boris.brezillon@free-electrons.com>
+ *	Peter Pan <peterpandong@micron.com>
+ */
+
+#define pr_fmt(fmt)	"nand: " fmt
+
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+
+/**
+ * nanddev_isbad() - Check if a block is bad
+ * @nand: NAND device
+ * @pos: position pointing to the block we want to check
+ *
+ * Return: true if the block is bad, false otherwise.
+ */
+bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+	if (nanddev_bbt_is_initialized(nand)) {
+		unsigned int entry;
+		int status;
+
+		entry = nanddev_bbt_pos_to_entry(nand, pos);
+		status = nanddev_bbt_get_block_status(nand, entry);
+		/* Lazy block status retrieval */
+		if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) {
+			if (nand->ops->isbad(nand, pos))
+				status = NAND_BBT_BLOCK_FACTORY_BAD;
+			else
+				status = NAND_BBT_BLOCK_GOOD;
+
+			nanddev_bbt_set_block_status(nand, entry, status);
+		}
+
+		if (status == NAND_BBT_BLOCK_WORN ||
+		    status == NAND_BBT_BLOCK_FACTORY_BAD)
+			return true;
+
+		return false;
+	}
+
+	return nand->ops->isbad(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_isbad);
+
+/**
+ * nanddev_markbad() - Mark a block as bad
+ * @nand: NAND device
+ * @pos: position of the block to mark bad
+ *
+ * Mark a block bad. This function is updating the BBT if available and
+ * calls the low-level markbad hook (nand->ops->markbad()).
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+	struct mtd_info *mtd = nanddev_to_mtd(nand);
+	unsigned int entry;
+	int ret = 0;
+
+	if (nanddev_isbad(nand, pos))
+		return 0;
+
+	ret = nand->ops->markbad(nand, pos);
+	if (ret)
+		pr_warn("failed to write BBM to block @%llx (err = %d)\n",
+			nanddev_pos_to_offs(nand, pos), ret);
+
+	if (!nanddev_bbt_is_initialized(nand))
+		goto out;
+
+	entry = nanddev_bbt_pos_to_entry(nand, pos);
+	ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN);
+	if (ret)
+		goto out;
+
+	ret = nanddev_bbt_update(nand);
+
+out:
+	if (!ret)
+		mtd->ecc_stats.badblocks++;
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(nanddev_markbad);
+
+/**
+ * nanddev_isreserved() - Check whether an eraseblock is reserved or not
+ * @nand: NAND device
+ * @pos: NAND position to test
+ *
+ * Checks whether the eraseblock pointed by @pos is reserved or not.
+ *
+ * Return: true if the eraseblock is reserved, false otherwise.
+ */
+bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos)
+{
+	unsigned int entry;
+	int status;
+
+	if (!nanddev_bbt_is_initialized(nand))
+		return false;
+
+	/* Return info from the table */
+	entry = nanddev_bbt_pos_to_entry(nand, pos);
+	status = nanddev_bbt_get_block_status(nand, entry);
+	return status == NAND_BBT_BLOCK_RESERVED;
+}
+EXPORT_SYMBOL_GPL(nanddev_isreserved);
+
+/**
+ * nanddev_erase() - Erase a NAND portion
+ * @nand: NAND device
+ * @pos: position of the block to erase
+ *
+ * Erases the block if it's not bad.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos)
+{
+	if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) {
+		pr_warn("attempt to erase a bad/reserved block @%llx\n",
+			nanddev_pos_to_offs(nand, pos));
+		return -EIO;
+	}
+
+	return nand->ops->erase(nand, pos);
+}
+EXPORT_SYMBOL_GPL(nanddev_erase);
+
+/**
+ * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices
+ * @mtd: MTD device
+ * @einfo: erase request
+ *
+ * This is a simple mtd->_erase() implementation iterating over all blocks
+ * concerned by @einfo and calling nand->ops->erase() on each of them.
+ *
+ * Note that mtd->_erase should not be directly assigned to this helper,
+ * because there's no locking here. NAND specialized layers should instead
+ * implement there own wrapper around nanddev_mtd_erase() taking the
+ * appropriate lock before calling nanddev_mtd_erase().
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo)
+{
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct nand_pos pos, last;
+	int ret;
+
+	nanddev_offs_to_pos(nand, einfo->addr, &pos);
+	nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last);
+	while (nanddev_pos_cmp(&pos, &last) <= 0) {
+		ret = nanddev_erase(nand, &pos);
+		if (ret) {
+			einfo->fail_addr = nanddev_pos_to_offs(nand, &pos);
+
+			return ret;
+		}
+
+		nanddev_pos_next_eraseblock(nand, &pos);
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nanddev_mtd_erase);
+
+/**
+ * nanddev_init() - Initialize a NAND device
+ * @nand: NAND device
+ * @ops: NAND device operations
+ * @owner: NAND device owner
+ *
+ * Initializes a NAND device object. Consistency checks are done on @ops and
+ * @nand->memorg. Also takes care of initializing the BBT.
+ *
+ * Return: 0 in case of success, a negative error code otherwise.
+ */
+int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
+		 struct module *owner)
+{
+	struct mtd_info *mtd = nanddev_to_mtd(nand);
+	struct nand_memory_organization *memorg = nanddev_get_memorg(nand);
+
+	if (!nand || !ops)
+		return -EINVAL;
+
+	if (!ops->erase || !ops->markbad || !ops->isbad)
+		return -EINVAL;
+
+	if (!memorg->bits_per_cell || !memorg->pagesize ||
+	    !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun ||
+	    !memorg->planes_per_lun || !memorg->luns_per_target ||
+	    !memorg->ntargets)
+		return -EINVAL;
+
+	nand->rowconv.eraseblock_addr_shift =
+					fls(memorg->pages_per_eraseblock - 1);
+	nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) +
+				       nand->rowconv.eraseblock_addr_shift;
+
+	nand->ops = ops;
+
+	mtd->type = memorg->bits_per_cell == 1 ?
+		    MTD_NANDFLASH : MTD_MLCNANDFLASH;
+	mtd->flags = MTD_CAP_NANDFLASH;
+	mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock;
+	mtd->writesize = memorg->pagesize;
+	mtd->writebufsize = memorg->pagesize;
+	mtd->oobsize = memorg->oobsize;
+	mtd->size = nanddev_size(nand);
+	mtd->owner = owner;
+
+	return nanddev_bbt_init(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_init);
+
+/**
+ * nanddev_cleanup() - Release resources allocated in nanddev_init()
+ * @nand: NAND device
+ *
+ * Basically undoes what has been done in nanddev_init().
+ */
+void nanddev_cleanup(struct nand_device *nand)
+{
+	if (nanddev_bbt_is_initialized(nand))
+		nanddev_bbt_cleanup(nand);
+}
+EXPORT_SYMBOL_GPL(nanddev_cleanup);
+
+MODULE_DESCRIPTION("Generic NAND framework");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/onenand/Kconfig b/drivers/mtd/nand/onenand/Kconfig
new file mode 100644
index 0000000..9dc1574
--- /dev/null
+++ b/drivers/mtd/nand/onenand/Kconfig
@@ -0,0 +1,71 @@
+menuconfig MTD_ONENAND
+	tristate "OneNAND Device Support"
+	depends on MTD
+	depends on HAS_IOMEM
+	help
+	  This enables support for accessing all type of OneNAND flash
+	  devices.
+
+if MTD_ONENAND
+
+config MTD_ONENAND_VERIFY_WRITE
+	bool "Verify OneNAND page writes"
+	help
+	  This adds an extra check when data is written to the flash. The
+	  OneNAND flash device internally checks only bits transitioning
+	  from 1 to 0. There is a rare possibility that even though the
+	  device thinks the write was successful, a bit could have been
+	  flipped accidentally due to device wear or something else.
+
+config MTD_ONENAND_GENERIC
+	tristate "OneNAND Flash device via platform device driver"
+	help
+	  Support for OneNAND flash via platform device driver.
+
+config MTD_ONENAND_OMAP2
+	tristate "OneNAND on OMAP2/OMAP3 support"
+	depends on ARCH_OMAP2 || ARCH_OMAP3
+	depends on OF || COMPILE_TEST
+	help
+	  Support for a OneNAND flash device connected to an OMAP2/OMAP3 SoC
+	  via the GPMC memory controller.
+	  Enable dmaengine and gpiolib for better performance.
+
+config MTD_ONENAND_SAMSUNG
+        tristate "OneNAND on Samsung SOC controller support"
+        depends on ARCH_S3C64XX || ARCH_S5PV210 || ARCH_EXYNOS4
+        help
+          Support for a OneNAND flash device connected to an Samsung SOC.
+          S3C64XX uses command mapping method.
+          S5PC110/S5PC210 use generic OneNAND method.
+
+config MTD_ONENAND_OTP
+	bool "OneNAND OTP Support"
+	help
+	  One Block of the NAND Flash Array memory is reserved as
+	  a One-Time Programmable Block memory area.
+	  Also, 1st Block of NAND Flash Array can be used as OTP.
+
+	  The OTP block can be read, programmed and locked using the same
+	  operations as any other NAND Flash Array memory block.
+	  OTP block cannot be erased.
+
+	  OTP block is fully-guaranteed to be a valid block.
+
+config MTD_ONENAND_2X_PROGRAM
+	bool "OneNAND 2X program support"
+	help
+	  The 2X Program is an extension of Program Operation.
+	  Since the device is equipped with two DataRAMs, and two-plane NAND
+	  Flash memory array, these two component enables simultaneous program
+	  of 4KiB. Plane1 has only even blocks such as block0, block2, block4
+	  while Plane2 has only odd blocks such as block1, block3, block5.
+	  So MTD regards it as 4KiB page size and 256KiB block size
+
+	  Now the following chips support it. (KFXXX16Q2M)
+	    Demux: KFG2G16Q2M, KFH4G16Q2M, KFW8G16Q2M,
+	    Mux:   KFM2G16Q2M, KFN4G16Q2M,
+
+	  And more recent chips
+
+endif # MTD_ONENAND
diff --git a/drivers/mtd/nand/onenand/Makefile b/drivers/mtd/nand/onenand/Makefile
new file mode 100644
index 0000000..f8b624a
--- /dev/null
+++ b/drivers/mtd/nand/onenand/Makefile
@@ -0,0 +1,14 @@
+# SPDX-License-Identifier: GPL-2.0
+#
+# Makefile for the OneNAND MTD
+#
+
+# Core functionality.
+obj-$(CONFIG_MTD_ONENAND)		+= onenand.o
+
+# Board specific.
+obj-$(CONFIG_MTD_ONENAND_GENERIC)	+= generic.o
+obj-$(CONFIG_MTD_ONENAND_OMAP2)		+= omap2.o
+obj-$(CONFIG_MTD_ONENAND_SAMSUNG)       += samsung.o
+
+onenand-objs = onenand_base.o onenand_bbt.o
diff --git a/drivers/mtd/nand/onenand/generic.c b/drivers/mtd/nand/onenand/generic.c
new file mode 100644
index 0000000..acad17e
--- /dev/null
+++ b/drivers/mtd/nand/onenand/generic.c
@@ -0,0 +1,115 @@
+/*
+ *  Copyright (c) 2005 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Overview:
+ *   This is a device driver for the OneNAND flash for generic boards.
+ */
+
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+
+/*
+ * Note: Driver name and platform data format have been updated!
+ *
+ * This version of the driver is named "onenand-flash" and takes struct
+ * onenand_platform_data as platform data. The old ARM-specific version
+ * with the name "onenand" used to take struct flash_platform_data.
+ */
+#define DRIVER_NAME	"onenand-flash"
+
+struct onenand_info {
+	struct mtd_info		mtd;
+	struct onenand_chip	onenand;
+};
+
+static int generic_onenand_probe(struct platform_device *pdev)
+{
+	struct onenand_info *info;
+	struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev);
+	struct resource *res = pdev->resource;
+	unsigned long size = resource_size(res);
+	int err;
+
+	info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) {
+		err = -EBUSY;
+		goto out_free_info;
+	}
+
+	info->onenand.base = ioremap(res->start, size);
+	if (!info->onenand.base) {
+		err = -ENOMEM;
+		goto out_release_mem_region;
+	}
+
+	info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL;
+	info->onenand.irq = platform_get_irq(pdev, 0);
+
+	info->mtd.dev.parent = &pdev->dev;
+	info->mtd.priv = &info->onenand;
+
+	if (onenand_scan(&info->mtd, 1)) {
+		err = -ENXIO;
+		goto out_iounmap;
+	}
+
+	err = mtd_device_register(&info->mtd, pdata ? pdata->parts : NULL,
+				  pdata ? pdata->nr_parts : 0);
+
+	platform_set_drvdata(pdev, info);
+
+	return 0;
+
+out_iounmap:
+	iounmap(info->onenand.base);
+out_release_mem_region:
+	release_mem_region(res->start, size);
+out_free_info:
+	kfree(info);
+
+	return err;
+}
+
+static int generic_onenand_remove(struct platform_device *pdev)
+{
+	struct onenand_info *info = platform_get_drvdata(pdev);
+	struct resource *res = pdev->resource;
+	unsigned long size = resource_size(res);
+
+	if (info) {
+		onenand_release(&info->mtd);
+		release_mem_region(res->start, size);
+		iounmap(info->onenand.base);
+		kfree(info);
+	}
+
+	return 0;
+}
+
+static struct platform_driver generic_onenand_driver = {
+	.driver = {
+		.name		= DRIVER_NAME,
+	},
+	.probe		= generic_onenand_probe,
+	.remove		= generic_onenand_remove,
+};
+
+module_platform_driver(generic_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards");
+MODULE_ALIAS("platform:" DRIVER_NAME);
diff --git a/drivers/mtd/nand/onenand/omap2.c b/drivers/mtd/nand/onenand/omap2.c
new file mode 100644
index 0000000..3211371
--- /dev/null
+++ b/drivers/mtd/nand/onenand/omap2.c
@@ -0,0 +1,631 @@
+/*
+ *  OneNAND driver for OMAP2 / OMAP3
+ *
+ *  Copyright © 2005-2006 Nokia Corporation
+ *
+ *  Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä
+ *  IRQ and DMA support written by Timo Teras
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published by
+ * the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; see the file COPYING. If not, write to the Free Software
+ * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ */
+
+#include <linux/device.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_device.h>
+#include <linux/omap-gpmc.h>
+#include <linux/platform_device.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/gpio/consumer.h>
+
+#include <asm/mach/flash.h>
+
+#define DRIVER_NAME "omap2-onenand"
+
+#define ONENAND_BUFRAM_SIZE	(1024 * 5)
+
+struct omap2_onenand {
+	struct platform_device *pdev;
+	int gpmc_cs;
+	unsigned long phys_base;
+	struct gpio_desc *int_gpiod;
+	struct mtd_info mtd;
+	struct onenand_chip onenand;
+	struct completion irq_done;
+	struct completion dma_done;
+	struct dma_chan *dma_chan;
+};
+
+static void omap2_onenand_dma_complete_func(void *completion)
+{
+	complete(completion);
+}
+
+static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id)
+{
+	struct omap2_onenand *c = dev_id;
+
+	complete(&c->irq_done);
+
+	return IRQ_HANDLED;
+}
+
+static inline unsigned short read_reg(struct omap2_onenand *c, int reg)
+{
+	return readw(c->onenand.base + reg);
+}
+
+static inline void write_reg(struct omap2_onenand *c, unsigned short value,
+			     int reg)
+{
+	writew(value, c->onenand.base + reg);
+}
+
+static int omap2_onenand_set_cfg(struct omap2_onenand *c,
+				 bool sr, bool sw,
+				 int latency, int burst_len)
+{
+	unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT;
+
+	reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT;
+
+	switch (burst_len) {
+	case 0:		/* continuous */
+		break;
+	case 4:
+		reg |= ONENAND_SYS_CFG1_BL_4;
+		break;
+	case 8:
+		reg |= ONENAND_SYS_CFG1_BL_8;
+		break;
+	case 16:
+		reg |= ONENAND_SYS_CFG1_BL_16;
+		break;
+	case 32:
+		reg |= ONENAND_SYS_CFG1_BL_32;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	if (latency > 5)
+		reg |= ONENAND_SYS_CFG1_HF;
+	if (latency > 7)
+		reg |= ONENAND_SYS_CFG1_VHF;
+	if (sr)
+		reg |= ONENAND_SYS_CFG1_SYNC_READ;
+	if (sw)
+		reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
+
+	write_reg(c, reg, ONENAND_REG_SYS_CFG1);
+
+	return 0;
+}
+
+static int omap2_onenand_get_freq(int ver)
+{
+	switch ((ver >> 4) & 0xf) {
+	case 0:
+		return 40;
+	case 1:
+		return 54;
+	case 2:
+		return 66;
+	case 3:
+		return 83;
+	case 4:
+		return 104;
+	}
+
+	return -EINVAL;
+}
+
+static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr)
+{
+	printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n",
+	       msg, state, ctrl, intr);
+}
+
+static void wait_warn(char *msg, int state, unsigned int ctrl,
+		      unsigned int intr)
+{
+	printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x "
+	       "intr 0x%04x\n", msg, state, ctrl, intr);
+}
+
+static int omap2_onenand_wait(struct mtd_info *mtd, int state)
+{
+	struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+	struct onenand_chip *this = mtd->priv;
+	unsigned int intr = 0;
+	unsigned int ctrl, ctrl_mask;
+	unsigned long timeout;
+	u32 syscfg;
+
+	if (state == FL_RESETING || state == FL_PREPARING_ERASE ||
+	    state == FL_VERIFYING_ERASE) {
+		int i = 21;
+		unsigned int intr_flags = ONENAND_INT_MASTER;
+
+		switch (state) {
+		case FL_RESETING:
+			intr_flags |= ONENAND_INT_RESET;
+			break;
+		case FL_PREPARING_ERASE:
+			intr_flags |= ONENAND_INT_ERASE;
+			break;
+		case FL_VERIFYING_ERASE:
+			i = 101;
+			break;
+		}
+
+		while (--i) {
+			udelay(1);
+			intr = read_reg(c, ONENAND_REG_INTERRUPT);
+			if (intr & ONENAND_INT_MASTER)
+				break;
+		}
+		ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+		if (ctrl & ONENAND_CTRL_ERROR) {
+			wait_err("controller error", state, ctrl, intr);
+			return -EIO;
+		}
+		if ((intr & intr_flags) == intr_flags)
+			return 0;
+		/* Continue in wait for interrupt branch */
+	}
+
+	if (state != FL_READING) {
+		int result;
+
+		/* Turn interrupts on */
+		syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+		if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) {
+			syscfg |= ONENAND_SYS_CFG1_IOBE;
+			write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+			/* Add a delay to let GPIO settle */
+			syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+		}
+
+		reinit_completion(&c->irq_done);
+		result = gpiod_get_value(c->int_gpiod);
+		if (result < 0) {
+			ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+			intr = read_reg(c, ONENAND_REG_INTERRUPT);
+			wait_err("gpio error", state, ctrl, intr);
+			return result;
+		} else if (result == 0) {
+			int retry_cnt = 0;
+retry:
+			if (!wait_for_completion_io_timeout(&c->irq_done,
+						msecs_to_jiffies(20))) {
+				/* Timeout after 20ms */
+				ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+				if (ctrl & ONENAND_CTRL_ONGO &&
+				    !this->ongoing) {
+					/*
+					 * The operation seems to be still going
+					 * so give it some more time.
+					 */
+					retry_cnt += 1;
+					if (retry_cnt < 3)
+						goto retry;
+					intr = read_reg(c,
+							ONENAND_REG_INTERRUPT);
+					wait_err("timeout", state, ctrl, intr);
+					return -EIO;
+				}
+				intr = read_reg(c, ONENAND_REG_INTERRUPT);
+				if ((intr & ONENAND_INT_MASTER) == 0)
+					wait_warn("timeout", state, ctrl, intr);
+			}
+		}
+	} else {
+		int retry_cnt = 0;
+
+		/* Turn interrupts off */
+		syscfg = read_reg(c, ONENAND_REG_SYS_CFG1);
+		syscfg &= ~ONENAND_SYS_CFG1_IOBE;
+		write_reg(c, syscfg, ONENAND_REG_SYS_CFG1);
+
+		timeout = jiffies + msecs_to_jiffies(20);
+		while (1) {
+			if (time_before(jiffies, timeout)) {
+				intr = read_reg(c, ONENAND_REG_INTERRUPT);
+				if (intr & ONENAND_INT_MASTER)
+					break;
+			} else {
+				/* Timeout after 20ms */
+				ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+				if (ctrl & ONENAND_CTRL_ONGO) {
+					/*
+					 * The operation seems to be still going
+					 * so give it some more time.
+					 */
+					retry_cnt += 1;
+					if (retry_cnt < 3) {
+						timeout = jiffies +
+							  msecs_to_jiffies(20);
+						continue;
+					}
+				}
+				break;
+			}
+		}
+	}
+
+	intr = read_reg(c, ONENAND_REG_INTERRUPT);
+	ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS);
+
+	if (intr & ONENAND_INT_READ) {
+		int ecc = read_reg(c, ONENAND_REG_ECC_STATUS);
+
+		if (ecc) {
+			unsigned int addr1, addr8;
+
+			addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1);
+			addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8);
+			if (ecc & ONENAND_ECC_2BIT_ALL) {
+				printk(KERN_ERR "onenand_wait: ECC error = "
+				       "0x%04x, addr1 %#x, addr8 %#x\n",
+				       ecc, addr1, addr8);
+				mtd->ecc_stats.failed++;
+				return -EBADMSG;
+			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
+				printk(KERN_NOTICE "onenand_wait: correctable "
+				       "ECC error = 0x%04x, addr1 %#x, "
+				       "addr8 %#x\n", ecc, addr1, addr8);
+				mtd->ecc_stats.corrected++;
+			}
+		}
+	} else if (state == FL_READING) {
+		wait_err("timeout", state, ctrl, intr);
+		return -EIO;
+	}
+
+	if (ctrl & ONENAND_CTRL_ERROR) {
+		wait_err("controller error", state, ctrl, intr);
+		if (ctrl & ONENAND_CTRL_LOCK)
+			printk(KERN_ERR "onenand_wait: "
+					"Device is write protected!!!\n");
+		return -EIO;
+	}
+
+	ctrl_mask = 0xFE9F;
+	if (this->ongoing)
+		ctrl_mask &= ~0x8000;
+
+	if (ctrl & ctrl_mask)
+		wait_warn("unexpected controller status", state, ctrl, intr);
+
+	return 0;
+}
+
+static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (ONENAND_CURRENT_BUFFERRAM(this)) {
+		if (area == ONENAND_DATARAM)
+			return this->writesize;
+		if (area == ONENAND_SPARERAM)
+			return mtd->oobsize;
+	}
+
+	return 0;
+}
+
+static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c,
+					     dma_addr_t src, dma_addr_t dst,
+					     size_t count)
+{
+	struct dma_async_tx_descriptor *tx;
+	dma_cookie_t cookie;
+
+	tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count, 0);
+	if (!tx) {
+		dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n");
+		return -EIO;
+	}
+
+	reinit_completion(&c->dma_done);
+
+	tx->callback = omap2_onenand_dma_complete_func;
+	tx->callback_param = &c->dma_done;
+
+	cookie = tx->tx_submit(tx);
+	if (dma_submit_error(cookie)) {
+		dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n");
+		return -EIO;
+	}
+
+	dma_async_issue_pending(c->dma_chan);
+
+	if (!wait_for_completion_io_timeout(&c->dma_done,
+					    msecs_to_jiffies(20))) {
+		dmaengine_terminate_sync(c->dma_chan);
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area,
+					unsigned char *buffer, int offset,
+					size_t count)
+{
+	struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+	struct onenand_chip *this = mtd->priv;
+	struct device *dev = &c->pdev->dev;
+	void *buf = (void *)buffer;
+	dma_addr_t dma_src, dma_dst;
+	int bram_offset, err;
+	size_t xtra;
+
+	bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+	/*
+	 * If the buffer address is not DMA-able, len is not long enough to make
+	 * DMA transfers profitable or panic_write() may be in an interrupt
+	 * context fallback to PIO mode.
+	 */
+	if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 ||
+	    count < 384 || in_interrupt() || oops_in_progress )
+		goto out_copy;
+
+	xtra = count & 3;
+	if (xtra) {
+		count -= xtra;
+		memcpy(buf + count, this->base + bram_offset + count, xtra);
+	}
+
+	dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
+	dma_src = c->phys_base + bram_offset;
+
+	if (dma_mapping_error(dev, dma_dst)) {
+		dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count);
+		goto out_copy;
+	}
+
+	err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
+	dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
+	if (!err)
+		return 0;
+
+	dev_err(dev, "timeout waiting for DMA\n");
+
+out_copy:
+	memcpy(buf, this->base + bram_offset, count);
+	return 0;
+}
+
+static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area,
+					 const unsigned char *buffer,
+					 int offset, size_t count)
+{
+	struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd);
+	struct onenand_chip *this = mtd->priv;
+	struct device *dev = &c->pdev->dev;
+	void *buf = (void *)buffer;
+	dma_addr_t dma_src, dma_dst;
+	int bram_offset, err;
+
+	bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset;
+	/*
+	 * If the buffer address is not DMA-able, len is not long enough to make
+	 * DMA transfers profitable or panic_write() may be in an interrupt
+	 * context fallback to PIO mode.
+	 */
+	if (!virt_addr_valid(buf) || bram_offset & 3 || (size_t)buf & 3 ||
+	    count < 384 || in_interrupt() || oops_in_progress )
+		goto out_copy;
+
+	dma_src = dma_map_single(dev, buf, count, DMA_TO_DEVICE);
+	dma_dst = c->phys_base + bram_offset;
+	if (dma_mapping_error(dev, dma_src)) {
+		dev_err(dev, "Couldn't DMA map a %d byte buffer\n", count);
+		goto out_copy;
+	}
+
+	err = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count);
+	dma_unmap_page(dev, dma_src, count, DMA_TO_DEVICE);
+	if (!err)
+		return 0;
+
+	dev_err(dev, "timeout waiting for DMA\n");
+
+out_copy:
+	memcpy(this->base + bram_offset, buf, count);
+	return 0;
+}
+
+static void omap2_onenand_shutdown(struct platform_device *pdev)
+{
+	struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+	/* With certain content in the buffer RAM, the OMAP boot ROM code
+	 * can recognize the flash chip incorrectly. Zero it out before
+	 * soft reset.
+	 */
+	memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE);
+}
+
+static int omap2_onenand_probe(struct platform_device *pdev)
+{
+	u32 val;
+	dma_cap_mask_t mask;
+	int freq, latency, r;
+	struct resource *res;
+	struct omap2_onenand *c;
+	struct gpmc_onenand_info info;
+	struct device *dev = &pdev->dev;
+	struct device_node *np = dev->of_node;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res) {
+		dev_err(dev, "error getting memory resource\n");
+		return -EINVAL;
+	}
+
+	r = of_property_read_u32(np, "reg", &val);
+	if (r) {
+		dev_err(dev, "reg not found in DT\n");
+		return r;
+	}
+
+	c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL);
+	if (!c)
+		return -ENOMEM;
+
+	init_completion(&c->irq_done);
+	init_completion(&c->dma_done);
+	c->gpmc_cs = val;
+	c->phys_base = res->start;
+
+	c->onenand.base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(c->onenand.base))
+		return PTR_ERR(c->onenand.base);
+
+	c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN);
+	if (IS_ERR(c->int_gpiod)) {
+		r = PTR_ERR(c->int_gpiod);
+		/* Just try again if this happens */
+		if (r != -EPROBE_DEFER)
+			dev_err(dev, "error getting gpio: %d\n", r);
+		return r;
+	}
+
+	if (c->int_gpiod) {
+		r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod),
+				     omap2_onenand_interrupt,
+				     IRQF_TRIGGER_RISING, "onenand", c);
+		if (r)
+			return r;
+
+		c->onenand.wait = omap2_onenand_wait;
+	}
+
+	dma_cap_zero(mask);
+	dma_cap_set(DMA_MEMCPY, mask);
+
+	c->dma_chan = dma_request_channel(mask, NULL, NULL);
+	if (c->dma_chan) {
+		c->onenand.read_bufferram = omap2_onenand_read_bufferram;
+		c->onenand.write_bufferram = omap2_onenand_write_bufferram;
+	}
+
+	c->pdev = pdev;
+	c->mtd.priv = &c->onenand;
+	c->mtd.dev.parent = dev;
+	mtd_set_of_node(&c->mtd, dev->of_node);
+
+	dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n",
+		 c->gpmc_cs, c->phys_base, c->onenand.base,
+		 c->dma_chan ? "DMA" : "PIO");
+
+	if ((r = onenand_scan(&c->mtd, 1)) < 0)
+		goto err_release_dma;
+
+	freq = omap2_onenand_get_freq(c->onenand.version_id);
+	if (freq > 0) {
+		switch (freq) {
+		case 104:
+			latency = 7;
+			break;
+		case 83:
+			latency = 6;
+			break;
+		case 66:
+			latency = 5;
+			break;
+		case 56:
+			latency = 4;
+			break;
+		default:	/* 40 MHz or lower */
+			latency = 3;
+			break;
+		}
+
+		r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs,
+						  freq, latency, &info);
+		if (r)
+			goto err_release_onenand;
+
+		r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write,
+					  latency, info.burst_len);
+		if (r)
+			goto err_release_onenand;
+
+		if (info.sync_read || info.sync_write)
+			dev_info(dev, "optimized timings for %d MHz\n", freq);
+	}
+
+	r = mtd_device_register(&c->mtd, NULL, 0);
+	if (r)
+		goto err_release_onenand;
+
+	platform_set_drvdata(pdev, c);
+
+	return 0;
+
+err_release_onenand:
+	onenand_release(&c->mtd);
+err_release_dma:
+	if (c->dma_chan)
+		dma_release_channel(c->dma_chan);
+
+	return r;
+}
+
+static int omap2_onenand_remove(struct platform_device *pdev)
+{
+	struct omap2_onenand *c = dev_get_drvdata(&pdev->dev);
+
+	onenand_release(&c->mtd);
+	if (c->dma_chan)
+		dma_release_channel(c->dma_chan);
+	omap2_onenand_shutdown(pdev);
+
+	return 0;
+}
+
+static const struct of_device_id omap2_onenand_id_table[] = {
+	{ .compatible = "ti,omap2-onenand", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, omap2_onenand_id_table);
+
+static struct platform_driver omap2_onenand_driver = {
+	.probe		= omap2_onenand_probe,
+	.remove		= omap2_onenand_remove,
+	.shutdown	= omap2_onenand_shutdown,
+	.driver		= {
+		.name	= DRIVER_NAME,
+		.of_match_table = omap2_onenand_id_table,
+	},
+};
+
+module_platform_driver(omap2_onenand_driver);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
+MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3");
diff --git a/drivers/mtd/nand/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c
new file mode 100644
index 0000000..4ca4b19
--- /dev/null
+++ b/drivers/mtd/nand/onenand/onenand_base.c
@@ -0,0 +1,4016 @@
+/*
+ *  Copyright © 2005-2009 Samsung Electronics
+ *  Copyright © 2007 Nokia Corporation
+ *
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ *  Credits:
+ *	Adrian Hunter <ext-adrian.hunter@nokia.com>:
+ *	auto-placement support, read-while load support, various fixes
+ *
+ *	Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
+ *	Flex-OneNAND support
+ *	Amul Kumar Saha <amul.saha at samsung.com>
+ *	OTP support
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/slab.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/jiffies.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+
+/*
+ * Multiblock erase if number of blocks to erase is 2 or more.
+ * Maximum number of blocks for simultaneous erase is 64.
+ */
+#define MB_ERASE_MIN_BLK_COUNT 2
+#define MB_ERASE_MAX_BLK_COUNT 64
+
+/* Default Flex-OneNAND boundary and lock respectively */
+static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
+
+module_param_array(flex_bdry, int, NULL, 0400);
+MODULE_PARM_DESC(flex_bdry,	"SLC Boundary information for Flex-OneNAND"
+				"Syntax:flex_bdry=DIE_BDRY,LOCK,..."
+				"DIE_BDRY: SLC boundary of the die"
+				"LOCK: Locking information for SLC boundary"
+				"    : 0->Set boundary in unlocked status"
+				"    : 1->Set boundary in locked status");
+
+/* Default OneNAND/Flex-OneNAND OTP options*/
+static int otp;
+
+module_param(otp, int, 0400);
+MODULE_PARM_DESC(otp,	"Corresponding behaviour of OneNAND in OTP"
+			"Syntax : otp=LOCK_TYPE"
+			"LOCK_TYPE : Keys issued, for specific OTP Lock type"
+			"	   : 0 -> Default (No Blocks Locked)"
+			"	   : 1 -> OTP Block lock"
+			"	   : 2 -> 1st Block lock"
+			"	   : 3 -> BOTH OTP Block and 1st Block lock");
+
+/*
+ * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
+ * For now, we expose only 64 out of 80 ecc bytes
+ */
+static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	if (section > 7)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 6;
+	oobregion->length = 10;
+
+	return 0;
+}
+
+static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	if (section > 7)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 2;
+	oobregion->length = 4;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
+	.ecc = flexonenand_ooblayout_ecc,
+	.free = flexonenand_ooblayout_free,
+};
+
+/*
+ * onenand_oob_128 - oob info for OneNAND with 4KB page
+ *
+ * Based on specification:
+ * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
+ *
+ */
+static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	if (section > 7)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 7;
+	oobregion->length = 9;
+
+	return 0;
+}
+
+static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	if (section >= 8)
+		return -ERANGE;
+
+	/*
+	 * free bytes are using the spare area fields marked as
+	 * "Managed by internal ECC logic for Logical Sector Number area"
+	 */
+	oobregion->offset = (section * 16) + 2;
+	oobregion->length = 3;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
+	.ecc = onenand_ooblayout_128_ecc,
+	.free = onenand_ooblayout_128_free,
+};
+
+/**
+ * onenand_oob_32_64 - oob info for large (2KB) page
+ */
+static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *oobregion)
+{
+	if (section > 3)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 8;
+	oobregion->length = 5;
+
+	return 0;
+}
+
+static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *oobregion)
+{
+	int sections = (mtd->oobsize / 32) * 2;
+
+	if (section >= sections)
+		return -ERANGE;
+
+	if (section & 1) {
+		oobregion->offset = ((section - 1) * 16) + 14;
+		oobregion->length = 2;
+	} else  {
+		oobregion->offset = (section * 16) + 2;
+		oobregion->length = 3;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
+	.ecc = onenand_ooblayout_32_64_ecc,
+	.free = onenand_ooblayout_32_64_free,
+};
+
+static const unsigned char ffchars[] = {
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 16 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 32 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 48 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 64 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 80 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 96 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 112 */
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,	/* 128 */
+};
+
+/**
+ * onenand_readw - [OneNAND Interface] Read OneNAND register
+ * @param addr		address to read
+ *
+ * Read OneNAND register
+ */
+static unsigned short onenand_readw(void __iomem *addr)
+{
+	return readw(addr);
+}
+
+/**
+ * onenand_writew - [OneNAND Interface] Write OneNAND register with value
+ * @param value		value to write
+ * @param addr		address to write
+ *
+ * Write OneNAND register with value
+ */
+static void onenand_writew(unsigned short value, void __iomem *addr)
+{
+	writew(value, addr);
+}
+
+/**
+ * onenand_block_address - [DEFAULT] Get block address
+ * @param this		onenand chip data structure
+ * @param block		the block
+ * @return		translated block address if DDP, otherwise same
+ *
+ * Setup Start Address 1 Register (F100h)
+ */
+static int onenand_block_address(struct onenand_chip *this, int block)
+{
+	/* Device Flash Core select, NAND Flash Block Address */
+	if (block & this->density_mask)
+		return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
+
+	return block;
+}
+
+/**
+ * onenand_bufferram_address - [DEFAULT] Get bufferram address
+ * @param this		onenand chip data structure
+ * @param block		the block
+ * @return		set DBS value if DDP, otherwise 0
+ *
+ * Setup Start Address 2 Register (F101h) for DDP
+ */
+static int onenand_bufferram_address(struct onenand_chip *this, int block)
+{
+	/* Device BufferRAM Select */
+	if (block & this->density_mask)
+		return ONENAND_DDP_CHIP1;
+
+	return ONENAND_DDP_CHIP0;
+}
+
+/**
+ * onenand_page_address - [DEFAULT] Get page address
+ * @param page		the page address
+ * @param sector	the sector address
+ * @return		combined page and sector address
+ *
+ * Setup Start Address 8 Register (F107h)
+ */
+static int onenand_page_address(int page, int sector)
+{
+	/* Flash Page Address, Flash Sector Address */
+	int fpa, fsa;
+
+	fpa = page & ONENAND_FPA_MASK;
+	fsa = sector & ONENAND_FSA_MASK;
+
+	return ((fpa << ONENAND_FPA_SHIFT) | fsa);
+}
+
+/**
+ * onenand_buffer_address - [DEFAULT] Get buffer address
+ * @param dataram1	DataRAM index
+ * @param sectors	the sector address
+ * @param count		the number of sectors
+ * @return		the start buffer value
+ *
+ * Setup Start Buffer Register (F200h)
+ */
+static int onenand_buffer_address(int dataram1, int sectors, int count)
+{
+	int bsa, bsc;
+
+	/* BufferRAM Sector Address */
+	bsa = sectors & ONENAND_BSA_MASK;
+
+	if (dataram1)
+		bsa |= ONENAND_BSA_DATARAM1;	/* DataRAM1 */
+	else
+		bsa |= ONENAND_BSA_DATARAM0;	/* DataRAM0 */
+
+	/* BufferRAM Sector Count */
+	bsc = count & ONENAND_BSC_MASK;
+
+	return ((bsa << ONENAND_BSA_SHIFT) | bsc);
+}
+
+/**
+ * flexonenand_block- For given address return block number
+ * @param this         - OneNAND device structure
+ * @param addr		- Address for which block number is needed
+ */
+static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
+{
+	unsigned boundary, blk, die = 0;
+
+	if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
+		die = 1;
+		addr -= this->diesize[0];
+	}
+
+	boundary = this->boundary[die];
+
+	blk = addr >> (this->erase_shift - 1);
+	if (blk > boundary)
+		blk = (blk + boundary + 1) >> 1;
+
+	blk += die ? this->density_mask : 0;
+	return blk;
+}
+
+inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
+{
+	if (!FLEXONENAND(this))
+		return addr >> this->erase_shift;
+	return flexonenand_block(this, addr);
+}
+
+/**
+ * flexonenand_addr - Return address of the block
+ * @this:		OneNAND device structure
+ * @block:		Block number on Flex-OneNAND
+ *
+ * Return address of the block
+ */
+static loff_t flexonenand_addr(struct onenand_chip *this, int block)
+{
+	loff_t ofs = 0;
+	int die = 0, boundary;
+
+	if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
+		block -= this->density_mask;
+		die = 1;
+		ofs = this->diesize[0];
+	}
+
+	boundary = this->boundary[die];
+	ofs += (loff_t)block << (this->erase_shift - 1);
+	if (block > (boundary + 1))
+		ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
+	return ofs;
+}
+
+loff_t onenand_addr(struct onenand_chip *this, int block)
+{
+	if (!FLEXONENAND(this))
+		return (loff_t)block << this->erase_shift;
+	return flexonenand_addr(this, block);
+}
+EXPORT_SYMBOL(onenand_addr);
+
+/**
+ * onenand_get_density - [DEFAULT] Get OneNAND density
+ * @param dev_id	OneNAND device ID
+ *
+ * Get OneNAND density from device ID
+ */
+static inline int onenand_get_density(int dev_id)
+{
+	int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
+	return (density & ONENAND_DEVICE_DENSITY_MASK);
+}
+
+/**
+ * flexonenand_region - [Flex-OneNAND] Return erase region of addr
+ * @param mtd		MTD device structure
+ * @param addr		address whose erase region needs to be identified
+ */
+int flexonenand_region(struct mtd_info *mtd, loff_t addr)
+{
+	int i;
+
+	for (i = 0; i < mtd->numeraseregions; i++)
+		if (addr < mtd->eraseregions[i].offset)
+			break;
+	return i - 1;
+}
+EXPORT_SYMBOL(flexonenand_region);
+
+/**
+ * onenand_command - [DEFAULT] Send command to OneNAND device
+ * @param mtd		MTD device structure
+ * @param cmd		the command to be sent
+ * @param addr		offset to read from or write to
+ * @param len		number of bytes to read or write
+ *
+ * Send command to OneNAND device. This function is used for middle/large page
+ * devices (1KB/2KB Bytes per page)
+ */
+static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int value, block, page;
+
+	/* Address translation */
+	switch (cmd) {
+	case ONENAND_CMD_UNLOCK:
+	case ONENAND_CMD_LOCK:
+	case ONENAND_CMD_LOCK_TIGHT:
+	case ONENAND_CMD_UNLOCK_ALL:
+		block = -1;
+		page = -1;
+		break;
+
+	case FLEXONENAND_CMD_PI_ACCESS:
+		/* addr contains die index */
+		block = addr * this->density_mask;
+		page = -1;
+		break;
+
+	case ONENAND_CMD_ERASE:
+	case ONENAND_CMD_MULTIBLOCK_ERASE:
+	case ONENAND_CMD_ERASE_VERIFY:
+	case ONENAND_CMD_BUFFERRAM:
+	case ONENAND_CMD_OTP_ACCESS:
+		block = onenand_block(this, addr);
+		page = -1;
+		break;
+
+	case FLEXONENAND_CMD_READ_PI:
+		cmd = ONENAND_CMD_READ;
+		block = addr * this->density_mask;
+		page = 0;
+		break;
+
+	default:
+		block = onenand_block(this, addr);
+		if (FLEXONENAND(this))
+			page = (int) (addr - onenand_addr(this, block))>>\
+				this->page_shift;
+		else
+			page = (int) (addr >> this->page_shift);
+		if (ONENAND_IS_2PLANE(this)) {
+			/* Make the even block number */
+			block &= ~1;
+			/* Is it the odd plane? */
+			if (addr & this->writesize)
+				block++;
+			page >>= 1;
+		}
+		page &= this->page_mask;
+		break;
+	}
+
+	/* NOTE: The setting order of the registers is very important! */
+	if (cmd == ONENAND_CMD_BUFFERRAM) {
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+
+		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
+			/* It is always BufferRAM0 */
+			ONENAND_SET_BUFFERRAM0(this);
+		else
+			/* Switch to the next data buffer */
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+
+		return 0;
+	}
+
+	if (block != -1) {
+		/* Write 'DFS, FBA' of Flash */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+	}
+
+	if (page != -1) {
+		/* Now we use page size operation */
+		int sectors = 0, count = 0;
+		int dataram;
+
+		switch (cmd) {
+		case FLEXONENAND_CMD_RECOVER_LSB:
+		case ONENAND_CMD_READ:
+		case ONENAND_CMD_READOOB:
+			if (ONENAND_IS_4KB_PAGE(this))
+				/* It is always BufferRAM0 */
+				dataram = ONENAND_SET_BUFFERRAM0(this);
+			else
+				dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
+			break;
+
+		default:
+			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+				cmd = ONENAND_CMD_2X_PROG;
+			dataram = ONENAND_CURRENT_BUFFERRAM(this);
+			break;
+		}
+
+		/* Write 'FPA, FSA' of Flash */
+		value = onenand_page_address(page, sectors);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
+
+		/* Write 'BSA, BSC' of DataRAM */
+		value = onenand_buffer_address(dataram, sectors, count);
+		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+	}
+
+	/* Interrupt clear */
+	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+	/* Write command */
+	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+	return 0;
+}
+
+/**
+ * onenand_read_ecc - return ecc status
+ * @param this		onenand chip structure
+ */
+static inline int onenand_read_ecc(struct onenand_chip *this)
+{
+	int ecc, i, result = 0;
+
+	if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
+		return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
+
+	for (i = 0; i < 4; i++) {
+		ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
+		if (likely(!ecc))
+			continue;
+		if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
+			return ONENAND_ECC_2BIT_ALL;
+		else
+			result = ONENAND_ECC_1BIT_ALL;
+	}
+
+	return result;
+}
+
+/**
+ * onenand_wait - [DEFAULT] wait until the command is done
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Wait for command done. This applies to all OneNAND command
+ * Read can take up to 30us, erase up to 2ms and program up to 350us
+ * according to general OneNAND specs
+ */
+static int onenand_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip * this = mtd->priv;
+	unsigned long timeout;
+	unsigned int flags = ONENAND_INT_MASTER;
+	unsigned int interrupt = 0;
+	unsigned int ctrl;
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+		if (interrupt & flags)
+			break;
+
+		if (state != FL_READING && state != FL_PREPARING_ERASE)
+			cond_resched();
+	}
+	/* To get correct interrupt status in timeout case */
+	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+
+	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+
+	/*
+	 * In the Spec. it checks the controller status first
+	 * However if you get the correct information in case of
+	 * power off recovery (POR) test, it should read ECC status first
+	 */
+	if (interrupt & ONENAND_INT_READ) {
+		int ecc = onenand_read_ecc(this);
+		if (ecc) {
+			if (ecc & ONENAND_ECC_2BIT_ALL) {
+				printk(KERN_ERR "%s: ECC error = 0x%04x\n",
+					__func__, ecc);
+				mtd->ecc_stats.failed++;
+				return -EBADMSG;
+			} else if (ecc & ONENAND_ECC_1BIT_ALL) {
+				printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
+					__func__, ecc);
+				mtd->ecc_stats.corrected++;
+			}
+		}
+	} else if (state == FL_READING) {
+		printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
+			__func__, ctrl, interrupt);
+		return -EIO;
+	}
+
+	if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
+		printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
+		       __func__, ctrl, interrupt);
+		return -EIO;
+	}
+
+	if (!(interrupt & ONENAND_INT_MASTER)) {
+		printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
+		       __func__, ctrl, interrupt);
+		return -EIO;
+	}
+
+	/* If there's controller error, it's a real error */
+	if (ctrl & ONENAND_CTRL_ERROR) {
+		printk(KERN_ERR "%s: controller error = 0x%04x\n",
+			__func__, ctrl);
+		if (ctrl & ONENAND_CTRL_LOCK)
+			printk(KERN_ERR "%s: it's locked error.\n", __func__);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+/*
+ * onenand_interrupt - [DEFAULT] onenand interrupt handler
+ * @param irq		onenand interrupt number
+ * @param dev_id	interrupt data
+ *
+ * complete the work
+ */
+static irqreturn_t onenand_interrupt(int irq, void *data)
+{
+	struct onenand_chip *this = data;
+
+	/* To handle shared interrupt */
+	if (!this->complete.done)
+		complete(&this->complete);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * onenand_interrupt_wait - [DEFAULT] wait until the command is done
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	wait_for_completion(&this->complete);
+
+	return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Try interrupt based wait (It is used one-time)
+ */
+static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned long remain, timeout;
+
+	/* We use interrupt wait first */
+	this->wait = onenand_interrupt_wait;
+
+	timeout = msecs_to_jiffies(100);
+	remain = wait_for_completion_timeout(&this->complete, timeout);
+	if (!remain) {
+		printk(KERN_INFO "OneNAND: There's no interrupt. "
+				"We use the normal wait\n");
+
+		/* Release the irq */
+		free_irq(this->irq, this);
+
+		this->wait = onenand_wait;
+	}
+
+	return onenand_wait(mtd, state);
+}
+
+/*
+ * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
+ * @param mtd		MTD device structure
+ *
+ * There's two method to wait onenand work
+ * 1. polling - read interrupt status register
+ * 2. interrupt - use the kernel interrupt method
+ */
+static void onenand_setup_wait(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int syscfg;
+
+	init_completion(&this->complete);
+
+	if (this->irq <= 0) {
+		this->wait = onenand_wait;
+		return;
+	}
+
+	if (request_irq(this->irq, &onenand_interrupt,
+				IRQF_SHARED, "onenand", this)) {
+		/* If we can't get irq, use the normal wait */
+		this->wait = onenand_wait;
+		return;
+	}
+
+	/* Enable interrupt */
+	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+	syscfg |= ONENAND_SYS_CFG1_IOBE;
+	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+	this->wait = onenand_try_interrupt_wait;
+}
+
+/**
+ * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @return		offset given area
+ *
+ * Return BufferRAM offset given area
+ */
+static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (ONENAND_CURRENT_BUFFERRAM(this)) {
+		/* Note: the 'this->writesize' is a real page size */
+		if (area == ONENAND_DATARAM)
+			return this->writesize;
+		if (area == ONENAND_SPARERAM)
+			return mtd->oobsize;
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @param buffer	the databuffer to put/get data
+ * @param offset	offset to read from or write to
+ * @param count		number of bytes to read/write
+ *
+ * Read the BufferRAM area
+ */
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+		unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *bufferram;
+
+	bufferram = this->base + area;
+
+	bufferram += onenand_bufferram_offset(mtd, area);
+
+	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+		unsigned short word;
+
+		/* Align with word(16-bit) size */
+		count--;
+
+		/* Read word and save byte */
+		word = this->read_word(bufferram + offset + count);
+		buffer[count] = (word & 0xff);
+	}
+
+	memcpy(buffer, bufferram + offset, count);
+
+	return 0;
+}
+
+/**
+ * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @param buffer	the databuffer to put/get data
+ * @param offset	offset to read from or write to
+ * @param count		number of bytes to read/write
+ *
+ * Read the BufferRAM area with Sync. Burst Mode
+ */
+static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
+		unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *bufferram;
+
+	bufferram = this->base + area;
+
+	bufferram += onenand_bufferram_offset(mtd, area);
+
+	this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
+
+	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+		unsigned short word;
+
+		/* Align with word(16-bit) size */
+		count--;
+
+		/* Read word and save byte */
+		word = this->read_word(bufferram + offset + count);
+		buffer[count] = (word & 0xff);
+	}
+
+	memcpy(buffer, bufferram + offset, count);
+
+	this->mmcontrol(mtd, 0);
+
+	return 0;
+}
+
+/**
+ * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
+ * @param mtd		MTD data structure
+ * @param area		BufferRAM area
+ * @param buffer	the databuffer to put/get data
+ * @param offset	offset to read from or write to
+ * @param count		number of bytes to read/write
+ *
+ * Write the BufferRAM area
+ */
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+		const unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *bufferram;
+
+	bufferram = this->base + area;
+
+	bufferram += onenand_bufferram_offset(mtd, area);
+
+	if (ONENAND_CHECK_BYTE_ACCESS(count)) {
+		unsigned short word;
+		int byte_offset;
+
+		/* Align with word(16-bit) size */
+		count--;
+
+		/* Calculate byte access offset */
+		byte_offset = offset + count;
+
+		/* Read word and save byte */
+		word = this->read_word(bufferram + byte_offset);
+		word = (word & ~0xff) | buffer[count];
+		this->write_word(word, bufferram + byte_offset);
+	}
+
+	memcpy(bufferram + offset, buffer, count);
+
+	return 0;
+}
+
+/**
+ * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
+ * @param mtd		MTD data structure
+ * @param addr		address to check
+ * @return		blockpage address
+ *
+ * Get blockpage address at 2x program mode
+ */
+static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
+{
+	struct onenand_chip *this = mtd->priv;
+	int blockpage, block, page;
+
+	/* Calculate the even block number */
+	block = (int) (addr >> this->erase_shift) & ~1;
+	/* Is it the odd plane? */
+	if (addr & this->writesize)
+		block++;
+	page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
+	blockpage = (block << 7) | page;
+
+	return blockpage;
+}
+
+/**
+ * onenand_check_bufferram - [GENERIC] Check BufferRAM information
+ * @param mtd		MTD data structure
+ * @param addr		address to check
+ * @return		1 if there are valid data, otherwise 0
+ *
+ * Check bufferram if there is data we required
+ */
+static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
+{
+	struct onenand_chip *this = mtd->priv;
+	int blockpage, found = 0;
+	unsigned int i;
+
+	if (ONENAND_IS_2PLANE(this))
+		blockpage = onenand_get_2x_blockpage(mtd, addr);
+	else
+		blockpage = (int) (addr >> this->page_shift);
+
+	/* Is there valid data? */
+	i = ONENAND_CURRENT_BUFFERRAM(this);
+	if (this->bufferram[i].blockpage == blockpage)
+		found = 1;
+	else {
+		/* Check another BufferRAM */
+		i = ONENAND_NEXT_BUFFERRAM(this);
+		if (this->bufferram[i].blockpage == blockpage) {
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+			found = 1;
+		}
+	}
+
+	if (found && ONENAND_IS_DDP(this)) {
+		/* Select DataRAM for DDP */
+		int block = onenand_block(this, addr);
+		int value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+	}
+
+	return found;
+}
+
+/**
+ * onenand_update_bufferram - [GENERIC] Update BufferRAM information
+ * @param mtd		MTD data structure
+ * @param addr		address to update
+ * @param valid		valid flag
+ *
+ * Update BufferRAM information
+ */
+static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
+		int valid)
+{
+	struct onenand_chip *this = mtd->priv;
+	int blockpage;
+	unsigned int i;
+
+	if (ONENAND_IS_2PLANE(this))
+		blockpage = onenand_get_2x_blockpage(mtd, addr);
+	else
+		blockpage = (int) (addr >> this->page_shift);
+
+	/* Invalidate another BufferRAM */
+	i = ONENAND_NEXT_BUFFERRAM(this);
+	if (this->bufferram[i].blockpage == blockpage)
+		this->bufferram[i].blockpage = -1;
+
+	/* Update BufferRAM */
+	i = ONENAND_CURRENT_BUFFERRAM(this);
+	if (valid)
+		this->bufferram[i].blockpage = blockpage;
+	else
+		this->bufferram[i].blockpage = -1;
+}
+
+/**
+ * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
+ * @param mtd		MTD data structure
+ * @param addr		start address to invalidate
+ * @param len		length to invalidate
+ *
+ * Invalidate BufferRAM information
+ */
+static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
+		unsigned int len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i;
+	loff_t end_addr = addr + len;
+
+	/* Invalidate BufferRAM */
+	for (i = 0; i < MAX_BUFFERRAM; i++) {
+		loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
+		if (buf_addr >= addr && buf_addr < end_addr)
+			this->bufferram[i].blockpage = -1;
+	}
+}
+
+/**
+ * onenand_get_device - [GENERIC] Get chip for selected access
+ * @param mtd		MTD device structure
+ * @param new_state	the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int onenand_get_device(struct mtd_info *mtd, int new_state)
+{
+	struct onenand_chip *this = mtd->priv;
+	DECLARE_WAITQUEUE(wait, current);
+
+	/*
+	 * Grab the lock and see if the device is available
+	 */
+	while (1) {
+		spin_lock(&this->chip_lock);
+		if (this->state == FL_READY) {
+			this->state = new_state;
+			spin_unlock(&this->chip_lock);
+			if (new_state != FL_PM_SUSPENDED && this->enable)
+				this->enable(mtd);
+			break;
+		}
+		if (new_state == FL_PM_SUSPENDED) {
+			spin_unlock(&this->chip_lock);
+			return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
+		}
+		set_current_state(TASK_UNINTERRUPTIBLE);
+		add_wait_queue(&this->wq, &wait);
+		spin_unlock(&this->chip_lock);
+		schedule();
+		remove_wait_queue(&this->wq, &wait);
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_release_device - [GENERIC] release chip
+ * @param mtd		MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void onenand_release_device(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (this->state != FL_PM_SUSPENDED && this->disable)
+		this->disable(mtd);
+	/* Release the chip */
+	spin_lock(&this->chip_lock);
+	this->state = FL_READY;
+	wake_up(&this->wq);
+	spin_unlock(&this->chip_lock);
+}
+
+/**
+ * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd		MTD device structure
+ * @param buf		destination address
+ * @param column	oob offset to read from
+ * @param thislen	oob length to read
+ */
+static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
+				int thislen)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret;
+
+	this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
+			     mtd->oobsize);
+	ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf,
+					  column, thislen);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+/**
+ * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
+ * @param mtd		MTD device structure
+ * @param addr		address to recover
+ * @param status	return value from onenand_wait / onenand_bbt_wait
+ *
+ * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
+ * lower page address and MSB page has higher page address in paired pages.
+ * If power off occurs during MSB page program, the paired LSB page data can
+ * become corrupt. LSB page recovery read is a way to read LSB page though page
+ * data are corrupted. When uncorrectable error occurs as a result of LSB page
+ * read after power up, issue LSB page recovery read.
+ */
+static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i;
+
+	/* Recovery is only for Flex-OneNAND */
+	if (!FLEXONENAND(this))
+		return status;
+
+	/* check if we failed due to uncorrectable error */
+	if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR)
+		return status;
+
+	/* check if address lies in MLC region */
+	i = flexonenand_region(mtd, addr);
+	if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
+		return status;
+
+	/* We are attempting to reread, so decrement stats.failed
+	 * which was incremented by onenand_wait due to read failure
+	 */
+	printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
+		__func__);
+	mtd->ecc_stats.failed--;
+
+	/* Issue the LSB page recovery command */
+	this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
+	return this->wait(mtd, FL_READING);
+}
+
+/**
+ * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops:		oob operation description structure
+ *
+ * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
+ * So, read-while-load is not present.
+ */
+static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+				struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_ecc_stats stats;
+	size_t len = ops->len;
+	size_t ooblen = ops->ooblen;
+	u_char *buf = ops->datbuf;
+	u_char *oobbuf = ops->oobbuf;
+	int read = 0, column, thislen;
+	int oobread = 0, oobcolumn, thisooblen, oobsize;
+	int ret = 0;
+	int writesize = this->writesize;
+
+	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+			(int)len);
+
+	oobsize = mtd_oobavail(mtd, ops);
+	oobcolumn = from & (mtd->oobsize - 1);
+
+	/* Do not allow reads past end of device */
+	if (from + len > mtd->size) {
+		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+			__func__);
+		ops->retlen = 0;
+		ops->oobretlen = 0;
+		return -EINVAL;
+	}
+
+	stats = mtd->ecc_stats;
+
+	while (read < len) {
+		cond_resched();
+
+		thislen = min_t(int, writesize, len - read);
+
+		column = from & (writesize - 1);
+		if (column + thislen > writesize)
+			thislen = writesize - column;
+
+		if (!onenand_check_bufferram(mtd, from)) {
+			this->command(mtd, ONENAND_CMD_READ, from, writesize);
+
+			ret = this->wait(mtd, FL_READING);
+			if (unlikely(ret))
+				ret = onenand_recover_lsb(mtd, from, ret);
+			onenand_update_bufferram(mtd, from, !ret);
+			if (mtd_is_eccerr(ret))
+				ret = 0;
+			if (ret)
+				break;
+		}
+
+		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+		if (oobbuf) {
+			thisooblen = oobsize - oobcolumn;
+			thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+			if (ops->mode == MTD_OPS_AUTO_OOB)
+				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+			else
+				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+			oobread += thisooblen;
+			oobbuf += thisooblen;
+			oobcolumn = 0;
+		}
+
+		read += thislen;
+		if (read == len)
+			break;
+
+		from += thislen;
+		buf += thislen;
+	}
+
+	/*
+	 * Return success, if no ECC failures, else -EBADMSG
+	 * fs driver will take care of that, because
+	 * retlen == desired len and result == -EBADMSG
+	 */
+	ops->retlen = read;
+	ops->oobretlen = oobread;
+
+	if (ret)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
+	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
+}
+
+/**
+ * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops:		oob operation description structure
+ *
+ * OneNAND read main and/or out-of-band data
+ */
+static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
+				struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_ecc_stats stats;
+	size_t len = ops->len;
+	size_t ooblen = ops->ooblen;
+	u_char *buf = ops->datbuf;
+	u_char *oobbuf = ops->oobbuf;
+	int read = 0, column, thislen;
+	int oobread = 0, oobcolumn, thisooblen, oobsize;
+	int ret = 0, boundary = 0;
+	int writesize = this->writesize;
+
+	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+			(int)len);
+
+	oobsize = mtd_oobavail(mtd, ops);
+	oobcolumn = from & (mtd->oobsize - 1);
+
+	/* Do not allow reads past end of device */
+	if ((from + len) > mtd->size) {
+		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+			__func__);
+		ops->retlen = 0;
+		ops->oobretlen = 0;
+		return -EINVAL;
+	}
+
+	stats = mtd->ecc_stats;
+
+ 	/* Read-while-load method */
+
+ 	/* Do first load to bufferRAM */
+ 	if (read < len) {
+ 		if (!onenand_check_bufferram(mtd, from)) {
+			this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ 			ret = this->wait(mtd, FL_READING);
+ 			onenand_update_bufferram(mtd, from, !ret);
+			if (mtd_is_eccerr(ret))
+				ret = 0;
+ 		}
+ 	}
+
+	thislen = min_t(int, writesize, len - read);
+	column = from & (writesize - 1);
+	if (column + thislen > writesize)
+		thislen = writesize - column;
+
+ 	while (!ret) {
+ 		/* If there is more to load then start next load */
+ 		from += thislen;
+ 		if (read + thislen < len) {
+			this->command(mtd, ONENAND_CMD_READ, from, writesize);
+ 			/*
+ 			 * Chip boundary handling in DDP
+ 			 * Now we issued chip 1 read and pointed chip 1
+			 * bufferram so we have to point chip 0 bufferram.
+ 			 */
+ 			if (ONENAND_IS_DDP(this) &&
+ 			    unlikely(from == (this->chipsize >> 1))) {
+ 				this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
+ 				boundary = 1;
+ 			} else
+ 				boundary = 0;
+ 			ONENAND_SET_PREV_BUFFERRAM(this);
+ 		}
+ 		/* While load is going, read from last bufferRAM */
+ 		this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
+
+		/* Read oob area if needed */
+		if (oobbuf) {
+			thisooblen = oobsize - oobcolumn;
+			thisooblen = min_t(int, thisooblen, ooblen - oobread);
+
+			if (ops->mode == MTD_OPS_AUTO_OOB)
+				onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
+			else
+				this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
+			oobread += thisooblen;
+			oobbuf += thisooblen;
+			oobcolumn = 0;
+		}
+
+ 		/* See if we are done */
+ 		read += thislen;
+ 		if (read == len)
+ 			break;
+ 		/* Set up for next read from bufferRAM */
+ 		if (unlikely(boundary))
+ 			this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
+ 		ONENAND_SET_NEXT_BUFFERRAM(this);
+ 		buf += thislen;
+		thislen = min_t(int, writesize, len - read);
+ 		column = 0;
+ 		cond_resched();
+ 		/* Now wait for load */
+ 		ret = this->wait(mtd, FL_READING);
+ 		onenand_update_bufferram(mtd, from, !ret);
+		if (mtd_is_eccerr(ret))
+			ret = 0;
+ 	}
+
+	/*
+	 * Return success, if no ECC failures, else -EBADMSG
+	 * fs driver will take care of that, because
+	 * retlen == desired len and result == -EBADMSG
+	 */
+	ops->retlen = read;
+	ops->oobretlen = oobread;
+
+	if (ret)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	/* return max bitflips per ecc step; ONENANDs correct 1 bit only */
+	return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
+}
+
+/**
+ * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops:		oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area
+ */
+static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
+			struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_ecc_stats stats;
+	int read = 0, thislen, column, oobsize;
+	size_t len = ops->ooblen;
+	unsigned int mode = ops->mode;
+	u_char *buf = ops->oobbuf;
+	int ret = 0, readcmd;
+
+	from += ops->ooboffs;
+
+	pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
+			(int)len);
+
+	/* Initialize return length value */
+	ops->oobretlen = 0;
+
+	if (mode == MTD_OPS_AUTO_OOB)
+		oobsize = mtd->oobavail;
+	else
+		oobsize = mtd->oobsize;
+
+	column = from & (mtd->oobsize - 1);
+
+	if (unlikely(column >= oobsize)) {
+		printk(KERN_ERR "%s: Attempted to start read outside oob\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	stats = mtd->ecc_stats;
+
+	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+	while (read < len) {
+		cond_resched();
+
+		thislen = oobsize - column;
+		thislen = min_t(int, thislen, len);
+
+		this->command(mtd, readcmd, from, mtd->oobsize);
+
+		onenand_update_bufferram(mtd, from, 0);
+
+		ret = this->wait(mtd, FL_READING);
+		if (unlikely(ret))
+			ret = onenand_recover_lsb(mtd, from, ret);
+
+		if (ret && !mtd_is_eccerr(ret)) {
+			printk(KERN_ERR "%s: read failed = 0x%x\n",
+				__func__, ret);
+			break;
+		}
+
+		if (mode == MTD_OPS_AUTO_OOB)
+			onenand_transfer_auto_oob(mtd, buf, column, thislen);
+		else
+			this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+
+		read += thislen;
+
+		if (read == len)
+			break;
+
+		buf += thislen;
+
+		/* Read more? */
+		if (read < len) {
+			/* Page size */
+			from += mtd->writesize;
+			column = 0;
+		}
+	}
+
+	ops->oobretlen = read;
+
+	if (ret)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	return 0;
+}
+
+/**
+ * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
+ * @param mtd:		MTD device structure
+ * @param from:		offset to read from
+ * @param ops:		oob operation description structure
+
+ * Read main and/or out-of-band
+ */
+static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
+			    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret;
+
+	switch (ops->mode) {
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_AUTO_OOB:
+		break;
+	case MTD_OPS_RAW:
+		/* Not implemented yet */
+	default:
+		return -EINVAL;
+	}
+
+	onenand_get_device(mtd, FL_READING);
+	if (ops->datbuf)
+		ret = ONENAND_IS_4KB_PAGE(this) ?
+			onenand_mlc_read_ops_nolock(mtd, from, ops) :
+			onenand_read_ops_nolock(mtd, from, ops);
+	else
+		ret = onenand_read_oob_nolock(mtd, from, ops);
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_bbt_wait - [DEFAULT] wait until the command is done
+ * @param mtd		MTD device structure
+ * @param state		state to select the max. timeout value
+ *
+ * Wait for command done.
+ */
+static int onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned long timeout;
+	unsigned int interrupt, ctrl, ecc, addr1, addr8;
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+		if (interrupt & ONENAND_INT_MASTER)
+			break;
+	}
+	/* To get correct interrupt status in timeout case */
+	interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+	ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+	addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
+	addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
+
+	if (interrupt & ONENAND_INT_READ) {
+		ecc = onenand_read_ecc(this);
+		if (ecc & ONENAND_ECC_2BIT_ALL) {
+			printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
+			       "intr 0x%04x addr1 %#x addr8 %#x\n",
+			       __func__, ecc, ctrl, interrupt, addr1, addr8);
+			return ONENAND_BBT_READ_ECC_ERROR;
+		}
+	} else {
+		printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
+		       "intr 0x%04x addr1 %#x addr8 %#x\n",
+		       __func__, ctrl, interrupt, addr1, addr8);
+		return ONENAND_BBT_READ_FATAL_ERROR;
+	}
+
+	/* Initial bad block case: 0x2400 or 0x0400 */
+	if (ctrl & ONENAND_CTRL_ERROR) {
+		printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
+		       "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
+		return ONENAND_BBT_READ_ERROR;
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
+ * @param mtd		MTD device structure
+ * @param from		offset to read from
+ * @param ops		oob operation description structure
+ *
+ * OneNAND read out-of-band data from the spare area for bbt scan
+ */
+int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, 
+			    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int read = 0, thislen, column;
+	int ret = 0, readcmd;
+	size_t len = ops->ooblen;
+	u_char *buf = ops->oobbuf;
+
+	pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
+			len);
+
+	/* Initialize return value */
+	ops->oobretlen = 0;
+
+	/* Do not allow reads past end of device */
+	if (unlikely((from + len) > mtd->size)) {
+		printk(KERN_ERR "%s: Attempt read beyond end of device\n",
+			__func__);
+		return ONENAND_BBT_READ_FATAL_ERROR;
+	}
+
+	/* Grab the lock and see if the device is available */
+	onenand_get_device(mtd, FL_READING);
+
+	column = from & (mtd->oobsize - 1);
+
+	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+	while (read < len) {
+		cond_resched();
+
+		thislen = mtd->oobsize - column;
+		thislen = min_t(int, thislen, len);
+
+		this->command(mtd, readcmd, from, mtd->oobsize);
+
+		onenand_update_bufferram(mtd, from, 0);
+
+		ret = this->bbt_wait(mtd, FL_READING);
+		if (unlikely(ret))
+			ret = onenand_recover_lsb(mtd, from, ret);
+
+		if (ret)
+			break;
+
+		this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
+		read += thislen;
+		if (read == len)
+			break;
+
+		buf += thislen;
+
+		/* Read more? */
+		if (read < len) {
+			/* Update Page size */
+			from += this->writesize;
+			column = 0;
+		}
+	}
+
+	/* Deselect and wake up anyone waiting on the device */
+	onenand_release_device(mtd);
+
+	ops->oobretlen = read;
+	return ret;
+}
+
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+/**
+ * onenand_verify_oob - [GENERIC] verify the oob contents after a write
+ * @param mtd		MTD device structure
+ * @param buf		the databuffer to verify
+ * @param to		offset to read from
+ */
+static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
+{
+	struct onenand_chip *this = mtd->priv;
+	u_char *oob_buf = this->oob_buf;
+	int status, i, readcmd;
+
+	readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
+
+	this->command(mtd, readcmd, to, mtd->oobsize);
+	onenand_update_bufferram(mtd, to, 0);
+	status = this->wait(mtd, FL_READING);
+	if (status)
+		return status;
+
+	this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
+	for (i = 0; i < mtd->oobsize; i++)
+		if (buf[i] != 0xFF && buf[i] != oob_buf[i])
+			return -EBADMSG;
+
+	return 0;
+}
+
+/**
+ * onenand_verify - [GENERIC] verify the chip contents after a write
+ * @param mtd          MTD device structure
+ * @param buf          the databuffer to verify
+ * @param addr         offset to read from
+ * @param len          number of bytes to read and compare
+ */
+static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret = 0;
+	int thislen, column;
+
+	column = addr & (this->writesize - 1);
+
+	while (len != 0) {
+		thislen = min_t(int, this->writesize - column, len);
+
+		this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
+
+		onenand_update_bufferram(mtd, addr, 0);
+
+		ret = this->wait(mtd, FL_READING);
+		if (ret)
+			return ret;
+
+		onenand_update_bufferram(mtd, addr, 1);
+
+		this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
+
+		if (memcmp(buf, this->verify_buf + column, thislen))
+			return -EBADMSG;
+
+		len -= thislen;
+		buf += thislen;
+		addr += thislen;
+		column = 0;
+	}
+
+	return 0;
+}
+#else
+#define onenand_verify(...)		(0)
+#define onenand_verify_oob(...)		(0)
+#endif
+
+#define NOTALIGNED(x)	((x & (this->subpagesize - 1)) != 0)
+
+static void onenand_panic_wait(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int interrupt;
+	int i;
+	
+	for (i = 0; i < 2000; i++) {
+		interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
+		if (interrupt & ONENAND_INT_MASTER)
+			break;
+		udelay(10);
+	}
+}
+
+/**
+ * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of written bytes
+ * @param buf		the data to write
+ *
+ * Write with ECC
+ */
+static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
+			 size_t *retlen, const u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	int column, subpage;
+	int written = 0;
+
+	if (this->state == FL_PM_SUSPENDED)
+		return -EBUSY;
+
+	/* Wait for any existing operation to clear */
+	onenand_panic_wait(mtd);
+
+	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+			(int)len);
+
+	/* Reject writes, which are not page aligned */
+        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+			__func__);
+                return -EINVAL;
+        }
+
+	column = to & (mtd->writesize - 1);
+
+	/* Loop until all data write */
+	while (written < len) {
+		int thislen = min_t(int, mtd->writesize - column, len - written);
+		u_char *wbuf = (u_char *) buf;
+
+		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+		/* Partial page write */
+		subpage = thislen < mtd->writesize;
+		if (subpage) {
+			memset(this->page_buf, 0xff, mtd->writesize);
+			memcpy(this->page_buf + column, buf, thislen);
+			wbuf = this->page_buf;
+		}
+
+		this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+		this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
+
+		this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
+
+		onenand_panic_wait(mtd);
+
+		/* In partial page write we don't update bufferram */
+		onenand_update_bufferram(mtd, to, !subpage);
+		if (ONENAND_IS_2PLANE(this)) {
+			ONENAND_SET_BUFFERRAM1(this);
+			onenand_update_bufferram(mtd, to + this->writesize, !subpage);
+		}
+
+		written += thislen;
+
+		if (written == len)
+			break;
+
+		column = 0;
+		to += thislen;
+		buf += thislen;
+	}
+
+	*retlen = written;
+	return 0;
+}
+
+/**
+ * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
+ * @param mtd		MTD device structure
+ * @param oob_buf	oob buffer
+ * @param buf		source address
+ * @param column	oob offset to write to
+ * @param thislen	oob length to write
+ */
+static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
+				  const u_char *buf, int column, int thislen)
+{
+	return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen);
+}
+
+/**
+ * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param ops		oob operation description structure
+ *
+ * Write main and/or oob with ECC
+ */
+static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
+				struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int written = 0, column, thislen = 0, subpage = 0;
+	int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
+	int oobwritten = 0, oobcolumn, thisooblen, oobsize;
+	size_t len = ops->len;
+	size_t ooblen = ops->ooblen;
+	const u_char *buf = ops->datbuf;
+	const u_char *oob = ops->oobbuf;
+	u_char *oobbuf;
+	int ret = 0, cmd;
+
+	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+			(int)len);
+
+	/* Initialize retlen, in case of early exit */
+	ops->retlen = 0;
+	ops->oobretlen = 0;
+
+	/* Reject writes, which are not page aligned */
+        if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
+		printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
+			__func__);
+                return -EINVAL;
+        }
+
+	/* Check zero length */
+	if (!len)
+		return 0;
+	oobsize = mtd_oobavail(mtd, ops);
+	oobcolumn = to & (mtd->oobsize - 1);
+
+	column = to & (mtd->writesize - 1);
+
+	/* Loop until all data write */
+	while (1) {
+		if (written < len) {
+			u_char *wbuf = (u_char *) buf;
+
+			thislen = min_t(int, mtd->writesize - column, len - written);
+			thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
+
+			cond_resched();
+
+			this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
+
+			/* Partial page write */
+			subpage = thislen < mtd->writesize;
+			if (subpage) {
+				memset(this->page_buf, 0xff, mtd->writesize);
+				memcpy(this->page_buf + column, buf, thislen);
+				wbuf = this->page_buf;
+			}
+
+			this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
+
+			if (oob) {
+				oobbuf = this->oob_buf;
+
+				/* We send data to spare ram with oobsize
+				 * to prevent byte access */
+				memset(oobbuf, 0xff, mtd->oobsize);
+				if (ops->mode == MTD_OPS_AUTO_OOB)
+					onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
+				else
+					memcpy(oobbuf + oobcolumn, oob, thisooblen);
+
+				oobwritten += thisooblen;
+				oob += thisooblen;
+				oobcolumn = 0;
+			} else
+				oobbuf = (u_char *) ffchars;
+
+			this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+		} else
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+
+		/*
+		 * 2 PLANE, MLC, and Flex-OneNAND do not support
+		 * write-while-program feature.
+		 */
+		if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
+			ONENAND_SET_PREV_BUFFERRAM(this);
+
+			ret = this->wait(mtd, FL_WRITING);
+
+			/* In partial page write we don't update bufferram */
+			onenand_update_bufferram(mtd, prev, !ret && !prev_subpage);
+			if (ret) {
+				written -= prevlen;
+				printk(KERN_ERR "%s: write failed %d\n",
+					__func__, ret);
+				break;
+			}
+
+			if (written == len) {
+				/* Only check verify write turn on */
+				ret = onenand_verify(mtd, buf - len, to - len, len);
+				if (ret)
+					printk(KERN_ERR "%s: verify failed %d\n",
+						__func__, ret);
+				break;
+			}
+
+			ONENAND_SET_NEXT_BUFFERRAM(this);
+		}
+
+		this->ongoing = 0;
+		cmd = ONENAND_CMD_PROG;
+
+		/* Exclude 1st OTP and OTP blocks for cache program feature */
+		if (ONENAND_IS_CACHE_PROGRAM(this) &&
+		    likely(onenand_block(this, to) != 0) &&
+		    ONENAND_IS_4KB_PAGE(this) &&
+		    ((written + thislen) < len)) {
+			cmd = ONENAND_CMD_2X_CACHE_PROG;
+			this->ongoing = 1;
+		}
+
+		this->command(mtd, cmd, to, mtd->writesize);
+
+		/*
+		 * 2 PLANE, MLC, and Flex-OneNAND wait here
+		 */
+		if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
+			ret = this->wait(mtd, FL_WRITING);
+
+			/* In partial page write we don't update bufferram */
+			onenand_update_bufferram(mtd, to, !ret && !subpage);
+			if (ret) {
+				printk(KERN_ERR "%s: write failed %d\n",
+					__func__, ret);
+				break;
+			}
+
+			/* Only check verify write turn on */
+			ret = onenand_verify(mtd, buf, to, thislen);
+			if (ret) {
+				printk(KERN_ERR "%s: verify failed %d\n",
+					__func__, ret);
+				break;
+			}
+
+			written += thislen;
+
+			if (written == len)
+				break;
+
+		} else
+			written += thislen;
+
+		column = 0;
+		prev_subpage = subpage;
+		prev = to;
+		prevlen = thislen;
+		to += thislen;
+		buf += thislen;
+		first = 0;
+	}
+
+	/* In error case, clear all bufferrams */
+	if (written != len)
+		onenand_invalidate_bufferram(mtd, 0, -1);
+
+	ops->retlen = written;
+	ops->oobretlen = oobwritten;
+
+	return ret;
+}
+
+
+/**
+ * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of written bytes
+ * @param buf		the data to write
+ * @param mode		operation mode
+ *
+ * OneNAND write out-of-band
+ */
+static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+				    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int column, ret = 0, oobsize;
+	int written = 0, oobcmd;
+	u_char *oobbuf;
+	size_t len = ops->ooblen;
+	const u_char *buf = ops->oobbuf;
+	unsigned int mode = ops->mode;
+
+	to += ops->ooboffs;
+
+	pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
+			(int)len);
+
+	/* Initialize retlen, in case of early exit */
+	ops->oobretlen = 0;
+
+	if (mode == MTD_OPS_AUTO_OOB)
+		oobsize = mtd->oobavail;
+	else
+		oobsize = mtd->oobsize;
+
+	column = to & (mtd->oobsize - 1);
+
+	if (unlikely(column >= oobsize)) {
+		printk(KERN_ERR "%s: Attempted to start write outside oob\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	/* For compatibility with NAND: Do not allow write past end of page */
+	if (unlikely(column + len > oobsize)) {
+		printk(KERN_ERR "%s: Attempt to write past end of page\n",
+			__func__);
+		return -EINVAL;
+	}
+
+	oobbuf = this->oob_buf;
+
+	oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
+
+	/* Loop until all data write */
+	while (written < len) {
+		int thislen = min_t(int, oobsize, len - written);
+
+		cond_resched();
+
+		this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
+
+		/* We send data to spare ram with oobsize
+		 * to prevent byte access */
+		memset(oobbuf, 0xff, mtd->oobsize);
+		if (mode == MTD_OPS_AUTO_OOB)
+			onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
+		else
+			memcpy(oobbuf + column, buf, thislen);
+		this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
+
+		if (ONENAND_IS_4KB_PAGE(this)) {
+			/* Set main area of DataRAM to 0xff*/
+			memset(this->page_buf, 0xff, mtd->writesize);
+			this->write_bufferram(mtd, ONENAND_DATARAM,
+					 this->page_buf, 0, mtd->writesize);
+		}
+
+		this->command(mtd, oobcmd, to, mtd->oobsize);
+
+		onenand_update_bufferram(mtd, to, 0);
+		if (ONENAND_IS_2PLANE(this)) {
+			ONENAND_SET_BUFFERRAM1(this);
+			onenand_update_bufferram(mtd, to + this->writesize, 0);
+		}
+
+		ret = this->wait(mtd, FL_WRITING);
+		if (ret) {
+			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+			break;
+		}
+
+		ret = onenand_verify_oob(mtd, oobbuf, to);
+		if (ret) {
+			printk(KERN_ERR "%s: verify failed %d\n",
+				__func__, ret);
+			break;
+		}
+
+		written += thislen;
+		if (written == len)
+			break;
+
+		to += mtd->writesize;
+		buf += thislen;
+		column = 0;
+	}
+
+	ops->oobretlen = written;
+
+	return ret;
+}
+
+/**
+ * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @param mtd:		MTD device structure
+ * @param to:		offset to write
+ * @param ops:		oob operation description structure
+ */
+static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	int ret;
+
+	switch (ops->mode) {
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_AUTO_OOB:
+		break;
+	case MTD_OPS_RAW:
+		/* Not implemented yet */
+	default:
+		return -EINVAL;
+	}
+
+	onenand_get_device(mtd, FL_WRITING);
+	if (ops->datbuf)
+		ret = onenand_write_ops_nolock(mtd, to, ops);
+	else
+		ret = onenand_write_oob_nolock(mtd, to, ops);
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset from device start
+ * @param allowbbt	1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+
+	/* Return info from the table */
+	return bbm->isbad_bbt(mtd, ofs, allowbbt);
+}
+
+
+static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
+					   struct erase_info *instr)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t addr = instr->addr;
+	int len = instr->len;
+	unsigned int block_size = (1 << this->erase_shift);
+	int ret = 0;
+
+	while (len) {
+		this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
+		ret = this->wait(mtd, FL_VERIFYING_ERASE);
+		if (ret) {
+			printk(KERN_ERR "%s: Failed verify, block %d\n",
+			       __func__, onenand_block(this, addr));
+			instr->fail_addr = addr;
+			return -1;
+		}
+		len -= block_size;
+		addr += block_size;
+	}
+	return 0;
+}
+
+/**
+ * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
+ * @param mtd		MTD device structure
+ * @param instr		erase instruction
+ * @param region	erase region
+ *
+ * Erase one or more blocks up to 64 block at a time
+ */
+static int onenand_multiblock_erase(struct mtd_info *mtd,
+				    struct erase_info *instr,
+				    unsigned int block_size)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t addr = instr->addr;
+	int len = instr->len;
+	int eb_count = 0;
+	int ret = 0;
+	int bdry_block = 0;
+
+	if (ONENAND_IS_DDP(this)) {
+		loff_t bdry_addr = this->chipsize >> 1;
+		if (addr < bdry_addr && (addr + len) > bdry_addr)
+			bdry_block = bdry_addr >> this->erase_shift;
+	}
+
+	/* Pre-check bbs */
+	while (len) {
+		/* Check if we have a bad block, we do not erase bad blocks */
+		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+			printk(KERN_WARNING "%s: attempt to erase a bad block "
+			       "at addr 0x%012llx\n",
+			       __func__, (unsigned long long) addr);
+			return -EIO;
+		}
+		len -= block_size;
+		addr += block_size;
+	}
+
+	len = instr->len;
+	addr = instr->addr;
+
+	/* loop over 64 eb batches */
+	while (len) {
+		struct erase_info verify_instr = *instr;
+		int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
+
+		verify_instr.addr = addr;
+		verify_instr.len = 0;
+
+		/* do not cross chip boundary */
+		if (bdry_block) {
+			int this_block = (addr >> this->erase_shift);
+
+			if (this_block < bdry_block) {
+				max_eb_count = min(max_eb_count,
+						   (bdry_block - this_block));
+			}
+		}
+
+		eb_count = 0;
+
+		while (len > block_size && eb_count < (max_eb_count - 1)) {
+			this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
+				      addr, block_size);
+			onenand_invalidate_bufferram(mtd, addr, block_size);
+
+			ret = this->wait(mtd, FL_PREPARING_ERASE);
+			if (ret) {
+				printk(KERN_ERR "%s: Failed multiblock erase, "
+				       "block %d\n", __func__,
+				       onenand_block(this, addr));
+				instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+				return -EIO;
+			}
+
+			len -= block_size;
+			addr += block_size;
+			eb_count++;
+		}
+
+		/* last block of 64-eb series */
+		cond_resched();
+		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+		onenand_invalidate_bufferram(mtd, addr, block_size);
+
+		ret = this->wait(mtd, FL_ERASING);
+		/* Check if it is write protected */
+		if (ret) {
+			printk(KERN_ERR "%s: Failed erase, block %d\n",
+			       __func__, onenand_block(this, addr));
+			instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
+			return -EIO;
+		}
+
+		len -= block_size;
+		addr += block_size;
+		eb_count++;
+
+		/* verify */
+		verify_instr.len = eb_count * block_size;
+		if (onenand_multiblock_erase_verify(mtd, &verify_instr)) {
+			instr->fail_addr = verify_instr.fail_addr;
+			return -EIO;
+		}
+
+	}
+	return 0;
+}
+
+
+/**
+ * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
+ * @param mtd		MTD device structure
+ * @param instr		erase instruction
+ * @param region	erase region
+ * @param block_size	erase block size
+ *
+ * Erase one or more blocks one block at a time
+ */
+static int onenand_block_by_block_erase(struct mtd_info *mtd,
+					struct erase_info *instr,
+					struct mtd_erase_region_info *region,
+					unsigned int block_size)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t addr = instr->addr;
+	int len = instr->len;
+	loff_t region_end = 0;
+	int ret = 0;
+
+	if (region) {
+		/* region is set for Flex-OneNAND */
+		region_end = region->offset + region->erasesize * region->numblocks;
+	}
+
+	/* Loop through the blocks */
+	while (len) {
+		cond_resched();
+
+		/* Check if we have a bad block, we do not erase bad blocks */
+		if (onenand_block_isbad_nolock(mtd, addr, 0)) {
+			printk(KERN_WARNING "%s: attempt to erase a bad block "
+					"at addr 0x%012llx\n",
+					__func__, (unsigned long long) addr);
+			return -EIO;
+		}
+
+		this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
+
+		onenand_invalidate_bufferram(mtd, addr, block_size);
+
+		ret = this->wait(mtd, FL_ERASING);
+		/* Check, if it is write protected */
+		if (ret) {
+			printk(KERN_ERR "%s: Failed erase, block %d\n",
+				__func__, onenand_block(this, addr));
+			instr->fail_addr = addr;
+			return -EIO;
+		}
+
+		len -= block_size;
+		addr += block_size;
+
+		if (region && addr == region_end) {
+			if (!len)
+				break;
+			region++;
+
+			block_size = region->erasesize;
+			region_end = region->offset + region->erasesize * region->numblocks;
+
+			if (len & (block_size - 1)) {
+				/* FIXME: This should be handled at MTD partitioning level. */
+				printk(KERN_ERR "%s: Unaligned address\n",
+					__func__);
+				return -EIO;
+			}
+		}
+	}
+	return 0;
+}
+
+/**
+ * onenand_erase - [MTD Interface] erase block(s)
+ * @param mtd		MTD device structure
+ * @param instr		erase instruction
+ *
+ * Erase one or more blocks
+ */
+static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int block_size;
+	loff_t addr = instr->addr;
+	loff_t len = instr->len;
+	int ret = 0;
+	struct mtd_erase_region_info *region = NULL;
+	loff_t region_offset = 0;
+
+	pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
+			(unsigned long long)instr->addr,
+			(unsigned long long)instr->len);
+
+	if (FLEXONENAND(this)) {
+		/* Find the eraseregion of this address */
+		int i = flexonenand_region(mtd, addr);
+
+		region = &mtd->eraseregions[i];
+		block_size = region->erasesize;
+
+		/* Start address within region must align on block boundary.
+		 * Erase region's start offset is always block start address.
+		 */
+		region_offset = region->offset;
+	} else
+		block_size = 1 << this->erase_shift;
+
+	/* Start address must align on block boundary */
+	if (unlikely((addr - region_offset) & (block_size - 1))) {
+		printk(KERN_ERR "%s: Unaligned address\n", __func__);
+		return -EINVAL;
+	}
+
+	/* Length must align on block boundary */
+	if (unlikely(len & (block_size - 1))) {
+		printk(KERN_ERR "%s: Length not block aligned\n", __func__);
+		return -EINVAL;
+	}
+
+	/* Grab the lock and see if the device is available */
+	onenand_get_device(mtd, FL_ERASING);
+
+	if (ONENAND_IS_4KB_PAGE(this) || region ||
+	    instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
+		/* region is set for Flex-OneNAND (no mb erase) */
+		ret = onenand_block_by_block_erase(mtd, instr,
+						   region, block_size);
+	} else {
+		ret = onenand_multiblock_erase(mtd, instr, block_size);
+	}
+
+	/* Deselect and wake up anyone waiting on the device */
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_sync - [MTD Interface] sync
+ * @param mtd		MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void onenand_sync(struct mtd_info *mtd)
+{
+	pr_debug("%s: called\n", __func__);
+
+	/* Grab the lock and see if the device is available */
+	onenand_get_device(mtd, FL_SYNCING);
+
+	/* Release it and go back */
+	onenand_release_device(mtd);
+}
+
+/**
+ * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ *
+ * Check whether the block is bad
+ */
+static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
+{
+	int ret;
+
+	onenand_get_device(mtd, FL_READING);
+	ret = onenand_block_isbad_nolock(mtd, ofs, 0);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_default_block_markbad - [DEFAULT] mark a block bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+ */
+static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	u_char buf[2] = {0, 0};
+	struct mtd_oob_ops ops = {
+		.mode = MTD_OPS_PLACE_OOB,
+		.ooblen = 2,
+		.oobbuf = buf,
+		.ooboffs = 0,
+	};
+	int block;
+
+	/* Get block number */
+	block = onenand_block(this, ofs);
+        if (bbm->bbt)
+                bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+        /* We write two bytes, so we don't have to mess with 16-bit access */
+        ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
+	/* FIXME : What to do when marking SLC block in partition
+	 * 	   with MLC erasesize? For now, it is not advisable to
+	 *	   create partitions containing both SLC and MLC regions.
+	 */
+	return onenand_write_oob_nolock(mtd, ofs, &ops);
+}
+
+/**
+ * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ *
+ * Mark the block as bad
+ */
+static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret;
+
+	ret = onenand_block_isbad(mtd, ofs);
+	if (ret) {
+		/* If it was bad already, return success and do nothing */
+		if (ret > 0)
+			return 0;
+		return ret;
+	}
+
+	onenand_get_device(mtd, FL_WRITING);
+	ret = this->block_markbad(mtd, ofs);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ * @param len		number of bytes to lock or unlock
+ * @param cmd		lock or unlock command
+ *
+ * Lock or unlock one or more blocks
+ */
+static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int start, end, block, value, status;
+	int wp_status_mask;
+
+	start = onenand_block(this, ofs);
+	end = onenand_block(this, ofs + len) - 1;
+
+	if (cmd == ONENAND_CMD_LOCK)
+		wp_status_mask = ONENAND_WP_LS;
+	else
+		wp_status_mask = ONENAND_WP_US;
+
+	/* Continuous lock scheme */
+	if (this->options & ONENAND_HAS_CONT_LOCK) {
+		/* Set start block address */
+		this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+		/* Set end block address */
+		this->write_word(end, this->base +  ONENAND_REG_END_BLOCK_ADDRESS);
+		/* Write lock command */
+		this->command(mtd, cmd, 0, 0);
+
+		/* There's no return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Sanity check */
+		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+		    & ONENAND_CTRL_ONGO)
+			continue;
+
+		/* Check lock status */
+		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+		if (!(status & wp_status_mask))
+			printk(KERN_ERR "%s: wp status = 0x%x\n",
+				__func__, status);
+
+		return 0;
+	}
+
+	/* Block lock scheme */
+	for (block = start; block < end + 1; block++) {
+		/* Set block address */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+		/* Set start block address */
+		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+		/* Write lock command */
+		this->command(mtd, cmd, 0, 0);
+
+		/* There's no return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Sanity check */
+		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+		    & ONENAND_CTRL_ONGO)
+			continue;
+
+		/* Check lock status */
+		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+		if (!(status & wp_status_mask))
+			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+				__func__, block, status);
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_lock - [MTD Interface] Lock block(s)
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ * @param len		number of bytes to unlock
+ *
+ * Lock one or more blocks
+ */
+static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+	onenand_get_device(mtd, FL_LOCKING);
+	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_unlock - [MTD Interface] Unlock block(s)
+ * @param mtd		MTD device structure
+ * @param ofs		offset relative to mtd start
+ * @param len		number of bytes to unlock
+ *
+ * Unlock one or more blocks
+ */
+static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+	int ret;
+
+	onenand_get_device(mtd, FL_LOCKING);
+	ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+	onenand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * onenand_check_lock_status - [OneNAND Interface] Check lock status
+ * @param this		onenand chip data structure
+ *
+ * Check lock status
+ */
+static int onenand_check_lock_status(struct onenand_chip *this)
+{
+	unsigned int value, block, status;
+	unsigned int end;
+
+	end = this->chipsize >> this->erase_shift;
+	for (block = 0; block < end; block++) {
+		/* Set block address */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
+		/* Select DataRAM for DDP */
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
+		/* Set start block address */
+		this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+
+		/* Check lock status */
+		status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
+		if (!(status & ONENAND_WP_US)) {
+			printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
+				__func__, block, status);
+			return 0;
+		}
+	}
+
+	return 1;
+}
+
+/**
+ * onenand_unlock_all - [OneNAND Interface] unlock all blocks
+ * @param mtd		MTD device structure
+ *
+ * Unlock all blocks
+ */
+static void onenand_unlock_all(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t ofs = 0;
+	loff_t len = mtd->size;
+
+	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+		/* Set start block address */
+		this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
+		/* Write unlock command */
+		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+		/* There's no return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Sanity check */
+		while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
+		    & ONENAND_CTRL_ONGO)
+			continue;
+
+		/* Don't check lock status */
+		if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
+			return;
+
+		/* Check lock status */
+		if (onenand_check_lock_status(this))
+			return;
+
+		/* Workaround for all block unlock in DDP */
+		if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
+			/* All blocks on another chip */
+			ofs = this->chipsize >> 1;
+			len = this->chipsize >> 1;
+		}
+	}
+
+	onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+}
+
+#ifdef CONFIG_MTD_ONENAND_OTP
+
+/**
+ * onenand_otp_command - Send OTP specific command to OneNAND device
+ * @param mtd	 MTD device structure
+ * @param cmd	 the command to be sent
+ * @param addr	 offset to read from or write to
+ * @param len	 number of bytes to read or write
+ */
+static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
+				size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	int value, block, page;
+
+	/* Address translation */
+	switch (cmd) {
+	case ONENAND_CMD_OTP_ACCESS:
+		block = (int) (addr >> this->erase_shift);
+		page = -1;
+		break;
+
+	default:
+		block = (int) (addr >> this->erase_shift);
+		page = (int) (addr >> this->page_shift);
+
+		if (ONENAND_IS_2PLANE(this)) {
+			/* Make the even block number */
+			block &= ~1;
+			/* Is it the odd plane? */
+			if (addr & this->writesize)
+				block++;
+			page >>= 1;
+		}
+		page &= this->page_mask;
+		break;
+	}
+
+	if (block != -1) {
+		/* Write 'DFS, FBA' of Flash */
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS1);
+	}
+
+	if (page != -1) {
+		/* Now we use page size operation */
+		int sectors = 4, count = 4;
+		int dataram;
+
+		switch (cmd) {
+		default:
+			if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
+				cmd = ONENAND_CMD_2X_PROG;
+			dataram = ONENAND_CURRENT_BUFFERRAM(this);
+			break;
+		}
+
+		/* Write 'FPA, FSA' of Flash */
+		value = onenand_page_address(page, sectors);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS8);
+
+		/* Write 'BSA, BSC' of DataRAM */
+		value = onenand_buffer_address(dataram, sectors, count);
+		this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
+	}
+
+	/* Interrupt clear */
+	this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
+
+	/* Write command */
+	this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
+
+	return 0;
+}
+
+/**
+ * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
+ * @param mtd		MTD device structure
+ * @param to		offset to write to
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of written bytes
+ * @param buf		the data to write
+ *
+ * OneNAND write out-of-band only for OTP
+ */
+static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
+				    struct mtd_oob_ops *ops)
+{
+	struct onenand_chip *this = mtd->priv;
+	int column, ret = 0, oobsize;
+	int written = 0;
+	u_char *oobbuf;
+	size_t len = ops->ooblen;
+	const u_char *buf = ops->oobbuf;
+	int block, value, status;
+
+	to += ops->ooboffs;
+
+	/* Initialize retlen, in case of early exit */
+	ops->oobretlen = 0;
+
+	oobsize = mtd->oobsize;
+
+	column = to & (mtd->oobsize - 1);
+
+	oobbuf = this->oob_buf;
+
+	/* Loop until all data write */
+	while (written < len) {
+		int thislen = min_t(int, oobsize, len - written);
+
+		cond_resched();
+
+		block = (int) (to >> this->erase_shift);
+		/*
+		 * Write 'DFS, FBA' of Flash
+		 * Add: F100h DQ=DFS, FBA
+		 */
+
+		value = onenand_block_address(this, block);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS1);
+
+		/*
+		 * Select DataRAM for DDP
+		 * Add: F101h DQ=DBS
+		 */
+
+		value = onenand_bufferram_address(this, block);
+		this->write_word(value, this->base +
+				ONENAND_REG_START_ADDRESS2);
+		ONENAND_SET_NEXT_BUFFERRAM(this);
+
+		/*
+		 * Enter OTP access mode
+		 */
+		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+		this->wait(mtd, FL_OTPING);
+
+		/* We send data to spare ram with oobsize
+		 * to prevent byte access */
+		memcpy(oobbuf + column, buf, thislen);
+
+		/*
+		 * Write Data into DataRAM
+		 * Add: 8th Word
+		 * in sector0/spare/page0
+		 * DQ=XXFCh
+		 */
+		this->write_bufferram(mtd, ONENAND_SPARERAM,
+					oobbuf, 0, mtd->oobsize);
+
+		onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
+		onenand_update_bufferram(mtd, to, 0);
+		if (ONENAND_IS_2PLANE(this)) {
+			ONENAND_SET_BUFFERRAM1(this);
+			onenand_update_bufferram(mtd, to + this->writesize, 0);
+		}
+
+		ret = this->wait(mtd, FL_WRITING);
+		if (ret) {
+			printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
+			break;
+		}
+
+		/* Exit OTP access mode */
+		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+		this->wait(mtd, FL_RESETING);
+
+		status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
+		status &= 0x60;
+
+		if (status == 0x60) {
+			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+			printk(KERN_DEBUG "1st Block\tLOCKED\n");
+			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+		} else if (status == 0x20) {
+			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+			printk(KERN_DEBUG "1st Block\tLOCKED\n");
+			printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
+		} else if (status == 0x40) {
+			printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
+			printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
+			printk(KERN_DEBUG "OTP Block\tLOCKED\n");
+		} else {
+			printk(KERN_DEBUG "Reboot to check\n");
+		}
+
+		written += thislen;
+		if (written == len)
+			break;
+
+		to += mtd->writesize;
+		buf += thislen;
+		column = 0;
+	}
+
+	ops->oobretlen = written;
+
+	return ret;
+}
+
+/* Internal OTP operation */
+typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
+		size_t *retlen, u_char *buf);
+
+/**
+ * do_otp_read - [DEFAULT] Read OTP block area
+ * @param mtd		MTD device structure
+ * @param from		The offset to read
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of readbytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read OTP block area.
+ */
+static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
+		size_t *retlen, u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_oob_ops ops = {
+		.len	= len,
+		.ooblen	= 0,
+		.datbuf	= buf,
+		.oobbuf	= NULL,
+	};
+	int ret;
+
+	/* Enter OTP access mode */
+	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+	this->wait(mtd, FL_OTPING);
+
+	ret = ONENAND_IS_4KB_PAGE(this) ?
+		onenand_mlc_read_ops_nolock(mtd, from, &ops) :
+		onenand_read_ops_nolock(mtd, from, &ops);
+
+	/* Exit OTP access mode */
+	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+	this->wait(mtd, FL_RESETING);
+
+	return ret;
+}
+
+/**
+ * do_otp_write - [DEFAULT] Write OTP block area
+ * @param mtd		MTD device structure
+ * @param to		The offset to write
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of write bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Write OTP block area.
+ */
+static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
+		size_t *retlen, u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned char *pbuf = buf;
+	int ret;
+	struct mtd_oob_ops ops;
+
+	/* Force buffer page aligned */
+	if (len < mtd->writesize) {
+		memcpy(this->page_buf, buf, len);
+		memset(this->page_buf + len, 0xff, mtd->writesize - len);
+		pbuf = this->page_buf;
+		len = mtd->writesize;
+	}
+
+	/* Enter OTP access mode */
+	this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+	this->wait(mtd, FL_OTPING);
+
+	ops.len = len;
+	ops.ooblen = 0;
+	ops.datbuf = pbuf;
+	ops.oobbuf = NULL;
+	ret = onenand_write_ops_nolock(mtd, to, &ops);
+	*retlen = ops.retlen;
+
+	/* Exit OTP access mode */
+	this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+	this->wait(mtd, FL_RESETING);
+
+	return ret;
+}
+
+/**
+ * do_otp_lock - [DEFAULT] Lock OTP block area
+ * @param mtd		MTD device structure
+ * @param from		The offset to lock
+ * @param len		number of bytes to lock
+ * @param retlen	pointer to variable to store the number of lock bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Lock OTP block area.
+ */
+static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
+		size_t *retlen, u_char *buf)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct mtd_oob_ops ops;
+	int ret;
+
+	if (FLEXONENAND(this)) {
+
+		/* Enter OTP access mode */
+		this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
+		this->wait(mtd, FL_OTPING);
+		/*
+		 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+		 * main area of page 49.
+		 */
+		ops.len = mtd->writesize;
+		ops.ooblen = 0;
+		ops.datbuf = buf;
+		ops.oobbuf = NULL;
+		ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops);
+		*retlen = ops.retlen;
+
+		/* Exit OTP access mode */
+		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+		this->wait(mtd, FL_RESETING);
+	} else {
+		ops.mode = MTD_OPS_PLACE_OOB;
+		ops.ooblen = len;
+		ops.oobbuf = buf;
+		ops.ooboffs = 0;
+		ret = onenand_otp_write_oob_nolock(mtd, from, &ops);
+		*retlen = ops.oobretlen;
+	}
+
+	return ret;
+}
+
+/**
+ * onenand_otp_walk - [DEFAULT] Handle OTP operation
+ * @param mtd		MTD device structure
+ * @param from		The offset to read/write
+ * @param len		number of bytes to read/write
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ * @param action	do given action
+ * @param mode		specify user and factory
+ *
+ * Handle OTP operation.
+ */
+static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
+			size_t *retlen, u_char *buf,
+			otp_op_t action, int mode)
+{
+	struct onenand_chip *this = mtd->priv;
+	int otp_pages;
+	int density;
+	int ret = 0;
+
+	*retlen = 0;
+
+	density = onenand_get_density(this->device_id);
+	if (density < ONENAND_DEVICE_DENSITY_512Mb)
+		otp_pages = 20;
+	else
+		otp_pages = 50;
+
+	if (mode == MTD_OTP_FACTORY) {
+		from += mtd->writesize * otp_pages;
+		otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
+	}
+
+	/* Check User/Factory boundary */
+	if (mode == MTD_OTP_USER) {
+		if (mtd->writesize * otp_pages < from + len)
+			return 0;
+	} else {
+		if (mtd->writesize * otp_pages <  len)
+			return 0;
+	}
+
+	onenand_get_device(mtd, FL_OTPING);
+	while (len > 0 && otp_pages > 0) {
+		if (!action) {	/* OTP Info functions */
+			struct otp_info *otpinfo;
+
+			len -= sizeof(struct otp_info);
+			if (len <= 0) {
+				ret = -ENOSPC;
+				break;
+			}
+
+			otpinfo = (struct otp_info *) buf;
+			otpinfo->start = from;
+			otpinfo->length = mtd->writesize;
+			otpinfo->locked = 0;
+
+			from += mtd->writesize;
+			buf += sizeof(struct otp_info);
+			*retlen += sizeof(struct otp_info);
+		} else {
+			size_t tmp_retlen;
+
+			ret = action(mtd, from, len, &tmp_retlen, buf);
+			if (ret)
+				break;
+
+			buf += tmp_retlen;
+			len -= tmp_retlen;
+			*retlen += tmp_retlen;
+
+		}
+		otp_pages--;
+	}
+	onenand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
+ * @param mtd		MTD device structure
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read factory OTP info.
+ */
+static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
+				      size_t *retlen, struct otp_info *buf)
+{
+	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
+				MTD_OTP_FACTORY);
+}
+
+/**
+ * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to read
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read factory OTP area.
+ */
+static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len, size_t *retlen, u_char *buf)
+{
+	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
+}
+
+/**
+ * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
+ * @param mtd		MTD device structure
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param len		number of bytes to read
+ * @param buf		the databuffer to put/get data
+ *
+ * Read user OTP info.
+ */
+static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
+				      size_t *retlen, struct otp_info *buf)
+{
+	return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL,
+				MTD_OTP_USER);
+}
+
+/**
+ * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to read
+ * @param len		number of bytes to read
+ * @param retlen	pointer to variable to store the number of read bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Read user OTP area.
+ */
+static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len, size_t *retlen, u_char *buf)
+{
+	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
+}
+
+/**
+ * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to write
+ * @param len		number of bytes to write
+ * @param retlen	pointer to variable to store the number of write bytes
+ * @param buf		the databuffer to put/get data
+ *
+ * Write user OTP area.
+ */
+static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len, size_t *retlen, u_char *buf)
+{
+	return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
+}
+
+/**
+ * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
+ * @param mtd		MTD device structure
+ * @param from		The offset to lock
+ * @param len		number of bytes to unlock
+ *
+ * Write lock mark on spare area in page 0 in OTP block
+ */
+static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
+			size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
+	size_t retlen;
+	int ret;
+	unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
+
+	memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
+						 : mtd->oobsize);
+	/*
+	 * Write lock mark to 8th word of sector0 of page0 of the spare0.
+	 * We write 16 bytes spare area instead of 2 bytes.
+	 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
+	 * main area of page 49.
+	 */
+
+	from = 0;
+	len = FLEXONENAND(this) ? mtd->writesize : 16;
+
+	/*
+	 * Note: OTP lock operation
+	 *       OTP block : 0xXXFC			XX 1111 1100
+	 *       1st block : 0xXXF3 (If chip support)	XX 1111 0011
+	 *       Both      : 0xXXF0 (If chip support)	XX 1111 0000
+	 */
+	if (FLEXONENAND(this))
+		otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
+
+	/* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
+	if (otp == 1)
+		buf[otp_lock_offset] = 0xFC;
+	else if (otp == 2)
+		buf[otp_lock_offset] = 0xF3;
+	else if (otp == 3)
+		buf[otp_lock_offset] = 0xF0;
+	else if (otp != 0)
+		printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
+
+	ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER);
+
+	return ret ? : retlen;
+}
+
+#endif	/* CONFIG_MTD_ONENAND_OTP */
+
+/**
+ * onenand_check_features - Check and set OneNAND features
+ * @param mtd		MTD data structure
+ *
+ * Check and set OneNAND features
+ * - lock scheme
+ * - two plane
+ */
+static void onenand_check_features(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int density, process, numbufs;
+
+	/* Lock scheme depends on density and process */
+	density = onenand_get_density(this->device_id);
+	process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
+	numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
+
+	/* Lock scheme */
+	switch (density) {
+	case ONENAND_DEVICE_DENSITY_4Gb:
+		if (ONENAND_IS_DDP(this))
+			this->options |= ONENAND_HAS_2PLANE;
+		else if (numbufs == 1) {
+			this->options |= ONENAND_HAS_4KB_PAGE;
+			this->options |= ONENAND_HAS_CACHE_PROGRAM;
+			/*
+			 * There are two different 4KiB pagesize chips
+			 * and no way to detect it by H/W config values.
+			 *
+			 * To detect the correct NOP for each chips,
+			 * It should check the version ID as workaround.
+			 *
+			 * Now it has as following
+			 * KFM4G16Q4M has NOP 4 with version ID 0x0131
+			 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
+			 */
+			if ((this->version_id & 0xf) == 0xe)
+				this->options |= ONENAND_HAS_NOP_1;
+		}
+
+	case ONENAND_DEVICE_DENSITY_2Gb:
+		/* 2Gb DDP does not have 2 plane */
+		if (!ONENAND_IS_DDP(this))
+			this->options |= ONENAND_HAS_2PLANE;
+		this->options |= ONENAND_HAS_UNLOCK_ALL;
+
+	case ONENAND_DEVICE_DENSITY_1Gb:
+		/* A-Die has all block unlock */
+		if (process)
+			this->options |= ONENAND_HAS_UNLOCK_ALL;
+		break;
+
+	default:
+		/* Some OneNAND has continuous lock scheme */
+		if (!process)
+			this->options |= ONENAND_HAS_CONT_LOCK;
+		break;
+	}
+
+	/* The MLC has 4KiB pagesize. */
+	if (ONENAND_IS_MLC(this))
+		this->options |= ONENAND_HAS_4KB_PAGE;
+
+	if (ONENAND_IS_4KB_PAGE(this))
+		this->options &= ~ONENAND_HAS_2PLANE;
+
+	if (FLEXONENAND(this)) {
+		this->options &= ~ONENAND_HAS_CONT_LOCK;
+		this->options |= ONENAND_HAS_UNLOCK_ALL;
+	}
+
+	if (this->options & ONENAND_HAS_CONT_LOCK)
+		printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
+	if (this->options & ONENAND_HAS_UNLOCK_ALL)
+		printk(KERN_DEBUG "Chip support all block unlock\n");
+	if (this->options & ONENAND_HAS_2PLANE)
+		printk(KERN_DEBUG "Chip has 2 plane\n");
+	if (this->options & ONENAND_HAS_4KB_PAGE)
+		printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
+	if (this->options & ONENAND_HAS_CACHE_PROGRAM)
+		printk(KERN_DEBUG "Chip has cache program feature\n");
+}
+
+/**
+ * onenand_print_device_info - Print device & version ID
+ * @param device        device ID
+ * @param version	version ID
+ *
+ * Print device & version ID
+ */
+static void onenand_print_device_info(int device, int version)
+{
+	int vcc, demuxed, ddp, density, flexonenand;
+
+        vcc = device & ONENAND_DEVICE_VCC_MASK;
+        demuxed = device & ONENAND_DEVICE_IS_DEMUX;
+        ddp = device & ONENAND_DEVICE_IS_DDP;
+        density = onenand_get_density(device);
+	flexonenand = device & DEVICE_IS_FLEXONENAND;
+	printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
+		demuxed ? "" : "Muxed ",
+		flexonenand ? "Flex-" : "",
+                ddp ? "(DDP)" : "",
+                (16 << density),
+                vcc ? "2.65/3.3" : "1.8",
+                device);
+	printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
+}
+
+static const struct onenand_manufacturers onenand_manuf_ids[] = {
+        {ONENAND_MFR_SAMSUNG, "Samsung"},
+	{ONENAND_MFR_NUMONYX, "Numonyx"},
+};
+
+/**
+ * onenand_check_maf - Check manufacturer ID
+ * @param manuf         manufacturer ID
+ *
+ * Check manufacturer ID
+ */
+static int onenand_check_maf(int manuf)
+{
+	int size = ARRAY_SIZE(onenand_manuf_ids);
+	char *name;
+        int i;
+
+	for (i = 0; i < size; i++)
+                if (manuf == onenand_manuf_ids[i].id)
+                        break;
+
+	if (i < size)
+		name = onenand_manuf_ids[i].name;
+	else
+		name = "Unknown";
+
+	printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
+
+	return (i == size);
+}
+
+/**
+* flexonenand_get_boundary	- Reads the SLC boundary
+* @param onenand_info		- onenand info structure
+**/
+static int flexonenand_get_boundary(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned die, bdry;
+	int syscfg, locked;
+
+	/* Disable ECC */
+	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+	this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
+
+	for (die = 0; die < this->dies; die++) {
+		this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+		this->wait(mtd, FL_SYNCING);
+
+		this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+		this->wait(mtd, FL_READING);
+
+		bdry = this->read_word(this->base + ONENAND_DATARAM);
+		if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
+			locked = 0;
+		else
+			locked = 1;
+		this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
+
+		this->command(mtd, ONENAND_CMD_RESET, 0, 0);
+		this->wait(mtd, FL_RESETING);
+
+		printk(KERN_INFO "Die %d boundary: %d%s\n", die,
+		       this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
+	}
+
+	/* Enable ECC */
+	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+	return 0;
+}
+
+/**
+ * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
+ * 			  boundary[], diesize[], mtd->size, mtd->erasesize
+ * @param mtd		- MTD device structure
+ */
+static void flexonenand_get_size(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int die, i, eraseshift, density;
+	int blksperdie, maxbdry;
+	loff_t ofs;
+
+	density = onenand_get_density(this->device_id);
+	blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
+	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+	maxbdry = blksperdie - 1;
+	eraseshift = this->erase_shift - 1;
+
+	mtd->numeraseregions = this->dies << 1;
+
+	/* This fills up the device boundary */
+	flexonenand_get_boundary(mtd);
+	die = ofs = 0;
+	i = -1;
+	for (; die < this->dies; die++) {
+		if (!die || this->boundary[die-1] != maxbdry) {
+			i++;
+			mtd->eraseregions[i].offset = ofs;
+			mtd->eraseregions[i].erasesize = 1 << eraseshift;
+			mtd->eraseregions[i].numblocks =
+							this->boundary[die] + 1;
+			ofs += mtd->eraseregions[i].numblocks << eraseshift;
+			eraseshift++;
+		} else {
+			mtd->numeraseregions -= 1;
+			mtd->eraseregions[i].numblocks +=
+							this->boundary[die] + 1;
+			ofs += (this->boundary[die] + 1) << (eraseshift - 1);
+		}
+		if (this->boundary[die] != maxbdry) {
+			i++;
+			mtd->eraseregions[i].offset = ofs;
+			mtd->eraseregions[i].erasesize = 1 << eraseshift;
+			mtd->eraseregions[i].numblocks = maxbdry ^
+							 this->boundary[die];
+			ofs += mtd->eraseregions[i].numblocks << eraseshift;
+			eraseshift--;
+		} else
+			mtd->numeraseregions -= 1;
+	}
+
+	/* Expose MLC erase size except when all blocks are SLC */
+	mtd->erasesize = 1 << this->erase_shift;
+	if (mtd->numeraseregions == 1)
+		mtd->erasesize >>= 1;
+
+	printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
+	for (i = 0; i < mtd->numeraseregions; i++)
+		printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
+			" numblocks: %04u]\n",
+			(unsigned int) mtd->eraseregions[i].offset,
+			mtd->eraseregions[i].erasesize,
+			mtd->eraseregions[i].numblocks);
+
+	for (die = 0, mtd->size = 0; die < this->dies; die++) {
+		this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
+		this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
+						 << (this->erase_shift - 1);
+		mtd->size += this->diesize[die];
+	}
+}
+
+/**
+ * flexonenand_check_blocks_erased - Check if blocks are erased
+ * @param mtd_info	- mtd info structure
+ * @param start		- first erase block to check
+ * @param end		- last erase block to check
+ *
+ * Converting an unerased block from MLC to SLC
+ * causes byte values to change. Since both data and its ECC
+ * have changed, reads on the block give uncorrectable error.
+ * This might lead to the block being detected as bad.
+ *
+ * Avoid this by ensuring that the block to be converted is
+ * erased.
+ */
+static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
+{
+	struct onenand_chip *this = mtd->priv;
+	int i, ret;
+	int block;
+	struct mtd_oob_ops ops = {
+		.mode = MTD_OPS_PLACE_OOB,
+		.ooboffs = 0,
+		.ooblen	= mtd->oobsize,
+		.datbuf	= NULL,
+		.oobbuf	= this->oob_buf,
+	};
+	loff_t addr;
+
+	printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
+
+	for (block = start; block <= end; block++) {
+		addr = flexonenand_addr(this, block);
+		if (onenand_block_isbad_nolock(mtd, addr, 0))
+			continue;
+
+		/*
+		 * Since main area write results in ECC write to spare,
+		 * it is sufficient to check only ECC bytes for change.
+		 */
+		ret = onenand_read_oob_nolock(mtd, addr, &ops);
+		if (ret)
+			return ret;
+
+		for (i = 0; i < mtd->oobsize; i++)
+			if (this->oob_buf[i] != 0xff)
+				break;
+
+		if (i != mtd->oobsize) {
+			printk(KERN_WARNING "%s: Block %d not erased.\n",
+				__func__, block);
+			return 1;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * flexonenand_set_boundary	- Writes the SLC boundary
+ * @param mtd			- mtd info structure
+ */
+static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
+				    int boundary, int lock)
+{
+	struct onenand_chip *this = mtd->priv;
+	int ret, density, blksperdie, old, new, thisboundary;
+	loff_t addr;
+
+	/* Change only once for SDP Flex-OneNAND */
+	if (die && (!ONENAND_IS_DDP(this)))
+		return 0;
+
+	/* boundary value of -1 indicates no required change */
+	if (boundary < 0 || boundary == this->boundary[die])
+		return 0;
+
+	density = onenand_get_density(this->device_id);
+	blksperdie = ((16 << density) << 20) >> this->erase_shift;
+	blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
+
+	if (boundary >= blksperdie) {
+		printk(KERN_ERR "%s: Invalid boundary value. "
+				"Boundary not changed.\n", __func__);
+		return -EINVAL;
+	}
+
+	/* Check if converting blocks are erased */
+	old = this->boundary[die] + (die * this->density_mask);
+	new = boundary + (die * this->density_mask);
+	ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
+	if (ret) {
+		printk(KERN_ERR "%s: Please erase blocks "
+				"before boundary change\n", __func__);
+		return ret;
+	}
+
+	this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
+	this->wait(mtd, FL_SYNCING);
+
+	/* Check is boundary is locked */
+	this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
+	this->wait(mtd, FL_READING);
+
+	thisboundary = this->read_word(this->base + ONENAND_DATARAM);
+	if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
+		printk(KERN_ERR "%s: boundary locked\n", __func__);
+		ret = 1;
+		goto out;
+	}
+
+	printk(KERN_INFO "Changing die %d boundary: %d%s\n",
+			die, boundary, lock ? "(Locked)" : "(Unlocked)");
+
+	addr = die ? this->diesize[0] : 0;
+
+	boundary &= FLEXONENAND_PI_MASK;
+	boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
+
+	this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
+	ret = this->wait(mtd, FL_ERASING);
+	if (ret) {
+		printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
+		       __func__, die);
+		goto out;
+	}
+
+	this->write_word(boundary, this->base + ONENAND_DATARAM);
+	this->command(mtd, ONENAND_CMD_PROG, addr, 0);
+	ret = this->wait(mtd, FL_WRITING);
+	if (ret) {
+		printk(KERN_ERR "%s: Failed PI write for Die %d\n",
+			__func__, die);
+		goto out;
+	}
+
+	this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
+	ret = this->wait(mtd, FL_WRITING);
+out:
+	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
+	this->wait(mtd, FL_RESETING);
+	if (!ret)
+		/* Recalculate device size on boundary change*/
+		flexonenand_get_size(mtd);
+
+	return ret;
+}
+
+/**
+ * onenand_chip_probe - [OneNAND Interface] The generic chip probe
+ * @param mtd		MTD device structure
+ *
+ * OneNAND detection method:
+ *   Compare the values from command with ones from register
+ */
+static int onenand_chip_probe(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int bram_maf_id, bram_dev_id, maf_id, dev_id;
+	int syscfg;
+
+	/* Save system configuration 1 */
+	syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
+	/* Clear Sync. Burst Read mode to read BootRAM */
+	this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
+
+	/* Send the command for reading device ID from BootRAM */
+	this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
+
+	/* Read manufacturer and device IDs from BootRAM */
+	bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
+	bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
+
+	/* Reset OneNAND to read default register values */
+	this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
+	/* Wait reset */
+	this->wait(mtd, FL_RESETING);
+
+	/* Restore system configuration 1 */
+	this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
+
+	/* Check manufacturer ID */
+	if (onenand_check_maf(bram_maf_id))
+		return -ENXIO;
+
+	/* Read manufacturer and device IDs from Register */
+	maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
+	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+
+	/* Check OneNAND device */
+	if (maf_id != bram_maf_id || dev_id != bram_dev_id)
+		return -ENXIO;
+
+	return 0;
+}
+
+/**
+ * onenand_probe - [OneNAND Interface] Probe the OneNAND device
+ * @param mtd		MTD device structure
+ */
+static int onenand_probe(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int dev_id, ver_id;
+	int density;
+	int ret;
+
+	ret = this->chip_probe(mtd);
+	if (ret)
+		return ret;
+
+	/* Device and version IDs from Register */
+	dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
+	ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
+	this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
+
+	/* Flash device information */
+	onenand_print_device_info(dev_id, ver_id);
+	this->device_id = dev_id;
+	this->version_id = ver_id;
+
+	/* Check OneNAND features */
+	onenand_check_features(mtd);
+
+	density = onenand_get_density(dev_id);
+	if (FLEXONENAND(this)) {
+		this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
+		/* Maximum possible erase regions */
+		mtd->numeraseregions = this->dies << 1;
+		mtd->eraseregions =
+			kcalloc(this->dies << 1,
+				sizeof(struct mtd_erase_region_info),
+				GFP_KERNEL);
+		if (!mtd->eraseregions)
+			return -ENOMEM;
+	}
+
+	/*
+	 * For Flex-OneNAND, chipsize represents maximum possible device size.
+	 * mtd->size represents the actual device size.
+	 */
+	this->chipsize = (16 << density) << 20;
+
+	/* OneNAND page size & block size */
+	/* The data buffer size is equal to page size */
+	mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
+	/* We use the full BufferRAM */
+	if (ONENAND_IS_4KB_PAGE(this))
+		mtd->writesize <<= 1;
+
+	mtd->oobsize = mtd->writesize >> 5;
+	/* Pages per a block are always 64 in OneNAND */
+	mtd->erasesize = mtd->writesize << 6;
+	/*
+	 * Flex-OneNAND SLC area has 64 pages per block.
+	 * Flex-OneNAND MLC area has 128 pages per block.
+	 * Expose MLC erase size to find erase_shift and page_mask.
+	 */
+	if (FLEXONENAND(this))
+		mtd->erasesize <<= 1;
+
+	this->erase_shift = ffs(mtd->erasesize) - 1;
+	this->page_shift = ffs(mtd->writesize) - 1;
+	this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
+	/* Set density mask. it is used for DDP */
+	if (ONENAND_IS_DDP(this))
+		this->density_mask = this->chipsize >> (this->erase_shift + 1);
+	/* It's real page size */
+	this->writesize = mtd->writesize;
+
+	/* REVISIT: Multichip handling */
+
+	if (FLEXONENAND(this))
+		flexonenand_get_size(mtd);
+	else
+		mtd->size = this->chipsize;
+
+	/*
+	 * We emulate the 4KiB page and 256KiB erase block size
+	 * But oobsize is still 64 bytes.
+	 * It is only valid if you turn on 2X program support,
+	 * Otherwise it will be ignored by compiler.
+	 */
+	if (ONENAND_IS_2PLANE(this)) {
+		mtd->writesize <<= 1;
+		mtd->erasesize <<= 1;
+	}
+
+	return 0;
+}
+
+/**
+ * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
+ * @param mtd		MTD device structure
+ */
+static int onenand_suspend(struct mtd_info *mtd)
+{
+	return onenand_get_device(mtd, FL_PM_SUSPENDED);
+}
+
+/**
+ * onenand_resume - [MTD Interface] Resume the OneNAND flash
+ * @param mtd		MTD device structure
+ */
+static void onenand_resume(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	if (this->state == FL_PM_SUSPENDED)
+		onenand_release_device(mtd);
+	else
+		printk(KERN_ERR "%s: resume() called for the chip which is not "
+				"in suspended state\n", __func__);
+}
+
+/**
+ * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
+ * @param mtd		MTD device structure
+ * @param maxchips	Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values.
+ */
+int onenand_scan(struct mtd_info *mtd, int maxchips)
+{
+	int i, ret;
+	struct onenand_chip *this = mtd->priv;
+
+	if (!this->read_word)
+		this->read_word = onenand_readw;
+	if (!this->write_word)
+		this->write_word = onenand_writew;
+
+	if (!this->command)
+		this->command = onenand_command;
+	if (!this->wait)
+		onenand_setup_wait(mtd);
+	if (!this->bbt_wait)
+		this->bbt_wait = onenand_bbt_wait;
+	if (!this->unlock_all)
+		this->unlock_all = onenand_unlock_all;
+
+	if (!this->chip_probe)
+		this->chip_probe = onenand_chip_probe;
+
+	if (!this->read_bufferram)
+		this->read_bufferram = onenand_read_bufferram;
+	if (!this->write_bufferram)
+		this->write_bufferram = onenand_write_bufferram;
+
+	if (!this->block_markbad)
+		this->block_markbad = onenand_default_block_markbad;
+	if (!this->scan_bbt)
+		this->scan_bbt = onenand_default_bbt;
+
+	if (onenand_probe(mtd))
+		return -ENXIO;
+
+	/* Set Sync. Burst Read after probing */
+	if (this->mmcontrol) {
+		printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
+		this->read_bufferram = onenand_sync_read_bufferram;
+	}
+
+	/* Allocate buffers, if necessary */
+	if (!this->page_buf) {
+		this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+		if (!this->page_buf)
+			return -ENOMEM;
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+		this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL);
+		if (!this->verify_buf) {
+			kfree(this->page_buf);
+			return -ENOMEM;
+		}
+#endif
+		this->options |= ONENAND_PAGEBUF_ALLOC;
+	}
+	if (!this->oob_buf) {
+		this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
+		if (!this->oob_buf) {
+			if (this->options & ONENAND_PAGEBUF_ALLOC) {
+				this->options &= ~ONENAND_PAGEBUF_ALLOC;
+				kfree(this->page_buf);
+			}
+			return -ENOMEM;
+		}
+		this->options |= ONENAND_OOBBUF_ALLOC;
+	}
+
+	this->state = FL_READY;
+	init_waitqueue_head(&this->wq);
+	spin_lock_init(&this->chip_lock);
+
+	/*
+	 * Allow subpage writes up to oobsize.
+	 */
+	switch (mtd->oobsize) {
+	case 128:
+		if (FLEXONENAND(this)) {
+			mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops);
+			mtd->subpage_sft = 0;
+		} else {
+			mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops);
+			mtd->subpage_sft = 2;
+		}
+		if (ONENAND_IS_NOP_1(this))
+			mtd->subpage_sft = 0;
+		break;
+	case 64:
+		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+		mtd->subpage_sft = 2;
+		break;
+
+	case 32:
+		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+		mtd->subpage_sft = 1;
+		break;
+
+	default:
+		printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
+			__func__, mtd->oobsize);
+		mtd->subpage_sft = 0;
+		/* To prevent kernel oops */
+		mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops);
+		break;
+	}
+
+	this->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+	/*
+	 * The number of bytes available for a client to place data into
+	 * the out of band area
+	 */
+	ret = mtd_ooblayout_count_freebytes(mtd);
+	if (ret < 0)
+		ret = 0;
+
+	mtd->oobavail = ret;
+
+	mtd->ecc_strength = 1;
+
+	/* Fill in remaining MTD driver data */
+	mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
+	mtd->flags = MTD_CAP_NANDFLASH;
+	mtd->_erase = onenand_erase;
+	mtd->_point = NULL;
+	mtd->_unpoint = NULL;
+	mtd->_read_oob = onenand_read_oob;
+	mtd->_write_oob = onenand_write_oob;
+	mtd->_panic_write = onenand_panic_write;
+#ifdef CONFIG_MTD_ONENAND_OTP
+	mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
+	mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
+	mtd->_get_user_prot_info = onenand_get_user_prot_info;
+	mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
+	mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
+	mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
+#endif
+	mtd->_sync = onenand_sync;
+	mtd->_lock = onenand_lock;
+	mtd->_unlock = onenand_unlock;
+	mtd->_suspend = onenand_suspend;
+	mtd->_resume = onenand_resume;
+	mtd->_block_isbad = onenand_block_isbad;
+	mtd->_block_markbad = onenand_block_markbad;
+	mtd->owner = THIS_MODULE;
+	mtd->writebufsize = mtd->writesize;
+
+	/* Unlock whole block */
+	if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
+		this->unlock_all(mtd);
+
+	ret = this->scan_bbt(mtd);
+	if ((!FLEXONENAND(this)) || ret)
+		return ret;
+
+	/* Change Flex-OneNAND boundaries if required */
+	for (i = 0; i < MAX_DIES; i++)
+		flexonenand_set_boundary(mtd, i, flex_bdry[2 * i],
+						 flex_bdry[(2 * i) + 1]);
+
+	return 0;
+}
+
+/**
+ * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
+ * @param mtd		MTD device structure
+ */
+void onenand_release(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	/* Deregister partitions */
+	mtd_device_unregister(mtd);
+
+	/* Free bad block table memory, if allocated */
+	if (this->bbm) {
+		struct bbm_info *bbm = this->bbm;
+		kfree(bbm->bbt);
+		kfree(this->bbm);
+	}
+	/* Buffers allocated by onenand_scan */
+	if (this->options & ONENAND_PAGEBUF_ALLOC) {
+		kfree(this->page_buf);
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+		kfree(this->verify_buf);
+#endif
+	}
+	if (this->options & ONENAND_OOBBUF_ALLOC)
+		kfree(this->oob_buf);
+	kfree(mtd->eraseregions);
+}
+
+EXPORT_SYMBOL_GPL(onenand_scan);
+EXPORT_SYMBOL_GPL(onenand_release);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Generic OneNAND flash driver code");
diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c
new file mode 100644
index 0000000..dde2048
--- /dev/null
+++ b/drivers/mtd/nand/onenand/onenand_bbt.c
@@ -0,0 +1,248 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ *  Bad Block Table support for the OneNAND driver
+ *
+ *  Copyright(c) 2005 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ *  Derived from nand_bbt.c
+ *
+ *  TODO:
+ *    Split BBT core and chip specific BBT.
+ */
+
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/export.h>
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @param buf		the buffer to search
+ * @param len		the length of buffer to search
+ * @param paglen	the pagelength
+ * @param td		search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers. Same as check_pattern, but
+ * no optional empty check and the pattern is expected to start
+ * at offset 0.
+ *
+ */
+static int check_short_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+	int i;
+	uint8_t *p = buf;
+
+	/* Compare the pattern */
+	for (i = 0; i < td->len; i++) {
+		if (p[i] != td->pattern[i])
+			return -1;
+	}
+        return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @param mtd		MTD device structure
+ * @param buf		temporary buffer
+ * @param bd		descriptor for the good/bad block search pattern
+ * @param chip		create the table for a specific chip, -1 read all chips.
+ *              Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	int i, j, numblocks, len, scanlen;
+	int startblock;
+	loff_t from;
+	size_t readlen, ooblen;
+	struct mtd_oob_ops ops;
+	int rgn;
+
+	printk(KERN_INFO "Scanning device for bad blocks\n");
+
+	len = 2;
+
+	/* We need only read few bytes from the OOB area */
+	scanlen = ooblen = 0;
+	readlen = bd->len;
+
+	/* chip == -1 case only */
+	/* Note that numblocks is 2 * (real numblocks) here;
+	 * see i += 2 below as it makses shifting and masking less painful
+	 */
+	numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1);
+	startblock = 0;
+	from = 0;
+
+	ops.mode = MTD_OPS_PLACE_OOB;
+	ops.ooblen = readlen;
+	ops.oobbuf = buf;
+	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
+
+	for (i = startblock; i < numblocks; ) {
+		int ret;
+
+		for (j = 0; j < len; j++) {
+			/* No need to read pages fully,
+			 * just read required OOB bytes */
+			ret = onenand_bbt_read_oob(mtd,
+				from + j * this->writesize + bd->offs, &ops);
+
+			/* If it is a initial bad block, just ignore it */
+			if (ret == ONENAND_BBT_READ_FATAL_ERROR)
+				return -EIO;
+
+			if (ret || check_short_pattern(&buf[j * scanlen],
+					       scanlen, this->writesize, bd)) {
+				bbm->bbt[i >> 3] |= 0x03 << (i & 0x6);
+				printk(KERN_INFO "OneNAND eraseblock %d is an "
+					"initial bad block\n", i >> 1);
+				mtd->ecc_stats.badblocks++;
+				break;
+			}
+		}
+		i += 2;
+
+		if (FLEXONENAND(this)) {
+			rgn = flexonenand_region(mtd, from);
+			from += mtd->eraseregions[rgn].erasesize;
+		} else
+			from += (1 << bbm->bbt_erase_shift);
+	}
+
+	return 0;
+}
+
+
+/**
+ * onenand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @param mtd		MTD device structure
+ * @param bd		descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+ */
+static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	return create_bbt(mtd, this->page_buf, bd, -1);
+}
+
+/**
+ * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad
+ * @param mtd		MTD device structure
+ * @param offs		offset in the device
+ * @param allowbbt	allow access to bad block table region
+ */
+static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	int block;
+	uint8_t res;
+
+	/* Get block number * 2 */
+	block = (int) (onenand_block(this, offs) << 1);
+	res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+	pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+		(unsigned int) offs, block >> 1, res);
+
+	switch ((int) res) {
+	case 0x00:	return 0;
+	case 0x01:	return 1;
+	case 0x02:	return allowbbt ? 0 : 1;
+	}
+
+	return 1;
+}
+
+/**
+ * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s)
+ * @param mtd		MTD device structure
+ * @param bd		descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It is freed
+ * by the onenand_release function.
+ *
+ */
+static int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm = this->bbm;
+	int len, ret = 0;
+
+	len = this->chipsize >> (this->erase_shift + 2);
+	/* Allocate memory (2bit per block) and clear the memory bad block table */
+	bbm->bbt = kzalloc(len, GFP_KERNEL);
+	if (!bbm->bbt)
+		return -ENOMEM;
+
+	/* Set the bad block position */
+	bbm->badblockpos = ONENAND_BADBLOCK_POS;
+
+	/* Set erase shift */
+	bbm->bbt_erase_shift = this->erase_shift;
+
+	if (!bbm->isbad_bbt)
+		bbm->isbad_bbt = onenand_isbad_bbt;
+
+	/* Scan the device to build a memory based bad block table */
+	if ((ret = onenand_memory_bbt(mtd, bd))) {
+		printk(KERN_ERR "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n");
+		kfree(bbm->bbt);
+		bbm->bbt = NULL;
+	}
+
+	return ret;
+}
+
+/*
+ * Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks.
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr largepage_memorybased = {
+	.options = 0,
+	.offs = 0,
+	.len = 2,
+	.pattern = scan_ff_pattern,
+};
+
+/**
+ * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device
+ * @param mtd		MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the onenand_scan_bbt function
+ */
+int onenand_default_bbt(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct bbm_info *bbm;
+
+	this->bbm = kzalloc(sizeof(struct bbm_info), GFP_KERNEL);
+	if (!this->bbm)
+		return -ENOMEM;
+
+	bbm = this->bbm;
+
+	/* 1KB page has same configuration as 2KB page */
+	if (!bbm->badblock_pattern)
+		bbm->badblock_pattern = &largepage_memorybased;
+
+	return onenand_scan_bbt(mtd, bbm->badblock_pattern);
+}
diff --git a/drivers/mtd/nand/onenand/samsung.c b/drivers/mtd/nand/onenand/samsung.c
new file mode 100644
index 0000000..e64d0fd
--- /dev/null
+++ b/drivers/mtd/nand/onenand/samsung.c
@@ -0,0 +1,1009 @@
+/*
+ * Samsung S3C64XX/S5PC1XX OneNAND driver
+ *
+ *  Copyright © 2008-2010 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *  Marek Szyprowski <m.szyprowski@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Implementation:
+ *	S3C64XX: emulate the pseudo BufferRAM
+ *	S5PC110: use DMA
+ */
+
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/onenand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+
+#include "samsung.h"
+
+enum soc_type {
+	TYPE_S3C6400,
+	TYPE_S3C6410,
+	TYPE_S5PC110,
+};
+
+#define ONENAND_ERASE_STATUS		0x00
+#define ONENAND_MULTI_ERASE_SET		0x01
+#define ONENAND_ERASE_START		0x03
+#define ONENAND_UNLOCK_START		0x08
+#define ONENAND_UNLOCK_END		0x09
+#define ONENAND_LOCK_START		0x0A
+#define ONENAND_LOCK_END		0x0B
+#define ONENAND_LOCK_TIGHT_START	0x0C
+#define ONENAND_LOCK_TIGHT_END		0x0D
+#define ONENAND_UNLOCK_ALL		0x0E
+#define ONENAND_OTP_ACCESS		0x12
+#define ONENAND_SPARE_ACCESS_ONLY	0x13
+#define ONENAND_MAIN_ACCESS_ONLY	0x14
+#define ONENAND_ERASE_VERIFY		0x15
+#define ONENAND_MAIN_SPARE_ACCESS	0x16
+#define ONENAND_PIPELINE_READ		0x4000
+
+#define MAP_00				(0x0)
+#define MAP_01				(0x1)
+#define MAP_10				(0x2)
+#define MAP_11				(0x3)
+
+#define S3C64XX_CMD_MAP_SHIFT		24
+
+#define S3C6400_FBA_SHIFT		10
+#define S3C6400_FPA_SHIFT		4
+#define S3C6400_FSA_SHIFT		2
+
+#define S3C6410_FBA_SHIFT		12
+#define S3C6410_FPA_SHIFT		6
+#define S3C6410_FSA_SHIFT		4
+
+/* S5PC110 specific definitions */
+#define S5PC110_DMA_SRC_ADDR		0x400
+#define S5PC110_DMA_SRC_CFG		0x404
+#define S5PC110_DMA_DST_ADDR		0x408
+#define S5PC110_DMA_DST_CFG		0x40C
+#define S5PC110_DMA_TRANS_SIZE		0x414
+#define S5PC110_DMA_TRANS_CMD		0x418
+#define S5PC110_DMA_TRANS_STATUS	0x41C
+#define S5PC110_DMA_TRANS_DIR		0x420
+#define S5PC110_INTC_DMA_CLR		0x1004
+#define S5PC110_INTC_ONENAND_CLR	0x1008
+#define S5PC110_INTC_DMA_MASK		0x1024
+#define S5PC110_INTC_ONENAND_MASK	0x1028
+#define S5PC110_INTC_DMA_PEND		0x1044
+#define S5PC110_INTC_ONENAND_PEND	0x1048
+#define S5PC110_INTC_DMA_STATUS		0x1064
+#define S5PC110_INTC_ONENAND_STATUS	0x1068
+
+#define S5PC110_INTC_DMA_TD		(1 << 24)
+#define S5PC110_INTC_DMA_TE		(1 << 16)
+
+#define S5PC110_DMA_CFG_SINGLE		(0x0 << 16)
+#define S5PC110_DMA_CFG_4BURST		(0x2 << 16)
+#define S5PC110_DMA_CFG_8BURST		(0x3 << 16)
+#define S5PC110_DMA_CFG_16BURST		(0x4 << 16)
+
+#define S5PC110_DMA_CFG_INC		(0x0 << 8)
+#define S5PC110_DMA_CFG_CNT		(0x1 << 8)
+
+#define S5PC110_DMA_CFG_8BIT		(0x0 << 0)
+#define S5PC110_DMA_CFG_16BIT		(0x1 << 0)
+#define S5PC110_DMA_CFG_32BIT		(0x2 << 0)
+
+#define S5PC110_DMA_SRC_CFG_READ	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_16BIT)
+#define S5PC110_DMA_DST_CFG_READ	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_SRC_CFG_WRITE	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_32BIT)
+#define S5PC110_DMA_DST_CFG_WRITE	(S5PC110_DMA_CFG_16BURST | \
+					S5PC110_DMA_CFG_INC | \
+					S5PC110_DMA_CFG_16BIT)
+
+#define S5PC110_DMA_TRANS_CMD_TDC	(0x1 << 18)
+#define S5PC110_DMA_TRANS_CMD_TEC	(0x1 << 16)
+#define S5PC110_DMA_TRANS_CMD_TR	(0x1 << 0)
+
+#define S5PC110_DMA_TRANS_STATUS_TD	(0x1 << 18)
+#define S5PC110_DMA_TRANS_STATUS_TB	(0x1 << 17)
+#define S5PC110_DMA_TRANS_STATUS_TE	(0x1 << 16)
+
+#define S5PC110_DMA_DIR_READ		0x0
+#define S5PC110_DMA_DIR_WRITE		0x1
+
+struct s3c_onenand {
+	struct mtd_info	*mtd;
+	struct platform_device	*pdev;
+	enum soc_type	type;
+	void __iomem	*base;
+	void __iomem	*ahb_addr;
+	int		bootram_command;
+	void		*page_buf;
+	void		*oob_buf;
+	unsigned int	(*mem_addr)(int fba, int fpa, int fsa);
+	unsigned int	(*cmd_map)(unsigned int type, unsigned int val);
+	void __iomem	*dma_addr;
+	unsigned long	phys_base;
+	struct completion	complete;
+};
+
+#define CMD_MAP_00(dev, addr)		(dev->cmd_map(MAP_00, ((addr) << 1)))
+#define CMD_MAP_01(dev, mem_addr)	(dev->cmd_map(MAP_01, (mem_addr)))
+#define CMD_MAP_10(dev, mem_addr)	(dev->cmd_map(MAP_10, (mem_addr)))
+#define CMD_MAP_11(dev, addr)		(dev->cmd_map(MAP_11, ((addr) << 2)))
+
+static struct s3c_onenand *onenand;
+
+static inline int s3c_read_reg(int offset)
+{
+	return readl(onenand->base + offset);
+}
+
+static inline void s3c_write_reg(int value, int offset)
+{
+	writel(value, onenand->base + offset);
+}
+
+static inline int s3c_read_cmd(unsigned int cmd)
+{
+	return readl(onenand->ahb_addr + cmd);
+}
+
+static inline void s3c_write_cmd(int value, unsigned int cmd)
+{
+	writel(value, onenand->ahb_addr + cmd);
+}
+
+#ifdef SAMSUNG_DEBUG
+static void s3c_dump_reg(void)
+{
+	int i;
+
+	for (i = 0; i < 0x400; i += 0x40) {
+		printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
+			(unsigned int) onenand->base + i,
+			s3c_read_reg(i), s3c_read_reg(i + 0x10),
+			s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
+	}
+}
+#endif
+
+static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
+{
+	return (type << S3C64XX_CMD_MAP_SHIFT) | val;
+}
+
+static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
+{
+	return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
+		(fsa << S3C6400_FSA_SHIFT);
+}
+
+static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
+{
+	return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
+		(fsa << S3C6410_FSA_SHIFT);
+}
+
+static void s3c_onenand_reset(void)
+{
+	unsigned long timeout = 0x10000;
+	int stat;
+
+	s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+	while (1 && timeout--) {
+		stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+		if (stat & RST_CMP)
+			break;
+	}
+	stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+	s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+	/* Clear interrupt */
+	s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
+	/* Clear the ECC status */
+	s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
+}
+
+static unsigned short s3c_onenand_readw(void __iomem *addr)
+{
+	struct onenand_chip *this = onenand->mtd->priv;
+	struct device *dev = &onenand->pdev->dev;
+	int reg = addr - this->base;
+	int word_addr = reg >> 1;
+	int value;
+
+	/* It's used for probing time */
+	switch (reg) {
+	case ONENAND_REG_MANUFACTURER_ID:
+		return s3c_read_reg(MANUFACT_ID_OFFSET);
+	case ONENAND_REG_DEVICE_ID:
+		return s3c_read_reg(DEVICE_ID_OFFSET);
+	case ONENAND_REG_VERSION_ID:
+		return s3c_read_reg(FLASH_VER_ID_OFFSET);
+	case ONENAND_REG_DATA_BUFFER_SIZE:
+		return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
+	case ONENAND_REG_TECHNOLOGY:
+		return s3c_read_reg(TECH_OFFSET);
+	case ONENAND_REG_SYS_CFG1:
+		return s3c_read_reg(MEM_CFG_OFFSET);
+
+	/* Used at unlock all status */
+	case ONENAND_REG_CTRL_STATUS:
+		return 0;
+
+	case ONENAND_REG_WP_STATUS:
+		return ONENAND_WP_US;
+
+	default:
+		break;
+	}
+
+	/* BootRAM access control */
+	if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
+		if (word_addr == 0)
+			return s3c_read_reg(MANUFACT_ID_OFFSET);
+		if (word_addr == 1)
+			return s3c_read_reg(DEVICE_ID_OFFSET);
+		if (word_addr == 2)
+			return s3c_read_reg(FLASH_VER_ID_OFFSET);
+	}
+
+	value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
+	dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+		 word_addr, value);
+	return value;
+}
+
+static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
+{
+	struct onenand_chip *this = onenand->mtd->priv;
+	struct device *dev = &onenand->pdev->dev;
+	unsigned int reg = addr - this->base;
+	unsigned int word_addr = reg >> 1;
+
+	/* It's used for probing time */
+	switch (reg) {
+	case ONENAND_REG_SYS_CFG1:
+		s3c_write_reg(value, MEM_CFG_OFFSET);
+		return;
+
+	case ONENAND_REG_START_ADDRESS1:
+	case ONENAND_REG_START_ADDRESS2:
+		return;
+
+	/* Lock/lock-tight/unlock/unlock_all */
+	case ONENAND_REG_START_BLOCK_ADDRESS:
+		return;
+
+	default:
+		break;
+	}
+
+	/* BootRAM access control */
+	if ((unsigned int)addr < ONENAND_DATARAM) {
+		if (value == ONENAND_CMD_READID) {
+			onenand->bootram_command = 1;
+			return;
+		}
+		if (value == ONENAND_CMD_RESET) {
+			s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
+			onenand->bootram_command = 0;
+			return;
+		}
+	}
+
+	dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
+		 word_addr, value);
+
+	s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
+}
+
+static int s3c_onenand_wait(struct mtd_info *mtd, int state)
+{
+	struct device *dev = &onenand->pdev->dev;
+	unsigned int flags = INT_ACT;
+	unsigned int stat, ecc;
+	unsigned long timeout;
+
+	switch (state) {
+	case FL_READING:
+		flags |= BLK_RW_CMP | LOAD_CMP;
+		break;
+	case FL_WRITING:
+		flags |= BLK_RW_CMP | PGM_CMP;
+		break;
+	case FL_ERASING:
+		flags |= BLK_RW_CMP | ERS_CMP;
+		break;
+	case FL_LOCKING:
+		flags |= BLK_RW_CMP;
+		break;
+	default:
+		break;
+	}
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+		if (stat & flags)
+			break;
+
+		if (state != FL_READING)
+			cond_resched();
+	}
+	/* To get correct interrupt status in timeout case */
+	stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+	s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+	/*
+	 * In the Spec. it checks the controller status first
+	 * However if you get the correct information in case of
+	 * power off recovery (POR) test, it should read ECC status first
+	 */
+	if (stat & LOAD_CMP) {
+		ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+		if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+			dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
+				 ecc);
+			mtd->ecc_stats.failed++;
+			return -EBADMSG;
+		}
+	}
+
+	if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
+		dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
+			 stat);
+		if (stat & LOCKED_BLK)
+			dev_info(dev, "%s: it's locked error = 0x%04x\n",
+				 __func__, stat);
+
+		return -EIO;
+	}
+
+	return 0;
+}
+
+static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
+			       size_t len)
+{
+	struct onenand_chip *this = mtd->priv;
+	unsigned int *m, *s;
+	int fba, fpa, fsa = 0;
+	unsigned int mem_addr, cmd_map_01, cmd_map_10;
+	int i, mcount, scount;
+	int index;
+
+	fba = (int) (addr >> this->erase_shift);
+	fpa = (int) (addr >> this->page_shift);
+	fpa &= this->page_mask;
+
+	mem_addr = onenand->mem_addr(fba, fpa, fsa);
+	cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
+	cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
+
+	switch (cmd) {
+	case ONENAND_CMD_READ:
+	case ONENAND_CMD_READOOB:
+	case ONENAND_CMD_BUFFERRAM:
+		ONENAND_SET_NEXT_BUFFERRAM(this);
+	default:
+		break;
+	}
+
+	index = ONENAND_CURRENT_BUFFERRAM(this);
+
+	/*
+	 * Emulate Two BufferRAMs and access with 4 bytes pointer
+	 */
+	m = onenand->page_buf;
+	s = onenand->oob_buf;
+
+	if (index) {
+		m += (this->writesize >> 2);
+		s += (mtd->oobsize >> 2);
+	}
+
+	mcount = mtd->writesize >> 2;
+	scount = mtd->oobsize >> 2;
+
+	switch (cmd) {
+	case ONENAND_CMD_READ:
+		/* Main */
+		for (i = 0; i < mcount; i++)
+			*m++ = s3c_read_cmd(cmd_map_01);
+		return 0;
+
+	case ONENAND_CMD_READOOB:
+		s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+		/* Main */
+		for (i = 0; i < mcount; i++)
+			*m++ = s3c_read_cmd(cmd_map_01);
+
+		/* Spare */
+		for (i = 0; i < scount; i++)
+			*s++ = s3c_read_cmd(cmd_map_01);
+
+		s3c_write_reg(0, TRANS_SPARE_OFFSET);
+		return 0;
+
+	case ONENAND_CMD_PROG:
+		/* Main */
+		for (i = 0; i < mcount; i++)
+			s3c_write_cmd(*m++, cmd_map_01);
+		return 0;
+
+	case ONENAND_CMD_PROGOOB:
+		s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
+
+		/* Main - dummy write */
+		for (i = 0; i < mcount; i++)
+			s3c_write_cmd(0xffffffff, cmd_map_01);
+
+		/* Spare */
+		for (i = 0; i < scount; i++)
+			s3c_write_cmd(*s++, cmd_map_01);
+
+		s3c_write_reg(0, TRANS_SPARE_OFFSET);
+		return 0;
+
+	case ONENAND_CMD_UNLOCK_ALL:
+		s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
+		return 0;
+
+	case ONENAND_CMD_ERASE:
+		s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
+		return 0;
+
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
+{
+	struct onenand_chip *this = mtd->priv;
+	int index = ONENAND_CURRENT_BUFFERRAM(this);
+	unsigned char *p;
+
+	if (area == ONENAND_DATARAM) {
+		p = onenand->page_buf;
+		if (index == 1)
+			p += this->writesize;
+	} else {
+		p = onenand->oob_buf;
+		if (index == 1)
+			p += mtd->oobsize;
+	}
+
+	return p;
+}
+
+static int onenand_read_bufferram(struct mtd_info *mtd, int area,
+				  unsigned char *buffer, int offset,
+				  size_t count)
+{
+	unsigned char *p;
+
+	p = s3c_get_bufferram(mtd, area);
+	memcpy(buffer, p + offset, count);
+	return 0;
+}
+
+static int onenand_write_bufferram(struct mtd_info *mtd, int area,
+				   const unsigned char *buffer, int offset,
+				   size_t count)
+{
+	unsigned char *p;
+
+	p = s3c_get_bufferram(mtd, area);
+	memcpy(p + offset, buffer, count);
+	return 0;
+}
+
+static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction);
+
+static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
+{
+	void __iomem *base = onenand->dma_addr;
+	int status;
+	unsigned long timeout;
+
+	writel(src, base + S5PC110_DMA_SRC_ADDR);
+	writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+	if (direction == S5PC110_DMA_DIR_READ) {
+		writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+	} else {
+		writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+	}
+
+	writel(count, base + S5PC110_DMA_TRANS_SIZE);
+	writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+	writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+	/*
+	 * There's no exact timeout values at Spec.
+	 * In real case it takes under 1 msec.
+	 * So 20 msecs are enough.
+	 */
+	timeout = jiffies + msecs_to_jiffies(20);
+
+	do {
+		status = readl(base + S5PC110_DMA_TRANS_STATUS);
+		if (status & S5PC110_DMA_TRANS_STATUS_TE) {
+			writel(S5PC110_DMA_TRANS_CMD_TEC,
+					base + S5PC110_DMA_TRANS_CMD);
+			return -EIO;
+		}
+	} while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
+		time_before(jiffies, timeout));
+
+	writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
+
+	return 0;
+}
+
+static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
+{
+	void __iomem *base = onenand->dma_addr;
+	int status, cmd = 0;
+
+	status = readl(base + S5PC110_INTC_DMA_STATUS);
+
+	if (likely(status & S5PC110_INTC_DMA_TD))
+		cmd = S5PC110_DMA_TRANS_CMD_TDC;
+
+	if (unlikely(status & S5PC110_INTC_DMA_TE))
+		cmd = S5PC110_DMA_TRANS_CMD_TEC;
+
+	writel(cmd, base + S5PC110_DMA_TRANS_CMD);
+	writel(status, base + S5PC110_INTC_DMA_CLR);
+
+	if (!onenand->complete.done)
+		complete(&onenand->complete);
+
+	return IRQ_HANDLED;
+}
+
+static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction)
+{
+	void __iomem *base = onenand->dma_addr;
+	int status;
+
+	status = readl(base + S5PC110_INTC_DMA_MASK);
+	if (status) {
+		status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
+		writel(status, base + S5PC110_INTC_DMA_MASK);
+	}
+
+	writel(src, base + S5PC110_DMA_SRC_ADDR);
+	writel(dst, base + S5PC110_DMA_DST_ADDR);
+
+	if (direction == S5PC110_DMA_DIR_READ) {
+		writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
+	} else {
+		writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
+		writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
+	}
+
+	writel(count, base + S5PC110_DMA_TRANS_SIZE);
+	writel(direction, base + S5PC110_DMA_TRANS_DIR);
+
+	writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
+
+	wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
+
+	return 0;
+}
+
+static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
+		unsigned char *buffer, int offset, size_t count)
+{
+	struct onenand_chip *this = mtd->priv;
+	void __iomem *p;
+	void *buf = (void *) buffer;
+	dma_addr_t dma_src, dma_dst;
+	int err, ofs, page_dma = 0;
+	struct device *dev = &onenand->pdev->dev;
+
+	p = this->base + area;
+	if (ONENAND_CURRENT_BUFFERRAM(this)) {
+		if (area == ONENAND_DATARAM)
+			p += this->writesize;
+		else
+			p += mtd->oobsize;
+	}
+
+	if (offset & 3 || (size_t) buf & 3 ||
+		!onenand->dma_addr || count != mtd->writesize)
+		goto normal;
+
+	/* Handle vmalloc address */
+	if (buf >= high_memory) {
+		struct page *page;
+
+		if (((size_t) buf & PAGE_MASK) !=
+		    ((size_t) (buf + count - 1) & PAGE_MASK))
+			goto normal;
+		page = vmalloc_to_page(buf);
+		if (!page)
+			goto normal;
+
+		/* Page offset */
+		ofs = ((size_t) buf & ~PAGE_MASK);
+		page_dma = 1;
+
+		/* DMA routine */
+		dma_src = onenand->phys_base + (p - this->base);
+		dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE);
+	} else {
+		/* DMA routine */
+		dma_src = onenand->phys_base + (p - this->base);
+		dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
+	}
+	if (dma_mapping_error(dev, dma_dst)) {
+		dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
+		goto normal;
+	}
+	err = s5pc110_dma_ops(dma_dst, dma_src,
+			count, S5PC110_DMA_DIR_READ);
+
+	if (page_dma)
+		dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
+	else
+		dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
+
+	if (!err)
+		return 0;
+
+normal:
+	if (count != mtd->writesize) {
+		/* Copy the bufferram to memory to prevent unaligned access */
+		memcpy(this->page_buf, p, mtd->writesize);
+		p = this->page_buf + offset;
+	}
+
+	memcpy(buffer, p, count);
+
+	return 0;
+}
+
+static int s5pc110_chip_probe(struct mtd_info *mtd)
+{
+	/* Now just return 0 */
+	return 0;
+}
+
+static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
+{
+	unsigned int flags = INT_ACT | LOAD_CMP;
+	unsigned int stat;
+	unsigned long timeout;
+
+	/* The 20 msec is enough */
+	timeout = jiffies + msecs_to_jiffies(20);
+	while (time_before(jiffies, timeout)) {
+		stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+		if (stat & flags)
+			break;
+	}
+	/* To get correct interrupt status in timeout case */
+	stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
+	s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
+
+	if (stat & LD_FAIL_ECC_ERR) {
+		s3c_onenand_reset();
+		return ONENAND_BBT_READ_ERROR;
+	}
+
+	if (stat & LOAD_CMP) {
+		int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
+		if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
+			s3c_onenand_reset();
+			return ONENAND_BBT_READ_ERROR;
+		}
+	}
+
+	return 0;
+}
+
+static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	struct device *dev = &onenand->pdev->dev;
+	unsigned int block, end;
+	int tmp;
+
+	end = this->chipsize >> this->erase_shift;
+
+	for (block = 0; block < end; block++) {
+		unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
+		tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
+
+		if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
+			dev_err(dev, "block %d is write-protected!\n", block);
+			s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
+		}
+	}
+}
+
+static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
+				    size_t len, int cmd)
+{
+	struct onenand_chip *this = mtd->priv;
+	int start, end, start_mem_addr, end_mem_addr;
+
+	start = ofs >> this->erase_shift;
+	start_mem_addr = onenand->mem_addr(start, 0, 0);
+	end = start + (len >> this->erase_shift) - 1;
+	end_mem_addr = onenand->mem_addr(end, 0, 0);
+
+	if (cmd == ONENAND_CMD_LOCK) {
+		s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
+							     start_mem_addr));
+		s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
+							   end_mem_addr));
+	} else {
+		s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
+							       start_mem_addr));
+		s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
+							     end_mem_addr));
+	}
+
+	this->wait(mtd, FL_LOCKING);
+}
+
+static void s3c_unlock_all(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+	loff_t ofs = 0;
+	size_t len = this->chipsize;
+
+	if (this->options & ONENAND_HAS_UNLOCK_ALL) {
+		/* Write unlock command */
+		this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
+
+		/* No need to check return value */
+		this->wait(mtd, FL_LOCKING);
+
+		/* Workaround for all block unlock in DDP */
+		if (!ONENAND_IS_DDP(this)) {
+			s3c_onenand_check_lock_status(mtd);
+			return;
+		}
+
+		/* All blocks on another chip */
+		ofs = this->chipsize >> 1;
+		len = this->chipsize >> 1;
+	}
+
+	s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
+
+	s3c_onenand_check_lock_status(mtd);
+}
+
+static void s3c_onenand_setup(struct mtd_info *mtd)
+{
+	struct onenand_chip *this = mtd->priv;
+
+	onenand->mtd = mtd;
+
+	if (onenand->type == TYPE_S3C6400) {
+		onenand->mem_addr = s3c6400_mem_addr;
+		onenand->cmd_map = s3c64xx_cmd_map;
+	} else if (onenand->type == TYPE_S3C6410) {
+		onenand->mem_addr = s3c6410_mem_addr;
+		onenand->cmd_map = s3c64xx_cmd_map;
+	} else if (onenand->type == TYPE_S5PC110) {
+		/* Use generic onenand functions */
+		this->read_bufferram = s5pc110_read_bufferram;
+		this->chip_probe = s5pc110_chip_probe;
+		return;
+	} else {
+		BUG();
+	}
+
+	this->read_word = s3c_onenand_readw;
+	this->write_word = s3c_onenand_writew;
+
+	this->wait = s3c_onenand_wait;
+	this->bbt_wait = s3c_onenand_bbt_wait;
+	this->unlock_all = s3c_unlock_all;
+	this->command = s3c_onenand_command;
+
+	this->read_bufferram = onenand_read_bufferram;
+	this->write_bufferram = onenand_write_bufferram;
+}
+
+static int s3c_onenand_probe(struct platform_device *pdev)
+{
+	struct onenand_platform_data *pdata;
+	struct onenand_chip *this;
+	struct mtd_info *mtd;
+	struct resource *r;
+	int size, err;
+
+	pdata = dev_get_platdata(&pdev->dev);
+	/* No need to check pdata. the platform data is optional */
+
+	size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
+	mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
+	if (!mtd)
+		return -ENOMEM;
+
+	onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand),
+			       GFP_KERNEL);
+	if (!onenand)
+		return -ENOMEM;
+
+	this = (struct onenand_chip *) &mtd[1];
+	mtd->priv = this;
+	mtd->dev.parent = &pdev->dev;
+	onenand->pdev = pdev;
+	onenand->type = platform_get_device_id(pdev)->driver_data;
+
+	s3c_onenand_setup(mtd);
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	onenand->base = devm_ioremap_resource(&pdev->dev, r);
+	if (IS_ERR(onenand->base))
+		return PTR_ERR(onenand->base);
+
+	onenand->phys_base = r->start;
+
+	/* Set onenand_chip also */
+	this->base = onenand->base;
+
+	/* Use runtime badblock check */
+	this->options |= ONENAND_SKIP_UNLOCK_CHECK;
+
+	if (onenand->type != TYPE_S5PC110) {
+		r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+		onenand->ahb_addr = devm_ioremap_resource(&pdev->dev, r);
+		if (IS_ERR(onenand->ahb_addr))
+			return PTR_ERR(onenand->ahb_addr);
+
+		/* Allocate 4KiB BufferRAM */
+		onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K,
+						 GFP_KERNEL);
+		if (!onenand->page_buf)
+			return -ENOMEM;
+
+		/* Allocate 128 SpareRAM */
+		onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL);
+		if (!onenand->oob_buf)
+			return -ENOMEM;
+
+		/* S3C doesn't handle subpage write */
+		mtd->subpage_sft = 0;
+		this->subpagesize = mtd->writesize;
+
+	} else { /* S5PC110 */
+		r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+		onenand->dma_addr = devm_ioremap_resource(&pdev->dev, r);
+		if (IS_ERR(onenand->dma_addr))
+			return PTR_ERR(onenand->dma_addr);
+
+		s5pc110_dma_ops = s5pc110_dma_poll;
+		/* Interrupt support */
+		r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+		if (r) {
+			init_completion(&onenand->complete);
+			s5pc110_dma_ops = s5pc110_dma_irq;
+			err = devm_request_irq(&pdev->dev, r->start,
+					       s5pc110_onenand_irq,
+					       IRQF_SHARED, "onenand",
+					       &onenand);
+			if (err) {
+				dev_err(&pdev->dev, "failed to get irq\n");
+				return err;
+			}
+		}
+	}
+
+	err = onenand_scan(mtd, 1);
+	if (err)
+		return err;
+
+	if (onenand->type != TYPE_S5PC110) {
+		/* S3C doesn't handle subpage write */
+		mtd->subpage_sft = 0;
+		this->subpagesize = mtd->writesize;
+	}
+
+	if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
+		dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
+
+	err = mtd_device_register(mtd, pdata ? pdata->parts : NULL,
+				  pdata ? pdata->nr_parts : 0);
+	if (err) {
+		dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n");
+		onenand_release(mtd);
+		return err;
+	}
+
+	platform_set_drvdata(pdev, mtd);
+
+	return 0;
+}
+
+static int s3c_onenand_remove(struct platform_device *pdev)
+{
+	struct mtd_info *mtd = platform_get_drvdata(pdev);
+
+	onenand_release(mtd);
+
+	return 0;
+}
+
+static int s3c_pm_ops_suspend(struct device *dev)
+{
+	struct mtd_info *mtd = dev_get_drvdata(dev);
+	struct onenand_chip *this = mtd->priv;
+
+	this->wait(mtd, FL_PM_SUSPENDED);
+	return 0;
+}
+
+static  int s3c_pm_ops_resume(struct device *dev)
+{
+	struct mtd_info *mtd = dev_get_drvdata(dev);
+	struct onenand_chip *this = mtd->priv;
+
+	this->unlock_all(mtd);
+	return 0;
+}
+
+static const struct dev_pm_ops s3c_pm_ops = {
+	.suspend	= s3c_pm_ops_suspend,
+	.resume		= s3c_pm_ops_resume,
+};
+
+static const struct platform_device_id s3c_onenand_driver_ids[] = {
+	{
+		.name		= "s3c6400-onenand",
+		.driver_data	= TYPE_S3C6400,
+	}, {
+		.name		= "s3c6410-onenand",
+		.driver_data	= TYPE_S3C6410,
+	}, {
+		.name		= "s5pc110-onenand",
+		.driver_data	= TYPE_S5PC110,
+	}, { },
+};
+MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
+
+static struct platform_driver s3c_onenand_driver = {
+	.driver         = {
+		.name	= "samsung-onenand",
+		.pm	= &s3c_pm_ops,
+	},
+	.id_table	= s3c_onenand_driver_ids,
+	.probe          = s3c_onenand_probe,
+	.remove         = s3c_onenand_remove,
+};
+
+module_platform_driver(s3c_onenand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
+MODULE_DESCRIPTION("Samsung OneNAND controller support");
diff --git a/drivers/mtd/nand/onenand/samsung.h b/drivers/mtd/nand/onenand/samsung.h
new file mode 100644
index 0000000..9016dc0
--- /dev/null
+++ b/drivers/mtd/nand/onenand/samsung.h
@@ -0,0 +1,59 @@
+/*
+ *  Copyright (C) 2008-2010 Samsung Electronics
+ *  Kyungmin Park <kyungmin.park@samsung.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#ifndef __SAMSUNG_ONENAND_H__
+#define __SAMSUNG_ONENAND_H__
+
+/*
+ * OneNAND Controller
+ */
+#define MEM_CFG_OFFSET		0x0000
+#define BURST_LEN_OFFSET	0x0010
+#define MEM_RESET_OFFSET	0x0020
+#define INT_ERR_STAT_OFFSET	0x0030
+#define INT_ERR_MASK_OFFSET	0x0040
+#define INT_ERR_ACK_OFFSET	0x0050
+#define ECC_ERR_STAT_OFFSET	0x0060
+#define MANUFACT_ID_OFFSET	0x0070
+#define DEVICE_ID_OFFSET	0x0080
+#define DATA_BUF_SIZE_OFFSET	0x0090
+#define BOOT_BUF_SIZE_OFFSET	0x00A0
+#define BUF_AMOUNT_OFFSET	0x00B0
+#define TECH_OFFSET		0x00C0
+#define FBA_WIDTH_OFFSET	0x00D0
+#define FPA_WIDTH_OFFSET	0x00E0
+#define FSA_WIDTH_OFFSET	0x00F0
+#define TRANS_SPARE_OFFSET	0x0140
+#define DBS_DFS_WIDTH_OFFSET	0x0160
+#define INT_PIN_ENABLE_OFFSET	0x01A0
+#define ACC_CLOCK_OFFSET	0x01C0
+#define FLASH_VER_ID_OFFSET	0x01F0
+#define FLASH_AUX_CNTRL_OFFSET	0x0300		/* s3c64xx only */
+
+#define ONENAND_MEM_RESET_HOT	0x3
+#define ONENAND_MEM_RESET_COLD	0x2
+#define ONENAND_MEM_RESET_WARM	0x1
+
+#define CACHE_OP_ERR		(1 << 13)
+#define RST_CMP			(1 << 12)
+#define RDY_ACT			(1 << 11)
+#define INT_ACT			(1 << 10)
+#define UNSUP_CMD		(1 << 9)
+#define LOCKED_BLK		(1 << 8)
+#define BLK_RW_CMP		(1 << 7)
+#define ERS_CMP			(1 << 6)
+#define PGM_CMP			(1 << 5)
+#define LOAD_CMP		(1 << 4)
+#define ERS_FAIL		(1 << 3)
+#define PGM_FAIL		(1 << 2)
+#define INT_TO			(1 << 1)
+#define LD_FAIL_ECC_ERR		(1 << 0)
+
+#define TSRF			(1 << 0)
+
+#endif
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
new file mode 100644
index 0000000..5fc9a1b
--- /dev/null
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -0,0 +1,564 @@
+config MTD_NAND_ECC
+	tristate
+
+config MTD_NAND_ECC_SMC
+	bool "NAND ECC Smart Media byte order"
+	depends on MTD_NAND_ECC
+	default n
+	help
+	  Software ECC according to the Smart Media Specification.
+	  The original Linux implementation had byte 0 and 1 swapped.
+
+
+menuconfig MTD_NAND
+	tristate "Raw/Parallel NAND Device Support"
+	depends on MTD
+	select MTD_NAND_ECC
+	help
+	  This enables support for accessing all type of raw/parallel
+	  NAND flash devices. For further information see
+	  <http://www.linux-mtd.infradead.org/doc/nand.html>.
+
+if MTD_NAND
+
+config MTD_NAND_BCH
+	tristate
+	select BCH
+	depends on MTD_NAND_ECC_BCH
+	default MTD_NAND
+
+config MTD_NAND_ECC_BCH
+	bool "Support software BCH ECC"
+	default n
+	help
+	  This enables support for software BCH error correction. Binary BCH
+	  codes are more powerful and cpu intensive than traditional Hamming
+	  ECC codes. They are used with NAND devices requiring more than 1 bit
+	  of error correction.
+
+config MTD_SM_COMMON
+	tristate
+	default n
+
+config MTD_NAND_DENALI
+	tristate
+
+config MTD_NAND_DENALI_PCI
+	tristate "Support Denali NAND controller on Intel Moorestown"
+	select MTD_NAND_DENALI
+	depends on PCI
+	help
+	  Enable the driver for NAND flash on Intel Moorestown, using the
+	  Denali NAND controller core.
+
+config MTD_NAND_DENALI_DT
+	tristate "Support Denali NAND controller as a DT device"
+	select MTD_NAND_DENALI
+	depends on HAS_DMA && HAVE_CLK && OF
+	help
+	  Enable the driver for NAND flash on platforms using a Denali NAND
+	  controller as a DT device.
+
+config MTD_NAND_GPIO
+	tristate "GPIO assisted NAND Flash driver"
+	depends on GPIOLIB || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables a NAND flash driver where control signals are
+	  connected to GPIO pins, and commands and data are communicated
+	  via a memory mapped interface.
+
+config MTD_NAND_AMS_DELTA
+	tristate "NAND Flash device on Amstrad E3"
+	depends on MACH_AMS_DELTA
+	default y
+	help
+	  Support for NAND flash on Amstrad E3 (Delta).
+
+config MTD_NAND_OMAP2
+	tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone"
+	depends on ARCH_OMAP2PLUS || ARCH_KEYSTONE || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4
+	  and Keystone platforms.
+
+config MTD_NAND_OMAP_BCH
+	depends on MTD_NAND_OMAP2
+	bool "Support hardware based BCH error correction"
+	default n
+	select BCH
+	help
+	  This config enables the ELM hardware engine, which can be used to
+	  locate and correct errors when using BCH ECC scheme. This offloads
+	  the cpu from doing ECC error searching and correction. However some
+	  legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
+	  so this is optional for them.
+
+config MTD_NAND_OMAP_BCH_BUILD
+	def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
+
+config MTD_NAND_RICOH
+	tristate "Ricoh xD card reader"
+	default n
+	depends on PCI
+	select MTD_SM_COMMON
+	help
+	  Enable support for Ricoh R5C852 xD card reader
+	  You also need to enable ether
+	  NAND SSFDC (SmartMedia) read only translation layer' or new
+	  expermental, readwrite
+	  'SmartMedia/xD new translation layer'
+
+config MTD_NAND_AU1550
+	tristate "Au1550/1200 NAND support"
+	depends on MIPS_ALCHEMY
+	help
+	  This enables the driver for the NAND flash controller on the
+	  AMD/Alchemy 1550 SOC.
+
+config MTD_NAND_S3C2410
+	tristate "NAND Flash support for Samsung S3C SoCs"
+	depends on ARCH_S3C24XX || ARCH_S3C64XX
+	help
+	  This enables the NAND flash controller on the S3C24xx and S3C64xx
+	  SoCs
+
+	  No board specific support is done by this driver, each board
+	  must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_S3C2410_DEBUG
+	bool "Samsung S3C NAND driver debug"
+	depends on MTD_NAND_S3C2410
+	help
+	  Enable debugging of the S3C NAND driver
+
+config MTD_NAND_NDFC
+	tristate "NDFC NanD Flash Controller"
+	depends on 4xx
+	select MTD_NAND_ECC_SMC
+	help
+	  NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
+
+config MTD_NAND_S3C2410_CLKSTOP
+	bool "Samsung S3C NAND IDLE clock stop"
+	depends on MTD_NAND_S3C2410
+	default n
+	help
+	  Stop the clock to the NAND controller when there is no chip
+	  selected to save power. This will mean there is a small delay
+	  when the is NAND chip selected or released, but will save
+	  approximately 5mA of power when there is nothing happening.
+
+config MTD_NAND_TANGO
+	tristate "NAND Flash support for Tango chips"
+	depends on ARCH_TANGO || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables the NAND Flash controller on Tango chips.
+
+config MTD_NAND_DISKONCHIP
+	tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)"
+	depends on HAS_IOMEM
+	select REED_SOLOMON
+	select REED_SOLOMON_DEC16
+	help
+	  This is a reimplementation of M-Systems DiskOnChip 2000,
+	  Millennium and Millennium Plus as a standard NAND device driver,
+	  as opposed to the earlier self-contained MTD device drivers.
+	  This should enable, among other things, proper JFFS2 operation on
+	  these devices.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+	bool "Advanced detection options for DiskOnChip"
+	depends on MTD_NAND_DISKONCHIP
+	help
+	  This option allows you to specify nonstandard address at which to
+	  probe for a DiskOnChip, or to change the detection options.  You
+	  are unlikely to need any of this unless you are using LinuxBIOS.
+	  Say 'N'.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
+	hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+	depends on MTD_NAND_DISKONCHIP
+	default "0"
+	help
+	  By default, the probe for DiskOnChip devices will look for a
+	  DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+	  This option allows you to specify a single address at which to probe
+	  for the device, which is useful if you have other devices in that
+	  range which get upset when they are probed.
+
+	  (Note that on PowerPC, the normal probe will only check at
+	  0xE4000000.)
+
+	  Normally, you should leave this set to zero, to allow the probe at
+	  the normal addresses.
+
+config MTD_NAND_DISKONCHIP_PROBE_HIGH
+	bool "Probe high addresses"
+	depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+	help
+	  By default, the probe for DiskOnChip devices will look for a
+	  DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+	  This option changes to make it probe between 0xFFFC8000 and
+	  0xFFFEE000.  Unless you are using LinuxBIOS, this is unlikely to be
+	  useful to you.  Say 'N'.
+
+config MTD_NAND_DISKONCHIP_BBTWRITE
+	bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
+	depends on MTD_NAND_DISKONCHIP
+	help
+	  On DiskOnChip devices shipped with the INFTL filesystem (Millennium
+	  and 2000 TSOP/Alon), Linux reserves some space at the end of the
+	  device for the Bad Block Table (BBT).  If you have existing INFTL
+	  data on your device (created by non-Linux tools such as M-Systems'
+	  DOS drivers), your data might overlap the area Linux wants to use for
+	  the BBT.  If this is a concern for you, leave this option disabled and
+	  Linux will not write BBT data into this area.
+	  The downside of leaving this option disabled is that if bad blocks
+	  are detected by Linux, they will not be recorded in the BBT, which
+	  could cause future problems.
+	  Once you enable this option, new filesystems (INFTL or others, created
+	  in Linux or other operating systems) will not use the reserved area.
+	  The only reason not to enable this option is to prevent damage to
+	  preexisting filesystems.
+	  Even if you leave this disabled, you can enable BBT writes at module
+	  load time (assuming you build diskonchip as a module) with the module
+	  parameter "inftl_bbt_write=1".
+
+config MTD_NAND_DOCG4
+	tristate "Support for DiskOnChip G4"
+	depends on HAS_IOMEM
+	select BCH
+	select BITREVERSE
+	help
+	  Support for diskonchip G4 nand flash, found in various smartphones and
+	  PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba
+	  Portege G900, Asus P526, and O2 XDA Zinc.
+
+	  With this driver you will be able to use UBI and create a ubifs on the
+	  device, so you may wish to consider enabling UBI and UBIFS as well.
+
+	  These devices ship with the Mys/Sandisk SAFTL formatting, for which
+	  there is currently no mtd parser, so you may want to use command line
+	  partitioning to segregate write-protected blocks. On the Treo680, the
+	  first five erase blocks (256KiB each) are write-protected, followed
+	  by the block containing the saftl partition table.  This is probably
+	  typical.
+
+config MTD_NAND_SHARPSL
+	tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)"
+	depends on ARCH_PXA || COMPILE_TEST
+	depends on HAS_IOMEM
+
+config MTD_NAND_CAFE
+	tristate "NAND support for OLPC CAFÉ chip"
+	depends on PCI
+	select REED_SOLOMON
+	select REED_SOLOMON_DEC16
+	help
+	  Use NAND flash attached to the CAFÉ chip designed for the OLPC
+	  laptop.
+
+config MTD_NAND_CS553X
+	tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)"
+	depends on X86_32
+	depends on !UML && HAS_IOMEM
+	help
+	  The CS553x companion chips for the AMD Geode processor
+	  include NAND flash controllers with built-in hardware ECC
+	  capabilities; enabling this option will allow you to use
+	  these. The driver will check the MSRs to verify that the
+	  controller is enabled for NAND, and currently requires that
+	  the controller be in MMIO mode.
+
+	  If you say "m", the module will be called cs553x_nand.
+
+config MTD_NAND_ATMEL
+	tristate "Support for NAND Flash / SmartMedia on AT91"
+	depends on ARCH_AT91 || COMPILE_TEST
+	depends on HAS_IOMEM
+	select GENERIC_ALLOCATOR
+	select MFD_ATMEL_SMC
+	help
+	  Enables support for NAND Flash / Smart Media Card interface
+	  on Atmel AT91 processors.
+
+config MTD_NAND_MARVELL
+	tristate "NAND controller support on Marvell boards"
+	depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \
+		   COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the NAND flash controller driver for Marvell boards,
+	  including:
+	  - PXA3xx processors (NFCv1)
+	  - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2)
+	  - 64-bit Aramda platforms (7k, 8k) (NFCv2)
+
+config MTD_NAND_SLC_LPC32XX
+	tristate "NXP LPC32xx SLC Controller"
+	depends on ARCH_LPC32XX || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
+	  chips) NAND controller. This is the default for the PHYTEC 3250
+	  reference board which contains a NAND256R3A2CZA6 chip.
+
+	  Please check the actual NAND chip connected and its support
+	  by the SLC NAND controller.
+
+config MTD_NAND_MLC_LPC32XX
+	tristate "NXP LPC32xx MLC Controller"
+	depends on ARCH_LPC32XX || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND
+	  controller. This is the default for the WORK92105 controller
+	  board.
+
+	  Please check the actual NAND chip connected and its support
+	  by the MLC NAND controller.
+
+config MTD_NAND_CM_X270
+	tristate "Support for NAND Flash on CM-X270 modules"
+	depends on MACH_ARMCORE
+
+config MTD_NAND_PASEMI
+	tristate "NAND support for PA Semi PWRficient"
+	depends on PPC_PASEMI
+	help
+	  Enables support for NAND Flash interface on PA Semi PWRficient
+	  based boards
+
+config MTD_NAND_TMIO
+	tristate "NAND Flash device on Toshiba Mobile IO Controller"
+	depends on MFD_TMIO
+	help
+	  Support for NAND flash connected to a Toshiba Mobile IO
+	  Controller in some PDAs, including the Sharp SL6000x.
+
+config MTD_NAND_NANDSIM
+	tristate "Support for NAND Flash Simulator"
+	help
+	  The simulator may simulate various NAND flash chips for the
+	  MTD nand layer.
+
+config MTD_NAND_GPMI_NAND
+	tristate "GPMI NAND Flash Controller driver"
+	depends on MXS_DMA
+	help
+	  Enables NAND Flash support for IMX23, IMX28 or IMX6.
+	  The GPMI controller is very powerful, with the help of BCH
+	  module, it can do the hardware ECC. The GPMI supports several
+	  NAND flashs at the same time.
+
+config MTD_NAND_BRCMNAND
+	tristate "Broadcom STB NAND controller"
+	depends on ARM || ARM64 || MIPS || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables the Broadcom NAND controller driver. The controller was
+	  originally designed for Set-Top Box but is used on various BCM7xxx,
+	  BCM3xxx, BCM63xxx, iProc/Cygnus and more.
+
+config MTD_NAND_BCM47XXNFLASH
+	tristate "Support for NAND flash on BCM4706 BCMA bus"
+	depends on BCMA_NFLASH
+	depends on BCMA
+	help
+	  BCMA bus can have various flash memories attached, they are
+	  registered by bcma as platform devices. This enables driver for
+	  NAND flash memories. For now only BCM4706 is supported.
+
+config MTD_NAND_PLATFORM
+	tristate "Support for generic platform NAND driver"
+	depends on HAS_IOMEM
+	help
+	  This implements a generic NAND driver for on-SOC platform
+	  devices. You will need to provide platform-specific functions
+	  via platform_data.
+
+config MTD_NAND_ORION
+	tristate "NAND Flash support for Marvell Orion SoC"
+	depends on PLAT_ORION
+	help
+	  This enables the NAND flash controller on Orion machines.
+
+	  No board specific support is done by this driver, each board
+	  must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_OXNAS
+	tristate "NAND Flash support for Oxford Semiconductor SoC"
+	depends on ARCH_OXNAS || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the NAND flash controller on Oxford Semiconductor SoCs.
+
+config MTD_NAND_FSL_ELBC
+	tristate "NAND support for Freescale eLBC controllers"
+	depends on FSL_SOC
+	select FSL_LBC
+	help
+	  Various Freescale chips, including the 8313, include a NAND Flash
+	  Controller Module with built-in hardware ECC capabilities.
+	  Enabling this option will enable you to use this to control
+	  external NAND devices.
+
+config MTD_NAND_FSL_IFC
+	tristate "NAND support for Freescale IFC controller"
+	depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A || COMPILE_TEST
+	depends on HAS_IOMEM
+	select FSL_IFC
+	select MEMORY
+	help
+	  Various Freescale chips e.g P1010, include a NAND Flash machine
+	  with built-in hardware ECC capabilities.
+	  Enabling this option will enable you to use this to control
+	  external NAND devices.
+
+config MTD_NAND_FSL_UPM
+	tristate "Support for NAND on Freescale UPM"
+	depends on PPC_83xx || PPC_85xx
+	select FSL_LBC
+	help
+	  Enables support for NAND Flash chips wired onto Freescale PowerPC
+	  processor localbus with User-Programmable Machine support.
+
+config MTD_NAND_MPC5121_NFC
+	tristate "MPC5121 built-in NAND Flash Controller support"
+	depends on PPC_MPC512x
+	help
+	  This enables the driver for the NAND flash controller on the
+	  MPC5121 SoC.
+
+config MTD_NAND_VF610_NFC
+	tristate "Support for Freescale NFC for VF610/MPC5125"
+	depends on (SOC_VF610 || COMPILE_TEST)
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND Flash Controller on some Freescale
+	  processors like the VF610, MPC5125, MCF54418 or Kinetis K70.
+	  The driver supports a maximum 2k page size. With 2k pages and
+	  64 bytes or more of OOB, hardware ECC with up to 32-bit error
+	  correction is supported. Hardware ECC is only enabled through
+	  device tree.
+
+config MTD_NAND_MXC
+	tristate "MXC NAND support"
+	depends on ARCH_MXC || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the driver for the NAND flash controller on the
+	  MXC processors.
+
+config MTD_NAND_SH_FLCTL
+	tristate "Support for NAND on Renesas SuperH FLCTL"
+	depends on SUPERH || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Several Renesas SuperH CPU has FLCTL. This option enables support
+	  for NAND Flash using FLCTL.
+
+config MTD_NAND_DAVINCI
+	tristate "Support NAND on DaVinci/Keystone SoC"
+	depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enable the driver for NAND flash chips on Texas Instruments
+	  DaVinci/Keystone processors.
+
+config MTD_NAND_TXX9NDFMC
+	tristate "NAND Flash support for TXx9 SoC"
+	depends on SOC_TX4938 || SOC_TX4939 || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the NAND flash controller on the TXx9 SoCs.
+
+config MTD_NAND_SOCRATES
+	tristate "Support for NAND on Socrates board"
+	depends on SOCRATES
+	help
+	  Enables support for NAND Flash chips wired onto Socrates board.
+
+config MTD_NAND_NUC900
+	tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards."
+	depends on ARCH_W90X900 || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  This enables the driver for the NAND Flash on evaluation board based
+	  on w90p910 / NUC9xx.
+
+config MTD_NAND_JZ4740
+	tristate "Support for JZ4740 SoC NAND controller"
+	depends on MACH_JZ4740 || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND Flash on JZ4740 SoC based boards.
+
+config MTD_NAND_JZ4780
+	tristate "Support for NAND on JZ4780 SoC"
+	depends on JZ4780_NEMC
+	help
+	  Enables support for NAND Flash connected to the NEMC on JZ4780 SoC
+	  based boards, using the BCH controller for hardware error correction.
+
+config MTD_NAND_FSMC
+	tristate "Support for NAND on ST Micros FSMC"
+	depends on OF && HAS_IOMEM
+	depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300 || \
+		   COMPILE_TEST
+	help
+	  Enables support for NAND Flash chips on the ST Microelectronics
+	  Flexible Static Memory Controller (FSMC)
+
+config MTD_NAND_XWAY
+	bool "Support for NAND on Lantiq XWAY SoC"
+	depends on LANTIQ && SOC_TYPE_XWAY
+	help
+	  Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
+	  to the External Bus Unit (EBU).
+
+config MTD_NAND_SUNXI
+	tristate "Support for NAND on Allwinner SoCs"
+	depends on ARCH_SUNXI || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND Flash chips on Allwinner SoCs.
+
+config MTD_NAND_HISI504
+	tristate "Support for NAND controller on Hisilicon SoC Hip04"
+	depends on ARCH_HISI || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND controller on Hisilicon SoC Hip04.
+
+config MTD_NAND_QCOM
+	tristate "Support for NAND on QCOM SoCs"
+	depends on ARCH_QCOM || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+	  controller. This controller is found on IPQ806x SoC.
+
+config MTD_NAND_MTK
+	tristate "Support for NAND controller on MTK SoCs"
+	depends on ARCH_MEDIATEK || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND controller on MTK SoCs.
+	  This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+
+config MTD_NAND_TEGRA
+	tristate "Support for NAND controller on NVIDIA Tegra"
+	depends on ARCH_TEGRA || COMPILE_TEST
+	depends on HAS_IOMEM
+	help
+	  Enables support for NAND flash controller on NVIDIA Tegra SoC.
+	  The driver has been developed and tested on a Tegra 2 SoC. DMA
+	  support, raw read/write page as well as HW ECC read/write page
+	  is supported. Extra OOB bytes when using HW ECC are currently
+	  not supported.
+
+endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
new file mode 100644
index 0000000..d5a5f98
--- /dev/null
+++ b/drivers/mtd/nand/raw/Makefile
@@ -0,0 +1,67 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_MTD_NAND)			+= nand.o
+obj-$(CONFIG_MTD_NAND_ECC)		+= nand_ecc.o
+obj-$(CONFIG_MTD_NAND_BCH)		+= nand_bch.o
+obj-$(CONFIG_MTD_SM_COMMON) 		+= sm_common.o
+
+obj-$(CONFIG_MTD_NAND_CAFE)		+= cafe_nand.o
+obj-$(CONFIG_MTD_NAND_AMS_DELTA)	+= ams-delta.o
+obj-$(CONFIG_MTD_NAND_DENALI)		+= denali.o
+obj-$(CONFIG_MTD_NAND_DENALI_PCI)	+= denali_pci.o
+obj-$(CONFIG_MTD_NAND_DENALI_DT)	+= denali_dt.o
+obj-$(CONFIG_MTD_NAND_AU1550)		+= au1550nd.o
+obj-$(CONFIG_MTD_NAND_S3C2410)		+= s3c2410.o
+obj-$(CONFIG_MTD_NAND_TANGO)		+= tango_nand.o
+obj-$(CONFIG_MTD_NAND_DAVINCI)		+= davinci_nand.o
+obj-$(CONFIG_MTD_NAND_DISKONCHIP)	+= diskonchip.o
+obj-$(CONFIG_MTD_NAND_DOCG4)		+= docg4.o
+obj-$(CONFIG_MTD_NAND_FSMC)		+= fsmc_nand.o
+obj-$(CONFIG_MTD_NAND_SHARPSL)		+= sharpsl.o
+obj-$(CONFIG_MTD_NAND_NANDSIM)		+= nandsim.o
+obj-$(CONFIG_MTD_NAND_CS553X)		+= cs553x_nand.o
+obj-$(CONFIG_MTD_NAND_NDFC)		+= ndfc.o
+obj-$(CONFIG_MTD_NAND_ATMEL)		+= atmel/
+obj-$(CONFIG_MTD_NAND_GPIO)		+= gpio.o
+omap2_nand-objs := omap2.o
+obj-$(CONFIG_MTD_NAND_OMAP2) 		+= omap2_nand.o
+obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD)	+= omap_elm.o
+obj-$(CONFIG_MTD_NAND_CM_X270)		+= cmx270_nand.o
+obj-$(CONFIG_MTD_NAND_MARVELL)		+= marvell_nand.o
+obj-$(CONFIG_MTD_NAND_TMIO)		+= tmio_nand.o
+obj-$(CONFIG_MTD_NAND_PLATFORM)		+= plat_nand.o
+obj-$(CONFIG_MTD_NAND_PASEMI)		+= pasemi_nand.o
+obj-$(CONFIG_MTD_NAND_ORION)		+= orion_nand.o
+obj-$(CONFIG_MTD_NAND_OXNAS)		+= oxnas_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_ELBC)		+= fsl_elbc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_IFC)		+= fsl_ifc_nand.o
+obj-$(CONFIG_MTD_NAND_FSL_UPM)		+= fsl_upm.o
+obj-$(CONFIG_MTD_NAND_SLC_LPC32XX)      += lpc32xx_slc.o
+obj-$(CONFIG_MTD_NAND_MLC_LPC32XX)      += lpc32xx_mlc.o
+obj-$(CONFIG_MTD_NAND_SH_FLCTL)		+= sh_flctl.o
+obj-$(CONFIG_MTD_NAND_MXC)		+= mxc_nand.o
+obj-$(CONFIG_MTD_NAND_SOCRATES)		+= socrates_nand.o
+obj-$(CONFIG_MTD_NAND_TXX9NDFMC)	+= txx9ndfmc.o
+obj-$(CONFIG_MTD_NAND_NUC900)		+= nuc900_nand.o
+obj-$(CONFIG_MTD_NAND_MPC5121_NFC)	+= mpc5121_nfc.o
+obj-$(CONFIG_MTD_NAND_VF610_NFC)	+= vf610_nfc.o
+obj-$(CONFIG_MTD_NAND_RICOH)		+= r852.o
+obj-$(CONFIG_MTD_NAND_JZ4740)		+= jz4740_nand.o
+obj-$(CONFIG_MTD_NAND_JZ4780)		+= jz4780_nand.o jz4780_bch.o
+obj-$(CONFIG_MTD_NAND_GPMI_NAND)	+= gpmi-nand/
+obj-$(CONFIG_MTD_NAND_XWAY)		+= xway_nand.o
+obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash/
+obj-$(CONFIG_MTD_NAND_SUNXI)		+= sunxi_nand.o
+obj-$(CONFIG_MTD_NAND_HISI504)	        += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand/
+obj-$(CONFIG_MTD_NAND_QCOM)		+= qcom_nandc.o
+obj-$(CONFIG_MTD_NAND_MTK)		+= mtk_ecc.o mtk_nand.o
+obj-$(CONFIG_MTD_NAND_TEGRA)		+= tegra_nand.o
+
+nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
+nand-objs += nand_amd.o
+nand-objs += nand_hynix.o
+nand-objs += nand_macronix.o
+nand-objs += nand_micron.o
+nand-objs += nand_samsung.o
+nand-objs += nand_toshiba.o
diff --git a/drivers/mtd/nand/raw/ams-delta.c b/drivers/mtd/nand/raw/ams-delta.c
new file mode 100644
index 0000000..37a3cc2
--- /dev/null
+++ b/drivers/mtd/nand/raw/ams-delta.c
@@ -0,0 +1,291 @@
+/*
+ *  Copyright (C) 2006 Jonathan McDowell <noodles@earth.li>
+ *
+ *  Derived from drivers/mtd/nand/toto.c (removed in v2.6.28)
+ *    Copyright (c) 2003 Texas Instruments
+ *    Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
+ *  Converted to platform driver by Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
+ *  Partially stolen from plat_nand.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash device found on the
+ *   Amstrad E3 (Delta).
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/gpio.h>
+#include <linux/platform_data/gpio-omap.h>
+
+#include <asm/io.h>
+#include <asm/sizes.h>
+
+#include <mach/board-ams-delta.h>
+
+#include <mach/hardware.h>
+
+/*
+ * MTD structure for E3 (Delta)
+ */
+static struct mtd_info *ams_delta_mtd = NULL;
+
+/*
+ * Define partitions for flash devices
+ */
+
+static const struct mtd_partition partition_info[] = {
+	{ .name		= "Kernel",
+	  .offset	= 0,
+	  .size		= 3 * SZ_1M + SZ_512K },
+	{ .name		= "u-boot",
+	  .offset	= 3 * SZ_1M + SZ_512K,
+	  .size		= SZ_256K },
+	{ .name		= "u-boot params",
+	  .offset	= 3 * SZ_1M + SZ_512K + SZ_256K,
+	  .size		= SZ_256K },
+	{ .name		= "Amstrad LDR",
+	  .offset	= 4 * SZ_1M,
+	  .size		= SZ_256K },
+	{ .name		= "File system",
+	  .offset	= 4 * SZ_1M + 1 * SZ_256K,
+	  .size		= 27 * SZ_1M },
+	{ .name		= "PBL reserved",
+	  .offset	= 32 * SZ_1M - 3 * SZ_256K,
+	  .size		=  3 * SZ_256K },
+};
+
+static void ams_delta_write_byte(struct mtd_info *mtd, u_char byte)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	void __iomem *io_base = (void __iomem *)nand_get_controller_data(this);
+
+	writew(0, io_base + OMAP_MPUIO_IO_CNTL);
+	writew(byte, this->IO_ADDR_W);
+	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 0);
+	ndelay(40);
+	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 1);
+}
+
+static u_char ams_delta_read_byte(struct mtd_info *mtd)
+{
+	u_char res;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	void __iomem *io_base = (void __iomem *)nand_get_controller_data(this);
+
+	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 0);
+	ndelay(40);
+	writew(~0, io_base + OMAP_MPUIO_IO_CNTL);
+	res = readw(this->IO_ADDR_R);
+	gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 1);
+
+	return res;
+}
+
+static void ams_delta_write_buf(struct mtd_info *mtd, const u_char *buf,
+				int len)
+{
+	int i;
+
+	for (i=0; i<len; i++)
+		ams_delta_write_byte(mtd, buf[i]);
+}
+
+static void ams_delta_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+
+	for (i=0; i<len; i++)
+		buf[i] = ams_delta_read_byte(mtd);
+}
+
+/*
+ * Command control function
+ *
+ * ctrl:
+ * NAND_NCE: bit 0 -> bit 2
+ * NAND_CLE: bit 1 -> bit 7
+ * NAND_ALE: bit 2 -> bit 6
+ */
+static void ams_delta_hwcontrol(struct mtd_info *mtd, int cmd,
+				unsigned int ctrl)
+{
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NCE,
+				(ctrl & NAND_NCE) == 0);
+		gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_CLE,
+				(ctrl & NAND_CLE) != 0);
+		gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_ALE,
+				(ctrl & NAND_ALE) != 0);
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		ams_delta_write_byte(mtd, cmd);
+}
+
+static int ams_delta_nand_ready(struct mtd_info *mtd)
+{
+	return gpio_get_value(AMS_DELTA_GPIO_PIN_NAND_RB);
+}
+
+static const struct gpio _mandatory_gpio[] = {
+	{
+		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NCE,
+		.flags	= GPIOF_OUT_INIT_HIGH,
+		.label	= "nand_nce",
+	},
+	{
+		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NRE,
+		.flags	= GPIOF_OUT_INIT_HIGH,
+		.label	= "nand_nre",
+	},
+	{
+		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NWP,
+		.flags	= GPIOF_OUT_INIT_HIGH,
+		.label	= "nand_nwp",
+	},
+	{
+		.gpio	= AMS_DELTA_GPIO_PIN_NAND_NWE,
+		.flags	= GPIOF_OUT_INIT_HIGH,
+		.label	= "nand_nwe",
+	},
+	{
+		.gpio	= AMS_DELTA_GPIO_PIN_NAND_ALE,
+		.flags	= GPIOF_OUT_INIT_LOW,
+		.label	= "nand_ale",
+	},
+	{
+		.gpio	= AMS_DELTA_GPIO_PIN_NAND_CLE,
+		.flags	= GPIOF_OUT_INIT_LOW,
+		.label	= "nand_cle",
+	},
+};
+
+/*
+ * Main initialization routine
+ */
+static int ams_delta_init(struct platform_device *pdev)
+{
+	struct nand_chip *this;
+	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	void __iomem *io_base;
+	int err = 0;
+
+	if (!res)
+		return -ENXIO;
+
+	/* Allocate memory for MTD device structure and private data */
+	this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
+	if (!this) {
+		pr_warn("Unable to allocate E3 NAND MTD device structure.\n");
+		err = -ENOMEM;
+		goto out;
+	}
+
+	ams_delta_mtd = nand_to_mtd(this);
+	ams_delta_mtd->owner = THIS_MODULE;
+
+	/*
+	 * Don't try to request the memory region from here,
+	 * it should have been already requested from the
+	 * gpio-omap driver and requesting it again would fail.
+	 */
+
+	io_base = ioremap(res->start, resource_size(res));
+	if (io_base == NULL) {
+		dev_err(&pdev->dev, "ioremap failed\n");
+		err = -EIO;
+		goto out_free;
+	}
+
+	nand_set_controller_data(this, (void *)io_base);
+
+	/* Set address of NAND IO lines */
+	this->IO_ADDR_R = io_base + OMAP_MPUIO_INPUT_LATCH;
+	this->IO_ADDR_W = io_base + OMAP_MPUIO_OUTPUT;
+	this->read_byte = ams_delta_read_byte;
+	this->write_buf = ams_delta_write_buf;
+	this->read_buf = ams_delta_read_buf;
+	this->cmd_ctrl = ams_delta_hwcontrol;
+	if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) {
+		this->dev_ready = ams_delta_nand_ready;
+	} else {
+		this->dev_ready = NULL;
+		pr_notice("Couldn't request gpio for Delta NAND ready.\n");
+	}
+	/* 25 us command delay time */
+	this->chip_delay = 30;
+	this->ecc.mode = NAND_ECC_SOFT;
+	this->ecc.algo = NAND_ECC_HAMMING;
+
+	platform_set_drvdata(pdev, io_base);
+
+	/* Set chip enabled, but  */
+	err = gpio_request_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio));
+	if (err)
+		goto out_gpio;
+
+	/* Scan to find existence of the device */
+	err = nand_scan(ams_delta_mtd, 1);
+	if (err)
+		goto out_mtd;
+
+	/* Register the partitions */
+	mtd_device_register(ams_delta_mtd, partition_info,
+			    ARRAY_SIZE(partition_info));
+
+	goto out;
+
+ out_mtd:
+	gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio));
+out_gpio:
+	gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB);
+	iounmap(io_base);
+out_free:
+	kfree(this);
+ out:
+	return err;
+}
+
+/*
+ * Clean up routine
+ */
+static int ams_delta_cleanup(struct platform_device *pdev)
+{
+	void __iomem *io_base = platform_get_drvdata(pdev);
+
+	/* Release resources, unregister device */
+	nand_release(ams_delta_mtd);
+
+	gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio));
+	gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB);
+	iounmap(io_base);
+
+	/* Free the MTD device structure */
+	kfree(mtd_to_nand(ams_delta_mtd));
+
+	return 0;
+}
+
+static struct platform_driver ams_delta_nand_driver = {
+	.probe		= ams_delta_init,
+	.remove		= ams_delta_cleanup,
+	.driver		= {
+		.name	= "ams-delta-nand",
+	},
+};
+
+module_platform_driver(ams_delta_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jonathan McDowell <noodles@earth.li>");
+MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)");
diff --git a/drivers/mtd/nand/raw/atmel/Makefile b/drivers/mtd/nand/raw/atmel/Makefile
new file mode 100644
index 0000000..288db4f
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel/Makefile
@@ -0,0 +1,4 @@
+obj-$(CONFIG_MTD_NAND_ATMEL)	+= atmel-nand-controller.o atmel-pmecc.o
+
+atmel-nand-controller-objs	:= nand-controller.o
+atmel-pmecc-objs		:= pmecc.o
diff --git a/drivers/mtd/nand/raw/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c
new file mode 100644
index 0000000..32e95af
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel/nand-controller.c
@@ -0,0 +1,2559 @@
+/*
+ * Copyright 2017 ATMEL
+ * Copyright 2017 Free Electrons
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * Derived from the atmel_nand.c driver which contained the following
+ * copyrights:
+ *
+ *   Copyright 2003 Rick Bronson
+ *
+ *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
+ *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ *   Derived from drivers/mtd/spia.c (removed in v3.8)
+ *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ *
+ *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
+ *
+ *   Derived from Das U-Boot source code
+ *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ *   Add Programmable Multibit ECC support for various AT91 SoC
+ *	Copyright 2012 ATMEL, Hong Xu
+ *
+ *   Add Nand Flash Controller support for SAMA5 SoC
+ *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * A few words about the naming convention in this file. This convention
+ * applies to structure and function names.
+ *
+ * Prefixes:
+ *
+ * - atmel_nand_: all generic structures/functions
+ * - atmel_smc_nand_: all structures/functions specific to the SMC interface
+ *		      (at91sam9 and avr32 SoCs)
+ * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
+ *		       (sama5 SoCs and later)
+ * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
+ *		 that is available in the HSMC block
+ * - <soc>_nand_: all SoC specific structures/functions
+ */
+
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/genalloc.h>
+#include <linux/gpio/consumer.h>
+#include <linux/interrupt.h>
+#include <linux/mfd/syscon.h>
+#include <linux/mfd/syscon/atmel-matrix.h>
+#include <linux/mfd/syscon/atmel-smc.h>
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+#include <linux/iopoll.h>
+#include <linux/platform_device.h>
+#include <linux/regmap.h>
+
+#include "pmecc.h"
+
+#define ATMEL_HSMC_NFC_CFG			0x0
+#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
+#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
+#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
+#define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
+#define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
+#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
+#define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
+#define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
+#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
+#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)
+
+#define ATMEL_HSMC_NFC_CTRL			0x4
+#define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
+#define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)
+
+#define ATMEL_HSMC_NFC_SR			0x8
+#define ATMEL_HSMC_NFC_IER			0xc
+#define ATMEL_HSMC_NFC_IDR			0x10
+#define ATMEL_HSMC_NFC_IMR			0x14
+#define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
+#define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
+#define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
+#define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
+#define ATMEL_HSMC_NFC_SR_WR			BIT(11)
+#define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
+#define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
+#define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
+#define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
+#define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
+#define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
+#define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
+#define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
+						 ATMEL_HSMC_NFC_SR_UNDEF | \
+						 ATMEL_HSMC_NFC_SR_AWB | \
+						 ATMEL_HSMC_NFC_SR_NFCASE)
+#define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)
+
+#define ATMEL_HSMC_NFC_ADDR			0x18
+#define ATMEL_HSMC_NFC_BANK			0x1c
+
+#define ATMEL_NFC_MAX_RB_ID			7
+
+#define ATMEL_NFC_SRAM_SIZE			0x2400
+
+#define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
+#define ATMEL_NFC_VCMD2				BIT(18)
+#define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
+#define ATMEL_NFC_CSID(cs)			((cs) << 22)
+#define ATMEL_NFC_DATAEN			BIT(25)
+#define ATMEL_NFC_NFCWR				BIT(26)
+
+#define ATMEL_NFC_MAX_ADDR_CYCLES		5
+
+#define ATMEL_NAND_ALE_OFFSET			BIT(21)
+#define ATMEL_NAND_CLE_OFFSET			BIT(22)
+
+#define DEFAULT_TIMEOUT_MS			1000
+#define MIN_DMA_LEN				128
+
+static bool atmel_nand_avoid_dma __read_mostly;
+
+MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
+module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
+
+enum atmel_nand_rb_type {
+	ATMEL_NAND_NO_RB,
+	ATMEL_NAND_NATIVE_RB,
+	ATMEL_NAND_GPIO_RB,
+};
+
+struct atmel_nand_rb {
+	enum atmel_nand_rb_type type;
+	union {
+		struct gpio_desc *gpio;
+		int id;
+	};
+};
+
+struct atmel_nand_cs {
+	int id;
+	struct atmel_nand_rb rb;
+	struct gpio_desc *csgpio;
+	struct {
+		void __iomem *virt;
+		dma_addr_t dma;
+	} io;
+
+	struct atmel_smc_cs_conf smcconf;
+};
+
+struct atmel_nand {
+	struct list_head node;
+	struct device *dev;
+	struct nand_chip base;
+	struct atmel_nand_cs *activecs;
+	struct atmel_pmecc_user *pmecc;
+	struct gpio_desc *cdgpio;
+	int numcs;
+	struct atmel_nand_cs cs[];
+};
+
+static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
+{
+	return container_of(chip, struct atmel_nand, base);
+}
+
+enum atmel_nfc_data_xfer {
+	ATMEL_NFC_NO_DATA,
+	ATMEL_NFC_READ_DATA,
+	ATMEL_NFC_WRITE_DATA,
+};
+
+struct atmel_nfc_op {
+	u8 cs;
+	u8 ncmds;
+	u8 cmds[2];
+	u8 naddrs;
+	u8 addrs[5];
+	enum atmel_nfc_data_xfer data;
+	u32 wait;
+	u32 errors;
+};
+
+struct atmel_nand_controller;
+struct atmel_nand_controller_caps;
+
+struct atmel_nand_controller_ops {
+	int (*probe)(struct platform_device *pdev,
+		     const struct atmel_nand_controller_caps *caps);
+	int (*remove)(struct atmel_nand_controller *nc);
+	void (*nand_init)(struct atmel_nand_controller *nc,
+			  struct atmel_nand *nand);
+	int (*ecc_init)(struct nand_chip *chip);
+	int (*setup_data_interface)(struct atmel_nand *nand, int csline,
+				    const struct nand_data_interface *conf);
+};
+
+struct atmel_nand_controller_caps {
+	bool has_dma;
+	bool legacy_of_bindings;
+	u32 ale_offs;
+	u32 cle_offs;
+	const struct atmel_nand_controller_ops *ops;
+};
+
+struct atmel_nand_controller {
+	struct nand_controller base;
+	const struct atmel_nand_controller_caps *caps;
+	struct device *dev;
+	struct regmap *smc;
+	struct dma_chan *dmac;
+	struct atmel_pmecc *pmecc;
+	struct list_head chips;
+	struct clk *mck;
+};
+
+static inline struct atmel_nand_controller *
+to_nand_controller(struct nand_controller *ctl)
+{
+	return container_of(ctl, struct atmel_nand_controller, base);
+}
+
+struct atmel_smc_nand_controller {
+	struct atmel_nand_controller base;
+	struct regmap *matrix;
+	unsigned int ebi_csa_offs;
+};
+
+static inline struct atmel_smc_nand_controller *
+to_smc_nand_controller(struct nand_controller *ctl)
+{
+	return container_of(to_nand_controller(ctl),
+			    struct atmel_smc_nand_controller, base);
+}
+
+struct atmel_hsmc_nand_controller {
+	struct atmel_nand_controller base;
+	struct {
+		struct gen_pool *pool;
+		void __iomem *virt;
+		dma_addr_t dma;
+	} sram;
+	const struct atmel_hsmc_reg_layout *hsmc_layout;
+	struct regmap *io;
+	struct atmel_nfc_op op;
+	struct completion complete;
+	int irq;
+
+	/* Only used when instantiating from legacy DT bindings. */
+	struct clk *clk;
+};
+
+static inline struct atmel_hsmc_nand_controller *
+to_hsmc_nand_controller(struct nand_controller *ctl)
+{
+	return container_of(to_nand_controller(ctl),
+			    struct atmel_hsmc_nand_controller, base);
+}
+
+static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
+{
+	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
+	op->wait ^= status & op->wait;
+
+	return !op->wait || op->errors;
+}
+
+static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
+{
+	struct atmel_hsmc_nand_controller *nc = data;
+	u32 sr, rcvd;
+	bool done;
+
+	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
+
+	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
+	done = atmel_nfc_op_done(&nc->op, sr);
+
+	if (rcvd)
+		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
+
+	if (done)
+		complete(&nc->complete);
+
+	return rcvd ? IRQ_HANDLED : IRQ_NONE;
+}
+
+static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
+			  unsigned int timeout_ms)
+{
+	int ret;
+
+	if (!timeout_ms)
+		timeout_ms = DEFAULT_TIMEOUT_MS;
+
+	if (poll) {
+		u32 status;
+
+		ret = regmap_read_poll_timeout(nc->base.smc,
+					       ATMEL_HSMC_NFC_SR, status,
+					       atmel_nfc_op_done(&nc->op,
+								 status),
+					       0, timeout_ms * 1000);
+	} else {
+		init_completion(&nc->complete);
+		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
+			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
+		ret = wait_for_completion_timeout(&nc->complete,
+						msecs_to_jiffies(timeout_ms));
+		if (!ret)
+			ret = -ETIMEDOUT;
+		else
+			ret = 0;
+
+		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
+	}
+
+	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
+		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
+		ret = -ETIMEDOUT;
+	}
+
+	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
+		dev_err(nc->base.dev, "Access to an undefined area\n");
+		ret = -EIO;
+	}
+
+	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
+		dev_err(nc->base.dev, "Access while busy\n");
+		ret = -EIO;
+	}
+
+	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
+		dev_err(nc->base.dev, "Wrong access size\n");
+		ret = -EIO;
+	}
+
+	return ret;
+}
+
+static void atmel_nand_dma_transfer_finished(void *data)
+{
+	struct completion *finished = data;
+
+	complete(finished);
+}
+
+static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
+				   void *buf, dma_addr_t dev_dma, size_t len,
+				   enum dma_data_direction dir)
+{
+	DECLARE_COMPLETION_ONSTACK(finished);
+	dma_addr_t src_dma, dst_dma, buf_dma;
+	struct dma_async_tx_descriptor *tx;
+	dma_cookie_t cookie;
+
+	buf_dma = dma_map_single(nc->dev, buf, len, dir);
+	if (dma_mapping_error(nc->dev, dev_dma)) {
+		dev_err(nc->dev,
+			"Failed to prepare a buffer for DMA access\n");
+		goto err;
+	}
+
+	if (dir == DMA_FROM_DEVICE) {
+		src_dma = dev_dma;
+		dst_dma = buf_dma;
+	} else {
+		src_dma = buf_dma;
+		dst_dma = dev_dma;
+	}
+
+	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
+				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
+	if (!tx) {
+		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
+		goto err_unmap;
+	}
+
+	tx->callback = atmel_nand_dma_transfer_finished;
+	tx->callback_param = &finished;
+
+	cookie = dmaengine_submit(tx);
+	if (dma_submit_error(cookie)) {
+		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
+		goto err_unmap;
+	}
+
+	dma_async_issue_pending(nc->dmac);
+	wait_for_completion(&finished);
+
+	return 0;
+
+err_unmap:
+	dma_unmap_single(nc->dev, buf_dma, len, dir);
+
+err:
+	dev_dbg(nc->dev, "Fall back to CPU I/O\n");
+
+	return -EIO;
+}
+
+static u8 atmel_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+
+	return ioread8(nand->activecs->io.virt);
+}
+
+static u16 atmel_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+
+	return ioread16(nand->activecs->io.virt);
+}
+
+static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		iowrite16(byte | (byte << 8), nand->activecs->io.virt);
+	else
+		iowrite8(byte, nand->activecs->io.virt);
+}
+
+static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_nand_controller *nc;
+
+	nc = to_nand_controller(chip->controller);
+
+	/*
+	 * If the controller supports DMA, the buffer address is DMA-able and
+	 * len is long enough to make DMA transfers profitable, let's trigger
+	 * a DMA transfer. If it fails, fallback to PIO mode.
+	 */
+	if (nc->dmac && virt_addr_valid(buf) &&
+	    len >= MIN_DMA_LEN &&
+	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
+				     DMA_FROM_DEVICE))
+		return;
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
+	else
+		ioread8_rep(nand->activecs->io.virt, buf, len);
+}
+
+static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_nand_controller *nc;
+
+	nc = to_nand_controller(chip->controller);
+
+	/*
+	 * If the controller supports DMA, the buffer address is DMA-able and
+	 * len is long enough to make DMA transfers profitable, let's trigger
+	 * a DMA transfer. If it fails, fallback to PIO mode.
+	 */
+	if (nc->dmac && virt_addr_valid(buf) &&
+	    len >= MIN_DMA_LEN &&
+	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
+				     len, DMA_TO_DEVICE))
+		return;
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
+	else
+		iowrite8_rep(nand->activecs->io.virt, buf, len);
+}
+
+static int atmel_nand_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+
+	return gpiod_get_value(nand->activecs->rb.gpio);
+}
+
+static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+
+	if (cs < 0 || cs >= nand->numcs) {
+		nand->activecs = NULL;
+		chip->dev_ready = NULL;
+		return;
+	}
+
+	nand->activecs = &nand->cs[cs];
+
+	if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
+		chip->dev_ready = atmel_nand_dev_ready;
+}
+
+static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_hsmc_nand_controller *nc;
+	u32 status;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
+
+	return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
+}
+
+static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_hsmc_nand_controller *nc;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	atmel_nand_select_chip(mtd, cs);
+
+	if (!nand->activecs) {
+		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
+			     ATMEL_HSMC_NFC_CTRL_DIS);
+		return;
+	}
+
+	if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
+		chip->dev_ready = atmel_hsmc_nand_dev_ready;
+
+	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
+			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
+			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
+			   ATMEL_HSMC_NFC_CFG_RSPARE |
+			   ATMEL_HSMC_NFC_CFG_WSPARE,
+			   ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
+			   ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
+			   ATMEL_HSMC_NFC_CFG_RSPARE);
+	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
+		     ATMEL_HSMC_NFC_CTRL_EN);
+}
+
+static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
+{
+	u8 *addrs = nc->op.addrs;
+	unsigned int op = 0;
+	u32 addr, val;
+	int i, ret;
+
+	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
+
+	for (i = 0; i < nc->op.ncmds; i++)
+		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
+
+	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
+		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
+
+	op |= ATMEL_NFC_CSID(nc->op.cs) |
+	      ATMEL_NFC_ACYCLE(nc->op.naddrs);
+
+	if (nc->op.ncmds > 1)
+		op |= ATMEL_NFC_VCMD2;
+
+	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
+	       (addrs[3] << 24);
+
+	if (nc->op.data != ATMEL_NFC_NO_DATA) {
+		op |= ATMEL_NFC_DATAEN;
+		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
+
+		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
+			op |= ATMEL_NFC_NFCWR;
+	}
+
+	/* Clear all flags. */
+	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
+
+	/* Send the command. */
+	regmap_write(nc->io, op, addr);
+
+	ret = atmel_nfc_wait(nc, poll, 0);
+	if (ret)
+		dev_err(nc->base.dev,
+			"Failed to send NAND command (err = %d)!",
+			ret);
+
+	/* Reset the op state. */
+	memset(&nc->op, 0, sizeof(nc->op));
+
+	return ret;
+}
+
+static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
+				     unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_hsmc_nand_controller *nc;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	if (ctrl & NAND_ALE) {
+		if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
+			return;
+
+		nc->op.addrs[nc->op.naddrs++] = dat;
+	} else if (ctrl & NAND_CLE) {
+		if (nc->op.ncmds > 1)
+			return;
+
+		nc->op.cmds[nc->op.ncmds++] = dat;
+	}
+
+	if (dat == NAND_CMD_NONE) {
+		nc->op.cs = nand->activecs->id;
+		atmel_nfc_exec_op(nc, true);
+	}
+}
+
+static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+				unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_nand_controller *nc;
+
+	nc = to_nand_controller(chip->controller);
+
+	if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
+		if (ctrl & NAND_NCE)
+			gpiod_set_value(nand->activecs->csgpio, 0);
+		else
+			gpiod_set_value(nand->activecs->csgpio, 1);
+	}
+
+	if (ctrl & NAND_ALE)
+		writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
+	else if (ctrl & NAND_CLE)
+		writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
+}
+
+static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
+				   bool oob_required)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_hsmc_nand_controller *nc;
+	int ret = -EIO;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	if (nc->base.dmac)
+		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
+					      nc->sram.dma, mtd->writesize,
+					      DMA_TO_DEVICE);
+
+	/* Falling back to CPU copy. */
+	if (ret)
+		memcpy_toio(nc->sram.virt, buf, mtd->writesize);
+
+	if (oob_required)
+		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
+			    mtd->oobsize);
+}
+
+static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
+				     bool oob_required)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_hsmc_nand_controller *nc;
+	int ret = -EIO;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	if (nc->base.dmac)
+		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
+					      mtd->writesize, DMA_FROM_DEVICE);
+
+	/* Falling back to CPU copy. */
+	if (ret)
+		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
+
+	if (oob_required)
+		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
+			      mtd->oobsize);
+}
+
+static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_hsmc_nand_controller *nc;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	if (column >= 0) {
+		nc->op.addrs[nc->op.naddrs++] = column;
+
+		/*
+		 * 2 address cycles for the column offset on large page NANDs.
+		 */
+		if (mtd->writesize > 512)
+			nc->op.addrs[nc->op.naddrs++] = column >> 8;
+	}
+
+	if (page >= 0) {
+		nc->op.addrs[nc->op.naddrs++] = page;
+		nc->op.addrs[nc->op.naddrs++] = page >> 8;
+
+		if (chip->options & NAND_ROW_ADDR_3)
+			nc->op.addrs[nc->op.naddrs++] = page >> 16;
+	}
+}
+
+static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
+{
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_nand_controller *nc;
+	int ret;
+
+	nc = to_nand_controller(chip->controller);
+
+	if (raw)
+		return 0;
+
+	ret = atmel_pmecc_enable(nand->pmecc, op);
+	if (ret)
+		dev_err(nc->dev,
+			"Failed to enable ECC engine (err = %d)\n", ret);
+
+	return ret;
+}
+
+static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
+{
+	struct atmel_nand *nand = to_atmel_nand(chip);
+
+	if (!raw)
+		atmel_pmecc_disable(nand->pmecc);
+}
+
+static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
+{
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_nand_controller *nc;
+	struct mtd_oob_region oobregion;
+	void *eccbuf;
+	int ret, i;
+
+	nc = to_nand_controller(chip->controller);
+
+	if (raw)
+		return 0;
+
+	ret = atmel_pmecc_wait_rdy(nand->pmecc);
+	if (ret) {
+		dev_err(nc->dev,
+			"Failed to transfer NAND page data (err = %d)\n",
+			ret);
+		return ret;
+	}
+
+	mtd_ooblayout_ecc(mtd, 0, &oobregion);
+	eccbuf = chip->oob_poi + oobregion.offset;
+
+	for (i = 0; i < chip->ecc.steps; i++) {
+		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
+						   eccbuf);
+		eccbuf += chip->ecc.bytes;
+	}
+
+	return 0;
+}
+
+static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
+					 bool raw)
+{
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_nand_controller *nc;
+	struct mtd_oob_region oobregion;
+	int ret, i, max_bitflips = 0;
+	void *databuf, *eccbuf;
+
+	nc = to_nand_controller(chip->controller);
+
+	if (raw)
+		return 0;
+
+	ret = atmel_pmecc_wait_rdy(nand->pmecc);
+	if (ret) {
+		dev_err(nc->dev,
+			"Failed to read NAND page data (err = %d)\n",
+			ret);
+		return ret;
+	}
+
+	mtd_ooblayout_ecc(mtd, 0, &oobregion);
+	eccbuf = chip->oob_poi + oobregion.offset;
+	databuf = buf;
+
+	for (i = 0; i < chip->ecc.steps; i++) {
+		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
+						 eccbuf);
+		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
+			ret = nand_check_erased_ecc_chunk(databuf,
+							  chip->ecc.size,
+							  eccbuf,
+							  chip->ecc.bytes,
+							  NULL, 0,
+							  chip->ecc.strength);
+
+		if (ret >= 0)
+			max_bitflips = max(ret, max_bitflips);
+		else
+			mtd->ecc_stats.failed++;
+
+		databuf += chip->ecc.size;
+		eccbuf += chip->ecc.bytes;
+	}
+
+	return max_bitflips;
+}
+
+static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
+				     bool oob_required, int page, bool raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	int ret;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
+	if (ret)
+		return ret;
+
+	atmel_nand_write_buf(mtd, buf, mtd->writesize);
+
+	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
+	if (ret) {
+		atmel_pmecc_disable(nand->pmecc);
+		return ret;
+	}
+
+	atmel_nand_pmecc_disable(chip, raw);
+
+	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
+				       struct nand_chip *chip, const u8 *buf,
+				       int oob_required, int page)
+{
+	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
+}
+
+static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
+					   struct nand_chip *chip,
+					   const u8 *buf, int oob_required,
+					   int page)
+{
+	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
+}
+
+static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
+				    bool oob_required, int page, bool raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
+	if (ret)
+		return ret;
+
+	atmel_nand_read_buf(mtd, buf, mtd->writesize);
+	atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
+
+	atmel_nand_pmecc_disable(chip, raw);
+
+	return ret;
+}
+
+static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
+				      struct nand_chip *chip, u8 *buf,
+				      int oob_required, int page)
+{
+	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
+}
+
+static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
+					  struct nand_chip *chip, u8 *buf,
+					  int oob_required, int page)
+{
+	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
+}
+
+static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
+					  const u8 *buf, bool oob_required,
+					  int page, bool raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_hsmc_nand_controller *nc;
+	int ret, status;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	atmel_nfc_copy_to_sram(chip, buf, false);
+
+	nc->op.cmds[0] = NAND_CMD_SEQIN;
+	nc->op.ncmds = 1;
+	atmel_nfc_set_op_addr(chip, page, 0x0);
+	nc->op.cs = nand->activecs->id;
+	nc->op.data = ATMEL_NFC_WRITE_DATA;
+
+	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
+	if (ret)
+		return ret;
+
+	ret = atmel_nfc_exec_op(nc, false);
+	if (ret) {
+		atmel_nand_pmecc_disable(chip, raw);
+		dev_err(nc->base.dev,
+			"Failed to transfer NAND page data (err = %d)\n",
+			ret);
+		return ret;
+	}
+
+	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
+
+	atmel_nand_pmecc_disable(chip, raw);
+
+	if (ret)
+		return ret;
+
+	atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	nc->op.cmds[0] = NAND_CMD_PAGEPROG;
+	nc->op.ncmds = 1;
+	nc->op.cs = nand->activecs->id;
+	ret = atmel_nfc_exec_op(nc, false);
+	if (ret)
+		dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
+			ret);
+
+	status = chip->waitfunc(mtd, chip);
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return ret;
+}
+
+static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
+					    struct nand_chip *chip,
+					    const u8 *buf, int oob_required,
+					    int page)
+{
+	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
+					      false);
+}
+
+static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
+						struct nand_chip *chip,
+						const u8 *buf,
+						int oob_required, int page)
+{
+	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
+					      true);
+}
+
+static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
+					 bool oob_required, int page,
+					 bool raw)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_hsmc_nand_controller *nc;
+	int ret;
+
+	nc = to_hsmc_nand_controller(chip->controller);
+
+	/*
+	 * Optimized read page accessors only work when the NAND R/B pin is
+	 * connected to a native SoC R/B pin. If that's not the case, fallback
+	 * to the non-optimized one.
+	 */
+	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
+		nand_read_page_op(chip, page, 0, NULL, 0);
+
+		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
+						raw);
+	}
+
+	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
+
+	if (mtd->writesize > 512)
+		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
+
+	atmel_nfc_set_op_addr(chip, page, 0x0);
+	nc->op.cs = nand->activecs->id;
+	nc->op.data = ATMEL_NFC_READ_DATA;
+
+	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
+	if (ret)
+		return ret;
+
+	ret = atmel_nfc_exec_op(nc, false);
+	if (ret) {
+		atmel_nand_pmecc_disable(chip, raw);
+		dev_err(nc->base.dev,
+			"Failed to load NAND page data (err = %d)\n",
+			ret);
+		return ret;
+	}
+
+	atmel_nfc_copy_from_sram(chip, buf, true);
+
+	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
+
+	atmel_nand_pmecc_disable(chip, raw);
+
+	return ret;
+}
+
+static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
+					   struct nand_chip *chip, u8 *buf,
+					   int oob_required, int page)
+{
+	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
+					     false);
+}
+
+static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
+					       struct nand_chip *chip,
+					       u8 *buf, int oob_required,
+					       int page)
+{
+	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
+					     true);
+}
+
+static int atmel_nand_pmecc_init(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_nand_controller *nc;
+	struct atmel_pmecc_user_req req;
+
+	nc = to_nand_controller(chip->controller);
+
+	if (!nc->pmecc) {
+		dev_err(nc->dev, "HW ECC not supported\n");
+		return -ENOTSUPP;
+	}
+
+	if (nc->caps->legacy_of_bindings) {
+		u32 val;
+
+		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
+					  &val))
+			chip->ecc.strength = val;
+
+		if (!of_property_read_u32(nc->dev->of_node,
+					  "atmel,pmecc-sector-size",
+					  &val))
+			chip->ecc.size = val;
+	}
+
+	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
+		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
+	else if (chip->ecc.strength)
+		req.ecc.strength = chip->ecc.strength;
+	else if (chip->ecc_strength_ds)
+		req.ecc.strength = chip->ecc_strength_ds;
+	else
+		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
+
+	if (chip->ecc.size)
+		req.ecc.sectorsize = chip->ecc.size;
+	else if (chip->ecc_step_ds)
+		req.ecc.sectorsize = chip->ecc_step_ds;
+	else
+		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
+
+	req.pagesize = mtd->writesize;
+	req.oobsize = mtd->oobsize;
+
+	if (mtd->writesize <= 512) {
+		req.ecc.bytes = 4;
+		req.ecc.ooboffset = 0;
+	} else {
+		req.ecc.bytes = mtd->oobsize - 2;
+		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
+	}
+
+	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
+	if (IS_ERR(nand->pmecc))
+		return PTR_ERR(nand->pmecc);
+
+	chip->ecc.algo = NAND_ECC_BCH;
+	chip->ecc.size = req.ecc.sectorsize;
+	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
+	chip->ecc.strength = req.ecc.strength;
+
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+
+	return 0;
+}
+
+static int atmel_nand_ecc_init(struct nand_chip *chip)
+{
+	struct atmel_nand_controller *nc;
+	int ret;
+
+	nc = to_nand_controller(chip->controller);
+
+	switch (chip->ecc.mode) {
+	case NAND_ECC_NONE:
+	case NAND_ECC_SOFT:
+		/*
+		 * Nothing to do, the core will initialize everything for us.
+		 */
+		break;
+
+	case NAND_ECC_HW:
+		ret = atmel_nand_pmecc_init(chip);
+		if (ret)
+			return ret;
+
+		chip->ecc.read_page = atmel_nand_pmecc_read_page;
+		chip->ecc.write_page = atmel_nand_pmecc_write_page;
+		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
+		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
+		break;
+
+	default:
+		/* Other modes are not supported. */
+		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
+			chip->ecc.mode);
+		return -ENOTSUPP;
+	}
+
+	return 0;
+}
+
+static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
+{
+	int ret;
+
+	ret = atmel_nand_ecc_init(chip);
+	if (ret)
+		return ret;
+
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return 0;
+
+	/* Adjust the ECC operations for the HSMC IP. */
+	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
+	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
+	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
+	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
+
+	return 0;
+}
+
+static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
+					const struct nand_data_interface *conf,
+					struct atmel_smc_cs_conf *smcconf)
+{
+	u32 ncycles, totalcycles, timeps, mckperiodps;
+	struct atmel_nand_controller *nc;
+	int ret;
+
+	nc = to_nand_controller(nand->base.controller);
+
+	/* DDR interface not supported. */
+	if (conf->type != NAND_SDR_IFACE)
+		return -ENOTSUPP;
+
+	/*
+	 * tRC < 30ns implies EDO mode. This controller does not support this
+	 * mode.
+	 */
+	if (conf->timings.sdr.tRC_min < 30000)
+		return -ENOTSUPP;
+
+	atmel_smc_cs_conf_init(smcconf);
+
+	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
+	mckperiodps *= 1000;
+
+	/*
+	 * Set write pulse timing. This one is easy to extract:
+	 *
+	 * NWE_PULSE = tWP
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
+	totalcycles = ncycles;
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * The write setup timing depends on the operation done on the NAND.
+	 * All operations goes through the same data bus, but the operation
+	 * type depends on the address we are writing to (ALE/CLE address
+	 * lines).
+	 * Since we have no way to differentiate the different operations at
+	 * the SMC level, we must consider the worst case (the biggest setup
+	 * time among all operation types):
+	 *
+	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
+	 */
+	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
+		      conf->timings.sdr.tALS_min);
+	timeps = max(timeps, conf->timings.sdr.tDS_min);
+	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
+	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
+	totalcycles += ncycles;
+	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * As for the write setup timing, the write hold timing depends on the
+	 * operation done on the NAND:
+	 *
+	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
+	 */
+	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
+		      conf->timings.sdr.tALH_min);
+	timeps = max3(timeps, conf->timings.sdr.tDH_min,
+		      conf->timings.sdr.tWH_min);
+	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
+	totalcycles += ncycles;
+
+	/*
+	 * The write cycle timing is directly matching tWC, but is also
+	 * dependent on the other timings on the setup and hold timings we
+	 * calculated earlier, which gives:
+	 *
+	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
+	ncycles = max(totalcycles, ncycles);
+	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * We don't want the CS line to be toggled between each byte/word
+	 * transfer to the NAND. The only way to guarantee that is to have the
+	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
+	 *
+	 * NCS_WR_PULSE = NWE_CYCLE
+	 */
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * As for the write setup timing, the read hold timing depends on the
+	 * operation done on the NAND:
+	 *
+	 * NRD_HOLD = max(tREH, tRHOH)
+	 */
+	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
+	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
+	totalcycles = ncycles;
+
+	/*
+	 * TDF = tRHZ - NRD_HOLD
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
+	ncycles -= totalcycles;
+
+	/*
+	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
+	 * we might end up with a config that does not fit in the TDF field.
+	 * Just take the max value in this case and hope that the NAND is more
+	 * tolerant than advertised.
+	 */
+	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
+		ncycles = ATMEL_SMC_MODE_TDF_MAX;
+	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
+		ncycles = ATMEL_SMC_MODE_TDF_MIN;
+
+	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
+			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
+
+	/*
+	 * Read pulse timing directly matches tRP:
+	 *
+	 * NRD_PULSE = tRP
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
+	totalcycles += ncycles;
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * The write cycle timing is directly matching tWC, but is also
+	 * dependent on the setup and hold timings we calculated earlier,
+	 * which gives:
+	 *
+	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
+	 *
+	 * NRD_SETUP is always 0.
+	 */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
+	ncycles = max(totalcycles, ncycles);
+	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/*
+	 * We don't want the CS line to be toggled between each byte/word
+	 * transfer from the NAND. The only way to guarantee that is to have
+	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
+	 *
+	 * NCS_RD_PULSE = NRD_CYCLE
+	 */
+	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
+					  ncycles);
+	if (ret)
+		return ret;
+
+	/* Txxx timings are directly matching tXXX ones. */
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
+					   ncycles);
+	/*
+	 * Version 4 of the ONFI spec mandates that tADL be at least 400
+	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
+	 * fit in the tADL field of the SMC reg. We need to relax the check and
+	 * accept the -ERANGE return code.
+	 *
+	 * Note that previous versions of the ONFI spec had a lower tADL_min
+	 * (100 or 200 ns). It's not clear why this timing constraint got
+	 * increased but it seems most NANDs are fine with values lower than
+	 * 400ns, so we should be safe.
+	 */
+	if (ret && ret != -ERANGE)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
+	ret = atmel_smc_cs_conf_set_timing(smcconf,
+					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
+					   ncycles);
+	if (ret)
+		return ret;
+
+	/* Attach the CS line to the NFC logic. */
+	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
+
+	/* Set the appropriate data bus width. */
+	if (nand->base.options & NAND_BUSWIDTH_16)
+		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
+
+	/* Operate in NRD/NWE READ/WRITEMODE. */
+	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
+			 ATMEL_SMC_MODE_WRITEMODE_NWE;
+
+	return 0;
+}
+
+static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
+					int csline,
+					const struct nand_data_interface *conf)
+{
+	struct atmel_nand_controller *nc;
+	struct atmel_smc_cs_conf smcconf;
+	struct atmel_nand_cs *cs;
+	int ret;
+
+	nc = to_nand_controller(nand->base.controller);
+
+	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
+	if (ret)
+		return ret;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	cs = &nand->cs[csline];
+	cs->smcconf = smcconf;
+	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
+
+	return 0;
+}
+
+static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
+					int csline,
+					const struct nand_data_interface *conf)
+{
+	struct atmel_hsmc_nand_controller *nc;
+	struct atmel_smc_cs_conf smcconf;
+	struct atmel_nand_cs *cs;
+	int ret;
+
+	nc = to_hsmc_nand_controller(nand->base.controller);
+
+	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
+	if (ret)
+		return ret;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	cs = &nand->cs[csline];
+	cs->smcconf = smcconf;
+
+	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
+		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
+
+	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
+				 &cs->smcconf);
+
+	return 0;
+}
+
+static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct atmel_nand_controller *nc;
+
+	nc = to_nand_controller(nand->base.controller);
+
+	if (csline >= nand->numcs ||
+	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
+		return -EINVAL;
+
+	return nc->caps->ops->setup_data_interface(nand, csline, conf);
+}
+
+static void atmel_nand_init(struct atmel_nand_controller *nc,
+			    struct atmel_nand *nand)
+{
+	struct nand_chip *chip = &nand->base;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	mtd->dev.parent = nc->dev;
+	nand->base.controller = &nc->base;
+
+	chip->cmd_ctrl = atmel_nand_cmd_ctrl;
+	chip->read_byte = atmel_nand_read_byte;
+	chip->read_word = atmel_nand_read_word;
+	chip->write_byte = atmel_nand_write_byte;
+	chip->read_buf = atmel_nand_read_buf;
+	chip->write_buf = atmel_nand_write_buf;
+	chip->select_chip = atmel_nand_select_chip;
+
+	if (nc->mck && nc->caps->ops->setup_data_interface)
+		chip->setup_data_interface = atmel_nand_setup_data_interface;
+
+	/* Some NANDs require a longer delay than the default one (20us). */
+	chip->chip_delay = 40;
+
+	/*
+	 * Use a bounce buffer when the buffer passed by the MTD user is not
+	 * suitable for DMA.
+	 */
+	if (nc->dmac)
+		chip->options |= NAND_USE_BOUNCE_BUFFER;
+
+	/* Default to HW ECC if pmecc is available. */
+	if (nc->pmecc)
+		chip->ecc.mode = NAND_ECC_HW;
+}
+
+static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
+				struct atmel_nand *nand)
+{
+	struct nand_chip *chip = &nand->base;
+	struct atmel_smc_nand_controller *smc_nc;
+	int i;
+
+	atmel_nand_init(nc, nand);
+
+	smc_nc = to_smc_nand_controller(chip->controller);
+	if (!smc_nc->matrix)
+		return;
+
+	/* Attach the CS to the NAND Flash logic. */
+	for (i = 0; i < nand->numcs; i++)
+		regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
+				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));
+}
+
+static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
+				 struct atmel_nand *nand)
+{
+	struct nand_chip *chip = &nand->base;
+
+	atmel_nand_init(nc, nand);
+
+	/* Overload some methods for the HSMC controller. */
+	chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
+	chip->select_chip = atmel_hsmc_nand_select_chip;
+}
+
+static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
+{
+	struct nand_chip *chip = &nand->base;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	ret = mtd_device_unregister(mtd);
+	if (ret)
+		return ret;
+
+	nand_cleanup(chip);
+	list_del(&nand->node);
+
+	return 0;
+}
+
+static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
+					    struct device_node *np,
+					    int reg_cells)
+{
+	struct atmel_nand *nand;
+	struct gpio_desc *gpio;
+	int numcs, ret, i;
+
+	numcs = of_property_count_elems_of_size(np, "reg",
+						reg_cells * sizeof(u32));
+	if (numcs < 1) {
+		dev_err(nc->dev, "Missing or invalid reg property\n");
+		return ERR_PTR(-EINVAL);
+	}
+
+	nand = devm_kzalloc(nc->dev,
+			    sizeof(*nand) + (numcs * sizeof(*nand->cs)),
+			    GFP_KERNEL);
+	if (!nand) {
+		dev_err(nc->dev, "Failed to allocate NAND object\n");
+		return ERR_PTR(-ENOMEM);
+	}
+
+	nand->numcs = numcs;
+
+	gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
+						      &np->fwnode, GPIOD_IN,
+						      "nand-det");
+	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
+		dev_err(nc->dev,
+			"Failed to get detect gpio (err = %ld)\n",
+			PTR_ERR(gpio));
+		return ERR_CAST(gpio);
+	}
+
+	if (!IS_ERR(gpio))
+		nand->cdgpio = gpio;
+
+	for (i = 0; i < numcs; i++) {
+		struct resource res;
+		u32 val;
+
+		ret = of_address_to_resource(np, 0, &res);
+		if (ret) {
+			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
+				ret);
+			return ERR_PTR(ret);
+		}
+
+		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
+						 &val);
+		if (ret) {
+			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
+				ret);
+			return ERR_PTR(ret);
+		}
+
+		nand->cs[i].id = val;
+
+		nand->cs[i].io.dma = res.start;
+		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
+		if (IS_ERR(nand->cs[i].io.virt))
+			return ERR_CAST(nand->cs[i].io.virt);
+
+		if (!of_property_read_u32(np, "atmel,rb", &val)) {
+			if (val > ATMEL_NFC_MAX_RB_ID)
+				return ERR_PTR(-EINVAL);
+
+			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
+			nand->cs[i].rb.id = val;
+		} else {
+			gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
+							"rb", i, &np->fwnode,
+							GPIOD_IN, "nand-rb");
+			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
+				dev_err(nc->dev,
+					"Failed to get R/B gpio (err = %ld)\n",
+					PTR_ERR(gpio));
+				return ERR_CAST(gpio);
+			}
+
+			if (!IS_ERR(gpio)) {
+				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
+				nand->cs[i].rb.gpio = gpio;
+			}
+		}
+
+		gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
+							      i, &np->fwnode,
+							      GPIOD_OUT_HIGH,
+							      "nand-cs");
+		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
+			dev_err(nc->dev,
+				"Failed to get CS gpio (err = %ld)\n",
+				PTR_ERR(gpio));
+			return ERR_CAST(gpio);
+		}
+
+		if (!IS_ERR(gpio))
+			nand->cs[i].csgpio = gpio;
+	}
+
+	nand_set_flash_node(&nand->base, np);
+
+	return nand;
+}
+
+static int
+atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
+			       struct atmel_nand *nand)
+{
+	struct nand_chip *chip = &nand->base;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/* No card inserted, skip this NAND. */
+	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
+		dev_info(nc->dev, "No SmartMedia card inserted.\n");
+		return 0;
+	}
+
+	nc->caps->ops->nand_init(nc, nand);
+
+	ret = nand_scan(mtd, nand->numcs);
+	if (ret) {
+		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
+		return ret;
+	}
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
+		nand_cleanup(chip);
+		return ret;
+	}
+
+	list_add_tail(&nand->node, &nc->chips);
+
+	return 0;
+}
+
+static int
+atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
+{
+	struct atmel_nand *nand, *tmp;
+	int ret;
+
+	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
+		ret = atmel_nand_controller_remove_nand(nand);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+static int
+atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
+{
+	struct device *dev = nc->dev;
+	struct platform_device *pdev = to_platform_device(dev);
+	struct atmel_nand *nand;
+	struct gpio_desc *gpio;
+	struct resource *res;
+
+	/*
+	 * Legacy bindings only allow connecting a single NAND with a unique CS
+	 * line to the controller.
+	 */
+	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
+			    GFP_KERNEL);
+	if (!nand)
+		return -ENOMEM;
+
+	nand->numcs = 1;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
+	if (IS_ERR(nand->cs[0].io.virt))
+		return PTR_ERR(nand->cs[0].io.virt);
+
+	nand->cs[0].io.dma = res->start;
+
+	/*
+	 * The old driver was hardcoding the CS id to 3 for all sama5
+	 * controllers. Since this id is only meaningful for the sama5
+	 * controller we can safely assign this id to 3 no matter the
+	 * controller.
+	 * If one wants to connect a NAND to a different CS line, he will
+	 * have to use the new bindings.
+	 */
+	nand->cs[0].id = 3;
+
+	/* R/B GPIO. */
+	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
+	if (IS_ERR(gpio)) {
+		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
+			PTR_ERR(gpio));
+		return PTR_ERR(gpio);
+	}
+
+	if (gpio) {
+		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
+		nand->cs[0].rb.gpio = gpio;
+	}
+
+	/* CS GPIO. */
+	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
+	if (IS_ERR(gpio)) {
+		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
+			PTR_ERR(gpio));
+		return PTR_ERR(gpio);
+	}
+
+	nand->cs[0].csgpio = gpio;
+
+	/* Card detect GPIO. */
+	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
+	if (IS_ERR(gpio)) {
+		dev_err(dev,
+			"Failed to get detect gpio (err = %ld)\n",
+			PTR_ERR(gpio));
+		return PTR_ERR(gpio);
+	}
+
+	nand->cdgpio = gpio;
+
+	nand_set_flash_node(&nand->base, nc->dev->of_node);
+
+	return atmel_nand_controller_add_nand(nc, nand);
+}
+
+static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
+{
+	struct device_node *np, *nand_np;
+	struct device *dev = nc->dev;
+	int ret, reg_cells;
+	u32 val;
+
+	/* We do not retrieve the SMC syscon when parsing old DTs. */
+	if (nc->caps->legacy_of_bindings)
+		return atmel_nand_controller_legacy_add_nands(nc);
+
+	np = dev->of_node;
+
+	ret = of_property_read_u32(np, "#address-cells", &val);
+	if (ret) {
+		dev_err(dev, "missing #address-cells property\n");
+		return ret;
+	}
+
+	reg_cells = val;
+
+	ret = of_property_read_u32(np, "#size-cells", &val);
+	if (ret) {
+		dev_err(dev, "missing #address-cells property\n");
+		return ret;
+	}
+
+	reg_cells += val;
+
+	for_each_child_of_node(np, nand_np) {
+		struct atmel_nand *nand;
+
+		nand = atmel_nand_create(nc, nand_np, reg_cells);
+		if (IS_ERR(nand)) {
+			ret = PTR_ERR(nand);
+			goto err;
+		}
+
+		ret = atmel_nand_controller_add_nand(nc, nand);
+		if (ret)
+			goto err;
+	}
+
+	return 0;
+
+err:
+	atmel_nand_controller_remove_nands(nc);
+
+	return ret;
+}
+
+static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
+{
+	if (nc->dmac)
+		dma_release_channel(nc->dmac);
+
+	clk_put(nc->mck);
+}
+
+static const struct of_device_id atmel_matrix_of_ids[] = {
+	{
+		.compatible = "atmel,at91sam9260-matrix",
+		.data = (void *)AT91SAM9260_MATRIX_EBICSA,
+	},
+	{
+		.compatible = "atmel,at91sam9261-matrix",
+		.data = (void *)AT91SAM9261_MATRIX_EBICSA,
+	},
+	{
+		.compatible = "atmel,at91sam9263-matrix",
+		.data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
+	},
+	{
+		.compatible = "atmel,at91sam9rl-matrix",
+		.data = (void *)AT91SAM9RL_MATRIX_EBICSA,
+	},
+	{
+		.compatible = "atmel,at91sam9g45-matrix",
+		.data = (void *)AT91SAM9G45_MATRIX_EBICSA,
+	},
+	{
+		.compatible = "atmel,at91sam9n12-matrix",
+		.data = (void *)AT91SAM9N12_MATRIX_EBICSA,
+	},
+	{
+		.compatible = "atmel,at91sam9x5-matrix",
+		.data = (void *)AT91SAM9X5_MATRIX_EBICSA,
+	},
+	{ /* sentinel */ },
+};
+
+static int atmel_nand_attach_chip(struct nand_chip *chip)
+{
+	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
+	struct atmel_nand *nand = to_atmel_nand(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	ret = nc->caps->ops->ecc_init(chip);
+	if (ret)
+		return ret;
+
+	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
+		/*
+		 * We keep the MTD name unchanged to avoid breaking platforms
+		 * where the MTD cmdline parser is used and the bootloader
+		 * has not been updated to use the new naming scheme.
+		 */
+		mtd->name = "atmel_nand";
+	} else if (!mtd->name) {
+		/*
+		 * If the new bindings are used and the bootloader has not been
+		 * updated to pass a new mtdparts parameter on the cmdline, you
+		 * should define the following property in your nand node:
+		 *
+		 *	label = "atmel_nand";
+		 *
+		 * This way, mtd->name will be set by the core when
+		 * nand_set_flash_node() is called.
+		 */
+		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
+					   "%s:nand.%d", dev_name(nc->dev),
+					   nand->cs[0].id);
+		if (!mtd->name) {
+			dev_err(nc->dev, "Failed to allocate mtd->name\n");
+			return -ENOMEM;
+		}
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops atmel_nand_controller_ops = {
+	.attach_chip = atmel_nand_attach_chip,
+};
+
+static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
+				struct platform_device *pdev,
+				const struct atmel_nand_controller_caps *caps)
+{
+	struct device *dev = &pdev->dev;
+	struct device_node *np = dev->of_node;
+	int ret;
+
+	nand_controller_init(&nc->base);
+	nc->base.ops = &atmel_nand_controller_ops;
+	INIT_LIST_HEAD(&nc->chips);
+	nc->dev = dev;
+	nc->caps = caps;
+
+	platform_set_drvdata(pdev, nc);
+
+	nc->pmecc = devm_atmel_pmecc_get(dev);
+	if (IS_ERR(nc->pmecc)) {
+		ret = PTR_ERR(nc->pmecc);
+		if (ret != -EPROBE_DEFER)
+			dev_err(dev, "Could not get PMECC object (err = %d)\n",
+				ret);
+		return ret;
+	}
+
+	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
+		dma_cap_mask_t mask;
+
+		dma_cap_zero(mask);
+		dma_cap_set(DMA_MEMCPY, mask);
+
+		nc->dmac = dma_request_channel(mask, NULL, NULL);
+		if (!nc->dmac)
+			dev_err(nc->dev, "Failed to request DMA channel\n");
+	}
+
+	/* We do not retrieve the SMC syscon when parsing old DTs. */
+	if (nc->caps->legacy_of_bindings)
+		return 0;
+
+	nc->mck = of_clk_get(dev->parent->of_node, 0);
+	if (IS_ERR(nc->mck)) {
+		dev_err(dev, "Failed to retrieve MCK clk\n");
+		return PTR_ERR(nc->mck);
+	}
+
+	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
+	if (!np) {
+		dev_err(dev, "Missing or invalid atmel,smc property\n");
+		return -EINVAL;
+	}
+
+	nc->smc = syscon_node_to_regmap(np);
+	of_node_put(np);
+	if (IS_ERR(nc->smc)) {
+		ret = PTR_ERR(nc->smc);
+		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
+		return ret;
+	}
+
+	return 0;
+}
+
+static int
+atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
+{
+	struct device *dev = nc->base.dev;
+	const struct of_device_id *match;
+	struct device_node *np;
+	int ret;
+
+	/* We do not retrieve the matrix syscon when parsing old DTs. */
+	if (nc->base.caps->legacy_of_bindings)
+		return 0;
+
+	np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
+	if (!np)
+		return 0;
+
+	match = of_match_node(atmel_matrix_of_ids, np);
+	if (!match) {
+		of_node_put(np);
+		return 0;
+	}
+
+	nc->matrix = syscon_node_to_regmap(np);
+	of_node_put(np);
+	if (IS_ERR(nc->matrix)) {
+		ret = PTR_ERR(nc->matrix);
+		dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
+		return ret;
+	}
+
+	nc->ebi_csa_offs = (uintptr_t)match->data;
+
+	/*
+	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
+	 * add 4 to ->ebi_csa_offs.
+	 */
+	if (of_device_is_compatible(dev->parent->of_node,
+				    "atmel,at91sam9263-ebi1"))
+		nc->ebi_csa_offs += 4;
+
+	return 0;
+}
+
+static int
+atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
+{
+	struct regmap_config regmap_conf = {
+		.reg_bits = 32,
+		.val_bits = 32,
+		.reg_stride = 4,
+	};
+
+	struct device *dev = nc->base.dev;
+	struct device_node *nand_np, *nfc_np;
+	void __iomem *iomem;
+	struct resource res;
+	int ret;
+
+	nand_np = dev->of_node;
+	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
+	if (!nfc_np) {
+		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
+		return -ENODEV;
+	}
+
+	nc->clk = of_clk_get(nfc_np, 0);
+	if (IS_ERR(nc->clk)) {
+		ret = PTR_ERR(nc->clk);
+		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
+			ret);
+		goto out;
+	}
+
+	ret = clk_prepare_enable(nc->clk);
+	if (ret) {
+		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
+			ret);
+		goto out;
+	}
+
+	nc->irq = of_irq_get(nand_np, 0);
+	if (nc->irq <= 0) {
+		ret = nc->irq ?: -ENXIO;
+		if (ret != -EPROBE_DEFER)
+			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
+				ret);
+		goto out;
+	}
+
+	ret = of_address_to_resource(nfc_np, 0, &res);
+	if (ret) {
+		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
+			ret);
+		goto out;
+	}
+
+	iomem = devm_ioremap_resource(dev, &res);
+	if (IS_ERR(iomem)) {
+		ret = PTR_ERR(iomem);
+		goto out;
+	}
+
+	regmap_conf.name = "nfc-io";
+	regmap_conf.max_register = resource_size(&res) - 4;
+	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
+	if (IS_ERR(nc->io)) {
+		ret = PTR_ERR(nc->io);
+		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
+			ret);
+		goto out;
+	}
+
+	ret = of_address_to_resource(nfc_np, 1, &res);
+	if (ret) {
+		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
+			ret);
+		goto out;
+	}
+
+	iomem = devm_ioremap_resource(dev, &res);
+	if (IS_ERR(iomem)) {
+		ret = PTR_ERR(iomem);
+		goto out;
+	}
+
+	regmap_conf.name = "smc";
+	regmap_conf.max_register = resource_size(&res) - 4;
+	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
+	if (IS_ERR(nc->base.smc)) {
+		ret = PTR_ERR(nc->base.smc);
+		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
+			ret);
+		goto out;
+	}
+
+	ret = of_address_to_resource(nfc_np, 2, &res);
+	if (ret) {
+		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
+			ret);
+		goto out;
+	}
+
+	nc->sram.virt = devm_ioremap_resource(dev, &res);
+	if (IS_ERR(nc->sram.virt)) {
+		ret = PTR_ERR(nc->sram.virt);
+		goto out;
+	}
+
+	nc->sram.dma = res.start;
+
+out:
+	of_node_put(nfc_np);
+
+	return ret;
+}
+
+static int
+atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
+{
+	struct device *dev = nc->base.dev;
+	struct device_node *np;
+	int ret;
+
+	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
+	if (!np) {
+		dev_err(dev, "Missing or invalid atmel,smc property\n");
+		return -EINVAL;
+	}
+
+	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
+
+	nc->irq = of_irq_get(np, 0);
+	of_node_put(np);
+	if (nc->irq <= 0) {
+		ret = nc->irq ?: -ENXIO;
+		if (ret != -EPROBE_DEFER)
+			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
+				ret);
+		return ret;
+	}
+
+	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
+	if (!np) {
+		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
+		return -EINVAL;
+	}
+
+	nc->io = syscon_node_to_regmap(np);
+	of_node_put(np);
+	if (IS_ERR(nc->io)) {
+		ret = PTR_ERR(nc->io);
+		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
+		return ret;
+	}
+
+	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
+					 "atmel,nfc-sram", 0);
+	if (!nc->sram.pool) {
+		dev_err(nc->base.dev, "Missing SRAM\n");
+		return -ENOMEM;
+	}
+
+	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
+							   ATMEL_NFC_SRAM_SIZE,
+							   &nc->sram.dma);
+	if (!nc->sram.virt) {
+		dev_err(nc->base.dev,
+			"Could not allocate memory from the NFC SRAM pool\n");
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static int
+atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
+{
+	struct atmel_hsmc_nand_controller *hsmc_nc;
+	int ret;
+
+	ret = atmel_nand_controller_remove_nands(nc);
+	if (ret)
+		return ret;
+
+	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
+	if (hsmc_nc->sram.pool)
+		gen_pool_free(hsmc_nc->sram.pool,
+			      (unsigned long)hsmc_nc->sram.virt,
+			      ATMEL_NFC_SRAM_SIZE);
+
+	if (hsmc_nc->clk) {
+		clk_disable_unprepare(hsmc_nc->clk);
+		clk_put(hsmc_nc->clk);
+	}
+
+	atmel_nand_controller_cleanup(nc);
+
+	return 0;
+}
+
+static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
+				const struct atmel_nand_controller_caps *caps)
+{
+	struct device *dev = &pdev->dev;
+	struct atmel_hsmc_nand_controller *nc;
+	int ret;
+
+	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
+	if (!nc)
+		return -ENOMEM;
+
+	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
+	if (ret)
+		return ret;
+
+	if (caps->legacy_of_bindings)
+		ret = atmel_hsmc_nand_controller_legacy_init(nc);
+	else
+		ret = atmel_hsmc_nand_controller_init(nc);
+
+	if (ret)
+		return ret;
+
+	/* Make sure all irqs are masked before registering our IRQ handler. */
+	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
+	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
+			       IRQF_SHARED, "nfc", nc);
+	if (ret) {
+		dev_err(dev,
+			"Could not get register NFC interrupt handler (err = %d)\n",
+			ret);
+		goto err;
+	}
+
+	/* Initial NFC configuration. */
+	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
+		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
+
+	ret = atmel_nand_controller_add_nands(&nc->base);
+	if (ret)
+		goto err;
+
+	return 0;
+
+err:
+	atmel_hsmc_nand_controller_remove(&nc->base);
+
+	return ret;
+}
+
+static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
+	.probe = atmel_hsmc_nand_controller_probe,
+	.remove = atmel_hsmc_nand_controller_remove,
+	.ecc_init = atmel_hsmc_nand_ecc_init,
+	.nand_init = atmel_hsmc_nand_init,
+	.setup_data_interface = atmel_hsmc_nand_setup_data_interface,
+};
+
+static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
+	.has_dma = true,
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &atmel_hsmc_nc_ops,
+};
+
+/* Only used to parse old bindings. */
+static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
+	.has_dma = true,
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &atmel_hsmc_nc_ops,
+	.legacy_of_bindings = true,
+};
+
+static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
+				const struct atmel_nand_controller_caps *caps)
+{
+	struct device *dev = &pdev->dev;
+	struct atmel_smc_nand_controller *nc;
+	int ret;
+
+	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
+	if (!nc)
+		return -ENOMEM;
+
+	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
+	if (ret)
+		return ret;
+
+	ret = atmel_smc_nand_controller_init(nc);
+	if (ret)
+		return ret;
+
+	return atmel_nand_controller_add_nands(&nc->base);
+}
+
+static int
+atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
+{
+	int ret;
+
+	ret = atmel_nand_controller_remove_nands(nc);
+	if (ret)
+		return ret;
+
+	atmel_nand_controller_cleanup(nc);
+
+	return 0;
+}
+
+/*
+ * The SMC reg layout of at91rm9200 is completely different which prevents us
+ * from re-using atmel_smc_nand_setup_data_interface() for the
+ * ->setup_data_interface() hook.
+ * At this point, there's no support for the at91rm9200 SMC IP, so we leave
+ * ->setup_data_interface() unassigned.
+ */
+static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
+	.probe = atmel_smc_nand_controller_probe,
+	.remove = atmel_smc_nand_controller_remove,
+	.ecc_init = atmel_nand_ecc_init,
+	.nand_init = atmel_smc_nand_init,
+};
+
+static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &at91rm9200_nc_ops,
+};
+
+static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
+	.probe = atmel_smc_nand_controller_probe,
+	.remove = atmel_smc_nand_controller_remove,
+	.ecc_init = atmel_nand_ecc_init,
+	.nand_init = atmel_smc_nand_init,
+	.setup_data_interface = atmel_smc_nand_setup_data_interface,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &atmel_smc_nc_ops,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
+	.ale_offs = BIT(22),
+	.cle_offs = BIT(21),
+	.ops = &atmel_smc_nc_ops,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
+	.has_dma = true,
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &atmel_smc_nc_ops,
+};
+
+/* Only used to parse old bindings. */
+static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &atmel_smc_nc_ops,
+	.legacy_of_bindings = true,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
+	.ale_offs = BIT(22),
+	.cle_offs = BIT(21),
+	.ops = &atmel_smc_nc_ops,
+	.legacy_of_bindings = true,
+};
+
+static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
+	.has_dma = true,
+	.ale_offs = BIT(21),
+	.cle_offs = BIT(22),
+	.ops = &atmel_smc_nc_ops,
+	.legacy_of_bindings = true,
+};
+
+static const struct of_device_id atmel_nand_controller_of_ids[] = {
+	{
+		.compatible = "atmel,at91rm9200-nand-controller",
+		.data = &atmel_rm9200_nc_caps,
+	},
+	{
+		.compatible = "atmel,at91sam9260-nand-controller",
+		.data = &atmel_sam9260_nc_caps,
+	},
+	{
+		.compatible = "atmel,at91sam9261-nand-controller",
+		.data = &atmel_sam9261_nc_caps,
+	},
+	{
+		.compatible = "atmel,at91sam9g45-nand-controller",
+		.data = &atmel_sam9g45_nc_caps,
+	},
+	{
+		.compatible = "atmel,sama5d3-nand-controller",
+		.data = &atmel_sama5_nc_caps,
+	},
+	/* Support for old/deprecated bindings: */
+	{
+		.compatible = "atmel,at91rm9200-nand",
+		.data = &atmel_rm9200_nand_caps,
+	},
+	{
+		.compatible = "atmel,sama5d4-nand",
+		.data = &atmel_rm9200_nand_caps,
+	},
+	{
+		.compatible = "atmel,sama5d2-nand",
+		.data = &atmel_rm9200_nand_caps,
+	},
+	{ /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
+
+static int atmel_nand_controller_probe(struct platform_device *pdev)
+{
+	const struct atmel_nand_controller_caps *caps;
+
+	if (pdev->id_entry)
+		caps = (void *)pdev->id_entry->driver_data;
+	else
+		caps = of_device_get_match_data(&pdev->dev);
+
+	if (!caps) {
+		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
+		return -EINVAL;
+	}
+
+	if (caps->legacy_of_bindings) {
+		struct device_node *nfc_node;
+		u32 ale_offs = 21;
+
+		/*
+		 * If we are parsing legacy DT props and the DT contains a
+		 * valid NFC node, forward the request to the sama5 logic.
+		 */
+		nfc_node = of_get_compatible_child(pdev->dev.of_node,
+						   "atmel,sama5d3-nfc");
+		if (nfc_node) {
+			caps = &atmel_sama5_nand_caps;
+			of_node_put(nfc_node);
+		}
+
+		/*
+		 * Even if the compatible says we are dealing with an
+		 * at91rm9200 controller, the atmel,nand-has-dma specify that
+		 * this controller supports DMA, which means we are in fact
+		 * dealing with an at91sam9g45+ controller.
+		 */
+		if (!caps->has_dma &&
+		    of_property_read_bool(pdev->dev.of_node,
+					  "atmel,nand-has-dma"))
+			caps = &atmel_sam9g45_nand_caps;
+
+		/*
+		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
+		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
+		 * actually dealing with an at91sam9261 controller.
+		 */
+		of_property_read_u32(pdev->dev.of_node,
+				     "atmel,nand-addr-offset", &ale_offs);
+		if (ale_offs != 21)
+			caps = &atmel_sam9261_nand_caps;
+	}
+
+	return caps->ops->probe(pdev, caps);
+}
+
+static int atmel_nand_controller_remove(struct platform_device *pdev)
+{
+	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
+
+	return nc->caps->ops->remove(nc);
+}
+
+static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
+{
+	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
+	struct atmel_nand *nand;
+
+	if (nc->pmecc)
+		atmel_pmecc_reset(nc->pmecc);
+
+	list_for_each_entry(nand, &nc->chips, node) {
+		int i;
+
+		for (i = 0; i < nand->numcs; i++)
+			nand_reset(&nand->base, i);
+	}
+
+	return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
+			 atmel_nand_controller_resume);
+
+static struct platform_driver atmel_nand_controller_driver = {
+	.driver = {
+		.name = "atmel-nand-controller",
+		.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
+		.pm = &atmel_nand_controller_pm_ops,
+	},
+	.probe = atmel_nand_controller_probe,
+	.remove = atmel_nand_controller_remove,
+};
+module_platform_driver(atmel_nand_controller_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
+MODULE_ALIAS("platform:atmel-nand-controller");
diff --git a/drivers/mtd/nand/raw/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c
new file mode 100644
index 0000000..555a74e
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel/pmecc.c
@@ -0,0 +1,1012 @@
+/*
+ * Copyright 2017 ATMEL
+ * Copyright 2017 Free Electrons
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * Derived from the atmel_nand.c driver which contained the following
+ * copyrights:
+ *
+ *   Copyright 2003 Rick Bronson
+ *
+ *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
+ *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ *   Derived from drivers/mtd/spia.c (removed in v3.8)
+ *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
+ *
+ *   Derived from Das U-Boot source code
+ *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ *   Add Programmable Multibit ECC support for various AT91 SoC
+ *	Copyright 2012 ATMEL, Hong Xu
+ *
+ *   Add Nand Flash Controller support for SAMA5 SoC
+ *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * The PMECC is an hardware assisted BCH engine, which means part of the
+ * ECC algorithm is left to the software. The hardware/software repartition
+ * is explained in the "PMECC Controller Functional Description" chapter in
+ * Atmel datasheets, and some of the functions in this file are directly
+ * implementing the algorithms described in the "Software Implementation"
+ * sub-section.
+ *
+ * TODO: it seems that the software BCH implementation in lib/bch.c is already
+ * providing some of the logic we are implementing here. It would be smart
+ * to expose the needed lib/bch.c helpers/functions and re-use them here.
+ */
+
+#include <linux/genalloc.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include "pmecc.h"
+
+/* Galois field dimension */
+#define PMECC_GF_DIMENSION_13			13
+#define PMECC_GF_DIMENSION_14			14
+
+/* Primitive Polynomial used by PMECC */
+#define PMECC_GF_13_PRIMITIVE_POLY		0x201b
+#define PMECC_GF_14_PRIMITIVE_POLY		0x4443
+
+#define PMECC_LOOKUP_TABLE_SIZE_512		0x2000
+#define PMECC_LOOKUP_TABLE_SIZE_1024		0x4000
+
+/* Time out value for reading PMECC status register */
+#define PMECC_MAX_TIMEOUT_MS			100
+
+/* PMECC Register Definitions */
+#define ATMEL_PMECC_CFG				0x0
+#define PMECC_CFG_BCH_STRENGTH(x)		(x)
+#define PMECC_CFG_BCH_STRENGTH_MASK		GENMASK(2, 0)
+#define PMECC_CFG_SECTOR512			(0 << 4)
+#define PMECC_CFG_SECTOR1024			(1 << 4)
+#define PMECC_CFG_NSECTORS(x)			((fls(x) - 1) << 8)
+#define PMECC_CFG_READ_OP			(0 << 12)
+#define PMECC_CFG_WRITE_OP			(1 << 12)
+#define PMECC_CFG_SPARE_ENABLE			BIT(16)
+#define PMECC_CFG_AUTO_ENABLE			BIT(20)
+
+#define ATMEL_PMECC_SAREA			0x4
+#define ATMEL_PMECC_SADDR			0x8
+#define ATMEL_PMECC_EADDR			0xc
+
+#define ATMEL_PMECC_CLK				0x10
+#define PMECC_CLK_133MHZ			(2 << 0)
+
+#define ATMEL_PMECC_CTRL			0x14
+#define PMECC_CTRL_RST				BIT(0)
+#define PMECC_CTRL_DATA				BIT(1)
+#define PMECC_CTRL_USER				BIT(2)
+#define PMECC_CTRL_ENABLE			BIT(4)
+#define PMECC_CTRL_DISABLE			BIT(5)
+
+#define ATMEL_PMECC_SR				0x18
+#define PMECC_SR_BUSY				BIT(0)
+#define PMECC_SR_ENABLE				BIT(4)
+
+#define ATMEL_PMECC_IER				0x1c
+#define ATMEL_PMECC_IDR				0x20
+#define ATMEL_PMECC_IMR				0x24
+#define ATMEL_PMECC_ISR				0x28
+#define PMECC_ERROR_INT				BIT(0)
+
+#define ATMEL_PMECC_ECC(sector, n)		\
+	((((sector) + 1) * 0x40) + (n))
+
+#define ATMEL_PMECC_REM(sector, n)		\
+	((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
+
+/* PMERRLOC Register Definitions */
+#define ATMEL_PMERRLOC_ELCFG			0x0
+#define PMERRLOC_ELCFG_SECTOR_512		(0 << 0)
+#define PMERRLOC_ELCFG_SECTOR_1024		(1 << 0)
+#define PMERRLOC_ELCFG_NUM_ERRORS(n)		((n) << 16)
+
+#define ATMEL_PMERRLOC_ELPRIM			0x4
+#define ATMEL_PMERRLOC_ELEN			0x8
+#define ATMEL_PMERRLOC_ELDIS			0xc
+#define PMERRLOC_DISABLE			BIT(0)
+
+#define ATMEL_PMERRLOC_ELSR			0x10
+#define PMERRLOC_ELSR_BUSY			BIT(0)
+
+#define ATMEL_PMERRLOC_ELIER			0x14
+#define ATMEL_PMERRLOC_ELIDR			0x18
+#define ATMEL_PMERRLOC_ELIMR			0x1c
+#define ATMEL_PMERRLOC_ELISR			0x20
+#define PMERRLOC_ERR_NUM_MASK			GENMASK(12, 8)
+#define PMERRLOC_CALC_DONE			BIT(0)
+
+#define ATMEL_PMERRLOC_SIGMA(x)			(((x) * 0x4) + 0x28)
+
+#define ATMEL_PMERRLOC_EL(offs, x)		(((x) * 0x4) + (offs))
+
+struct atmel_pmecc_gf_tables {
+	u16 *alpha_to;
+	u16 *index_of;
+};
+
+struct atmel_pmecc_caps {
+	const int *strengths;
+	int nstrengths;
+	int el_offset;
+	bool correct_erased_chunks;
+};
+
+struct atmel_pmecc {
+	struct device *dev;
+	const struct atmel_pmecc_caps *caps;
+
+	struct {
+		void __iomem *base;
+		void __iomem *errloc;
+	} regs;
+
+	struct mutex lock;
+};
+
+struct atmel_pmecc_user_conf_cache {
+	u32 cfg;
+	u32 sarea;
+	u32 saddr;
+	u32 eaddr;
+};
+
+struct atmel_pmecc_user {
+	struct atmel_pmecc_user_conf_cache cache;
+	struct atmel_pmecc *pmecc;
+	const struct atmel_pmecc_gf_tables *gf_tables;
+	int eccbytes;
+	s16 *partial_syn;
+	s16 *si;
+	s16 *lmu;
+	s16 *smu;
+	s32 *mu;
+	s32 *dmu;
+	s32 *delta;
+	u32 isr;
+};
+
+static DEFINE_MUTEX(pmecc_gf_tables_lock);
+static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
+static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
+
+static inline int deg(unsigned int poly)
+{
+	/* polynomial degree is the most-significant bit index */
+	return fls(poly) - 1;
+}
+
+static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
+				       struct atmel_pmecc_gf_tables *gf_tables)
+{
+	unsigned int i, x = 1;
+	const unsigned int k = BIT(deg(poly));
+	unsigned int nn = BIT(mm) - 1;
+
+	/* primitive polynomial must be of degree m */
+	if (k != (1u << mm))
+		return -EINVAL;
+
+	for (i = 0; i < nn; i++) {
+		gf_tables->alpha_to[i] = x;
+		gf_tables->index_of[x] = i;
+		if (i && (x == 1))
+			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
+			return -EINVAL;
+		x <<= 1;
+		if (x & k)
+			x ^= poly;
+	}
+	gf_tables->alpha_to[nn] = 1;
+	gf_tables->index_of[0] = 0;
+
+	return 0;
+}
+
+static const struct atmel_pmecc_gf_tables *
+atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
+{
+	struct atmel_pmecc_gf_tables *gf_tables;
+	unsigned int poly, degree, table_size;
+	int ret;
+
+	if (req->ecc.sectorsize == 512) {
+		degree = PMECC_GF_DIMENSION_13;
+		poly = PMECC_GF_13_PRIMITIVE_POLY;
+		table_size = PMECC_LOOKUP_TABLE_SIZE_512;
+	} else {
+		degree = PMECC_GF_DIMENSION_14;
+		poly = PMECC_GF_14_PRIMITIVE_POLY;
+		table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
+	}
+
+	gf_tables = kzalloc(sizeof(*gf_tables) +
+			    (2 * table_size * sizeof(u16)),
+			    GFP_KERNEL);
+	if (!gf_tables)
+		return ERR_PTR(-ENOMEM);
+
+	gf_tables->alpha_to = (void *)(gf_tables + 1);
+	gf_tables->index_of = gf_tables->alpha_to + table_size;
+
+	ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
+	if (ret) {
+		kfree(gf_tables);
+		return ERR_PTR(ret);
+	}
+
+	return gf_tables;
+}
+
+static const struct atmel_pmecc_gf_tables *
+atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
+{
+	const struct atmel_pmecc_gf_tables **gf_tables, *ret;
+
+	mutex_lock(&pmecc_gf_tables_lock);
+	if (req->ecc.sectorsize == 512)
+		gf_tables = &pmecc_gf_tables_512;
+	else
+		gf_tables = &pmecc_gf_tables_1024;
+
+	ret = *gf_tables;
+
+	if (!ret) {
+		ret = atmel_pmecc_create_gf_tables(req);
+		if (!IS_ERR(ret))
+			*gf_tables = ret;
+	}
+	mutex_unlock(&pmecc_gf_tables_lock);
+
+	return ret;
+}
+
+static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
+					struct atmel_pmecc_user_req *req)
+{
+	int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
+
+	if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
+		return -EINVAL;
+
+	if (req->ecc.ooboffset >= 0 &&
+	    req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
+		return -EINVAL;
+
+	if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
+		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
+			return -EINVAL;
+
+		if (req->pagesize > 512)
+			req->ecc.sectorsize = 1024;
+		else
+			req->ecc.sectorsize = 512;
+	}
+
+	if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
+		return -EINVAL;
+
+	if (req->pagesize % req->ecc.sectorsize)
+		return -EINVAL;
+
+	req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
+
+	max_eccbytes = req->ecc.bytes;
+
+	for (i = 0; i < pmecc->caps->nstrengths; i++) {
+		int nbytes, strength = pmecc->caps->strengths[i];
+
+		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
+		    strength < req->ecc.strength)
+			continue;
+
+		nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
+				      8);
+		nbytes *= req->ecc.nsectors;
+
+		if (nbytes > max_eccbytes)
+			break;
+
+		eccstrength = strength;
+		eccbytes = nbytes;
+
+		if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
+			break;
+	}
+
+	if (!eccstrength)
+		return -EINVAL;
+
+	req->ecc.bytes = eccbytes;
+	req->ecc.strength = eccstrength;
+
+	if (req->ecc.ooboffset < 0)
+		req->ecc.ooboffset = req->oobsize - eccbytes;
+
+	return 0;
+}
+
+struct atmel_pmecc_user *
+atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
+			struct atmel_pmecc_user_req *req)
+{
+	struct atmel_pmecc_user *user;
+	const struct atmel_pmecc_gf_tables *gf_tables;
+	int strength, size, ret;
+
+	ret = atmel_pmecc_prepare_user_req(pmecc, req);
+	if (ret)
+		return ERR_PTR(ret);
+
+	size = sizeof(*user);
+	size = ALIGN(size, sizeof(u16));
+	/* Reserve space for partial_syn, si and smu */
+	size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
+		(2 + req->ecc.strength + 2);
+	/* Reserve space for lmu. */
+	size += (req->ecc.strength + 1) * sizeof(u16);
+	/* Reserve space for mu, dmu and delta. */
+	size = ALIGN(size, sizeof(s32));
+	size += (req->ecc.strength + 1) * sizeof(s32) * 3;
+
+	user = kzalloc(size, GFP_KERNEL);
+	if (!user)
+		return ERR_PTR(-ENOMEM);
+
+	user->pmecc = pmecc;
+
+	user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
+	user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
+	user->lmu = user->si + ((2 * req->ecc.strength) + 1);
+	user->smu = user->lmu + (req->ecc.strength + 1);
+	user->mu = (s32 *)PTR_ALIGN(user->smu +
+				    (((2 * req->ecc.strength) + 1) *
+				     (req->ecc.strength + 2)),
+				    sizeof(s32));
+	user->dmu = user->mu + req->ecc.strength + 1;
+	user->delta = user->dmu + req->ecc.strength + 1;
+
+	gf_tables = atmel_pmecc_get_gf_tables(req);
+	if (IS_ERR(gf_tables)) {
+		kfree(user);
+		return ERR_CAST(gf_tables);
+	}
+
+	user->gf_tables = gf_tables;
+
+	user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
+
+	for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
+		if (pmecc->caps->strengths[strength] == req->ecc.strength)
+			break;
+	}
+
+	user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
+			  PMECC_CFG_NSECTORS(req->ecc.nsectors);
+
+	if (req->ecc.sectorsize == 1024)
+		user->cache.cfg |= PMECC_CFG_SECTOR1024;
+
+	user->cache.sarea = req->oobsize - 1;
+	user->cache.saddr = req->ecc.ooboffset;
+	user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
+
+	return user;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
+
+void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user)
+{
+	kfree(user);
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user);
+
+static int get_strength(struct atmel_pmecc_user *user)
+{
+	const int *strengths = user->pmecc->caps->strengths;
+
+	return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
+}
+
+static int get_sectorsize(struct atmel_pmecc_user *user)
+{
+	return user->cache.cfg & PMECC_CFG_SECTOR1024 ? 1024 : 512;
+}
+
+static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
+{
+	int strength = get_strength(user);
+	u32 value;
+	int i;
+
+	/* Fill odd syndromes */
+	for (i = 0; i < strength; i++) {
+		value = readl_relaxed(user->pmecc->regs.base +
+				      ATMEL_PMECC_REM(sector, i / 2));
+		if (i & 1)
+			value >>= 16;
+
+		user->partial_syn[(2 * i) + 1] = value;
+	}
+}
+
+static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
+{
+	int degree = get_sectorsize(user) == 512 ? 13 : 14;
+	int cw_len = BIT(degree) - 1;
+	int strength = get_strength(user);
+	s16 *alpha_to = user->gf_tables->alpha_to;
+	s16 *index_of = user->gf_tables->index_of;
+	s16 *partial_syn = user->partial_syn;
+	s16 *si;
+	int i, j;
+
+	/*
+	 * si[] is a table that holds the current syndrome value,
+	 * an element of that table belongs to the field
+	 */
+	si = user->si;
+
+	memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
+
+	/* Computation 2t syndromes based on S(x) */
+	/* Odd syndromes */
+	for (i = 1; i < 2 * strength; i += 2) {
+		for (j = 0; j < degree; j++) {
+			if (partial_syn[i] & BIT(j))
+				si[i] = alpha_to[i * j] ^ si[i];
+		}
+	}
+	/* Even syndrome = (Odd syndrome) ** 2 */
+	for (i = 2, j = 1; j <= strength; i = ++j << 1) {
+		if (si[j] == 0) {
+			si[i] = 0;
+		} else {
+			s16 tmp;
+
+			tmp = index_of[si[j]];
+			tmp = (tmp * 2) % cw_len;
+			si[i] = alpha_to[tmp];
+		}
+	}
+}
+
+static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
+{
+	s16 *lmu = user->lmu;
+	s16 *si = user->si;
+	s32 *mu = user->mu;
+	s32 *dmu = user->dmu;
+	s32 *delta = user->delta;
+	int degree = get_sectorsize(user) == 512 ? 13 : 14;
+	int cw_len = BIT(degree) - 1;
+	int strength = get_strength(user);
+	int num = 2 * strength + 1;
+	s16 *index_of = user->gf_tables->index_of;
+	s16 *alpha_to = user->gf_tables->alpha_to;
+	int i, j, k;
+	u32 dmu_0_count, tmp;
+	s16 *smu = user->smu;
+
+	/* index of largest delta */
+	int ro;
+	int largest;
+	int diff;
+
+	dmu_0_count = 0;
+
+	/* First Row */
+
+	/* Mu */
+	mu[0] = -1;
+
+	memset(smu, 0, sizeof(s16) * num);
+	smu[0] = 1;
+
+	/* discrepancy set to 1 */
+	dmu[0] = 1;
+	/* polynom order set to 0 */
+	lmu[0] = 0;
+	delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
+
+	/* Second Row */
+
+	/* Mu */
+	mu[1] = 0;
+	/* Sigma(x) set to 1 */
+	memset(&smu[num], 0, sizeof(s16) * num);
+	smu[num] = 1;
+
+	/* discrepancy set to S1 */
+	dmu[1] = si[1];
+
+	/* polynom order set to 0 */
+	lmu[1] = 0;
+
+	delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
+
+	/* Init the Sigma(x) last row */
+	memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
+
+	for (i = 1; i <= strength; i++) {
+		mu[i + 1] = i << 1;
+		/* Begin Computing Sigma (Mu+1) and L(mu) */
+		/* check if discrepancy is set to 0 */
+		if (dmu[i] == 0) {
+			dmu_0_count++;
+
+			tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
+			if ((strength - (lmu[i] >> 1) - 1) & 0x1)
+				tmp += 2;
+			else
+				tmp += 1;
+
+			if (dmu_0_count == tmp) {
+				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
+					smu[(strength + 1) * num + j] =
+							smu[i * num + j];
+
+				lmu[strength + 1] = lmu[i];
+				return;
+			}
+
+			/* copy polynom */
+			for (j = 0; j <= lmu[i] >> 1; j++)
+				smu[(i + 1) * num + j] = smu[i * num + j];
+
+			/* copy previous polynom order to the next */
+			lmu[i + 1] = lmu[i];
+		} else {
+			ro = 0;
+			largest = -1;
+			/* find largest delta with dmu != 0 */
+			for (j = 0; j < i; j++) {
+				if ((dmu[j]) && (delta[j] > largest)) {
+					largest = delta[j];
+					ro = j;
+				}
+			}
+
+			/* compute difference */
+			diff = (mu[i] - mu[ro]);
+
+			/* Compute degree of the new smu polynomial */
+			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
+				lmu[i + 1] = lmu[i];
+			else
+				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
+
+			/* Init smu[i+1] with 0 */
+			for (k = 0; k < num; k++)
+				smu[(i + 1) * num + k] = 0;
+
+			/* Compute smu[i+1] */
+			for (k = 0; k <= lmu[ro] >> 1; k++) {
+				s16 a, b, c;
+
+				if (!(smu[ro * num + k] && dmu[i]))
+					continue;
+
+				a = index_of[dmu[i]];
+				b = index_of[dmu[ro]];
+				c = index_of[smu[ro * num + k]];
+				tmp = a + (cw_len - b) + c;
+				a = alpha_to[tmp % cw_len];
+				smu[(i + 1) * num + (k + diff)] = a;
+			}
+
+			for (k = 0; k <= lmu[i] >> 1; k++)
+				smu[(i + 1) * num + k] ^= smu[i * num + k];
+		}
+
+		/* End Computing Sigma (Mu+1) and L(mu) */
+		/* In either case compute delta */
+		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
+
+		/* Do not compute discrepancy for the last iteration */
+		if (i >= strength)
+			continue;
+
+		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
+			tmp = 2 * (i - 1);
+			if (k == 0) {
+				dmu[i + 1] = si[tmp + 3];
+			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
+				s16 a, b, c;
+
+				a = index_of[smu[(i + 1) * num + k]];
+				b = si[2 * (i - 1) + 3 - k];
+				c = index_of[b];
+				tmp = a + c;
+				tmp %= cw_len;
+				dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
+			}
+		}
+	}
+}
+
+static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
+{
+	int sector_size = get_sectorsize(user);
+	int degree = sector_size == 512 ? 13 : 14;
+	struct atmel_pmecc *pmecc = user->pmecc;
+	int strength = get_strength(user);
+	int ret, roots_nbr, i, err_nbr = 0;
+	int num = (2 * strength) + 1;
+	s16 *smu = user->smu;
+	u32 val;
+
+	writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
+
+	for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
+		writel_relaxed(smu[(strength + 1) * num + i],
+			       pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
+		err_nbr++;
+	}
+
+	val = (err_nbr - 1) << 16;
+	if (sector_size == 1024)
+		val |= 1;
+
+	writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
+	writel((sector_size * 8) + (degree * strength),
+	       pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
+
+	ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
+					 ATMEL_PMERRLOC_ELISR,
+					 val, val & PMERRLOC_CALC_DONE, 0,
+					 PMECC_MAX_TIMEOUT_MS * 1000);
+	if (ret) {
+		dev_err(pmecc->dev,
+			"PMECC: Timeout to calculate error location.\n");
+		return ret;
+	}
+
+	roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
+	/* Number of roots == degree of smu hence <= cap */
+	if (roots_nbr == user->lmu[strength + 1] >> 1)
+		return err_nbr - 1;
+
+	/*
+	 * Number of roots does not match the degree of smu
+	 * unable to correct error.
+	 */
+	return -EBADMSG;
+}
+
+int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
+			       void *data, void *ecc)
+{
+	struct atmel_pmecc *pmecc = user->pmecc;
+	int sectorsize = get_sectorsize(user);
+	int eccbytes = user->eccbytes;
+	int i, nerrors;
+
+	if (!(user->isr & BIT(sector)))
+		return 0;
+
+	atmel_pmecc_gen_syndrome(user, sector);
+	atmel_pmecc_substitute(user);
+	atmel_pmecc_get_sigma(user);
+
+	nerrors = atmel_pmecc_err_location(user);
+	if (nerrors < 0)
+		return nerrors;
+
+	for (i = 0; i < nerrors; i++) {
+		const char *area;
+		int byte, bit;
+		u32 errpos;
+		u8 *ptr;
+
+		errpos = readl_relaxed(pmecc->regs.errloc +
+				ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
+		errpos--;
+
+		byte = errpos / 8;
+		bit = errpos % 8;
+
+		if (byte < sectorsize) {
+			ptr = data + byte;
+			area = "data";
+		} else if (byte < sectorsize + eccbytes) {
+			ptr = ecc + byte - sectorsize;
+			area = "ECC";
+		} else {
+			dev_dbg(pmecc->dev,
+				"Invalid errpos value (%d, max is %d)\n",
+				errpos, (sectorsize + eccbytes) * 8);
+			return -EINVAL;
+		}
+
+		dev_dbg(pmecc->dev,
+			"Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
+			area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
+
+		*ptr ^= BIT(bit);
+	}
+
+	return nerrors;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
+
+bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
+{
+	return user->pmecc->caps->correct_erased_chunks;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
+
+void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
+					int sector, void *ecc)
+{
+	struct atmel_pmecc *pmecc = user->pmecc;
+	u8 *ptr = ecc;
+	int i;
+
+	for (i = 0; i < user->eccbytes; i++)
+		ptr[i] = readb_relaxed(pmecc->regs.base +
+				       ATMEL_PMECC_ECC(sector, i));
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
+
+void atmel_pmecc_reset(struct atmel_pmecc *pmecc)
+{
+	writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
+	writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_reset);
+
+int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
+{
+	struct atmel_pmecc *pmecc = user->pmecc;
+	u32 cfg;
+
+	if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
+		dev_err(pmecc->dev, "Bad ECC operation!");
+		return -EINVAL;
+	}
+
+	mutex_lock(&user->pmecc->lock);
+
+	cfg = user->cache.cfg;
+	if (op == NAND_ECC_WRITE)
+		cfg |= PMECC_CFG_WRITE_OP;
+	else
+		cfg |= PMECC_CFG_AUTO_ENABLE;
+
+	writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
+	writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
+	writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
+	writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
+
+	writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
+	writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
+
+void atmel_pmecc_disable(struct atmel_pmecc_user *user)
+{
+	atmel_pmecc_reset(user->pmecc);
+	mutex_unlock(&user->pmecc->lock);
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
+
+int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
+{
+	struct atmel_pmecc *pmecc = user->pmecc;
+	u32 status;
+	int ret;
+
+	ret = readl_relaxed_poll_timeout(pmecc->regs.base +
+					 ATMEL_PMECC_SR,
+					 status, !(status & PMECC_SR_BUSY), 0,
+					 PMECC_MAX_TIMEOUT_MS * 1000);
+	if (ret) {
+		dev_err(pmecc->dev,
+			"Timeout while waiting for PMECC ready.\n");
+		return ret;
+	}
+
+	user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
+
+static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
+					const struct atmel_pmecc_caps *caps,
+					int pmecc_res_idx, int errloc_res_idx)
+{
+	struct device *dev = &pdev->dev;
+	struct atmel_pmecc *pmecc;
+	struct resource *res;
+
+	pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
+	if (!pmecc)
+		return ERR_PTR(-ENOMEM);
+
+	pmecc->caps = caps;
+	pmecc->dev = dev;
+	mutex_init(&pmecc->lock);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx);
+	pmecc->regs.base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(pmecc->regs.base))
+		return ERR_CAST(pmecc->regs.base);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx);
+	pmecc->regs.errloc = devm_ioremap_resource(dev, res);
+	if (IS_ERR(pmecc->regs.errloc))
+		return ERR_CAST(pmecc->regs.errloc);
+
+	/* Disable all interrupts before registering the PMECC handler. */
+	writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
+	atmel_pmecc_reset(pmecc);
+
+	return pmecc;
+}
+
+static void devm_atmel_pmecc_put(struct device *dev, void *res)
+{
+	struct atmel_pmecc **pmecc = res;
+
+	put_device((*pmecc)->dev);
+}
+
+static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
+						   struct device_node *np)
+{
+	struct platform_device *pdev;
+	struct atmel_pmecc *pmecc, **ptr;
+
+	pdev = of_find_device_by_node(np);
+	if (!pdev || !platform_get_drvdata(pdev))
+		return ERR_PTR(-EPROBE_DEFER);
+
+	ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
+	if (!ptr)
+		return ERR_PTR(-ENOMEM);
+
+	get_device(&pdev->dev);
+	pmecc = platform_get_drvdata(pdev);
+
+	*ptr = pmecc;
+
+	devres_add(userdev, ptr);
+
+	return pmecc;
+}
+
+static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
+
+static struct atmel_pmecc_caps at91sam9g45_caps = {
+	.strengths = atmel_pmecc_strengths,
+	.nstrengths = 5,
+	.el_offset = 0x8c,
+};
+
+static struct atmel_pmecc_caps sama5d4_caps = {
+	.strengths = atmel_pmecc_strengths,
+	.nstrengths = 5,
+	.el_offset = 0x8c,
+	.correct_erased_chunks = true,
+};
+
+static struct atmel_pmecc_caps sama5d2_caps = {
+	.strengths = atmel_pmecc_strengths,
+	.nstrengths = 6,
+	.el_offset = 0xac,
+	.correct_erased_chunks = true,
+};
+
+static const struct of_device_id atmel_pmecc_legacy_match[] = {
+	{ .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
+	{ .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
+	{ /* sentinel */ }
+};
+
+struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
+{
+	struct atmel_pmecc *pmecc;
+	struct device_node *np;
+
+	if (!userdev)
+		return ERR_PTR(-EINVAL);
+
+	if (!userdev->of_node)
+		return NULL;
+
+	np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
+	if (np) {
+		pmecc = atmel_pmecc_get_by_node(userdev, np);
+		of_node_put(np);
+	} else {
+		/*
+		 * Support old DT bindings: in this case the PMECC iomem
+		 * resources are directly defined in the user pdev at position
+		 * 1 and 2. Extract all relevant information from there.
+		 */
+		struct platform_device *pdev = to_platform_device(userdev);
+		const struct atmel_pmecc_caps *caps;
+		const struct of_device_id *match;
+
+		/* No PMECC engine available. */
+		if (!of_property_read_bool(userdev->of_node,
+					   "atmel,has-pmecc"))
+			return NULL;
+
+		caps = &at91sam9g45_caps;
+
+		/* Find the caps associated to the NAND dev node. */
+		match = of_match_node(atmel_pmecc_legacy_match,
+				      userdev->of_node);
+		if (match && match->data)
+			caps = match->data;
+
+		pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
+	}
+
+	return pmecc;
+}
+EXPORT_SYMBOL(devm_atmel_pmecc_get);
+
+static const struct of_device_id atmel_pmecc_match[] = {
+	{ .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
+	{ .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
+	{ .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
+
+static int atmel_pmecc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	const struct atmel_pmecc_caps *caps;
+	struct atmel_pmecc *pmecc;
+
+	caps = of_device_get_match_data(&pdev->dev);
+	if (!caps) {
+		dev_err(dev, "Invalid caps\n");
+		return -EINVAL;
+	}
+
+	pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
+	if (IS_ERR(pmecc))
+		return PTR_ERR(pmecc);
+
+	platform_set_drvdata(pdev, pmecc);
+
+	return 0;
+}
+
+static struct platform_driver atmel_pmecc_driver = {
+	.driver = {
+		.name = "atmel-pmecc",
+		.of_match_table = of_match_ptr(atmel_pmecc_match),
+	},
+	.probe = atmel_pmecc_probe,
+};
+module_platform_driver(atmel_pmecc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
+MODULE_DESCRIPTION("PMECC engine driver");
+MODULE_ALIAS("platform:atmel_pmecc");
diff --git a/drivers/mtd/nand/raw/atmel/pmecc.h b/drivers/mtd/nand/raw/atmel/pmecc.h
new file mode 100644
index 0000000..808f1be
--- /dev/null
+++ b/drivers/mtd/nand/raw/atmel/pmecc.h
@@ -0,0 +1,74 @@
+/*
+ * © Copyright 2016 ATMEL
+ * © Copyright 2016 Free Electrons
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * Derived from the atmel_nand.c driver which contained the following
+ * copyrights:
+ *
+ *    Copyright © 2003 Rick Bronson
+ *
+ *    Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
+ *        Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ *    Derived from drivers/mtd/spia.c (removed in v3.8)
+ *        Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
+ *
+ *
+ *    Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
+ *        Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
+ *
+ *        Derived from Das U-Boot source code
+ *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
+ *        © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
+ *
+ *    Add Programmable Multibit ECC support for various AT91 SoC
+ *        © Copyright 2012 ATMEL, Hong Xu
+ *
+ *    Add Nand Flash Controller support for SAMA5 SoC
+ *        © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#ifndef ATMEL_PMECC_H
+#define ATMEL_PMECC_H
+
+#define ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH	0
+#define ATMEL_PMECC_SECTOR_SIZE_AUTO		0
+#define ATMEL_PMECC_OOBOFFSET_AUTO		-1
+
+struct atmel_pmecc_user_req {
+	int pagesize;
+	int oobsize;
+	struct {
+		int strength;
+		int bytes;
+		int sectorsize;
+		int nsectors;
+		int ooboffset;
+	} ecc;
+};
+
+struct atmel_pmecc *devm_atmel_pmecc_get(struct device *dev);
+
+struct atmel_pmecc_user *
+atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
+			struct atmel_pmecc_user_req *req);
+void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user);
+
+void atmel_pmecc_reset(struct atmel_pmecc *pmecc);
+int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op);
+void atmel_pmecc_disable(struct atmel_pmecc_user *user);
+int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user);
+int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
+			       void *data, void *ecc);
+bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user);
+void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
+					int sector, void *ecc);
+
+#endif /* ATMEL_PMECC_H */
diff --git a/drivers/mtd/nand/raw/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c
new file mode 100644
index 0000000..35f5c84
--- /dev/null
+++ b/drivers/mtd/nand/raw/au1550nd.c
@@ -0,0 +1,514 @@
+/*
+ *  Copyright (C) 2004 Embedded Edge, LLC
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/platform_device.h>
+#include <asm/io.h>
+#include <asm/mach-au1x00/au1000.h>
+#include <asm/mach-au1x00/au1550nd.h>
+
+
+struct au1550nd_ctx {
+	struct nand_chip chip;
+
+	int cs;
+	void __iomem *base;
+	void (*write_byte)(struct mtd_info *, u_char);
+};
+
+/**
+ * au_read_byte -  read one byte from the chip
+ * @mtd:	MTD device structure
+ *
+ * read function for 8bit buswidth
+ */
+static u_char au_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_char ret = readb(this->IO_ADDR_R);
+	wmb(); /* drain writebuffer */
+	return ret;
+}
+
+/**
+ * au_write_byte -  write one byte to the chip
+ * @mtd:	MTD device structure
+ * @byte:	pointer to data byte to write
+ *
+ * write function for 8it buswidth
+ */
+static void au_write_byte(struct mtd_info *mtd, u_char byte)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	writeb(byte, this->IO_ADDR_W);
+	wmb(); /* drain writebuffer */
+}
+
+/**
+ * au_read_byte16 -  read one byte endianness aware from the chip
+ * @mtd:	MTD device structure
+ *
+ * read function for 16bit buswidth with endianness conversion
+ */
+static u_char au_read_byte16(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+	wmb(); /* drain writebuffer */
+	return ret;
+}
+
+/**
+ * au_write_byte16 -  write one byte endianness aware to the chip
+ * @mtd:	MTD device structure
+ * @byte:	pointer to data byte to write
+ *
+ * write function for 16bit buswidth with endianness conversion
+ */
+static void au_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+	wmb(); /* drain writebuffer */
+}
+
+/**
+ * au_read_word -  read one word from the chip
+ * @mtd:	MTD device structure
+ *
+ * read function for 16bit buswidth without endianness conversion
+ */
+static u16 au_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u16 ret = readw(this->IO_ADDR_R);
+	wmb(); /* drain writebuffer */
+	return ret;
+}
+
+/**
+ * au_write_buf -  write buffer to chip
+ * @mtd:	MTD device structure
+ * @buf:	data buffer
+ * @len:	number of bytes to write
+ *
+ * write function for 8bit buswidth
+ */
+static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	for (i = 0; i < len; i++) {
+		writeb(buf[i], this->IO_ADDR_W);
+		wmb(); /* drain writebuffer */
+	}
+}
+
+/**
+ * au_read_buf -  read chip data into buffer
+ * @mtd:	MTD device structure
+ * @buf:	buffer to store date
+ * @len:	number of bytes to read
+ *
+ * read function for 8bit buswidth
+ */
+static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	for (i = 0; i < len; i++) {
+		buf[i] = readb(this->IO_ADDR_R);
+		wmb(); /* drain writebuffer */
+	}
+}
+
+/**
+ * au_write_buf16 -  write buffer to chip
+ * @mtd:	MTD device structure
+ * @buf:	data buffer
+ * @len:	number of bytes to write
+ *
+ * write function for 16bit buswidth
+ */
+static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u16 *p = (u16 *) buf;
+	len >>= 1;
+
+	for (i = 0; i < len; i++) {
+		writew(p[i], this->IO_ADDR_W);
+		wmb(); /* drain writebuffer */
+	}
+
+}
+
+/**
+ * au_read_buf16 -  read chip data into buffer
+ * @mtd:	MTD device structure
+ * @buf:	buffer to store date
+ * @len:	number of bytes to read
+ *
+ * read function for 16bit buswidth
+ */
+static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u16 *p = (u16 *) buf;
+	len >>= 1;
+
+	for (i = 0; i < len; i++) {
+		p[i] = readw(this->IO_ADDR_R);
+		wmb(); /* drain writebuffer */
+	}
+}
+
+/* Select the chip by setting nCE to low */
+#define NAND_CTL_SETNCE		1
+/* Deselect the chip by setting nCE to high */
+#define NAND_CTL_CLRNCE		2
+/* Select the command latch by setting CLE to high */
+#define NAND_CTL_SETCLE		3
+/* Deselect the command latch by setting CLE to low */
+#define NAND_CTL_CLRCLE		4
+/* Select the address latch by setting ALE to high */
+#define NAND_CTL_SETALE		5
+/* Deselect the address latch by setting ALE to low */
+#define NAND_CTL_CLRALE		6
+
+static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
+						chip);
+
+	switch (cmd) {
+
+	case NAND_CTL_SETCLE:
+		this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD;
+		break;
+
+	case NAND_CTL_CLRCLE:
+		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
+		break;
+
+	case NAND_CTL_SETALE:
+		this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR;
+		break;
+
+	case NAND_CTL_CLRALE:
+		this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA;
+		/* FIXME: Nobody knows why this is necessary,
+		 * but it works only that way */
+		udelay(1);
+		break;
+
+	case NAND_CTL_SETNCE:
+		/* assert (force assert) chip enable */
+		alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL);
+		break;
+
+	case NAND_CTL_CLRNCE:
+		/* deassert chip enable */
+		alchemy_wrsmem(0, AU1000_MEM_STNDCTL);
+		break;
+	}
+
+	this->IO_ADDR_R = this->IO_ADDR_W;
+
+	wmb(); /* Drain the writebuffer */
+}
+
+int au1550_device_ready(struct mtd_info *mtd)
+{
+	return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0;
+}
+
+/**
+ * au1550_select_chip - control -CE line
+ *	Forbid driving -CE manually permitting the NAND controller to do this.
+ *	Keeping -CE asserted during the whole sector reads interferes with the
+ *	NOR flash and PCMCIA drivers as it causes contention on the static bus.
+ *	We only have to hold -CE low for the NAND read commands since the flash
+ *	chip needs it to be asserted during chip not ready time but the NAND
+ *	controller keeps it released.
+ *
+ * @mtd:	MTD device structure
+ * @chip:	chipnumber to select, -1 for deselect
+ */
+static void au1550_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+/**
+ * au1550_command - Send command to NAND device
+ * @mtd:	MTD device structure
+ * @command:	the command to be sent
+ * @column:	the column address for this command, -1 if none
+ * @page_addr:	the page address for this command, -1 if none
+ */
+static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx,
+						chip);
+	int ce_override = 0, i;
+	unsigned long flags = 0;
+
+	/* Begin command latch cycle */
+	au1550_hwcontrol(mtd, NAND_CTL_SETCLE);
+	/*
+	 * Write out the command to the device.
+	 */
+	if (command == NAND_CMD_SEQIN) {
+		int readcmd;
+
+		if (column >= mtd->writesize) {
+			/* OOB area */
+			column -= mtd->writesize;
+			readcmd = NAND_CMD_READOOB;
+		} else if (column < 256) {
+			/* First 256 bytes --> READ0 */
+			readcmd = NAND_CMD_READ0;
+		} else {
+			column -= 256;
+			readcmd = NAND_CMD_READ1;
+		}
+		ctx->write_byte(mtd, readcmd);
+	}
+	ctx->write_byte(mtd, command);
+
+	/* Set ALE and clear CLE to start address cycle */
+	au1550_hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+	if (column != -1 || page_addr != -1) {
+		au1550_hwcontrol(mtd, NAND_CTL_SETALE);
+
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (this->options & NAND_BUSWIDTH_16 &&
+					!nand_opcode_8bits(command))
+				column >>= 1;
+			ctx->write_byte(mtd, column);
+		}
+		if (page_addr != -1) {
+			ctx->write_byte(mtd, (u8)(page_addr & 0xff));
+
+			if (command == NAND_CMD_READ0 ||
+			    command == NAND_CMD_READ1 ||
+			    command == NAND_CMD_READOOB) {
+				/*
+				 * NAND controller will release -CE after
+				 * the last address byte is written, so we'll
+				 * have to forcibly assert it. No interrupts
+				 * are allowed while we do this as we don't
+				 * want the NOR flash or PCMCIA drivers to
+				 * steal our precious bytes of data...
+				 */
+				ce_override = 1;
+				local_irq_save(flags);
+				au1550_hwcontrol(mtd, NAND_CTL_SETNCE);
+			}
+
+			ctx->write_byte(mtd, (u8)(page_addr >> 8));
+
+			if (this->options & NAND_ROW_ADDR_3)
+				ctx->write_byte(mtd,
+						((page_addr >> 16) & 0x0f));
+		}
+		/* Latch in address */
+		au1550_hwcontrol(mtd, NAND_CTL_CLRALE);
+	}
+
+	/*
+	 * Program and erase have their own busy handlers.
+	 * Status and sequential in need no delay.
+	 */
+	switch (command) {
+
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+		return;
+
+	case NAND_CMD_RESET:
+		break;
+
+	case NAND_CMD_READ0:
+	case NAND_CMD_READ1:
+	case NAND_CMD_READOOB:
+		/* Check if we're really driving -CE low (just in case) */
+		if (unlikely(!ce_override))
+			break;
+
+		/* Apply a short delay always to ensure that we do wait tWB. */
+		ndelay(100);
+		/* Wait for a chip to become ready... */
+		for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i)
+			udelay(1);
+
+		/* Release -CE and re-enable interrupts. */
+		au1550_hwcontrol(mtd, NAND_CTL_CLRNCE);
+		local_irq_restore(flags);
+		return;
+	}
+	/* Apply this short delay always to ensure that we do wait tWB. */
+	ndelay(100);
+
+	while(!this->dev_ready(mtd));
+}
+
+static int find_nand_cs(unsigned long nand_base)
+{
+	void __iomem *base =
+			(void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR);
+	unsigned long addr, staddr, start, mask, end;
+	int i;
+
+	for (i = 0; i < 4; i++) {
+		addr = 0x1000 + (i * 0x10);			/* CSx */
+		staddr = __raw_readl(base + addr + 0x08);	/* STADDRx */
+		/* figure out the decoded range of this CS */
+		start = (staddr << 4) & 0xfffc0000;
+		mask = (staddr << 18) & 0xfffc0000;
+		end = (start | (start - 1)) & ~(start ^ mask);
+		if ((nand_base >= start) && (nand_base < end))
+			return i;
+	}
+
+	return -ENODEV;
+}
+
+static int au1550nd_probe(struct platform_device *pdev)
+{
+	struct au1550nd_platdata *pd;
+	struct au1550nd_ctx *ctx;
+	struct nand_chip *this;
+	struct mtd_info *mtd;
+	struct resource *r;
+	int ret, cs;
+
+	pd = dev_get_platdata(&pdev->dev);
+	if (!pd) {
+		dev_err(&pdev->dev, "missing platform data\n");
+		return -ENODEV;
+	}
+
+	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
+	if (!ctx)
+		return -ENOMEM;
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!r) {
+		dev_err(&pdev->dev, "no NAND memory resource\n");
+		ret = -ENODEV;
+		goto out1;
+	}
+	if (request_mem_region(r->start, resource_size(r), "au1550-nand")) {
+		dev_err(&pdev->dev, "cannot claim NAND memory area\n");
+		ret = -ENOMEM;
+		goto out1;
+	}
+
+	ctx->base = ioremap_nocache(r->start, 0x1000);
+	if (!ctx->base) {
+		dev_err(&pdev->dev, "cannot remap NAND memory area\n");
+		ret = -ENODEV;
+		goto out2;
+	}
+
+	this = &ctx->chip;
+	mtd = nand_to_mtd(this);
+	mtd->dev.parent = &pdev->dev;
+
+	/* figure out which CS# r->start belongs to */
+	cs = find_nand_cs(r->start);
+	if (cs < 0) {
+		dev_err(&pdev->dev, "cannot detect NAND chipselect\n");
+		ret = -ENODEV;
+		goto out3;
+	}
+	ctx->cs = cs;
+
+	this->dev_ready = au1550_device_ready;
+	this->select_chip = au1550_select_chip;
+	this->cmdfunc = au1550_command;
+
+	/* 30 us command delay time */
+	this->chip_delay = 30;
+	this->ecc.mode = NAND_ECC_SOFT;
+	this->ecc.algo = NAND_ECC_HAMMING;
+
+	if (pd->devwidth)
+		this->options |= NAND_BUSWIDTH_16;
+
+	this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte;
+	ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte;
+	this->read_word = au_read_word;
+	this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf;
+	this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf;
+
+	ret = nand_scan(mtd, 1);
+	if (ret) {
+		dev_err(&pdev->dev, "NAND scan failed with %d\n", ret);
+		goto out3;
+	}
+
+	mtd_device_register(mtd, pd->parts, pd->num_parts);
+
+	platform_set_drvdata(pdev, ctx);
+
+	return 0;
+
+out3:
+	iounmap(ctx->base);
+out2:
+	release_mem_region(r->start, resource_size(r));
+out1:
+	kfree(ctx);
+	return ret;
+}
+
+static int au1550nd_remove(struct platform_device *pdev)
+{
+	struct au1550nd_ctx *ctx = platform_get_drvdata(pdev);
+	struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+
+	nand_release(nand_to_mtd(&ctx->chip));
+	iounmap(ctx->base);
+	release_mem_region(r->start, 0x1000);
+	kfree(ctx);
+	return 0;
+}
+
+static struct platform_driver au1550nd_driver = {
+	.driver = {
+		.name	= "au1550-nand",
+	},
+	.probe		= au1550nd_probe,
+	.remove		= au1550nd_remove,
+};
+
+module_platform_driver(au1550nd_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Embedded Edge, LLC");
+MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/Makefile b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
new file mode 100644
index 0000000..f05b119
--- /dev/null
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile
@@ -0,0 +1,4 @@
+bcm47xxnflash-y				+= main.o
+bcm47xxnflash-y				+= ops_bcm4706.o
+
+obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash.o
diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h
new file mode 100644
index 0000000..201b9ba
--- /dev/null
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h
@@ -0,0 +1,26 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __BCM47XXNFLASH_H
+#define __BCM47XXNFLASH_H
+
+#ifndef pr_fmt
+#define pr_fmt(fmt)		KBUILD_MODNAME ": " fmt
+#endif
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+
+struct bcm47xxnflash {
+	struct bcma_drv_cc *cc;
+
+	struct nand_chip nand_chip;
+
+	unsigned curr_command;
+	int curr_page_addr;
+	int curr_column;
+
+	u8 id_data[8];
+};
+
+int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n);
+
+#endif /* BCM47XXNFLASH */
diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/main.c b/drivers/mtd/nand/raw/bcm47xxnflash/main.c
new file mode 100644
index 0000000..fb31429
--- /dev/null
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/main.c
@@ -0,0 +1,81 @@
+/*
+ * BCM47XX NAND flash driver
+ *
+ * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include "bcm47xxnflash.h"
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/platform_device.h>
+#include <linux/bcma/bcma.h>
+
+MODULE_DESCRIPTION("NAND flash driver for BCMA bus");
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Rafał Miłecki");
+
+static const char *probes[] = { "bcm47xxpart", NULL };
+
+static int bcm47xxnflash_probe(struct platform_device *pdev)
+{
+	struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev);
+	struct bcm47xxnflash *b47n;
+	struct mtd_info *mtd;
+	int err = 0;
+
+	b47n = devm_kzalloc(&pdev->dev, sizeof(*b47n), GFP_KERNEL);
+	if (!b47n)
+		return -ENOMEM;
+
+	nand_set_controller_data(&b47n->nand_chip, b47n);
+	mtd = nand_to_mtd(&b47n->nand_chip);
+	mtd->dev.parent = &pdev->dev;
+	b47n->cc = container_of(nflash, struct bcma_drv_cc, nflash);
+
+	if (b47n->cc->core->bus->chipinfo.id == BCMA_CHIP_ID_BCM4706) {
+		err = bcm47xxnflash_ops_bcm4706_init(b47n);
+	} else {
+		pr_err("Device not supported\n");
+		err = -ENOTSUPP;
+	}
+	if (err) {
+		pr_err("Initialization failed: %d\n", err);
+		return err;
+	}
+
+	platform_set_drvdata(pdev, b47n);
+
+	err = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
+	if (err) {
+		pr_err("Failed to register MTD device: %d\n", err);
+		return err;
+	}
+
+	return 0;
+}
+
+static int bcm47xxnflash_remove(struct platform_device *pdev)
+{
+	struct bcm47xxnflash *nflash = platform_get_drvdata(pdev);
+
+	nand_release(nand_to_mtd(&nflash->nand_chip));
+
+	return 0;
+}
+
+static struct platform_driver bcm47xxnflash_driver = {
+	.probe	= bcm47xxnflash_probe,
+	.remove = bcm47xxnflash_remove,
+	.driver = {
+		.name = "bcma_nflash",
+	},
+};
+
+module_platform_driver(bcm47xxnflash_driver);
diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
new file mode 100644
index 0000000..60874de
--- /dev/null
+++ b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c
@@ -0,0 +1,456 @@
+/*
+ * BCM47XX NAND flash driver
+ *
+ * Copyright (C) 2012 Rafał Miłecki <zajec5@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include "bcm47xxnflash.h"
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/bcma/bcma.h>
+
+/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has
+ * shown ~1000 retries as maxiumum. */
+#define NFLASH_READY_RETRIES		10000
+
+#define NFLASH_SECTOR_SIZE		512
+
+#define NCTL_CMD0			0x00010000
+#define NCTL_COL			0x00020000	/* Update column with value from BCMA_CC_NFLASH_COL_ADDR */
+#define NCTL_ROW			0x00040000	/* Update row (page) with value from BCMA_CC_NFLASH_ROW_ADDR */
+#define NCTL_CMD1W			0x00080000
+#define NCTL_READ			0x00100000
+#define NCTL_WRITE			0x00200000
+#define NCTL_SPECADDR			0x01000000
+#define NCTL_READY			0x04000000
+#define NCTL_ERR			0x08000000
+#define NCTL_CSA			0x40000000
+#define NCTL_START			0x80000000
+
+/**************************************************
+ * Various helpers
+ **************************************************/
+
+static inline u8 bcm47xxnflash_ops_bcm4706_ns_to_cycle(u16 ns, u16 clock)
+{
+	return ((ns * 1000 * clock) / 1000000) + 1;
+}
+
+static int bcm47xxnflash_ops_bcm4706_ctl_cmd(struct bcma_drv_cc *cc, u32 code)
+{
+	int i = 0;
+
+	bcma_cc_write32(cc, BCMA_CC_NFLASH_CTL, NCTL_START | code);
+	for (i = 0; i < NFLASH_READY_RETRIES; i++) {
+		if (!(bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_START)) {
+			i = 0;
+			break;
+		}
+	}
+	if (i) {
+		pr_err("NFLASH control command not ready!\n");
+		return -EBUSY;
+	}
+	return 0;
+}
+
+static int bcm47xxnflash_ops_bcm4706_poll(struct bcma_drv_cc *cc)
+{
+	int i;
+
+	for (i = 0; i < NFLASH_READY_RETRIES; i++) {
+		if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_READY) {
+			if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) &
+			    BCMA_CC_NFLASH_CTL_ERR) {
+				pr_err("Error on polling\n");
+				return -EBUSY;
+			} else {
+				return 0;
+			}
+		}
+	}
+
+	pr_err("Polling timeout!\n");
+	return -EBUSY;
+}
+
+/**************************************************
+ * R/W
+ **************************************************/
+
+static void bcm47xxnflash_ops_bcm4706_read(struct mtd_info *mtd, uint8_t *buf,
+					   int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+
+	u32 ctlcode;
+	u32 *dest = (u32 *)buf;
+	int i;
+	int toread;
+
+	BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask);
+	/* Don't validate column using nand_chip->page_shift, it may be bigger
+	 * when accessing OOB */
+
+	while (len) {
+		/* We can read maximum of 0x200 bytes at once */
+		toread = min(len, 0x200);
+
+		/* Set page and column */
+		bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_COL_ADDR,
+				b47n->curr_column);
+		bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_ROW_ADDR,
+				b47n->curr_page_addr);
+
+		/* Prepare to read */
+		ctlcode = NCTL_CSA | NCTL_CMD1W | NCTL_ROW | NCTL_COL |
+			  NCTL_CMD0;
+		ctlcode |= NAND_CMD_READSTART << 8;
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode))
+			return;
+		if (bcm47xxnflash_ops_bcm4706_poll(b47n->cc))
+			return;
+
+		/* Eventually read some data :) */
+		for (i = 0; i < toread; i += 4, dest++) {
+			ctlcode = NCTL_CSA | 0x30000000 | NCTL_READ;
+			if (i == toread - 4) /* Last read goes without that */
+				ctlcode &= ~NCTL_CSA;
+			if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc,
+							      ctlcode))
+				return;
+			*dest = bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA);
+		}
+
+		b47n->curr_column += toread;
+		len -= toread;
+	}
+}
+
+static void bcm47xxnflash_ops_bcm4706_write(struct mtd_info *mtd,
+					    const uint8_t *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+	struct bcma_drv_cc *cc = b47n->cc;
+
+	u32 ctlcode;
+	const u32 *data = (u32 *)buf;
+	int i;
+
+	BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask);
+	/* Don't validate column using nand_chip->page_shift, it may be bigger
+	 * when accessing OOB */
+
+	for (i = 0; i < len; i += 4, data++) {
+		bcma_cc_write32(cc, BCMA_CC_NFLASH_DATA, *data);
+
+		ctlcode = NCTL_CSA | 0x30000000 | NCTL_WRITE;
+		if (i == len - 4) /* Last read goes without that */
+			ctlcode &= ~NCTL_CSA;
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) {
+			pr_err("%s ctl_cmd didn't work!\n", __func__);
+			return;
+		}
+	}
+
+	b47n->curr_column += len;
+}
+
+/**************************************************
+ * NAND chip ops
+ **************************************************/
+
+static void bcm47xxnflash_ops_bcm4706_cmd_ctrl(struct mtd_info *mtd, int cmd,
+					       unsigned int ctrl)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+	u32 code = 0;
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (cmd & NAND_CTRL_CLE)
+		code = cmd | NCTL_CMD0;
+
+	/* nCS is not needed for reset command */
+	if (cmd != NAND_CMD_RESET)
+		code |= NCTL_CSA;
+
+	bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, code);
+}
+
+/* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */
+static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd,
+						  int chip)
+{
+	return;
+}
+
+static int bcm47xxnflash_ops_bcm4706_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+
+	return !!(bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_CTL) & NCTL_READY);
+}
+
+/*
+ * Default nand_command and nand_command_lp don't match BCM4706 hardware layout.
+ * For example, reading chip id is performed in a non-standard way.
+ * Setting column and page is also handled differently, we use a special
+ * registers of ChipCommon core. Hacking cmd_ctrl to understand and convert
+ * standard commands would be much more complicated.
+ */
+static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd,
+					      unsigned command, int column,
+					      int page_addr)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+	struct bcma_drv_cc *cc = b47n->cc;
+	u32 ctlcode;
+	int i;
+
+	if (column != -1)
+		b47n->curr_column = column;
+	if (page_addr != -1)
+		b47n->curr_page_addr = page_addr;
+
+	switch (command) {
+	case NAND_CMD_RESET:
+		nand_chip->cmd_ctrl(mtd, command, NAND_CTRL_CLE);
+
+		ndelay(100);
+		nand_wait_ready(mtd);
+		break;
+	case NAND_CMD_READID:
+		ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0;
+		ctlcode |= NAND_CMD_READID;
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) {
+			pr_err("READID error\n");
+			break;
+		}
+
+		/*
+		 * Reading is specific, last one has to go without NCTL_CSA
+		 * bit. We don't know how many reads NAND subsystem is going
+		 * to perform, so cache everything.
+		 */
+		for (i = 0; i < ARRAY_SIZE(b47n->id_data); i++) {
+			ctlcode = NCTL_CSA | NCTL_READ;
+			if (i == ARRAY_SIZE(b47n->id_data) - 1)
+				ctlcode &= ~NCTL_CSA;
+			if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc,
+							      ctlcode)) {
+				pr_err("READID error\n");
+				break;
+			}
+			b47n->id_data[i] =
+				bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA)
+				& 0xFF;
+		}
+
+		break;
+	case NAND_CMD_STATUS:
+		ctlcode = NCTL_CSA | NCTL_CMD0 | NAND_CMD_STATUS;
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode))
+			pr_err("STATUS command error\n");
+		break;
+	case NAND_CMD_READ0:
+		break;
+	case NAND_CMD_READOOB:
+		if (page_addr != -1)
+			b47n->curr_column += mtd->writesize;
+		break;
+	case NAND_CMD_ERASE1:
+		bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR,
+				b47n->curr_page_addr);
+		ctlcode = NCTL_ROW | NCTL_CMD1W | NCTL_CMD0 |
+			  NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8);
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode))
+			pr_err("ERASE1 failed\n");
+		break;
+	case NAND_CMD_ERASE2:
+		break;
+	case NAND_CMD_SEQIN:
+		/* Set page and column */
+		bcma_cc_write32(cc, BCMA_CC_NFLASH_COL_ADDR,
+				b47n->curr_column);
+		bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR,
+				b47n->curr_page_addr);
+
+		/* Prepare to write */
+		ctlcode = 0x40000000 | NCTL_ROW | NCTL_COL | NCTL_CMD0;
+		ctlcode |= NAND_CMD_SEQIN;
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode))
+			pr_err("SEQIN failed\n");
+		break;
+	case NAND_CMD_PAGEPROG:
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_CMD0 |
+							  NAND_CMD_PAGEPROG))
+			pr_err("PAGEPROG failed\n");
+		if (bcm47xxnflash_ops_bcm4706_poll(cc))
+			pr_err("PAGEPROG not ready\n");
+		break;
+	default:
+		pr_err("Command 0x%X unsupported\n", command);
+		break;
+	}
+	b47n->curr_command = command;
+}
+
+static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+	struct bcma_drv_cc *cc = b47n->cc;
+	u32 tmp = 0;
+
+	switch (b47n->curr_command) {
+	case NAND_CMD_READID:
+		if (b47n->curr_column >= ARRAY_SIZE(b47n->id_data)) {
+			pr_err("Requested invalid id_data: %d\n",
+			       b47n->curr_column);
+			return 0;
+		}
+		return b47n->id_data[b47n->curr_column++];
+	case NAND_CMD_STATUS:
+		if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_READ))
+			return 0;
+		return bcma_cc_read32(cc, BCMA_CC_NFLASH_DATA) & 0xff;
+	case NAND_CMD_READOOB:
+		bcm47xxnflash_ops_bcm4706_read(mtd, (u8 *)&tmp, 4);
+		return tmp & 0xFF;
+	}
+
+	pr_err("Invalid command for byte read: 0x%X\n", b47n->curr_command);
+	return 0;
+}
+
+static void bcm47xxnflash_ops_bcm4706_read_buf(struct mtd_info *mtd,
+					       uint8_t *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+
+	switch (b47n->curr_command) {
+	case NAND_CMD_READ0:
+	case NAND_CMD_READOOB:
+		bcm47xxnflash_ops_bcm4706_read(mtd, buf, len);
+		return;
+	}
+
+	pr_err("Invalid command for buf read: 0x%X\n", b47n->curr_command);
+}
+
+static void bcm47xxnflash_ops_bcm4706_write_buf(struct mtd_info *mtd,
+						const uint8_t *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip);
+
+	switch (b47n->curr_command) {
+	case NAND_CMD_SEQIN:
+		bcm47xxnflash_ops_bcm4706_write(mtd, buf, len);
+		return;
+	}
+
+	pr_err("Invalid command for buf write: 0x%X\n", b47n->curr_command);
+}
+
+/**************************************************
+ * Init
+ **************************************************/
+
+int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
+{
+	struct nand_chip *nand_chip = (struct nand_chip *)&b47n->nand_chip;
+	int err;
+	u32 freq;
+	u16 clock;
+	u8 w0, w1, w2, w3, w4;
+
+	unsigned long chipsize; /* MiB */
+	u8 tbits, col_bits, col_size, row_bits, row_bsize;
+	u32 val;
+
+	b47n->nand_chip.select_chip = bcm47xxnflash_ops_bcm4706_select_chip;
+	nand_chip->cmd_ctrl = bcm47xxnflash_ops_bcm4706_cmd_ctrl;
+	nand_chip->dev_ready = bcm47xxnflash_ops_bcm4706_dev_ready;
+	b47n->nand_chip.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc;
+	b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
+	b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
+	b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
+	b47n->nand_chip.set_features = nand_get_set_features_notsupp;
+	b47n->nand_chip.get_features = nand_get_set_features_notsupp;
+
+	nand_chip->chip_delay = 50;
+	b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH;
+	b47n->nand_chip.ecc.mode = NAND_ECC_NONE; /* TODO: implement ECC */
+
+	/* Enable NAND flash access */
+	bcma_cc_set32(b47n->cc, BCMA_CC_4706_FLASHSCFG,
+		      BCMA_CC_4706_FLASHSCFG_NF1);
+
+	/* Configure wait counters */
+	if (b47n->cc->status & BCMA_CC_CHIPST_4706_PKG_OPTION) {
+		/* 400 MHz */
+		freq = 400000000 / 4;
+	} else {
+		freq = bcma_chipco_pll_read(b47n->cc, 4);
+		freq = (freq & 0xFFF) >> 3;
+		/* Fixed reference clock 25 MHz and m = 2 */
+		freq = (freq * 25000000 / 2) / 4;
+	}
+	clock = freq / 1000000;
+	w0 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(15, clock);
+	w1 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(20, clock);
+	w2 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock);
+	w3 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock);
+	w4 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(100, clock);
+	bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_WAITCNT0,
+			(w4 << 24 | w3 << 18 | w2 << 12 | w1 << 6 | w0));
+
+	/* Scan NAND */
+	err = nand_scan(nand_to_mtd(&b47n->nand_chip), 1);
+	if (err) {
+		pr_err("Could not scan NAND flash: %d\n", err);
+		goto exit;
+	}
+
+	/* Configure FLASH */
+	chipsize = b47n->nand_chip.chipsize >> 20;
+	tbits = ffs(chipsize); /* find first bit set */
+	if (!tbits || tbits != fls(chipsize)) {
+		pr_err("Invalid flash size: 0x%lX\n", chipsize);
+		err = -ENOTSUPP;
+		goto exit;
+	}
+	tbits += 19; /* Broadcom increases *index* by 20, we increase *pos* */
+
+	col_bits = b47n->nand_chip.page_shift + 1;
+	col_size = (col_bits + 7) / 8;
+
+	row_bits = tbits - col_bits + 1;
+	row_bsize = (row_bits + 7) / 8;
+
+	val = ((row_bsize - 1) << 6) | ((col_size - 1) << 4) | 2;
+	bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_CONF, val);
+
+exit:
+	if (err)
+		bcma_cc_mask32(b47n->cc, BCMA_CC_4706_FLASHSCFG,
+			       ~BCMA_CC_4706_FLASHSCFG_NF1);
+	return err;
+}
diff --git a/drivers/mtd/nand/raw/brcmnand/Makefile b/drivers/mtd/nand/raw/brcmnand/Makefile
new file mode 100644
index 0000000..195b845
--- /dev/null
+++ b/drivers/mtd/nand/raw/brcmnand/Makefile
@@ -0,0 +1,8 @@
+# SPDX-License-Identifier: GPL-2.0
+# link order matters; don't link the more generic brcmstb_nand.o before the
+# more specific iproc_nand.o, for instance
+obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= iproc_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= bcm63138_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= bcm6368_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmstb_nand.o
+obj-$(CONFIG_MTD_NAND_BRCMNAND)		+= brcmnand.o
diff --git a/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
new file mode 100644
index 0000000..59444b3
--- /dev/null
+++ b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c
@@ -0,0 +1,109 @@
+/*
+ * Copyright © 2015 Broadcom Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include "brcmnand.h"
+
+struct bcm63138_nand_soc {
+	struct brcmnand_soc soc;
+	void __iomem *base;
+};
+
+#define BCM63138_NAND_INT_STATUS		0x00
+#define BCM63138_NAND_INT_EN			0x04
+
+enum {
+	BCM63138_CTLRDY		= BIT(4),
+};
+
+static bool bcm63138_nand_intc_ack(struct brcmnand_soc *soc)
+{
+	struct bcm63138_nand_soc *priv =
+			container_of(soc, struct bcm63138_nand_soc, soc);
+	void __iomem *mmio = priv->base + BCM63138_NAND_INT_STATUS;
+	u32 val = brcmnand_readl(mmio);
+
+	if (val & BCM63138_CTLRDY) {
+		brcmnand_writel(val & ~BCM63138_CTLRDY, mmio);
+		return true;
+	}
+
+	return false;
+}
+
+static void bcm63138_nand_intc_set(struct brcmnand_soc *soc, bool en)
+{
+	struct bcm63138_nand_soc *priv =
+			container_of(soc, struct bcm63138_nand_soc, soc);
+	void __iomem *mmio = priv->base + BCM63138_NAND_INT_EN;
+	u32 val = brcmnand_readl(mmio);
+
+	if (en)
+		val |= BCM63138_CTLRDY;
+	else
+		val &= ~BCM63138_CTLRDY;
+
+	brcmnand_writel(val, mmio);
+}
+
+static int bcm63138_nand_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct bcm63138_nand_soc *priv;
+	struct brcmnand_soc *soc;
+	struct resource *res;
+
+	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+	soc = &priv->soc;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-int-base");
+	priv->base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(priv->base))
+		return PTR_ERR(priv->base);
+
+	soc->ctlrdy_ack = bcm63138_nand_intc_ack;
+	soc->ctlrdy_set_enabled = bcm63138_nand_intc_set;
+
+	return brcmnand_probe(pdev, soc);
+}
+
+static const struct of_device_id bcm63138_nand_of_match[] = {
+	{ .compatible = "brcm,nand-bcm63138" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, bcm63138_nand_of_match);
+
+static struct platform_driver bcm63138_nand_driver = {
+	.probe			= bcm63138_nand_probe,
+	.remove			= brcmnand_remove,
+	.driver = {
+		.name		= "bcm63138_nand",
+		.pm		= &brcmnand_pm_ops,
+		.of_match_table	= bcm63138_nand_of_match,
+	}
+};
+module_platform_driver(bcm63138_nand_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Brian Norris");
+MODULE_DESCRIPTION("NAND driver for BCM63138");
diff --git a/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
new file mode 100644
index 0000000..34c91b0
--- /dev/null
+++ b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c
@@ -0,0 +1,142 @@
+/*
+ * Copyright 2015 Simon Arlott
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * Derived from bcm63138_nand.c:
+ * Copyright © 2015 Broadcom Corporation
+ *
+ * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/include/bcm963xx/63268_map_part.h:
+ * Copyright 2000-2010 Broadcom Corporation
+ *
+ * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/flash/nandflash.c:
+ * Copyright 2000-2010 Broadcom Corporation
+ */
+
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include "brcmnand.h"
+
+struct bcm6368_nand_soc {
+	struct brcmnand_soc soc;
+	void __iomem *base;
+};
+
+#define BCM6368_NAND_INT		0x00
+#define  BCM6368_NAND_STATUS_SHIFT	0
+#define  BCM6368_NAND_STATUS_MASK	(0xfff << BCM6368_NAND_STATUS_SHIFT)
+#define  BCM6368_NAND_ENABLE_SHIFT	16
+#define  BCM6368_NAND_ENABLE_MASK	(0xffff << BCM6368_NAND_ENABLE_SHIFT)
+#define BCM6368_NAND_BASE_ADDR0	0x04
+#define BCM6368_NAND_BASE_ADDR1	0x0c
+
+enum {
+	BCM6368_NP_READ		= BIT(0),
+	BCM6368_BLOCK_ERASE	= BIT(1),
+	BCM6368_COPY_BACK	= BIT(2),
+	BCM6368_PAGE_PGM	= BIT(3),
+	BCM6368_CTRL_READY	= BIT(4),
+	BCM6368_DEV_RBPIN	= BIT(5),
+	BCM6368_ECC_ERR_UNC	= BIT(6),
+	BCM6368_ECC_ERR_CORR	= BIT(7),
+};
+
+static bool bcm6368_nand_intc_ack(struct brcmnand_soc *soc)
+{
+	struct bcm6368_nand_soc *priv =
+			container_of(soc, struct bcm6368_nand_soc, soc);
+	void __iomem *mmio = priv->base + BCM6368_NAND_INT;
+	u32 val = brcmnand_readl(mmio);
+
+	if (val & (BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT)) {
+		/* Ack interrupt */
+		val &= ~BCM6368_NAND_STATUS_MASK;
+		val |= BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT;
+		brcmnand_writel(val, mmio);
+		return true;
+	}
+
+	return false;
+}
+
+static void bcm6368_nand_intc_set(struct brcmnand_soc *soc, bool en)
+{
+	struct bcm6368_nand_soc *priv =
+			container_of(soc, struct bcm6368_nand_soc, soc);
+	void __iomem *mmio = priv->base + BCM6368_NAND_INT;
+	u32 val = brcmnand_readl(mmio);
+
+	/* Don't ack any interrupts */
+	val &= ~BCM6368_NAND_STATUS_MASK;
+
+	if (en)
+		val |= BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT;
+	else
+		val &= ~(BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT);
+
+	brcmnand_writel(val, mmio);
+}
+
+static int bcm6368_nand_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct bcm6368_nand_soc *priv;
+	struct brcmnand_soc *soc;
+	struct resource *res;
+
+	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+	soc = &priv->soc;
+
+	res = platform_get_resource_byname(pdev,
+		IORESOURCE_MEM, "nand-int-base");
+	priv->base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(priv->base))
+		return PTR_ERR(priv->base);
+
+	soc->ctlrdy_ack = bcm6368_nand_intc_ack;
+	soc->ctlrdy_set_enabled = bcm6368_nand_intc_set;
+
+	/* Disable and ack all interrupts  */
+	brcmnand_writel(0, priv->base + BCM6368_NAND_INT);
+	brcmnand_writel(BCM6368_NAND_STATUS_MASK,
+			priv->base + BCM6368_NAND_INT);
+
+	return brcmnand_probe(pdev, soc);
+}
+
+static const struct of_device_id bcm6368_nand_of_match[] = {
+	{ .compatible = "brcm,nand-bcm6368" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, bcm6368_nand_of_match);
+
+static struct platform_driver bcm6368_nand_driver = {
+	.probe			= bcm6368_nand_probe,
+	.remove			= brcmnand_remove,
+	.driver = {
+		.name		= "bcm6368_nand",
+		.pm		= &brcmnand_pm_ops,
+		.of_match_table	= bcm6368_nand_of_match,
+	}
+};
+module_platform_driver(bcm6368_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Simon Arlott");
+MODULE_DESCRIPTION("NAND driver for BCM6368");
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
new file mode 100644
index 0000000..4b90d5b
--- /dev/null
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
@@ -0,0 +1,2633 @@
+/*
+ * Copyright © 2010-2015 Broadcom Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/clk.h>
+#include <linux/version.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/err.h>
+#include <linux/completion.h>
+#include <linux/interrupt.h>
+#include <linux/spinlock.h>
+#include <linux/dma-mapping.h>
+#include <linux/ioport.h>
+#include <linux/bug.h>
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <linux/mm.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#include <linux/slab.h>
+#include <linux/list.h>
+#include <linux/log2.h>
+
+#include "brcmnand.h"
+
+/*
+ * This flag controls if WP stays on between erase/write commands to mitigate
+ * flash corruption due to power glitches. Values:
+ * 0: NAND_WP is not used or not available
+ * 1: NAND_WP is set by default, cleared for erase/write operations
+ * 2: NAND_WP is always cleared
+ */
+static int wp_on = 1;
+module_param(wp_on, int, 0444);
+
+/***********************************************************************
+ * Definitions
+ ***********************************************************************/
+
+#define DRV_NAME			"brcmnand"
+
+#define CMD_NULL			0x00
+#define CMD_PAGE_READ			0x01
+#define CMD_SPARE_AREA_READ		0x02
+#define CMD_STATUS_READ			0x03
+#define CMD_PROGRAM_PAGE		0x04
+#define CMD_PROGRAM_SPARE_AREA		0x05
+#define CMD_COPY_BACK			0x06
+#define CMD_DEVICE_ID_READ		0x07
+#define CMD_BLOCK_ERASE			0x08
+#define CMD_FLASH_RESET			0x09
+#define CMD_BLOCKS_LOCK			0x0a
+#define CMD_BLOCKS_LOCK_DOWN		0x0b
+#define CMD_BLOCKS_UNLOCK		0x0c
+#define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
+#define CMD_PARAMETER_READ		0x0e
+#define CMD_PARAMETER_CHANGE_COL	0x0f
+#define CMD_LOW_LEVEL_OP		0x10
+
+struct brcm_nand_dma_desc {
+	u32 next_desc;
+	u32 next_desc_ext;
+	u32 cmd_irq;
+	u32 dram_addr;
+	u32 dram_addr_ext;
+	u32 tfr_len;
+	u32 total_len;
+	u32 flash_addr;
+	u32 flash_addr_ext;
+	u32 cs;
+	u32 pad2[5];
+	u32 status_valid;
+} __packed;
+
+/* Bitfields for brcm_nand_dma_desc::status_valid */
+#define FLASH_DMA_ECC_ERROR	(1 << 8)
+#define FLASH_DMA_CORR_ERROR	(1 << 9)
+
+/* 512B flash cache in the NAND controller HW */
+#define FC_SHIFT		9U
+#define FC_BYTES		512U
+#define FC_WORDS		(FC_BYTES >> 2)
+
+#define BRCMNAND_MIN_PAGESIZE	512
+#define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
+#define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
+
+#define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
+#define NAND_POLL_STATUS_TIMEOUT_MS	100
+
+/* Controller feature flags */
+enum {
+	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
+	BRCMNAND_HAS_PREFETCH			= BIT(1),
+	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
+	BRCMNAND_HAS_WP				= BIT(3),
+};
+
+struct brcmnand_controller {
+	struct device		*dev;
+	struct nand_controller	controller;
+	void __iomem		*nand_base;
+	void __iomem		*nand_fc; /* flash cache */
+	void __iomem		*flash_dma_base;
+	unsigned int		irq;
+	unsigned int		dma_irq;
+	int			nand_version;
+
+	/* Some SoCs provide custom interrupt status register(s) */
+	struct brcmnand_soc	*soc;
+
+	/* Some SoCs have a gateable clock for the controller */
+	struct clk		*clk;
+
+	int			cmd_pending;
+	bool			dma_pending;
+	struct completion	done;
+	struct completion	dma_done;
+
+	/* List of NAND hosts (one for each chip-select) */
+	struct list_head host_list;
+
+	struct brcm_nand_dma_desc *dma_desc;
+	dma_addr_t		dma_pa;
+
+	/* in-memory cache of the FLASH_CACHE, used only for some commands */
+	u8			flash_cache[FC_BYTES];
+
+	/* Controller revision details */
+	const u16		*reg_offsets;
+	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
+	const u8		*cs_offsets; /* within each chip-select */
+	const u8		*cs0_offsets; /* within CS0, if different */
+	unsigned int		max_block_size;
+	const unsigned int	*block_sizes;
+	unsigned int		max_page_size;
+	const unsigned int	*page_sizes;
+	unsigned int		max_oob;
+	u32			features;
+
+	/* for low-power standby/resume only */
+	u32			nand_cs_nand_select;
+	u32			nand_cs_nand_xor;
+	u32			corr_stat_threshold;
+	u32			flash_dma_mode;
+};
+
+struct brcmnand_cfg {
+	u64			device_size;
+	unsigned int		block_size;
+	unsigned int		page_size;
+	unsigned int		spare_area_size;
+	unsigned int		device_width;
+	unsigned int		col_adr_bytes;
+	unsigned int		blk_adr_bytes;
+	unsigned int		ful_adr_bytes;
+	unsigned int		sector_size_1k;
+	unsigned int		ecc_level;
+	/* use for low-power standby/resume only */
+	u32			acc_control;
+	u32			config;
+	u32			config_ext;
+	u32			timing_1;
+	u32			timing_2;
+};
+
+struct brcmnand_host {
+	struct list_head	node;
+
+	struct nand_chip	chip;
+	struct platform_device	*pdev;
+	int			cs;
+
+	unsigned int		last_cmd;
+	unsigned int		last_byte;
+	u64			last_addr;
+	struct brcmnand_cfg	hwcfg;
+	struct brcmnand_controller *ctrl;
+};
+
+enum brcmnand_reg {
+	BRCMNAND_CMD_START = 0,
+	BRCMNAND_CMD_EXT_ADDRESS,
+	BRCMNAND_CMD_ADDRESS,
+	BRCMNAND_INTFC_STATUS,
+	BRCMNAND_CS_SELECT,
+	BRCMNAND_CS_XOR,
+	BRCMNAND_LL_OP,
+	BRCMNAND_CS0_BASE,
+	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
+	BRCMNAND_CORR_THRESHOLD,
+	BRCMNAND_CORR_THRESHOLD_EXT,
+	BRCMNAND_UNCORR_COUNT,
+	BRCMNAND_CORR_COUNT,
+	BRCMNAND_CORR_EXT_ADDR,
+	BRCMNAND_CORR_ADDR,
+	BRCMNAND_UNCORR_EXT_ADDR,
+	BRCMNAND_UNCORR_ADDR,
+	BRCMNAND_SEMAPHORE,
+	BRCMNAND_ID,
+	BRCMNAND_ID_EXT,
+	BRCMNAND_LL_RDATA,
+	BRCMNAND_OOB_READ_BASE,
+	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
+	BRCMNAND_OOB_WRITE_BASE,
+	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
+	BRCMNAND_FC_BASE,
+};
+
+/* BRCMNAND v4.0 */
+static const u16 brcmnand_regs_v40[] = {
+	[BRCMNAND_CMD_START]		=  0x04,
+	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
+	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
+	[BRCMNAND_INTFC_STATUS]		=  0x6c,
+	[BRCMNAND_CS_SELECT]		=  0x14,
+	[BRCMNAND_CS_XOR]		=  0x18,
+	[BRCMNAND_LL_OP]		= 0x178,
+	[BRCMNAND_CS0_BASE]		=  0x40,
+	[BRCMNAND_CS1_BASE]		=  0xd0,
+	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
+	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
+	[BRCMNAND_UNCORR_COUNT]		=     0,
+	[BRCMNAND_CORR_COUNT]		=     0,
+	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
+	[BRCMNAND_CORR_ADDR]		=  0x74,
+	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
+	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
+	[BRCMNAND_SEMAPHORE]		=  0x58,
+	[BRCMNAND_ID]			=  0x60,
+	[BRCMNAND_ID_EXT]		=  0x64,
+	[BRCMNAND_LL_RDATA]		= 0x17c,
+	[BRCMNAND_OOB_READ_BASE]	=  0x20,
+	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
+	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
+	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
+	[BRCMNAND_FC_BASE]		= 0x200,
+};
+
+/* BRCMNAND v5.0 */
+static const u16 brcmnand_regs_v50[] = {
+	[BRCMNAND_CMD_START]		=  0x04,
+	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
+	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
+	[BRCMNAND_INTFC_STATUS]		=  0x6c,
+	[BRCMNAND_CS_SELECT]		=  0x14,
+	[BRCMNAND_CS_XOR]		=  0x18,
+	[BRCMNAND_LL_OP]		= 0x178,
+	[BRCMNAND_CS0_BASE]		=  0x40,
+	[BRCMNAND_CS1_BASE]		=  0xd0,
+	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
+	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
+	[BRCMNAND_UNCORR_COUNT]		=     0,
+	[BRCMNAND_CORR_COUNT]		=     0,
+	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
+	[BRCMNAND_CORR_ADDR]		=  0x74,
+	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
+	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
+	[BRCMNAND_SEMAPHORE]		=  0x58,
+	[BRCMNAND_ID]			=  0x60,
+	[BRCMNAND_ID_EXT]		=  0x64,
+	[BRCMNAND_LL_RDATA]		= 0x17c,
+	[BRCMNAND_OOB_READ_BASE]	=  0x20,
+	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
+	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
+	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
+	[BRCMNAND_FC_BASE]		= 0x200,
+};
+
+/* BRCMNAND v6.0 - v7.1 */
+static const u16 brcmnand_regs_v60[] = {
+	[BRCMNAND_CMD_START]		=  0x04,
+	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
+	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
+	[BRCMNAND_INTFC_STATUS]		=  0x14,
+	[BRCMNAND_CS_SELECT]		=  0x18,
+	[BRCMNAND_CS_XOR]		=  0x1c,
+	[BRCMNAND_LL_OP]		=  0x20,
+	[BRCMNAND_CS0_BASE]		=  0x50,
+	[BRCMNAND_CS1_BASE]		=     0,
+	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
+	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
+	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
+	[BRCMNAND_CORR_COUNT]		= 0x100,
+	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
+	[BRCMNAND_CORR_ADDR]		= 0x110,
+	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
+	[BRCMNAND_UNCORR_ADDR]		= 0x118,
+	[BRCMNAND_SEMAPHORE]		= 0x150,
+	[BRCMNAND_ID]			= 0x194,
+	[BRCMNAND_ID_EXT]		= 0x198,
+	[BRCMNAND_LL_RDATA]		= 0x19c,
+	[BRCMNAND_OOB_READ_BASE]	= 0x200,
+	[BRCMNAND_OOB_READ_10_BASE]	=     0,
+	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
+	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
+	[BRCMNAND_FC_BASE]		= 0x400,
+};
+
+/* BRCMNAND v7.1 */
+static const u16 brcmnand_regs_v71[] = {
+	[BRCMNAND_CMD_START]		=  0x04,
+	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
+	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
+	[BRCMNAND_INTFC_STATUS]		=  0x14,
+	[BRCMNAND_CS_SELECT]		=  0x18,
+	[BRCMNAND_CS_XOR]		=  0x1c,
+	[BRCMNAND_LL_OP]		=  0x20,
+	[BRCMNAND_CS0_BASE]		=  0x50,
+	[BRCMNAND_CS1_BASE]		=     0,
+	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
+	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
+	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
+	[BRCMNAND_CORR_COUNT]		= 0x100,
+	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
+	[BRCMNAND_CORR_ADDR]		= 0x110,
+	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
+	[BRCMNAND_UNCORR_ADDR]		= 0x118,
+	[BRCMNAND_SEMAPHORE]		= 0x150,
+	[BRCMNAND_ID]			= 0x194,
+	[BRCMNAND_ID_EXT]		= 0x198,
+	[BRCMNAND_LL_RDATA]		= 0x19c,
+	[BRCMNAND_OOB_READ_BASE]	= 0x200,
+	[BRCMNAND_OOB_READ_10_BASE]	=     0,
+	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
+	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
+	[BRCMNAND_FC_BASE]		= 0x400,
+};
+
+/* BRCMNAND v7.2 */
+static const u16 brcmnand_regs_v72[] = {
+	[BRCMNAND_CMD_START]		=  0x04,
+	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
+	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
+	[BRCMNAND_INTFC_STATUS]		=  0x14,
+	[BRCMNAND_CS_SELECT]		=  0x18,
+	[BRCMNAND_CS_XOR]		=  0x1c,
+	[BRCMNAND_LL_OP]		=  0x20,
+	[BRCMNAND_CS0_BASE]		=  0x50,
+	[BRCMNAND_CS1_BASE]		=     0,
+	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
+	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
+	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
+	[BRCMNAND_CORR_COUNT]		= 0x100,
+	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
+	[BRCMNAND_CORR_ADDR]		= 0x110,
+	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
+	[BRCMNAND_UNCORR_ADDR]		= 0x118,
+	[BRCMNAND_SEMAPHORE]		= 0x150,
+	[BRCMNAND_ID]			= 0x194,
+	[BRCMNAND_ID_EXT]		= 0x198,
+	[BRCMNAND_LL_RDATA]		= 0x19c,
+	[BRCMNAND_OOB_READ_BASE]	= 0x200,
+	[BRCMNAND_OOB_READ_10_BASE]	=     0,
+	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
+	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
+	[BRCMNAND_FC_BASE]		= 0x600,
+};
+
+enum brcmnand_cs_reg {
+	BRCMNAND_CS_CFG_EXT = 0,
+	BRCMNAND_CS_CFG,
+	BRCMNAND_CS_ACC_CONTROL,
+	BRCMNAND_CS_TIMING1,
+	BRCMNAND_CS_TIMING2,
+};
+
+/* Per chip-select offsets for v7.1 */
+static const u8 brcmnand_cs_offsets_v71[] = {
+	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
+	[BRCMNAND_CS_CFG_EXT]		= 0x04,
+	[BRCMNAND_CS_CFG]		= 0x08,
+	[BRCMNAND_CS_TIMING1]		= 0x0c,
+	[BRCMNAND_CS_TIMING2]		= 0x10,
+};
+
+/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
+static const u8 brcmnand_cs_offsets[] = {
+	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
+	[BRCMNAND_CS_CFG_EXT]		= 0x04,
+	[BRCMNAND_CS_CFG]		= 0x04,
+	[BRCMNAND_CS_TIMING1]		= 0x08,
+	[BRCMNAND_CS_TIMING2]		= 0x0c,
+};
+
+/* Per chip-select offset for <= v5.0 on CS0 only */
+static const u8 brcmnand_cs_offsets_cs0[] = {
+	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
+	[BRCMNAND_CS_CFG_EXT]		= 0x08,
+	[BRCMNAND_CS_CFG]		= 0x08,
+	[BRCMNAND_CS_TIMING1]		= 0x10,
+	[BRCMNAND_CS_TIMING2]		= 0x14,
+};
+
+/*
+ * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
+ * one config register, but once the bitfields overflowed, newer controllers
+ * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
+ */
+enum {
+	CFG_BLK_ADR_BYTES_SHIFT		= 8,
+	CFG_COL_ADR_BYTES_SHIFT		= 12,
+	CFG_FUL_ADR_BYTES_SHIFT		= 16,
+	CFG_BUS_WIDTH_SHIFT		= 23,
+	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
+	CFG_DEVICE_SIZE_SHIFT		= 24,
+
+	/* Only for pre-v7.1 (with no CFG_EXT register) */
+	CFG_PAGE_SIZE_SHIFT		= 20,
+	CFG_BLK_SIZE_SHIFT		= 28,
+
+	/* Only for v7.1+ (with CFG_EXT register) */
+	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
+	CFG_EXT_BLK_SIZE_SHIFT		= 4,
+};
+
+/* BRCMNAND_INTFC_STATUS */
+enum {
+	INTFC_FLASH_STATUS		= GENMASK(7, 0),
+
+	INTFC_ERASED			= BIT(27),
+	INTFC_OOB_VALID			= BIT(28),
+	INTFC_CACHE_VALID		= BIT(29),
+	INTFC_FLASH_READY		= BIT(30),
+	INTFC_CTLR_READY		= BIT(31),
+};
+
+static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
+{
+	return brcmnand_readl(ctrl->nand_base + offs);
+}
+
+static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
+				 u32 val)
+{
+	brcmnand_writel(val, ctrl->nand_base + offs);
+}
+
+static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
+{
+	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
+	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
+	static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 };
+
+	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
+
+	/* Only support v4.0+? */
+	if (ctrl->nand_version < 0x0400) {
+		dev_err(ctrl->dev, "version %#x not supported\n",
+			ctrl->nand_version);
+		return -ENODEV;
+	}
+
+	/* Register offsets */
+	if (ctrl->nand_version >= 0x0702)
+		ctrl->reg_offsets = brcmnand_regs_v72;
+	else if (ctrl->nand_version >= 0x0701)
+		ctrl->reg_offsets = brcmnand_regs_v71;
+	else if (ctrl->nand_version >= 0x0600)
+		ctrl->reg_offsets = brcmnand_regs_v60;
+	else if (ctrl->nand_version >= 0x0500)
+		ctrl->reg_offsets = brcmnand_regs_v50;
+	else if (ctrl->nand_version >= 0x0400)
+		ctrl->reg_offsets = brcmnand_regs_v40;
+
+	/* Chip-select stride */
+	if (ctrl->nand_version >= 0x0701)
+		ctrl->reg_spacing = 0x14;
+	else
+		ctrl->reg_spacing = 0x10;
+
+	/* Per chip-select registers */
+	if (ctrl->nand_version >= 0x0701) {
+		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
+	} else {
+		ctrl->cs_offsets = brcmnand_cs_offsets;
+
+		/* v5.0 and earlier has a different CS0 offset layout */
+		if (ctrl->nand_version <= 0x0500)
+			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
+	}
+
+	/* Page / block sizes */
+	if (ctrl->nand_version >= 0x0701) {
+		/* >= v7.1 use nice power-of-2 values! */
+		ctrl->max_page_size = 16 * 1024;
+		ctrl->max_block_size = 2 * 1024 * 1024;
+	} else {
+		ctrl->page_sizes = page_sizes;
+		if (ctrl->nand_version >= 0x0600)
+			ctrl->block_sizes = block_sizes_v6;
+		else
+			ctrl->block_sizes = block_sizes_v4;
+
+		if (ctrl->nand_version < 0x0400) {
+			ctrl->max_page_size = 4096;
+			ctrl->max_block_size = 512 * 1024;
+		}
+	}
+
+	/* Maximum spare area sector size (per 512B) */
+	if (ctrl->nand_version >= 0x0702)
+		ctrl->max_oob = 128;
+	else if (ctrl->nand_version >= 0x0600)
+		ctrl->max_oob = 64;
+	else if (ctrl->nand_version >= 0x0500)
+		ctrl->max_oob = 32;
+	else
+		ctrl->max_oob = 16;
+
+	/* v6.0 and newer (except v6.1) have prefetch support */
+	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
+		ctrl->features |= BRCMNAND_HAS_PREFETCH;
+
+	/*
+	 * v6.x has cache mode, but it's implemented differently. Ignore it for
+	 * now.
+	 */
+	if (ctrl->nand_version >= 0x0700)
+		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
+
+	if (ctrl->nand_version >= 0x0500)
+		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
+
+	if (ctrl->nand_version >= 0x0700)
+		ctrl->features |= BRCMNAND_HAS_WP;
+	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
+		ctrl->features |= BRCMNAND_HAS_WP;
+
+	return 0;
+}
+
+static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
+		enum brcmnand_reg reg)
+{
+	u16 offs = ctrl->reg_offsets[reg];
+
+	if (offs)
+		return nand_readreg(ctrl, offs);
+	else
+		return 0;
+}
+
+static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
+				      enum brcmnand_reg reg, u32 val)
+{
+	u16 offs = ctrl->reg_offsets[reg];
+
+	if (offs)
+		nand_writereg(ctrl, offs, val);
+}
+
+static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
+				    enum brcmnand_reg reg, u32 mask, unsigned
+				    int shift, u32 val)
+{
+	u32 tmp = brcmnand_read_reg(ctrl, reg);
+
+	tmp &= ~mask;
+	tmp |= val << shift;
+	brcmnand_write_reg(ctrl, reg, tmp);
+}
+
+static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
+{
+	return __raw_readl(ctrl->nand_fc + word * 4);
+}
+
+static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
+				     int word, u32 val)
+{
+	__raw_writel(val, ctrl->nand_fc + word * 4);
+}
+
+static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
+				     enum brcmnand_cs_reg reg)
+{
+	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
+	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
+	u8 cs_offs;
+
+	if (cs == 0 && ctrl->cs0_offsets)
+		cs_offs = ctrl->cs0_offsets[reg];
+	else
+		cs_offs = ctrl->cs_offsets[reg];
+
+	if (cs && offs_cs1)
+		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
+
+	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
+}
+
+static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
+{
+	if (ctrl->nand_version < 0x0600)
+		return 1;
+	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
+}
+
+static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	unsigned int shift = 0, bits;
+	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
+	int cs = host->cs;
+
+	if (ctrl->nand_version >= 0x0702)
+		bits = 7;
+	else if (ctrl->nand_version >= 0x0600)
+		bits = 6;
+	else if (ctrl->nand_version >= 0x0500)
+		bits = 5;
+	else
+		bits = 4;
+
+	if (ctrl->nand_version >= 0x0702) {
+		if (cs >= 4)
+			reg = BRCMNAND_CORR_THRESHOLD_EXT;
+		shift = (cs % 4) * bits;
+	} else if (ctrl->nand_version >= 0x0600) {
+		if (cs >= 5)
+			reg = BRCMNAND_CORR_THRESHOLD_EXT;
+		shift = (cs % 5) * bits;
+	}
+	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
+}
+
+static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
+{
+	if (ctrl->nand_version < 0x0602)
+		return 24;
+	return 0;
+}
+
+/***********************************************************************
+ * NAND ACC CONTROL bitfield
+ *
+ * Some bits have remained constant throughout hardware revision, while
+ * others have shifted around.
+ ***********************************************************************/
+
+/* Constant for all versions (where supported) */
+enum {
+	/* See BRCMNAND_HAS_CACHE_MODE */
+	ACC_CONTROL_CACHE_MODE				= BIT(22),
+
+	/* See BRCMNAND_HAS_PREFETCH */
+	ACC_CONTROL_PREFETCH				= BIT(23),
+
+	ACC_CONTROL_PAGE_HIT				= BIT(24),
+	ACC_CONTROL_WR_PREEMPT				= BIT(25),
+	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
+	ACC_CONTROL_RD_ERASED				= BIT(27),
+	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
+	ACC_CONTROL_WR_ECC				= BIT(30),
+	ACC_CONTROL_RD_ECC				= BIT(31),
+};
+
+static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
+{
+	if (ctrl->nand_version >= 0x0702)
+		return GENMASK(7, 0);
+	else if (ctrl->nand_version >= 0x0600)
+		return GENMASK(6, 0);
+	else
+		return GENMASK(5, 0);
+}
+
+#define NAND_ACC_CONTROL_ECC_SHIFT	16
+#define NAND_ACC_CONTROL_ECC_EXT_SHIFT	13
+
+static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
+{
+	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
+
+	mask <<= NAND_ACC_CONTROL_ECC_SHIFT;
+
+	/* v7.2 includes additional ECC levels */
+	if (ctrl->nand_version >= 0x0702)
+		mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT;
+
+	return mask;
+}
+
+static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
+	u32 acc_control = nand_readreg(ctrl, offs);
+	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
+
+	if (en) {
+		acc_control |= ecc_flags; /* enable RD/WR ECC */
+		acc_control |= host->hwcfg.ecc_level
+			       << NAND_ACC_CONTROL_ECC_SHIFT;
+	} else {
+		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
+		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
+	}
+
+	nand_writereg(ctrl, offs, acc_control);
+}
+
+static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
+{
+	if (ctrl->nand_version >= 0x0702)
+		return 9;
+	else if (ctrl->nand_version >= 0x0600)
+		return 7;
+	else if (ctrl->nand_version >= 0x0500)
+		return 6;
+	else
+		return -1;
+}
+
+static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	int shift = brcmnand_sector_1k_shift(ctrl);
+	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
+						  BRCMNAND_CS_ACC_CONTROL);
+
+	if (shift < 0)
+		return 0;
+
+	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
+}
+
+static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	int shift = brcmnand_sector_1k_shift(ctrl);
+	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
+						  BRCMNAND_CS_ACC_CONTROL);
+	u32 tmp;
+
+	if (shift < 0)
+		return;
+
+	tmp = nand_readreg(ctrl, acc_control_offs);
+	tmp &= ~(1 << shift);
+	tmp |= (!!val) << shift;
+	nand_writereg(ctrl, acc_control_offs, tmp);
+}
+
+/***********************************************************************
+ * CS_NAND_SELECT
+ ***********************************************************************/
+
+enum {
+	CS_SELECT_NAND_WP			= BIT(29),
+	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
+};
+
+static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
+				    u32 mask, u32 expected_val,
+				    unsigned long timeout_ms)
+{
+	unsigned long limit;
+	u32 val;
+
+	if (!timeout_ms)
+		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
+
+	limit = jiffies + msecs_to_jiffies(timeout_ms);
+	do {
+		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
+		if ((val & mask) == expected_val)
+			return 0;
+
+		cpu_relax();
+	} while (time_after(limit, jiffies));
+
+	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
+		 expected_val, val & mask);
+
+	return -ETIMEDOUT;
+}
+
+static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
+{
+	u32 val = en ? CS_SELECT_NAND_WP : 0;
+
+	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
+}
+
+/***********************************************************************
+ * Flash DMA
+ ***********************************************************************/
+
+enum flash_dma_reg {
+	FLASH_DMA_REVISION		= 0x00,
+	FLASH_DMA_FIRST_DESC		= 0x04,
+	FLASH_DMA_FIRST_DESC_EXT	= 0x08,
+	FLASH_DMA_CTRL			= 0x0c,
+	FLASH_DMA_MODE			= 0x10,
+	FLASH_DMA_STATUS		= 0x14,
+	FLASH_DMA_INTERRUPT_DESC	= 0x18,
+	FLASH_DMA_INTERRUPT_DESC_EXT	= 0x1c,
+	FLASH_DMA_ERROR_STATUS		= 0x20,
+	FLASH_DMA_CURRENT_DESC		= 0x24,
+	FLASH_DMA_CURRENT_DESC_EXT	= 0x28,
+};
+
+static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
+{
+	return ctrl->flash_dma_base;
+}
+
+static inline bool flash_dma_buf_ok(const void *buf)
+{
+	return buf && !is_vmalloc_addr(buf) &&
+		likely(IS_ALIGNED((uintptr_t)buf, 4));
+}
+
+static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
+				    u32 val)
+{
+	brcmnand_writel(val, ctrl->flash_dma_base + offs);
+}
+
+static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
+{
+	return brcmnand_readl(ctrl->flash_dma_base + offs);
+}
+
+/* Low-level operation types: command, address, write, or read */
+enum brcmnand_llop_type {
+	LL_OP_CMD,
+	LL_OP_ADDR,
+	LL_OP_WR,
+	LL_OP_RD,
+};
+
+/***********************************************************************
+ * Internal support functions
+ ***********************************************************************/
+
+static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
+				  struct brcmnand_cfg *cfg)
+{
+	if (ctrl->nand_version <= 0x0701)
+		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
+			cfg->ecc_level == 15;
+	else
+		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
+			cfg->ecc_level == 15) ||
+			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
+}
+
+/*
+ * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
+ * the layout/configuration.
+ * Returns -ERRCODE on failure.
+ */
+static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
+					  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_cfg *cfg = &host->hwcfg;
+	int sas = cfg->spare_area_size << cfg->sector_size_1k;
+	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
+
+	if (section >= sectors)
+		return -ERANGE;
+
+	oobregion->offset = (section * sas) + 6;
+	oobregion->length = 3;
+
+	return 0;
+}
+
+static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
+					   struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_cfg *cfg = &host->hwcfg;
+	int sas = cfg->spare_area_size << cfg->sector_size_1k;
+	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
+
+	if (section >= sectors * 2)
+		return -ERANGE;
+
+	oobregion->offset = (section / 2) * sas;
+
+	if (section & 1) {
+		oobregion->offset += 9;
+		oobregion->length = 7;
+	} else {
+		oobregion->length = 6;
+
+		/* First sector of each page may have BBI */
+		if (!section) {
+			/*
+			 * Small-page NAND use byte 6 for BBI while large-page
+			 * NAND use byte 0.
+			 */
+			if (cfg->page_size > 512)
+				oobregion->offset++;
+			oobregion->length--;
+		}
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
+	.ecc = brcmnand_hamming_ooblayout_ecc,
+	.free = brcmnand_hamming_ooblayout_free,
+};
+
+static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_cfg *cfg = &host->hwcfg;
+	int sas = cfg->spare_area_size << cfg->sector_size_1k;
+	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
+
+	if (section >= sectors)
+		return -ERANGE;
+
+	oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes;
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
+					  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_cfg *cfg = &host->hwcfg;
+	int sas = cfg->spare_area_size << cfg->sector_size_1k;
+	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
+
+	if (section >= sectors)
+		return -ERANGE;
+
+	if (sas <= chip->ecc.bytes)
+		return 0;
+
+	oobregion->offset = section * sas;
+	oobregion->length = sas - chip->ecc.bytes;
+
+	if (!section) {
+		oobregion->offset++;
+		oobregion->length--;
+	}
+
+	return 0;
+}
+
+static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
+					  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_cfg *cfg = &host->hwcfg;
+	int sas = cfg->spare_area_size << cfg->sector_size_1k;
+
+	if (section > 1 || sas - chip->ecc.bytes < 6 ||
+	    (section && sas - chip->ecc.bytes == 6))
+		return -ERANGE;
+
+	if (!section) {
+		oobregion->offset = 0;
+		oobregion->length = 5;
+	} else {
+		oobregion->offset = 6;
+		oobregion->length = sas - chip->ecc.bytes - 6;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
+	.ecc = brcmnand_bch_ooblayout_ecc,
+	.free = brcmnand_bch_ooblayout_free_lp,
+};
+
+static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
+	.ecc = brcmnand_bch_ooblayout_ecc,
+	.free = brcmnand_bch_ooblayout_free_sp,
+};
+
+static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
+{
+	struct brcmnand_cfg *p = &host->hwcfg;
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
+	unsigned int ecc_level = p->ecc_level;
+	int sas = p->spare_area_size << p->sector_size_1k;
+	int sectors = p->page_size / (512 << p->sector_size_1k);
+
+	if (p->sector_size_1k)
+		ecc_level <<= 1;
+
+	if (is_hamming_ecc(host->ctrl, p)) {
+		ecc->bytes = 3 * sectors;
+		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
+		return 0;
+	}
+
+	/*
+	 * CONTROLLER_VERSION:
+	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
+	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
+	 * But we will just be conservative.
+	 */
+	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
+	if (p->page_size == 512)
+		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
+	else
+		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
+
+	if (ecc->bytes >= sas) {
+		dev_err(&host->pdev->dev,
+			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
+			ecc->bytes, sas);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static void brcmnand_wp(struct mtd_info *mtd, int wp)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+
+	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
+		static int old_wp = -1;
+		int ret;
+
+		if (old_wp != wp) {
+			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
+			old_wp = wp;
+		}
+
+		/*
+		 * make sure ctrl/flash ready before and after
+		 * changing state of #WP pin
+		 */
+		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
+					       NAND_STATUS_READY,
+					       NAND_CTRL_RDY |
+					       NAND_STATUS_READY, 0);
+		if (ret)
+			return;
+
+		brcmnand_set_wp(ctrl, wp);
+		nand_status_op(chip, NULL);
+		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
+		ret = bcmnand_ctrl_poll_status(ctrl,
+					       NAND_CTRL_RDY |
+					       NAND_STATUS_READY |
+					       NAND_STATUS_WP,
+					       NAND_CTRL_RDY |
+					       NAND_STATUS_READY |
+					       (wp ? 0 : NAND_STATUS_WP), 0);
+
+		if (ret)
+			dev_err_ratelimited(&host->pdev->dev,
+					    "nand #WP expected %s\n",
+					    wp ? "on" : "off");
+	}
+}
+
+/* Helper functions for reading and writing OOB registers */
+static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
+{
+	u16 offset0, offset10, reg_offs;
+
+	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
+	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
+
+	if (offs >= ctrl->max_oob)
+		return 0x77;
+
+	if (offs >= 16 && offset10)
+		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
+	else
+		reg_offs = offset0 + (offs & ~0x03);
+
+	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
+}
+
+static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
+				 u32 data)
+{
+	u16 offset0, offset10, reg_offs;
+
+	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
+	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
+
+	if (offs >= ctrl->max_oob)
+		return;
+
+	if (offs >= 16 && offset10)
+		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
+	else
+		reg_offs = offset0 + (offs & ~0x03);
+
+	nand_writereg(ctrl, reg_offs, data);
+}
+
+/*
+ * read_oob_from_regs - read data from OOB registers
+ * @ctrl: NAND controller
+ * @i: sub-page sector index
+ * @oob: buffer to read to
+ * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
+ * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
+ */
+static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
+			      int sas, int sector_1k)
+{
+	int tbytes = sas << sector_1k;
+	int j;
+
+	/* Adjust OOB values for 1K sector size */
+	if (sector_1k && (i & 0x01))
+		tbytes = max(0, tbytes - (int)ctrl->max_oob);
+	tbytes = min_t(int, tbytes, ctrl->max_oob);
+
+	for (j = 0; j < tbytes; j++)
+		oob[j] = oob_reg_read(ctrl, j);
+	return tbytes;
+}
+
+/*
+ * write_oob_to_regs - write data to OOB registers
+ * @i: sub-page sector index
+ * @oob: buffer to write from
+ * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
+ * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
+ */
+static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
+			     const u8 *oob, int sas, int sector_1k)
+{
+	int tbytes = sas << sector_1k;
+	int j;
+
+	/* Adjust OOB values for 1K sector size */
+	if (sector_1k && (i & 0x01))
+		tbytes = max(0, tbytes - (int)ctrl->max_oob);
+	tbytes = min_t(int, tbytes, ctrl->max_oob);
+
+	for (j = 0; j < tbytes; j += 4)
+		oob_reg_write(ctrl, j,
+				(oob[j + 0] << 24) |
+				(oob[j + 1] << 16) |
+				(oob[j + 2] <<  8) |
+				(oob[j + 3] <<  0));
+	return tbytes;
+}
+
+static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
+{
+	struct brcmnand_controller *ctrl = data;
+
+	/* Discard all NAND_CTLRDY interrupts during DMA */
+	if (ctrl->dma_pending)
+		return IRQ_HANDLED;
+
+	complete(&ctrl->done);
+	return IRQ_HANDLED;
+}
+
+/* Handle SoC-specific interrupt hardware */
+static irqreturn_t brcmnand_irq(int irq, void *data)
+{
+	struct brcmnand_controller *ctrl = data;
+
+	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
+		return brcmnand_ctlrdy_irq(irq, data);
+
+	return IRQ_NONE;
+}
+
+static irqreturn_t brcmnand_dma_irq(int irq, void *data)
+{
+	struct brcmnand_controller *ctrl = data;
+
+	complete(&ctrl->dma_done);
+
+	return IRQ_HANDLED;
+}
+
+static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	int ret;
+
+	dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
+		brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
+	BUG_ON(ctrl->cmd_pending != 0);
+	ctrl->cmd_pending = cmd;
+
+	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
+	WARN_ON(ret);
+
+	mb(); /* flush previous writes */
+	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
+			   cmd << brcmnand_cmd_shift(ctrl));
+}
+
+/***********************************************************************
+ * NAND MTD API: read/program/erase
+ ***********************************************************************/
+
+static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat,
+	unsigned int ctrl)
+{
+	/* intentionally left blank */
+}
+
+static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+	unsigned long timeo = msecs_to_jiffies(100);
+
+	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
+	if (ctrl->cmd_pending &&
+			wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
+		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
+					>> brcmnand_cmd_shift(ctrl);
+
+		dev_err_ratelimited(ctrl->dev,
+			"timeout waiting for command %#02x\n", cmd);
+		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
+			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
+	}
+	ctrl->cmd_pending = 0;
+	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
+				 INTFC_FLASH_STATUS;
+}
+
+enum {
+	LLOP_RE				= BIT(16),
+	LLOP_WE				= BIT(17),
+	LLOP_ALE			= BIT(18),
+	LLOP_CLE			= BIT(19),
+	LLOP_RETURN_IDLE		= BIT(31),
+
+	LLOP_DATA_MASK			= GENMASK(15, 0),
+};
+
+static int brcmnand_low_level_op(struct brcmnand_host *host,
+				 enum brcmnand_llop_type type, u32 data,
+				 bool last_op)
+{
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+	struct nand_chip *chip = &host->chip;
+	struct brcmnand_controller *ctrl = host->ctrl;
+	u32 tmp;
+
+	tmp = data & LLOP_DATA_MASK;
+	switch (type) {
+	case LL_OP_CMD:
+		tmp |= LLOP_WE | LLOP_CLE;
+		break;
+	case LL_OP_ADDR:
+		/* WE | ALE */
+		tmp |= LLOP_WE | LLOP_ALE;
+		break;
+	case LL_OP_WR:
+		/* WE */
+		tmp |= LLOP_WE;
+		break;
+	case LL_OP_RD:
+		/* RE */
+		tmp |= LLOP_RE;
+		break;
+	}
+	if (last_op)
+		/* RETURN_IDLE */
+		tmp |= LLOP_RETURN_IDLE;
+
+	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
+
+	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
+	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
+
+	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
+	return brcmnand_waitfunc(mtd, chip);
+}
+
+static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command,
+			     int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+	u64 addr = (u64)page_addr << chip->page_shift;
+	int native_cmd = 0;
+
+	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
+			command == NAND_CMD_RNDOUT)
+		addr = (u64)column;
+	/* Avoid propagating a negative, don't-care address */
+	else if (page_addr < 0)
+		addr = 0;
+
+	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
+		(unsigned long long)addr);
+
+	host->last_cmd = command;
+	host->last_byte = 0;
+	host->last_addr = addr;
+
+	switch (command) {
+	case NAND_CMD_RESET:
+		native_cmd = CMD_FLASH_RESET;
+		break;
+	case NAND_CMD_STATUS:
+		native_cmd = CMD_STATUS_READ;
+		break;
+	case NAND_CMD_READID:
+		native_cmd = CMD_DEVICE_ID_READ;
+		break;
+	case NAND_CMD_READOOB:
+		native_cmd = CMD_SPARE_AREA_READ;
+		break;
+	case NAND_CMD_ERASE1:
+		native_cmd = CMD_BLOCK_ERASE;
+		brcmnand_wp(mtd, 0);
+		break;
+	case NAND_CMD_PARAM:
+		native_cmd = CMD_PARAMETER_READ;
+		break;
+	case NAND_CMD_SET_FEATURES:
+	case NAND_CMD_GET_FEATURES:
+		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
+		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
+		break;
+	case NAND_CMD_RNDOUT:
+		native_cmd = CMD_PARAMETER_CHANGE_COL;
+		addr &= ~((u64)(FC_BYTES - 1));
+		/*
+		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
+		 * NB: hwcfg.sector_size_1k may not be initialized yet
+		 */
+		if (brcmnand_get_sector_size_1k(host)) {
+			host->hwcfg.sector_size_1k =
+				brcmnand_get_sector_size_1k(host);
+			brcmnand_set_sector_size_1k(host, 0);
+		}
+		break;
+	}
+
+	if (!native_cmd)
+		return;
+
+	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
+		(host->cs << 16) | ((addr >> 32) & 0xffff));
+	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
+	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
+	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+
+	brcmnand_send_cmd(host, native_cmd);
+	brcmnand_waitfunc(mtd, chip);
+
+	if (native_cmd == CMD_PARAMETER_READ ||
+			native_cmd == CMD_PARAMETER_CHANGE_COL) {
+		/* Copy flash cache word-wise */
+		u32 *flash_cache = (u32 *)ctrl->flash_cache;
+		int i;
+
+		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
+
+		/*
+		 * Must cache the FLASH_CACHE now, since changes in
+		 * SECTOR_SIZE_1K may invalidate it
+		 */
+		for (i = 0; i < FC_WORDS; i++)
+			/*
+			 * Flash cache is big endian for parameter pages, at
+			 * least on STB SoCs
+			 */
+			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
+
+		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
+
+		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
+		if (host->hwcfg.sector_size_1k)
+			brcmnand_set_sector_size_1k(host,
+						    host->hwcfg.sector_size_1k);
+	}
+
+	/* Re-enable protection is necessary only after erase */
+	if (command == NAND_CMD_ERASE1)
+		brcmnand_wp(mtd, 1);
+}
+
+static uint8_t brcmnand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+	uint8_t ret = 0;
+	int addr, offs;
+
+	switch (host->last_cmd) {
+	case NAND_CMD_READID:
+		if (host->last_byte < 4)
+			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
+				(24 - (host->last_byte << 3));
+		else if (host->last_byte < 8)
+			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
+				(56 - (host->last_byte << 3));
+		break;
+
+	case NAND_CMD_READOOB:
+		ret = oob_reg_read(ctrl, host->last_byte);
+		break;
+
+	case NAND_CMD_STATUS:
+		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
+					INTFC_FLASH_STATUS;
+		if (wp_on) /* hide WP status */
+			ret |= NAND_STATUS_WP;
+		break;
+
+	case NAND_CMD_PARAM:
+	case NAND_CMD_RNDOUT:
+		addr = host->last_addr + host->last_byte;
+		offs = addr & (FC_BYTES - 1);
+
+		/* At FC_BYTES boundary, switch to next column */
+		if (host->last_byte > 0 && offs == 0)
+			nand_change_read_column_op(chip, addr, NULL, 0, false);
+
+		ret = ctrl->flash_cache[offs];
+		break;
+	case NAND_CMD_GET_FEATURES:
+		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
+			ret = 0;
+		} else {
+			bool last = host->last_byte ==
+				ONFI_SUBFEATURE_PARAM_LEN - 1;
+			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
+			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
+		}
+	}
+
+	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
+	host->last_byte++;
+
+	return ret;
+}
+
+static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++, buf++)
+		*buf = brcmnand_read_byte(mtd);
+}
+
+static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				   int len)
+{
+	int i;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+
+	switch (host->last_cmd) {
+	case NAND_CMD_SET_FEATURES:
+		for (i = 0; i < len; i++)
+			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
+						  (i + 1) == len);
+		break;
+	default:
+		BUG();
+		break;
+	}
+}
+
+/**
+ * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
+ * following ahead of time:
+ *  - Is this descriptor the beginning or end of a linked list?
+ *  - What is the (DMA) address of the next descriptor in the linked list?
+ */
+static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
+				  struct brcm_nand_dma_desc *desc, u64 addr,
+				  dma_addr_t buf, u32 len, u8 dma_cmd,
+				  bool begin, bool end,
+				  dma_addr_t next_desc)
+{
+	memset(desc, 0, sizeof(*desc));
+	/* Descriptors are written in native byte order (wordwise) */
+	desc->next_desc = lower_32_bits(next_desc);
+	desc->next_desc_ext = upper_32_bits(next_desc);
+	desc->cmd_irq = (dma_cmd << 24) |
+		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
+		(!!begin) | ((!!end) << 1); /* head, tail */
+#ifdef CONFIG_CPU_BIG_ENDIAN
+	desc->cmd_irq |= 0x01 << 12;
+#endif
+	desc->dram_addr = lower_32_bits(buf);
+	desc->dram_addr_ext = upper_32_bits(buf);
+	desc->tfr_len = len;
+	desc->total_len = len;
+	desc->flash_addr = lower_32_bits(addr);
+	desc->flash_addr_ext = upper_32_bits(addr);
+	desc->cs = host->cs;
+	desc->status_valid = 0x01;
+	return 0;
+}
+
+/**
+ * Kick the FLASH_DMA engine, with a given DMA descriptor
+ */
+static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	unsigned long timeo = msecs_to_jiffies(100);
+
+	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
+	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
+	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
+	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
+
+	/* Start FLASH_DMA engine */
+	ctrl->dma_pending = true;
+	mb(); /* flush previous writes */
+	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
+
+	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
+		dev_err(ctrl->dev,
+				"timeout waiting for DMA; status %#x, error status %#x\n",
+				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
+				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
+	}
+	ctrl->dma_pending = false;
+	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
+}
+
+static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
+			      u32 len, u8 dma_cmd)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	dma_addr_t buf_pa;
+	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
+
+	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
+	if (dma_mapping_error(ctrl->dev, buf_pa)) {
+		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
+		return -ENOMEM;
+	}
+
+	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
+				   dma_cmd, true, true, 0);
+
+	brcmnand_dma_run(host, ctrl->dma_pa);
+
+	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
+
+	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
+		return -EBADMSG;
+	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
+		return -EUCLEAN;
+
+	return 0;
+}
+
+/*
+ * Assumes proper CS is already set
+ */
+static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
+				u64 addr, unsigned int trans, u32 *buf,
+				u8 *oob, u64 *err_addr)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+	int i, j, ret = 0;
+
+	/* Clear error addresses */
+	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
+	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
+	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
+	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
+
+	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
+			(host->cs << 16) | ((addr >> 32) & 0xffff));
+	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
+
+	for (i = 0; i < trans; i++, addr += FC_BYTES) {
+		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
+				   lower_32_bits(addr));
+		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
+		brcmnand_send_cmd(host, CMD_PAGE_READ);
+		brcmnand_waitfunc(mtd, chip);
+
+		if (likely(buf)) {
+			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
+
+			for (j = 0; j < FC_WORDS; j++, buf++)
+				*buf = brcmnand_read_fc(ctrl, j);
+
+			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
+		}
+
+		if (oob)
+			oob += read_oob_from_regs(ctrl, i, oob,
+					mtd->oobsize / trans,
+					host->hwcfg.sector_size_1k);
+
+		if (!ret) {
+			*err_addr = brcmnand_read_reg(ctrl,
+					BRCMNAND_UNCORR_ADDR) |
+				((u64)(brcmnand_read_reg(ctrl,
+						BRCMNAND_UNCORR_EXT_ADDR)
+					& 0xffff) << 32);
+			if (*err_addr)
+				ret = -EBADMSG;
+		}
+
+		if (!ret) {
+			*err_addr = brcmnand_read_reg(ctrl,
+					BRCMNAND_CORR_ADDR) |
+				((u64)(brcmnand_read_reg(ctrl,
+						BRCMNAND_CORR_EXT_ADDR)
+					& 0xffff) << 32);
+			if (*err_addr)
+				ret = -EUCLEAN;
+		}
+	}
+
+	return ret;
+}
+
+/*
+ * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
+ * error
+ *
+ * Because the HW ECC signals an ECC error if an erase paged has even a single
+ * bitflip, we must check each ECC error to see if it is actually an erased
+ * page with bitflips, not a truly corrupted page.
+ *
+ * On a real error, return a negative error code (-EBADMSG for ECC error), and
+ * buf will contain raw data.
+ * Otherwise, buf gets filled with 0xffs and return the maximum number of
+ * bitflips-per-ECC-sector to the caller.
+ *
+ */
+static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
+		  struct nand_chip *chip, void *buf, u64 addr)
+{
+	int i, sas;
+	void *oob = chip->oob_poi;
+	int bitflips = 0;
+	int page = addr >> chip->page_shift;
+	int ret;
+
+	if (!buf) {
+		buf = chip->data_buf;
+		/* Invalidate page cache */
+		chip->pagebuf = -1;
+	}
+
+	sas = mtd->oobsize / chip->ecc.steps;
+
+	/* read without ecc for verification */
+	ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page);
+	if (ret)
+		return ret;
+
+	for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
+		ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
+						  oob, sas, NULL, 0,
+						  chip->ecc.strength);
+		if (ret < 0)
+			return ret;
+
+		bitflips = max(bitflips, ret);
+	}
+
+	return bitflips;
+}
+
+static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
+			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+	u64 err_addr = 0;
+	int err;
+	bool retry = true;
+
+	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
+
+try_dmaread:
+	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
+
+	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
+		err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
+					     CMD_PAGE_READ);
+		if (err) {
+			if (mtd_is_bitflip_or_eccerr(err))
+				err_addr = addr;
+			else
+				return -EIO;
+		}
+	} else {
+		if (oob)
+			memset(oob, 0x99, mtd->oobsize);
+
+		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
+					       oob, &err_addr);
+	}
+
+	if (mtd_is_eccerr(err)) {
+		/*
+		 * On controller version and 7.0, 7.1 , DMA read after a
+		 * prior PIO read that reported uncorrectable error,
+		 * the DMA engine captures this error following DMA read
+		 * cleared only on subsequent DMA read, so just retry once
+		 * to clear a possible false error reported for current DMA
+		 * read
+		 */
+		if ((ctrl->nand_version == 0x0700) ||
+		    (ctrl->nand_version == 0x0701)) {
+			if (retry) {
+				retry = false;
+				goto try_dmaread;
+			}
+		}
+
+		/*
+		 * Controller version 7.2 has hw encoder to detect erased page
+		 * bitflips, apply sw verification for older controllers only
+		 */
+		if (ctrl->nand_version < 0x0702) {
+			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
+							      addr);
+			/* erased page bitflips corrected */
+			if (err >= 0)
+				return err;
+		}
+
+		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
+			(unsigned long long)err_addr);
+		mtd->ecc_stats.failed++;
+		/* NAND layer expects zero on ECC errors */
+		return 0;
+	}
+
+	if (mtd_is_bitflip(err)) {
+		unsigned int corrected = brcmnand_count_corrected(ctrl);
+
+		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
+			(unsigned long long)err_addr);
+		mtd->ecc_stats.corrected += corrected;
+		/* Always exceed the software-imposed threshold */
+		return max(mtd->bitflip_threshold, corrected);
+	}
+
+	return 0;
+}
+
+static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			      uint8_t *buf, int oob_required, int page)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	return brcmnand_read(mtd, chip, host->last_addr,
+			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
+}
+
+static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				  uint8_t *buf, int oob_required, int page)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
+	int ret;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	brcmnand_set_ecc_enabled(host, 0);
+	ret = brcmnand_read(mtd, chip, host->last_addr,
+			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
+	brcmnand_set_ecc_enabled(host, 1);
+	return ret;
+}
+
+static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			     int page)
+{
+	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
+			mtd->writesize >> FC_SHIFT,
+			NULL, (u8 *)chip->oob_poi);
+}
+
+static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 int page)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+
+	brcmnand_set_ecc_enabled(host, 0);
+	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
+		mtd->writesize >> FC_SHIFT,
+		NULL, (u8 *)chip->oob_poi);
+	brcmnand_set_ecc_enabled(host, 1);
+	return 0;
+}
+
+static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
+			  u64 addr, const u32 *buf, u8 *oob)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	struct brcmnand_controller *ctrl = host->ctrl;
+	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
+	int status, ret = 0;
+
+	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
+
+	if (unlikely((unsigned long)buf & 0x03)) {
+		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
+		buf = (u32 *)((unsigned long)buf & ~0x03);
+	}
+
+	brcmnand_wp(mtd, 0);
+
+	for (i = 0; i < ctrl->max_oob; i += 4)
+		oob_reg_write(ctrl, i, 0xffffffff);
+
+	if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
+		if (brcmnand_dma_trans(host, addr, (u32 *)buf,
+					mtd->writesize, CMD_PROGRAM_PAGE))
+			ret = -EIO;
+		goto out;
+	}
+
+	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
+			(host->cs << 16) | ((addr >> 32) & 0xffff));
+	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
+
+	for (i = 0; i < trans; i++, addr += FC_BYTES) {
+		/* full address MUST be set before populating FC */
+		brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
+				   lower_32_bits(addr));
+		(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+
+		if (buf) {
+			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
+
+			for (j = 0; j < FC_WORDS; j++, buf++)
+				brcmnand_write_fc(ctrl, j, *buf);
+
+			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
+		} else if (oob) {
+			for (j = 0; j < FC_WORDS; j++)
+				brcmnand_write_fc(ctrl, j, 0xffffffff);
+		}
+
+		if (oob) {
+			oob += write_oob_to_regs(ctrl, i, oob,
+					mtd->oobsize / trans,
+					host->hwcfg.sector_size_1k);
+		}
+
+		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
+		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
+		status = brcmnand_waitfunc(mtd, chip);
+
+		if (status & NAND_STATUS_FAIL) {
+			dev_info(ctrl->dev, "program failed at %llx\n",
+				(unsigned long long)addr);
+			ret = -EIO;
+			goto out;
+		}
+	}
+out:
+	brcmnand_wp(mtd, 1);
+	return ret;
+}
+
+static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			       const uint8_t *buf, int oob_required, int page)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	void *oob = oob_required ? chip->oob_poi : NULL;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int brcmnand_write_page_raw(struct mtd_info *mtd,
+				   struct nand_chip *chip, const uint8_t *buf,
+				   int oob_required, int page)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	void *oob = oob_required ? chip->oob_poi : NULL;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	brcmnand_set_ecc_enabled(host, 0);
+	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
+	brcmnand_set_ecc_enabled(host, 1);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				  int page)
+{
+	return brcmnand_write(mtd, chip, (u64)page << chip->page_shift,
+				  NULL, chip->oob_poi);
+}
+
+static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				  int page)
+{
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	int ret;
+
+	brcmnand_set_ecc_enabled(host, 0);
+	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
+				 (u8 *)chip->oob_poi);
+	brcmnand_set_ecc_enabled(host, 1);
+
+	return ret;
+}
+
+/***********************************************************************
+ * Per-CS setup (1 NAND device)
+ ***********************************************************************/
+
+static int brcmnand_set_cfg(struct brcmnand_host *host,
+			    struct brcmnand_cfg *cfg)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	struct nand_chip *chip = &host->chip;
+	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
+	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
+			BRCMNAND_CS_CFG_EXT);
+	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
+			BRCMNAND_CS_ACC_CONTROL);
+	u8 block_size = 0, page_size = 0, device_size = 0;
+	u32 tmp;
+
+	if (ctrl->block_sizes) {
+		int i, found;
+
+		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
+			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
+				block_size = i;
+				found = 1;
+			}
+		if (!found) {
+			dev_warn(ctrl->dev, "invalid block size %u\n",
+					cfg->block_size);
+			return -EINVAL;
+		}
+	} else {
+		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
+	}
+
+	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
+				cfg->block_size > ctrl->max_block_size)) {
+		dev_warn(ctrl->dev, "invalid block size %u\n",
+				cfg->block_size);
+		block_size = 0;
+	}
+
+	if (ctrl->page_sizes) {
+		int i, found;
+
+		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
+			if (ctrl->page_sizes[i] == cfg->page_size) {
+				page_size = i;
+				found = 1;
+			}
+		if (!found) {
+			dev_warn(ctrl->dev, "invalid page size %u\n",
+					cfg->page_size);
+			return -EINVAL;
+		}
+	} else {
+		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
+	}
+
+	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
+				cfg->page_size > ctrl->max_page_size)) {
+		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
+		return -EINVAL;
+	}
+
+	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
+		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
+			(unsigned long long)cfg->device_size);
+		return -EINVAL;
+	}
+	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
+
+	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
+		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
+		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
+		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
+		(device_size << CFG_DEVICE_SIZE_SHIFT);
+	if (cfg_offs == cfg_ext_offs) {
+		tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) |
+		       (block_size << CFG_BLK_SIZE_SHIFT);
+		nand_writereg(ctrl, cfg_offs, tmp);
+	} else {
+		nand_writereg(ctrl, cfg_offs, tmp);
+		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
+		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
+		nand_writereg(ctrl, cfg_ext_offs, tmp);
+	}
+
+	tmp = nand_readreg(ctrl, acc_control_offs);
+	tmp &= ~brcmnand_ecc_level_mask(ctrl);
+	tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT;
+	tmp &= ~brcmnand_spare_area_mask(ctrl);
+	tmp |= cfg->spare_area_size;
+	nand_writereg(ctrl, acc_control_offs, tmp);
+
+	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
+
+	/* threshold = ceil(BCH-level * 0.75) */
+	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
+
+	return 0;
+}
+
+static void brcmnand_print_cfg(struct brcmnand_host *host,
+			       char *buf, struct brcmnand_cfg *cfg)
+{
+	buf += sprintf(buf,
+		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
+		(unsigned long long)cfg->device_size >> 20,
+		cfg->block_size >> 10,
+		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
+		cfg->page_size >= 1024 ? "KiB" : "B",
+		cfg->spare_area_size, cfg->device_width);
+
+	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
+	if (is_hamming_ecc(host->ctrl, cfg))
+		sprintf(buf, ", Hamming ECC");
+	else if (cfg->sector_size_1k)
+		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
+	else
+		sprintf(buf, ", BCH-%u", cfg->ecc_level);
+}
+
+/*
+ * Minimum number of bytes to address a page. Calculated as:
+ *     roundup(log2(size / page-size) / 8)
+ *
+ * NB: the following does not "round up" for non-power-of-2 'size'; but this is
+ *     OK because many other things will break if 'size' is irregular...
+ */
+static inline int get_blk_adr_bytes(u64 size, u32 writesize)
+{
+	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
+}
+
+static int brcmnand_setup_dev(struct brcmnand_host *host)
+{
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+	struct nand_chip *chip = &host->chip;
+	struct brcmnand_controller *ctrl = host->ctrl;
+	struct brcmnand_cfg *cfg = &host->hwcfg;
+	char msg[128];
+	u32 offs, tmp, oob_sector;
+	int ret;
+
+	memset(cfg, 0, sizeof(*cfg));
+
+	ret = of_property_read_u32(nand_get_flash_node(chip),
+				   "brcm,nand-oob-sector-size",
+				   &oob_sector);
+	if (ret) {
+		/* Use detected size */
+		cfg->spare_area_size = mtd->oobsize /
+					(mtd->writesize >> FC_SHIFT);
+	} else {
+		cfg->spare_area_size = oob_sector;
+	}
+	if (cfg->spare_area_size > ctrl->max_oob)
+		cfg->spare_area_size = ctrl->max_oob;
+	/*
+	 * Set oobsize to be consistent with controller's spare_area_size, as
+	 * the rest is inaccessible.
+	 */
+	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
+
+	cfg->device_size = mtd->size;
+	cfg->block_size = mtd->erasesize;
+	cfg->page_size = mtd->writesize;
+	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
+	cfg->col_adr_bytes = 2;
+	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
+
+	if (chip->ecc.mode != NAND_ECC_HW) {
+		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
+			chip->ecc.mode);
+		return -EINVAL;
+	}
+
+	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
+		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
+			/* Default to Hamming for 1-bit ECC, if unspecified */
+			chip->ecc.algo = NAND_ECC_HAMMING;
+		else
+			/* Otherwise, BCH */
+			chip->ecc.algo = NAND_ECC_BCH;
+	}
+
+	if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 ||
+						   chip->ecc.size != 512)) {
+		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
+			chip->ecc.strength, chip->ecc.size);
+		return -EINVAL;
+	}
+
+	switch (chip->ecc.size) {
+	case 512:
+		if (chip->ecc.algo == NAND_ECC_HAMMING)
+			cfg->ecc_level = 15;
+		else
+			cfg->ecc_level = chip->ecc.strength;
+		cfg->sector_size_1k = 0;
+		break;
+	case 1024:
+		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
+			dev_err(ctrl->dev, "1KB sectors not supported\n");
+			return -EINVAL;
+		}
+		if (chip->ecc.strength & 0x1) {
+			dev_err(ctrl->dev,
+				"odd ECC not supported with 1KB sectors\n");
+			return -EINVAL;
+		}
+
+		cfg->ecc_level = chip->ecc.strength >> 1;
+		cfg->sector_size_1k = 1;
+		break;
+	default:
+		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
+			chip->ecc.size);
+		return -EINVAL;
+	}
+
+	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
+	if (mtd->writesize > 512)
+		cfg->ful_adr_bytes += cfg->col_adr_bytes;
+	else
+		cfg->ful_adr_bytes += 1;
+
+	ret = brcmnand_set_cfg(host, cfg);
+	if (ret)
+		return ret;
+
+	brcmnand_set_ecc_enabled(host, 1);
+
+	brcmnand_print_cfg(host, msg, cfg);
+	dev_info(ctrl->dev, "detected %s\n", msg);
+
+	/* Configure ACC_CONTROL */
+	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
+	tmp = nand_readreg(ctrl, offs);
+	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
+	tmp &= ~ACC_CONTROL_RD_ERASED;
+
+	/* We need to turn on Read from erased paged protected by ECC */
+	if (ctrl->nand_version >= 0x0702)
+		tmp |= ACC_CONTROL_RD_ERASED;
+	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
+	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
+		tmp &= ~ACC_CONTROL_PREFETCH;
+
+	nand_writereg(ctrl, offs, tmp);
+
+	return 0;
+}
+
+static int brcmnand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct brcmnand_host *host = nand_get_controller_data(chip);
+	int ret;
+
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+	/*
+	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
+	 * to/from, and have nand_base pass us a bounce buffer instead, as
+	 * needed.
+	 */
+	chip->options |= NAND_USE_BOUNCE_BUFFER;
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+	if (brcmnand_setup_dev(host))
+		return -ENXIO;
+
+	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
+
+	/* only use our internal HW threshold */
+	mtd->bitflip_threshold = 1;
+
+	ret = brcmstb_choose_ecc_layout(host);
+
+	return ret;
+}
+
+static const struct nand_controller_ops brcmnand_controller_ops = {
+	.attach_chip = brcmnand_attach_chip,
+};
+
+static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	struct platform_device *pdev = host->pdev;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	int ret;
+	u16 cfg_offs;
+
+	ret = of_property_read_u32(dn, "reg", &host->cs);
+	if (ret) {
+		dev_err(&pdev->dev, "can't get chip-select\n");
+		return -ENXIO;
+	}
+
+	mtd = nand_to_mtd(&host->chip);
+	chip = &host->chip;
+
+	nand_set_flash_node(chip, dn);
+	nand_set_controller_data(chip, host);
+	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
+				   host->cs);
+	if (!mtd->name)
+		return -ENOMEM;
+
+	mtd->owner = THIS_MODULE;
+	mtd->dev.parent = &pdev->dev;
+
+	chip->IO_ADDR_R = (void __iomem *)0xdeadbeef;
+	chip->IO_ADDR_W = (void __iomem *)0xdeadbeef;
+
+	chip->cmd_ctrl = brcmnand_cmd_ctrl;
+	chip->cmdfunc = brcmnand_cmdfunc;
+	chip->waitfunc = brcmnand_waitfunc;
+	chip->read_byte = brcmnand_read_byte;
+	chip->read_buf = brcmnand_read_buf;
+	chip->write_buf = brcmnand_write_buf;
+
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->ecc.read_page = brcmnand_read_page;
+	chip->ecc.write_page = brcmnand_write_page;
+	chip->ecc.read_page_raw = brcmnand_read_page_raw;
+	chip->ecc.write_page_raw = brcmnand_write_page_raw;
+	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
+	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
+	chip->ecc.read_oob = brcmnand_read_oob;
+	chip->ecc.write_oob = brcmnand_write_oob;
+
+	chip->controller = &ctrl->controller;
+
+	/*
+	 * The bootloader might have configured 16bit mode but
+	 * NAND READID command only works in 8bit mode. We force
+	 * 8bit mode here to ensure that NAND READID commands works.
+	 */
+	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
+	nand_writereg(ctrl, cfg_offs,
+		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
+
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		nand_cleanup(chip);
+
+	return ret;
+}
+
+static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
+					    int restore)
+{
+	struct brcmnand_controller *ctrl = host->ctrl;
+	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
+	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
+			BRCMNAND_CS_CFG_EXT);
+	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
+			BRCMNAND_CS_ACC_CONTROL);
+	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
+	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
+
+	if (restore) {
+		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
+		if (cfg_offs != cfg_ext_offs)
+			nand_writereg(ctrl, cfg_ext_offs,
+				      host->hwcfg.config_ext);
+		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
+		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
+		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
+	} else {
+		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
+		if (cfg_offs != cfg_ext_offs)
+			host->hwcfg.config_ext =
+				nand_readreg(ctrl, cfg_ext_offs);
+		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
+		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
+		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
+	}
+}
+
+static int brcmnand_suspend(struct device *dev)
+{
+	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
+	struct brcmnand_host *host;
+
+	list_for_each_entry(host, &ctrl->host_list, node)
+		brcmnand_save_restore_cs_config(host, 0);
+
+	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
+	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
+	ctrl->corr_stat_threshold =
+		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
+
+	if (has_flash_dma(ctrl))
+		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
+
+	return 0;
+}
+
+static int brcmnand_resume(struct device *dev)
+{
+	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
+	struct brcmnand_host *host;
+
+	if (has_flash_dma(ctrl)) {
+		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
+		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
+	}
+
+	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
+	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
+	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
+			ctrl->corr_stat_threshold);
+	if (ctrl->soc) {
+		/* Clear/re-enable interrupt */
+		ctrl->soc->ctlrdy_ack(ctrl->soc);
+		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
+	}
+
+	list_for_each_entry(host, &ctrl->host_list, node) {
+		struct nand_chip *chip = &host->chip;
+
+		brcmnand_save_restore_cs_config(host, 1);
+
+		/* Reset the chip, required by some chips after power-up */
+		nand_reset_op(chip);
+	}
+
+	return 0;
+}
+
+const struct dev_pm_ops brcmnand_pm_ops = {
+	.suspend		= brcmnand_suspend,
+	.resume			= brcmnand_resume,
+};
+EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
+
+static const struct of_device_id brcmnand_of_match[] = {
+	{ .compatible = "brcm,brcmnand-v4.0" },
+	{ .compatible = "brcm,brcmnand-v5.0" },
+	{ .compatible = "brcm,brcmnand-v6.0" },
+	{ .compatible = "brcm,brcmnand-v6.1" },
+	{ .compatible = "brcm,brcmnand-v6.2" },
+	{ .compatible = "brcm,brcmnand-v7.0" },
+	{ .compatible = "brcm,brcmnand-v7.1" },
+	{ .compatible = "brcm,brcmnand-v7.2" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, brcmnand_of_match);
+
+/***********************************************************************
+ * Platform driver setup (per controller)
+ ***********************************************************************/
+
+int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
+{
+	struct device *dev = &pdev->dev;
+	struct device_node *dn = dev->of_node, *child;
+	struct brcmnand_controller *ctrl;
+	struct resource *res;
+	int ret;
+
+	/* We only support device-tree instantiation */
+	if (!dn)
+		return -ENODEV;
+
+	if (!of_match_node(brcmnand_of_match, dn))
+		return -ENODEV;
+
+	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	dev_set_drvdata(dev, ctrl);
+	ctrl->dev = dev;
+
+	init_completion(&ctrl->done);
+	init_completion(&ctrl->dma_done);
+	nand_controller_init(&ctrl->controller);
+	ctrl->controller.ops = &brcmnand_controller_ops;
+	INIT_LIST_HEAD(&ctrl->host_list);
+
+	/* NAND register range */
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	ctrl->nand_base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(ctrl->nand_base))
+		return PTR_ERR(ctrl->nand_base);
+
+	/* Enable clock before using NAND registers */
+	ctrl->clk = devm_clk_get(dev, "nand");
+	if (!IS_ERR(ctrl->clk)) {
+		ret = clk_prepare_enable(ctrl->clk);
+		if (ret)
+			return ret;
+	} else {
+		ret = PTR_ERR(ctrl->clk);
+		if (ret == -EPROBE_DEFER)
+			return ret;
+
+		ctrl->clk = NULL;
+	}
+
+	/* Initialize NAND revision */
+	ret = brcmnand_revision_init(ctrl);
+	if (ret)
+		goto err;
+
+	/*
+	 * Most chips have this cache at a fixed offset within 'nand' block.
+	 * Some must specify this region separately.
+	 */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
+	if (res) {
+		ctrl->nand_fc = devm_ioremap_resource(dev, res);
+		if (IS_ERR(ctrl->nand_fc)) {
+			ret = PTR_ERR(ctrl->nand_fc);
+			goto err;
+		}
+	} else {
+		ctrl->nand_fc = ctrl->nand_base +
+				ctrl->reg_offsets[BRCMNAND_FC_BASE];
+	}
+
+	/* FLASH_DMA */
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
+	if (res) {
+		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
+		if (IS_ERR(ctrl->flash_dma_base)) {
+			ret = PTR_ERR(ctrl->flash_dma_base);
+			goto err;
+		}
+
+		flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
+		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
+
+		/* Allocate descriptor(s) */
+		ctrl->dma_desc = dmam_alloc_coherent(dev,
+						     sizeof(*ctrl->dma_desc),
+						     &ctrl->dma_pa, GFP_KERNEL);
+		if (!ctrl->dma_desc) {
+			ret = -ENOMEM;
+			goto err;
+		}
+
+		ctrl->dma_irq = platform_get_irq(pdev, 1);
+		if ((int)ctrl->dma_irq < 0) {
+			dev_err(dev, "missing FLASH_DMA IRQ\n");
+			ret = -ENODEV;
+			goto err;
+		}
+
+		ret = devm_request_irq(dev, ctrl->dma_irq,
+				brcmnand_dma_irq, 0, DRV_NAME,
+				ctrl);
+		if (ret < 0) {
+			dev_err(dev, "can't allocate IRQ %d: error %d\n",
+					ctrl->dma_irq, ret);
+			goto err;
+		}
+
+		dev_info(dev, "enabling FLASH_DMA\n");
+	}
+
+	/* Disable automatic device ID config, direct addressing */
+	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
+			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
+	/* Disable XOR addressing */
+	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
+
+	if (ctrl->features & BRCMNAND_HAS_WP) {
+		/* Permanently disable write protection */
+		if (wp_on == 2)
+			brcmnand_set_wp(ctrl, false);
+	} else {
+		wp_on = 0;
+	}
+
+	/* IRQ */
+	ctrl->irq = platform_get_irq(pdev, 0);
+	if ((int)ctrl->irq < 0) {
+		dev_err(dev, "no IRQ defined\n");
+		ret = -ENODEV;
+		goto err;
+	}
+
+	/*
+	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
+	 * interesting ways
+	 */
+	if (soc) {
+		ctrl->soc = soc;
+
+		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
+				       DRV_NAME, ctrl);
+
+		/* Enable interrupt */
+		ctrl->soc->ctlrdy_ack(ctrl->soc);
+		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
+	} else {
+		/* Use standard interrupt infrastructure */
+		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
+				       DRV_NAME, ctrl);
+	}
+	if (ret < 0) {
+		dev_err(dev, "can't allocate IRQ %d: error %d\n",
+			ctrl->irq, ret);
+		goto err;
+	}
+
+	for_each_available_child_of_node(dn, child) {
+		if (of_device_is_compatible(child, "brcm,nandcs")) {
+			struct brcmnand_host *host;
+
+			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
+			if (!host) {
+				of_node_put(child);
+				ret = -ENOMEM;
+				goto err;
+			}
+			host->pdev = pdev;
+			host->ctrl = ctrl;
+
+			ret = brcmnand_init_cs(host, child);
+			if (ret) {
+				devm_kfree(dev, host);
+				continue; /* Try all chip-selects */
+			}
+
+			list_add_tail(&host->node, &ctrl->host_list);
+		}
+	}
+
+	/* No chip-selects could initialize properly */
+	if (list_empty(&ctrl->host_list)) {
+		ret = -ENODEV;
+		goto err;
+	}
+
+	return 0;
+
+err:
+	clk_disable_unprepare(ctrl->clk);
+	return ret;
+
+}
+EXPORT_SYMBOL_GPL(brcmnand_probe);
+
+int brcmnand_remove(struct platform_device *pdev)
+{
+	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
+	struct brcmnand_host *host;
+
+	list_for_each_entry(host, &ctrl->host_list, node)
+		nand_release(nand_to_mtd(&host->chip));
+
+	clk_disable_unprepare(ctrl->clk);
+
+	dev_set_drvdata(&pdev->dev, NULL);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(brcmnand_remove);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Kevin Cernekee");
+MODULE_AUTHOR("Brian Norris");
+MODULE_DESCRIPTION("NAND driver for Broadcom chips");
+MODULE_ALIAS("platform:brcmnand");
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.h b/drivers/mtd/nand/raw/brcmnand/brcmnand.h
new file mode 100644
index 0000000..5c44cd4
--- /dev/null
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.h
@@ -0,0 +1,74 @@
+/*
+ * Copyright © 2015 Broadcom Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __BRCMNAND_H__
+#define __BRCMNAND_H__
+
+#include <linux/types.h>
+#include <linux/io.h>
+
+struct platform_device;
+struct dev_pm_ops;
+
+struct brcmnand_soc {
+	bool (*ctlrdy_ack)(struct brcmnand_soc *soc);
+	void (*ctlrdy_set_enabled)(struct brcmnand_soc *soc, bool en);
+	void (*prepare_data_bus)(struct brcmnand_soc *soc, bool prepare,
+				 bool is_param);
+};
+
+static inline void brcmnand_soc_data_bus_prepare(struct brcmnand_soc *soc,
+						 bool is_param)
+{
+	if (soc && soc->prepare_data_bus)
+		soc->prepare_data_bus(soc, true, is_param);
+}
+
+static inline void brcmnand_soc_data_bus_unprepare(struct brcmnand_soc *soc,
+						   bool is_param)
+{
+	if (soc && soc->prepare_data_bus)
+		soc->prepare_data_bus(soc, false, is_param);
+}
+
+static inline u32 brcmnand_readl(void __iomem *addr)
+{
+	/*
+	 * MIPS endianness is configured by boot strap, which also reverses all
+	 * bus endianness (i.e., big-endian CPU + big endian bus ==> native
+	 * endian I/O).
+	 *
+	 * Other architectures (e.g., ARM) either do not support big endian, or
+	 * else leave I/O in little endian mode.
+	 */
+	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
+		return __raw_readl(addr);
+	else
+		return readl_relaxed(addr);
+}
+
+static inline void brcmnand_writel(u32 val, void __iomem *addr)
+{
+	/* See brcmnand_readl() comments */
+	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
+		__raw_writel(val, addr);
+	else
+		writel_relaxed(val, addr);
+}
+
+int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc);
+int brcmnand_remove(struct platform_device *pdev);
+
+extern const struct dev_pm_ops brcmnand_pm_ops;
+
+#endif /* __BRCMNAND_H__ */
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
new file mode 100644
index 0000000..489af7b
--- /dev/null
+++ b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c
@@ -0,0 +1,45 @@
+/*
+ * Copyright © 2015 Broadcom Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/device.h>
+#include <linux/module.h>
+#include <linux/mod_devicetable.h>
+#include <linux/platform_device.h>
+
+#include "brcmnand.h"
+
+static const struct of_device_id brcmstb_nand_of_match[] = {
+	{ .compatible = "brcm,brcmnand" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, brcmstb_nand_of_match);
+
+static int brcmstb_nand_probe(struct platform_device *pdev)
+{
+	return brcmnand_probe(pdev, NULL);
+}
+
+static struct platform_driver brcmstb_nand_driver = {
+	.probe			= brcmstb_nand_probe,
+	.remove			= brcmnand_remove,
+	.driver = {
+		.name		= "brcmstb_nand",
+		.pm		= &brcmnand_pm_ops,
+		.of_match_table = brcmstb_nand_of_match,
+	}
+};
+module_platform_driver(brcmstb_nand_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Brian Norris");
+MODULE_DESCRIPTION("NAND driver for Broadcom STB chips");
diff --git a/drivers/mtd/nand/raw/brcmnand/iproc_nand.c b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
new file mode 100644
index 0000000..4c6ae11
--- /dev/null
+++ b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c
@@ -0,0 +1,160 @@
+/*
+ * Copyright © 2015 Broadcom Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include "brcmnand.h"
+
+struct iproc_nand_soc {
+	struct brcmnand_soc soc;
+
+	void __iomem *idm_base;
+	void __iomem *ext_base;
+	spinlock_t idm_lock;
+};
+
+#define IPROC_NAND_CTLR_READY_OFFSET       0x10
+#define IPROC_NAND_CTLR_READY              BIT(0)
+
+#define IPROC_NAND_IO_CTRL_OFFSET          0x00
+#define IPROC_NAND_APB_LE_MODE             BIT(24)
+#define IPROC_NAND_INT_CTRL_READ_ENABLE    BIT(6)
+
+static bool iproc_nand_intc_ack(struct brcmnand_soc *soc)
+{
+	struct iproc_nand_soc *priv =
+			container_of(soc, struct iproc_nand_soc, soc);
+	void __iomem *mmio = priv->ext_base + IPROC_NAND_CTLR_READY_OFFSET;
+	u32 val = brcmnand_readl(mmio);
+
+	if (val & IPROC_NAND_CTLR_READY) {
+		brcmnand_writel(IPROC_NAND_CTLR_READY, mmio);
+		return true;
+	}
+
+	return false;
+}
+
+static void iproc_nand_intc_set(struct brcmnand_soc *soc, bool en)
+{
+	struct iproc_nand_soc *priv =
+			container_of(soc, struct iproc_nand_soc, soc);
+	void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET;
+	u32 val;
+	unsigned long flags;
+
+	spin_lock_irqsave(&priv->idm_lock, flags);
+
+	val = brcmnand_readl(mmio);
+
+	if (en)
+		val |= IPROC_NAND_INT_CTRL_READ_ENABLE;
+	else
+		val &= ~IPROC_NAND_INT_CTRL_READ_ENABLE;
+
+	brcmnand_writel(val, mmio);
+
+	spin_unlock_irqrestore(&priv->idm_lock, flags);
+}
+
+static void iproc_nand_apb_access(struct brcmnand_soc *soc, bool prepare,
+				  bool is_param)
+{
+	struct iproc_nand_soc *priv =
+			container_of(soc, struct iproc_nand_soc, soc);
+	void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET;
+	u32 val;
+	unsigned long flags;
+
+	spin_lock_irqsave(&priv->idm_lock, flags);
+
+	val = brcmnand_readl(mmio);
+
+	/*
+	 * In the case of BE or when dealing with NAND data, alway configure
+	 * the APB bus to LE mode before accessing the FIFO and back to BE mode
+	 * after the access is done
+	 */
+	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) || !is_param) {
+		if (prepare)
+			val |= IPROC_NAND_APB_LE_MODE;
+		else
+			val &= ~IPROC_NAND_APB_LE_MODE;
+	} else { /* when in LE accessing the parameter page, keep APB in BE */
+		val &= ~IPROC_NAND_APB_LE_MODE;
+	}
+
+	brcmnand_writel(val, mmio);
+
+	spin_unlock_irqrestore(&priv->idm_lock, flags);
+}
+
+static int iproc_nand_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct iproc_nand_soc *priv;
+	struct brcmnand_soc *soc;
+	struct resource *res;
+
+	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+	soc = &priv->soc;
+
+	spin_lock_init(&priv->idm_lock);
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-idm");
+	priv->idm_base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(priv->idm_base))
+		return PTR_ERR(priv->idm_base);
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-ext");
+	priv->ext_base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(priv->ext_base))
+		return PTR_ERR(priv->ext_base);
+
+	soc->ctlrdy_ack = iproc_nand_intc_ack;
+	soc->ctlrdy_set_enabled = iproc_nand_intc_set;
+	soc->prepare_data_bus = iproc_nand_apb_access;
+
+	return brcmnand_probe(pdev, soc);
+}
+
+static const struct of_device_id iproc_nand_of_match[] = {
+	{ .compatible = "brcm,nand-iproc" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, iproc_nand_of_match);
+
+static struct platform_driver iproc_nand_driver = {
+	.probe			= iproc_nand_probe,
+	.remove			= brcmnand_remove,
+	.driver = {
+		.name		= "iproc_nand",
+		.pm		= &brcmnand_pm_ops,
+		.of_match_table	= iproc_nand_of_match,
+	}
+};
+module_platform_driver(iproc_nand_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Brian Norris");
+MODULE_AUTHOR("Ray Jui");
+MODULE_DESCRIPTION("NAND driver for Broadcom IPROC-based SoCs");
diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c
new file mode 100644
index 0000000..1dbe43a
--- /dev/null
+++ b/drivers/mtd/nand/raw/cafe_nand.c
@@ -0,0 +1,889 @@
+/*
+ * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
+ *
+ * The data sheet for this device can be found at:
+ *    http://wiki.laptop.org/go/Datasheets 
+ *
+ * Copyright © 2006 Red Hat, Inc.
+ * Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
+ */
+
+#define DEBUG
+
+#include <linux/device.h>
+#undef DEBUG
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/rslib.h>
+#include <linux/pci.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/dma-mapping.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <asm/io.h>
+
+#define CAFE_NAND_CTRL1		0x00
+#define CAFE_NAND_CTRL2		0x04
+#define CAFE_NAND_CTRL3		0x08
+#define CAFE_NAND_STATUS	0x0c
+#define CAFE_NAND_IRQ		0x10
+#define CAFE_NAND_IRQ_MASK	0x14
+#define CAFE_NAND_DATA_LEN	0x18
+#define CAFE_NAND_ADDR1		0x1c
+#define CAFE_NAND_ADDR2		0x20
+#define CAFE_NAND_TIMING1	0x24
+#define CAFE_NAND_TIMING2	0x28
+#define CAFE_NAND_TIMING3	0x2c
+#define CAFE_NAND_NONMEM	0x30
+#define CAFE_NAND_ECC_RESULT	0x3C
+#define CAFE_NAND_DMA_CTRL	0x40
+#define CAFE_NAND_DMA_ADDR0	0x44
+#define CAFE_NAND_DMA_ADDR1	0x48
+#define CAFE_NAND_ECC_SYN01	0x50
+#define CAFE_NAND_ECC_SYN23	0x54
+#define CAFE_NAND_ECC_SYN45	0x58
+#define CAFE_NAND_ECC_SYN67	0x5c
+#define CAFE_NAND_READ_DATA	0x1000
+#define CAFE_NAND_WRITE_DATA	0x2000
+
+#define CAFE_GLOBAL_CTRL	0x3004
+#define CAFE_GLOBAL_IRQ		0x3008
+#define CAFE_GLOBAL_IRQ_MASK	0x300c
+#define CAFE_NAND_RESET		0x3034
+
+/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
+#define CTRL1_CHIPSELECT	(1<<19)
+
+struct cafe_priv {
+	struct nand_chip nand;
+	struct pci_dev *pdev;
+	void __iomem *mmio;
+	struct rs_control *rs;
+	uint32_t ctl1;
+	uint32_t ctl2;
+	int datalen;
+	int nr_data;
+	int data_pos;
+	int page_addr;
+	bool usedma;
+	dma_addr_t dmaaddr;
+	unsigned char *dmabuf;
+};
+
+static int usedma = 1;
+module_param(usedma, int, 0644);
+
+static int skipbbt = 0;
+module_param(skipbbt, int, 0644);
+
+static int debug = 0;
+module_param(debug, int, 0644);
+
+static int regdebug = 0;
+module_param(regdebug, int, 0644);
+
+static int checkecc = 1;
+module_param(checkecc, int, 0644);
+
+static unsigned int numtimings;
+static int timing[3];
+module_param_array(timing, int, &numtimings, 0644);
+
+static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
+
+/* Hrm. Why isn't this already conditional on something in the struct device? */
+#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
+
+/* Make it easier to switch to PIO if we need to */
+#define cafe_readl(cafe, addr)			readl((cafe)->mmio + CAFE_##addr)
+#define cafe_writel(cafe, datum, addr)		writel(datum, (cafe)->mmio + CAFE_##addr)
+
+static int cafe_device_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+	int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000);
+	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
+
+	cafe_writel(cafe, irqs, NAND_IRQ);
+
+	cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
+		result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
+		cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
+
+	return result;
+}
+
+
+static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+
+	if (cafe->usedma)
+		memcpy(cafe->dmabuf + cafe->datalen, buf, len);
+	else
+		memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
+
+	cafe->datalen += len;
+
+	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
+		len, cafe->datalen);
+}
+
+static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+
+	if (cafe->usedma)
+		memcpy(buf, cafe->dmabuf + cafe->datalen, len);
+	else
+		memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
+
+	cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
+		  len, cafe->datalen);
+	cafe->datalen += len;
+}
+
+static uint8_t cafe_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+	uint8_t d;
+
+	cafe_read_buf(mtd, &d, 1);
+	cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
+
+	return d;
+}
+
+static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
+			      int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+	int adrbytes = 0;
+	uint32_t ctl1;
+	uint32_t doneint = 0x80000000;
+
+	cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
+		command, column, page_addr);
+
+	if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
+		/* Second half of a command we already calculated */
+		cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
+		ctl1 = cafe->ctl1;
+		cafe->ctl2 &= ~(1<<30);
+		cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
+			  cafe->ctl1, cafe->nr_data);
+		goto do_command;
+	}
+	/* Reset ECC engine */
+	cafe_writel(cafe, 0, NAND_CTRL2);
+
+	/* Emulate NAND_CMD_READOOB on large-page chips */
+	if (mtd->writesize > 512 &&
+	    command == NAND_CMD_READOOB) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* FIXME: Do we need to send read command before sending data
+	   for small-page chips, to position the buffer correctly? */
+
+	if (column != -1) {
+		cafe_writel(cafe, column, NAND_ADDR1);
+		adrbytes = 2;
+		if (page_addr != -1)
+			goto write_adr2;
+	} else if (page_addr != -1) {
+		cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
+		page_addr >>= 16;
+	write_adr2:
+		cafe_writel(cafe, page_addr, NAND_ADDR2);
+		adrbytes += 2;
+		if (mtd->size > mtd->writesize << 16)
+			adrbytes++;
+	}
+
+	cafe->data_pos = cafe->datalen = 0;
+
+	/* Set command valid bit, mask in the chip select bit  */
+	ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
+
+	/* Set RD or WR bits as appropriate */
+	if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
+		ctl1 |= (1<<26); /* rd */
+		/* Always 5 bytes, for now */
+		cafe->datalen = 4;
+		/* And one address cycle -- even for STATUS, since the controller doesn't work without */
+		adrbytes = 1;
+	} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
+		   command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
+		ctl1 |= 1<<26; /* rd */
+		/* For now, assume just read to end of page */
+		cafe->datalen = mtd->writesize + mtd->oobsize - column;
+	} else if (command == NAND_CMD_SEQIN)
+		ctl1 |= 1<<25; /* wr */
+
+	/* Set number of address bytes */
+	if (adrbytes)
+		ctl1 |= ((adrbytes-1)|8) << 27;
+
+	if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
+		/* Ignore the first command of a pair; the hardware
+		   deals with them both at once, later */
+		cafe->ctl1 = ctl1;
+		cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
+			  cafe->ctl1, cafe->datalen);
+		return;
+	}
+	/* RNDOUT and READ0 commands need a following byte */
+	if (command == NAND_CMD_RNDOUT)
+		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
+	else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
+		cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
+
+ do_command:
+	cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
+		cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
+
+	/* NB: The datasheet lies -- we really should be subtracting 1 here */
+	cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
+	cafe_writel(cafe, 0x90000000, NAND_IRQ);
+	if (cafe->usedma && (ctl1 & (3<<25))) {
+		uint32_t dmactl = 0xc0000000 + cafe->datalen;
+		/* If WR or RD bits set, set up DMA */
+		if (ctl1 & (1<<26)) {
+			/* It's a read */
+			dmactl |= (1<<29);
+			/* ... so it's done when the DMA is done, not just
+			   the command. */
+			doneint = 0x10000000;
+		}
+		cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
+	}
+	cafe->datalen = 0;
+
+	if (unlikely(regdebug)) {
+		int i;
+		printk("About to write command %08x to register 0\n", ctl1);
+		for (i=4; i< 0x5c; i+=4)
+			printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
+	}
+
+	cafe_writel(cafe, ctl1, NAND_CTRL1);
+	/* Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine. */
+	ndelay(100);
+
+	if (1) {
+		int c;
+		uint32_t irqs;
+
+		for (c = 500000; c != 0; c--) {
+			irqs = cafe_readl(cafe, NAND_IRQ);
+			if (irqs & doneint)
+				break;
+			udelay(1);
+			if (!(c % 100000))
+				cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
+			cpu_relax();
+		}
+		cafe_writel(cafe, doneint, NAND_IRQ);
+		cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
+			     command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
+	}
+
+	WARN_ON(cafe->ctl2 & (1<<30));
+
+	switch (command) {
+
+	case NAND_CMD_CACHEDPROG:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_RNDIN:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_RNDOUT:
+		cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
+		return;
+	}
+	nand_wait_ready(mtd);
+	cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
+}
+
+static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+
+	cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
+
+	/* Mask the appropriate bit into the stored value of ctl1
+	   which will be used by cafe_nand_cmdfunc() */
+	if (chipnr)
+		cafe->ctl1 |= CTRL1_CHIPSELECT;
+	else
+		cafe->ctl1 &= ~CTRL1_CHIPSELECT;
+}
+
+static irqreturn_t cafe_nand_interrupt(int irq, void *id)
+{
+	struct mtd_info *mtd = id;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+	uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
+	cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
+	if (!irqs)
+		return IRQ_NONE;
+
+	cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
+	return IRQ_HANDLED;
+}
+
+static int cafe_nand_write_oob(struct mtd_info *mtd,
+			       struct nand_chip *chip, int page)
+{
+	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
+				 mtd->oobsize);
+}
+
+/* Don't use -- use nand_read_oob_std for now */
+static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			      int page)
+{
+	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+}
+/**
+ * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	buffer to store read data
+ * @oob_required:	caller expects OOB data read to chip->oob_poi
+ *
+ * The hw generator calculates the error syndrome automatically. Therefore
+ * we need a special oob layout and handling.
+ */
+static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			       uint8_t *buf, int oob_required, int page)
+{
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+	unsigned int max_bitflips = 0;
+
+	cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
+		     cafe_readl(cafe, NAND_ECC_RESULT),
+		     cafe_readl(cafe, NAND_ECC_SYN01));
+
+	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
+		unsigned short syn[8], pat[4];
+		int pos[4];
+		u8 *oob = chip->oob_poi;
+		int i, n;
+
+		for (i=0; i<8; i+=2) {
+			uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
+
+			syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
+			syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
+		}
+
+		n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
+				pat);
+
+		for (i = 0; i < n; i++) {
+			int p = pos[i];
+
+			/* The 12-bit symbols are mapped to bytes here */
+
+			if (p > 1374) {
+				/* out of range */
+				n = -1374;
+			} else if (p == 0) {
+				/* high four bits do not correspond to data */
+				if (pat[i] > 0xff)
+					n = -2048;
+				else
+					buf[0] ^= pat[i];
+			} else if (p == 1365) {
+				buf[2047] ^= pat[i] >> 4;
+				oob[0] ^= pat[i] << 4;
+			} else if (p > 1365) {
+				if ((p & 1) == 1) {
+					oob[3*p/2 - 2048] ^= pat[i] >> 4;
+					oob[3*p/2 - 2047] ^= pat[i] << 4;
+				} else {
+					oob[3*p/2 - 2049] ^= pat[i] >> 8;
+					oob[3*p/2 - 2048] ^= pat[i];
+				}
+			} else if ((p & 1) == 1) {
+				buf[3*p/2] ^= pat[i] >> 4;
+				buf[3*p/2 + 1] ^= pat[i] << 4;
+			} else {
+				buf[3*p/2 - 1] ^= pat[i] >> 8;
+				buf[3*p/2] ^= pat[i];
+			}
+		}
+
+		if (n < 0) {
+			dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
+				cafe_readl(cafe, NAND_ADDR2) * 2048);
+			for (i = 0; i < 0x5c; i += 4)
+				printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
+			mtd->ecc_stats.failed++;
+		} else {
+			dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
+			mtd->ecc_stats.corrected += n;
+			max_bitflips = max_t(unsigned int, max_bitflips, n);
+		}
+	}
+
+	return max_bitflips;
+}
+
+static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section,
+			      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 0;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static int cafe_ooblayout_free(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = chip->ecc.total;
+	oobregion->length = mtd->oobsize - chip->ecc.total;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops cafe_ooblayout_ops = {
+	.ecc = cafe_ooblayout_ecc,
+	.free = cafe_ooblayout_free,
+};
+
+/* Ick. The BBT code really ought to be able to work this bit out
+   for itself from the above, at least for the 2KiB case */
+static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
+static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
+
+static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
+static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
+
+
+static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	14,
+	.len = 4,
+	.veroffs = 18,
+	.maxblocks = 4,
+	.pattern = cafe_bbt_pattern_2048
+};
+
+static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	14,
+	.len = 4,
+	.veroffs = 18,
+	.maxblocks = 4,
+	.pattern = cafe_mirror_pattern_2048
+};
+
+static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	14,
+	.len = 1,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = cafe_bbt_pattern_512
+};
+
+static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	14,
+	.len = 1,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = cafe_mirror_pattern_512
+};
+
+
+static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
+					  struct nand_chip *chip,
+					  const uint8_t *buf, int oob_required,
+					  int page)
+{
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+
+	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	/* Set up ECC autogeneration */
+	cafe->ctl2 |= (1<<30);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
+{
+	return 0;
+}
+
+/* F_2[X]/(X**6+X+1)  */
+static unsigned short gf64_mul(u8 a, u8 b)
+{
+	u8 c;
+	unsigned int i;
+
+	c = 0;
+	for (i = 0; i < 6; i++) {
+		if (a & 1)
+			c ^= b;
+		a >>= 1;
+		b <<= 1;
+		if ((b & 0x40) != 0)
+			b ^= 0x43;
+	}
+
+	return c;
+}
+
+/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X]  */
+static u16 gf4096_mul(u16 a, u16 b)
+{
+	u8 ah, al, bh, bl, ch, cl;
+
+	ah = a >> 6;
+	al = a & 0x3f;
+	bh = b >> 6;
+	bl = b & 0x3f;
+
+	ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
+	cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
+
+	return (ch << 6) ^ cl;
+}
+
+static int cafe_mul(int x)
+{
+	if (x == 0)
+		return 1;
+	return gf4096_mul(x, 0xe01);
+}
+
+static int cafe_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+	int err = 0;
+
+	cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112,
+					  &cafe->dmaaddr, GFP_KERNEL);
+	if (!cafe->dmabuf)
+		return -ENOMEM;
+
+	/* Set up DMA address */
+	cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0);
+	cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1);
+
+	cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
+		     cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
+
+	/* Restore the DMA flag */
+	cafe->usedma = usedma;
+
+	cafe->ctl2 = BIT(27); /* Reed-Solomon ECC */
+	if (mtd->writesize == 2048)
+		cafe->ctl2 |= BIT(29); /* 2KiB page size */
+
+	/* Set up ECC according to the type of chip we found */
+	mtd_set_ooblayout(mtd, &cafe_ooblayout_ops);
+	if (mtd->writesize == 2048) {
+		cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
+		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
+	} else if (mtd->writesize == 512) {
+		cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
+		cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
+	} else {
+		dev_warn(&cafe->pdev->dev,
+			 "Unexpected NAND flash writesize %d. Aborting\n",
+			 mtd->writesize);
+		err = -ENOTSUPP;
+		goto out_free_dma;
+	}
+
+	cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+	cafe->nand.ecc.size = mtd->writesize;
+	cafe->nand.ecc.bytes = 14;
+	cafe->nand.ecc.strength = 4;
+	cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
+	cafe->nand.ecc.write_oob = cafe_nand_write_oob;
+	cafe->nand.ecc.read_page = cafe_nand_read_page;
+	cafe->nand.ecc.read_oob = cafe_nand_read_oob;
+
+	return 0;
+
+ out_free_dma:
+	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
+
+	return err;
+}
+
+static void cafe_nand_detach_chip(struct nand_chip *chip)
+{
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+
+	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
+}
+
+static const struct nand_controller_ops cafe_nand_controller_ops = {
+	.attach_chip = cafe_nand_attach_chip,
+	.detach_chip = cafe_nand_detach_chip,
+};
+
+static int cafe_nand_probe(struct pci_dev *pdev,
+				     const struct pci_device_id *ent)
+{
+	struct mtd_info *mtd;
+	struct cafe_priv *cafe;
+	uint32_t ctrl;
+	int err = 0;
+
+	/* Very old versions shared the same PCI ident for all three
+	   functions on the chip. Verify the class too... */
+	if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
+		return -ENODEV;
+
+	err = pci_enable_device(pdev);
+	if (err)
+		return err;
+
+	pci_set_master(pdev);
+
+	cafe = kzalloc(sizeof(*cafe), GFP_KERNEL);
+	if (!cafe)
+		return  -ENOMEM;
+
+	mtd = nand_to_mtd(&cafe->nand);
+	mtd->dev.parent = &pdev->dev;
+	nand_set_controller_data(&cafe->nand, cafe);
+
+	cafe->pdev = pdev;
+	cafe->mmio = pci_iomap(pdev, 0, 0);
+	if (!cafe->mmio) {
+		dev_warn(&pdev->dev, "failed to iomap\n");
+		err = -ENOMEM;
+		goto out_free_mtd;
+	}
+
+	cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
+	if (!cafe->rs) {
+		err = -ENOMEM;
+		goto out_ior;
+	}
+
+	cafe->nand.cmdfunc = cafe_nand_cmdfunc;
+	cafe->nand.dev_ready = cafe_device_ready;
+	cafe->nand.read_byte = cafe_read_byte;
+	cafe->nand.read_buf = cafe_read_buf;
+	cafe->nand.write_buf = cafe_write_buf;
+	cafe->nand.select_chip = cafe_select_chip;
+	cafe->nand.set_features = nand_get_set_features_notsupp;
+	cafe->nand.get_features = nand_get_set_features_notsupp;
+
+	cafe->nand.chip_delay = 0;
+
+	/* Enable the following for a flash based bad block table */
+	cafe->nand.bbt_options = NAND_BBT_USE_FLASH;
+
+	if (skipbbt) {
+		cafe->nand.options |= NAND_SKIP_BBTSCAN;
+		cafe->nand.block_bad = cafe_nand_block_bad;
+	}
+
+	if (numtimings && numtimings != 3) {
+		dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
+	}
+
+	if (numtimings == 3) {
+		cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
+			     timing[0], timing[1], timing[2]);
+	} else {
+		timing[0] = cafe_readl(cafe, NAND_TIMING1);
+		timing[1] = cafe_readl(cafe, NAND_TIMING2);
+		timing[2] = cafe_readl(cafe, NAND_TIMING3);
+
+		if (timing[0] | timing[1] | timing[2]) {
+			cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
+				     timing[0], timing[1], timing[2]);
+		} else {
+			dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
+			timing[0] = timing[1] = timing[2] = 0xffffffff;
+		}
+	}
+
+	/* Start off by resetting the NAND controller completely */
+	cafe_writel(cafe, 1, NAND_RESET);
+	cafe_writel(cafe, 0, NAND_RESET);
+
+	cafe_writel(cafe, timing[0], NAND_TIMING1);
+	cafe_writel(cafe, timing[1], NAND_TIMING2);
+	cafe_writel(cafe, timing[2], NAND_TIMING3);
+
+	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
+	err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
+			  "CAFE NAND", mtd);
+	if (err) {
+		dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
+		goto out_ior;
+	}
+
+	/* Disable master reset, enable NAND clock */
+	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
+	ctrl &= 0xffffeff0;
+	ctrl |= 0x00007000;
+	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
+	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
+	cafe_writel(cafe, 0, NAND_DMA_CTRL);
+
+	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
+	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
+
+	/* Enable NAND IRQ in global IRQ mask register */
+	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
+	cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
+		cafe_readl(cafe, GLOBAL_CTRL),
+		cafe_readl(cafe, GLOBAL_IRQ_MASK));
+
+	/* Do not use the DMA during the NAND identification */
+	cafe->usedma = 0;
+
+	/* Scan to find existence of the device */
+	cafe->nand.dummy_controller.ops = &cafe_nand_controller_ops;
+	err = nand_scan(mtd, 2);
+	if (err)
+		goto out_irq;
+
+	pci_set_drvdata(pdev, mtd);
+
+	mtd->name = "cafe_nand";
+	err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+	if (err)
+		goto out_cleanup_nand;
+
+	goto out;
+
+ out_cleanup_nand:
+	nand_cleanup(&cafe->nand);
+ out_irq:
+	/* Disable NAND IRQ in global IRQ mask register */
+	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
+	free_irq(pdev->irq, mtd);
+ out_ior:
+	pci_iounmap(pdev, cafe->mmio);
+ out_free_mtd:
+	kfree(cafe);
+ out:
+	return err;
+}
+
+static void cafe_nand_remove(struct pci_dev *pdev)
+{
+	struct mtd_info *mtd = pci_get_drvdata(pdev);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+
+	/* Disable NAND IRQ in global IRQ mask register */
+	cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
+	free_irq(pdev->irq, mtd);
+	nand_release(mtd);
+	free_rs(cafe->rs);
+	pci_iounmap(pdev, cafe->mmio);
+	dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
+	kfree(cafe);
+}
+
+static const struct pci_device_id cafe_nand_tbl[] = {
+	{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
+	  PCI_ANY_ID, PCI_ANY_ID },
+	{ }
+};
+
+MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
+
+static int cafe_nand_resume(struct pci_dev *pdev)
+{
+	uint32_t ctrl;
+	struct mtd_info *mtd = pci_get_drvdata(pdev);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct cafe_priv *cafe = nand_get_controller_data(chip);
+
+       /* Start off by resetting the NAND controller completely */
+	cafe_writel(cafe, 1, NAND_RESET);
+	cafe_writel(cafe, 0, NAND_RESET);
+	cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
+
+	/* Restore timing configuration */
+	cafe_writel(cafe, timing[0], NAND_TIMING1);
+	cafe_writel(cafe, timing[1], NAND_TIMING2);
+	cafe_writel(cafe, timing[2], NAND_TIMING3);
+
+        /* Disable master reset, enable NAND clock */
+	ctrl = cafe_readl(cafe, GLOBAL_CTRL);
+	ctrl &= 0xffffeff0;
+	ctrl |= 0x00007000;
+	cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
+	cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
+	cafe_writel(cafe, 0, NAND_DMA_CTRL);
+	cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
+	cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
+
+	/* Set up DMA address */
+	cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
+	if (sizeof(cafe->dmaaddr) > 4)
+	/* Shift in two parts to shut the compiler up */
+		cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
+	else
+		cafe_writel(cafe, 0, NAND_DMA_ADDR1);
+
+	/* Enable NAND IRQ in global IRQ mask register */
+	cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
+	return 0;
+}
+
+static struct pci_driver cafe_nand_pci_driver = {
+	.name = "CAFÉ NAND",
+	.id_table = cafe_nand_tbl,
+	.probe = cafe_nand_probe,
+	.remove = cafe_nand_remove,
+	.resume = cafe_nand_resume,
+};
+
+module_pci_driver(cafe_nand_pci_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");
diff --git a/drivers/mtd/nand/raw/cmx270_nand.c b/drivers/mtd/nand/raw/cmx270_nand.c
new file mode 100644
index 0000000..b66e254
--- /dev/null
+++ b/drivers/mtd/nand/raw/cmx270_nand.c
@@ -0,0 +1,244 @@
+/*
+ *  Copyright (C) 2006 Compulab, Ltd.
+ *  Mike Rapoport <mike@compulab.co.il>
+ *
+ *  Derived from drivers/mtd/nand/h1910.c (removed in v3.10)
+ *       Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
+ *       Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash device found on the
+ *   CM-X270 board.
+ */
+
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/slab.h>
+#include <linux/gpio.h>
+#include <linux/module.h>
+
+#include <asm/io.h>
+#include <asm/irq.h>
+#include <asm/mach-types.h>
+
+#include <mach/pxa2xx-regs.h>
+
+#define GPIO_NAND_CS	(11)
+#define GPIO_NAND_RB	(89)
+
+/* MTD structure for CM-X270 board */
+static struct mtd_info *cmx270_nand_mtd;
+
+/* remaped IO address of the device */
+static void __iomem *cmx270_nand_io;
+
+/*
+ * Define static partitions for flash device
+ */
+static const struct mtd_partition partition_info[] = {
+	[0] = {
+		.name	= "cmx270-0",
+		.offset	= 0,
+		.size	= MTDPART_SIZ_FULL
+	}
+};
+#define NUM_PARTITIONS (ARRAY_SIZE(partition_info))
+
+static u_char cmx270_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	return (readl(this->IO_ADDR_R) >> 16);
+}
+
+static void cmx270_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	for (i=0; i<len; i++)
+		writel((*buf++ << 16), this->IO_ADDR_W);
+}
+
+static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	for (i=0; i<len; i++)
+		*buf++ = readl(this->IO_ADDR_R) >> 16;
+}
+
+static inline void nand_cs_on(void)
+{
+	gpio_set_value(GPIO_NAND_CS, 0);
+}
+
+static void nand_cs_off(void)
+{
+	dsb();
+
+	gpio_set_value(GPIO_NAND_CS, 1);
+}
+
+/*
+ *	hardware specific access to control-lines
+ */
+static void cmx270_hwcontrol(struct mtd_info *mtd, int dat,
+			     unsigned int ctrl)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	unsigned int nandaddr = (unsigned int)this->IO_ADDR_W;
+
+	dsb();
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		if ( ctrl & NAND_ALE )
+			nandaddr |=  (1 << 3);
+		else
+			nandaddr &= ~(1 << 3);
+		if ( ctrl & NAND_CLE )
+			nandaddr |=  (1 << 2);
+		else
+			nandaddr &= ~(1 << 2);
+		if ( ctrl & NAND_NCE )
+			nand_cs_on();
+		else
+			nand_cs_off();
+	}
+
+	dsb();
+	this->IO_ADDR_W = (void __iomem*)nandaddr;
+	if (dat != NAND_CMD_NONE)
+		writel((dat << 16), this->IO_ADDR_W);
+
+	dsb();
+}
+
+/*
+ *	read device ready pin
+ */
+static int cmx270_device_ready(struct mtd_info *mtd)
+{
+	dsb();
+
+	return (gpio_get_value(GPIO_NAND_RB));
+}
+
+/*
+ * Main initialization routine
+ */
+static int __init cmx270_init(void)
+{
+	struct nand_chip *this;
+	int ret;
+
+	if (!(machine_is_armcore() && cpu_is_pxa27x()))
+		return -ENODEV;
+
+	ret = gpio_request(GPIO_NAND_CS, "NAND CS");
+	if (ret) {
+		pr_warn("CM-X270: failed to request NAND CS gpio\n");
+		return ret;
+	}
+
+	gpio_direction_output(GPIO_NAND_CS, 1);
+
+	ret = gpio_request(GPIO_NAND_RB, "NAND R/B");
+	if (ret) {
+		pr_warn("CM-X270: failed to request NAND R/B gpio\n");
+		goto err_gpio_request;
+	}
+
+	gpio_direction_input(GPIO_NAND_RB);
+
+	/* Allocate memory for MTD device structure and private data */
+	this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
+	if (!this) {
+		ret = -ENOMEM;
+		goto err_kzalloc;
+	}
+
+	cmx270_nand_io = ioremap(PXA_CS1_PHYS, 12);
+	if (!cmx270_nand_io) {
+		pr_debug("Unable to ioremap NAND device\n");
+		ret = -EINVAL;
+		goto err_ioremap;
+	}
+
+	cmx270_nand_mtd = nand_to_mtd(this);
+
+	/* Link the private data with the MTD structure */
+	cmx270_nand_mtd->owner = THIS_MODULE;
+
+	/* insert callbacks */
+	this->IO_ADDR_R = cmx270_nand_io;
+	this->IO_ADDR_W = cmx270_nand_io;
+	this->cmd_ctrl = cmx270_hwcontrol;
+	this->dev_ready = cmx270_device_ready;
+
+	/* 15 us command delay time */
+	this->chip_delay = 20;
+	this->ecc.mode = NAND_ECC_SOFT;
+	this->ecc.algo = NAND_ECC_HAMMING;
+
+	/* read/write functions */
+	this->read_byte = cmx270_read_byte;
+	this->read_buf = cmx270_read_buf;
+	this->write_buf = cmx270_write_buf;
+
+	/* Scan to find existence of the device */
+	ret = nand_scan(cmx270_nand_mtd, 1);
+	if (ret) {
+		pr_notice("No NAND device\n");
+		goto err_scan;
+	}
+
+	/* Register the partitions */
+	ret = mtd_device_register(cmx270_nand_mtd, partition_info,
+				  NUM_PARTITIONS);
+	if (ret)
+		goto err_scan;
+
+	/* Return happy */
+	return 0;
+
+err_scan:
+	iounmap(cmx270_nand_io);
+err_ioremap:
+	kfree(this);
+err_kzalloc:
+	gpio_free(GPIO_NAND_RB);
+err_gpio_request:
+	gpio_free(GPIO_NAND_CS);
+
+	return ret;
+
+}
+module_init(cmx270_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit cmx270_cleanup(void)
+{
+	/* Release resources, unregister device */
+	nand_release(cmx270_nand_mtd);
+
+	gpio_free(GPIO_NAND_RB);
+	gpio_free(GPIO_NAND_CS);
+
+	iounmap(cmx270_nand_io);
+
+	kfree(mtd_to_nand(cmx270_nand_mtd));
+}
+module_exit(cmx270_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mike Rapoport <mike@compulab.co.il>");
+MODULE_DESCRIPTION("NAND flash driver for Compulab CM-X270 Module");
diff --git a/drivers/mtd/nand/raw/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c
new file mode 100644
index 0000000..beafad6
--- /dev/null
+++ b/drivers/mtd/nand/raw/cs553x_nand.c
@@ -0,0 +1,355 @@
+/*
+ * (C) 2005, 2006 Red Hat Inc.
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ *	   Tom Sylla <tom.sylla@amd.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ *  Overview:
+ *   This is a device driver for the NAND flash controller found on
+ *   the AMD CS5535/CS5536 companion chipsets for the Geode processor.
+ *   mtd-id for command line partitioning is cs553x_nand_cs[0-3]
+ *   where 0-3 reflects the chip select for NAND.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/msr.h>
+#include <asm/io.h>
+
+#define NR_CS553X_CONTROLLERS	4
+
+#define MSR_DIVIL_GLD_CAP	0x51400000	/* DIVIL capabilitiies */
+#define CAP_CS5535		0x2df000ULL
+#define CAP_CS5536		0x5df500ULL
+
+/* NAND Timing MSRs */
+#define MSR_NANDF_DATA		0x5140001b	/* NAND Flash Data Timing MSR */
+#define MSR_NANDF_CTL		0x5140001c	/* NAND Flash Control Timing */
+#define MSR_NANDF_RSVD		0x5140001d	/* Reserved */
+
+/* NAND BAR MSRs */
+#define MSR_DIVIL_LBAR_FLSH0	0x51400010	/* Flash Chip Select 0 */
+#define MSR_DIVIL_LBAR_FLSH1	0x51400011	/* Flash Chip Select 1 */
+#define MSR_DIVIL_LBAR_FLSH2	0x51400012	/* Flash Chip Select 2 */
+#define MSR_DIVIL_LBAR_FLSH3	0x51400013	/* Flash Chip Select 3 */
+	/* Each made up of... */
+#define FLSH_LBAR_EN		(1ULL<<32)
+#define FLSH_NOR_NAND		(1ULL<<33)	/* 1 for NAND */
+#define FLSH_MEM_IO		(1ULL<<34)	/* 1 for MMIO */
+	/* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */
+	/* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */
+
+/* Pin function selection MSR (IDE vs. flash on the IDE pins) */
+#define MSR_DIVIL_BALL_OPTS	0x51400015
+#define PIN_OPT_IDE		(1<<0)	/* 0 for flash, 1 for IDE */
+
+/* Registers within the NAND flash controller BAR -- memory mapped */
+#define MM_NAND_DATA		0x00	/* 0 to 0x7ff, in fact */
+#define MM_NAND_CTL		0x800	/* Any even address 0x800-0x80e */
+#define MM_NAND_IO		0x801	/* Any odd address 0x801-0x80f */
+#define MM_NAND_STS		0x810
+#define MM_NAND_ECC_LSB		0x811
+#define MM_NAND_ECC_MSB		0x812
+#define MM_NAND_ECC_COL		0x813
+#define MM_NAND_LAC		0x814
+#define MM_NAND_ECC_CTL		0x815
+
+/* Registers within the NAND flash controller BAR -- I/O mapped */
+#define IO_NAND_DATA		0x00	/* 0 to 3, in fact */
+#define IO_NAND_CTL		0x04
+#define IO_NAND_IO		0x05
+#define IO_NAND_STS		0x06
+#define IO_NAND_ECC_CTL		0x08
+#define IO_NAND_ECC_LSB		0x09
+#define IO_NAND_ECC_MSB		0x0a
+#define IO_NAND_ECC_COL		0x0b
+#define IO_NAND_LAC		0x0c
+
+#define CS_NAND_CTL_DIST_EN	(1<<4)	/* Enable NAND Distract interrupt */
+#define CS_NAND_CTL_RDY_INT_MASK	(1<<3)	/* Enable RDY/BUSY# interrupt */
+#define CS_NAND_CTL_ALE		(1<<2)
+#define CS_NAND_CTL_CLE		(1<<1)
+#define CS_NAND_CTL_CE		(1<<0)	/* Keep low; 1 to reset */
+
+#define CS_NAND_STS_FLASH_RDY	(1<<3)
+#define CS_NAND_CTLR_BUSY	(1<<2)
+#define CS_NAND_CMD_COMP	(1<<1)
+#define CS_NAND_DIST_ST		(1<<0)
+
+#define CS_NAND_ECC_PARITY	(1<<2)
+#define CS_NAND_ECC_CLRECC	(1<<1)
+#define CS_NAND_ECC_ENECC	(1<<0)
+
+static void cs553x_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	while (unlikely(len > 0x800)) {
+		memcpy_fromio(buf, this->IO_ADDR_R, 0x800);
+		buf += 0x800;
+		len -= 0x800;
+	}
+	memcpy_fromio(buf, this->IO_ADDR_R, len);
+}
+
+static void cs553x_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	while (unlikely(len > 0x800)) {
+		memcpy_toio(this->IO_ADDR_R, buf, 0x800);
+		buf += 0x800;
+		len -= 0x800;
+	}
+	memcpy_toio(this->IO_ADDR_R, buf, len);
+}
+
+static unsigned char cs553x_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	return readb(this->IO_ADDR_R);
+}
+
+static void cs553x_write_byte(struct mtd_info *mtd, u_char byte)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int i = 100000;
+
+	while (i && readb(this->IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) {
+		udelay(1);
+		i--;
+	}
+	writeb(byte, this->IO_ADDR_W + 0x801);
+}
+
+static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd,
+			     unsigned int ctrl)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	void __iomem *mmio_base = this->IO_ADDR_R;
+	if (ctrl & NAND_CTRL_CHANGE) {
+		unsigned char ctl = (ctrl & ~NAND_CTRL_CHANGE ) ^ 0x01;
+		writeb(ctl, mmio_base + MM_NAND_CTL);
+	}
+	if (cmd != NAND_CMD_NONE)
+		cs553x_write_byte(mtd, cmd);
+}
+
+static int cs553x_device_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	void __iomem *mmio_base = this->IO_ADDR_R;
+	unsigned char foo = readb(mmio_base + MM_NAND_STS);
+
+	return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY);
+}
+
+static void cs_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	void __iomem *mmio_base = this->IO_ADDR_R;
+
+	writeb(0x07, mmio_base + MM_NAND_ECC_CTL);
+}
+
+static int cs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+	uint32_t ecc;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	void __iomem *mmio_base = this->IO_ADDR_R;
+
+	ecc = readl(mmio_base + MM_NAND_STS);
+
+	ecc_code[1] = ecc >> 8;
+	ecc_code[0] = ecc >> 16;
+	ecc_code[2] = ecc >> 24;
+	return 0;
+}
+
+static struct mtd_info *cs553x_mtd[4];
+
+static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
+{
+	int err = 0;
+	struct nand_chip *this;
+	struct mtd_info *new_mtd;
+
+	pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n",
+		  cs, mmio ? "MM" : "P", adr);
+
+	if (!mmio) {
+		pr_notice("PIO mode not yet implemented for CS553X NAND controller\n");
+		return -ENXIO;
+	}
+
+	/* Allocate memory for MTD device structure and private data */
+	this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
+	if (!this) {
+		err = -ENOMEM;
+		goto out;
+	}
+
+	new_mtd = nand_to_mtd(this);
+
+	/* Link the private data with the MTD structure */
+	new_mtd->owner = THIS_MODULE;
+
+	/* map physical address */
+	this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096);
+	if (!this->IO_ADDR_R) {
+		pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr);
+		err = -EIO;
+		goto out_mtd;
+	}
+
+	this->cmd_ctrl = cs553x_hwcontrol;
+	this->dev_ready = cs553x_device_ready;
+	this->read_byte = cs553x_read_byte;
+	this->read_buf = cs553x_read_buf;
+	this->write_buf = cs553x_write_buf;
+
+	this->chip_delay = 0;
+
+	this->ecc.mode = NAND_ECC_HW;
+	this->ecc.size = 256;
+	this->ecc.bytes = 3;
+	this->ecc.hwctl  = cs_enable_hwecc;
+	this->ecc.calculate = cs_calculate_ecc;
+	this->ecc.correct  = nand_correct_data;
+	this->ecc.strength = 1;
+
+	/* Enable the following for a flash based bad block table */
+	this->bbt_options = NAND_BBT_USE_FLASH;
+
+	new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs);
+	if (!new_mtd->name) {
+		err = -ENOMEM;
+		goto out_ior;
+	}
+
+	/* Scan to find existence of the device */
+	err = nand_scan(new_mtd, 1);
+	if (err)
+		goto out_free;
+
+	cs553x_mtd[cs] = new_mtd;
+	goto out;
+
+out_free:
+	kfree(new_mtd->name);
+out_ior:
+	iounmap(this->IO_ADDR_R);
+out_mtd:
+	kfree(this);
+out:
+	return err;
+}
+
+static int is_geode(void)
+{
+	/* These are the CPUs which will have a CS553[56] companion chip */
+	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
+	    boot_cpu_data.x86 == 5 &&
+	    boot_cpu_data.x86_model == 10)
+		return 1; /* Geode LX */
+
+	if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC ||
+	     boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) &&
+	    boot_cpu_data.x86 == 5 &&
+	    boot_cpu_data.x86_model == 5)
+		return 1; /* Geode GX (née GX2) */
+
+	return 0;
+}
+
+static int __init cs553x_init(void)
+{
+	int err = -ENXIO;
+	int i;
+	uint64_t val;
+
+	/* If the CPU isn't a Geode GX or LX, abort */
+	if (!is_geode())
+		return -ENXIO;
+
+	/* If it doesn't have the CS553[56], abort */
+	rdmsrl(MSR_DIVIL_GLD_CAP, val);
+	val &= ~0xFFULL;
+	if (val != CAP_CS5535 && val != CAP_CS5536)
+		return -ENXIO;
+
+	/* If it doesn't have the NAND controller enabled, abort */
+	rdmsrl(MSR_DIVIL_BALL_OPTS, val);
+	if (val & PIN_OPT_IDE) {
+		pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
+		return -ENXIO;
+	}
+
+	for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
+		rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val);
+
+		if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND))
+			err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF);
+	}
+
+	/* Register all devices together here. This means we can easily hack it to
+	   do mtdconcat etc. if we want to. */
+	for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
+		if (cs553x_mtd[i]) {
+			/* If any devices registered, return success. Else the last error. */
+			mtd_device_register(cs553x_mtd[i], NULL, 0);
+			err = 0;
+		}
+	}
+
+	return err;
+}
+
+module_init(cs553x_init);
+
+static void __exit cs553x_cleanup(void)
+{
+	int i;
+
+	for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
+		struct mtd_info *mtd = cs553x_mtd[i];
+		struct nand_chip *this;
+		void __iomem *mmio_base;
+
+		if (!mtd)
+			continue;
+
+		this = mtd_to_nand(mtd);
+		mmio_base = this->IO_ADDR_R;
+
+		/* Release resources, unregister device */
+		nand_release(mtd);
+		kfree(mtd->name);
+		cs553x_mtd[i] = NULL;
+
+		/* unmap physical address */
+		iounmap(mmio_base);
+
+		/* Free the MTD device structure */
+		kfree(this);
+	}
+}
+
+module_exit(cs553x_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip");
diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c
new file mode 100644
index 0000000..40145e2
--- /dev/null
+++ b/drivers/mtd/nand/raw/davinci_nand.c
@@ -0,0 +1,864 @@
+/*
+ * davinci_nand.c - NAND Flash Driver for DaVinci family chips
+ *
+ * Copyright © 2006 Texas Instruments.
+ *
+ * Port to 2.6.23 Copyright © 2008 by:
+ *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
+ *   Troy Kisky <troy.kisky@boundarydevices.com>
+ *   Dirk Behme <Dirk.Behme@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/slab.h>
+#include <linux/of_device.h>
+#include <linux/of.h>
+
+#include <linux/platform_data/mtd-davinci.h>
+#include <linux/platform_data/mtd-davinci-aemif.h>
+
+/*
+ * This is a device driver for the NAND flash controller found on the
+ * various DaVinci family chips.  It handles up to four SoC chipselects,
+ * and some flavors of secondary chipselect (e.g. based on A12) as used
+ * with multichip packages.
+ *
+ * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
+ * available on chips like the DM355 and OMAP-L137 and needed with the
+ * more error-prone MLC NAND chips.
+ *
+ * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
+ * outputs in a "wire-AND" configuration, with no per-chip signals.
+ */
+struct davinci_nand_info {
+	struct nand_chip	chip;
+
+	struct platform_device	*pdev;
+
+	bool			is_readmode;
+
+	void __iomem		*base;
+	void __iomem		*vaddr;
+
+	void __iomem		*current_cs;
+
+	uint32_t		mask_chipsel;
+	uint32_t		mask_ale;
+	uint32_t		mask_cle;
+
+	uint32_t		core_chipsel;
+
+	struct davinci_aemif_timing	*timing;
+};
+
+static DEFINE_SPINLOCK(davinci_nand_lock);
+static bool ecc4_busy;
+
+static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
+}
+
+static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
+		int offset)
+{
+	return __raw_readl(info->base + offset);
+}
+
+static inline void davinci_nand_writel(struct davinci_nand_info *info,
+		int offset, unsigned long value)
+{
+	__raw_writel(value, info->base + offset);
+}
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * Access to hardware control lines:  ALE, CLE, secondary chipselect.
+ */
+
+static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	struct davinci_nand_info	*info = to_davinci_nand(mtd);
+	void __iomem			*addr = info->current_cs;
+	struct nand_chip		*nand = mtd_to_nand(mtd);
+
+	/* Did the control lines change? */
+	if (ctrl & NAND_CTRL_CHANGE) {
+		if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
+			addr += info->mask_cle;
+		else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
+			addr += info->mask_ale;
+
+		nand->IO_ADDR_W = addr;
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		iowrite8(cmd, nand->IO_ADDR_W);
+}
+
+static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct davinci_nand_info	*info = to_davinci_nand(mtd);
+
+	info->current_cs = info->vaddr;
+
+	/* maybe kick in a second chipselect */
+	if (chip > 0)
+		info->current_cs += info->mask_chipsel;
+
+	info->chip.IO_ADDR_W = info->current_cs;
+	info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
+}
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * 1-bit hardware ECC ... context maintained for each core chipselect
+ */
+
+static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
+{
+	struct davinci_nand_info *info = to_davinci_nand(mtd);
+
+	return davinci_nand_readl(info, NANDF1ECC_OFFSET
+			+ 4 * info->core_chipsel);
+}
+
+static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
+{
+	struct davinci_nand_info *info;
+	uint32_t nandcfr;
+	unsigned long flags;
+
+	info = to_davinci_nand(mtd);
+
+	/* Reset ECC hardware */
+	nand_davinci_readecc_1bit(mtd);
+
+	spin_lock_irqsave(&davinci_nand_lock, flags);
+
+	/* Restart ECC hardware */
+	nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
+	nandcfr |= BIT(8 + info->core_chipsel);
+	davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
+
+	spin_unlock_irqrestore(&davinci_nand_lock, flags);
+}
+
+/*
+ * Read hardware ECC value and pack into three bytes
+ */
+static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
+				      const u_char *dat, u_char *ecc_code)
+{
+	unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
+	unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
+
+	/* invert so that erased block ecc is correct */
+	ecc24 = ~ecc24;
+	ecc_code[0] = (u_char)(ecc24);
+	ecc_code[1] = (u_char)(ecc24 >> 8);
+	ecc_code[2] = (u_char)(ecc24 >> 16);
+
+	return 0;
+}
+
+static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
+				     u_char *read_ecc, u_char *calc_ecc)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
+					  (read_ecc[2] << 16);
+	uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
+					  (calc_ecc[2] << 16);
+	uint32_t diff = eccCalc ^ eccNand;
+
+	if (diff) {
+		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
+			/* Correctable error */
+			if ((diff >> (12 + 3)) < chip->ecc.size) {
+				dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
+				return 1;
+			} else {
+				return -EBADMSG;
+			}
+		} else if (!(diff & (diff - 1))) {
+			/* Single bit ECC error in the ECC itself,
+			 * nothing to fix */
+			return 1;
+		} else {
+			/* Uncorrectable error */
+			return -EBADMSG;
+		}
+
+	}
+	return 0;
+}
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * 4-bit hardware ECC ... context maintained over entire AEMIF
+ *
+ * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
+ * since that forces use of a problematic "infix OOB" layout.
+ * Among other things, it trashes manufacturer bad block markers.
+ * Also, and specific to this hardware, it ECC-protects the "prepad"
+ * in the OOB ... while having ECC protection for parts of OOB would
+ * seem useful, the current MTD stack sometimes wants to update the
+ * OOB without recomputing ECC.
+ */
+
+static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
+{
+	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	unsigned long flags;
+	u32 val;
+
+	/* Reset ECC hardware */
+	davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
+
+	spin_lock_irqsave(&davinci_nand_lock, flags);
+
+	/* Start 4-bit ECC calculation for read/write */
+	val = davinci_nand_readl(info, NANDFCR_OFFSET);
+	val &= ~(0x03 << 4);
+	val |= (info->core_chipsel << 4) | BIT(12);
+	davinci_nand_writel(info, NANDFCR_OFFSET, val);
+
+	info->is_readmode = (mode == NAND_ECC_READ);
+
+	spin_unlock_irqrestore(&davinci_nand_lock, flags);
+}
+
+/* Read raw ECC code after writing to NAND. */
+static void
+nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
+{
+	const u32 mask = 0x03ff03ff;
+
+	code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
+	code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
+	code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
+	code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
+}
+
+/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
+static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
+		const u_char *dat, u_char *ecc_code)
+{
+	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	u32 raw_ecc[4], *p;
+	unsigned i;
+
+	/* After a read, terminate ECC calculation by a dummy read
+	 * of some 4-bit ECC register.  ECC covers everything that
+	 * was read; correct() just uses the hardware state, so
+	 * ecc_code is not needed.
+	 */
+	if (info->is_readmode) {
+		davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
+		return 0;
+	}
+
+	/* Pack eight raw 10-bit ecc values into ten bytes, making
+	 * two passes which each convert four values (in upper and
+	 * lower halves of two 32-bit words) into five bytes.  The
+	 * ROM boot loader uses this same packing scheme.
+	 */
+	nand_davinci_readecc_4bit(info, raw_ecc);
+	for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
+		*ecc_code++ =   p[0]        & 0xff;
+		*ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
+		*ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
+		*ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
+		*ecc_code++ =  (p[1] >> 18) & 0xff;
+	}
+
+	return 0;
+}
+
+/* Correct up to 4 bits in data we just read, using state left in the
+ * hardware plus the ecc_code computed when it was first written.
+ */
+static int nand_davinci_correct_4bit(struct mtd_info *mtd,
+		u_char *data, u_char *ecc_code, u_char *null)
+{
+	int i;
+	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	unsigned short ecc10[8];
+	unsigned short *ecc16;
+	u32 syndrome[4];
+	u32 ecc_state;
+	unsigned num_errors, corrected;
+	unsigned long timeo;
+
+	/* Unpack ten bytes into eight 10 bit values.  We know we're
+	 * little-endian, and use type punning for less shifting/masking.
+	 */
+	if (WARN_ON(0x01 & (uintptr_t)ecc_code))
+		return -EINVAL;
+	ecc16 = (unsigned short *)ecc_code;
+
+	ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
+	ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
+	ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
+	ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
+	ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
+	ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
+	ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
+	ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
+
+	/* Tell ECC controller about the expected ECC codes. */
+	for (i = 7; i >= 0; i--)
+		davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
+
+	/* Allow time for syndrome calculation ... then read it.
+	 * A syndrome of all zeroes 0 means no detected errors.
+	 */
+	davinci_nand_readl(info, NANDFSR_OFFSET);
+	nand_davinci_readecc_4bit(info, syndrome);
+	if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
+		return 0;
+
+	/*
+	 * Clear any previous address calculation by doing a dummy read of an
+	 * error address register.
+	 */
+	davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
+
+	/* Start address calculation, and wait for it to complete.
+	 * We _could_ start reading more data while this is working,
+	 * to speed up the overall page read.
+	 */
+	davinci_nand_writel(info, NANDFCR_OFFSET,
+			davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
+
+	/*
+	 * ECC_STATE field reads 0x3 (Error correction complete) immediately
+	 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
+	 * begin trying to poll for the state, you may fall right out of your
+	 * loop without any of the correction calculations having taken place.
+	 * The recommendation from the hardware team is to initially delay as
+	 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
+	 * correction state.
+	 */
+	timeo = jiffies + usecs_to_jiffies(100);
+	do {
+		ecc_state = (davinci_nand_readl(info,
+				NANDFSR_OFFSET) >> 8) & 0x0f;
+		cpu_relax();
+	} while ((ecc_state < 4) && time_before(jiffies, timeo));
+
+	for (;;) {
+		u32	fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
+
+		switch ((fsr >> 8) & 0x0f) {
+		case 0:		/* no error, should not happen */
+			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
+			return 0;
+		case 1:		/* five or more errors detected */
+			davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
+			return -EBADMSG;
+		case 2:		/* error addresses computed */
+		case 3:
+			num_errors = 1 + ((fsr >> 16) & 0x03);
+			goto correct;
+		default:	/* still working on it */
+			cpu_relax();
+			continue;
+		}
+	}
+
+correct:
+	/* correct each error */
+	for (i = 0, corrected = 0; i < num_errors; i++) {
+		int error_address, error_value;
+
+		if (i > 1) {
+			error_address = davinci_nand_readl(info,
+						NAND_ERR_ADD2_OFFSET);
+			error_value = davinci_nand_readl(info,
+						NAND_ERR_ERRVAL2_OFFSET);
+		} else {
+			error_address = davinci_nand_readl(info,
+						NAND_ERR_ADD1_OFFSET);
+			error_value = davinci_nand_readl(info,
+						NAND_ERR_ERRVAL1_OFFSET);
+		}
+
+		if (i & 1) {
+			error_address >>= 16;
+			error_value >>= 16;
+		}
+		error_address &= 0x3ff;
+		error_address = (512 + 7) - error_address;
+
+		if (error_address < 512) {
+			data[error_address] ^= error_value;
+			corrected++;
+		}
+	}
+
+	return corrected;
+}
+
+/*----------------------------------------------------------------------*/
+
+/*
+ * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
+ * how these chips are normally wired.  This translates to both 8 and 16
+ * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
+ *
+ * For now we assume that configuration, or any other one which ignores
+ * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
+ * and have that transparently morphed into multiple NAND operations.
+ */
+static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
+		ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
+	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
+		ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
+	else
+		ioread8_rep(chip->IO_ADDR_R, buf, len);
+}
+
+static void nand_davinci_write_buf(struct mtd_info *mtd,
+		const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if ((0x03 & ((uintptr_t)buf)) == 0 && (0x03 & len) == 0)
+		iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
+	else if ((0x01 & ((uintptr_t)buf)) == 0 && (0x01 & len) == 0)
+		iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
+	else
+		iowrite8_rep(chip->IO_ADDR_R, buf, len);
+}
+
+/*
+ * Check hardware register for wait status. Returns 1 if device is ready,
+ * 0 if it is still busy.
+ */
+static int nand_davinci_dev_ready(struct mtd_info *mtd)
+{
+	struct davinci_nand_info *info = to_davinci_nand(mtd);
+
+	return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
+}
+
+/*----------------------------------------------------------------------*/
+
+/* An ECC layout for using 4-bit ECC with small-page flash, storing
+ * ten ECC bytes plus the manufacturer's bad block marker byte, and
+ * and not overlapping the default BBT markers.
+ */
+static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	if (section > 2)
+		return -ERANGE;
+
+	if (!section) {
+		oobregion->offset = 0;
+		oobregion->length = 5;
+	} else if (section == 1) {
+		oobregion->offset = 6;
+		oobregion->length = 2;
+	} else {
+		oobregion->offset = 13;
+		oobregion->length = 3;
+	}
+
+	return 0;
+}
+
+static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *oobregion)
+{
+	if (section > 1)
+		return -ERANGE;
+
+	if (!section) {
+		oobregion->offset = 8;
+		oobregion->length = 5;
+	} else {
+		oobregion->offset = 16;
+		oobregion->length = mtd->oobsize - 16;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
+	.ecc = hwecc4_ooblayout_small_ecc,
+	.free = hwecc4_ooblayout_small_free,
+};
+
+#if defined(CONFIG_OF)
+static const struct of_device_id davinci_nand_of_match[] = {
+	{.compatible = "ti,davinci-nand", },
+	{.compatible = "ti,keystone-nand", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
+
+static struct davinci_nand_pdata
+	*nand_davinci_get_pdata(struct platform_device *pdev)
+{
+	if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
+		struct davinci_nand_pdata *pdata;
+		const char *mode;
+		u32 prop;
+
+		pdata =  devm_kzalloc(&pdev->dev,
+				sizeof(struct davinci_nand_pdata),
+				GFP_KERNEL);
+		pdev->dev.platform_data = pdata;
+		if (!pdata)
+			return ERR_PTR(-ENOMEM);
+		if (!of_property_read_u32(pdev->dev.of_node,
+			"ti,davinci-chipselect", &prop))
+			pdata->core_chipsel = prop;
+		else
+			return ERR_PTR(-EINVAL);
+
+		if (!of_property_read_u32(pdev->dev.of_node,
+			"ti,davinci-mask-ale", &prop))
+			pdata->mask_ale = prop;
+		if (!of_property_read_u32(pdev->dev.of_node,
+			"ti,davinci-mask-cle", &prop))
+			pdata->mask_cle = prop;
+		if (!of_property_read_u32(pdev->dev.of_node,
+			"ti,davinci-mask-chipsel", &prop))
+			pdata->mask_chipsel = prop;
+		if (!of_property_read_string(pdev->dev.of_node,
+			"ti,davinci-ecc-mode", &mode)) {
+			if (!strncmp("none", mode, 4))
+				pdata->ecc_mode = NAND_ECC_NONE;
+			if (!strncmp("soft", mode, 4))
+				pdata->ecc_mode = NAND_ECC_SOFT;
+			if (!strncmp("hw", mode, 2))
+				pdata->ecc_mode = NAND_ECC_HW;
+		}
+		if (!of_property_read_u32(pdev->dev.of_node,
+			"ti,davinci-ecc-bits", &prop))
+			pdata->ecc_bits = prop;
+
+		if (!of_property_read_u32(pdev->dev.of_node,
+			"ti,davinci-nand-buswidth", &prop) && prop == 16)
+			pdata->options |= NAND_BUSWIDTH_16;
+
+		if (of_property_read_bool(pdev->dev.of_node,
+			"ti,davinci-nand-use-bbt"))
+			pdata->bbt_options = NAND_BBT_USE_FLASH;
+
+		/*
+		 * Since kernel v4.8, this driver has been fixed to enable
+		 * use of 4-bit hardware ECC with subpages and verified on
+		 * TI's keystone EVMs (K2L, K2HK and K2E).
+		 * However, in the interest of not breaking systems using
+		 * existing UBI partitions, sub-page writes are not being
+		 * (re)enabled. If you want to use subpage writes on Keystone
+		 * platforms (i.e. do not have any existing UBI partitions),
+		 * then use "ti,davinci-nand" as the compatible in your
+		 * device-tree file.
+		 */
+		if (of_device_is_compatible(pdev->dev.of_node,
+					    "ti,keystone-nand")) {
+			pdata->options |= NAND_NO_SUBPAGE_WRITE;
+		}
+	}
+
+	return dev_get_platdata(&pdev->dev);
+}
+#else
+static struct davinci_nand_pdata
+	*nand_davinci_get_pdata(struct platform_device *pdev)
+{
+	return dev_get_platdata(&pdev->dev);
+}
+#endif
+
+static int davinci_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct davinci_nand_info *info = to_davinci_nand(mtd);
+	struct davinci_nand_pdata *pdata = nand_davinci_get_pdata(info->pdev);
+	int ret = 0;
+
+	if (IS_ERR(pdata))
+		return PTR_ERR(pdata);
+
+	switch (info->chip.ecc.mode) {
+	case NAND_ECC_NONE:
+		pdata->ecc_bits = 0;
+		break;
+	case NAND_ECC_SOFT:
+		pdata->ecc_bits = 0;
+		/*
+		 * This driver expects Hamming based ECC when ecc_mode is set
+		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
+		 * avoid adding an extra ->ecc_algo field to
+		 * davinci_nand_pdata.
+		 */
+		info->chip.ecc.algo = NAND_ECC_HAMMING;
+		break;
+	case NAND_ECC_HW:
+		if (pdata->ecc_bits == 4) {
+			/*
+			 * No sanity checks:  CPUs must support this,
+			 * and the chips may not use NAND_BUSWIDTH_16.
+			 */
+
+			/* No sharing 4-bit hardware between chipselects yet */
+			spin_lock_irq(&davinci_nand_lock);
+			if (ecc4_busy)
+				ret = -EBUSY;
+			else
+				ecc4_busy = true;
+			spin_unlock_irq(&davinci_nand_lock);
+
+			if (ret == -EBUSY)
+				return ret;
+
+			info->chip.ecc.calculate = nand_davinci_calculate_4bit;
+			info->chip.ecc.correct = nand_davinci_correct_4bit;
+			info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
+			info->chip.ecc.bytes = 10;
+			info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
+			info->chip.ecc.algo = NAND_ECC_BCH;
+		} else {
+			/* 1bit ecc hamming */
+			info->chip.ecc.calculate = nand_davinci_calculate_1bit;
+			info->chip.ecc.correct = nand_davinci_correct_1bit;
+			info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
+			info->chip.ecc.bytes = 3;
+			info->chip.ecc.algo = NAND_ECC_HAMMING;
+		}
+		info->chip.ecc.size = 512;
+		info->chip.ecc.strength = pdata->ecc_bits;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	/*
+	 * Update ECC layout if needed ... for 1-bit HW ECC, the default
+	 * is OK, but it allocates 6 bytes when only 3 are needed (for
+	 * each 512 bytes).  For the 4-bit HW ECC, that default is not
+	 * usable:  10 bytes are needed, not 6.
+	 */
+	if (pdata->ecc_bits == 4) {
+		int chunks = mtd->writesize / 512;
+
+		if (!chunks || mtd->oobsize < 16) {
+			dev_dbg(&info->pdev->dev, "too small\n");
+			return -EINVAL;
+		}
+
+		/* For small page chips, preserve the manufacturer's
+		 * badblock marking data ... and make sure a flash BBT
+		 * table marker fits in the free bytes.
+		 */
+		if (chunks == 1) {
+			mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
+		} else if (chunks == 4 || chunks == 8) {
+			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+			info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
+		} else {
+			return -EIO;
+		}
+	}
+
+	return ret;
+}
+
+static const struct nand_controller_ops davinci_nand_controller_ops = {
+	.attach_chip = davinci_nand_attach_chip,
+};
+
+static int nand_davinci_probe(struct platform_device *pdev)
+{
+	struct davinci_nand_pdata	*pdata;
+	struct davinci_nand_info	*info;
+	struct resource			*res1;
+	struct resource			*res2;
+	void __iomem			*vaddr;
+	void __iomem			*base;
+	int				ret;
+	uint32_t			val;
+	struct mtd_info			*mtd;
+
+	pdata = nand_davinci_get_pdata(pdev);
+	if (IS_ERR(pdata))
+		return PTR_ERR(pdata);
+
+	/* insist on board-specific configuration */
+	if (!pdata)
+		return -ENODEV;
+
+	/* which external chipselect will we be managing? */
+	if (pdata->core_chipsel < 0 || pdata->core_chipsel > 3)
+		return -ENODEV;
+
+	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	platform_set_drvdata(pdev, info);
+
+	res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+	if (!res1 || !res2) {
+		dev_err(&pdev->dev, "resource missing\n");
+		return -EINVAL;
+	}
+
+	vaddr = devm_ioremap_resource(&pdev->dev, res1);
+	if (IS_ERR(vaddr))
+		return PTR_ERR(vaddr);
+
+	/*
+	 * This registers range is used to setup NAND settings. In case with
+	 * TI AEMIF driver, the same memory address range is requested already
+	 * by AEMIF, so we cannot request it twice, just ioremap.
+	 * The AEMIF and NAND drivers not use the same registers in this range.
+	 */
+	base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
+	if (!base) {
+		dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
+		return -EADDRNOTAVAIL;
+	}
+
+	info->pdev		= pdev;
+	info->base		= base;
+	info->vaddr		= vaddr;
+
+	mtd			= nand_to_mtd(&info->chip);
+	mtd->dev.parent		= &pdev->dev;
+	nand_set_flash_node(&info->chip, pdev->dev.of_node);
+
+	info->chip.IO_ADDR_R	= vaddr;
+	info->chip.IO_ADDR_W	= vaddr;
+	info->chip.chip_delay	= 0;
+	info->chip.select_chip	= nand_davinci_select_chip;
+
+	/* options such as NAND_BBT_USE_FLASH */
+	info->chip.bbt_options	= pdata->bbt_options;
+	/* options such as 16-bit widths */
+	info->chip.options	= pdata->options;
+	info->chip.bbt_td	= pdata->bbt_td;
+	info->chip.bbt_md	= pdata->bbt_md;
+	info->timing		= pdata->timing;
+
+	info->current_cs	= info->vaddr;
+	info->core_chipsel	= pdata->core_chipsel;
+	info->mask_chipsel	= pdata->mask_chipsel;
+
+	/* use nandboot-capable ALE/CLE masks by default */
+	info->mask_ale		= pdata->mask_ale ? : MASK_ALE;
+	info->mask_cle		= pdata->mask_cle ? : MASK_CLE;
+
+	/* Set address of hardware control function */
+	info->chip.cmd_ctrl	= nand_davinci_hwcontrol;
+	info->chip.dev_ready	= nand_davinci_dev_ready;
+
+	/* Speed up buffer I/O */
+	info->chip.read_buf     = nand_davinci_read_buf;
+	info->chip.write_buf    = nand_davinci_write_buf;
+
+	/* Use board-specific ECC config */
+	info->chip.ecc.mode	= pdata->ecc_mode;
+
+	spin_lock_irq(&davinci_nand_lock);
+
+	/* put CSxNAND into NAND mode */
+	val = davinci_nand_readl(info, NANDFCR_OFFSET);
+	val |= BIT(info->core_chipsel);
+	davinci_nand_writel(info, NANDFCR_OFFSET, val);
+
+	spin_unlock_irq(&davinci_nand_lock);
+
+	/* Scan to find existence of the device(s) */
+	info->chip.dummy_controller.ops = &davinci_nand_controller_ops;
+	ret = nand_scan(mtd, pdata->mask_chipsel ? 2 : 1);
+	if (ret < 0) {
+		dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
+		return ret;
+	}
+
+	if (pdata->parts)
+		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
+	else
+		ret = mtd_device_register(mtd, NULL, 0);
+	if (ret < 0)
+		goto err_cleanup_nand;
+
+	val = davinci_nand_readl(info, NRCSR_OFFSET);
+	dev_info(&pdev->dev, "controller rev. %d.%d\n",
+	       (val >> 8) & 0xff, val & 0xff);
+
+	return 0;
+
+err_cleanup_nand:
+	nand_cleanup(&info->chip);
+
+	return ret;
+}
+
+static int nand_davinci_remove(struct platform_device *pdev)
+{
+	struct davinci_nand_info *info = platform_get_drvdata(pdev);
+
+	spin_lock_irq(&davinci_nand_lock);
+	if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
+		ecc4_busy = false;
+	spin_unlock_irq(&davinci_nand_lock);
+
+	nand_release(nand_to_mtd(&info->chip));
+
+	return 0;
+}
+
+static struct platform_driver nand_davinci_driver = {
+	.probe		= nand_davinci_probe,
+	.remove		= nand_davinci_remove,
+	.driver		= {
+		.name	= "davinci_nand",
+		.of_match_table = of_match_ptr(davinci_nand_of_match),
+	},
+};
+MODULE_ALIAS("platform:davinci_nand");
+
+module_platform_driver(nand_davinci_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Texas Instruments");
+MODULE_DESCRIPTION("Davinci NAND flash driver");
+
diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c
new file mode 100644
index 0000000..2242e99
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali.c
@@ -0,0 +1,1415 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#include <linux/bitfield.h>
+#include <linux/completion.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/slab.h>
+#include <linux/spinlock.h>
+
+#include "denali.h"
+
+MODULE_LICENSE("GPL");
+
+#define DENALI_NAND_NAME    "denali-nand"
+#define DENALI_DEFAULT_OOB_SKIP_BYTES	8
+
+/* for Indexed Addressing */
+#define DENALI_INDEXED_CTRL	0x00
+#define DENALI_INDEXED_DATA	0x10
+
+#define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
+#define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
+#define DENALI_MAP10		(2 << 26)	/* high-level control plane */
+#define DENALI_MAP11		(3 << 26)	/* direct controller access */
+
+/* MAP11 access cycle type */
+#define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
+#define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
+#define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
+
+/* MAP10 commands */
+#define DENALI_ERASE		0x01
+
+#define DENALI_BANK(denali)	((denali)->active_bank << 24)
+
+#define DENALI_INVALID_BANK	-1
+#define DENALI_NR_BANKS		4
+
+static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
+}
+
+/*
+ * Direct Addressing - the slave address forms the control information (command
+ * type, bank, block, and page address).  The slave data is the actual data to
+ * be transferred.  This mode requires 28 bits of address region allocated.
+ */
+static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
+{
+	return ioread32(denali->host + addr);
+}
+
+static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
+				u32 data)
+{
+	iowrite32(data, denali->host + addr);
+}
+
+/*
+ * Indexed Addressing - address translation module intervenes in passing the
+ * control information.  This mode reduces the required address range.  The
+ * control information and transferred data are latched by the registers in
+ * the translation module.
+ */
+static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
+{
+	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+	return ioread32(denali->host + DENALI_INDEXED_DATA);
+}
+
+static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
+				 u32 data)
+{
+	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
+	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
+}
+
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void denali_detect_max_banks(struct denali_nand_info *denali)
+{
+	uint32_t features = ioread32(denali->reg + FEATURES);
+
+	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
+
+	/* the encoding changed from rev 5.0 to 5.1 */
+	if (denali->revision < 0x0501)
+		denali->max_banks <<= 1;
+}
+
+static void denali_enable_irq(struct denali_nand_info *denali)
+{
+	int i;
+
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
+	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
+}
+
+static void denali_disable_irq(struct denali_nand_info *denali)
+{
+	int i;
+
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		iowrite32(0, denali->reg + INTR_EN(i));
+	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
+}
+
+static void denali_clear_irq(struct denali_nand_info *denali,
+			     int bank, uint32_t irq_status)
+{
+	/* write one to clear bits */
+	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
+}
+
+static void denali_clear_irq_all(struct denali_nand_info *denali)
+{
+	int i;
+
+	for (i = 0; i < DENALI_NR_BANKS; i++)
+		denali_clear_irq(denali, i, U32_MAX);
+}
+
+static irqreturn_t denali_isr(int irq, void *dev_id)
+{
+	struct denali_nand_info *denali = dev_id;
+	irqreturn_t ret = IRQ_NONE;
+	uint32_t irq_status;
+	int i;
+
+	spin_lock(&denali->irq_lock);
+
+	for (i = 0; i < DENALI_NR_BANKS; i++) {
+		irq_status = ioread32(denali->reg + INTR_STATUS(i));
+		if (irq_status)
+			ret = IRQ_HANDLED;
+
+		denali_clear_irq(denali, i, irq_status);
+
+		if (i != denali->active_bank)
+			continue;
+
+		denali->irq_status |= irq_status;
+
+		if (denali->irq_status & denali->irq_mask)
+			complete(&denali->complete);
+	}
+
+	spin_unlock(&denali->irq_lock);
+
+	return ret;
+}
+
+static void denali_reset_irq(struct denali_nand_info *denali)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&denali->irq_lock, flags);
+	denali->irq_status = 0;
+	denali->irq_mask = 0;
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
+}
+
+static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
+				    uint32_t irq_mask)
+{
+	unsigned long time_left, flags;
+	uint32_t irq_status;
+
+	spin_lock_irqsave(&denali->irq_lock, flags);
+
+	irq_status = denali->irq_status;
+
+	if (irq_mask & irq_status) {
+		/* return immediately if the IRQ has already happened. */
+		spin_unlock_irqrestore(&denali->irq_lock, flags);
+		return irq_status;
+	}
+
+	denali->irq_mask = irq_mask;
+	reinit_completion(&denali->complete);
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
+
+	time_left = wait_for_completion_timeout(&denali->complete,
+						msecs_to_jiffies(1000));
+	if (!time_left) {
+		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
+			irq_mask);
+		return 0;
+	}
+
+	return denali->irq_status;
+}
+
+static uint32_t denali_check_irq(struct denali_nand_info *denali)
+{
+	unsigned long flags;
+	uint32_t irq_status;
+
+	spin_lock_irqsave(&denali->irq_lock, flags);
+	irq_status = denali->irq_status;
+	spin_unlock_irqrestore(&denali->irq_lock, flags);
+
+	return irq_status;
+}
+
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = denali->host_read(denali, addr);
+}
+
+static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	int i;
+
+	for (i = 0; i < len; i++)
+		denali->host_write(denali, addr, buf[i]);
+}
+
+static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	uint16_t *buf16 = (uint16_t *)buf;
+	int i;
+
+	for (i = 0; i < len / 2; i++)
+		buf16[i] = denali->host_read(denali, addr);
+}
+
+static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
+			       int len)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
+	const uint16_t *buf16 = (const uint16_t *)buf;
+	int i;
+
+	for (i = 0; i < len / 2; i++)
+		denali->host_write(denali, addr, buf16[i]);
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+	uint8_t byte;
+
+	denali_read_buf(mtd, &byte, 1);
+
+	return byte;
+}
+
+static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
+{
+	denali_write_buf(mtd, &byte, 1);
+}
+
+static uint16_t denali_read_word(struct mtd_info *mtd)
+{
+	uint16_t word;
+
+	denali_read_buf16(mtd, (uint8_t *)&word, 2);
+
+	return word;
+}
+
+static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t type;
+
+	if (ctrl & NAND_CLE)
+		type = DENALI_MAP11_CMD;
+	else if (ctrl & NAND_ALE)
+		type = DENALI_MAP11_ADDR;
+	else
+		return;
+
+	/*
+	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
+	 * irq_status must be cleared here to catch the R/B# interrupt later.
+	 */
+	if (ctrl & NAND_CTRL_CHANGE)
+		denali_reset_irq(denali);
+
+	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
+}
+
+static int denali_dev_ready(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	return !!(denali_check_irq(denali) & INTR__INT_ACT);
+}
+
+static int denali_check_erased_page(struct mtd_info *mtd,
+				    struct nand_chip *chip, uint8_t *buf,
+				    unsigned long uncor_ecc_flags,
+				    unsigned int max_bitflips)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int i, stat;
+
+	for (i = 0; i < ecc_steps; i++) {
+		if (!(uncor_ecc_flags & BIT(i)))
+			continue;
+
+		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
+						  ecc_code, ecc_bytes,
+						  NULL, 0,
+						  chip->ecc.strength);
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+
+		buf += ecc_size;
+		ecc_code += ecc_bytes;
+	}
+
+	return max_bitflips;
+}
+
+static int denali_hw_ecc_fixup(struct mtd_info *mtd,
+			       struct denali_nand_info *denali,
+			       unsigned long *uncor_ecc_flags)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int bank = denali->active_bank;
+	uint32_t ecc_cor;
+	unsigned int max_bitflips;
+
+	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
+	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
+
+	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
+		/*
+		 * This flag is set when uncorrectable error occurs at least in
+		 * one ECC sector.  We can not know "how many sectors", or
+		 * "which sector(s)".  We need erase-page check for all sectors.
+		 */
+		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
+		return 0;
+	}
+
+	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
+
+	/*
+	 * The register holds the maximum of per-sector corrected bitflips.
+	 * This is suitable for the return value of the ->read_page() callback.
+	 * Unfortunately, we can not know the total number of corrected bits in
+	 * the page.  Increase the stats by max_bitflips. (compromised solution)
+	 */
+	mtd->ecc_stats.corrected += max_bitflips;
+
+	return max_bitflips;
+}
+
+static int denali_sw_ecc_fixup(struct mtd_info *mtd,
+			       struct denali_nand_info *denali,
+			       unsigned long *uncor_ecc_flags, uint8_t *buf)
+{
+	unsigned int ecc_size = denali->nand.ecc.size;
+	unsigned int bitflips = 0;
+	unsigned int max_bitflips = 0;
+	uint32_t err_addr, err_cor_info;
+	unsigned int err_byte, err_sector, err_device;
+	uint8_t err_cor_value;
+	unsigned int prev_sector = 0;
+	uint32_t irq_status;
+
+	denali_reset_irq(denali);
+
+	do {
+		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
+		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
+		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
+
+		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
+		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
+					  err_cor_info);
+		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
+				       err_cor_info);
+
+		/* reset the bitflip counter when crossing ECC sector */
+		if (err_sector != prev_sector)
+			bitflips = 0;
+
+		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
+			/*
+			 * Check later if this is a real ECC error, or
+			 * an erased sector.
+			 */
+			*uncor_ecc_flags |= BIT(err_sector);
+		} else if (err_byte < ecc_size) {
+			/*
+			 * If err_byte is larger than ecc_size, means error
+			 * happened in OOB, so we ignore it. It's no need for
+			 * us to correct it err_device is represented the NAND
+			 * error bits are happened in if there are more than
+			 * one NAND connected.
+			 */
+			int offset;
+			unsigned int flips_in_byte;
+
+			offset = (err_sector * ecc_size + err_byte) *
+					denali->devs_per_cs + err_device;
+
+			/* correct the ECC error */
+			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
+			buf[offset] ^= err_cor_value;
+			mtd->ecc_stats.corrected += flips_in_byte;
+			bitflips += flips_in_byte;
+
+			max_bitflips = max(max_bitflips, bitflips);
+		}
+
+		prev_sector = err_sector;
+	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
+
+	/*
+	 * Once handle all ECC errors, controller will trigger an
+	 * ECC_TRANSACTION_DONE interrupt.
+	 */
+	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
+	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
+		return -EIO;
+
+	return max_bitflips;
+}
+
+static void denali_setup_dma64(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
+{
+	uint32_t mode;
+	const int page_count = 1;
+
+	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
+
+	/* DMA is a three step process */
+
+	/*
+	 * 1. setup transfer type, interrupt when complete,
+	 *    burst len = 64 bytes, the number of pages
+	 */
+	denali->host_write(denali, mode,
+			   0x01002000 | (64 << 16) | (write << 8) | page_count);
+
+	/* 2. set memory low address */
+	denali->host_write(denali, mode, lower_32_bits(dma_addr));
+
+	/* 3. set memory high address */
+	denali->host_write(denali, mode, upper_32_bits(dma_addr));
+}
+
+static void denali_setup_dma32(struct denali_nand_info *denali,
+			       dma_addr_t dma_addr, int page, int write)
+{
+	uint32_t mode;
+	const int page_count = 1;
+
+	mode = DENALI_MAP10 | DENALI_BANK(denali);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	denali->host_write(denali, mode | page,
+			   0x2000 | (write << 8) | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
+
+	/* 4. interrupt when complete, burst len = 64 bytes */
+	denali->host_write(denali, mode | 0x14000, 0x2400);
+}
+
+static int denali_pio_read(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw)
+{
+	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+	uint32_t *buf32 = (uint32_t *)buf;
+	uint32_t irq_status, ecc_err_mask;
+	int i;
+
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	else
+		ecc_err_mask = INTR__ECC_ERR;
+
+	denali_reset_irq(denali);
+
+	for (i = 0; i < size / 4; i++)
+		*buf32++ = denali->host_read(denali, addr);
+
+	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
+	if (!(irq_status & INTR__PAGE_XFER_INC))
+		return -EIO;
+
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
+
+	return irq_status & ecc_err_mask ? -EBADMSG : 0;
+}
+
+static int denali_pio_write(struct denali_nand_info *denali,
+			    const void *buf, size_t size, int page, int raw)
+{
+	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
+	const uint32_t *buf32 = (uint32_t *)buf;
+	uint32_t irq_status;
+	int i;
+
+	denali_reset_irq(denali);
+
+	for (i = 0; i < size / 4; i++)
+		denali->host_write(denali, addr, *buf32++);
+
+	irq_status = denali_wait_for_irq(denali,
+				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
+	if (!(irq_status & INTR__PROGRAM_COMP))
+		return -EIO;
+
+	return 0;
+}
+
+static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	if (write)
+		return denali_pio_write(denali, buf, size, page, raw);
+	else
+		return denali_pio_read(denali, buf, size, page, raw);
+}
+
+static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
+			   size_t size, int page, int raw, int write)
+{
+	dma_addr_t dma_addr;
+	uint32_t irq_mask, irq_status, ecc_err_mask;
+	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
+	int ret = 0;
+
+	dma_addr = dma_map_single(denali->dev, buf, size, dir);
+	if (dma_mapping_error(denali->dev, dma_addr)) {
+		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
+	}
+
+	if (write) {
+		/*
+		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
+		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
+		 * when the page program is completed.
+		 */
+		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
+		ecc_err_mask = 0;
+	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_UNCOR_ERR;
+	} else {
+		irq_mask = INTR__DMA_CMD_COMP;
+		ecc_err_mask = INTR__ECC_ERR;
+	}
+
+	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
+	/*
+	 * The ->setup_dma() hook kicks DMA by using the data/command
+	 * interface, which belongs to a different AXI port from the
+	 * register interface.  Read back the register to avoid a race.
+	 */
+	ioread32(denali->reg + DMA_ENABLE);
+
+	denali_reset_irq(denali);
+	denali->setup_dma(denali, dma_addr, page, write);
+
+	irq_status = denali_wait_for_irq(denali, irq_mask);
+	if (!(irq_status & INTR__DMA_CMD_COMP))
+		ret = -EIO;
+	else if (irq_status & ecc_err_mask)
+		ret = -EBADMSG;
+
+	iowrite32(0, denali->reg + DMA_ENABLE);
+
+	dma_unmap_single(denali->dev, dma_addr, size, dir);
+
+	if (irq_status & INTR__ERASED_PAGE)
+		memset(buf, 0xff, size);
+
+	return ret;
+}
+
+static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
+			    size_t size, int page, int raw, int write)
+{
+	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
+	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
+		  denali->reg + TRANSFER_SPARE_REG);
+
+	if (denali->dma_avail)
+		return denali_dma_xfer(denali, buf, size, page, raw, write);
+	else
+		return denali_pio_xfer(denali, buf, size, page, raw, write);
+}
+
+static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page, int write)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	uint8_t *bufpoi = chip->oob_poi;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
+
+	/* BBM at the beginning of the OOB area */
+	if (write)
+		nand_prog_page_begin_op(chip, page, writesize, bufpoi,
+					oob_skip);
+	else
+		nand_read_page_op(chip, page, writesize, bufpoi, oob_skip);
+	bufpoi += oob_skip;
+
+	/* OOB ECC */
+	for (i = 0; i < ecc_steps; i++) {
+		pos = ecc_size + i * (ecc_size + ecc_bytes);
+		len = ecc_bytes;
+
+		if (pos >= writesize)
+			pos += oob_skip;
+		else if (pos + len > writesize)
+			len = writesize - pos;
+
+		if (write)
+			nand_change_write_column_op(chip, pos, bufpoi, len,
+						    false);
+		else
+			nand_change_read_column_op(chip, pos, bufpoi, len,
+						   false);
+		bufpoi += len;
+		if (len < ecc_bytes) {
+			len = ecc_bytes - len;
+			if (write)
+				nand_change_write_column_op(chip, writesize +
+							    oob_skip, bufpoi,
+							    len, false);
+			else
+				nand_change_read_column_op(chip, writesize +
+							   oob_skip, bufpoi,
+							   len, false);
+			bufpoi += len;
+		}
+	}
+
+	/* OOB free */
+	len = oobsize - (bufpoi - chip->oob_poi);
+	if (write)
+		nand_change_write_column_op(chip, size - len, bufpoi, len,
+					    false);
+	else
+		nand_change_read_column_op(chip, size - len, bufpoi, len,
+					   false);
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int ret, i, pos, len;
+
+	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
+	if (ret)
+		return ret;
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(buf, tmp_buf + pos, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(buf, tmp_buf + writesize + oob_skip,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(oob, tmp_buf + writesize, oob_skip);
+		oob += oob_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(oob, tmp_buf + pos, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(oob, tmp_buf + writesize + oob_skip,
+				       len);
+				oob += len;
+			}
+		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(oob, tmp_buf + size - len, len);
+	}
+
+	return 0;
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page)
+{
+	denali_oob_xfer(mtd, chip, page, 0);
+
+	return 0;
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	denali_reset_irq(denali);
+
+	denali_oob_xfer(mtd, chip, page, 1);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	unsigned long uncor_ecc_flags = 0;
+	int stat = 0;
+	int ret;
+
+	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
+	if (ret && ret != -EBADMSG)
+		return ret;
+
+	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
+		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
+	else if (ret == -EBADMSG)
+		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
+
+	if (stat < 0)
+		return stat;
+
+	if (uncor_ecc_flags) {
+		ret = denali_read_oob(mtd, chip, page);
+		if (ret)
+			return ret;
+
+		stat = denali_check_erased_page(mtd, chip, buf,
+						uncor_ecc_flags, stat);
+	}
+
+	return stat;
+}
+
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int writesize = mtd->writesize;
+	int oobsize = mtd->oobsize;
+	int ecc_steps = chip->ecc.steps;
+	int ecc_size = chip->ecc.size;
+	int ecc_bytes = chip->ecc.bytes;
+	void *tmp_buf = denali->buf;
+	int oob_skip = denali->oob_skip_bytes;
+	size_t size = writesize + oobsize;
+	int i, pos, len;
+
+	/*
+	 * Fill the buffer with 0xff first except the full page transfer.
+	 * This simplifies the logic.
+	 */
+	if (!buf || !oob_required)
+		memset(tmp_buf, 0xff, size);
+
+	/* Arrange the buffer for syndrome payload/ecc layout */
+	if (buf) {
+		for (i = 0; i < ecc_steps; i++) {
+			pos = i * (ecc_size + ecc_bytes);
+			len = ecc_size;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(tmp_buf + pos, buf, len);
+			buf += len;
+			if (len < ecc_size) {
+				len = ecc_size - len;
+				memcpy(tmp_buf + writesize + oob_skip, buf,
+				       len);
+				buf += len;
+			}
+		}
+	}
+
+	if (oob_required) {
+		const uint8_t *oob = chip->oob_poi;
+
+		/* BBM at the beginning of the OOB area */
+		memcpy(tmp_buf + writesize, oob, oob_skip);
+		oob += oob_skip;
+
+		/* OOB ECC */
+		for (i = 0; i < ecc_steps; i++) {
+			pos = ecc_size + i * (ecc_size + ecc_bytes);
+			len = ecc_bytes;
+
+			if (pos >= writesize)
+				pos += oob_skip;
+			else if (pos + len > writesize)
+				len = writesize - pos;
+
+			memcpy(tmp_buf + pos, oob, len);
+			oob += len;
+			if (len < ecc_bytes) {
+				len = ecc_bytes - len;
+				memcpy(tmp_buf + writesize + oob_skip, oob,
+				       len);
+				oob += len;
+			}
+		}
+
+		/* OOB free */
+		len = oobsize - (oob - chip->oob_poi);
+		memcpy(tmp_buf + size - len, oob, len);
+	}
+
+	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
+}
+
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     const uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
+				page, 0, 1);
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	denali->active_bank = chip;
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status;
+
+	/* R/B# pin transitioned from low to high? */
+	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
+
+	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
+}
+
+static int denali_erase(struct mtd_info *mtd, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status;
+
+	denali_reset_irq(denali);
+
+	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
+			   DENALI_ERASE);
+
+	/* wait for erase to complete or failure to occur */
+	irq_status = denali_wait_for_irq(denali,
+					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
+
+	return irq_status & INTR__ERASE_COMP ? 0 : -EIO;
+}
+
+static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
+				       const struct nand_data_interface *conf)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	const struct nand_sdr_timings *timings;
+	unsigned long t_x, mult_x;
+	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
+	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
+	int addr_2_data_mask;
+	uint32_t tmp;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	/* clk_x period in picoseconds */
+	t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
+	if (!t_x)
+		return -EINVAL;
+
+	/*
+	 * The bus interface clock, clk_x, is phase aligned with the core clock.
+	 * The clk_x is an integral multiple N of the core clk.  The value N is
+	 * configured at IP delivery time, and its available value is 4, 5, 6.
+	 */
+	mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
+	if (mult_x < 4 || mult_x > 6)
+		return -EINVAL;
+
+	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	/* tREA -> ACC_CLKS */
+	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
+	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
+
+	tmp = ioread32(denali->reg + ACC_CLKS);
+	tmp &= ~ACC_CLKS__VALUE;
+	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
+	iowrite32(tmp, denali->reg + ACC_CLKS);
+
+	/* tRWH -> RE_2_WE */
+	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
+	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
+
+	tmp = ioread32(denali->reg + RE_2_WE);
+	tmp &= ~RE_2_WE__VALUE;
+	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
+	iowrite32(tmp, denali->reg + RE_2_WE);
+
+	/* tRHZ -> RE_2_RE */
+	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
+	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
+
+	tmp = ioread32(denali->reg + RE_2_RE);
+	tmp &= ~RE_2_RE__VALUE;
+	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
+	iowrite32(tmp, denali->reg + RE_2_RE);
+
+	/*
+	 * tCCS, tWHR -> WE_2_RE
+	 *
+	 * With WE_2_RE properly set, the Denali controller automatically takes
+	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
+	 */
+	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
+	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
+
+	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
+	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
+	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
+	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
+
+	/* tADL -> ADDR_2_DATA */
+
+	/* for older versions, ADDR_2_DATA is only 6 bit wide */
+	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	if (denali->revision < 0x0501)
+		addr_2_data_mask >>= 1;
+
+	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
+	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
+
+	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
+	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
+	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
+	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
+
+	/* tREH, tWH -> RDWR_EN_HI_CNT */
+	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
+				  t_x);
+	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
+	tmp &= ~RDWR_EN_HI_CNT__VALUE;
+	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
+	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
+
+	/* tRP, tWP -> RDWR_EN_LO_CNT */
+	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
+	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
+				     t_x);
+	rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
+	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
+	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
+	tmp &= ~RDWR_EN_LO_CNT__VALUE;
+	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
+	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
+
+	/* tCS, tCEA -> CS_SETUP_CNT */
+	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
+			(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
+			0);
+	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
+
+	tmp = ioread32(denali->reg + CS_SETUP_CNT);
+	tmp &= ~CS_SETUP_CNT__VALUE;
+	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
+	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
+
+	return 0;
+}
+
+static void denali_reset_banks(struct denali_nand_info *denali)
+{
+	u32 irq_status;
+	int i;
+
+	for (i = 0; i < denali->max_banks; i++) {
+		denali->active_bank = i;
+
+		denali_reset_irq(denali);
+
+		iowrite32(DEVICE_RESET__BANK(i),
+			  denali->reg + DEVICE_RESET);
+
+		irq_status = denali_wait_for_irq(denali,
+			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
+		if (!(irq_status & INTR__INT_ACT))
+			break;
+	}
+
+	dev_dbg(denali->dev, "%d chips connected\n", i);
+	denali->max_banks = i;
+}
+
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+	/*
+	 * The REVISION register may not be reliable.  Platforms are allowed to
+	 * override it.
+	 */
+	if (!denali->revision)
+		denali->revision = swab16(ioread32(denali->reg + REVISION));
+
+	/*
+	 * Set how many bytes should be skipped before writing data in OOB.
+	 * If a non-zero value has already been set (by firmware or something),
+	 * just use it.  Otherwise, set the driver default.
+	 */
+	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
+	if (!denali->oob_skip_bytes) {
+		denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
+		iowrite32(denali->oob_skip_bytes,
+			  denali->reg + SPARE_AREA_SKIP_BYTES);
+	}
+
+	denali_detect_max_banks(denali);
+	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
+	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
+
+	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
+}
+
+int denali_calc_ecc_bytes(int step_size, int strength)
+{
+	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
+	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
+}
+EXPORT_SYMBOL(denali_calc_ecc_bytes);
+
+static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = denali->oob_skip_bytes;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static int denali_ooblayout_free(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
+	oobregion->length = mtd->oobsize - oobregion->offset;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
+	.ecc = denali_ooblayout_ecc,
+	.free = denali_ooblayout_free,
+};
+
+static int denali_multidev_fixup(struct denali_nand_info *denali)
+{
+	struct nand_chip *chip = &denali->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/*
+	 * Support for multi device:
+	 * When the IP configuration is x16 capable and two x8 chips are
+	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
+	 * In this case, the core framework knows nothing about this fact,
+	 * so we should tell it the _logical_ pagesize and anything necessary.
+	 */
+	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
+
+	/*
+	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
+	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
+	 */
+	if (denali->devs_per_cs == 0) {
+		denali->devs_per_cs = 1;
+		iowrite32(1, denali->reg + DEVICES_CONNECTED);
+	}
+
+	if (denali->devs_per_cs == 1)
+		return 0;
+
+	if (denali->devs_per_cs != 2) {
+		dev_err(denali->dev, "unsupported number of devices %d\n",
+			denali->devs_per_cs);
+		return -EINVAL;
+	}
+
+	/* 2 chips in parallel */
+	mtd->size <<= 1;
+	mtd->erasesize <<= 1;
+	mtd->writesize <<= 1;
+	mtd->oobsize <<= 1;
+	chip->chipsize <<= 1;
+	chip->page_shift += 1;
+	chip->phys_erase_shift += 1;
+	chip->bbt_erase_shift += 1;
+	chip->chip_shift += 1;
+	chip->pagemask <<= 1;
+	chip->ecc.size <<= 1;
+	chip->ecc.bytes <<= 1;
+	chip->ecc.strength <<= 1;
+	denali->oob_skip_bytes <<= 1;
+
+	return 0;
+}
+
+static int denali_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int ret;
+
+	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
+		denali->dma_avail = 1;
+
+	if (denali->dma_avail) {
+		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
+
+		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
+		if (ret) {
+			dev_info(denali->dev,
+				 "Failed to set DMA mask. Disabling DMA.\n");
+			denali->dma_avail = 0;
+		}
+	}
+
+	if (denali->dma_avail) {
+		chip->options |= NAND_USE_BOUNCE_BUFFER;
+		chip->buf_align = 16;
+		if (denali->caps & DENALI_CAP_DMA_64BIT)
+			denali->setup_dma = denali_setup_dma64;
+		else
+			denali->setup_dma = denali_setup_dma32;
+	}
+
+	chip->bbt_options |= NAND_BBT_USE_FLASH;
+	chip->bbt_options |= NAND_BBT_NO_OOB;
+	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+	ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
+				   mtd->oobsize - denali->oob_skip_bytes);
+	if (ret) {
+		dev_err(denali->dev, "Failed to setup ECC settings.\n");
+		return ret;
+	}
+
+	dev_dbg(denali->dev,
+		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
+		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
+		  denali->reg + ECC_CORRECTION);
+	iowrite32(mtd->erasesize / mtd->writesize,
+		  denali->reg + PAGES_PER_BLOCK);
+	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
+		  denali->reg + DEVICE_WIDTH);
+	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
+		  denali->reg + TWO_ROW_ADDR_CYCLES);
+	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
+	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
+
+	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
+	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
+	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
+	iowrite32(mtd->writesize / chip->ecc.size,
+		  denali->reg + CFG_NUM_DATA_BLOCKS);
+
+	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
+
+	if (chip->options & NAND_BUSWIDTH_16) {
+		chip->read_buf = denali_read_buf16;
+		chip->write_buf = denali_write_buf16;
+	} else {
+		chip->read_buf = denali_read_buf;
+		chip->write_buf = denali_write_buf;
+	}
+	chip->ecc.read_page = denali_read_page;
+	chip->ecc.read_page_raw = denali_read_page_raw;
+	chip->ecc.write_page = denali_write_page;
+	chip->ecc.write_page_raw = denali_write_page_raw;
+	chip->ecc.read_oob = denali_read_oob;
+	chip->ecc.write_oob = denali_write_oob;
+	chip->erase = denali_erase;
+
+	ret = denali_multidev_fixup(denali);
+	if (ret)
+		return ret;
+
+	/*
+	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
+	 * use devm_kmalloc() because the memory allocated by devm_ does not
+	 * guarantee DMA-safe alignment.
+	 */
+	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	if (!denali->buf)
+		return -ENOMEM;
+
+	return 0;
+}
+
+static void denali_detach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	kfree(denali->buf);
+}
+
+static const struct nand_controller_ops denali_controller_ops = {
+	.attach_chip = denali_attach_chip,
+	.detach_chip = denali_detach_chip,
+};
+
+int denali_init(struct denali_nand_info *denali)
+{
+	struct nand_chip *chip = &denali->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u32 features = ioread32(denali->reg + FEATURES);
+	int ret;
+
+	mtd->dev.parent = denali->dev;
+	denali_hw_init(denali);
+
+	init_completion(&denali->complete);
+	spin_lock_init(&denali->irq_lock);
+
+	denali_clear_irq_all(denali);
+
+	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
+			       IRQF_SHARED, DENALI_NAND_NAME, denali);
+	if (ret) {
+		dev_err(denali->dev, "Unable to request IRQ\n");
+		return ret;
+	}
+
+	denali_enable_irq(denali);
+	denali_reset_banks(denali);
+	if (!denali->max_banks) {
+		/* Error out earlier if no chip is found for some reasons. */
+		ret = -ENODEV;
+		goto disable_irq;
+	}
+
+	denali->active_bank = DENALI_INVALID_BANK;
+
+	nand_set_flash_node(chip, denali->dev->of_node);
+	/* Fallback to the default name if DT did not give "label" property */
+	if (!mtd->name)
+		mtd->name = "denali-nand";
+
+	chip->select_chip = denali_select_chip;
+	chip->read_byte = denali_read_byte;
+	chip->write_byte = denali_write_byte;
+	chip->read_word = denali_read_word;
+	chip->cmd_ctrl = denali_cmd_ctrl;
+	chip->dev_ready = denali_dev_ready;
+	chip->waitfunc = denali_waitfunc;
+
+	if (features & FEATURES__INDEX_ADDR) {
+		denali->host_read = denali_indexed_read;
+		denali->host_write = denali_indexed_write;
+	} else {
+		denali->host_read = denali_direct_read;
+		denali->host_write = denali_direct_write;
+	}
+
+	/* clk rate info is needed for setup_data_interface */
+	if (denali->clk_rate && denali->clk_x_rate)
+		chip->setup_data_interface = denali_setup_data_interface;
+
+	chip->dummy_controller.ops = &denali_controller_ops;
+	ret = nand_scan(mtd, denali->max_banks);
+	if (ret)
+		goto disable_irq;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
+		goto cleanup_nand;
+	}
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(chip);
+disable_irq:
+	denali_disable_irq(denali);
+
+	return ret;
+}
+EXPORT_SYMBOL(denali_init);
+
+void denali_remove(struct denali_nand_info *denali)
+{
+	struct mtd_info *mtd = nand_to_mtd(&denali->nand);
+
+	nand_release(mtd);
+	denali_disable_irq(denali);
+}
+EXPORT_SYMBOL(denali_remove);
diff --git a/drivers/mtd/nand/raw/denali.h b/drivers/mtd/nand/raw/denali.h
new file mode 100644
index 0000000..1f8feaf
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali.h
@@ -0,0 +1,336 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#ifndef __DENALI_H__
+#define __DENALI_H__
+
+#include <linux/bitops.h>
+#include <linux/completion.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/spinlock_types.h>
+#include <linux/types.h>
+
+#define DEVICE_RESET				0x0
+#define     DEVICE_RESET__BANK(bank)			BIT(bank)
+
+#define TRANSFER_SPARE_REG			0x10
+#define     TRANSFER_SPARE_REG__FLAG			BIT(0)
+
+#define LOAD_WAIT_CNT				0x20
+#define     LOAD_WAIT_CNT__VALUE			GENMASK(15, 0)
+
+#define PROGRAM_WAIT_CNT			0x30
+#define     PROGRAM_WAIT_CNT__VALUE			GENMASK(15, 0)
+
+#define ERASE_WAIT_CNT				0x40
+#define     ERASE_WAIT_CNT__VALUE			GENMASK(15, 0)
+
+#define INT_MON_CYCCNT				0x50
+#define     INT_MON_CYCCNT__VALUE			GENMASK(15, 0)
+
+#define RB_PIN_ENABLED				0x60
+#define     RB_PIN_ENABLED__BANK(bank)			BIT(bank)
+
+#define MULTIPLANE_OPERATION			0x70
+#define     MULTIPLANE_OPERATION__FLAG			BIT(0)
+
+#define MULTIPLANE_READ_ENABLE			0x80
+#define     MULTIPLANE_READ_ENABLE__FLAG		BIT(0)
+
+#define COPYBACK_DISABLE			0x90
+#define     COPYBACK_DISABLE__FLAG			BIT(0)
+
+#define CACHE_WRITE_ENABLE			0xa0
+#define     CACHE_WRITE_ENABLE__FLAG			BIT(0)
+
+#define CACHE_READ_ENABLE			0xb0
+#define     CACHE_READ_ENABLE__FLAG			BIT(0)
+
+#define PREFETCH_MODE				0xc0
+#define     PREFETCH_MODE__PREFETCH_EN			BIT(0)
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	GENMASK(15, 4)
+
+#define CHIP_ENABLE_DONT_CARE			0xd0
+#define     CHIP_EN_DONT_CARE__FLAG			BIT(0)
+
+#define ECC_ENABLE				0xe0
+#define     ECC_ENABLE__FLAG				BIT(0)
+
+#define GLOBAL_INT_ENABLE			0xf0
+#define     GLOBAL_INT_EN_FLAG				BIT(0)
+
+#define TWHR2_AND_WE_2_RE			0x100
+#define     TWHR2_AND_WE_2_RE__WE_2_RE			GENMASK(5, 0)
+#define     TWHR2_AND_WE_2_RE__TWHR2			GENMASK(13, 8)
+
+#define TCWAW_AND_ADDR_2_DATA			0x110
+/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */
+#define     TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA		GENMASK(6, 0)
+#define     TCWAW_AND_ADDR_2_DATA__TCWAW		GENMASK(13, 8)
+
+#define RE_2_WE					0x120
+#define     RE_2_WE__VALUE				GENMASK(5, 0)
+
+#define ACC_CLKS				0x130
+#define     ACC_CLKS__VALUE				GENMASK(3, 0)
+
+#define NUMBER_OF_PLANES			0x140
+#define     NUMBER_OF_PLANES__VALUE			GENMASK(2, 0)
+
+#define PAGES_PER_BLOCK				0x150
+#define     PAGES_PER_BLOCK__VALUE			GENMASK(15, 0)
+
+#define DEVICE_WIDTH				0x160
+#define     DEVICE_WIDTH__VALUE				GENMASK(1, 0)
+
+#define DEVICE_MAIN_AREA_SIZE			0x170
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		GENMASK(15, 0)
+
+#define DEVICE_SPARE_AREA_SIZE			0x180
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		GENMASK(15, 0)
+
+#define TWO_ROW_ADDR_CYCLES			0x190
+#define     TWO_ROW_ADDR_CYCLES__FLAG			BIT(0)
+
+#define MULTIPLANE_ADDR_RESTRICT		0x1a0
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		BIT(0)
+
+#define ECC_CORRECTION				0x1b0
+#define     ECC_CORRECTION__VALUE			GENMASK(4, 0)
+#define     ECC_CORRECTION__ERASE_THRESHOLD		GENMASK(31, 16)
+
+#define READ_MODE				0x1c0
+#define     READ_MODE__VALUE				GENMASK(3, 0)
+
+#define WRITE_MODE				0x1d0
+#define     WRITE_MODE__VALUE				GENMASK(3, 0)
+
+#define COPYBACK_MODE				0x1e0
+#define     COPYBACK_MODE__VALUE			GENMASK(3, 0)
+
+#define RDWR_EN_LO_CNT				0x1f0
+#define     RDWR_EN_LO_CNT__VALUE			GENMASK(4, 0)
+
+#define RDWR_EN_HI_CNT				0x200
+#define     RDWR_EN_HI_CNT__VALUE			GENMASK(4, 0)
+
+#define MAX_RD_DELAY				0x210
+#define     MAX_RD_DELAY__VALUE				GENMASK(3, 0)
+
+#define CS_SETUP_CNT				0x220
+#define     CS_SETUP_CNT__VALUE				GENMASK(4, 0)
+#define     CS_SETUP_CNT__TWB				GENMASK(17, 12)
+
+#define SPARE_AREA_SKIP_BYTES			0x230
+#define     SPARE_AREA_SKIP_BYTES__VALUE		GENMASK(5, 0)
+
+#define SPARE_AREA_MARKER			0x240
+#define     SPARE_AREA_MARKER__VALUE			GENMASK(15, 0)
+
+#define DEVICES_CONNECTED			0x250
+#define     DEVICES_CONNECTED__VALUE			GENMASK(2, 0)
+
+#define DIE_MASK				0x260
+#define     DIE_MASK__VALUE				GENMASK(7, 0)
+
+#define FIRST_BLOCK_OF_NEXT_PLANE		0x270
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		GENMASK(15, 0)
+
+#define WRITE_PROTECT				0x280
+#define     WRITE_PROTECT__FLAG				BIT(0)
+
+#define RE_2_RE					0x290
+#define     RE_2_RE__VALUE				GENMASK(5, 0)
+
+#define MANUFACTURER_ID				0x300
+#define     MANUFACTURER_ID__VALUE			GENMASK(7, 0)
+
+#define DEVICE_ID				0x310
+#define     DEVICE_ID__VALUE				GENMASK(7, 0)
+
+#define DEVICE_PARAM_0				0x320
+#define     DEVICE_PARAM_0__VALUE			GENMASK(7, 0)
+
+#define DEVICE_PARAM_1				0x330
+#define     DEVICE_PARAM_1__VALUE			GENMASK(7, 0)
+
+#define DEVICE_PARAM_2				0x340
+#define     DEVICE_PARAM_2__VALUE			GENMASK(7, 0)
+
+#define LOGICAL_PAGE_DATA_SIZE			0x350
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		GENMASK(15, 0)
+
+#define LOGICAL_PAGE_SPARE_SIZE			0x360
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		GENMASK(15, 0)
+
+#define REVISION				0x370
+#define     REVISION__VALUE				GENMASK(15, 0)
+
+#define ONFI_DEVICE_FEATURES			0x380
+#define     ONFI_DEVICE_FEATURES__VALUE			GENMASK(5, 0)
+
+#define ONFI_OPTIONAL_COMMANDS			0x390
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		GENMASK(5, 0)
+
+#define ONFI_TIMING_MODE			0x3a0
+#define     ONFI_TIMING_MODE__VALUE			GENMASK(5, 0)
+
+#define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		GENMASK(5, 0)
+
+#define ONFI_DEVICE_NO_OF_LUNS			0x3c0
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		GENMASK(7, 0)
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		BIT(8)
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	GENMASK(15, 0)
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	GENMASK(15, 0)
+
+#define FEATURES				0x3f0
+#define     FEATURES__N_BANKS				GENMASK(1, 0)
+#define     FEATURES__ECC_MAX_ERR			GENMASK(5, 2)
+#define     FEATURES__DMA				BIT(6)
+#define     FEATURES__CMD_DMA				BIT(7)
+#define     FEATURES__PARTITION				BIT(8)
+#define     FEATURES__XDMA_SIDEBAND			BIT(9)
+#define     FEATURES__GPREG				BIT(10)
+#define     FEATURES__INDEX_ADDR			BIT(11)
+
+#define TRANSFER_MODE				0x400
+#define     TRANSFER_MODE__VALUE			GENMASK(1, 0)
+
+#define INTR_STATUS(bank)			(0x410 + (bank) * 0x50)
+#define INTR_EN(bank)				(0x420 + (bank) * 0x50)
+/* bit[1:0] is used differently depending on IP version */
+#define     INTR__ECC_UNCOR_ERR				BIT(0)	/* new IP */
+#define     INTR__ECC_TRANSACTION_DONE			BIT(0)	/* old IP */
+#define     INTR__ECC_ERR				BIT(1)	/* old IP */
+#define     INTR__DMA_CMD_COMP				BIT(2)
+#define     INTR__TIME_OUT				BIT(3)
+#define     INTR__PROGRAM_FAIL				BIT(4)
+#define     INTR__ERASE_FAIL				BIT(5)
+#define     INTR__LOAD_COMP				BIT(6)
+#define     INTR__PROGRAM_COMP				BIT(7)
+#define     INTR__ERASE_COMP				BIT(8)
+#define     INTR__PIPE_CPYBCK_CMD_COMP			BIT(9)
+#define     INTR__LOCKED_BLK				BIT(10)
+#define     INTR__UNSUP_CMD				BIT(11)
+#define     INTR__INT_ACT				BIT(12)
+#define     INTR__RST_COMP				BIT(13)
+#define     INTR__PIPE_CMD_ERR				BIT(14)
+#define     INTR__PAGE_XFER_INC				BIT(15)
+#define     INTR__ERASED_PAGE				BIT(16)
+
+#define PAGE_CNT(bank)				(0x430 + (bank) * 0x50)
+#define ERR_PAGE_ADDR(bank)			(0x440 + (bank) * 0x50)
+#define ERR_BLOCK_ADDR(bank)			(0x450 + (bank) * 0x50)
+
+#define ECC_THRESHOLD				0x600
+#define     ECC_THRESHOLD__VALUE			GENMASK(9, 0)
+
+#define ECC_ERROR_BLOCK_ADDRESS			0x610
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		GENMASK(15, 0)
+
+#define ECC_ERROR_PAGE_ADDRESS			0x620
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		GENMASK(11, 0)
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		GENMASK(15, 12)
+
+#define ECC_ERROR_ADDRESS			0x630
+#define     ECC_ERROR_ADDRESS__OFFSET			GENMASK(11, 0)
+#define     ECC_ERROR_ADDRESS__SECTOR			GENMASK(15, 12)
+
+#define ERR_CORRECTION_INFO			0x640
+#define     ERR_CORRECTION_INFO__BYTE			GENMASK(7, 0)
+#define     ERR_CORRECTION_INFO__DEVICE			GENMASK(11, 8)
+#define     ERR_CORRECTION_INFO__UNCOR			BIT(14)
+#define     ERR_CORRECTION_INFO__LAST_ERR		BIT(15)
+
+#define ECC_COR_INFO(bank)			(0x650 + (bank) / 2 * 0x10)
+#define     ECC_COR_INFO__SHIFT(bank)			((bank) % 2 * 8)
+#define     ECC_COR_INFO__MAX_ERRORS			GENMASK(6, 0)
+#define     ECC_COR_INFO__UNCOR_ERR			BIT(7)
+
+#define CFG_DATA_BLOCK_SIZE			0x6b0
+
+#define CFG_LAST_DATA_BLOCK_SIZE		0x6c0
+
+#define CFG_NUM_DATA_BLOCKS			0x6d0
+
+#define CFG_META_DATA_SIZE			0x6e0
+
+#define DMA_ENABLE				0x700
+#define     DMA_ENABLE__FLAG				BIT(0)
+
+#define IGNORE_ECC_DONE				0x710
+#define     IGNORE_ECC_DONE__FLAG			BIT(0)
+
+#define DMA_INTR				0x720
+#define DMA_INTR_EN				0x730
+#define     DMA_INTR__TARGET_ERROR			BIT(0)
+#define     DMA_INTR__DESC_COMP_CHANNEL0		BIT(1)
+#define     DMA_INTR__DESC_COMP_CHANNEL1		BIT(2)
+#define     DMA_INTR__DESC_COMP_CHANNEL2		BIT(3)
+#define     DMA_INTR__DESC_COMP_CHANNEL3		BIT(4)
+#define     DMA_INTR__MEMCOPY_DESC_COMP			BIT(5)
+
+#define TARGET_ERR_ADDR_LO			0x740
+#define     TARGET_ERR_ADDR_LO__VALUE			GENMASK(15, 0)
+
+#define TARGET_ERR_ADDR_HI			0x750
+#define     TARGET_ERR_ADDR_HI__VALUE			GENMASK(15, 0)
+
+#define CHNL_ACTIVE				0x760
+#define     CHNL_ACTIVE__CHANNEL0			BIT(0)
+#define     CHNL_ACTIVE__CHANNEL1			BIT(1)
+#define     CHNL_ACTIVE__CHANNEL2			BIT(2)
+#define     CHNL_ACTIVE__CHANNEL3			BIT(3)
+
+struct denali_nand_info {
+	struct nand_chip nand;
+	unsigned long clk_rate;		/* core clock rate */
+	unsigned long clk_x_rate;	/* bus interface clock rate */
+	int active_bank;		/* currently selected bank */
+	struct device *dev;
+	void __iomem *reg;		/* Register Interface */
+	void __iomem *host;		/* Host Data/Command Interface */
+	struct completion complete;
+	spinlock_t irq_lock;		/* protect irq_mask and irq_status */
+	u32 irq_mask;			/* interrupts we are waiting for */
+	u32 irq_status;			/* interrupts that have happened */
+	int irq;
+	void *buf;			/* for syndrome layout conversion */
+	dma_addr_t dma_addr;
+	int dma_avail;			/* can support DMA? */
+	int devs_per_cs;		/* devices connected in parallel */
+	int oob_skip_bytes;		/* number of bytes reserved for BBM */
+	int max_banks;
+	unsigned int revision;		/* IP revision */
+	unsigned int caps;		/* IP capability (or quirk) */
+	const struct nand_ecc_caps *ecc_caps;
+	u32 (*host_read)(struct denali_nand_info *denali, u32 addr);
+	void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data);
+	void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr,
+			  int page, int write);
+};
+
+#define DENALI_CAP_HW_ECC_FIXUP			BIT(0)
+#define DENALI_CAP_DMA_64BIT			BIT(1)
+
+int denali_calc_ecc_bytes(int step_size, int strength);
+int denali_init(struct denali_nand_info *denali);
+void denali_remove(struct denali_nand_info *denali);
+
+#endif /* __DENALI_H__ */
diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
new file mode 100644
index 0000000..0faaad0
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali_dt.c
@@ -0,0 +1,207 @@
+/*
+ * NAND Flash Controller Device Driver for DT
+ *
+ * Copyright © 2011, Picochip.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+
+#include "denali.h"
+
+struct denali_dt {
+	struct denali_nand_info	denali;
+	struct clk *clk;	/* core clock */
+	struct clk *clk_x;	/* bus interface clock */
+	struct clk *clk_ecc;	/* ECC circuit clock */
+};
+
+struct denali_dt_data {
+	unsigned int revision;
+	unsigned int caps;
+	const struct nand_ecc_caps *ecc_caps;
+};
+
+NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes,
+		     512, 8, 15);
+static const struct denali_dt_data denali_socfpga_data = {
+	.caps = DENALI_CAP_HW_ECC_FIXUP,
+	.ecc_caps = &denali_socfpga_ecc_caps,
+};
+
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16, 24);
+static const struct denali_dt_data denali_uniphier_v5a_data = {
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5a_ecc_caps,
+};
+
+NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes,
+		     1024, 8, 16);
+static const struct denali_dt_data denali_uniphier_v5b_data = {
+	.revision = 0x0501,
+	.caps = DENALI_CAP_HW_ECC_FIXUP |
+		DENALI_CAP_DMA_64BIT,
+	.ecc_caps = &denali_uniphier_v5b_ecc_caps,
+};
+
+static const struct of_device_id denali_nand_dt_ids[] = {
+	{
+		.compatible = "altr,socfpga-denali-nand",
+		.data = &denali_socfpga_data,
+	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5a",
+		.data = &denali_uniphier_v5a_data,
+	},
+	{
+		.compatible = "socionext,uniphier-denali-nand-v5b",
+		.data = &denali_uniphier_v5b_data,
+	},
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
+
+static int denali_dt_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct resource *res;
+	struct denali_dt *dt;
+	const struct denali_dt_data *data;
+	struct denali_nand_info *denali;
+	int ret;
+
+	dt = devm_kzalloc(dev, sizeof(*dt), GFP_KERNEL);
+	if (!dt)
+		return -ENOMEM;
+	denali = &dt->denali;
+
+	data = of_device_get_match_data(dev);
+	if (data) {
+		denali->revision = data->revision;
+		denali->caps = data->caps;
+		denali->ecc_caps = data->ecc_caps;
+	}
+
+	denali->dev = dev;
+	denali->irq = platform_get_irq(pdev, 0);
+	if (denali->irq < 0) {
+		dev_err(dev, "no irq defined\n");
+		return denali->irq;
+	}
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "denali_reg");
+	denali->reg = devm_ioremap_resource(dev, res);
+	if (IS_ERR(denali->reg))
+		return PTR_ERR(denali->reg);
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
+	denali->host = devm_ioremap_resource(dev, res);
+	if (IS_ERR(denali->host))
+		return PTR_ERR(denali->host);
+
+	/*
+	 * A single anonymous clock is supported for the backward compatibility.
+	 * New platforms should support all the named clocks.
+	 */
+	dt->clk = devm_clk_get(dev, "nand");
+	if (IS_ERR(dt->clk))
+		dt->clk = devm_clk_get(dev, NULL);
+	if (IS_ERR(dt->clk)) {
+		dev_err(dev, "no clk available\n");
+		return PTR_ERR(dt->clk);
+	}
+
+	dt->clk_x = devm_clk_get(dev, "nand_x");
+	if (IS_ERR(dt->clk_x))
+		dt->clk_x = NULL;
+
+	dt->clk_ecc = devm_clk_get(dev, "ecc");
+	if (IS_ERR(dt->clk_ecc))
+		dt->clk_ecc = NULL;
+
+	ret = clk_prepare_enable(dt->clk);
+	if (ret)
+		return ret;
+
+	ret = clk_prepare_enable(dt->clk_x);
+	if (ret)
+		goto out_disable_clk;
+
+	ret = clk_prepare_enable(dt->clk_ecc);
+	if (ret)
+		goto out_disable_clk_x;
+
+	if (dt->clk_x) {
+		denali->clk_rate = clk_get_rate(dt->clk);
+		denali->clk_x_rate = clk_get_rate(dt->clk_x);
+	} else {
+		/*
+		 * Hardcode the clock rates for the backward compatibility.
+		 * This works for both SOCFPGA and UniPhier.
+		 */
+		dev_notice(dev,
+			   "necessary clock is missing. default clock rates are used.\n");
+		denali->clk_rate = 50000000;
+		denali->clk_x_rate = 200000000;
+	}
+
+	ret = denali_init(denali);
+	if (ret)
+		goto out_disable_clk_ecc;
+
+	platform_set_drvdata(pdev, dt);
+	return 0;
+
+out_disable_clk_ecc:
+	clk_disable_unprepare(dt->clk_ecc);
+out_disable_clk_x:
+	clk_disable_unprepare(dt->clk_x);
+out_disable_clk:
+	clk_disable_unprepare(dt->clk);
+
+	return ret;
+}
+
+static int denali_dt_remove(struct platform_device *pdev)
+{
+	struct denali_dt *dt = platform_get_drvdata(pdev);
+
+	denali_remove(&dt->denali);
+	clk_disable_unprepare(dt->clk_ecc);
+	clk_disable_unprepare(dt->clk_x);
+	clk_disable_unprepare(dt->clk);
+
+	return 0;
+}
+
+static struct platform_driver denali_dt_driver = {
+	.probe		= denali_dt_probe,
+	.remove		= denali_dt_remove,
+	.driver		= {
+		.name	= "denali-nand-dt",
+		.of_match_table	= denali_nand_dt_ids,
+	},
+};
+module_platform_driver(denali_dt_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jamie Iles");
+MODULE_DESCRIPTION("DT driver for Denali NAND controller");
diff --git a/drivers/mtd/nand/raw/denali_pci.c b/drivers/mtd/nand/raw/denali_pci.c
new file mode 100644
index 0000000..7c8efc4
--- /dev/null
+++ b/drivers/mtd/nand/raw/denali_pci.c
@@ -0,0 +1,132 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#include <linux/errno.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+
+#include "denali.h"
+
+#define DENALI_NAND_NAME    "denali-nand-pci"
+
+#define INTEL_CE4100	1
+#define INTEL_MRST	2
+
+/* List of platforms this NAND controller has be integrated into */
+static const struct pci_device_id denali_pci_ids[] = {
+	{ PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
+	{ PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
+	{ /* end: all zeroes */ }
+};
+MODULE_DEVICE_TABLE(pci, denali_pci_ids);
+
+NAND_ECC_CAPS_SINGLE(denali_pci_ecc_caps, denali_calc_ecc_bytes, 512, 8, 15);
+
+static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
+{
+	int ret;
+	resource_size_t csr_base, mem_base;
+	unsigned long csr_len, mem_len;
+	struct denali_nand_info *denali;
+
+	denali = devm_kzalloc(&dev->dev, sizeof(*denali), GFP_KERNEL);
+	if (!denali)
+		return -ENOMEM;
+
+	ret = pcim_enable_device(dev);
+	if (ret) {
+		dev_err(&dev->dev, "Spectra: pci_enable_device failed.\n");
+		return ret;
+	}
+
+	if (id->driver_data == INTEL_CE4100) {
+		mem_base = pci_resource_start(dev, 0);
+		mem_len = pci_resource_len(dev, 1);
+		csr_base = pci_resource_start(dev, 1);
+		csr_len = pci_resource_len(dev, 1);
+	} else {
+		csr_base = pci_resource_start(dev, 0);
+		csr_len = pci_resource_len(dev, 0);
+		mem_base = pci_resource_start(dev, 1);
+		mem_len = pci_resource_len(dev, 1);
+		if (!mem_len) {
+			mem_base = csr_base + csr_len;
+			mem_len = csr_len;
+		}
+	}
+
+	pci_set_master(dev);
+	denali->dev = &dev->dev;
+	denali->irq = dev->irq;
+	denali->ecc_caps = &denali_pci_ecc_caps;
+	denali->nand.ecc.options |= NAND_ECC_MAXIMIZE;
+	denali->clk_rate = 50000000;		/* 50 MHz */
+	denali->clk_x_rate = 200000000;		/* 200 MHz */
+
+	ret = pci_request_regions(dev, DENALI_NAND_NAME);
+	if (ret) {
+		dev_err(&dev->dev, "Spectra: Unable to request memory regions\n");
+		return ret;
+	}
+
+	denali->reg = ioremap_nocache(csr_base, csr_len);
+	if (!denali->reg) {
+		dev_err(&dev->dev, "Spectra: Unable to remap memory region\n");
+		return -ENOMEM;
+	}
+
+	denali->host = ioremap_nocache(mem_base, mem_len);
+	if (!denali->host) {
+		dev_err(&dev->dev, "Spectra: ioremap_nocache failed!");
+		ret = -ENOMEM;
+		goto failed_remap_reg;
+	}
+
+	ret = denali_init(denali);
+	if (ret)
+		goto failed_remap_mem;
+
+	pci_set_drvdata(dev, denali);
+
+	return 0;
+
+failed_remap_mem:
+	iounmap(denali->host);
+failed_remap_reg:
+	iounmap(denali->reg);
+	return ret;
+}
+
+static void denali_pci_remove(struct pci_dev *dev)
+{
+	struct denali_nand_info *denali = pci_get_drvdata(dev);
+
+	denali_remove(denali);
+	iounmap(denali->reg);
+	iounmap(denali->host);
+}
+
+static struct pci_driver denali_pci_driver = {
+	.name = DENALI_NAND_NAME,
+	.id_table = denali_pci_ids,
+	.probe = denali_pci_probe,
+	.remove = denali_pci_remove,
+};
+module_pci_driver(denali_pci_driver);
+
+MODULE_DESCRIPTION("PCI driver for Denali NAND controller");
+MODULE_AUTHOR("Intel Corporation and its suppliers");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c
new file mode 100644
index 0000000..3c46188
--- /dev/null
+++ b/drivers/mtd/nand/raw/diskonchip.c
@@ -0,0 +1,1708 @@
+/*
+ * (C) 2003 Red Hat, Inc.
+ * (C) 2004 Dan Brown <dan_brown@ieee.org>
+ * (C) 2004 Kalev Lember <kalev@smartlink.ee>
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
+ * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
+ *
+ * Error correction code lifted from the old docecc code
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
+ * Copyright (C) 2000 Netgem S.A.
+ * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/rslib.h>
+#include <linux/moduleparam.h>
+#include <linux/slab.h>
+#include <linux/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+#include <linux/module.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
+#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
+#endif
+
+static unsigned long doc_locations[] __initdata = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
+	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
+	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
+	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
+	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else
+	0xc8000, 0xca000, 0xcc000, 0xce000,
+	0xd0000, 0xd2000, 0xd4000, 0xd6000,
+	0xd8000, 0xda000, 0xdc000, 0xde000,
+	0xe0000, 0xe2000, 0xe4000, 0xe6000,
+	0xe8000, 0xea000, 0xec000, 0xee000,
+#endif
+#endif
+	0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+	void __iomem *virtadr;
+	unsigned long physadr;
+	u_char ChipID;
+	u_char CDSNControl;
+	int chips_per_floor;	/* The number of chips detected on each floor */
+	int curfloor;
+	int curchip;
+	int mh0_page;
+	int mh1_page;
+	struct rs_control *rs_decoder;
+	struct mtd_info *nextdoc;
+
+	/* Handle the last stage of initialization (BBT scan, partitioning) */
+	int (*late_init)(struct mtd_info *mtd);
+};
+
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+   page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
+			      unsigned int bitmask);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug = 0;
+module_param(debug, int, 0);
+
+static int try_dword = 1;
+module_param(try_dword, int, 0);
+
+static int no_ecc_failures = 0;
+module_param(no_ecc_failures, int, 0);
+
+static int no_autopart = 0;
+module_param(no_autopart, int, 0);
+
+static int show_firmware_partition = 0;
+module_param(show_firmware_partition, int, 0);
+
+#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write = 1;
+#else
+static int inftl_bbt_write = 0;
+#endif
+module_param(inftl_bbt_write, int, 0);
+
+static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+/* Sector size for HW ECC */
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA 10 bit words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
+/* Number of roots */
+#define NROOTS 4
+/* First consective root */
+#define FCR 510
+/* Number of symbols */
+#define NN 1023
+
+/*
+ * The HW decoder in the DoC ASIC's provides us a error syndrome,
+ * which we must convert to a standard syndrome usable by the generic
+ * Reed-Solomon library code.
+ *
+ * Fabrice Bellard figured this out in the old docecc code. I added
+ * some comments, improved a minor bit and converted it to make use
+ * of the generic Reed-Solomon library. tglx
+ */
+static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
+{
+	int i, j, nerr, errpos[8];
+	uint8_t parity;
+	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
+	struct rs_codec *cd = rs->codec;
+
+	memset(syn, 0, sizeof(syn));
+	/* Convert the ecc bytes into words */
+	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
+	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
+	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
+	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
+	parity = ecc[1];
+
+	/* Initialize the syndrome buffer */
+	for (i = 0; i < NROOTS; i++)
+		s[i] = ds[0];
+	/*
+	 *  Evaluate
+	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
+	 *  where x = alpha^(FCR + i)
+	 */
+	for (j = 1; j < NROOTS; j++) {
+		if (ds[j] == 0)
+			continue;
+		tmp = cd->index_of[ds[j]];
+		for (i = 0; i < NROOTS; i++)
+			s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)];
+	}
+
+	/* Calc syn[i] = s[i] / alpha^(v + i) */
+	for (i = 0; i < NROOTS; i++) {
+		if (s[i])
+			syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i));
+	}
+	/* Call the decoder library */
+	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
+
+	/* Incorrectable errors ? */
+	if (nerr < 0)
+		return nerr;
+
+	/*
+	 * Correct the errors. The bitpositions are a bit of magic,
+	 * but they are given by the design of the de/encoder circuit
+	 * in the DoC ASIC's.
+	 */
+	for (i = 0; i < nerr; i++) {
+		int index, bitpos, pos = 1015 - errpos[i];
+		uint8_t val;
+		if (pos >= NB_DATA && pos < 1019)
+			continue;
+		if (pos < NB_DATA) {
+			/* extract bit position (MSB first) */
+			pos = 10 * (NB_DATA - 1 - pos) - 6;
+			/* now correct the following 10 bits. At most two bytes
+			   can be modified since pos is even */
+			index = (pos >> 3) ^ 1;
+			bitpos = pos & 7;
+			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
+				val = (uint8_t) (errval[i] >> (2 + bitpos));
+				parity ^= val;
+				if (index < SECTOR_SIZE)
+					data[index] ^= val;
+			}
+			index = ((pos >> 3) + 1) ^ 1;
+			bitpos = (bitpos + 10) & 7;
+			if (bitpos == 0)
+				bitpos = 8;
+			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
+				val = (uint8_t) (errval[i] << (8 - bitpos));
+				parity ^= val;
+				if (index < SECTOR_SIZE)
+					data[index] ^= val;
+			}
+		}
+	}
+	/* If the parity is wrong, no rescue possible */
+	return parity ? -EBADMSG : nerr;
+}
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+	volatile char dummy;
+	int i;
+
+	for (i = 0; i < cycles; i++) {
+		if (DoC_is_Millennium(doc))
+			dummy = ReadDOC(doc->virtadr, NOP);
+		else if (DoC_is_MillenniumPlus(doc))
+			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
+		else
+			dummy = ReadDOC(doc->virtadr, DOCStatus);
+	}
+
+}
+
+#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+	void __iomem *docptr = doc->virtadr;
+	unsigned long timeo = jiffies + (HZ * 10);
+
+	if (debug)
+		printk("_DoC_WaitReady...\n");
+	/* Out-of-line routine to wait for chip response */
+	if (DoC_is_MillenniumPlus(doc)) {
+		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+			if (time_after(jiffies, timeo)) {
+				printk("_DoC_WaitReady timed out.\n");
+				return -EIO;
+			}
+			udelay(1);
+			cond_resched();
+		}
+	} else {
+		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+			if (time_after(jiffies, timeo)) {
+				printk("_DoC_WaitReady timed out.\n");
+				return -EIO;
+			}
+			udelay(1);
+			cond_resched();
+		}
+	}
+
+	return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+	void __iomem *docptr = doc->virtadr;
+	int ret = 0;
+
+	if (DoC_is_MillenniumPlus(doc)) {
+		DoC_Delay(doc, 4);
+
+		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+			/* Call the out-of-line routine to wait */
+			ret = _DoC_WaitReady(doc);
+	} else {
+		DoC_Delay(doc, 4);
+
+		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+			/* Call the out-of-line routine to wait */
+			ret = _DoC_WaitReady(doc);
+		DoC_Delay(doc, 2);
+	}
+
+	if (debug)
+		printk("DoC_WaitReady OK\n");
+	return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	if (debug)
+		printk("write_byte %02x\n", datum);
+	WriteDOC(datum, docptr, CDSNSlowIO);
+	WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	u_char ret;
+
+	ReadDOC(docptr, CDSNSlowIO);
+	DoC_Delay(doc, 2);
+	ret = ReadDOC(docptr, 2k_CDSN_IO);
+	if (debug)
+		printk("read_byte returns %02x\n", ret);
+	return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+	if (debug)
+		printk("writebuf of %d bytes: ", len);
+	for (i = 0; i < len; i++) {
+		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+		if (debug && i < 16)
+			printk("%02x ", buf[i]);
+	}
+	if (debug)
+		printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+
+	if (debug)
+		printk("readbuf of %d bytes: ", len);
+
+	for (i = 0; i < len; i++) {
+		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+	}
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+
+	if (debug)
+		printk("readbuf_dword of %d bytes: ", len);
+
+	if (unlikely((((unsigned long)buf) | len) & 3)) {
+		for (i = 0; i < len; i++) {
+			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+		}
+	} else {
+		for (i = 0; i < len; i += 4) {
+			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+		}
+	}
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	uint16_t ret;
+
+	doc200x_select_chip(mtd, nr);
+	doc200x_hwcontrol(mtd, NAND_CMD_READID,
+			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/* We can't use dev_ready here, but at least we wait for the
+	 * command to complete
+	 */
+	udelay(50);
+
+	ret = this->read_byte(mtd) << 8;
+	ret |= this->read_byte(mtd);
+
+	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+		/* First chip probe. See if we get same results by 32-bit access */
+		union {
+			uint32_t dword;
+			uint8_t byte[4];
+		} ident;
+		void __iomem *docptr = doc->virtadr;
+
+		doc200x_hwcontrol(mtd, NAND_CMD_READID,
+				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
+		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
+				  NAND_NCE | NAND_CTRL_CHANGE);
+
+		udelay(50);
+
+		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+			pr_info("DiskOnChip 2000 responds to DWORD access\n");
+			this->read_buf = &doc2000_readbuf_dword;
+		}
+	}
+
+	return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	uint16_t mfrid;
+	int i;
+
+	/* Max 4 chips per floor on DiskOnChip 2000 */
+	doc->chips_per_floor = 4;
+
+	/* Find out what the first chip is */
+	mfrid = doc200x_ident_chip(mtd, 0);
+
+	/* Find how many chips in each floor. */
+	for (i = 1; i < 4; i++) {
+		if (doc200x_ident_chip(mtd, i) != mfrid)
+			break;
+	}
+	doc->chips_per_floor = i;
+	pr_debug("Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
+{
+	struct doc_priv *doc = nand_get_controller_data(this);
+
+	int status;
+
+	DoC_WaitReady(doc);
+	nand_status_op(this, NULL);
+	DoC_WaitReady(doc);
+	status = (int)this->read_byte(mtd);
+
+	return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	WriteDOC(datum, docptr, CDSNSlowIO);
+	WriteDOC(datum, docptr, Mil_CDSN_IO);
+	WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	//ReadDOC(docptr, CDSNSlowIO);
+	/* 11.4.5 -- delay twice to allow extended length cycle */
+	DoC_Delay(doc, 2);
+	ReadDOC(docptr, ReadPipeInit);
+	//return ReadDOC(docptr, Mil_CDSN_IO);
+	return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+
+	for (i = 0; i < len; i++)
+		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+	/* Terminate write pipeline */
+	WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+
+	/* Start read pipeline */
+	ReadDOC(docptr, ReadPipeInit);
+
+	for (i = 0; i < len - 1; i++)
+		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+
+	/* Terminate read pipeline */
+	buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	u_char ret;
+
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+	ret = ReadDOC(docptr, Mplus_LastDataRead);
+	if (debug)
+		printk("read_byte returns %02x\n", ret);
+	return ret;
+}
+
+static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+
+	if (debug)
+		printk("writebuf of %d bytes: ", len);
+	for (i = 0; i < len; i++) {
+		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+		if (debug && i < 16)
+			printk("%02x ", buf[i]);
+	}
+	if (debug)
+		printk("\n");
+}
+
+static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+
+	if (debug)
+		printk("readbuf of %d bytes: ", len);
+
+	/* Start read pipeline */
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+	ReadDOC(docptr, Mplus_ReadPipeInit);
+
+	for (i = 0; i < len - 2; i++) {
+		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+		if (debug && i < 16)
+			printk("%02x ", buf[i]);
+	}
+
+	/* Terminate read pipeline */
+	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
+	if (debug && i < 16)
+		printk("%02x ", buf[len - 2]);
+	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
+	if (debug && i < 16)
+		printk("%02x ", buf[len - 1]);
+	if (debug)
+		printk("\n");
+}
+
+static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int floor = 0;
+
+	if (debug)
+		printk("select chip (%d)\n", chip);
+
+	if (chip == -1) {
+		/* Disable flash internally */
+		WriteDOC(0, docptr, Mplus_FlashSelect);
+		return;
+	}
+
+	floor = chip / doc->chips_per_floor;
+	chip -= (floor * doc->chips_per_floor);
+
+	/* Assert ChipEnable and deassert WriteProtect */
+	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
+	nand_reset_op(this);
+
+	doc->curchip = chip;
+	doc->curfloor = floor;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int floor = 0;
+
+	if (debug)
+		printk("select chip (%d)\n", chip);
+
+	if (chip == -1)
+		return;
+
+	floor = chip / doc->chips_per_floor;
+	chip -= (floor * doc->chips_per_floor);
+
+	/* 11.4.4 -- deassert CE before changing chip */
+	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+
+	WriteDOC(floor, docptr, FloorSelect);
+	WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	doc->curchip = chip;
+	doc->curfloor = floor;
+}
+
+#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
+			      unsigned int ctrl)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		doc->CDSNControl &= ~CDSN_CTRL_MSK;
+		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
+		if (debug)
+			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+		/* 11.4.3 -- 4 NOPs after CSDNControl write */
+		DoC_Delay(doc, 4);
+	}
+	if (cmd != NAND_CMD_NONE) {
+		if (DoC_is_2000(doc))
+			doc2000_write_byte(mtd, cmd);
+		else
+			doc2001_write_byte(mtd, cmd);
+	}
+}
+
+static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	/*
+	 * Must terminate write pipeline before sending any commands
+	 * to the device.
+	 */
+	if (command == NAND_CMD_PAGEPROG) {
+		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+	}
+
+	/*
+	 * Write out the command to the device.
+	 */
+	if (command == NAND_CMD_SEQIN) {
+		int readcmd;
+
+		if (column >= mtd->writesize) {
+			/* OOB area */
+			column -= mtd->writesize;
+			readcmd = NAND_CMD_READOOB;
+		} else if (column < 256) {
+			/* First 256 bytes --> READ0 */
+			readcmd = NAND_CMD_READ0;
+		} else {
+			column -= 256;
+			readcmd = NAND_CMD_READ1;
+		}
+		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
+	}
+	WriteDOC(command, docptr, Mplus_FlashCmd);
+	WriteDOC(0, docptr, Mplus_WritePipeTerm);
+	WriteDOC(0, docptr, Mplus_WritePipeTerm);
+
+	if (column != -1 || page_addr != -1) {
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (this->options & NAND_BUSWIDTH_16 &&
+					!nand_opcode_8bits(command))
+				column >>= 1;
+			WriteDOC(column, docptr, Mplus_FlashAddress);
+		}
+		if (page_addr != -1) {
+			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
+			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
+			if (this->options & NAND_ROW_ADDR_3) {
+				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
+				printk("high density\n");
+			}
+		}
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		/* deassert ALE */
+		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
+		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
+			WriteDOC(0, docptr, Mplus_FlashControl);
+	}
+
+	/*
+	 * program and erase have their own busy handlers
+	 * status and sequential in needs no delay
+	 */
+	switch (command) {
+
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+		return;
+
+	case NAND_CMD_RESET:
+		if (this->dev_ready)
+			break;
+		udelay(this->chip_delay);
+		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		WriteDOC(0, docptr, Mplus_WritePipeTerm);
+		while (!(this->read_byte(mtd) & 0x40)) ;
+		return;
+
+		/* This applies to read commands */
+	default:
+		/*
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay
+		 */
+		if (!this->dev_ready) {
+			udelay(this->chip_delay);
+			return;
+		}
+	}
+
+	/* Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine. */
+	ndelay(100);
+	/* wait until command is processed */
+	while (!this->dev_ready(mtd)) ;
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	if (DoC_is_MillenniumPlus(doc)) {
+		/* 11.4.2 -- must NOP four times before checking FR/B# */
+		DoC_Delay(doc, 4);
+		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+			if (debug)
+				printk("not ready\n");
+			return 0;
+		}
+		if (debug)
+			printk("was ready\n");
+		return 1;
+	} else {
+		/* 11.4.2 -- must NOP four times before checking FR/B# */
+		DoC_Delay(doc, 4);
+		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+			if (debug)
+				printk("not ready\n");
+			return 0;
+		}
+		/* 11.4.2 -- Must NOP twice if it's ready */
+		DoC_Delay(doc, 2);
+		if (debug)
+			printk("was ready\n");
+		return 1;
+	}
+}
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs)
+{
+	/* This is our last resort if we couldn't find or create a BBT.  Just
+	   pretend all blocks are good. */
+	return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	/* Prime the ECC engine */
+	switch (mode) {
+	case NAND_ECC_READ:
+		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+		break;
+	case NAND_ECC_WRITE:
+		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+		break;
+	}
+}
+
+static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+
+	/* Prime the ECC engine */
+	switch (mode) {
+	case NAND_ECC_READ:
+		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+		break;
+	case NAND_ECC_WRITE:
+		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+		break;
+	}
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+	int emptymatch = 1;
+
+	/* flush the pipeline */
+	if (DoC_is_2000(doc)) {
+		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+		WriteDOC(0, docptr, 2k_CDSN_IO);
+		WriteDOC(0, docptr, 2k_CDSN_IO);
+		WriteDOC(0, docptr, 2k_CDSN_IO);
+		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+	} else if (DoC_is_MillenniumPlus(doc)) {
+		WriteDOC(0, docptr, Mplus_NOP);
+		WriteDOC(0, docptr, Mplus_NOP);
+		WriteDOC(0, docptr, Mplus_NOP);
+	} else {
+		WriteDOC(0, docptr, NOP);
+		WriteDOC(0, docptr, NOP);
+		WriteDOC(0, docptr, NOP);
+	}
+
+	for (i = 0; i < 6; i++) {
+		if (DoC_is_MillenniumPlus(doc))
+			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+		else
+			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+		if (ecc_code[i] != empty_write_ecc[i])
+			emptymatch = 0;
+	}
+	if (DoC_is_MillenniumPlus(doc))
+		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+	else
+		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */
+	if (emptymatch) {
+		/* Note: this somewhat expensive test should not be triggered
+		   often.  It could be optimized away by examining the data in
+		   the writebuf routine, and remembering the result. */
+		for (i = 0; i < 512; i++) {
+			if (dat[i] == 0xff)
+				continue;
+			emptymatch = 0;
+			break;
+		}
+	}
+	/* If emptymatch still =1, we do have an all-0xff data buffer.
+	   Return all-0xff ecc value instead of the computed one, so
+	   it'll look just like a freshly-erased page. */
+	if (emptymatch)
+		memset(ecc_code, 0xff, 6);
+#endif
+	return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
+				u_char *read_ecc, u_char *isnull)
+{
+	int i, ret = 0;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	void __iomem *docptr = doc->virtadr;
+	uint8_t calc_ecc[6];
+	volatile u_char dummy;
+
+	/* flush the pipeline */
+	if (DoC_is_2000(doc)) {
+		dummy = ReadDOC(docptr, 2k_ECCStatus);
+		dummy = ReadDOC(docptr, 2k_ECCStatus);
+		dummy = ReadDOC(docptr, 2k_ECCStatus);
+	} else if (DoC_is_MillenniumPlus(doc)) {
+		dummy = ReadDOC(docptr, Mplus_ECCConf);
+		dummy = ReadDOC(docptr, Mplus_ECCConf);
+		dummy = ReadDOC(docptr, Mplus_ECCConf);
+	} else {
+		dummy = ReadDOC(docptr, ECCConf);
+		dummy = ReadDOC(docptr, ECCConf);
+		dummy = ReadDOC(docptr, ECCConf);
+	}
+
+	/* Error occurred ? */
+	if (dummy & 0x80) {
+		for (i = 0; i < 6; i++) {
+			if (DoC_is_MillenniumPlus(doc))
+				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+			else
+				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+		}
+
+		ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc);
+		if (ret > 0)
+			pr_err("doc200x_correct_data corrected %d errors\n",
+			       ret);
+	}
+	if (DoC_is_MillenniumPlus(doc))
+		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+	else
+		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+	if (no_ecc_failures && mtd_is_eccerr(ret)) {
+		pr_err("suppressing ECC failure\n");
+		ret = 0;
+	}
+	return ret;
+}
+
+//u_char mydatabuf[528];
+
+static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 0;
+	oobregion->length = 6;
+
+	return 0;
+}
+
+static int doc200x_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	if (section > 1)
+		return -ERANGE;
+
+	/*
+	 * The strange out-of-order free bytes definition is a (possibly
+	 * unneeded) attempt to retain compatibility.  It used to read:
+	 *	.oobfree = { {8, 8} }
+	 * Since that leaves two bytes unusable, it was changed.  But the
+	 * following scheme might affect existing jffs2 installs by moving the
+	 * cleanmarker:
+	 *	.oobfree = { {6, 10} }
+	 * jffs2 seems to handle the above gracefully, but the current scheme
+	 * seems safer. The only problem with it is that any code retrieving
+	 * free bytes position must be able to handle out-of-order segments.
+	 */
+	if (!section) {
+		oobregion->offset = 8;
+		oobregion->length = 8;
+	} else {
+		oobregion->offset = 6;
+		oobregion->length = 2;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = {
+	.ecc = doc200x_ooblayout_ecc,
+	.free = doc200x_ooblayout_free,
+};
+
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+   On successful return, buf will contain a copy of the media header for
+   further processing.  id is the string to scan for, and will presumably be
+   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
+   header.  The page #s of the found media headers are placed in mh0_page and
+   mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	unsigned offs;
+	int ret;
+	size_t retlen;
+
+	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
+		ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
+		if (retlen != mtd->writesize)
+			continue;
+		if (ret) {
+			pr_warn("ECC error scanning DOC at 0x%x\n", offs);
+		}
+		if (memcmp(buf, id, 6))
+			continue;
+		pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+		if (doc->mh0_page == -1) {
+			doc->mh0_page = offs >> this->page_shift;
+			if (!findmirror)
+				return 1;
+			continue;
+		}
+		doc->mh1_page = offs >> this->page_shift;
+		return 2;
+	}
+	if (doc->mh0_page == -1) {
+		pr_warn("DiskOnChip %s Media Header not found.\n", id);
+		return 0;
+	}
+	/* Only one mediaheader was found.  We want buf to contain a
+	   mediaheader on return, so we'll have to re-read the one we found. */
+	offs = doc->mh0_page << this->page_shift;
+	ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
+	if (retlen != mtd->writesize) {
+		/* Insanity.  Give up. */
+		pr_err("Read DiskOnChip Media Header once, but can't reread it???\n");
+		return 0;
+	}
+	return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	int ret = 0;
+	u_char *buf;
+	struct NFTLMediaHeader *mh;
+	const unsigned psize = 1 << this->page_shift;
+	int numparts = 0;
+	unsigned blocks, maxblocks;
+	int offs, numheaders;
+
+	buf = kmalloc(mtd->writesize, GFP_KERNEL);
+	if (!buf) {
+		return 0;
+	}
+	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
+		goto out;
+	mh = (struct NFTLMediaHeader *)buf;
+
+	le16_to_cpus(&mh->NumEraseUnits);
+	le16_to_cpus(&mh->FirstPhysicalEUN);
+	le32_to_cpus(&mh->FormattedSize);
+
+	pr_info("    DataOrgID        = %s\n"
+		"    NumEraseUnits    = %d\n"
+		"    FirstPhysicalEUN = %d\n"
+		"    FormattedSize    = %d\n"
+		"    UnitSizeFactor   = %d\n",
+		mh->DataOrgID, mh->NumEraseUnits,
+		mh->FirstPhysicalEUN, mh->FormattedSize,
+		mh->UnitSizeFactor);
+
+	blocks = mtd->size >> this->phys_erase_shift;
+	maxblocks = min(32768U, mtd->erasesize - psize);
+
+	if (mh->UnitSizeFactor == 0x00) {
+		/* Auto-determine UnitSizeFactor.  The constraints are:
+		   - There can be at most 32768 virtual blocks.
+		   - There can be at most (virtual block size - page size)
+		   virtual blocks (because MediaHeader+BBT must fit in 1).
+		 */
+		mh->UnitSizeFactor = 0xff;
+		while (blocks > maxblocks) {
+			blocks >>= 1;
+			maxblocks = min(32768U, (maxblocks << 1) + psize);
+			mh->UnitSizeFactor--;
+		}
+		pr_warn("UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+	}
+
+	/* NOTE: The lines below modify internal variables of the NAND and MTD
+	   layers; variables with have already been configured by nand_scan.
+	   Unfortunately, we didn't know before this point what these values
+	   should be.  Thus, this code is somewhat dependent on the exact
+	   implementation of the NAND layer.  */
+	if (mh->UnitSizeFactor != 0xff) {
+		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+		pr_info("Setting virtual erase size to %d\n", mtd->erasesize);
+		blocks = mtd->size >> this->bbt_erase_shift;
+		maxblocks = min(32768U, mtd->erasesize - psize);
+	}
+
+	if (blocks > maxblocks) {
+		pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
+		goto out;
+	}
+
+	/* Skip past the media headers. */
+	offs = max(doc->mh0_page, doc->mh1_page);
+	offs <<= this->page_shift;
+	offs += mtd->erasesize;
+
+	if (show_firmware_partition == 1) {
+		parts[0].name = " DiskOnChip Firmware / Media Header partition";
+		parts[0].offset = 0;
+		parts[0].size = offs;
+		numparts = 1;
+	}
+
+	parts[numparts].name = " DiskOnChip BDTL partition";
+	parts[numparts].offset = offs;
+	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+	offs += parts[numparts].size;
+	numparts++;
+
+	if (offs < mtd->size) {
+		parts[numparts].name = " DiskOnChip Remainder partition";
+		parts[numparts].offset = offs;
+		parts[numparts].size = mtd->size - offs;
+		numparts++;
+	}
+
+	ret = numparts;
+ out:
+	kfree(buf);
+	return ret;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	int ret = 0;
+	u_char *buf;
+	struct INFTLMediaHeader *mh;
+	struct INFTLPartition *ip;
+	int numparts = 0;
+	int blocks;
+	int vshift, lastvunit = 0;
+	int i;
+	int end = mtd->size;
+
+	if (inftl_bbt_write)
+		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+	buf = kmalloc(mtd->writesize, GFP_KERNEL);
+	if (!buf) {
+		return 0;
+	}
+
+	if (!find_media_headers(mtd, buf, "BNAND", 0))
+		goto out;
+	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+	mh = (struct INFTLMediaHeader *)buf;
+
+	le32_to_cpus(&mh->NoOfBootImageBlocks);
+	le32_to_cpus(&mh->NoOfBinaryPartitions);
+	le32_to_cpus(&mh->NoOfBDTLPartitions);
+	le32_to_cpus(&mh->BlockMultiplierBits);
+	le32_to_cpus(&mh->FormatFlags);
+	le32_to_cpus(&mh->PercentUsed);
+
+	pr_info("    bootRecordID          = %s\n"
+		"    NoOfBootImageBlocks   = %d\n"
+		"    NoOfBinaryPartitions  = %d\n"
+		"    NoOfBDTLPartitions    = %d\n"
+		"    BlockMultiplerBits    = %d\n"
+		"    FormatFlgs            = %d\n"
+		"    OsakVersion           = %d.%d.%d.%d\n"
+		"    PercentUsed           = %d\n",
+		mh->bootRecordID, mh->NoOfBootImageBlocks,
+		mh->NoOfBinaryPartitions,
+		mh->NoOfBDTLPartitions,
+		mh->BlockMultiplierBits, mh->FormatFlags,
+		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
+		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
+		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
+		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
+		mh->PercentUsed);
+
+	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+	blocks = mtd->size >> vshift;
+	if (blocks > 32768) {
+		pr_err("BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
+		goto out;
+	}
+
+	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+		pr_err("Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
+		goto out;
+	}
+
+	/* Scan the partitions */
+	for (i = 0; (i < 4); i++) {
+		ip = &(mh->Partitions[i]);
+		le32_to_cpus(&ip->virtualUnits);
+		le32_to_cpus(&ip->firstUnit);
+		le32_to_cpus(&ip->lastUnit);
+		le32_to_cpus(&ip->flags);
+		le32_to_cpus(&ip->spareUnits);
+		le32_to_cpus(&ip->Reserved0);
+
+		pr_info("    PARTITION[%d] ->\n"
+			"        virtualUnits    = %d\n"
+			"        firstUnit       = %d\n"
+			"        lastUnit        = %d\n"
+			"        flags           = 0x%x\n"
+			"        spareUnits      = %d\n",
+			i, ip->virtualUnits, ip->firstUnit,
+			ip->lastUnit, ip->flags,
+			ip->spareUnits);
+
+		if ((show_firmware_partition == 1) &&
+		    (i == 0) && (ip->firstUnit > 0)) {
+			parts[0].name = " DiskOnChip IPL / Media Header partition";
+			parts[0].offset = 0;
+			parts[0].size = mtd->erasesize * ip->firstUnit;
+			numparts = 1;
+		}
+
+		if (ip->flags & INFTL_BINARY)
+			parts[numparts].name = " DiskOnChip BDK partition";
+		else
+			parts[numparts].name = " DiskOnChip BDTL partition";
+		parts[numparts].offset = ip->firstUnit << vshift;
+		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+		numparts++;
+		if (ip->lastUnit > lastvunit)
+			lastvunit = ip->lastUnit;
+		if (ip->flags & INFTL_LAST)
+			break;
+	}
+	lastvunit++;
+	if ((lastvunit << vshift) < end) {
+		parts[numparts].name = " DiskOnChip Remainder partition";
+		parts[numparts].offset = lastvunit << vshift;
+		parts[numparts].size = end - parts[numparts].offset;
+		numparts++;
+	}
+	ret = numparts;
+ out:
+	kfree(buf);
+	return ret;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+	int ret, numparts;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	struct mtd_partition parts[2];
+
+	memset((char *)parts, 0, sizeof(parts));
+	/* On NFTL, we have to find the media headers before we can read the
+	   BBTs, since they're stored in the media header eraseblocks. */
+	numparts = nftl_partscan(mtd, parts);
+	if (!numparts)
+		return -EIO;
+	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+				NAND_BBT_VERSION;
+	this->bbt_td->veroffs = 7;
+	this->bbt_td->pages[0] = doc->mh0_page + 1;
+	if (doc->mh1_page != -1) {
+		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+					NAND_BBT_VERSION;
+		this->bbt_md->veroffs = 7;
+		this->bbt_md->pages[0] = doc->mh1_page + 1;
+	} else {
+		this->bbt_md = NULL;
+	}
+
+	ret = nand_create_bbt(this);
+	if (ret)
+		return ret;
+
+	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+	int ret, numparts;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+	struct mtd_partition parts[5];
+
+	if (this->numchips > doc->chips_per_floor) {
+		pr_err("Multi-floor INFTL devices not yet supported.\n");
+		return -EIO;
+	}
+
+	if (DoC_is_MillenniumPlus(doc)) {
+		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
+		if (inftl_bbt_write)
+			this->bbt_td->options |= NAND_BBT_WRITE;
+		this->bbt_td->pages[0] = 2;
+		this->bbt_md = NULL;
+	} else {
+		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
+		if (inftl_bbt_write)
+			this->bbt_td->options |= NAND_BBT_WRITE;
+		this->bbt_td->offs = 8;
+		this->bbt_td->len = 8;
+		this->bbt_td->veroffs = 7;
+		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+		this->bbt_td->reserved_block_code = 0x01;
+		this->bbt_td->pattern = "MSYS_BBT";
+
+		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
+		if (inftl_bbt_write)
+			this->bbt_md->options |= NAND_BBT_WRITE;
+		this->bbt_md->offs = 8;
+		this->bbt_md->len = 8;
+		this->bbt_md->veroffs = 7;
+		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+		this->bbt_md->reserved_block_code = 0x01;
+		this->bbt_md->pattern = "TBB_SYSM";
+	}
+
+	ret = nand_create_bbt(this);
+	if (ret)
+		return ret;
+
+	memset((char *)parts, 0, sizeof(parts));
+	numparts = inftl_partscan(mtd, parts);
+	/* At least for now, require the INFTL Media Header.  We could probably
+	   do without it for non-INFTL use, since all it gives us is
+	   autopartitioning, but I want to give it more thought. */
+	if (!numparts)
+		return -EIO;
+	return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+
+	this->read_byte = doc2000_read_byte;
+	this->write_buf = doc2000_writebuf;
+	this->read_buf = doc2000_readbuf;
+	doc->late_init = nftl_scan_bbt;
+
+	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+	doc2000_count_chips(mtd);
+	mtd->name = "DiskOnChip 2000 (NFTL Model)";
+	return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+
+	this->read_byte = doc2001_read_byte;
+	this->write_buf = doc2001_writebuf;
+	this->read_buf = doc2001_readbuf;
+
+	ReadDOC(doc->virtadr, ChipID);
+	ReadDOC(doc->virtadr, ChipID);
+	ReadDOC(doc->virtadr, ChipID);
+	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+		/* It's not a Millennium; it's one of the newer
+		   DiskOnChip 2000 units with a similar ASIC.
+		   Treat it like a Millennium, except that it
+		   can have multiple chips. */
+		doc2000_count_chips(mtd);
+		mtd->name = "DiskOnChip 2000 (INFTL Model)";
+		doc->late_init = inftl_scan_bbt;
+		return (4 * doc->chips_per_floor);
+	} else {
+		/* Bog-standard Millennium */
+		doc->chips_per_floor = 1;
+		mtd->name = "DiskOnChip Millennium";
+		doc->late_init = nftl_scan_bbt;
+		return 1;
+	}
+}
+
+static inline int __init doc2001plus_init(struct mtd_info *mtd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct doc_priv *doc = nand_get_controller_data(this);
+
+	this->read_byte = doc2001plus_read_byte;
+	this->write_buf = doc2001plus_writebuf;
+	this->read_buf = doc2001plus_readbuf;
+	doc->late_init = inftl_scan_bbt;
+	this->cmd_ctrl = NULL;
+	this->select_chip = doc2001plus_select_chip;
+	this->cmdfunc = doc2001plus_command;
+	this->ecc.hwctl = doc2001plus_enable_hwecc;
+
+	doc->chips_per_floor = 1;
+	mtd->name = "DiskOnChip Millennium Plus";
+
+	return 1;
+}
+
+static int __init doc_probe(unsigned long physadr)
+{
+	struct nand_chip *nand = NULL;
+	struct doc_priv *doc = NULL;
+	unsigned char ChipID;
+	struct mtd_info *mtd;
+	void __iomem *virtadr;
+	unsigned char save_control;
+	unsigned char tmp, tmpb, tmpc;
+	int reg, len, numchips;
+	int ret = 0;
+
+	if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
+		return -EBUSY;
+	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
+	if (!virtadr) {
+		pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n",
+		       DOC_IOREMAP_LEN, physadr);
+		ret = -EIO;
+		goto error_ioremap;
+	}
+
+	/* It's not possible to cleanly detect the DiskOnChip - the
+	 * bootup procedure will put the device into reset mode, and
+	 * it's not possible to talk to it without actually writing
+	 * to the DOCControl register. So we store the current contents
+	 * of the DOCControl register's location, in case we later decide
+	 * that it's not a DiskOnChip, and want to put it back how we
+	 * found it.
+	 */
+	save_control = ReadDOC(virtadr, DOCControl);
+
+	/* Reset the DiskOnChip ASIC */
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
+
+	/* Enable the DiskOnChip ASIC */
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
+	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
+
+	ChipID = ReadDOC(virtadr, ChipID);
+
+	switch (ChipID) {
+	case DOC_ChipID_Doc2k:
+		reg = DoC_2k_ECCStatus;
+		break;
+	case DOC_ChipID_DocMil:
+		reg = DoC_ECCConf;
+		break;
+	case DOC_ChipID_DocMilPlus16:
+	case DOC_ChipID_DocMilPlus32:
+	case 0:
+		/* Possible Millennium Plus, need to do more checks */
+		/* Possibly release from power down mode */
+		for (tmp = 0; (tmp < 4); tmp++)
+			ReadDOC(virtadr, Mplus_Power);
+
+		/* Reset the Millennium Plus ASIC */
+		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
+		WriteDOC(tmp, virtadr, Mplus_DOCControl);
+		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+
+		usleep_range(1000, 2000);
+		/* Enable the Millennium Plus ASIC */
+		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
+		WriteDOC(tmp, virtadr, Mplus_DOCControl);
+		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+		usleep_range(1000, 2000);
+
+		ChipID = ReadDOC(virtadr, ChipID);
+
+		switch (ChipID) {
+		case DOC_ChipID_DocMilPlus16:
+			reg = DoC_Mplus_Toggle;
+			break;
+		case DOC_ChipID_DocMilPlus32:
+			pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+		default:
+			ret = -ENODEV;
+			goto notfound;
+		}
+		break;
+
+	default:
+		ret = -ENODEV;
+		goto notfound;
+	}
+	/* Check the TOGGLE bit in the ECC register */
+	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+	if ((tmp == tmpb) || (tmp != tmpc)) {
+		pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+		ret = -ENODEV;
+		goto notfound;
+	}
+
+	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+		unsigned char oldval;
+		unsigned char newval;
+		nand = mtd_to_nand(mtd);
+		doc = nand_get_controller_data(nand);
+		/* Use the alias resolution register to determine if this is
+		   in fact the same DOC aliased to a new address.  If writes
+		   to one chip's alias resolution register change the value on
+		   the other chip, they're the same chip. */
+		if (ChipID == DOC_ChipID_DocMilPlus16) {
+			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+			newval = ReadDOC(virtadr, Mplus_AliasResolution);
+		} else {
+			oldval = ReadDOC(doc->virtadr, AliasResolution);
+			newval = ReadDOC(virtadr, AliasResolution);
+		}
+		if (oldval != newval)
+			continue;
+		if (ChipID == DOC_ChipID_DocMilPlus16) {
+			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
+			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
+		} else {
+			WriteDOC(~newval, virtadr, AliasResolution);
+			oldval = ReadDOC(doc->virtadr, AliasResolution);
+			WriteDOC(newval, virtadr, AliasResolution);	// restore it
+		}
+		newval = ~newval;
+		if (oldval == newval) {
+			pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n",
+				 doc->physadr, physadr);
+			goto notfound;
+		}
+	}
+
+	pr_notice("DiskOnChip found at 0x%lx\n", physadr);
+
+	len = sizeof(struct nand_chip) + sizeof(struct doc_priv) +
+	      (2 * sizeof(struct nand_bbt_descr));
+	nand = kzalloc(len, GFP_KERNEL);
+	if (!nand) {
+		ret = -ENOMEM;
+		goto fail;
+	}
+
+
+	/*
+	 * Allocate a RS codec instance
+	 *
+	 * Symbolsize is 10 (bits)
+	 * Primitve polynomial is x^10+x^3+1
+	 * First consecutive root is 510
+	 * Primitve element to generate roots = 1
+	 * Generator polinomial degree = 4
+	 */
+	doc = (struct doc_priv *) (nand + 1);
+	doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
+	if (!doc->rs_decoder) {
+		pr_err("DiskOnChip: Could not create a RS codec\n");
+		ret = -ENOMEM;
+		goto fail;
+	}
+
+	mtd			= nand_to_mtd(nand);
+	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
+	nand->bbt_md		= nand->bbt_td + 1;
+
+	mtd->owner		= THIS_MODULE;
+	mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops);
+
+	nand_set_controller_data(nand, doc);
+	nand->select_chip	= doc200x_select_chip;
+	nand->cmd_ctrl		= doc200x_hwcontrol;
+	nand->dev_ready		= doc200x_dev_ready;
+	nand->waitfunc		= doc200x_wait;
+	nand->block_bad		= doc200x_block_bad;
+	nand->ecc.hwctl		= doc200x_enable_hwecc;
+	nand->ecc.calculate	= doc200x_calculate_ecc;
+	nand->ecc.correct	= doc200x_correct_data;
+
+	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
+	nand->ecc.size		= 512;
+	nand->ecc.bytes		= 6;
+	nand->ecc.strength	= 2;
+	nand->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
+	nand->bbt_options	= NAND_BBT_USE_FLASH;
+	/* Skip the automatic BBT scan so we can run it manually */
+	nand->options		|= NAND_SKIP_BBTSCAN;
+
+	doc->physadr		= physadr;
+	doc->virtadr		= virtadr;
+	doc->ChipID		= ChipID;
+	doc->curfloor		= -1;
+	doc->curchip		= -1;
+	doc->mh0_page		= -1;
+	doc->mh1_page		= -1;
+	doc->nextdoc		= doclist;
+
+	if (ChipID == DOC_ChipID_Doc2k)
+		numchips = doc2000_init(mtd);
+	else if (ChipID == DOC_ChipID_DocMilPlus16)
+		numchips = doc2001plus_init(mtd);
+	else
+		numchips = doc2001_init(mtd);
+
+	if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
+		/* DBB note: i believe nand_release is necessary here, as
+		   buffers may have been allocated in nand_base.  Check with
+		   Thomas. FIX ME! */
+		/* nand_release will call mtd_device_unregister, but we
+		   haven't yet added it.  This is handled without incident by
+		   mtd_device_unregister, as far as I can tell. */
+		nand_release(mtd);
+		goto fail;
+	}
+
+	/* Success! */
+	doclist = mtd;
+	return 0;
+
+ notfound:
+	/* Put back the contents of the DOCControl register, in case it's not
+	   actually a DiskOnChip.  */
+	WriteDOC(save_control, virtadr, DOCControl);
+ fail:
+	if (doc)
+		free_rs(doc->rs_decoder);
+	kfree(nand);
+	iounmap(virtadr);
+
+error_ioremap:
+	release_mem_region(physadr, DOC_IOREMAP_LEN);
+
+	return ret;
+}
+
+static void release_nanddoc(void)
+{
+	struct mtd_info *mtd, *nextmtd;
+	struct nand_chip *nand;
+	struct doc_priv *doc;
+
+	for (mtd = doclist; mtd; mtd = nextmtd) {
+		nand = mtd_to_nand(mtd);
+		doc = nand_get_controller_data(nand);
+
+		nextmtd = doc->nextdoc;
+		nand_release(mtd);
+		iounmap(doc->virtadr);
+		release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
+		free_rs(doc->rs_decoder);
+		kfree(nand);
+	}
+}
+
+static int __init init_nanddoc(void)
+{
+	int i, ret = 0;
+
+	if (doc_config_location) {
+		pr_info("Using configured DiskOnChip probe address 0x%lx\n",
+			doc_config_location);
+		ret = doc_probe(doc_config_location);
+		if (ret < 0)
+			return ret;
+	} else {
+		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
+			doc_probe(doc_locations[i]);
+		}
+	}
+	/* No banner message any more. Print a message if no DiskOnChip
+	   found, so the user knows we at least tried. */
+	if (!doclist) {
+		pr_info("No valid DiskOnChip devices found\n");
+		ret = -ENODEV;
+	}
+	return ret;
+}
+
+static void __exit cleanup_nanddoc(void)
+{
+	/* Cleanup the nand/DoC resources */
+	release_nanddoc();
+}
+
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
diff --git a/drivers/mtd/nand/raw/docg4.c b/drivers/mtd/nand/raw/docg4.c
new file mode 100644
index 0000000..427fcbc
--- /dev/null
+++ b/drivers/mtd/nand/raw/docg4.c
@@ -0,0 +1,1442 @@
+/*
+ *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
+ *
+ * mtd nand driver for M-Systems DiskOnChip G4
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
+ * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
+ * Should work on these as well.  Let me know!
+ *
+ * TODO:
+ *
+ *  Mechanism for management of password-protected areas
+ *
+ *  Hamming ecc when reading oob only
+ *
+ *  According to the M-Sys documentation, this device is also available in a
+ *  "dual-die" configuration having a 256MB capacity, but no mechanism for
+ *  detecting this variant is documented.  Currently this driver assumes 128MB
+ *  capacity.
+ *
+ *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
+ *  contain multiple G4s in a cascaded configuration, if any.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/string.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/module.h>
+#include <linux/export.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+#include <linux/bitops.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/bch.h>
+#include <linux/bitrev.h>
+#include <linux/jiffies.h>
+
+/*
+ * In "reliable mode" consecutive 2k pages are used in parallel (in some
+ * fashion) to store the same data.  The data can be read back from the
+ * even-numbered pages in the normal manner; odd-numbered pages will appear to
+ * contain junk.  Systems that boot from the docg4 typically write the secondary
+ * program loader (SPL) code in this mode.  The SPL is loaded by the initial
+ * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
+ * to the reset vector address).  This module parameter enables you to use this
+ * driver to write the SPL.  When in this mode, no more than 2k of data can be
+ * written at a time, because the addresses do not increment in the normal
+ * manner, and the starting offset must be within an even-numbered 2k region;
+ * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
+ * 0x1a00, ...  Reliable mode is a special case and should not be used unless
+ * you know what you're doing.
+ */
+static bool reliable_mode;
+module_param(reliable_mode, bool, 0);
+MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
+
+/*
+ * You'll want to ignore badblocks if you're reading a partition that contains
+ * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
+ * it does not use mtd nand's method for marking bad blocks (using oob area).
+ * This will also skip the check of the "page written" flag.
+ */
+static bool ignore_badblocks;
+module_param(ignore_badblocks, bool, 0);
+MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
+
+struct docg4_priv {
+	struct mtd_info	*mtd;
+	struct device *dev;
+	void __iomem *virtadr;
+	int status;
+	struct {
+		unsigned int command;
+		int column;
+		int page;
+	} last_command;
+	uint8_t oob_buf[16];
+	uint8_t ecc_buf[7];
+	int oob_page;
+	struct bch_control *bch;
+};
+
+/*
+ * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
+ * shared with other diskonchip devices (P3, G3 at least).
+ *
+ * Functions with names prefixed with docg4_ are mtd / nand interface functions
+ * (though they may also be called internally).  All others are internal.
+ */
+
+#define DOC_IOSPACE_DATA		0x0800
+
+/* register offsets */
+#define DOC_CHIPID			0x1000
+#define DOC_DEVICESELECT		0x100a
+#define DOC_ASICMODE			0x100c
+#define DOC_DATAEND			0x101e
+#define DOC_NOP				0x103e
+
+#define DOC_FLASHSEQUENCE		0x1032
+#define DOC_FLASHCOMMAND		0x1034
+#define DOC_FLASHADDRESS		0x1036
+#define DOC_FLASHCONTROL		0x1038
+#define DOC_ECCCONF0			0x1040
+#define DOC_ECCCONF1			0x1042
+#define DOC_HAMMINGPARITY		0x1046
+#define DOC_BCH_SYNDROM(idx)		(0x1048 + idx)
+
+#define DOC_ASICMODECONFIRM		0x1072
+#define DOC_CHIPID_INV			0x1074
+#define DOC_POWERMODE			0x107c
+
+#define DOCG4_MYSTERY_REG		0x1050
+
+/* apparently used only to write oob bytes 6 and 7 */
+#define DOCG4_OOB_6_7			0x1052
+
+/* DOC_FLASHSEQUENCE register commands */
+#define DOC_SEQ_RESET			0x00
+#define DOCG4_SEQ_PAGE_READ		0x03
+#define DOCG4_SEQ_FLUSH			0x29
+#define DOCG4_SEQ_PAGEWRITE		0x16
+#define DOCG4_SEQ_PAGEPROG		0x1e
+#define DOCG4_SEQ_BLOCKERASE		0x24
+#define DOCG4_SEQ_SETMODE		0x45
+
+/* DOC_FLASHCOMMAND register commands */
+#define DOCG4_CMD_PAGE_READ             0x00
+#define DOC_CMD_ERASECYCLE2		0xd0
+#define DOCG4_CMD_FLUSH                 0x70
+#define DOCG4_CMD_READ2                 0x30
+#define DOC_CMD_PROG_BLOCK_ADDR		0x60
+#define DOCG4_CMD_PAGEWRITE		0x80
+#define DOC_CMD_PROG_CYCLE2		0x10
+#define DOCG4_CMD_FAST_MODE		0xa3 /* functionality guessed */
+#define DOC_CMD_RELIABLE_MODE		0x22
+#define DOC_CMD_RESET			0xff
+
+/* DOC_POWERMODE register bits */
+#define DOC_POWERDOWN_READY		0x80
+
+/* DOC_FLASHCONTROL register bits */
+#define DOC_CTRL_CE			0x10
+#define DOC_CTRL_UNKNOWN		0x40
+#define DOC_CTRL_FLASHREADY		0x01
+
+/* DOC_ECCCONF0 register bits */
+#define DOC_ECCCONF0_READ_MODE		0x8000
+#define DOC_ECCCONF0_UNKNOWN		0x2000
+#define DOC_ECCCONF0_ECC_ENABLE	        0x1000
+#define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff
+
+/* DOC_ECCCONF1 register bits */
+#define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80
+#define DOC_ECCCONF1_ECC_ENABLE         0x07
+#define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20
+
+/* DOC_ASICMODE register bits */
+#define DOC_ASICMODE_RESET		0x00
+#define DOC_ASICMODE_NORMAL		0x01
+#define DOC_ASICMODE_POWERDOWN		0x02
+#define DOC_ASICMODE_MDWREN		0x04
+#define DOC_ASICMODE_BDETCT_RESET	0x08
+#define DOC_ASICMODE_RSTIN_RESET	0x10
+#define DOC_ASICMODE_RAM_WE		0x20
+
+/* good status values read after read/write/erase operations */
+#define DOCG4_PROGSTATUS_GOOD          0x51
+#define DOCG4_PROGSTATUS_GOOD_2        0xe0
+
+/*
+ * On read operations (page and oob-only), the first byte read from I/O reg is a
+ * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
+ * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
+ */
+#define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
+
+/* anatomy of the device */
+#define DOCG4_CHIP_SIZE        0x8000000
+#define DOCG4_PAGE_SIZE        0x200
+#define DOCG4_PAGES_PER_BLOCK  0x200
+#define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
+#define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
+#define DOCG4_OOB_SIZE         0x10
+#define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
+#define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
+#define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
+
+/* all but the last byte is included in ecc calculation */
+#define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
+
+#define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
+
+/* expected values from the ID registers */
+#define DOCG4_IDREG1_VALUE     0x0400
+#define DOCG4_IDREG2_VALUE     0xfbff
+
+/* primitive polynomial used to build the Galois field used by hw ecc gen */
+#define DOCG4_PRIMITIVE_POLY   0x4443
+
+#define DOCG4_M                14  /* Galois field is of order 2^14 */
+#define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
+
+#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
+#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
+
+/*
+ * Bytes 0, 1 are used as badblock marker.
+ * Bytes 2 - 6 are available to the user.
+ * Byte 7 is hamming ecc for first 7 oob bytes only.
+ * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
+ * Byte 15 (the last) is used by the driver as a "page written" flag.
+ */
+static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 7;
+	oobregion->length = 9;
+
+	return 0;
+}
+
+static int docg4_ooblayout_free(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 2;
+	oobregion->length = 5;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops docg4_ooblayout_ops = {
+	.ecc = docg4_ooblayout_ecc,
+	.free = docg4_ooblayout_free,
+};
+
+/*
+ * The device has a nop register which M-Sys claims is for the purpose of
+ * inserting precise delays.  But beware; at least some operations fail if the
+ * nop writes are replaced with a generic delay!
+ */
+static inline void write_nop(void __iomem *docptr)
+{
+	writew(0, docptr + DOC_NOP);
+}
+
+static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	int i;
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	uint16_t *p = (uint16_t *) buf;
+	len >>= 1;
+
+	for (i = 0; i < len; i++)
+		p[i] = readw(nand->IO_ADDR_R);
+}
+
+static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	int i;
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	uint16_t *p = (uint16_t *) buf;
+	len >>= 1;
+
+	for (i = 0; i < len; i++)
+		writew(p[i], nand->IO_ADDR_W);
+}
+
+static int poll_status(struct docg4_priv *doc)
+{
+	/*
+	 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
+	 * register.  Operations known to take a long time (e.g., block erase)
+	 * should sleep for a while before calling this.
+	 */
+
+	uint16_t flash_status;
+	unsigned long timeo;
+	void __iomem *docptr = doc->virtadr;
+
+	dev_dbg(doc->dev, "%s...\n", __func__);
+
+	/* hardware quirk requires reading twice initially */
+	flash_status = readw(docptr + DOC_FLASHCONTROL);
+
+	timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
+	do {
+		cpu_relax();
+		flash_status = readb(docptr + DOC_FLASHCONTROL);
+	} while (!(flash_status & DOC_CTRL_FLASHREADY) &&
+		 time_before(jiffies, timeo));
+
+	if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
+		dev_err(doc->dev, "%s: timed out!\n", __func__);
+		return NAND_STATUS_FAIL;
+	}
+
+	return 0;
+}
+
+
+static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
+{
+
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	int status = NAND_STATUS_WP;       /* inverse logic?? */
+	dev_dbg(doc->dev, "%s...\n", __func__);
+
+	/* report any previously unreported error */
+	if (doc->status) {
+		status |= doc->status;
+		doc->status = 0;
+		return status;
+	}
+
+	status |= poll_status(doc);
+	return status;
+}
+
+static void docg4_select_chip(struct mtd_info *mtd, int chip)
+{
+	/*
+	 * Select among multiple cascaded chips ("floors").  Multiple floors are
+	 * not yet supported, so the only valid non-negative value is 0.
+	 */
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+
+	dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
+
+	if (chip < 0)
+		return;		/* deselected */
+
+	if (chip > 0)
+		dev_warn(doc->dev, "multiple floors currently unsupported\n");
+
+	writew(0, docptr + DOC_DEVICESELECT);
+}
+
+static void reset(struct mtd_info *mtd)
+{
+	/* full device reset */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+
+	writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
+	       docptr + DOC_ASICMODE);
+	writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
+	       docptr + DOC_ASICMODECONFIRM);
+	write_nop(docptr);
+
+	writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
+	       docptr + DOC_ASICMODE);
+	writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
+	       docptr + DOC_ASICMODECONFIRM);
+
+	writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
+
+	poll_status(doc);
+}
+
+static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
+{
+	/* read the 7 hw-generated ecc bytes */
+
+	int i;
+	for (i = 0; i < 7; i++) { /* hw quirk; read twice */
+		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
+		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
+	}
+}
+
+static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	/*
+	 * Called after a page read when hardware reports bitflips.
+	 * Up to four bitflips can be corrected.
+	 */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+	int i, numerrs, errpos[4];
+	const uint8_t blank_read_hwecc[8] = {
+		0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
+
+	read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
+
+	/* check if read error is due to a blank page */
+	if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
+		return 0;	/* yes */
+
+	/* skip additional check of "written flag" if ignore_badblocks */
+	if (ignore_badblocks == false) {
+
+		/*
+		 * If the hw ecc bytes are not those of a blank page, there's
+		 * still a chance that the page is blank, but was read with
+		 * errors.  Check the "written flag" in last oob byte, which
+		 * is set to zero when a page is written.  If more than half
+		 * the bits are set, assume a blank page.  Unfortunately, the
+		 * bit flips(s) are not reported in stats.
+		 */
+
+		if (nand->oob_poi[15]) {
+			int bit, numsetbits = 0;
+			unsigned long written_flag = nand->oob_poi[15];
+			for_each_set_bit(bit, &written_flag, 8)
+				numsetbits++;
+			if (numsetbits > 4) { /* assume blank */
+				dev_warn(doc->dev,
+					 "error(s) in blank page "
+					 "at offset %08x\n",
+					 page * DOCG4_PAGE_SIZE);
+				return 0;
+			}
+		}
+	}
+
+	/*
+	 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
+	 * algorithm is used to decode this.  However the hw operates on page
+	 * data in a bit order that is the reverse of that of the bch alg,
+	 * requiring that the bits be reversed on the result.  Thanks to Ivan
+	 * Djelic for his analysis!
+	 */
+	for (i = 0; i < 7; i++)
+		doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
+
+	numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
+			     doc->ecc_buf, NULL, errpos);
+
+	if (numerrs == -EBADMSG) {
+		dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
+			 page * DOCG4_PAGE_SIZE);
+		return -EBADMSG;
+	}
+
+	BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */
+
+	/* undo last step in BCH alg (modulo mirroring not needed) */
+	for (i = 0; i < numerrs; i++)
+		errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
+
+	/* fix the errors */
+	for (i = 0; i < numerrs; i++) {
+
+		/* ignore if error within oob ecc bytes */
+		if (errpos[i] > DOCG4_USERDATA_LEN * 8)
+			continue;
+
+		/* if error within oob area preceeding ecc bytes... */
+		if (errpos[i] > DOCG4_PAGE_SIZE * 8)
+			change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
+				   (unsigned long *)nand->oob_poi);
+
+		else    /* error in page data */
+			change_bit(errpos[i], (unsigned long *)buf);
+	}
+
+	dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
+		   numerrs, page * DOCG4_PAGE_SIZE);
+
+	return numerrs;
+}
+
+static uint8_t docg4_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+
+	dev_dbg(doc->dev, "%s\n", __func__);
+
+	if (doc->last_command.command == NAND_CMD_STATUS) {
+		int status;
+
+		/*
+		 * Previous nand command was status request, so nand
+		 * infrastructure code expects to read the status here.  If an
+		 * error occurred in a previous operation, report it.
+		 */
+		doc->last_command.command = 0;
+
+		if (doc->status) {
+			status = doc->status;
+			doc->status = 0;
+		}
+
+		/* why is NAND_STATUS_WP inverse logic?? */
+		else
+			status = NAND_STATUS_WP | NAND_STATUS_READY;
+
+		return status;
+	}
+
+	dev_warn(doc->dev, "unexpected call to read_byte()\n");
+
+	return 0;
+}
+
+static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
+{
+	/* write the four address bytes packed in docg4_addr to the device */
+
+	void __iomem *docptr = doc->virtadr;
+	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+	docg4_addr >>= 8;
+	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+	docg4_addr >>= 8;
+	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+	docg4_addr >>= 8;
+	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
+}
+
+static int read_progstatus(struct docg4_priv *doc)
+{
+	/*
+	 * This apparently checks the status of programming.  Done after an
+	 * erasure, and after page data is written.  On error, the status is
+	 * saved, to be later retrieved by the nand infrastructure code.
+	 */
+	void __iomem *docptr = doc->virtadr;
+
+	/* status is read from the I/O reg */
+	uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
+	uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
+	uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
+
+	dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
+	      __func__, status1, status2, status3);
+
+	if (status1 != DOCG4_PROGSTATUS_GOOD
+	    || status2 != DOCG4_PROGSTATUS_GOOD_2
+	    || status3 != DOCG4_PROGSTATUS_GOOD_2) {
+		doc->status = NAND_STATUS_FAIL;
+		dev_warn(doc->dev, "read_progstatus failed: "
+			 "%02x, %02x, %02x\n", status1, status2, status3);
+		return -EIO;
+	}
+	return 0;
+}
+
+static int pageprog(struct mtd_info *mtd)
+{
+	/*
+	 * Final step in writing a page.  Writes the contents of its
+	 * internal buffer out to the flash array, or some such.
+	 */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+	int retval = 0;
+
+	dev_dbg(doc->dev, "docg4: %s\n", __func__);
+
+	writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
+	writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
+	write_nop(docptr);
+	write_nop(docptr);
+
+	/* Just busy-wait; usleep_range() slows things down noticeably. */
+	poll_status(doc);
+
+	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
+	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
+	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+
+	retval = read_progstatus(doc);
+	writew(0, docptr + DOC_DATAEND);
+	write_nop(docptr);
+	poll_status(doc);
+	write_nop(docptr);
+
+	return retval;
+}
+
+static void sequence_reset(struct mtd_info *mtd)
+{
+	/* common starting sequence for all operations */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+
+	writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
+	writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
+	writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
+	write_nop(docptr);
+	write_nop(docptr);
+	poll_status(doc);
+	write_nop(docptr);
+}
+
+static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
+{
+	/* first step in reading a page */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+
+	dev_dbg(doc->dev,
+	      "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
+
+	sequence_reset(mtd);
+
+	writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
+	writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
+	write_nop(docptr);
+
+	write_addr(doc, docg4_addr);
+
+	write_nop(docptr);
+	writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
+	write_nop(docptr);
+	write_nop(docptr);
+
+	poll_status(doc);
+}
+
+static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
+{
+	/* first step in writing a page */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+
+	dev_dbg(doc->dev,
+	      "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
+	sequence_reset(mtd);
+
+	if (unlikely(reliable_mode)) {
+		writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
+		writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
+		writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
+		write_nop(docptr);
+	}
+
+	writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
+	writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
+	write_nop(docptr);
+	write_addr(doc, docg4_addr);
+	write_nop(docptr);
+	write_nop(docptr);
+	poll_status(doc);
+}
+
+static uint32_t mtd_to_docg4_address(int page, int column)
+{
+	/*
+	 * Convert mtd address to format used by the device, 32 bit packed.
+	 *
+	 * Some notes on G4 addressing... The M-Sys documentation on this device
+	 * claims that pages are 2K in length, and indeed, the format of the
+	 * address used by the device reflects that.  But within each page are
+	 * four 512 byte "sub-pages", each with its own oob data that is
+	 * read/written immediately after the 512 bytes of page data.  This oob
+	 * data contains the ecc bytes for the preceeding 512 bytes.
+	 *
+	 * Rather than tell the mtd nand infrastructure that page size is 2k,
+	 * with four sub-pages each, we engage in a little subterfuge and tell
+	 * the infrastructure code that pages are 512 bytes in size.  This is
+	 * done because during the course of reverse-engineering the device, I
+	 * never observed an instance where an entire 2K "page" was read or
+	 * written as a unit.  Each "sub-page" is always addressed individually,
+	 * its data read/written, and ecc handled before the next "sub-page" is
+	 * addressed.
+	 *
+	 * This requires us to convert addresses passed by the mtd nand
+	 * infrastructure code to those used by the device.
+	 *
+	 * The address that is written to the device consists of four bytes: the
+	 * first two are the 2k page number, and the second is the index into
+	 * the page.  The index is in terms of 16-bit half-words and includes
+	 * the preceeding oob data, so e.g., the index into the second
+	 * "sub-page" is 0x108, and the full device address of the start of mtd
+	 * page 0x201 is 0x00800108.
+	 */
+	int g4_page = page / 4;	                      /* device's 2K page */
+	int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
+	return (g4_page << 16) | g4_index;	      /* pack */
+}
+
+static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
+			  int page_addr)
+{
+	/* handle standard nand commands */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
+
+	dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
+	      __func__, command, page_addr, column);
+
+	/*
+	 * Save the command and its arguments.  This enables emulation of
+	 * standard flash devices, and also some optimizations.
+	 */
+	doc->last_command.command = command;
+	doc->last_command.column = column;
+	doc->last_command.page = page_addr;
+
+	switch (command) {
+
+	case NAND_CMD_RESET:
+		reset(mtd);
+		break;
+
+	case NAND_CMD_READ0:
+		read_page_prologue(mtd, g4_addr);
+		break;
+
+	case NAND_CMD_STATUS:
+		/* next call to read_byte() will expect a status */
+		break;
+
+	case NAND_CMD_SEQIN:
+		if (unlikely(reliable_mode)) {
+			uint16_t g4_page = g4_addr >> 16;
+
+			/* writes to odd-numbered 2k pages are invalid */
+			if (g4_page & 0x01)
+				dev_warn(doc->dev,
+					 "invalid reliable mode address\n");
+		}
+
+		write_page_prologue(mtd, g4_addr);
+
+		/* hack for deferred write of oob bytes */
+		if (doc->oob_page == page_addr)
+			memcpy(nand->oob_poi, doc->oob_buf, 16);
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		pageprog(mtd);
+		break;
+
+	/* we don't expect these, based on review of nand_base.c */
+	case NAND_CMD_READOOB:
+	case NAND_CMD_READID:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+		dev_warn(doc->dev, "docg4_command: "
+			 "unexpected nand command 0x%x\n", command);
+		break;
+
+	}
+}
+
+static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
+		     uint8_t *buf, int page, bool use_ecc)
+{
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+	uint16_t status, edc_err, *buf16;
+	int bits_corrected = 0;
+
+	dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
+
+	nand_read_page_op(nand, page, 0, NULL, 0);
+
+	writew(DOC_ECCCONF0_READ_MODE |
+	       DOC_ECCCONF0_ECC_ENABLE |
+	       DOC_ECCCONF0_UNKNOWN |
+	       DOCG4_BCH_SIZE,
+	       docptr + DOC_ECCCONF0);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+
+	/* the 1st byte from the I/O reg is a status; the rest is page data */
+	status = readw(docptr + DOC_IOSPACE_DATA);
+	if (status & DOCG4_READ_ERROR) {
+		dev_err(doc->dev,
+			"docg4_read_page: bad status: 0x%02x\n", status);
+		writew(0, docptr + DOC_DATAEND);
+		return -EIO;
+	}
+
+	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
+
+	docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
+
+	/* this device always reads oob after page data */
+	/* first 14 oob bytes read from I/O reg */
+	docg4_read_buf(mtd, nand->oob_poi, 14);
+
+	/* last 2 read from another reg */
+	buf16 = (uint16_t *)(nand->oob_poi + 14);
+	*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
+
+	write_nop(docptr);
+
+	if (likely(use_ecc == true)) {
+
+		/* read the register that tells us if bitflip(s) detected  */
+		edc_err = readw(docptr + DOC_ECCCONF1);
+		edc_err = readw(docptr + DOC_ECCCONF1);
+		dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
+
+		/* If bitflips are reported, attempt to correct with ecc */
+		if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
+			bits_corrected = correct_data(mtd, buf, page);
+			if (bits_corrected == -EBADMSG)
+				mtd->ecc_stats.failed++;
+			else
+				mtd->ecc_stats.corrected += bits_corrected;
+		}
+	}
+
+	writew(0, docptr + DOC_DATAEND);
+	if (bits_corrected == -EBADMSG)	  /* uncorrectable errors */
+		return 0;
+	return bits_corrected;
+}
+
+
+static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
+			       uint8_t *buf, int oob_required, int page)
+{
+	return read_page(mtd, nand, buf, page, false);
+}
+
+static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
+			   uint8_t *buf, int oob_required, int page)
+{
+	return read_page(mtd, nand, buf, page, true);
+}
+
+static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
+			  int page)
+{
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+	uint16_t status;
+
+	dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
+
+	nand_read_page_op(nand, page, nand->ecc.size, NULL, 0);
+
+	writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+
+	/* the 1st byte from the I/O reg is a status; the rest is oob data */
+	status = readw(docptr + DOC_IOSPACE_DATA);
+	if (status & DOCG4_READ_ERROR) {
+		dev_warn(doc->dev,
+			 "docg4_read_oob failed: status = 0x%02x\n", status);
+		return -EIO;
+	}
+
+	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
+
+	docg4_read_buf(mtd, nand->oob_poi, 16);
+
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	writew(0, docptr + DOC_DATAEND);
+	write_nop(docptr);
+
+	return 0;
+}
+
+static int docg4_erase_block(struct mtd_info *mtd, int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+	uint16_t g4_page;
+	int status;
+
+	dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
+
+	sequence_reset(mtd);
+
+	writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
+	writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
+	write_nop(docptr);
+
+	/* only 2 bytes of address are written to specify erase block */
+	g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
+	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
+	g4_page >>= 8;
+	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
+	write_nop(docptr);
+
+	/* start the erasure */
+	writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
+	write_nop(docptr);
+	write_nop(docptr);
+
+	usleep_range(500, 1000); /* erasure is long; take a snooze */
+	poll_status(doc);
+	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
+	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
+	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+	write_nop(docptr);
+
+	read_progstatus(doc);
+
+	writew(0, docptr + DOC_DATAEND);
+	write_nop(docptr);
+	poll_status(doc);
+	write_nop(docptr);
+
+	status = nand->waitfunc(mtd, nand);
+	if (status < 0)
+		return status;
+
+	return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
+		      const uint8_t *buf, int page, bool use_ecc)
+{
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+	uint8_t ecc_buf[8];
+
+	dev_dbg(doc->dev, "%s...\n", __func__);
+
+	nand_prog_page_begin_op(nand, page, 0, NULL, 0);
+
+	writew(DOC_ECCCONF0_ECC_ENABLE |
+	       DOC_ECCCONF0_UNKNOWN |
+	       DOCG4_BCH_SIZE,
+	       docptr + DOC_ECCCONF0);
+	write_nop(docptr);
+
+	/* write the page data */
+	docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
+
+	/* oob bytes 0 through 5 are written to I/O reg */
+	docg4_write_buf16(mtd, nand->oob_poi, 6);
+
+	/* oob byte 6 written to a separate reg */
+	writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
+
+	write_nop(docptr);
+	write_nop(docptr);
+
+	/* write hw-generated ecc bytes to oob */
+	if (likely(use_ecc == true)) {
+		/* oob byte 7 is hamming code */
+		uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
+		hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
+		writew(hamming, docptr + DOCG4_OOB_6_7);
+		write_nop(docptr);
+
+		/* read the 7 bch bytes from ecc regs */
+		read_hw_ecc(docptr, ecc_buf);
+		ecc_buf[7] = 0;         /* clear the "page written" flag */
+	}
+
+	/* write user-supplied bytes to oob */
+	else {
+		writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
+		write_nop(docptr);
+		memcpy(ecc_buf, &nand->oob_poi[8], 8);
+	}
+
+	docg4_write_buf16(mtd, ecc_buf, 8);
+	write_nop(docptr);
+	write_nop(docptr);
+	writew(0, docptr + DOC_DATAEND);
+	write_nop(docptr);
+
+	return nand_prog_page_end_op(nand);
+}
+
+static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
+				const uint8_t *buf, int oob_required, int page)
+{
+	return write_page(mtd, nand, buf, page, false);
+}
+
+static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
+			     const uint8_t *buf, int oob_required, int page)
+{
+	return write_page(mtd, nand, buf, page, true);
+}
+
+static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
+			   int page)
+{
+	/*
+	 * Writing oob-only is not really supported, because MLC nand must write
+	 * oob bytes at the same time as page data.  Nonetheless, we save the
+	 * oob buffer contents here, and then write it along with the page data
+	 * if the same page is subsequently written.  This allows user space
+	 * utilities that write the oob data prior to the page data to work
+	 * (e.g., nandwrite).  The disdvantage is that, if the intention was to
+	 * write oob only, the operation is quietly ignored.  Also, oob can get
+	 * corrupted if two concurrent processes are running nandwrite.
+	 */
+
+	/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	doc->oob_page = page;
+	memcpy(doc->oob_buf, nand->oob_poi, 16);
+	return 0;
+}
+
+static int __init read_factory_bbt(struct mtd_info *mtd)
+{
+	/*
+	 * The device contains a read-only factory bad block table.  Read it and
+	 * update the memory-based bbt accordingly.
+	 */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
+	uint8_t *buf;
+	int i, block;
+	__u32 eccfailed_stats = mtd->ecc_stats.failed;
+
+	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
+	if (buf == NULL)
+		return -ENOMEM;
+
+	read_page_prologue(mtd, g4_addr);
+	docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
+
+	/*
+	 * If no memory-based bbt was created, exit.  This will happen if module
+	 * parameter ignore_badblocks is set.  Then why even call this function?
+	 * For an unknown reason, block erase always fails if it's the first
+	 * operation after device power-up.  The above read ensures it never is.
+	 * Ugly, I know.
+	 */
+	if (nand->bbt == NULL)  /* no memory-based bbt */
+		goto exit;
+
+	if (mtd->ecc_stats.failed > eccfailed_stats) {
+		/*
+		 * Whoops, an ecc failure ocurred reading the factory bbt.
+		 * It is stored redundantly, so we get another chance.
+		 */
+		eccfailed_stats = mtd->ecc_stats.failed;
+		docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
+		if (mtd->ecc_stats.failed > eccfailed_stats) {
+			dev_warn(doc->dev,
+				 "The factory bbt could not be read!\n");
+			goto exit;
+		}
+	}
+
+	/*
+	 * Parse factory bbt and update memory-based bbt.  Factory bbt format is
+	 * simple: one bit per block, block numbers increase left to right (msb
+	 * to lsb).  Bit clear means bad block.
+	 */
+	for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
+		int bitnum;
+		unsigned long bits = ~buf[i];
+		for_each_set_bit(bitnum, &bits, 8) {
+			int badblock = block + 7 - bitnum;
+			nand->bbt[badblock / 4] |=
+				0x03 << ((badblock % 4) * 2);
+			mtd->ecc_stats.badblocks++;
+			dev_notice(doc->dev, "factory-marked bad block: %d\n",
+				   badblock);
+		}
+	}
+ exit:
+	kfree(buf);
+	return 0;
+}
+
+static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	/*
+	 * Mark a block as bad.  Bad blocks are marked in the oob area of the
+	 * first page of the block.  The default scan_bbt() in the nand
+	 * infrastructure code works fine for building the memory-based bbt
+	 * during initialization, as does the nand infrastructure function that
+	 * checks if a block is bad by reading the bbt.  This function replaces
+	 * the nand default because writes to oob-only are not supported.
+	 */
+
+	int ret, i;
+	uint8_t *buf;
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	struct nand_bbt_descr *bbtd = nand->badblock_pattern;
+	int page = (int)(ofs >> nand->page_shift);
+	uint32_t g4_addr = mtd_to_docg4_address(page, 0);
+
+	dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
+
+	if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
+		dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
+			 __func__, ofs);
+
+	/* allocate blank buffer for page data */
+	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
+	if (buf == NULL)
+		return -ENOMEM;
+
+	/* write bit-wise negation of pattern to oob buffer */
+	memset(nand->oob_poi, 0xff, mtd->oobsize);
+	for (i = 0; i < bbtd->len; i++)
+		nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
+
+	/* write first page of block */
+	write_page_prologue(mtd, g4_addr);
+	docg4_write_page(mtd, nand, buf, 1, page);
+	ret = pageprog(mtd);
+
+	kfree(buf);
+
+	return ret;
+}
+
+static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
+{
+	/* only called when module_param ignore_badblocks is set */
+	return 0;
+}
+
+static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
+{
+	/*
+	 * Put the device into "deep power-down" mode.  Note that CE# must be
+	 * deasserted for this to take effect.  The xscale, e.g., can be
+	 * configured to float this signal when the processor enters power-down,
+	 * and a suitable pull-up ensures its deassertion.
+	 */
+
+	int i;
+	uint8_t pwr_down;
+	struct docg4_priv *doc = platform_get_drvdata(pdev);
+	void __iomem *docptr = doc->virtadr;
+
+	dev_dbg(doc->dev, "%s...\n", __func__);
+
+	/* poll the register that tells us we're ready to go to sleep */
+	for (i = 0; i < 10; i++) {
+		pwr_down = readb(docptr + DOC_POWERMODE);
+		if (pwr_down & DOC_POWERDOWN_READY)
+			break;
+		usleep_range(1000, 4000);
+	}
+
+	if (pwr_down & DOC_POWERDOWN_READY) {
+		dev_err(doc->dev, "suspend failed; "
+			"timeout polling DOC_POWERDOWN_READY\n");
+		return -EIO;
+	}
+
+	writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
+	       docptr + DOC_ASICMODE);
+	writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
+	       docptr + DOC_ASICMODECONFIRM);
+
+	write_nop(docptr);
+
+	return 0;
+}
+
+static int docg4_resume(struct platform_device *pdev)
+{
+
+	/*
+	 * Exit power-down.  Twelve consecutive reads of the address below
+	 * accomplishes this, assuming CE# has been asserted.
+	 */
+
+	struct docg4_priv *doc = platform_get_drvdata(pdev);
+	void __iomem *docptr = doc->virtadr;
+	int i;
+
+	dev_dbg(doc->dev, "%s...\n", __func__);
+
+	for (i = 0; i < 12; i++)
+		readb(docptr + 0x1fff);
+
+	return 0;
+}
+
+static void init_mtd_structs(struct mtd_info *mtd)
+{
+	/* initialize mtd and nand data structures */
+
+	/*
+	 * Note that some of the following initializations are not usually
+	 * required within a nand driver because they are performed by the nand
+	 * infrastructure code as part of nand_scan().  In this case they need
+	 * to be initialized here because we skip call to nand_scan_ident() (the
+	 * first half of nand_scan()).  The call to nand_scan_ident() could be
+	 * skipped because for this device the chip id is not read in the manner
+	 * of a standard nand device.
+	 */
+
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+
+	mtd->size = DOCG4_CHIP_SIZE;
+	mtd->name = "Msys_Diskonchip_G4";
+	mtd->writesize = DOCG4_PAGE_SIZE;
+	mtd->erasesize = DOCG4_BLOCK_SIZE;
+	mtd->oobsize = DOCG4_OOB_SIZE;
+	mtd_set_ooblayout(mtd, &docg4_ooblayout_ops);
+	nand->chipsize = DOCG4_CHIP_SIZE;
+	nand->chip_shift = DOCG4_CHIP_SHIFT;
+	nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
+	nand->chip_delay = 20;
+	nand->page_shift = DOCG4_PAGE_SHIFT;
+	nand->pagemask = 0x3ffff;
+	nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
+	nand->badblockbits = 8;
+	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
+	nand->ecc.size = DOCG4_PAGE_SIZE;
+	nand->ecc.prepad = 8;
+	nand->ecc.bytes	= 8;
+	nand->ecc.strength = DOCG4_T;
+	nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
+	nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
+	nand->controller = &nand->dummy_controller;
+	nand_controller_init(nand->controller);
+
+	/* methods */
+	nand->cmdfunc = docg4_command;
+	nand->waitfunc = docg4_wait;
+	nand->select_chip = docg4_select_chip;
+	nand->read_byte = docg4_read_byte;
+	nand->block_markbad = docg4_block_markbad;
+	nand->read_buf = docg4_read_buf;
+	nand->write_buf = docg4_write_buf16;
+	nand->erase = docg4_erase_block;
+	nand->set_features = nand_get_set_features_notsupp;
+	nand->get_features = nand_get_set_features_notsupp;
+	nand->ecc.read_page = docg4_read_page;
+	nand->ecc.write_page = docg4_write_page;
+	nand->ecc.read_page_raw = docg4_read_page_raw;
+	nand->ecc.write_page_raw = docg4_write_page_raw;
+	nand->ecc.read_oob = docg4_read_oob;
+	nand->ecc.write_oob = docg4_write_oob;
+
+	/*
+	 * The way the nand infrastructure code is written, a memory-based bbt
+	 * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
+	 * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
+	 * scan and define a dummy block_bad() which always returns 0.
+	 */
+	if (ignore_badblocks) {
+		nand->options |= NAND_SKIP_BBTSCAN;
+		nand->block_bad	= docg4_block_neverbad;
+	}
+
+}
+
+static int read_id_reg(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct docg4_priv *doc = nand_get_controller_data(nand);
+	void __iomem *docptr = doc->virtadr;
+	uint16_t id1, id2;
+
+	/* check for presence of g4 chip by reading id registers */
+	id1 = readw(docptr + DOC_CHIPID);
+	id1 = readw(docptr + DOCG4_MYSTERY_REG);
+	id2 = readw(docptr + DOC_CHIPID_INV);
+	id2 = readw(docptr + DOCG4_MYSTERY_REG);
+
+	if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
+		dev_info(doc->dev,
+			 "NAND device: 128MiB Diskonchip G4 detected\n");
+		return 0;
+	}
+
+	return -ENODEV;
+}
+
+static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
+
+static int docg4_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
+	int ret;
+
+	init_mtd_structs(mtd);
+
+	/* Initialize kernel BCH algorithm */
+	doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
+	if (!doc->bch)
+		return -EINVAL;
+
+	reset(mtd);
+
+	ret = read_id_reg(mtd);
+	if (ret)
+		free_bch(doc->bch);
+
+	return ret;
+}
+
+static void docg4_detach_chip(struct nand_chip *chip)
+{
+	struct docg4_priv *doc = (struct docg4_priv *)(chip + 1);
+
+	free_bch(doc->bch);
+}
+
+static const struct nand_controller_ops docg4_controller_ops = {
+	.attach_chip = docg4_attach_chip,
+	.detach_chip = docg4_detach_chip,
+};
+
+static int __init probe_docg4(struct platform_device *pdev)
+{
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	void __iomem *virtadr;
+	struct docg4_priv *doc;
+	int len, retval;
+	struct resource *r;
+	struct device *dev = &pdev->dev;
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (r == NULL) {
+		dev_err(dev, "no io memory resource defined!\n");
+		return -ENODEV;
+	}
+
+	virtadr = ioremap(r->start, resource_size(r));
+	if (!virtadr) {
+		dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
+		return -EIO;
+	}
+
+	len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
+	nand = kzalloc(len, GFP_KERNEL);
+	if (nand == NULL) {
+		retval = -ENOMEM;
+		goto unmap;
+	}
+
+	mtd = nand_to_mtd(nand);
+	doc = (struct docg4_priv *) (nand + 1);
+	nand_set_controller_data(nand, doc);
+	mtd->dev.parent = &pdev->dev;
+	doc->virtadr = virtadr;
+	doc->dev = dev;
+	platform_set_drvdata(pdev, doc);
+
+	/*
+	 * Running nand_scan() with maxchips == 0 will skip nand_scan_ident(),
+	 * which is a specific operation with this driver and done in the
+	 * ->attach_chip callback.
+	 */
+	nand->dummy_controller.ops = &docg4_controller_ops;
+	retval = nand_scan(mtd, 0);
+	if (retval)
+		goto free_nand;
+
+	retval = read_factory_bbt(mtd);
+	if (retval)
+		goto cleanup_nand;
+
+	retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
+	if (retval)
+		goto cleanup_nand;
+
+	doc->mtd = mtd;
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(nand);
+free_nand:
+	kfree(nand);
+unmap:
+	iounmap(virtadr);
+
+	return retval;
+}
+
+static int __exit cleanup_docg4(struct platform_device *pdev)
+{
+	struct docg4_priv *doc = platform_get_drvdata(pdev);
+	nand_release(doc->mtd);
+	kfree(mtd_to_nand(doc->mtd));
+	iounmap(doc->virtadr);
+	return 0;
+}
+
+static struct platform_driver docg4_driver = {
+	.driver		= {
+		.name	= "docg4",
+	},
+	.suspend	= docg4_suspend,
+	.resume		= docg4_resume,
+	.remove		= __exit_p(cleanup_docg4),
+};
+
+module_platform_driver_probe(docg4_driver, probe_docg4);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Mike Dunn");
+MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c
new file mode 100644
index 0000000..55f449b
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c
@@ -0,0 +1,981 @@
+/* Freescale Enhanced Local Bus Controller NAND driver
+ *
+ * Copyright © 2006-2007, 2010 Freescale Semiconductor
+ *
+ * Authors: Nick Spence <nick.spence@freescale.com>,
+ *          Scott Wood <scottwood@freescale.com>
+ *          Jack Lan <jack.lan@freescale.com>
+ *          Roy Zang <tie-fei.zang@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/of_address.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+#include <asm/fsl_lbc.h>
+
+#define MAX_BANKS 8
+#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
+#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
+
+/* mtd information per set */
+
+struct fsl_elbc_mtd {
+	struct nand_chip chip;
+	struct fsl_lbc_ctrl *ctrl;
+
+	struct device *dev;
+	int bank;               /* Chip select bank number           */
+	u8 __iomem *vbase;      /* Chip select base virtual address  */
+	int page_size;          /* NAND page size (0=512, 1=2048)    */
+	unsigned int fmr;       /* FCM Flash Mode Register value     */
+};
+
+/* Freescale eLBC FCM controller information */
+
+struct fsl_elbc_fcm_ctrl {
+	struct nand_controller controller;
+	struct fsl_elbc_mtd *chips[MAX_BANKS];
+
+	u8 __iomem *addr;        /* Address of assigned FCM buffer        */
+	unsigned int page;       /* Last page written to / read from      */
+	unsigned int read_bytes; /* Number of bytes read during command   */
+	unsigned int column;     /* Saved column from SEQIN               */
+	unsigned int index;      /* Pointer to next byte to 'read'        */
+	unsigned int status;     /* status read from LTESR after last op  */
+	unsigned int mdr;        /* UPM/FCM Data Register value           */
+	unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
+	unsigned int oob;        /* Non zero if operating on OOB data     */
+	unsigned int counter;	 /* counter for the initializations	  */
+	unsigned int max_bitflips;  /* Saved during READ0 cmd		  */
+};
+
+/* These map to the positions used by the FCM hardware ECC generator */
+
+static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (16 * section) + 6;
+	if (priv->fmr & FMR_ECCM)
+		oobregion->offset += 2;
+
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+
+	if (section > chip->ecc.steps)
+		return -ERANGE;
+
+	if (!section) {
+		oobregion->offset = 0;
+		if (mtd->writesize > 512)
+			oobregion->offset++;
+		oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5;
+	} else {
+		oobregion->offset = (16 * section) -
+				    ((priv->fmr & FMR_ECCM) ? 5 : 7);
+		if (section < chip->ecc.steps)
+			oobregion->length = 13;
+		else
+			oobregion->length = mtd->oobsize - oobregion->offset;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = {
+	.ecc = fsl_elbc_ooblayout_ecc,
+	.free = fsl_elbc_ooblayout_free,
+};
+
+/*
+ * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt,
+ * interfere with ECC positions, that's why we implement our own descriptors.
+ * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0.
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	11,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	11,
+	.len = 4,
+	.veroffs = 15,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/*=================================*/
+
+/*
+ * Set up the FCM hardware block and page address fields, and the fcm
+ * structure addr field to point to the correct FCM buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
+	int buf_num;
+
+	elbc_fcm_ctrl->page = page_addr;
+
+	if (priv->page_size) {
+		/*
+		 * large page size chip : FPAR[PI] save the lowest 6 bits,
+		 *                        FBAR[BLK] save the other bits.
+		 */
+		out_be32(&lbc->fbar, page_addr >> 6);
+		out_be32(&lbc->fpar,
+		         ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
+		         (oob ? FPAR_LP_MS : 0) | column);
+		buf_num = (page_addr & 1) << 2;
+	} else {
+		/*
+		 * small page size chip : FPAR[PI] save the lowest 5 bits,
+		 *                        FBAR[BLK] save the other bits.
+		 */
+		out_be32(&lbc->fbar, page_addr >> 5);
+		out_be32(&lbc->fpar,
+		         ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
+		         (oob ? FPAR_SP_MS : 0) | column);
+		buf_num = page_addr & 7;
+	}
+
+	elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024;
+	elbc_fcm_ctrl->index = column;
+
+	/* for OOB data point to the second half of the buffer */
+	if (oob)
+		elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512;
+
+	dev_vdbg(priv->dev, "set_addr: bank=%d, "
+			    "elbc_fcm_ctrl->addr=0x%p (0x%p), "
+	                    "index %x, pes %d ps %d\n",
+		 buf_num, elbc_fcm_ctrl->addr, priv->vbase,
+		 elbc_fcm_ctrl->index,
+	         chip->phys_erase_shift, chip->page_shift);
+}
+
+/*
+ * execute FCM command and wait for it to complete
+ */
+static int fsl_elbc_run_command(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
+	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
+
+	/* Setup the FMR[OP] to execute without write protection */
+	out_be32(&lbc->fmr, priv->fmr | 3);
+	if (elbc_fcm_ctrl->use_mdr)
+		out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr);
+
+	dev_vdbg(priv->dev,
+	         "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
+	         in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
+	dev_vdbg(priv->dev,
+	         "fsl_elbc_run_command: fbar=%08x fpar=%08x "
+	         "fbcr=%08x bank=%d\n",
+	         in_be32(&lbc->fbar), in_be32(&lbc->fpar),
+	         in_be32(&lbc->fbcr), priv->bank);
+
+	ctrl->irq_status = 0;
+	/* execute special operation */
+	out_be32(&lbc->lsor, priv->bank);
+
+	/* wait for FCM complete flag or timeout */
+	wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
+	                   FCM_TIMEOUT_MSECS * HZ/1000);
+	elbc_fcm_ctrl->status = ctrl->irq_status;
+	/* store mdr value in case it was needed */
+	if (elbc_fcm_ctrl->use_mdr)
+		elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr);
+
+	elbc_fcm_ctrl->use_mdr = 0;
+
+	if (elbc_fcm_ctrl->status != LTESR_CC) {
+		dev_info(priv->dev,
+		         "command failed: fir %x fcr %x status %x mdr %x\n",
+		         in_be32(&lbc->fir), in_be32(&lbc->fcr),
+			 elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr);
+		return -EIO;
+	}
+
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return 0;
+
+	elbc_fcm_ctrl->max_bitflips = 0;
+
+	if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) {
+		uint32_t lteccr = in_be32(&lbc->lteccr);
+		/*
+		 * if command was a full page read and the ELBC
+		 * has the LTECCR register, then bits 12-15 (ppc order) of
+		 * LTECCR indicates which 512 byte sub-pages had fixed errors.
+		 * bits 28-31 are uncorrectable errors, marked elsewhere.
+		 * for small page nand only 1 bit is used.
+		 * if the ELBC doesn't have the lteccr register it reads 0
+		 * FIXME: 4 bits can be corrected on NANDs with 2k pages, so
+		 * count the number of sub-pages with bitflips and update
+		 * ecc_stats.corrected accordingly.
+		 */
+		if (lteccr & 0x000F000F)
+			out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */
+		if (lteccr & 0x000F0000) {
+			mtd->ecc_stats.corrected++;
+			elbc_fcm_ctrl->max_bitflips = 1;
+		}
+	}
+
+	return 0;
+}
+
+static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
+{
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
+
+	if (priv->page_size) {
+		out_be32(&lbc->fir,
+		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
+		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
+		         (FIR_OP_CM1 << FIR_OP3_SHIFT) |
+		         (FIR_OP_RBW << FIR_OP4_SHIFT));
+
+		out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
+		                    (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
+	} else {
+		out_be32(&lbc->fir,
+		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_CA  << FIR_OP1_SHIFT) |
+		         (FIR_OP_PA  << FIR_OP2_SHIFT) |
+		         (FIR_OP_RBW << FIR_OP3_SHIFT));
+
+		if (oob)
+			out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
+		else
+			out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
+	}
+}
+
+/* cmdfunc send commands to the FCM */
+static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+                             int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
+	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
+
+	elbc_fcm_ctrl->use_mdr = 0;
+
+	/* clear the read buffer */
+	elbc_fcm_ctrl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		elbc_fcm_ctrl->index = 0;
+
+	switch (command) {
+	/* READ0 and READ1 read the entire buffer to use hardware ECC. */
+	case NAND_CMD_READ1:
+		column += 256;
+
+	/* fall-through */
+	case NAND_CMD_READ0:
+		dev_dbg(priv->dev,
+		        "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
+		        " 0x%x, column: 0x%x.\n", page_addr, column);
+
+
+		out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
+		set_addr(mtd, 0, page_addr, 0);
+
+		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+		elbc_fcm_ctrl->index += column;
+
+		fsl_elbc_do_read(chip, 0);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* READOOB reads only the OOB because no ECC is performed. */
+	case NAND_CMD_READOOB:
+		dev_vdbg(priv->dev,
+		         "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
+			 " 0x%x, column: 0x%x.\n", page_addr, column);
+
+		out_be32(&lbc->fbcr, mtd->oobsize - column);
+		set_addr(mtd, column, page_addr, 1);
+
+		elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+		fsl_elbc_do_read(chip, 1);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	case NAND_CMD_READID:
+	case NAND_CMD_PARAM:
+		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command);
+
+		out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+		                    (FIR_OP_UA  << FIR_OP1_SHIFT) |
+		                    (FIR_OP_RBW << FIR_OP2_SHIFT));
+		out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT);
+		/*
+		 * although currently it's 8 bytes for READID, we always read
+		 * the maximum 256 bytes(for PARAM)
+		 */
+		out_be32(&lbc->fbcr, 256);
+		elbc_fcm_ctrl->read_bytes = 256;
+		elbc_fcm_ctrl->use_mdr = 1;
+		elbc_fcm_ctrl->mdr = column;
+		set_addr(mtd, 0, 0, 0);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* ERASE1 stores the block and page address */
+	case NAND_CMD_ERASE1:
+		dev_vdbg(priv->dev,
+		         "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
+		         "page_addr: 0x%x.\n", page_addr);
+		set_addr(mtd, 0, page_addr, 0);
+		return;
+
+	/* ERASE2 uses the block and page address from ERASE1 */
+	case NAND_CMD_ERASE2:
+		dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
+
+		out_be32(&lbc->fir,
+		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_PA  << FIR_OP1_SHIFT) |
+		         (FIR_OP_CM2 << FIR_OP2_SHIFT) |
+		         (FIR_OP_CW1 << FIR_OP3_SHIFT) |
+		         (FIR_OP_RS  << FIR_OP4_SHIFT));
+
+		out_be32(&lbc->fcr,
+		         (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
+		         (NAND_CMD_STATUS << FCR_CMD1_SHIFT) |
+		         (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT));
+
+		out_be32(&lbc->fbcr, 0);
+		elbc_fcm_ctrl->read_bytes = 0;
+		elbc_fcm_ctrl->use_mdr = 1;
+
+		fsl_elbc_run_command(mtd);
+		return;
+
+	/* SEQIN sets up the addr buffer and all registers except the length */
+	case NAND_CMD_SEQIN: {
+		__be32 fcr;
+		dev_vdbg(priv->dev,
+			 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
+		         "page_addr: 0x%x, column: 0x%x.\n",
+		         page_addr, column);
+
+		elbc_fcm_ctrl->column = column;
+		elbc_fcm_ctrl->use_mdr = 1;
+
+		if (column >= mtd->writesize) {
+			/* OOB area */
+			column -= mtd->writesize;
+			elbc_fcm_ctrl->oob = 1;
+		} else {
+			WARN_ON(column != 0);
+			elbc_fcm_ctrl->oob = 0;
+		}
+
+		fcr = (NAND_CMD_STATUS   << FCR_CMD1_SHIFT) |
+		      (NAND_CMD_SEQIN    << FCR_CMD2_SHIFT) |
+		      (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT);
+
+		if (priv->page_size) {
+			out_be32(&lbc->fir,
+			         (FIR_OP_CM2 << FIR_OP0_SHIFT) |
+			         (FIR_OP_CA  << FIR_OP1_SHIFT) |
+			         (FIR_OP_PA  << FIR_OP2_SHIFT) |
+			         (FIR_OP_WB  << FIR_OP3_SHIFT) |
+			         (FIR_OP_CM3 << FIR_OP4_SHIFT) |
+			         (FIR_OP_CW1 << FIR_OP5_SHIFT) |
+			         (FIR_OP_RS  << FIR_OP6_SHIFT));
+		} else {
+			out_be32(&lbc->fir,
+			         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+			         (FIR_OP_CM2 << FIR_OP1_SHIFT) |
+			         (FIR_OP_CA  << FIR_OP2_SHIFT) |
+			         (FIR_OP_PA  << FIR_OP3_SHIFT) |
+			         (FIR_OP_WB  << FIR_OP4_SHIFT) |
+			         (FIR_OP_CM3 << FIR_OP5_SHIFT) |
+			         (FIR_OP_CW1 << FIR_OP6_SHIFT) |
+			         (FIR_OP_RS  << FIR_OP7_SHIFT));
+
+			if (elbc_fcm_ctrl->oob)
+				/* OOB area --> READOOB */
+				fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
+			else
+				/* First 256 bytes --> READ0 */
+				fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
+		}
+
+		out_be32(&lbc->fcr, fcr);
+		set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob);
+		return;
+	}
+
+	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+	case NAND_CMD_PAGEPROG: {
+		dev_vdbg(priv->dev,
+		         "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
+			 "writing %d bytes.\n", elbc_fcm_ctrl->index);
+
+		/* if the write did not start at 0 or is not a full page
+		 * then set the exact length, otherwise use a full page
+		 * write so the HW generates the ECC.
+		 */
+		if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 ||
+		    elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize)
+			out_be32(&lbc->fbcr,
+				elbc_fcm_ctrl->index - elbc_fcm_ctrl->column);
+		else
+			out_be32(&lbc->fbcr, 0);
+
+		fsl_elbc_run_command(mtd);
+		return;
+	}
+
+	/* CMD_STATUS must read the status byte while CEB is active */
+	/* Note - it does not wait for the ready line */
+	case NAND_CMD_STATUS:
+		out_be32(&lbc->fir,
+		         (FIR_OP_CM0 << FIR_OP0_SHIFT) |
+		         (FIR_OP_RBW << FIR_OP1_SHIFT));
+		out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
+		out_be32(&lbc->fbcr, 1);
+		set_addr(mtd, 0, 0, 0);
+		elbc_fcm_ctrl->read_bytes = 1;
+
+		fsl_elbc_run_command(mtd);
+
+		/* The chip always seems to report that it is
+		 * write-protected, even when it is not.
+		 */
+		setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP);
+		return;
+
+	/* RESET without waiting for the ready line */
+	case NAND_CMD_RESET:
+		dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
+		out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
+		out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
+		fsl_elbc_run_command(mtd);
+		return;
+
+	default:
+		dev_err(priv->dev,
+		        "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
+		        command);
+	}
+}
+
+static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
+{
+	/* The hardware does not seem to support multiple
+	 * chips per bank.
+	 */
+}
+
+/*
+ * Write buf to the FCM Controller Data Buffer
+ */
+static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
+	unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+	if (len <= 0) {
+		dev_err(priv->dev, "write_buf of %d bytes", len);
+		elbc_fcm_ctrl->status = 0;
+		return;
+	}
+
+	if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) {
+		dev_err(priv->dev,
+		        "write_buf beyond end of buffer "
+		        "(%d requested, %u available)\n",
+			len, bufsize - elbc_fcm_ctrl->index);
+		len = bufsize - elbc_fcm_ctrl->index;
+	}
+
+	memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len);
+	/*
+	 * This is workaround for the weird elbc hangs during nand write,
+	 * Scott Wood says: "...perhaps difference in how long it takes a
+	 * write to make it through the localbus compared to a write to IMMR
+	 * is causing problems, and sync isn't helping for some reason."
+	 * Reading back the last byte helps though.
+	 */
+	in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1);
+
+	elbc_fcm_ctrl->index += len;
+}
+
+/*
+ * read a byte from either the FCM hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
+
+	/* If there are still bytes in the FCM, then use the next byte. */
+	if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes)
+		return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]);
+
+	dev_err(priv->dev, "read_byte beyond end of buffer\n");
+	return ERR_BYTE;
+}
+
+/*
+ * Read from the FCM Controller Data Buffer
+ */
+static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
+	int avail;
+
+	if (len < 0)
+		return;
+
+	avail = min((unsigned int)len,
+			elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index);
+	memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail);
+	elbc_fcm_ctrl->index += avail;
+
+	if (len > avail)
+		dev_err(priv->dev,
+		        "read_buf beyond end of buffer "
+		        "(%d requested, %d available)\n",
+		        len, avail);
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
+
+	if (elbc_fcm_ctrl->status != LTESR_CC)
+		return NAND_STATUS_FAIL;
+
+	/* The chip always seems to report that it is
+	 * write-protected, even when it is not.
+	 */
+	return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP;
+}
+
+static int fsl_elbc_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
+	unsigned int al;
+
+	/* calculate FMR Address Length field */
+	al = 0;
+	if (chip->pagemask & 0xffff0000)
+		al++;
+	if (chip->pagemask & 0xff000000)
+		al++;
+
+	priv->fmr |= al << FMR_AL_SHIFT;
+
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n",
+	        chip->numchips);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n",
+	        chip->chipsize);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
+	        chip->pagemask);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
+	        chip->chip_delay);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
+	        chip->badblockpos);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
+	        chip->chip_shift);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n",
+	        chip->page_shift);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
+	        chip->phys_erase_shift);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
+	        chip->ecc.mode);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
+	        chip->ecc.steps);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
+	        chip->ecc.bytes);
+	dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
+	        chip->ecc.total);
+	dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n",
+		mtd->ooblayout);
+	dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
+	dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size);
+	dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
+	        mtd->erasesize);
+	dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n",
+	        mtd->writesize);
+	dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
+	        mtd->oobsize);
+
+	/* adjust Option Register and ECC to match Flash page size */
+	if (mtd->writesize == 512) {
+		priv->page_size = 0;
+		clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
+	} else if (mtd->writesize == 2048) {
+		priv->page_size = 1;
+		setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
+	} else {
+		dev_err(priv->dev,
+		        "fsl_elbc_init: page size %d is not supported\n",
+		        mtd->writesize);
+		return -ENOTSUPP;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops fsl_elbc_controller_ops = {
+	.attach_chip = fsl_elbc_attach_chip,
+};
+
+static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			      uint8_t *buf, int oob_required, int page)
+{
+	struct fsl_elbc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
+
+	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+	if (oob_required)
+		fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
+		mtd->ecc_stats.failed++;
+
+	return elbc_fcm_ctrl->max_bitflips;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, int oob_required, int page)
+{
+	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+				uint32_t offset, uint32_t data_len,
+				const uint8_t *buf, int oob_required, int page)
+{
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	fsl_elbc_write_buf(mtd, buf, mtd->writesize);
+	fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	return nand_prog_page_end_op(chip);
+}
+
+static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
+{
+	struct fsl_lbc_ctrl *ctrl = priv->ctrl;
+	struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand;
+	struct nand_chip *chip = &priv->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
+
+	/* Fill in fsl_elbc_mtd structure */
+	mtd->dev.parent = priv->dev;
+	nand_set_flash_node(chip, priv->dev->of_node);
+
+	/* set timeout to maximum */
+	priv->fmr = 15 << FMR_CWTO_SHIFT;
+	if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS)
+		priv->fmr |= FMR_ECCM;
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+	chip->read_byte = fsl_elbc_read_byte;
+	chip->write_buf = fsl_elbc_write_buf;
+	chip->read_buf = fsl_elbc_read_buf;
+	chip->select_chip = fsl_elbc_select_chip;
+	chip->cmdfunc = fsl_elbc_cmdfunc;
+	chip->waitfunc = fsl_elbc_wait;
+	chip->set_features = nand_get_set_features_notsupp;
+	chip->get_features = nand_get_set_features_notsupp;
+
+	chip->bbt_td = &bbt_main_descr;
+	chip->bbt_md = &bbt_mirror_descr;
+
+	/* set up nand options */
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+
+	chip->controller = &elbc_fcm_ctrl->controller;
+	nand_set_controller_data(chip, priv);
+
+	chip->ecc.read_page = fsl_elbc_read_page;
+	chip->ecc.write_page = fsl_elbc_write_page;
+	chip->ecc.write_subpage = fsl_elbc_write_subpage;
+
+	/* If CS Base Register selects full hardware ECC then use it */
+	if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
+	    BR_DECC_CHK_GEN) {
+		chip->ecc.mode = NAND_ECC_HW;
+		mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops);
+		chip->ecc.size = 512;
+		chip->ecc.bytes = 3;
+		chip->ecc.strength = 1;
+	} else {
+		/* otherwise fall back to default software ECC */
+		chip->ecc.mode = NAND_ECC_SOFT;
+		chip->ecc.algo = NAND_ECC_HAMMING;
+	}
+
+	return 0;
+}
+
+static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
+{
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand;
+	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
+
+	kfree(mtd->name);
+
+	if (priv->vbase)
+		iounmap(priv->vbase);
+
+	elbc_fcm_ctrl->chips[priv->bank] = NULL;
+	kfree(priv);
+	return 0;
+}
+
+static DEFINE_MUTEX(fsl_elbc_nand_mutex);
+
+static int fsl_elbc_nand_probe(struct platform_device *pdev)
+{
+	struct fsl_lbc_regs __iomem *lbc;
+	struct fsl_elbc_mtd *priv;
+	struct resource res;
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl;
+	static const char *part_probe_types[]
+		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
+	int ret;
+	int bank;
+	struct device *dev;
+	struct device_node *node = pdev->dev.of_node;
+	struct mtd_info *mtd;
+
+	if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
+		return -ENODEV;
+	lbc = fsl_lbc_ctrl_dev->regs;
+	dev = fsl_lbc_ctrl_dev->dev;
+
+	/* get, allocate and map the memory resource */
+	ret = of_address_to_resource(node, 0, &res);
+	if (ret) {
+		dev_err(dev, "failed to get resource\n");
+		return ret;
+	}
+
+	/* find which chip select it is connected to */
+	for (bank = 0; bank < MAX_BANKS; bank++)
+		if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
+		    (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
+		    (in_be32(&lbc->bank[bank].br) &
+		     in_be32(&lbc->bank[bank].or) & BR_BA)
+		     == fsl_lbc_addr(res.start))
+			break;
+
+	if (bank >= MAX_BANKS) {
+		dev_err(dev, "address did not match any chip selects\n");
+		return -ENODEV;
+	}
+
+	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	mutex_lock(&fsl_elbc_nand_mutex);
+	if (!fsl_lbc_ctrl_dev->nand) {
+		elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL);
+		if (!elbc_fcm_ctrl) {
+			mutex_unlock(&fsl_elbc_nand_mutex);
+			ret = -ENOMEM;
+			goto err;
+		}
+		elbc_fcm_ctrl->counter++;
+
+		nand_controller_init(&elbc_fcm_ctrl->controller);
+		fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl;
+	} else {
+		elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
+	}
+	mutex_unlock(&fsl_elbc_nand_mutex);
+
+	elbc_fcm_ctrl->chips[bank] = priv;
+	priv->bank = bank;
+	priv->ctrl = fsl_lbc_ctrl_dev;
+	priv->dev = &pdev->dev;
+	dev_set_drvdata(priv->dev, priv);
+
+	priv->vbase = ioremap(res.start, resource_size(&res));
+	if (!priv->vbase) {
+		dev_err(dev, "failed to map chip region\n");
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	mtd = nand_to_mtd(&priv->chip);
+	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
+	if (!nand_to_mtd(&priv->chip)->name) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	ret = fsl_elbc_chip_init(priv);
+	if (ret)
+		goto err;
+
+	priv->chip.controller->ops = &fsl_elbc_controller_ops;
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		goto err;
+
+	/* First look for RedBoot table or partitions on the command
+	 * line, these take precedence over device tree information */
+	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
+	if (ret)
+		goto cleanup_nand;
+
+	pr_info("eLBC NAND device at 0x%llx, bank %d\n",
+		(unsigned long long)res.start, priv->bank);
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(&priv->chip);
+err:
+	fsl_elbc_chip_remove(priv);
+
+	return ret;
+}
+
+static int fsl_elbc_nand_remove(struct platform_device *pdev)
+{
+	struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand;
+	struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev);
+	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
+
+	nand_release(mtd);
+	fsl_elbc_chip_remove(priv);
+
+	mutex_lock(&fsl_elbc_nand_mutex);
+	elbc_fcm_ctrl->counter--;
+	if (!elbc_fcm_ctrl->counter) {
+		fsl_lbc_ctrl_dev->nand = NULL;
+		kfree(elbc_fcm_ctrl);
+	}
+	mutex_unlock(&fsl_elbc_nand_mutex);
+
+	return 0;
+
+}
+
+static const struct of_device_id fsl_elbc_nand_match[] = {
+	{ .compatible = "fsl,elbc-fcm-nand", },
+	{}
+};
+MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match);
+
+static struct platform_driver fsl_elbc_nand_driver = {
+	.driver = {
+		.name = "fsl,elbc-fcm-nand",
+		.of_match_table = fsl_elbc_nand_match,
+	},
+	.probe = fsl_elbc_nand_probe,
+	.remove = fsl_elbc_nand_remove,
+};
+
+module_platform_driver(fsl_elbc_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Freescale");
+MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");
diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c
new file mode 100644
index 0000000..24f59d0
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c
@@ -0,0 +1,1117 @@
+/*
+ * Freescale Integrated Flash Controller NAND driver
+ *
+ * Copyright 2011-2012 Freescale Semiconductor, Inc
+ *
+ * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/of_address.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/fsl_ifc.h>
+
+#define ERR_BYTE		0xFF /* Value returned for read
+					bytes when read failed	*/
+#define IFC_TIMEOUT_MSECS	500  /* Maximum number of mSecs to wait
+					for IFC NAND Machine	*/
+
+struct fsl_ifc_ctrl;
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+	struct nand_chip chip;
+	struct fsl_ifc_ctrl *ctrl;
+
+	struct device *dev;
+	int bank;		/* Chip select bank number		*/
+	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
+	u8 __iomem *vbase;      /* Chip select base virtual address	*/
+};
+
+/* overview of the fsl ifc controller */
+struct fsl_ifc_nand_ctrl {
+	struct nand_controller controller;
+	struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
+
+	void __iomem *addr;	/* Address of assigned IFC buffer	*/
+	unsigned int page;	/* Last page written to / read from	*/
+	unsigned int read_bytes;/* Number of bytes read during command	*/
+	unsigned int column;	/* Saved column from SEQIN		*/
+	unsigned int index;	/* Pointer to next byte to 'read'	*/
+	unsigned int oob;	/* Non zero if operating on OOB data	*/
+	unsigned int eccread;	/* Non zero for a full-page ECC read	*/
+	unsigned int counter;	/* counter for the initializations	*/
+	unsigned int max_bitflips;  /* Saved during READ0 cmd		*/
+};
+
+static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
+
+/*
+ * Generic flash bbt descriptors
+ */
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	2, /* 0 on 8-bit small page */
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	2, /* 0 on 8-bit small page */
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 8;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section > 1)
+		return -ERANGE;
+
+	if (mtd->writesize == 512 &&
+	    !(chip->options & NAND_BUSWIDTH_16)) {
+		if (!section) {
+			oobregion->offset = 0;
+			oobregion->length = 5;
+		} else {
+			oobregion->offset = 6;
+			oobregion->length = 2;
+		}
+
+		return 0;
+	}
+
+	if (!section) {
+		oobregion->offset = 2;
+		oobregion->length = 6;
+	} else {
+		oobregion->offset = chip->ecc.total + 8;
+		oobregion->length = mtd->oobsize - oobregion->offset;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
+	.ecc = fsl_ifc_ooblayout_ecc,
+	.free = fsl_ifc_ooblayout_free,
+};
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
+	int buf_num;
+
+	ifc_nand_ctrl->page = page_addr;
+	/* Program ROW0/COL0 */
+	ifc_out32(page_addr, &ifc->ifc_nand.row0);
+	ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
+
+	buf_num = page_addr & priv->bufnum_mask;
+
+	ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+	ifc_nand_ctrl->index = column;
+
+	/* for OOB data point to the second half of the buffer */
+	if (oob)
+		ifc_nand_ctrl->index += mtd->writesize;
+}
+
+/* returns nonzero if entire page is blank */
+static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+			  u32 eccstat, unsigned int bufnum)
+{
+	return  (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
+}
+
+/*
+ * execute IFC NAND command and wait for it to complete
+ */
+static void fsl_ifc_run_command(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
+	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
+	u32 eccstat;
+	int i;
+
+	/* set the chip select for NAND Transaction */
+	ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
+		  &ifc->ifc_nand.nand_csel);
+
+	dev_vdbg(priv->dev,
+			"%s: fir0=%08x fcr0=%08x\n",
+			__func__,
+			ifc_in32(&ifc->ifc_nand.nand_fir0),
+			ifc_in32(&ifc->ifc_nand.nand_fcr0));
+
+	ctrl->nand_stat = 0;
+
+	/* start read/write seq */
+	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
+
+	/* wait for command complete flag or timeout */
+	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
+			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
+
+	/* ctrl->nand_stat will be updated from IRQ context */
+	if (!ctrl->nand_stat)
+		dev_err(priv->dev, "Controller is not responding\n");
+	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
+		dev_err(priv->dev, "NAND Flash Timeout Error\n");
+	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
+		dev_err(priv->dev, "NAND Flash Write Protect Error\n");
+
+	nctrl->max_bitflips = 0;
+
+	if (nctrl->eccread) {
+		int errors;
+		int bufnum = nctrl->page & priv->bufnum_mask;
+		int sector_start = bufnum * chip->ecc.steps;
+		int sector_end = sector_start + chip->ecc.steps - 1;
+		__be32 __iomem *eccstat_regs;
+
+		eccstat_regs = ifc->ifc_nand.nand_eccstat;
+		eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
+
+		for (i = sector_start; i <= sector_end; i++) {
+			if (i != sector_start && !(i % 4))
+				eccstat = ifc_in32(&eccstat_regs[i / 4]);
+
+			errors = check_read_ecc(mtd, ctrl, eccstat, i);
+
+			if (errors == 15) {
+				/*
+				 * Uncorrectable error.
+				 * We'll check for blank pages later.
+				 *
+				 * We disable ECCER reporting due to...
+				 * erratum IFC-A002770 -- so report it now if we
+				 * see an uncorrectable error in ECCSTAT.
+				 */
+				ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
+				continue;
+			}
+
+			mtd->ecc_stats.corrected += errors;
+			nctrl->max_bitflips = max_t(unsigned int,
+						    nctrl->max_bitflips,
+						    errors);
+		}
+
+		nctrl->eccread = 0;
+	}
+}
+
+static void fsl_ifc_do_read(struct nand_chip *chip,
+			    int oob,
+			    struct mtd_info *mtd)
+{
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
+
+	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+	if (mtd->writesize > 512) {
+		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
+			  &ifc->ifc_nand.nand_fir0);
+		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
+
+		ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
+			  &ifc->ifc_nand.nand_fcr0);
+	} else {
+		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
+			  (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
+			  &ifc->ifc_nand.nand_fir0);
+		ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
+
+		if (oob)
+			ifc_out32(NAND_CMD_READOOB <<
+				  IFC_NAND_FCR0_CMD0_SHIFT,
+				  &ifc->ifc_nand.nand_fcr0);
+		else
+			ifc_out32(NAND_CMD_READ0 <<
+				  IFC_NAND_FCR0_CMD0_SHIFT,
+				  &ifc->ifc_nand.nand_fcr0);
+	}
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
+			     int column, int page_addr) {
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
+
+	/* clear the read buffer */
+	ifc_nand_ctrl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		ifc_nand_ctrl->index = 0;
+
+	switch (command) {
+	/* READ0 read the entire buffer to use hardware ECC. */
+	case NAND_CMD_READ0:
+		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
+		set_addr(mtd, 0, page_addr, 0);
+
+		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+		ifc_nand_ctrl->index += column;
+
+		if (chip->ecc.mode == NAND_ECC_HW)
+			ifc_nand_ctrl->eccread = 1;
+
+		fsl_ifc_do_read(chip, 0, mtd);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* READOOB reads only the OOB because no ECC is performed. */
+	case NAND_CMD_READOOB:
+		ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
+		set_addr(mtd, column, page_addr, 1);
+
+		ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+		fsl_ifc_do_read(chip, 1, mtd);
+		fsl_ifc_run_command(mtd);
+
+		return;
+
+	case NAND_CMD_READID:
+	case NAND_CMD_PARAM: {
+		/*
+		 * For READID, read 8 bytes that are currently used.
+		 * For PARAM, read all 3 copies of 256-bytes pages.
+		 */
+		int len = 8;
+		int timing = IFC_FIR_OP_RB;
+		if (command == NAND_CMD_PARAM) {
+			timing = IFC_FIR_OP_RBCD;
+			len = 256 * 3;
+		}
+
+		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (timing << IFC_NAND_FIR0_OP2_SHIFT),
+			  &ifc->ifc_nand.nand_fir0);
+		ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
+			  &ifc->ifc_nand.nand_fcr0);
+		ifc_out32(column, &ifc->ifc_nand.row3);
+
+		ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
+		ifc_nand_ctrl->read_bytes = len;
+
+		set_addr(mtd, 0, 0, 0);
+		fsl_ifc_run_command(mtd);
+		return;
+	}
+
+	/* ERASE1 stores the block and page address */
+	case NAND_CMD_ERASE1:
+		set_addr(mtd, 0, page_addr, 0);
+		return;
+
+	/* ERASE2 uses the block and page address from ERASE1 */
+	case NAND_CMD_ERASE2:
+		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
+			  &ifc->ifc_nand.nand_fir0);
+
+		ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+			  (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
+			  &ifc->ifc_nand.nand_fcr0);
+
+		ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
+		ifc_nand_ctrl->read_bytes = 0;
+		fsl_ifc_run_command(mtd);
+		return;
+
+	/* SEQIN sets up the addr buffer and all registers except the length */
+	case NAND_CMD_SEQIN: {
+		u32 nand_fcr0;
+		ifc_nand_ctrl->column = column;
+		ifc_nand_ctrl->oob = 0;
+
+		if (mtd->writesize > 512) {
+			nand_fcr0 =
+				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+				(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
+				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
+
+			ifc_out32(
+				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
+				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
+				&ifc->ifc_nand.nand_fir0);
+			ifc_out32(
+				(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
+				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
+				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
+				&ifc->ifc_nand.nand_fir1);
+		} else {
+			nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+					IFC_NAND_FCR0_CMD1_SHIFT) |
+				    (NAND_CMD_SEQIN <<
+					IFC_NAND_FCR0_CMD2_SHIFT) |
+				    (NAND_CMD_STATUS <<
+					IFC_NAND_FCR0_CMD3_SHIFT));
+
+			ifc_out32(
+				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+				(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+				(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+				(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+				(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
+				&ifc->ifc_nand.nand_fir0);
+			ifc_out32(
+				(IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
+				(IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
+				(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
+				(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
+				&ifc->ifc_nand.nand_fir1);
+
+			if (column >= mtd->writesize)
+				nand_fcr0 |=
+				NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
+			else
+				nand_fcr0 |=
+				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
+		}
+
+		if (column >= mtd->writesize) {
+			/* OOB area --> READOOB */
+			column -= mtd->writesize;
+			ifc_nand_ctrl->oob = 1;
+		}
+		ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
+		set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
+		return;
+	}
+
+	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+	case NAND_CMD_PAGEPROG: {
+		if (ifc_nand_ctrl->oob) {
+			ifc_out32(ifc_nand_ctrl->index -
+				  ifc_nand_ctrl->column,
+				  &ifc->ifc_nand.nand_fbcr);
+		} else {
+			ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
+		}
+
+		fsl_ifc_run_command(mtd);
+		return;
+	}
+
+	case NAND_CMD_STATUS: {
+		void __iomem *addr;
+
+		ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+			  (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
+			  &ifc->ifc_nand.nand_fir0);
+		ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
+			  &ifc->ifc_nand.nand_fcr0);
+		ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
+		set_addr(mtd, 0, 0, 0);
+		ifc_nand_ctrl->read_bytes = 1;
+
+		fsl_ifc_run_command(mtd);
+
+		/*
+		 * The chip always seems to report that it is
+		 * write-protected, even when it is not.
+		 */
+		addr = ifc_nand_ctrl->addr;
+		if (chip->options & NAND_BUSWIDTH_16)
+			ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
+		else
+			ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
+		return;
+	}
+
+	case NAND_CMD_RESET:
+		ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
+			  &ifc->ifc_nand.nand_fir0);
+		ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
+			  &ifc->ifc_nand.nand_fcr0);
+		fsl_ifc_run_command(mtd);
+		return;
+
+	default:
+		dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
+					__func__, command);
+	}
+}
+
+static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
+{
+	/* The hardware does not seem to support multiple
+	 * chips per bank.
+	 */
+}
+
+/*
+ * Write buf to the IFC NAND Controller Data Buffer
+ */
+static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	unsigned int bufsize = mtd->writesize + mtd->oobsize;
+
+	if (len <= 0) {
+		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
+		return;
+	}
+
+	if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
+		dev_err(priv->dev,
+			"%s: beyond end of buffer (%d requested, %u available)\n",
+			__func__, len, bufsize - ifc_nand_ctrl->index);
+		len = bufsize - ifc_nand_ctrl->index;
+	}
+
+	memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
+	ifc_nand_ctrl->index += len;
+}
+
+/*
+ * Read a byte from either the IFC hardware buffer
+ * read function for 8-bit buswidth
+ */
+static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	unsigned int offset;
+
+	/*
+	 * If there are still bytes in the IFC buffer, then use the
+	 * next byte.
+	 */
+	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
+		offset = ifc_nand_ctrl->index++;
+		return ifc_in8(ifc_nand_ctrl->addr + offset);
+	}
+
+	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
+	return ERR_BYTE;
+}
+
+/*
+ * Read two bytes from the IFC hardware buffer
+ * read function for 16-bit buswith
+ */
+static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	uint16_t data;
+
+	/*
+	 * If there are still bytes in the IFC buffer, then use the
+	 * next byte.
+	 */
+	if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
+		data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
+		ifc_nand_ctrl->index += 2;
+		return (uint8_t) data;
+	}
+
+	dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
+	return ERR_BYTE;
+}
+
+/*
+ * Read from the IFC Controller Data Buffer
+ */
+static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	int avail;
+
+	if (len < 0) {
+		dev_err(priv->dev, "%s: len %d bytes", __func__, len);
+		return;
+	}
+
+	avail = min((unsigned int)len,
+			ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
+	memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
+	ifc_nand_ctrl->index += avail;
+
+	if (len > avail)
+		dev_err(priv->dev,
+			"%s: beyond end of buffer (%d requested, %d available)\n",
+			__func__, len, avail);
+}
+
+/*
+ * This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
+	u32 nand_fsr;
+	int status;
+
+	/* Use READ_STATUS command, but wait for the device to be ready */
+	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+		  (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
+		  &ifc->ifc_nand.nand_fir0);
+	ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
+		  &ifc->ifc_nand.nand_fcr0);
+	ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
+	set_addr(mtd, 0, 0, 0);
+	ifc_nand_ctrl->read_bytes = 1;
+
+	fsl_ifc_run_command(mtd);
+
+	nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
+	status = nand_fsr >> 24;
+	/*
+	 * The chip always seems to report that it is
+	 * write-protected, even when it is not.
+	 */
+	return status | NAND_STATUS_WP;
+}
+
+/*
+ * The controller does not check for bitflips in erased pages,
+ * therefore software must check instead.
+ */
+static int check_erased_page(struct nand_chip *chip, u8 *buf)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *ecc = chip->oob_poi;
+	const int ecc_size = chip->ecc.bytes;
+	const int pkt_size = chip->ecc.size;
+	int i, res, bitflips = 0;
+	struct mtd_oob_region oobregion = { };
+
+	mtd_ooblayout_ecc(mtd, 0, &oobregion);
+	ecc += oobregion.offset;
+
+	for (i = 0; i < chip->ecc.steps; ++i) {
+		res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
+						  NULL, 0,
+						  chip->ecc.strength);
+		if (res < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += res;
+
+		bitflips = max(res, bitflips);
+		buf += pkt_size;
+		ecc += ecc_size;
+	}
+
+	return bitflips;
+}
+
+static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     uint8_t *buf, int oob_required, int page)
+{
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
+
+	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+	if (oob_required)
+		fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
+		if (!oob_required)
+			fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+		return check_erased_page(chip, buf);
+	}
+
+	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
+		mtd->ecc_stats.failed++;
+
+	return nctrl->max_bitflips;
+}
+
+/* ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			       const uint8_t *buf, int oob_required, int page)
+{
+	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int fsl_ifc_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
+
+	dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
+							chip->numchips);
+	dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
+							chip->chipsize);
+	dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
+							chip->pagemask);
+	dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
+							chip->chip_delay);
+	dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
+							chip->badblockpos);
+	dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
+							chip->chip_shift);
+	dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
+							chip->page_shift);
+	dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
+							chip->phys_erase_shift);
+	dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
+							chip->ecc.mode);
+	dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
+							chip->ecc.steps);
+	dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
+							chip->ecc.bytes);
+	dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
+							chip->ecc.total);
+	dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
+							mtd->ooblayout);
+	dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
+	dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
+	dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
+							mtd->erasesize);
+	dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
+							mtd->writesize);
+	dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
+							mtd->oobsize);
+
+	return 0;
+}
+
+static const struct nand_controller_ops fsl_ifc_controller_ops = {
+	.attach_chip = fsl_ifc_attach_chip,
+};
+
+static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
+{
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
+	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
+	uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
+	uint32_t cs = priv->bank;
+
+	/* Save CSOR and CSOR_ext */
+	csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
+	csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
+
+	/* chage PageSize 8K and SpareSize 1K*/
+	csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
+	ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
+	ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
+
+	/* READID */
+	ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+		    (IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) |
+		    (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
+		    &ifc_runtime->ifc_nand.nand_fir0);
+	ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
+		    &ifc_runtime->ifc_nand.nand_fcr0);
+	ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
+
+	ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
+
+	/* Program ROW0/COL0 */
+	ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
+	ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
+
+	/* set the chip select for NAND Transaction */
+	ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
+		&ifc_runtime->ifc_nand.nand_csel);
+
+	/* start read seq */
+	ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
+		&ifc_runtime->ifc_nand.nandseq_strt);
+
+	/* wait for command complete flag or timeout */
+	wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
+			   msecs_to_jiffies(IFC_TIMEOUT_MSECS));
+
+	if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
+		pr_err("fsl-ifc: Failed to Initialise SRAM\n");
+
+	/* Restore CSOR and CSOR_ext */
+	ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
+	ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
+}
+
+static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
+{
+	struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+	struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
+	struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
+	struct nand_chip *chip = &priv->chip;
+	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
+	u32 csor;
+
+	/* Fill in fsl_ifc_mtd structure */
+	mtd->dev.parent = priv->dev;
+	nand_set_flash_node(chip, priv->dev->of_node);
+
+	/* fill in nand_chip structure */
+	/* set up function call table */
+	if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
+		& CSPR_PORT_SIZE_16)
+		chip->read_byte = fsl_ifc_read_byte16;
+	else
+		chip->read_byte = fsl_ifc_read_byte;
+
+	chip->write_buf = fsl_ifc_write_buf;
+	chip->read_buf = fsl_ifc_read_buf;
+	chip->select_chip = fsl_ifc_select_chip;
+	chip->cmdfunc = fsl_ifc_cmdfunc;
+	chip->waitfunc = fsl_ifc_wait;
+	chip->set_features = nand_get_set_features_notsupp;
+	chip->get_features = nand_get_set_features_notsupp;
+
+	chip->bbt_td = &bbt_main_descr;
+	chip->bbt_md = &bbt_mirror_descr;
+
+	ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
+
+	/* set up nand options */
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+	chip->options = NAND_NO_SUBPAGE_WRITE;
+
+	if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
+		& CSPR_PORT_SIZE_16) {
+		chip->read_byte = fsl_ifc_read_byte16;
+		chip->options |= NAND_BUSWIDTH_16;
+	} else {
+		chip->read_byte = fsl_ifc_read_byte;
+	}
+
+	chip->controller = &ifc_nand_ctrl->controller;
+	nand_set_controller_data(chip, priv);
+
+	chip->ecc.read_page = fsl_ifc_read_page;
+	chip->ecc.write_page = fsl_ifc_write_page;
+
+	csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
+
+	switch (csor & CSOR_NAND_PGS_MASK) {
+	case CSOR_NAND_PGS_512:
+		if (!(chip->options & NAND_BUSWIDTH_16)) {
+			/* Avoid conflict with bad block marker */
+			bbt_main_descr.offs = 0;
+			bbt_mirror_descr.offs = 0;
+		}
+
+		priv->bufnum_mask = 15;
+		break;
+
+	case CSOR_NAND_PGS_2K:
+		priv->bufnum_mask = 3;
+		break;
+
+	case CSOR_NAND_PGS_4K:
+		priv->bufnum_mask = 1;
+		break;
+
+	case CSOR_NAND_PGS_8K:
+		priv->bufnum_mask = 0;
+		break;
+
+	default:
+		dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
+		return -ENODEV;
+	}
+
+	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
+	if (csor & CSOR_NAND_ECC_DEC_EN) {
+		chip->ecc.mode = NAND_ECC_HW;
+		mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
+
+		/* Hardware generates ECC per 512 Bytes */
+		chip->ecc.size = 512;
+		if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
+			chip->ecc.bytes = 8;
+			chip->ecc.strength = 4;
+		} else {
+			chip->ecc.bytes = 16;
+			chip->ecc.strength = 8;
+		}
+	} else {
+		chip->ecc.mode = NAND_ECC_SOFT;
+		chip->ecc.algo = NAND_ECC_HAMMING;
+	}
+
+	if (ctrl->version >= FSL_IFC_VERSION_1_1_0)
+		fsl_ifc_sram_init(priv);
+
+	/*
+	 * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
+	 * versions which had 8KB. Hence bufnum mask needs to be updated.
+	 */
+	if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
+		priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
+
+	return 0;
+}
+
+static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
+{
+	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
+
+	kfree(mtd->name);
+
+	if (priv->vbase)
+		iounmap(priv->vbase);
+
+	ifc_nand_ctrl->chips[priv->bank] = NULL;
+
+	return 0;
+}
+
+static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
+		      phys_addr_t addr)
+{
+	u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
+
+	if (!(cspr & CSPR_V))
+		return 0;
+	if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
+		return 0;
+
+	return (cspr & CSPR_BA) == convert_ifc_address(addr);
+}
+
+static DEFINE_MUTEX(fsl_ifc_nand_mutex);
+
+static int fsl_ifc_nand_probe(struct platform_device *dev)
+{
+	struct fsl_ifc_runtime __iomem *ifc;
+	struct fsl_ifc_mtd *priv;
+	struct resource res;
+	static const char *part_probe_types[]
+		= { "cmdlinepart", "RedBoot", "ofpart", NULL };
+	int ret;
+	int bank;
+	struct device_node *node = dev->dev.of_node;
+	struct mtd_info *mtd;
+
+	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
+		return -ENODEV;
+	ifc = fsl_ifc_ctrl_dev->rregs;
+
+	/* get, allocate and map the memory resource */
+	ret = of_address_to_resource(node, 0, &res);
+	if (ret) {
+		dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
+		return ret;
+	}
+
+	/* find which chip select it is connected to */
+	for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
+		if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
+			break;
+	}
+
+	if (bank >= fsl_ifc_ctrl_dev->banks) {
+		dev_err(&dev->dev, "%s: address did not match any chip selects\n",
+			__func__);
+		return -ENODEV;
+	}
+
+	priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
+	if (!priv)
+		return -ENOMEM;
+
+	mutex_lock(&fsl_ifc_nand_mutex);
+	if (!fsl_ifc_ctrl_dev->nand) {
+		ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
+		if (!ifc_nand_ctrl) {
+			mutex_unlock(&fsl_ifc_nand_mutex);
+			return -ENOMEM;
+		}
+
+		ifc_nand_ctrl->read_bytes = 0;
+		ifc_nand_ctrl->index = 0;
+		ifc_nand_ctrl->addr = NULL;
+		fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
+
+		nand_controller_init(&ifc_nand_ctrl->controller);
+	} else {
+		ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
+	}
+	mutex_unlock(&fsl_ifc_nand_mutex);
+
+	ifc_nand_ctrl->chips[bank] = priv;
+	priv->bank = bank;
+	priv->ctrl = fsl_ifc_ctrl_dev;
+	priv->dev = &dev->dev;
+
+	priv->vbase = ioremap(res.start, resource_size(&res));
+	if (!priv->vbase) {
+		dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	dev_set_drvdata(priv->dev, priv);
+
+	ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
+		  IFC_NAND_EVTER_EN_FTOER_EN |
+		  IFC_NAND_EVTER_EN_WPER_EN,
+		  &ifc->ifc_nand.nand_evter_en);
+
+	/* enable NAND Machine Interrupts */
+	ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
+		  IFC_NAND_EVTER_INTR_FTOERIR_EN |
+		  IFC_NAND_EVTER_INTR_WPERIR_EN,
+		  &ifc->ifc_nand.nand_evter_intr_en);
+
+	mtd = nand_to_mtd(&priv->chip);
+	mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
+	if (!mtd->name) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	ret = fsl_ifc_chip_init(priv);
+	if (ret)
+		goto err;
+
+	priv->chip.controller->ops = &fsl_ifc_controller_ops;
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		goto err;
+
+	/* First look for RedBoot table or partitions on the command
+	 * line, these take precedence over device tree information */
+	ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
+	if (ret)
+		goto cleanup_nand;
+
+	dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
+		 (unsigned long long)res.start, priv->bank);
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(&priv->chip);
+err:
+	fsl_ifc_chip_remove(priv);
+
+	return ret;
+}
+
+static int fsl_ifc_nand_remove(struct platform_device *dev)
+{
+	struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
+	struct mtd_info *mtd = nand_to_mtd(&priv->chip);
+
+	nand_release(mtd);
+	fsl_ifc_chip_remove(priv);
+
+	mutex_lock(&fsl_ifc_nand_mutex);
+	ifc_nand_ctrl->counter--;
+	if (!ifc_nand_ctrl->counter) {
+		fsl_ifc_ctrl_dev->nand = NULL;
+		kfree(ifc_nand_ctrl);
+	}
+	mutex_unlock(&fsl_ifc_nand_mutex);
+
+	return 0;
+}
+
+static const struct of_device_id fsl_ifc_nand_match[] = {
+	{
+		.compatible = "fsl,ifc-nand",
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
+
+static struct platform_driver fsl_ifc_nand_driver = {
+	.driver = {
+		.name	= "fsl,ifc-nand",
+		.of_match_table = fsl_ifc_nand_match,
+	},
+	.probe       = fsl_ifc_nand_probe,
+	.remove      = fsl_ifc_nand_remove,
+};
+
+module_platform_driver(fsl_ifc_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Freescale");
+MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
diff --git a/drivers/mtd/nand/raw/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c
new file mode 100644
index 0000000..a88e2cf
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsl_upm.c
@@ -0,0 +1,363 @@
+/*
+ * Freescale UPM NAND driver.
+ *
+ * Copyright © 2007-2008  MontaVista Software, Inc.
+ *
+ * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/mtd.h>
+#include <linux/of_address.h>
+#include <linux/of_platform.h>
+#include <linux/of_gpio.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <asm/fsl_lbc.h>
+
+#define FSL_UPM_WAIT_RUN_PATTERN  0x1
+#define FSL_UPM_WAIT_WRITE_BYTE   0x2
+#define FSL_UPM_WAIT_WRITE_BUFFER 0x4
+
+struct fsl_upm_nand {
+	struct device *dev;
+	struct nand_chip chip;
+	int last_ctrl;
+	struct mtd_partition *parts;
+	struct fsl_upm upm;
+	uint8_t upm_addr_offset;
+	uint8_t upm_cmd_offset;
+	void __iomem *io_base;
+	int rnb_gpio[NAND_MAX_CHIPS];
+	uint32_t mchip_offsets[NAND_MAX_CHIPS];
+	uint32_t mchip_count;
+	uint32_t mchip_number;
+	int chip_delay;
+	uint32_t wait_flags;
+};
+
+static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo)
+{
+	return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand,
+			    chip);
+}
+
+static int fun_chip_ready(struct mtd_info *mtd)
+{
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+
+	if (gpio_get_value(fun->rnb_gpio[fun->mchip_number]))
+		return 1;
+
+	dev_vdbg(fun->dev, "busy\n");
+	return 0;
+}
+
+static void fun_wait_rnb(struct fsl_upm_nand *fun)
+{
+	if (fun->rnb_gpio[fun->mchip_number] >= 0) {
+		struct mtd_info *mtd = nand_to_mtd(&fun->chip);
+		int cnt = 1000000;
+
+		while (--cnt && !fun_chip_ready(mtd))
+			cpu_relax();
+		if (!cnt)
+			dev_err(fun->dev, "tired waiting for RNB\n");
+	} else {
+		ndelay(100);
+	}
+}
+
+static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	u32 mar;
+
+	if (!(ctrl & fun->last_ctrl)) {
+		fsl_upm_end_pattern(&fun->upm);
+
+		if (cmd == NAND_CMD_NONE)
+			return;
+
+		fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE);
+	}
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		if (ctrl & NAND_ALE)
+			fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset);
+		else if (ctrl & NAND_CLE)
+			fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset);
+	}
+
+	mar = (cmd << (32 - fun->upm.width)) |
+		fun->mchip_offsets[fun->mchip_number];
+	fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar);
+
+	if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN)
+		fun_wait_rnb(fun);
+}
+
+static void fun_select_chip(struct mtd_info *mtd, int mchip_nr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+
+	if (mchip_nr == -1) {
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+	} else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) {
+		fun->mchip_number = mchip_nr;
+		chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr];
+		chip->IO_ADDR_W = chip->IO_ADDR_R;
+	} else {
+		BUG();
+	}
+}
+
+static uint8_t fun_read_byte(struct mtd_info *mtd)
+{
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+
+	return in_8(fun->chip.IO_ADDR_R);
+}
+
+static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = in_8(fun->chip.IO_ADDR_R);
+}
+
+static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd);
+	int i;
+
+	for (i = 0; i < len; i++) {
+		out_8(fun->chip.IO_ADDR_W, buf[i]);
+		if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE)
+			fun_wait_rnb(fun);
+	}
+	if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER)
+		fun_wait_rnb(fun);
+}
+
+static int fun_chip_init(struct fsl_upm_nand *fun,
+			 const struct device_node *upm_np,
+			 const struct resource *io_res)
+{
+	struct mtd_info *mtd = nand_to_mtd(&fun->chip);
+	int ret;
+	struct device_node *flash_np;
+
+	fun->chip.IO_ADDR_R = fun->io_base;
+	fun->chip.IO_ADDR_W = fun->io_base;
+	fun->chip.cmd_ctrl = fun_cmd_ctrl;
+	fun->chip.chip_delay = fun->chip_delay;
+	fun->chip.read_byte = fun_read_byte;
+	fun->chip.read_buf = fun_read_buf;
+	fun->chip.write_buf = fun_write_buf;
+	fun->chip.ecc.mode = NAND_ECC_SOFT;
+	fun->chip.ecc.algo = NAND_ECC_HAMMING;
+	if (fun->mchip_count > 1)
+		fun->chip.select_chip = fun_select_chip;
+
+	if (fun->rnb_gpio[0] >= 0)
+		fun->chip.dev_ready = fun_chip_ready;
+
+	mtd->dev.parent = fun->dev;
+
+	flash_np = of_get_next_child(upm_np, NULL);
+	if (!flash_np)
+		return -ENODEV;
+
+	nand_set_flash_node(&fun->chip, flash_np);
+	mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start,
+			      flash_np->name);
+	if (!mtd->name) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	ret = nand_scan(mtd, fun->mchip_count);
+	if (ret)
+		goto err;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+err:
+	of_node_put(flash_np);
+	if (ret)
+		kfree(mtd->name);
+	return ret;
+}
+
+static int fun_probe(struct platform_device *ofdev)
+{
+	struct fsl_upm_nand *fun;
+	struct resource io_res;
+	const __be32 *prop;
+	int rnb_gpio;
+	int ret;
+	int size;
+	int i;
+
+	fun = kzalloc(sizeof(*fun), GFP_KERNEL);
+	if (!fun)
+		return -ENOMEM;
+
+	ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res);
+	if (ret) {
+		dev_err(&ofdev->dev, "can't get IO base\n");
+		goto err1;
+	}
+
+	ret = fsl_upm_find(io_res.start, &fun->upm);
+	if (ret) {
+		dev_err(&ofdev->dev, "can't find UPM\n");
+		goto err1;
+	}
+
+	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset",
+			       &size);
+	if (!prop || size != sizeof(uint32_t)) {
+		dev_err(&ofdev->dev, "can't get UPM address offset\n");
+		ret = -EINVAL;
+		goto err1;
+	}
+	fun->upm_addr_offset = *prop;
+
+	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size);
+	if (!prop || size != sizeof(uint32_t)) {
+		dev_err(&ofdev->dev, "can't get UPM command offset\n");
+		ret = -EINVAL;
+		goto err1;
+	}
+	fun->upm_cmd_offset = *prop;
+
+	prop = of_get_property(ofdev->dev.of_node,
+			       "fsl,upm-addr-line-cs-offsets", &size);
+	if (prop && (size / sizeof(uint32_t)) > 0) {
+		fun->mchip_count = size / sizeof(uint32_t);
+		if (fun->mchip_count >= NAND_MAX_CHIPS) {
+			dev_err(&ofdev->dev, "too much multiple chips\n");
+			goto err1;
+		}
+		for (i = 0; i < fun->mchip_count; i++)
+			fun->mchip_offsets[i] = be32_to_cpu(prop[i]);
+	} else {
+		fun->mchip_count = 1;
+	}
+
+	for (i = 0; i < fun->mchip_count; i++) {
+		fun->rnb_gpio[i] = -1;
+		rnb_gpio = of_get_gpio(ofdev->dev.of_node, i);
+		if (rnb_gpio >= 0) {
+			ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev));
+			if (ret) {
+				dev_err(&ofdev->dev,
+					"can't request RNB gpio #%d\n", i);
+				goto err2;
+			}
+			gpio_direction_input(rnb_gpio);
+			fun->rnb_gpio[i] = rnb_gpio;
+		} else if (rnb_gpio == -EINVAL) {
+			dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i);
+			goto err2;
+		}
+	}
+
+	prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL);
+	if (prop)
+		fun->chip_delay = be32_to_cpup(prop);
+	else
+		fun->chip_delay = 50;
+
+	prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size);
+	if (prop && size == sizeof(uint32_t))
+		fun->wait_flags = be32_to_cpup(prop);
+	else
+		fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN |
+				  FSL_UPM_WAIT_WRITE_BYTE;
+
+	fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start,
+					    resource_size(&io_res));
+	if (!fun->io_base) {
+		ret = -ENOMEM;
+		goto err2;
+	}
+
+	fun->dev = &ofdev->dev;
+	fun->last_ctrl = NAND_CLE;
+
+	ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res);
+	if (ret)
+		goto err2;
+
+	dev_set_drvdata(&ofdev->dev, fun);
+
+	return 0;
+err2:
+	for (i = 0; i < fun->mchip_count; i++) {
+		if (fun->rnb_gpio[i] < 0)
+			break;
+		gpio_free(fun->rnb_gpio[i]);
+	}
+err1:
+	kfree(fun);
+
+	return ret;
+}
+
+static int fun_remove(struct platform_device *ofdev)
+{
+	struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev);
+	struct mtd_info *mtd = nand_to_mtd(&fun->chip);
+	int i;
+
+	nand_release(mtd);
+	kfree(mtd->name);
+
+	for (i = 0; i < fun->mchip_count; i++) {
+		if (fun->rnb_gpio[i] < 0)
+			break;
+		gpio_free(fun->rnb_gpio[i]);
+	}
+
+	kfree(fun);
+
+	return 0;
+}
+
+static const struct of_device_id of_fun_match[] = {
+	{ .compatible = "fsl,upm-nand" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, of_fun_match);
+
+static struct platform_driver of_fun_driver = {
+	.driver = {
+		.name = "fsl,upm-nand",
+		.of_match_table = of_fun_match,
+	},
+	.probe		= fun_probe,
+	.remove		= fun_remove,
+};
+
+module_platform_driver(of_fun_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>");
+MODULE_DESCRIPTION("Driver for NAND chips working through Freescale "
+		   "LocalBus User-Programmable Machine");
diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
new file mode 100644
index 0000000..f418236
--- /dev/null
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -0,0 +1,1219 @@
+/*
+ * ST Microelectronics
+ * Flexible Static Memory Controller (FSMC)
+ * Driver for NAND portions
+ *
+ * Copyright © 2010 ST Microelectronics
+ * Vipin Kumar <vipin.kumar@st.com>
+ * Ashish Priyadarshi
+ *
+ * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
+ *  Copyright © 2007 STMicroelectronics Pvt. Ltd.
+ *  Copyright © 2009 Alessandro Rubini
+ *
+ * This file is licensed under the terms of the GNU General Public
+ * License version 2. This program is licensed "as is" without any
+ * warranty of any kind, whether express or implied.
+ */
+
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-direction.h>
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/resource.h>
+#include <linux/sched.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/amba/bus.h>
+#include <mtd/mtd-abi.h>
+
+/* fsmc controller registers for NOR flash */
+#define CTRL			0x0
+	/* ctrl register definitions */
+	#define BANK_ENABLE		(1 << 0)
+	#define MUXED			(1 << 1)
+	#define NOR_DEV			(2 << 2)
+	#define WIDTH_8			(0 << 4)
+	#define WIDTH_16		(1 << 4)
+	#define RSTPWRDWN		(1 << 6)
+	#define WPROT			(1 << 7)
+	#define WRT_ENABLE		(1 << 12)
+	#define WAIT_ENB		(1 << 13)
+
+#define CTRL_TIM		0x4
+	/* ctrl_tim register definitions */
+
+#define FSMC_NOR_BANK_SZ	0x8
+#define FSMC_NOR_REG_SIZE	0x40
+
+#define FSMC_NOR_REG(base, bank, reg)		(base + \
+						FSMC_NOR_BANK_SZ * (bank) + \
+						reg)
+
+/* fsmc controller registers for NAND flash */
+#define FSMC_PC			0x00
+	/* pc register definitions */
+	#define FSMC_RESET		(1 << 0)
+	#define FSMC_WAITON		(1 << 1)
+	#define FSMC_ENABLE		(1 << 2)
+	#define FSMC_DEVTYPE_NAND	(1 << 3)
+	#define FSMC_DEVWID_8		(0 << 4)
+	#define FSMC_DEVWID_16		(1 << 4)
+	#define FSMC_ECCEN		(1 << 6)
+	#define FSMC_ECCPLEN_512	(0 << 7)
+	#define FSMC_ECCPLEN_256	(1 << 7)
+	#define FSMC_TCLR_1		(1)
+	#define FSMC_TCLR_SHIFT		(9)
+	#define FSMC_TCLR_MASK		(0xF)
+	#define FSMC_TAR_1		(1)
+	#define FSMC_TAR_SHIFT		(13)
+	#define FSMC_TAR_MASK		(0xF)
+#define STS			0x04
+	/* sts register definitions */
+	#define FSMC_CODE_RDY		(1 << 15)
+#define COMM			0x08
+	/* comm register definitions */
+	#define FSMC_TSET_0		0
+	#define FSMC_TSET_SHIFT		0
+	#define FSMC_TSET_MASK		0xFF
+	#define FSMC_TWAIT_6		6
+	#define FSMC_TWAIT_SHIFT	8
+	#define FSMC_TWAIT_MASK		0xFF
+	#define FSMC_THOLD_4		4
+	#define FSMC_THOLD_SHIFT	16
+	#define FSMC_THOLD_MASK		0xFF
+	#define FSMC_THIZ_1		1
+	#define FSMC_THIZ_SHIFT		24
+	#define FSMC_THIZ_MASK		0xFF
+#define ATTRIB			0x0C
+#define IOATA			0x10
+#define ECC1			0x14
+#define ECC2			0x18
+#define ECC3			0x1C
+#define FSMC_NAND_BANK_SZ	0x20
+
+#define FSMC_BUSY_WAIT_TIMEOUT	(1 * HZ)
+
+struct fsmc_nand_timings {
+	uint8_t tclr;
+	uint8_t tar;
+	uint8_t thiz;
+	uint8_t thold;
+	uint8_t twait;
+	uint8_t tset;
+};
+
+enum access_mode {
+	USE_DMA_ACCESS = 1,
+	USE_WORD_ACCESS,
+};
+
+/**
+ * struct fsmc_nand_data - structure for FSMC NAND device state
+ *
+ * @pid:		Part ID on the AMBA PrimeCell format
+ * @mtd:		MTD info for a NAND flash.
+ * @nand:		Chip related info for a NAND flash.
+ * @partitions:		Partition info for a NAND Flash.
+ * @nr_partitions:	Total number of partition of a NAND flash.
+ *
+ * @bank:		Bank number for probed device.
+ * @clk:		Clock structure for FSMC.
+ *
+ * @read_dma_chan:	DMA channel for read access
+ * @write_dma_chan:	DMA channel for write access to NAND
+ * @dma_access_complete: Completion structure
+ *
+ * @data_pa:		NAND Physical port for Data.
+ * @data_va:		NAND port for Data.
+ * @cmd_va:		NAND port for Command.
+ * @addr_va:		NAND port for Address.
+ * @regs_va:		Registers base address for a given bank.
+ */
+struct fsmc_nand_data {
+	u32			pid;
+	struct nand_chip	nand;
+
+	unsigned int		bank;
+	struct device		*dev;
+	enum access_mode	mode;
+	struct clk		*clk;
+
+	/* DMA related objects */
+	struct dma_chan		*read_dma_chan;
+	struct dma_chan		*write_dma_chan;
+	struct completion	dma_access_complete;
+
+	struct fsmc_nand_timings *dev_timings;
+
+	dma_addr_t		data_pa;
+	void __iomem		*data_va;
+	void __iomem		*cmd_va;
+	void __iomem		*addr_va;
+	void __iomem		*regs_va;
+};
+
+static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 2;
+	oobregion->length = 3;
+
+	return 0;
+}
+
+static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
+				    struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 8;
+
+	if (section < chip->ecc.steps - 1)
+		oobregion->length = 8;
+	else
+		oobregion->length = mtd->oobsize - oobregion->offset;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
+	.ecc = fsmc_ecc1_ooblayout_ecc,
+	.free = fsmc_ecc1_ooblayout_free,
+};
+
+/*
+ * ECC placement definitions in oobfree type format.
+ * There are 13 bytes of ecc for every 512 byte block and it has to be read
+ * consecutively and immediately after the 512 byte data block for hardware to
+ * generate the error bit offsets in 512 byte data.
+ */
+static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->length = chip->ecc.bytes;
+
+	if (!section && mtd->writesize <= 512)
+		oobregion->offset = 0;
+	else
+		oobregion->offset = (section * 16) + 2;
+
+	return 0;
+}
+
+static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
+				    struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 15;
+
+	if (section < chip->ecc.steps - 1)
+		oobregion->length = 3;
+	else
+		oobregion->length = mtd->oobsize - oobregion->offset;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
+	.ecc = fsmc_ecc4_ooblayout_ecc,
+	.free = fsmc_ecc4_ooblayout_free,
+};
+
+static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
+}
+
+/*
+ * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
+ *
+ * This routine initializes timing parameters related to NAND memory access in
+ * FSMC registers
+ */
+static void fsmc_nand_setup(struct fsmc_nand_data *host,
+			    struct fsmc_nand_timings *tims)
+{
+	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
+	uint32_t tclr, tar, thiz, thold, twait, tset;
+
+	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
+	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
+	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
+	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
+	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
+	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
+
+	if (host->nand.options & NAND_BUSWIDTH_16)
+		writel_relaxed(value | FSMC_DEVWID_16,
+			       host->regs_va + FSMC_PC);
+	else
+		writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + FSMC_PC);
+
+	writel_relaxed(readl(host->regs_va + FSMC_PC) | tclr | tar,
+		       host->regs_va + FSMC_PC);
+	writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
+	writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
+}
+
+static int fsmc_calc_timings(struct fsmc_nand_data *host,
+			     const struct nand_sdr_timings *sdrt,
+			     struct fsmc_nand_timings *tims)
+{
+	unsigned long hclk = clk_get_rate(host->clk);
+	unsigned long hclkn = NSEC_PER_SEC / hclk;
+	uint32_t thiz, thold, twait, tset;
+
+	if (sdrt->tRC_min < 30000)
+		return -EOPNOTSUPP;
+
+	tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
+	if (tims->tar > FSMC_TAR_MASK)
+		tims->tar = FSMC_TAR_MASK;
+	tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
+	if (tims->tclr > FSMC_TCLR_MASK)
+		tims->tclr = FSMC_TCLR_MASK;
+
+	thiz = sdrt->tCS_min - sdrt->tWP_min;
+	tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
+
+	thold = sdrt->tDH_min;
+	if (thold < sdrt->tCH_min)
+		thold = sdrt->tCH_min;
+	if (thold < sdrt->tCLH_min)
+		thold = sdrt->tCLH_min;
+	if (thold < sdrt->tWH_min)
+		thold = sdrt->tWH_min;
+	if (thold < sdrt->tALH_min)
+		thold = sdrt->tALH_min;
+	if (thold < sdrt->tREH_min)
+		thold = sdrt->tREH_min;
+	tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
+	if (tims->thold == 0)
+		tims->thold = 1;
+	else if (tims->thold > FSMC_THOLD_MASK)
+		tims->thold = FSMC_THOLD_MASK;
+
+	twait = max(sdrt->tRP_min, sdrt->tWP_min);
+	tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
+	if (tims->twait == 0)
+		tims->twait = 1;
+	else if (tims->twait > FSMC_TWAIT_MASK)
+		tims->twait = FSMC_TWAIT_MASK;
+
+	tset = max(sdrt->tCS_min - sdrt->tWP_min,
+		   sdrt->tCEA_max - sdrt->tREA_max);
+	tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
+	if (tims->tset == 0)
+		tims->tset = 1;
+	else if (tims->tset > FSMC_TSET_MASK)
+		tims->tset = FSMC_TSET_MASK;
+
+	return 0;
+}
+
+static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline,
+				     const struct nand_data_interface *conf)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct fsmc_nand_data *host = nand_get_controller_data(nand);
+	struct fsmc_nand_timings tims;
+	const struct nand_sdr_timings *sdrt;
+	int ret;
+
+	sdrt = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdrt))
+		return PTR_ERR(sdrt);
+
+	ret = fsmc_calc_timings(host, sdrt, &tims);
+	if (ret)
+		return ret;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	fsmc_nand_setup(host, &tims);
+
+	return 0;
+}
+
+/*
+ * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
+ */
+static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+
+	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
+		       host->regs_va + FSMC_PC);
+	writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
+		       host->regs_va + FSMC_PC);
+	writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
+		       host->regs_va + FSMC_PC);
+}
+
+/*
+ * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
+ * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
+ * max of 8-bits)
+ */
+static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
+				uint8_t *ecc)
+{
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	uint32_t ecc_tmp;
+	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
+
+	do {
+		if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
+			break;
+		else
+			cond_resched();
+	} while (!time_after_eq(jiffies, deadline));
+
+	if (time_after_eq(jiffies, deadline)) {
+		dev_err(host->dev, "calculate ecc timed out\n");
+		return -ETIMEDOUT;
+	}
+
+	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
+	ecc[0] = (uint8_t) (ecc_tmp >> 0);
+	ecc[1] = (uint8_t) (ecc_tmp >> 8);
+	ecc[2] = (uint8_t) (ecc_tmp >> 16);
+	ecc[3] = (uint8_t) (ecc_tmp >> 24);
+
+	ecc_tmp = readl_relaxed(host->regs_va + ECC2);
+	ecc[4] = (uint8_t) (ecc_tmp >> 0);
+	ecc[5] = (uint8_t) (ecc_tmp >> 8);
+	ecc[6] = (uint8_t) (ecc_tmp >> 16);
+	ecc[7] = (uint8_t) (ecc_tmp >> 24);
+
+	ecc_tmp = readl_relaxed(host->regs_va + ECC3);
+	ecc[8] = (uint8_t) (ecc_tmp >> 0);
+	ecc[9] = (uint8_t) (ecc_tmp >> 8);
+	ecc[10] = (uint8_t) (ecc_tmp >> 16);
+	ecc[11] = (uint8_t) (ecc_tmp >> 24);
+
+	ecc_tmp = readl_relaxed(host->regs_va + STS);
+	ecc[12] = (uint8_t) (ecc_tmp >> 16);
+
+	return 0;
+}
+
+/*
+ * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
+ * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
+ * max of 1-bit)
+ */
+static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
+				uint8_t *ecc)
+{
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	uint32_t ecc_tmp;
+
+	ecc_tmp = readl_relaxed(host->regs_va + ECC1);
+	ecc[0] = (uint8_t) (ecc_tmp >> 0);
+	ecc[1] = (uint8_t) (ecc_tmp >> 8);
+	ecc[2] = (uint8_t) (ecc_tmp >> 16);
+
+	return 0;
+}
+
+/* Count the number of 0's in buff upto a max of max_bits */
+static int count_written_bits(uint8_t *buff, int size, int max_bits)
+{
+	int k, written_bits = 0;
+
+	for (k = 0; k < size; k++) {
+		written_bits += hweight8(~buff[k]);
+		if (written_bits > max_bits)
+			break;
+	}
+
+	return written_bits;
+}
+
+static void dma_complete(void *param)
+{
+	struct fsmc_nand_data *host = param;
+
+	complete(&host->dma_access_complete);
+}
+
+static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
+		enum dma_data_direction direction)
+{
+	struct dma_chan *chan;
+	struct dma_device *dma_dev;
+	struct dma_async_tx_descriptor *tx;
+	dma_addr_t dma_dst, dma_src, dma_addr;
+	dma_cookie_t cookie;
+	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
+	int ret;
+	unsigned long time_left;
+
+	if (direction == DMA_TO_DEVICE)
+		chan = host->write_dma_chan;
+	else if (direction == DMA_FROM_DEVICE)
+		chan = host->read_dma_chan;
+	else
+		return -EINVAL;
+
+	dma_dev = chan->device;
+	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
+
+	if (direction == DMA_TO_DEVICE) {
+		dma_src = dma_addr;
+		dma_dst = host->data_pa;
+	} else {
+		dma_src = host->data_pa;
+		dma_dst = dma_addr;
+	}
+
+	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
+			len, flags);
+	if (!tx) {
+		dev_err(host->dev, "device_prep_dma_memcpy error\n");
+		ret = -EIO;
+		goto unmap_dma;
+	}
+
+	tx->callback = dma_complete;
+	tx->callback_param = host;
+	cookie = tx->tx_submit(tx);
+
+	ret = dma_submit_error(cookie);
+	if (ret) {
+		dev_err(host->dev, "dma_submit_error %d\n", cookie);
+		goto unmap_dma;
+	}
+
+	dma_async_issue_pending(chan);
+
+	time_left =
+	wait_for_completion_timeout(&host->dma_access_complete,
+				msecs_to_jiffies(3000));
+	if (time_left == 0) {
+		dmaengine_terminate_all(chan);
+		dev_err(host->dev, "wait_for_completion_timeout\n");
+		ret = -ETIMEDOUT;
+		goto unmap_dma;
+	}
+
+	ret = 0;
+
+unmap_dma:
+	dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
+
+	return ret;
+}
+
+/*
+ * fsmc_write_buf - write buffer to chip
+ * @mtd:	MTD device structure
+ * @buf:	data buffer
+ * @len:	number of bytes to write
+ */
+static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
+	int i;
+
+	if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
+			IS_ALIGNED(len, sizeof(uint32_t))) {
+		uint32_t *p = (uint32_t *)buf;
+		len = len >> 2;
+		for (i = 0; i < len; i++)
+			writel_relaxed(p[i], host->data_va);
+	} else {
+		for (i = 0; i < len; i++)
+			writeb_relaxed(buf[i], host->data_va);
+	}
+}
+
+/*
+ * fsmc_read_buf - read chip data into buffer
+ * @mtd:	MTD device structure
+ * @buf:	buffer to store date
+ * @len:	number of bytes to read
+ */
+static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
+	int i;
+
+	if (IS_ALIGNED((uintptr_t)buf, sizeof(uint32_t)) &&
+			IS_ALIGNED(len, sizeof(uint32_t))) {
+		uint32_t *p = (uint32_t *)buf;
+		len = len >> 2;
+		for (i = 0; i < len; i++)
+			p[i] = readl_relaxed(host->data_va);
+	} else {
+		for (i = 0; i < len; i++)
+			buf[i] = readb_relaxed(host->data_va);
+	}
+}
+
+/*
+ * fsmc_read_buf_dma - read chip data into buffer
+ * @mtd:	MTD device structure
+ * @buf:	buffer to store date
+ * @len:	number of bytes to read
+ */
+static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
+
+	dma_xfer(host, buf, len, DMA_FROM_DEVICE);
+}
+
+/*
+ * fsmc_write_buf_dma - write buffer to chip
+ * @mtd:	MTD device structure
+ * @buf:	data buffer
+ * @len:	number of bytes to write
+ */
+static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
+		int len)
+{
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+
+	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
+}
+
+/* fsmc_select_chip - assert or deassert nCE */
+static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	u32 pc;
+
+	/* Support only one CS */
+	if (chipnr > 0)
+		return;
+
+	pc = readl(host->regs_va + FSMC_PC);
+	if (chipnr < 0)
+		writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + FSMC_PC);
+	else
+		writel_relaxed(pc | FSMC_ENABLE, host->regs_va + FSMC_PC);
+
+	/* nCE line must be asserted before starting any operation */
+	mb();
+}
+
+/*
+ * fsmc_exec_op - hook called by the core to execute NAND operations
+ *
+ * This controller is simple enough and thus does not need to use the parser
+ * provided by the core, instead, handle every situation here.
+ */
+static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
+			bool check_only)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	const struct nand_op_instr *instr = NULL;
+	int ret = 0;
+	unsigned int op_id;
+	int i;
+
+	pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
+	for (op_id = 0; op_id < op->ninstrs; op_id++) {
+		instr = &op->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			pr_debug("  ->CMD      [0x%02x]\n",
+				 instr->ctx.cmd.opcode);
+
+			writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			pr_debug("  ->ADDR     [%d cyc]",
+				 instr->ctx.addr.naddrs);
+
+			for (i = 0; i < instr->ctx.addr.naddrs; i++)
+				writeb_relaxed(instr->ctx.addr.addrs[i],
+					       host->addr_va);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			pr_debug("  ->DATA_IN  [%d B%s]\n", instr->ctx.data.len,
+				 instr->ctx.data.force_8bit ?
+				 ", force 8-bit" : "");
+
+			if (host->mode == USE_DMA_ACCESS)
+				fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in,
+						  instr->ctx.data.len);
+			else
+				fsmc_read_buf(mtd, instr->ctx.data.buf.in,
+					      instr->ctx.data.len);
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			pr_debug("  ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
+				 instr->ctx.data.force_8bit ?
+				 ", force 8-bit" : "");
+
+			if (host->mode == USE_DMA_ACCESS)
+				fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out,
+						   instr->ctx.data.len);
+			else
+				fsmc_write_buf(mtd, instr->ctx.data.buf.out,
+					       instr->ctx.data.len);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			pr_debug("  ->WAITRDY  [max %d ms]\n",
+				 instr->ctx.waitrdy.timeout_ms);
+
+			ret = nand_soft_waitrdy(chip,
+						instr->ctx.waitrdy.timeout_ms);
+			break;
+		}
+	}
+
+	return ret;
+}
+
+/*
+ * fsmc_read_page_hwecc
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @buf:	buffer to store read data
+ * @oob_required:	caller expects OOB data read to chip->oob_poi
+ * @page:	page number to read
+ *
+ * This routine is needed for fsmc version 8 as reading from NAND chip has to be
+ * performed in a strict sequence as follows:
+ * data(512 byte) -> ecc(13 byte)
+ * After this read, fsmc hardware generates and reports error data bits(up to a
+ * max of 8 bits)
+ */
+static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				 uint8_t *buf, int oob_required, int page)
+{
+	int i, j, s, stat, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	uint8_t *ecc_code = chip->ecc.code_buf;
+	int off, len, group = 0;
+	/*
+	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
+	 * end up reading 14 bytes (7 words) from oob. The local array is
+	 * to maintain word alignment
+	 */
+	uint16_t ecc_oob[7];
+	uint8_t *oob = (uint8_t *)&ecc_oob[0];
+	unsigned int max_bitflips = 0;
+
+	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
+		nand_read_page_op(chip, page, s * eccsize, NULL, 0);
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+		nand_read_data_op(chip, p, eccsize, false);
+
+		for (j = 0; j < eccbytes;) {
+			struct mtd_oob_region oobregion;
+			int ret;
+
+			ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
+			if (ret)
+				return ret;
+
+			off = oobregion.offset;
+			len = oobregion.length;
+
+			/*
+			 * length is intentionally kept a higher multiple of 2
+			 * to read at least 13 bytes even in case of 16 bit NAND
+			 * devices
+			 */
+			if (chip->options & NAND_BUSWIDTH_16)
+				len = roundup(len, 2);
+
+			nand_read_oob_op(chip, page, off, oob + j, len);
+			j += len;
+		}
+
+		memcpy(&ecc_code[i], oob, chip->ecc.bytes);
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	return max_bitflips;
+}
+
+/*
+ * fsmc_bch8_correct_data
+ * @mtd:	mtd info structure
+ * @dat:	buffer of read data
+ * @read_ecc:	ecc read from device spare area
+ * @calc_ecc:	ecc calculated from read data
+ *
+ * calc_ecc is a 104 bit information containing maximum of 8 error
+ * offset informations of 13 bits each in 512 bytes of read data.
+ */
+static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
+			     uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+	uint32_t err_idx[8];
+	uint32_t num_err, i;
+	uint32_t ecc1, ecc2, ecc3, ecc4;
+
+	num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
+
+	/* no bit flipping */
+	if (likely(num_err == 0))
+		return 0;
+
+	/* too many errors */
+	if (unlikely(num_err > 8)) {
+		/*
+		 * This is a temporary erase check. A newly erased page read
+		 * would result in an ecc error because the oob data is also
+		 * erased to FF and the calculated ecc for an FF data is not
+		 * FF..FF.
+		 * This is a workaround to skip performing correction in case
+		 * data is FF..FF
+		 *
+		 * Logic:
+		 * For every page, each bit written as 0 is counted until these
+		 * number of bits are greater than 8 (the maximum correction
+		 * capability of FSMC for each 512 + 13 bytes)
+		 */
+
+		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
+		int bits_data = count_written_bits(dat, chip->ecc.size, 8);
+
+		if ((bits_ecc + bits_data) <= 8) {
+			if (bits_data)
+				memset(dat, 0xff, chip->ecc.size);
+			return bits_data;
+		}
+
+		return -EBADMSG;
+	}
+
+	/*
+	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
+	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
+	 *
+	 * calc_ecc is a 104 bit information containing maximum of 8 error
+	 * offset informations of 13 bits each. calc_ecc is copied into a
+	 * uint64_t array and error offset indexes are populated in err_idx
+	 * array
+	 */
+	ecc1 = readl_relaxed(host->regs_va + ECC1);
+	ecc2 = readl_relaxed(host->regs_va + ECC2);
+	ecc3 = readl_relaxed(host->regs_va + ECC3);
+	ecc4 = readl_relaxed(host->regs_va + STS);
+
+	err_idx[0] = (ecc1 >> 0) & 0x1FFF;
+	err_idx[1] = (ecc1 >> 13) & 0x1FFF;
+	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
+	err_idx[3] = (ecc2 >> 7) & 0x1FFF;
+	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
+	err_idx[5] = (ecc3 >> 1) & 0x1FFF;
+	err_idx[6] = (ecc3 >> 14) & 0x1FFF;
+	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
+
+	i = 0;
+	while (num_err--) {
+		change_bit(0, (unsigned long *)&err_idx[i]);
+		change_bit(1, (unsigned long *)&err_idx[i]);
+
+		if (err_idx[i] < chip->ecc.size * 8) {
+			change_bit(err_idx[i], (unsigned long *)dat);
+			i++;
+		}
+	}
+	return i;
+}
+
+static bool filter(struct dma_chan *chan, void *slave)
+{
+	chan->private = slave;
+	return true;
+}
+
+static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
+				     struct fsmc_nand_data *host,
+				     struct nand_chip *nand)
+{
+	struct device_node *np = pdev->dev.of_node;
+	u32 val;
+	int ret;
+
+	nand->options = 0;
+
+	if (!of_property_read_u32(np, "bank-width", &val)) {
+		if (val == 2) {
+			nand->options |= NAND_BUSWIDTH_16;
+		} else if (val != 1) {
+			dev_err(&pdev->dev, "invalid bank-width %u\n", val);
+			return -EINVAL;
+		}
+	}
+
+	if (of_get_property(np, "nand-skip-bbtscan", NULL))
+		nand->options |= NAND_SKIP_BBTSCAN;
+
+	host->dev_timings = devm_kzalloc(&pdev->dev,
+				sizeof(*host->dev_timings), GFP_KERNEL);
+	if (!host->dev_timings)
+		return -ENOMEM;
+	ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
+						sizeof(*host->dev_timings));
+	if (ret)
+		host->dev_timings = NULL;
+
+	/* Set default NAND bank to 0 */
+	host->bank = 0;
+	if (!of_property_read_u32(np, "bank", &val)) {
+		if (val > 3) {
+			dev_err(&pdev->dev, "invalid bank %u\n", val);
+			return -EINVAL;
+		}
+		host->bank = val;
+	}
+	return 0;
+}
+
+static int fsmc_nand_attach_chip(struct nand_chip *nand)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
+
+	if (AMBA_REV_BITS(host->pid) >= 8) {
+		switch (mtd->oobsize) {
+		case 16:
+		case 64:
+		case 128:
+		case 224:
+		case 256:
+			break;
+		default:
+			dev_warn(host->dev,
+				 "No oob scheme defined for oobsize %d\n",
+				 mtd->oobsize);
+			return -EINVAL;
+		}
+
+		mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
+
+		return 0;
+	}
+
+	switch (nand->ecc.mode) {
+	case NAND_ECC_HW:
+		dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
+		nand->ecc.calculate = fsmc_read_hwecc_ecc1;
+		nand->ecc.correct = nand_correct_data;
+		nand->ecc.bytes = 3;
+		nand->ecc.strength = 1;
+		break;
+
+	case NAND_ECC_SOFT:
+		if (nand->ecc.algo == NAND_ECC_BCH) {
+			dev_info(host->dev,
+				 "Using 4-bit SW BCH ECC scheme\n");
+			break;
+		}
+
+	case NAND_ECC_ON_DIE:
+		break;
+
+	default:
+		dev_err(host->dev, "Unsupported ECC mode!\n");
+		return -ENOTSUPP;
+	}
+
+	/*
+	 * Don't set layout for BCH4 SW ECC. This will be
+	 * generated later in nand_bch_init() later.
+	 */
+	if (nand->ecc.mode == NAND_ECC_HW) {
+		switch (mtd->oobsize) {
+		case 16:
+		case 64:
+		case 128:
+			mtd_set_ooblayout(mtd,
+					  &fsmc_ecc1_ooblayout_ops);
+			break;
+		default:
+			dev_warn(host->dev,
+				 "No oob scheme defined for oobsize %d\n",
+				 mtd->oobsize);
+			return -EINVAL;
+		}
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops fsmc_nand_controller_ops = {
+	.attach_chip = fsmc_nand_attach_chip,
+};
+
+/*
+ * fsmc_nand_probe - Probe function
+ * @pdev:       platform device structure
+ */
+static int __init fsmc_nand_probe(struct platform_device *pdev)
+{
+	struct fsmc_nand_data *host;
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	struct resource *res;
+	void __iomem *base;
+	dma_cap_mask_t mask;
+	int ret = 0;
+	u32 pid;
+	int i;
+
+	/* Allocate memory for the device structure (and zero it) */
+	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
+	if (!host)
+		return -ENOMEM;
+
+	nand = &host->nand;
+
+	ret = fsmc_nand_probe_config_dt(pdev, host, nand);
+	if (ret)
+		return ret;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
+	host->data_va = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(host->data_va))
+		return PTR_ERR(host->data_va);
+
+	host->data_pa = (dma_addr_t)res->start;
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
+	host->addr_va = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(host->addr_va))
+		return PTR_ERR(host->addr_va);
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
+	host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(host->cmd_va))
+		return PTR_ERR(host->cmd_va);
+
+	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
+	base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(base))
+		return PTR_ERR(base);
+
+	host->regs_va = base + FSMC_NOR_REG_SIZE +
+		(host->bank * FSMC_NAND_BANK_SZ);
+
+	host->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(host->clk)) {
+		dev_err(&pdev->dev, "failed to fetch block clock\n");
+		return PTR_ERR(host->clk);
+	}
+
+	ret = clk_prepare_enable(host->clk);
+	if (ret)
+		return ret;
+
+	/*
+	 * This device ID is actually a common AMBA ID as used on the
+	 * AMBA PrimeCell bus. However it is not a PrimeCell.
+	 */
+	for (pid = 0, i = 0; i < 4; i++)
+		pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
+	host->pid = pid;
+	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
+		 "revision %02x, config %02x\n",
+		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
+		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
+
+	host->dev = &pdev->dev;
+
+	if (host->mode == USE_DMA_ACCESS)
+		init_completion(&host->dma_access_complete);
+
+	/* Link all private pointers */
+	mtd = nand_to_mtd(&host->nand);
+	nand_set_controller_data(nand, host);
+	nand_set_flash_node(nand, pdev->dev.of_node);
+
+	mtd->dev.parent = &pdev->dev;
+	nand->exec_op = fsmc_exec_op;
+	nand->select_chip = fsmc_select_chip;
+	nand->chip_delay = 30;
+
+	/*
+	 * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
+	 * can overwrite this value if the DT provides a different value.
+	 */
+	nand->ecc.mode = NAND_ECC_HW;
+	nand->ecc.hwctl = fsmc_enable_hwecc;
+	nand->ecc.size = 512;
+	nand->badblockbits = 7;
+
+	if (host->mode == USE_DMA_ACCESS) {
+		dma_cap_zero(mask);
+		dma_cap_set(DMA_MEMCPY, mask);
+		host->read_dma_chan = dma_request_channel(mask, filter, NULL);
+		if (!host->read_dma_chan) {
+			dev_err(&pdev->dev, "Unable to get read dma channel\n");
+			goto disable_clk;
+		}
+		host->write_dma_chan = dma_request_channel(mask, filter, NULL);
+		if (!host->write_dma_chan) {
+			dev_err(&pdev->dev, "Unable to get write dma channel\n");
+			goto release_dma_read_chan;
+		}
+	}
+
+	if (host->dev_timings)
+		fsmc_nand_setup(host, host->dev_timings);
+	else
+		nand->setup_data_interface = fsmc_setup_data_interface;
+
+	if (AMBA_REV_BITS(host->pid) >= 8) {
+		nand->ecc.read_page = fsmc_read_page_hwecc;
+		nand->ecc.calculate = fsmc_read_hwecc_ecc4;
+		nand->ecc.correct = fsmc_bch8_correct_data;
+		nand->ecc.bytes = 13;
+		nand->ecc.strength = 8;
+	}
+
+	/*
+	 * Scan to find existence of the device
+	 */
+	nand->dummy_controller.ops = &fsmc_nand_controller_ops;
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		goto release_dma_write_chan;
+
+	mtd->name = "nand";
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		goto cleanup_nand;
+
+	platform_set_drvdata(pdev, host);
+	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(nand);
+release_dma_write_chan:
+	if (host->mode == USE_DMA_ACCESS)
+		dma_release_channel(host->write_dma_chan);
+release_dma_read_chan:
+	if (host->mode == USE_DMA_ACCESS)
+		dma_release_channel(host->read_dma_chan);
+disable_clk:
+	clk_disable_unprepare(host->clk);
+
+	return ret;
+}
+
+/*
+ * Clean up routine
+ */
+static int fsmc_nand_remove(struct platform_device *pdev)
+{
+	struct fsmc_nand_data *host = platform_get_drvdata(pdev);
+
+	if (host) {
+		nand_release(nand_to_mtd(&host->nand));
+
+		if (host->mode == USE_DMA_ACCESS) {
+			dma_release_channel(host->write_dma_chan);
+			dma_release_channel(host->read_dma_chan);
+		}
+		clk_disable_unprepare(host->clk);
+	}
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int fsmc_nand_suspend(struct device *dev)
+{
+	struct fsmc_nand_data *host = dev_get_drvdata(dev);
+	if (host)
+		clk_disable_unprepare(host->clk);
+	return 0;
+}
+
+static int fsmc_nand_resume(struct device *dev)
+{
+	struct fsmc_nand_data *host = dev_get_drvdata(dev);
+	if (host) {
+		clk_prepare_enable(host->clk);
+		if (host->dev_timings)
+			fsmc_nand_setup(host, host->dev_timings);
+	}
+	return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
+
+static const struct of_device_id fsmc_nand_id_table[] = {
+	{ .compatible = "st,spear600-fsmc-nand" },
+	{ .compatible = "stericsson,fsmc-nand" },
+	{}
+};
+MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
+
+static struct platform_driver fsmc_nand_driver = {
+	.remove = fsmc_nand_remove,
+	.driver = {
+		.name = "fsmc-nand",
+		.of_match_table = fsmc_nand_id_table,
+		.pm = &fsmc_nand_pm_ops,
+	},
+};
+
+module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
+MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
diff --git a/drivers/mtd/nand/raw/gpio.c b/drivers/mtd/nand/raw/gpio.c
new file mode 100644
index 0000000..2780af2
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpio.c
@@ -0,0 +1,327 @@
+/*
+ * Updated, and converted to generic GPIO based driver by Russell King.
+ *
+ * Written by Ben Dooks <ben@simtec.co.uk>
+ *   Based on 2.4 version by Mark Whittaker
+ *
+ * © 2004 Simtec Electronics
+ *
+ * Device driver for NAND flash that uses a memory mapped interface to
+ * read/write the NAND commands and data, and GPIO pins for control signals
+ * (the DT binding refers to this as "GPIO assisted NAND flash")
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/gpio/consumer.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/nand-gpio.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+
+struct gpiomtd {
+	void __iomem		*io_sync;
+	struct nand_chip	nand_chip;
+	struct gpio_nand_platdata plat;
+	struct gpio_desc *nce; /* Optional chip enable */
+	struct gpio_desc *cle;
+	struct gpio_desc *ale;
+	struct gpio_desc *rdy;
+	struct gpio_desc *nwp; /* Optional write protection */
+};
+
+static inline struct gpiomtd *gpio_nand_getpriv(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct gpiomtd, nand_chip);
+}
+
+
+#ifdef CONFIG_ARM
+/* gpio_nand_dosync()
+ *
+ * Make sure the GPIO state changes occur in-order with writes to NAND
+ * memory region.
+ * Needed on PXA due to bus-reordering within the SoC itself (see section on
+ * I/O ordering in PXA manual (section 2.3, p35)
+ */
+static void gpio_nand_dosync(struct gpiomtd *gpiomtd)
+{
+	unsigned long tmp;
+
+	if (gpiomtd->io_sync) {
+		/*
+		 * Linux memory barriers don't cater for what's required here.
+		 * What's required is what's here - a read from a separate
+		 * region with a dependency on that read.
+		 */
+		tmp = readl(gpiomtd->io_sync);
+		asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp));
+	}
+}
+#else
+static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {}
+#endif
+
+static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
+
+	gpio_nand_dosync(gpiomtd);
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		if (gpiomtd->nce)
+			gpiod_set_value(gpiomtd->nce, !(ctrl & NAND_NCE));
+		gpiod_set_value(gpiomtd->cle, !!(ctrl & NAND_CLE));
+		gpiod_set_value(gpiomtd->ale, !!(ctrl & NAND_ALE));
+		gpio_nand_dosync(gpiomtd);
+	}
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	writeb(cmd, gpiomtd->nand_chip.IO_ADDR_W);
+	gpio_nand_dosync(gpiomtd);
+}
+
+static int gpio_nand_devready(struct mtd_info *mtd)
+{
+	struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd);
+
+	return gpiod_get_value(gpiomtd->rdy);
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id gpio_nand_id_table[] = {
+	{ .compatible = "gpio-control-nand" },
+	{}
+};
+MODULE_DEVICE_TABLE(of, gpio_nand_id_table);
+
+static int gpio_nand_get_config_of(const struct device *dev,
+				   struct gpio_nand_platdata *plat)
+{
+	u32 val;
+
+	if (!dev->of_node)
+		return -ENODEV;
+
+	if (!of_property_read_u32(dev->of_node, "bank-width", &val)) {
+		if (val == 2) {
+			plat->options |= NAND_BUSWIDTH_16;
+		} else if (val != 1) {
+			dev_err(dev, "invalid bank-width %u\n", val);
+			return -EINVAL;
+		}
+	}
+
+	if (!of_property_read_u32(dev->of_node, "chip-delay", &val))
+		plat->chip_delay = val;
+
+	return 0;
+}
+
+static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev)
+{
+	struct resource *r;
+	u64 addr;
+
+	if (of_property_read_u64(pdev->dev.of_node,
+				       "gpio-control-nand,io-sync-reg", &addr))
+		return NULL;
+
+	r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL);
+	if (!r)
+		return NULL;
+
+	r->start = addr;
+	r->end = r->start + 0x3;
+	r->flags = IORESOURCE_MEM;
+
+	return r;
+}
+#else /* CONFIG_OF */
+static inline int gpio_nand_get_config_of(const struct device *dev,
+					  struct gpio_nand_platdata *plat)
+{
+	return -ENOSYS;
+}
+
+static inline struct resource *
+gpio_nand_get_io_sync_of(struct platform_device *pdev)
+{
+	return NULL;
+}
+#endif /* CONFIG_OF */
+
+static inline int gpio_nand_get_config(const struct device *dev,
+				       struct gpio_nand_platdata *plat)
+{
+	int ret = gpio_nand_get_config_of(dev, plat);
+
+	if (!ret)
+		return ret;
+
+	if (dev_get_platdata(dev)) {
+		memcpy(plat, dev_get_platdata(dev), sizeof(*plat));
+		return 0;
+	}
+
+	return -EINVAL;
+}
+
+static inline struct resource *
+gpio_nand_get_io_sync(struct platform_device *pdev)
+{
+	struct resource *r = gpio_nand_get_io_sync_of(pdev);
+
+	if (r)
+		return r;
+
+	return platform_get_resource(pdev, IORESOURCE_MEM, 1);
+}
+
+static int gpio_nand_remove(struct platform_device *pdev)
+{
+	struct gpiomtd *gpiomtd = platform_get_drvdata(pdev);
+
+	nand_release(nand_to_mtd(&gpiomtd->nand_chip));
+
+	/* Enable write protection and disable the chip */
+	if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
+		gpiod_set_value(gpiomtd->nwp, 0);
+	if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
+		gpiod_set_value(gpiomtd->nce, 0);
+
+	return 0;
+}
+
+static int gpio_nand_probe(struct platform_device *pdev)
+{
+	struct gpiomtd *gpiomtd;
+	struct nand_chip *chip;
+	struct mtd_info *mtd;
+	struct resource *res;
+	struct device *dev = &pdev->dev;
+	int ret = 0;
+
+	if (!dev->of_node && !dev_get_platdata(dev))
+		return -EINVAL;
+
+	gpiomtd = devm_kzalloc(dev, sizeof(*gpiomtd), GFP_KERNEL);
+	if (!gpiomtd)
+		return -ENOMEM;
+
+	chip = &gpiomtd->nand_chip;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	chip->IO_ADDR_R = devm_ioremap_resource(dev, res);
+	if (IS_ERR(chip->IO_ADDR_R))
+		return PTR_ERR(chip->IO_ADDR_R);
+
+	res = gpio_nand_get_io_sync(pdev);
+	if (res) {
+		gpiomtd->io_sync = devm_ioremap_resource(dev, res);
+		if (IS_ERR(gpiomtd->io_sync))
+			return PTR_ERR(gpiomtd->io_sync);
+	}
+
+	ret = gpio_nand_get_config(dev, &gpiomtd->plat);
+	if (ret)
+		return ret;
+
+	/* Just enable the chip */
+	gpiomtd->nce = devm_gpiod_get_optional(dev, "nce", GPIOD_OUT_HIGH);
+	if (IS_ERR(gpiomtd->nce))
+		return PTR_ERR(gpiomtd->nce);
+
+	/* We disable write protection once we know probe() will succeed */
+	gpiomtd->nwp = devm_gpiod_get_optional(dev, "nwp", GPIOD_OUT_LOW);
+	if (IS_ERR(gpiomtd->nwp)) {
+		ret = PTR_ERR(gpiomtd->nwp);
+		goto out_ce;
+	}
+
+	gpiomtd->ale = devm_gpiod_get(dev, "ale", GPIOD_OUT_LOW);
+	if (IS_ERR(gpiomtd->ale)) {
+		ret = PTR_ERR(gpiomtd->ale);
+		goto out_ce;
+	}
+
+	gpiomtd->cle = devm_gpiod_get(dev, "cle", GPIOD_OUT_LOW);
+	if (IS_ERR(gpiomtd->cle)) {
+		ret = PTR_ERR(gpiomtd->cle);
+		goto out_ce;
+	}
+
+	gpiomtd->rdy = devm_gpiod_get_optional(dev, "rdy", GPIOD_IN);
+	if (IS_ERR(gpiomtd->rdy)) {
+		ret = PTR_ERR(gpiomtd->rdy);
+		goto out_ce;
+	}
+	/* Using RDY pin */
+	if (gpiomtd->rdy)
+		chip->dev_ready = gpio_nand_devready;
+
+	nand_set_flash_node(chip, pdev->dev.of_node);
+	chip->IO_ADDR_W		= chip->IO_ADDR_R;
+	chip->ecc.mode		= NAND_ECC_SOFT;
+	chip->ecc.algo		= NAND_ECC_HAMMING;
+	chip->options		= gpiomtd->plat.options;
+	chip->chip_delay	= gpiomtd->plat.chip_delay;
+	chip->cmd_ctrl		= gpio_nand_cmd_ctrl;
+
+	mtd			= nand_to_mtd(chip);
+	mtd->dev.parent		= dev;
+
+	platform_set_drvdata(pdev, gpiomtd);
+
+	/* Disable write protection, if wired up */
+	if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
+		gpiod_direction_output(gpiomtd->nwp, 1);
+
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		goto err_wp;
+
+	if (gpiomtd->plat.adjust_parts)
+		gpiomtd->plat.adjust_parts(&gpiomtd->plat, mtd->size);
+
+	ret = mtd_device_register(mtd, gpiomtd->plat.parts,
+				  gpiomtd->plat.num_parts);
+	if (!ret)
+		return 0;
+
+err_wp:
+	if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp))
+		gpiod_set_value(gpiomtd->nwp, 0);
+out_ce:
+	if (gpiomtd->nce && !IS_ERR(gpiomtd->nce))
+		gpiod_set_value(gpiomtd->nce, 0);
+
+	return ret;
+}
+
+static struct platform_driver gpio_nand_driver = {
+	.probe		= gpio_nand_probe,
+	.remove		= gpio_nand_remove,
+	.driver		= {
+		.name	= "gpio-nand",
+		.of_match_table = of_match_ptr(gpio_nand_id_table),
+	},
+};
+
+module_platform_driver(gpio_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
+MODULE_DESCRIPTION("GPIO NAND Driver");
diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile
new file mode 100644
index 0000000..3a46248
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile
@@ -0,0 +1,3 @@
+obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o
+gpmi_nand-objs += gpmi-nand.o
+gpmi_nand-objs += gpmi-lib.o
diff --git a/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
new file mode 100644
index 0000000..05bb91f
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h
@@ -0,0 +1,128 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright 2008-2011 Freescale Semiconductor, Inc.
+ * Copyright 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#ifndef __GPMI_NAND_BCH_REGS_H
+#define __GPMI_NAND_BCH_REGS_H
+
+#define HW_BCH_CTRL				0x00000000
+#define HW_BCH_CTRL_SET				0x00000004
+#define HW_BCH_CTRL_CLR				0x00000008
+#define HW_BCH_CTRL_TOG				0x0000000c
+
+#define BM_BCH_CTRL_COMPLETE_IRQ_EN		(1 << 8)
+#define BM_BCH_CTRL_COMPLETE_IRQ		(1 << 0)
+
+#define HW_BCH_STATUS0				0x00000010
+#define HW_BCH_MODE				0x00000020
+#define HW_BCH_ENCODEPTR			0x00000030
+#define HW_BCH_DATAPTR				0x00000040
+#define HW_BCH_METAPTR				0x00000050
+#define HW_BCH_LAYOUTSELECT			0x00000070
+
+#define HW_BCH_FLASH0LAYOUT0			0x00000080
+
+#define BP_BCH_FLASH0LAYOUT0_NBLOCKS		24
+#define BM_BCH_FLASH0LAYOUT0_NBLOCKS	(0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS)
+#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v)		\
+	(((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS)
+
+#define BP_BCH_FLASH0LAYOUT0_META_SIZE		16
+#define BM_BCH_FLASH0LAYOUT0_META_SIZE	(0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE)
+#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v)	\
+	(((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\
+					 & BM_BCH_FLASH0LAYOUT0_META_SIZE)
+
+#define BP_BCH_FLASH0LAYOUT0_ECC0		12
+#define BM_BCH_FLASH0LAYOUT0_ECC0	(0xf << BP_BCH_FLASH0LAYOUT0_ECC0)
+#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0		11
+#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0	(0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0)
+#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x)				\
+	(GPMI_IS_MX6(x)					\
+		? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0)	\
+			& MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0)	\
+		: (((v) << BP_BCH_FLASH0LAYOUT0_ECC0)		\
+			& BM_BCH_FLASH0LAYOUT0_ECC0)		\
+	)
+
+#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14	10
+#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14			\
+				(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14)
+#define BF_BCH_FLASH0LAYOUT0_GF(v, x)				\
+	((GPMI_IS_MX6(x) && ((v) == 14))			\
+		? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14)	\
+			& MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14)	\
+		: 0						\
+	)
+
+#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE		0
+#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE		\
+			(0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)
+#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE	\
+			(0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE)
+#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x)				\
+	(GPMI_IS_MX6(x)						\
+		? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE)	\
+		: ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE)		\
+	)
+
+#define HW_BCH_FLASH0LAYOUT1			0x00000090
+
+#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE		16
+#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE		\
+			(0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE)
+#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v)	\
+	(((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \
+					 & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE)
+
+#define BP_BCH_FLASH0LAYOUT1_ECCN		12
+#define BM_BCH_FLASH0LAYOUT1_ECCN	(0xf << BP_BCH_FLASH0LAYOUT1_ECCN)
+#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN		11
+#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN	(0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN)
+#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x)				\
+	(GPMI_IS_MX6(x)					\
+		? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN)	\
+			& MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN)	\
+		: (((v) << BP_BCH_FLASH0LAYOUT1_ECCN)		\
+			& BM_BCH_FLASH0LAYOUT1_ECCN)		\
+	)
+
+#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14	10
+#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14			\
+				(0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14)
+#define BF_BCH_FLASH0LAYOUT1_GF(v, x)				\
+	((GPMI_IS_MX6(x) && ((v) == 14))			\
+		? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14)	\
+			& MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14)	\
+		: 0						\
+	)
+
+#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE		0
+#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE		\
+			(0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE)
+#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE	\
+			(0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE)
+#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x)				\
+	(GPMI_IS_MX6(x)						\
+		? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE)	\
+		: ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE)		\
+	)
+
+#define HW_BCH_VERSION				0x00000160
+#endif
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
new file mode 100644
index 0000000..88ea220
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
@@ -0,0 +1,938 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ */
+#include <linux/delay.h>
+#include <linux/clk.h>
+#include <linux/slab.h>
+
+#include "gpmi-nand.h"
+#include "gpmi-regs.h"
+#include "bch-regs.h"
+
+/* Converts time to clock cycles */
+#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
+
+#define MXS_SET_ADDR		0x4
+#define MXS_CLR_ADDR		0x8
+/*
+ * Clear the bit and poll it cleared.  This is usually called with
+ * a reset address and mask being either SFTRST(bit 31) or CLKGATE
+ * (bit 30).
+ */
+static int clear_poll_bit(void __iomem *addr, u32 mask)
+{
+	int timeout = 0x400;
+
+	/* clear the bit */
+	writel(mask, addr + MXS_CLR_ADDR);
+
+	/*
+	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
+	 * recommends to wait 1us.
+	 */
+	udelay(1);
+
+	/* poll the bit becoming clear */
+	while ((readl(addr) & mask) && --timeout)
+		/* nothing */;
+
+	return !timeout;
+}
+
+#define MODULE_CLKGATE		(1 << 30)
+#define MODULE_SFTRST		(1 << 31)
+/*
+ * The current mxs_reset_block() will do two things:
+ *  [1] enable the module.
+ *  [2] reset the module.
+ *
+ * In most of the cases, it's ok.
+ * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
+ * If you try to soft reset the BCH block, it becomes unusable until
+ * the next hard reset. This case occurs in the NAND boot mode. When the board
+ * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
+ * So If the driver tries to reset the BCH again, the BCH will not work anymore.
+ * You will see a DMA timeout in this case. The bug has been fixed
+ * in the following chips, such as MX28.
+ *
+ * To avoid this bug, just add a new parameter `just_enable` for
+ * the mxs_reset_block(), and rewrite it here.
+ */
+static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
+{
+	int ret;
+	int timeout = 0x400;
+
+	/* clear and poll SFTRST */
+	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+	if (unlikely(ret))
+		goto error;
+
+	/* clear CLKGATE */
+	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
+
+	if (!just_enable) {
+		/* set SFTRST to reset the block */
+		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
+		udelay(1);
+
+		/* poll CLKGATE becoming set */
+		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
+			/* nothing */;
+		if (unlikely(!timeout))
+			goto error;
+	}
+
+	/* clear and poll SFTRST */
+	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+	if (unlikely(ret))
+		goto error;
+
+	/* clear and poll CLKGATE */
+	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
+	if (unlikely(ret))
+		goto error;
+
+	return 0;
+
+error:
+	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
+	return -ETIMEDOUT;
+}
+
+static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
+{
+	struct clk *clk;
+	int ret;
+	int i;
+
+	for (i = 0; i < GPMI_CLK_MAX; i++) {
+		clk = this->resources.clock[i];
+		if (!clk)
+			break;
+
+		if (v) {
+			ret = clk_prepare_enable(clk);
+			if (ret)
+				goto err_clk;
+		} else {
+			clk_disable_unprepare(clk);
+		}
+	}
+	return 0;
+
+err_clk:
+	for (; i > 0; i--)
+		clk_disable_unprepare(this->resources.clock[i - 1]);
+	return ret;
+}
+
+int gpmi_enable_clk(struct gpmi_nand_data *this)
+{
+	return __gpmi_enable_clk(this, true);
+}
+
+int gpmi_disable_clk(struct gpmi_nand_data *this)
+{
+	return __gpmi_enable_clk(this, false);
+}
+
+int gpmi_init(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
+	int ret;
+
+	ret = gpmi_enable_clk(this);
+	if (ret)
+		return ret;
+	ret = gpmi_reset_block(r->gpmi_regs, false);
+	if (ret)
+		goto err_out;
+
+	/*
+	 * Reset BCH here, too. We got failures otherwise :(
+	 * See later BCH reset for explanation of MX23 handling
+	 */
+	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
+	if (ret)
+		goto err_out;
+
+	/* Choose NAND mode. */
+	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
+
+	/* Set the IRQ polarity. */
+	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
+				r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/* Disable Write-Protection. */
+	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/* Select BCH ECC. */
+	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/*
+	 * Decouple the chip select from dma channel. We use dma0 for all
+	 * the chips.
+	 */
+	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	gpmi_disable_clk(this);
+	return 0;
+err_out:
+	gpmi_disable_clk(this);
+	return ret;
+}
+
+/* This function is very useful. It is called only when the bug occur. */
+void gpmi_dump_info(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
+	struct bch_geometry *geo = &this->bch_geometry;
+	u32 reg;
+	int i;
+
+	dev_err(this->dev, "Show GPMI registers :\n");
+	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
+		reg = readl(r->gpmi_regs + i * 0x10);
+		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+	}
+
+	/* start to print out the BCH info */
+	dev_err(this->dev, "Show BCH registers :\n");
+	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
+		reg = readl(r->bch_regs + i * 0x10);
+		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+	}
+	dev_err(this->dev, "BCH Geometry :\n"
+		"GF length              : %u\n"
+		"ECC Strength           : %u\n"
+		"Page Size in Bytes     : %u\n"
+		"Metadata Size in Bytes : %u\n"
+		"ECC Chunk Size in Bytes: %u\n"
+		"ECC Chunk Count        : %u\n"
+		"Payload Size in Bytes  : %u\n"
+		"Auxiliary Size in Bytes: %u\n"
+		"Auxiliary Status Offset: %u\n"
+		"Block Mark Byte Offset : %u\n"
+		"Block Mark Bit Offset  : %u\n",
+		geo->gf_len,
+		geo->ecc_strength,
+		geo->page_size,
+		geo->metadata_size,
+		geo->ecc_chunk_size,
+		geo->ecc_chunk_count,
+		geo->payload_size,
+		geo->auxiliary_size,
+		geo->auxiliary_status_offset,
+		geo->block_mark_byte_offset,
+		geo->block_mark_bit_offset);
+}
+
+/* Configures the geometry for BCH.  */
+int bch_set_geometry(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
+	struct bch_geometry *bch_geo = &this->bch_geometry;
+	unsigned int block_count;
+	unsigned int block_size;
+	unsigned int metadata_size;
+	unsigned int ecc_strength;
+	unsigned int page_size;
+	unsigned int gf_len;
+	int ret;
+
+	ret = common_nfc_set_geometry(this);
+	if (ret)
+		return ret;
+
+	block_count   = bch_geo->ecc_chunk_count - 1;
+	block_size    = bch_geo->ecc_chunk_size;
+	metadata_size = bch_geo->metadata_size;
+	ecc_strength  = bch_geo->ecc_strength >> 1;
+	page_size     = bch_geo->page_size;
+	gf_len        = bch_geo->gf_len;
+
+	ret = gpmi_enable_clk(this);
+	if (ret)
+		return ret;
+
+	/*
+	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
+	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
+	* On the other hand, the MX28 needs the reset, because one case has been
+	* seen where the BCH produced ECC errors constantly after 10000
+	* consecutive reboots. The latter case has not been seen on the MX23
+	* yet, still we don't know if it could happen there as well.
+	*/
+	ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
+	if (ret)
+		goto err_out;
+
+	/* Configure layout 0. */
+	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
+			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
+			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
+			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
+			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
+			r->bch_regs + HW_BCH_FLASH0LAYOUT0);
+
+	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
+			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
+			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
+			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
+			r->bch_regs + HW_BCH_FLASH0LAYOUT1);
+
+	/* Set *all* chip selects to use layout 0. */
+	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
+
+	/* Enable interrupts. */
+	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+				r->bch_regs + HW_BCH_CTRL_SET);
+
+	gpmi_disable_clk(this);
+	return 0;
+err_out:
+	gpmi_disable_clk(this);
+	return ret;
+}
+
+/*
+ * <1> Firstly, we should know what's the GPMI-clock means.
+ *     The GPMI-clock is the internal clock in the gpmi nand controller.
+ *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
+ *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
+ *
+ * <2> Secondly, we should know what's the frequency on the nand chip pins.
+ *     The frequency on the nand chip pins is derived from the GPMI-clock.
+ *     We can get it from the following equation:
+ *
+ *         F = G / (DS + DH)
+ *
+ *         F  : the frequency on the nand chip pins.
+ *         G  : the GPMI clock, such as 100MHz.
+ *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
+ *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
+ *
+ * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
+ *     the nand EDO(extended Data Out) timing could be applied.
+ *     The GPMI implements a feedback read strobe to sample the read data.
+ *     The feedback read strobe can be delayed to support the nand EDO timing
+ *     where the read strobe may deasserts before the read data is valid, and
+ *     read data is valid for some time after read strobe.
+ *
+ *     The following figure illustrates some aspects of a NAND Flash read:
+ *
+ *                   |<---tREA---->|
+ *                   |             |
+ *                   |         |   |
+ *                   |<--tRP-->|   |
+ *                   |         |   |
+ *                  __          ___|__________________________________
+ *     RDN            \________/   |
+ *                                 |
+ *                                 /---------\
+ *     Read Data    --------------<           >---------
+ *                                 \---------/
+ *                                |     |
+ *                                |<-D->|
+ *     FeedbackRDN  ________             ____________
+ *                          \___________/
+ *
+ *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
+ *
+ *
+ * <4> Now, we begin to describe how to compute the right RDN_DELAY.
+ *
+ *  4.1) From the aspect of the nand chip pins:
+ *        Delay = (tREA + C - tRP)               {1}
+ *
+ *        tREA : the maximum read access time.
+ *        C    : a constant to adjust the delay. default is 4000ps.
+ *        tRP  : the read pulse width, which is exactly:
+ *                   tRP = (GPMI-clock-period) * DATA_SETUP
+ *
+ *  4.2) From the aspect of the GPMI nand controller:
+ *         Delay = RDN_DELAY * 0.125 * RP        {2}
+ *
+ *         RP   : the DLL reference period.
+ *            if (GPMI-clock-period > DLL_THRETHOLD)
+ *                   RP = GPMI-clock-period / 2;
+ *            else
+ *                   RP = GPMI-clock-period;
+ *
+ *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
+ *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
+ *            is 16000ps, but in mx6q, we use 12000ps.
+ *
+ *  4.3) since {1} equals {2}, we get:
+ *
+ *                     (tREA + 4000 - tRP) * 8
+ *         RDN_DELAY = -----------------------     {3}
+ *                           RP
+ */
+static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
+				     const struct nand_sdr_timings *sdr)
+{
+	struct gpmi_nfc_hardware_timing *hw = &this->hw;
+	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
+	unsigned int period_ps, reference_period_ps;
+	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
+	unsigned int tRP_ps;
+	bool use_half_period;
+	int sample_delay_ps, sample_delay_factor;
+	u16 busy_timeout_cycles;
+	u8 wrn_dly_sel;
+
+	if (sdr->tRC_min >= 30000) {
+		/* ONFI non-EDO modes [0-3] */
+		hw->clk_rate = 22000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
+	} else if (sdr->tRC_min >= 25000) {
+		/* ONFI EDO mode 4 */
+		hw->clk_rate = 80000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+	} else {
+		/* ONFI EDO mode 5 */
+		hw->clk_rate = 100000000;
+		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+	}
+
+	/* SDR core timings are given in picoseconds */
+	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
+
+	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
+	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
+	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
+	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
+
+	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
+		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
+		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
+	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
+
+	/*
+	 * Derive NFC ideal delay from {3}:
+	 *
+	 *                     (tREA + 4000 - tRP) * 8
+	 *         RDN_DELAY = -----------------------
+	 *                                RP
+	 */
+	if (period_ps > dll_threshold_ps) {
+		use_half_period = true;
+		reference_period_ps = period_ps / 2;
+	} else {
+		use_half_period = false;
+		reference_period_ps = period_ps;
+	}
+
+	tRP_ps = data_setup_cycles * period_ps;
+	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
+	if (sample_delay_ps > 0)
+		sample_delay_factor = sample_delay_ps / reference_period_ps;
+	else
+		sample_delay_factor = 0;
+
+	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
+	if (sample_delay_factor)
+		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
+			      BM_GPMI_CTRL1_DLL_ENABLE |
+			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
+}
+
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
+{
+	struct gpmi_nfc_hardware_timing *hw = &this->hw;
+	struct resources *r = &this->resources;
+	void __iomem *gpmi_regs = r->gpmi_regs;
+	unsigned int dll_wait_time_us;
+
+	clk_set_rate(r->clock[0], hw->clk_rate);
+
+	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
+	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
+
+	/*
+	 * Clear several CTRL1 fields, DLL must be disabled when setting
+	 * RDN_DELAY or HALF_PERIOD.
+	 */
+	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
+	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
+
+	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
+	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
+	if (!dll_wait_time_us)
+		dll_wait_time_us = 1;
+
+	/* Wait for the DLL to settle. */
+	udelay(dll_wait_time_us);
+}
+
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+			      const struct nand_data_interface *conf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	const struct nand_sdr_timings *sdr;
+
+	/* Retrieve required NAND timings */
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	/* Only MX6 GPMI controller can reach EDO timings */
+	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
+		return -ENOTSUPP;
+
+	/* Stop here if this call was just a check */
+	if (chipnr < 0)
+		return 0;
+
+	/* Do the actual derivation of the controller timings */
+	gpmi_nfc_compute_timings(this, sdr);
+
+	this->hw.must_apply_timings = true;
+
+	return 0;
+}
+
+/* Clears a BCH interrupt. */
+void gpmi_clear_bch(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
+	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
+}
+
+/* Returns the Ready/Busy status of the given chip. */
+int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
+{
+	struct resources *r = &this->resources;
+	uint32_t mask = 0;
+	uint32_t reg = 0;
+
+	if (GPMI_IS_MX23(this)) {
+		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
+		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
+	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
+		/*
+		 * In the imx6, all the ready/busy pins are bound
+		 * together. So we only need to check chip 0.
+		 */
+		if (GPMI_IS_MX6(this))
+			chip = 0;
+
+		/* MX28 shares the same R/B register as MX6Q. */
+		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
+		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
+	} else
+		dev_err(this->dev, "unknown arch.\n");
+	return reg & mask;
+}
+
+int gpmi_send_command(struct gpmi_nand_data *this)
+{
+	struct dma_chan *channel = get_dma_chan(this);
+	struct dma_async_tx_descriptor *desc;
+	struct scatterlist *sgl;
+	int chip = this->current_chip;
+	int ret;
+	u32 pio[3];
+
+	/* [1] send out the PIO words */
+	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
+		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
+		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
+	pio[1] = pio[2] = 0;
+	desc = dmaengine_prep_slave_sg(channel,
+					(struct scatterlist *)pio,
+					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
+	if (!desc)
+		return -EINVAL;
+
+	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
+	sgl = &this->cmd_sgl;
+
+	sg_init_one(sgl, this->cmd_buffer, this->command_length);
+	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
+	desc = dmaengine_prep_slave_sg(channel,
+				sgl, 1, DMA_MEM_TO_DEV,
+				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+	if (!desc)
+		return -EINVAL;
+
+	/* [3] submit the DMA */
+	ret = start_dma_without_bch_irq(this, desc);
+
+	dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
+
+	return ret;
+}
+
+int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len)
+{
+	struct dma_async_tx_descriptor *desc;
+	struct dma_chan *channel = get_dma_chan(this);
+	int chip = this->current_chip;
+	int ret;
+	uint32_t command_mode;
+	uint32_t address;
+	u32 pio[2];
+
+	/* [1] PIO */
+	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(address)
+		| BF_GPMI_CTRL0_XFER_COUNT(len);
+	pio[1] = 0;
+	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
+					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
+	if (!desc)
+		return -EINVAL;
+
+	/* [2] send DMA request */
+	prepare_data_dma(this, buf, len, DMA_TO_DEVICE);
+	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
+					1, DMA_MEM_TO_DEV,
+					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+	if (!desc)
+		return -EINVAL;
+
+	/* [3] submit the DMA */
+	ret = start_dma_without_bch_irq(this, desc);
+
+	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
+
+	return ret;
+}
+
+int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len)
+{
+	struct dma_async_tx_descriptor *desc;
+	struct dma_chan *channel = get_dma_chan(this);
+	int chip = this->current_chip;
+	int ret;
+	u32 pio[2];
+	bool direct;
+
+	/* [1] : send PIO */
+	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+		| BF_GPMI_CTRL0_XFER_COUNT(len);
+	pio[1] = 0;
+	desc = dmaengine_prep_slave_sg(channel,
+					(struct scatterlist *)pio,
+					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
+	if (!desc)
+		return -EINVAL;
+
+	/* [2] : send DMA request */
+	direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE);
+	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
+					1, DMA_DEV_TO_MEM,
+					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+	if (!desc)
+		return -EINVAL;
+
+	/* [3] : submit the DMA */
+
+	ret = start_dma_without_bch_irq(this, desc);
+
+	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
+	if (!direct)
+		memcpy(buf, this->data_buffer_dma, len);
+
+	return ret;
+}
+
+int gpmi_send_page(struct gpmi_nand_data *this,
+			dma_addr_t payload, dma_addr_t auxiliary)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	uint32_t command_mode;
+	uint32_t address;
+	uint32_t ecc_command;
+	uint32_t buffer_mask;
+	struct dma_async_tx_descriptor *desc;
+	struct dma_chan *channel = get_dma_chan(this);
+	int chip = this->current_chip;
+	u32 pio[6];
+
+	/* A DMA descriptor that does an ECC page read. */
+	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
+	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
+	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(address)
+		| BF_GPMI_CTRL0_XFER_COUNT(0);
+	pio[1] = 0;
+	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
+		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
+	pio[3] = geo->page_size;
+	pio[4] = payload;
+	pio[5] = auxiliary;
+
+	desc = dmaengine_prep_slave_sg(channel,
+					(struct scatterlist *)pio,
+					ARRAY_SIZE(pio), DMA_TRANS_NONE,
+					DMA_CTRL_ACK);
+	if (!desc)
+		return -EINVAL;
+
+	return start_dma_with_bch_irq(this, desc);
+}
+
+int gpmi_read_page(struct gpmi_nand_data *this,
+				dma_addr_t payload, dma_addr_t auxiliary)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	uint32_t command_mode;
+	uint32_t address;
+	uint32_t ecc_command;
+	uint32_t buffer_mask;
+	struct dma_async_tx_descriptor *desc;
+	struct dma_chan *channel = get_dma_chan(this);
+	int chip = this->current_chip;
+	u32 pio[6];
+
+	/* [1] Wait for the chip to report ready. */
+	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(address)
+		| BF_GPMI_CTRL0_XFER_COUNT(0);
+	pio[1] = 0;
+	desc = dmaengine_prep_slave_sg(channel,
+				(struct scatterlist *)pio, 2,
+				DMA_TRANS_NONE, 0);
+	if (!desc)
+		return -EINVAL;
+
+	/* [2] Enable the BCH block and read. */
+	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
+	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
+	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
+			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
+
+	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(address)
+		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
+
+	pio[1] = 0;
+	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
+		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
+		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
+	pio[3] = geo->page_size;
+	pio[4] = payload;
+	pio[5] = auxiliary;
+	desc = dmaengine_prep_slave_sg(channel,
+					(struct scatterlist *)pio,
+					ARRAY_SIZE(pio), DMA_TRANS_NONE,
+					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+	if (!desc)
+		return -EINVAL;
+
+	/* [3] Disable the BCH block */
+	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
+	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
+
+	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
+		| BM_GPMI_CTRL0_WORD_LENGTH
+		| BF_GPMI_CTRL0_CS(chip, this)
+		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+		| BF_GPMI_CTRL0_ADDRESS(address)
+		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
+	pio[1] = 0;
+	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
+	desc = dmaengine_prep_slave_sg(channel,
+				(struct scatterlist *)pio, 3,
+				DMA_TRANS_NONE,
+				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+	if (!desc)
+		return -EINVAL;
+
+	/* [4] submit the DMA */
+	return start_dma_with_bch_irq(this, desc);
+}
+
+/**
+ * gpmi_copy_bits - copy bits from one memory region to another
+ * @dst: destination buffer
+ * @dst_bit_off: bit offset we're starting to write at
+ * @src: source buffer
+ * @src_bit_off: bit offset we're starting to read from
+ * @nbits: number of bits to copy
+ *
+ * This functions copies bits from one memory region to another, and is used by
+ * the GPMI driver to copy ECC sections which are not guaranteed to be byte
+ * aligned.
+ *
+ * src and dst should not overlap.
+ *
+ */
+void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
+		    const u8 *src, size_t src_bit_off,
+		    size_t nbits)
+{
+	size_t i;
+	size_t nbytes;
+	u32 src_buffer = 0;
+	size_t bits_in_src_buffer = 0;
+
+	if (!nbits)
+		return;
+
+	/*
+	 * Move src and dst pointers to the closest byte pointer and store bit
+	 * offsets within a byte.
+	 */
+	src += src_bit_off / 8;
+	src_bit_off %= 8;
+
+	dst += dst_bit_off / 8;
+	dst_bit_off %= 8;
+
+	/*
+	 * Initialize the src_buffer value with bits available in the first
+	 * byte of data so that we end up with a byte aligned src pointer.
+	 */
+	if (src_bit_off) {
+		src_buffer = src[0] >> src_bit_off;
+		if (nbits >= (8 - src_bit_off)) {
+			bits_in_src_buffer += 8 - src_bit_off;
+		} else {
+			src_buffer &= GENMASK(nbits - 1, 0);
+			bits_in_src_buffer += nbits;
+		}
+		nbits -= bits_in_src_buffer;
+		src++;
+	}
+
+	/* Calculate the number of bytes that can be copied from src to dst. */
+	nbytes = nbits / 8;
+
+	/* Try to align dst to a byte boundary. */
+	if (dst_bit_off) {
+		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
+			src_buffer |= src[0] << bits_in_src_buffer;
+			bits_in_src_buffer += 8;
+			src++;
+			nbytes--;
+		}
+
+		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
+			dst[0] &= GENMASK(dst_bit_off - 1, 0);
+			dst[0] |= src_buffer << dst_bit_off;
+			src_buffer >>= (8 - dst_bit_off);
+			bits_in_src_buffer -= (8 - dst_bit_off);
+			dst_bit_off = 0;
+			dst++;
+			if (bits_in_src_buffer > 7) {
+				bits_in_src_buffer -= 8;
+				dst[0] = src_buffer;
+				dst++;
+				src_buffer >>= 8;
+			}
+		}
+	}
+
+	if (!bits_in_src_buffer && !dst_bit_off) {
+		/*
+		 * Both src and dst pointers are byte aligned, thus we can
+		 * just use the optimized memcpy function.
+		 */
+		if (nbytes)
+			memcpy(dst, src, nbytes);
+	} else {
+		/*
+		 * src buffer is not byte aligned, hence we have to copy each
+		 * src byte to the src_buffer variable before extracting a byte
+		 * to store in dst.
+		 */
+		for (i = 0; i < nbytes; i++) {
+			src_buffer |= src[i] << bits_in_src_buffer;
+			dst[i] = src_buffer;
+			src_buffer >>= 8;
+		}
+	}
+	/* Update dst and src pointers */
+	dst += nbytes;
+	src += nbytes;
+
+	/*
+	 * nbits is the number of remaining bits. It should not exceed 8 as
+	 * we've already copied as much bytes as possible.
+	 */
+	nbits %= 8;
+
+	/*
+	 * If there's no more bits to copy to the destination and src buffer
+	 * was already byte aligned, then we're done.
+	 */
+	if (!nbits && !bits_in_src_buffer)
+		return;
+
+	/* Copy the remaining bits to src_buffer */
+	if (nbits)
+		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
+			      bits_in_src_buffer;
+	bits_in_src_buffer += nbits;
+
+	/*
+	 * In case there were not enough bits to get a byte aligned dst buffer
+	 * prepare the src_buffer variable to match the dst organization (shift
+	 * src_buffer by dst_bit_off and retrieve the least significant bits
+	 * from dst).
+	 */
+	if (dst_bit_off)
+		src_buffer = (src_buffer << dst_bit_off) |
+			     (*dst & GENMASK(dst_bit_off - 1, 0));
+	bits_in_src_buffer += dst_bit_off;
+
+	/*
+	 * Keep most significant bits from dst if we end up with an unaligned
+	 * number of bits.
+	 */
+	nbytes = bits_in_src_buffer / 8;
+	if (bits_in_src_buffer % 8) {
+		src_buffer |= (dst[nbytes] &
+			       GENMASK(7, bits_in_src_buffer % 8)) <<
+			      (nbytes * 8);
+		nbytes++;
+	}
+
+	/* Copy the remaining bytes to dst */
+	for (i = 0; i < nbytes; i++) {
+		dst[i] = src_buffer;
+		src_buffer >>= 8;
+	}
+}
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
new file mode 100644
index 0000000..1c1ebbc
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -0,0 +1,2088 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2010-2015 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ */
+#include <linux/clk.h>
+#include <linux/slab.h>
+#include <linux/sched/task_stack.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include "gpmi-nand.h"
+#include "bch-regs.h"
+
+/* Resource names for the GPMI NAND driver. */
+#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME  "gpmi-nand"
+#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME   "bch"
+#define GPMI_NAND_BCH_INTERRUPT_RES_NAME   "bch"
+
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+	.options	= 0,
+	.offs		= 0,
+	.len		= 1,
+	.pattern	= scan_ff_pattern
+};
+
+/*
+ * We may change the layout if we can get the ECC info from the datasheet,
+ * else we will use all the (page + OOB).
+ */
+static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
+			      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *geo = &this->bch_geometry;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 0;
+	oobregion->length = geo->page_size - mtd->writesize;
+
+	return 0;
+}
+
+static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *geo = &this->bch_geometry;
+
+	if (section)
+		return -ERANGE;
+
+	/* The available oob size we have. */
+	if (geo->page_size < mtd->writesize + mtd->oobsize) {
+		oobregion->offset = geo->page_size - mtd->writesize;
+		oobregion->length = mtd->oobsize - oobregion->offset;
+	}
+
+	return 0;
+}
+
+static const char * const gpmi_clks_for_mx2x[] = {
+	"gpmi_io",
+};
+
+static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
+	.ecc = gpmi_ooblayout_ecc,
+	.free = gpmi_ooblayout_free,
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx23 = {
+	.type = IS_MX23,
+	.bch_max_ecc_strength = 20,
+	.max_chain_delay = 16000,
+	.clks = gpmi_clks_for_mx2x,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx28 = {
+	.type = IS_MX28,
+	.bch_max_ecc_strength = 20,
+	.max_chain_delay = 16000,
+	.clks = gpmi_clks_for_mx2x,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const char * const gpmi_clks_for_mx6[] = {
+	"gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6q = {
+	.type = IS_MX6Q,
+	.bch_max_ecc_strength = 40,
+	.max_chain_delay = 12000,
+	.clks = gpmi_clks_for_mx6,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6sx = {
+	.type = IS_MX6SX,
+	.bch_max_ecc_strength = 62,
+	.max_chain_delay = 12000,
+	.clks = gpmi_clks_for_mx6,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const char * const gpmi_clks_for_mx7d[] = {
+	"gpmi_io", "gpmi_bch_apb",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx7d = {
+	.type = IS_MX7D,
+	.bch_max_ecc_strength = 62,
+	.max_chain_delay = 12000,
+	.clks = gpmi_clks_for_mx7d,
+	.clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
+};
+
+static irqreturn_t bch_irq(int irq, void *cookie)
+{
+	struct gpmi_nand_data *this = cookie;
+
+	gpmi_clear_bch(this);
+	complete(&this->bch_done);
+	return IRQ_HANDLED;
+}
+
+/*
+ *  Calculate the ECC strength by hand:
+ *	E : The ECC strength.
+ *	G : the length of Galois Field.
+ *	N : The chunk count of per page.
+ *	O : the oobsize of the NAND chip.
+ *	M : the metasize of per page.
+ *
+ *	The formula is :
+ *		E * G * N
+ *	      ------------ <= (O - M)
+ *                  8
+ *
+ *      So, we get E by:
+ *                    (O - M) * 8
+ *              E <= -------------
+ *                       G * N
+ */
+static inline int get_ecc_strength(struct gpmi_nand_data *this)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	struct mtd_info	*mtd = nand_to_mtd(&this->nand);
+	int ecc_strength;
+
+	ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
+			/ (geo->gf_len * geo->ecc_chunk_count);
+
+	/* We need the minor even number. */
+	return round_down(ecc_strength, 2);
+}
+
+static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+
+	/* Do the sanity check. */
+	if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) {
+		/* The mx23/mx28 only support the GF13. */
+		if (geo->gf_len == 14)
+			return false;
+	}
+	return geo->ecc_strength <= this->devdata->bch_max_ecc_strength;
+}
+
+/*
+ * If we can get the ECC information from the nand chip, we do not
+ * need to calculate them ourselves.
+ *
+ * We may have available oob space in this case.
+ */
+static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
+				    unsigned int ecc_strength,
+				    unsigned int ecc_step)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	struct nand_chip *chip = &this->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int block_mark_bit_offset;
+
+	switch (ecc_step) {
+	case SZ_512:
+		geo->gf_len = 13;
+		break;
+	case SZ_1K:
+		geo->gf_len = 14;
+		break;
+	default:
+		dev_err(this->dev,
+			"unsupported nand chip. ecc bits : %d, ecc size : %d\n",
+			chip->ecc_strength_ds, chip->ecc_step_ds);
+		return -EINVAL;
+	}
+	geo->ecc_chunk_size = ecc_step;
+	geo->ecc_strength = round_up(ecc_strength, 2);
+	if (!gpmi_check_ecc(this))
+		return -EINVAL;
+
+	/* Keep the C >= O */
+	if (geo->ecc_chunk_size < mtd->oobsize) {
+		dev_err(this->dev,
+			"unsupported nand chip. ecc size: %d, oob size : %d\n",
+			ecc_step, mtd->oobsize);
+		return -EINVAL;
+	}
+
+	/* The default value, see comment in the legacy_set_geometry(). */
+	geo->metadata_size = 10;
+
+	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
+
+	/*
+	 * Now, the NAND chip with 2K page(data chunk is 512byte) shows below:
+	 *
+	 *    |                          P                            |
+	 *    |<----------------------------------------------------->|
+	 *    |                                                       |
+	 *    |                                        (Block Mark)   |
+	 *    |                      P'                      |      | |     |
+	 *    |<-------------------------------------------->|  D   | |  O' |
+	 *    |                                              |<---->| |<--->|
+	 *    V                                              V      V V     V
+	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
+	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|     |
+	 *    +---+----------+-+----------+-+----------+-+----------+-+-----+
+	 *                                                   ^              ^
+	 *                                                   |      O       |
+	 *                                                   |<------------>|
+	 *                                                   |              |
+	 *
+	 *	P : the page size for BCH module.
+	 *	E : The ECC strength.
+	 *	G : the length of Galois Field.
+	 *	N : The chunk count of per page.
+	 *	M : the metasize of per page.
+	 *	C : the ecc chunk size, aka the "data" above.
+	 *	P': the nand chip's page size.
+	 *	O : the nand chip's oob size.
+	 *	O': the free oob.
+	 *
+	 *	The formula for P is :
+	 *
+	 *	            E * G * N
+	 *	       P = ------------ + P' + M
+	 *                      8
+	 *
+	 * The position of block mark moves forward in the ECC-based view
+	 * of page, and the delta is:
+	 *
+	 *                   E * G * (N - 1)
+	 *             D = (---------------- + M)
+	 *                          8
+	 *
+	 * Please see the comment in legacy_set_geometry().
+	 * With the condition C >= O , we still can get same result.
+	 * So the bit position of the physical block mark within the ECC-based
+	 * view of the page is :
+	 *             (P' - D) * 8
+	 */
+	geo->page_size = mtd->writesize + geo->metadata_size +
+		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
+
+	geo->payload_size = mtd->writesize;
+
+	geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4);
+	geo->auxiliary_size = ALIGN(geo->metadata_size, 4)
+				+ ALIGN(geo->ecc_chunk_count, 4);
+
+	if (!this->swap_block_mark)
+		return 0;
+
+	/* For bit swap. */
+	block_mark_bit_offset = mtd->writesize * 8 -
+		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+				+ geo->metadata_size * 8);
+
+	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
+	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
+	return 0;
+}
+
+static int legacy_set_geometry(struct gpmi_nand_data *this)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	struct mtd_info *mtd = nand_to_mtd(&this->nand);
+	unsigned int metadata_size;
+	unsigned int status_size;
+	unsigned int block_mark_bit_offset;
+
+	/*
+	 * The size of the metadata can be changed, though we set it to 10
+	 * bytes now. But it can't be too large, because we have to save
+	 * enough space for BCH.
+	 */
+	geo->metadata_size = 10;
+
+	/* The default for the length of Galois Field. */
+	geo->gf_len = 13;
+
+	/* The default for chunk size. */
+	geo->ecc_chunk_size = 512;
+	while (geo->ecc_chunk_size < mtd->oobsize) {
+		geo->ecc_chunk_size *= 2; /* keep C >= O */
+		geo->gf_len = 14;
+	}
+
+	geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
+
+	/* We use the same ECC strength for all chunks. */
+	geo->ecc_strength = get_ecc_strength(this);
+	if (!gpmi_check_ecc(this)) {
+		dev_err(this->dev,
+			"ecc strength: %d cannot be supported by the controller (%d)\n"
+			"try to use minimum ecc strength that NAND chip required\n",
+			geo->ecc_strength,
+			this->devdata->bch_max_ecc_strength);
+		return -EINVAL;
+	}
+
+	geo->page_size = mtd->writesize + geo->metadata_size +
+		(geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8;
+	geo->payload_size = mtd->writesize;
+
+	/*
+	 * The auxiliary buffer contains the metadata and the ECC status. The
+	 * metadata is padded to the nearest 32-bit boundary. The ECC status
+	 * contains one byte for every ECC chunk, and is also padded to the
+	 * nearest 32-bit boundary.
+	 */
+	metadata_size = ALIGN(geo->metadata_size, 4);
+	status_size   = ALIGN(geo->ecc_chunk_count, 4);
+
+	geo->auxiliary_size = metadata_size + status_size;
+	geo->auxiliary_status_offset = metadata_size;
+
+	if (!this->swap_block_mark)
+		return 0;
+
+	/*
+	 * We need to compute the byte and bit offsets of
+	 * the physical block mark within the ECC-based view of the page.
+	 *
+	 * NAND chip with 2K page shows below:
+	 *                                             (Block Mark)
+	 *                                                   |      |
+	 *                                                   |  D   |
+	 *                                                   |<---->|
+	 *                                                   V      V
+	 *    +---+----------+-+----------+-+----------+-+----------+-+
+	 *    | M |   data   |E|   data   |E|   data   |E|   data   |E|
+	 *    +---+----------+-+----------+-+----------+-+----------+-+
+	 *
+	 * The position of block mark moves forward in the ECC-based view
+	 * of page, and the delta is:
+	 *
+	 *                   E * G * (N - 1)
+	 *             D = (---------------- + M)
+	 *                          8
+	 *
+	 * With the formula to compute the ECC strength, and the condition
+	 *       : C >= O         (C is the ecc chunk size)
+	 *
+	 * It's easy to deduce to the following result:
+	 *
+	 *         E * G       (O - M)      C - M         C - M
+	 *      ----------- <= ------- <=  --------  <  ---------
+	 *           8            N           N          (N - 1)
+	 *
+	 *  So, we get:
+	 *
+	 *                   E * G * (N - 1)
+	 *             D = (---------------- + M) < C
+	 *                          8
+	 *
+	 *  The above inequality means the position of block mark
+	 *  within the ECC-based view of the page is still in the data chunk,
+	 *  and it's NOT in the ECC bits of the chunk.
+	 *
+	 *  Use the following to compute the bit position of the
+	 *  physical block mark within the ECC-based view of the page:
+	 *          (page_size - D) * 8
+	 *
+	 *  --Huang Shijie
+	 */
+	block_mark_bit_offset = mtd->writesize * 8 -
+		(geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+				+ geo->metadata_size * 8);
+
+	geo->block_mark_byte_offset = block_mark_bit_offset / 8;
+	geo->block_mark_bit_offset  = block_mark_bit_offset % 8;
+	return 0;
+}
+
+int common_nfc_set_geometry(struct gpmi_nand_data *this)
+{
+	struct nand_chip *chip = &this->nand;
+
+	if (chip->ecc.strength > 0 && chip->ecc.size > 0)
+		return set_geometry_by_ecc_info(this, chip->ecc.strength,
+						chip->ecc.size);
+
+	if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc"))
+				|| legacy_set_geometry(this)) {
+		if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0))
+			return -EINVAL;
+
+		return set_geometry_by_ecc_info(this, chip->ecc_strength_ds,
+						chip->ecc_step_ds);
+	}
+
+	return 0;
+}
+
+struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
+{
+	/* We use the DMA channel 0 to access all the nand chips. */
+	return this->dma_chans[0];
+}
+
+/* Can we use the upper's buffer directly for DMA? */
+bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
+		      enum dma_data_direction dr)
+{
+	struct scatterlist *sgl = &this->data_sgl;
+	int ret;
+
+	/* first try to map the upper buffer directly */
+	if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
+		sg_init_one(sgl, buf, len);
+		ret = dma_map_sg(this->dev, sgl, 1, dr);
+		if (ret == 0)
+			goto map_fail;
+
+		return true;
+	}
+
+map_fail:
+	/* We have to use our own DMA buffer. */
+	sg_init_one(sgl, this->data_buffer_dma, len);
+
+	if (dr == DMA_TO_DEVICE)
+		memcpy(this->data_buffer_dma, buf, len);
+
+	dma_map_sg(this->dev, sgl, 1, dr);
+
+	return false;
+}
+
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
+{
+	struct gpmi_nand_data *this = param;
+	struct completion *dma_c = &this->dma_done;
+
+	complete(dma_c);
+}
+
+int start_dma_without_bch_irq(struct gpmi_nand_data *this,
+				struct dma_async_tx_descriptor *desc)
+{
+	struct completion *dma_c = &this->dma_done;
+	unsigned long timeout;
+
+	init_completion(dma_c);
+
+	desc->callback		= dma_irq_callback;
+	desc->callback_param	= this;
+	dmaengine_submit(desc);
+	dma_async_issue_pending(get_dma_chan(this));
+
+	/* Wait for the interrupt from the DMA block. */
+	timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
+	if (!timeout) {
+		dev_err(this->dev, "DMA timeout, last DMA\n");
+		gpmi_dump_info(this);
+		return -ETIMEDOUT;
+	}
+	return 0;
+}
+
+/*
+ * This function is used in BCH reading or BCH writing pages.
+ * It will wait for the BCH interrupt as long as ONE second.
+ * Actually, we must wait for two interrupts :
+ *	[1] firstly the DMA interrupt and
+ *	[2] secondly the BCH interrupt.
+ */
+int start_dma_with_bch_irq(struct gpmi_nand_data *this,
+			struct dma_async_tx_descriptor *desc)
+{
+	struct completion *bch_c = &this->bch_done;
+	unsigned long timeout;
+
+	/* Prepare to receive an interrupt from the BCH block. */
+	init_completion(bch_c);
+
+	/* start the DMA */
+	start_dma_without_bch_irq(this, desc);
+
+	/* Wait for the interrupt from the BCH block. */
+	timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
+	if (!timeout) {
+		dev_err(this->dev, "BCH timeout\n");
+		gpmi_dump_info(this);
+		return -ETIMEDOUT;
+	}
+	return 0;
+}
+
+static int acquire_register_block(struct gpmi_nand_data *this,
+				  const char *res_name)
+{
+	struct platform_device *pdev = this->pdev;
+	struct resources *res = &this->resources;
+	struct resource *r;
+	void __iomem *p;
+
+	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
+	p = devm_ioremap_resource(&pdev->dev, r);
+	if (IS_ERR(p))
+		return PTR_ERR(p);
+
+	if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
+		res->gpmi_regs = p;
+	else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
+		res->bch_regs = p;
+	else
+		dev_err(this->dev, "unknown resource name : %s\n", res_name);
+
+	return 0;
+}
+
+static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
+{
+	struct platform_device *pdev = this->pdev;
+	const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
+	struct resource *r;
+	int err;
+
+	r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
+	if (!r) {
+		dev_err(this->dev, "Can't get resource for %s\n", res_name);
+		return -ENODEV;
+	}
+
+	err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this);
+	if (err)
+		dev_err(this->dev, "error requesting BCH IRQ\n");
+
+	return err;
+}
+
+static void release_dma_channels(struct gpmi_nand_data *this)
+{
+	unsigned int i;
+	for (i = 0; i < DMA_CHANS; i++)
+		if (this->dma_chans[i]) {
+			dma_release_channel(this->dma_chans[i]);
+			this->dma_chans[i] = NULL;
+		}
+}
+
+static int acquire_dma_channels(struct gpmi_nand_data *this)
+{
+	struct platform_device *pdev = this->pdev;
+	struct dma_chan *dma_chan;
+
+	/* request dma channel */
+	dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx");
+	if (!dma_chan) {
+		dev_err(this->dev, "Failed to request DMA channel.\n");
+		goto acquire_err;
+	}
+
+	this->dma_chans[0] = dma_chan;
+	return 0;
+
+acquire_err:
+	release_dma_channels(this);
+	return -EINVAL;
+}
+
+static int gpmi_get_clks(struct gpmi_nand_data *this)
+{
+	struct resources *r = &this->resources;
+	struct clk *clk;
+	int err, i;
+
+	for (i = 0; i < this->devdata->clks_count; i++) {
+		clk = devm_clk_get(this->dev, this->devdata->clks[i]);
+		if (IS_ERR(clk)) {
+			err = PTR_ERR(clk);
+			goto err_clock;
+		}
+
+		r->clock[i] = clk;
+	}
+
+	if (GPMI_IS_MX6(this))
+		/*
+		 * Set the default value for the gpmi clock.
+		 *
+		 * If you want to use the ONFI nand which is in the
+		 * Synchronous Mode, you should change the clock as you need.
+		 */
+		clk_set_rate(r->clock[0], 22000000);
+
+	return 0;
+
+err_clock:
+	dev_dbg(this->dev, "failed in finding the clocks.\n");
+	return err;
+}
+
+static int acquire_resources(struct gpmi_nand_data *this)
+{
+	int ret;
+
+	ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
+	if (ret)
+		goto exit_regs;
+
+	ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
+	if (ret)
+		goto exit_regs;
+
+	ret = acquire_bch_irq(this, bch_irq);
+	if (ret)
+		goto exit_regs;
+
+	ret = acquire_dma_channels(this);
+	if (ret)
+		goto exit_regs;
+
+	ret = gpmi_get_clks(this);
+	if (ret)
+		goto exit_clock;
+	return 0;
+
+exit_clock:
+	release_dma_channels(this);
+exit_regs:
+	return ret;
+}
+
+static void release_resources(struct gpmi_nand_data *this)
+{
+	release_dma_channels(this);
+}
+
+static int send_page_prepare(struct gpmi_nand_data *this,
+			const void *source, unsigned length,
+			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+			const void **use_virt, dma_addr_t *use_phys)
+{
+	struct device *dev = this->dev;
+
+	if (virt_addr_valid(source)) {
+		dma_addr_t source_phys;
+
+		source_phys = dma_map_single(dev, (void *)source, length,
+						DMA_TO_DEVICE);
+		if (dma_mapping_error(dev, source_phys)) {
+			if (alt_size < length) {
+				dev_err(dev, "Alternate buffer is too small\n");
+				return -ENOMEM;
+			}
+			goto map_failed;
+		}
+		*use_virt = source;
+		*use_phys = source_phys;
+		return 0;
+	}
+map_failed:
+	/*
+	 * Copy the content of the source buffer into the alternate
+	 * buffer and set up the return values accordingly.
+	 */
+	memcpy(alt_virt, source, length);
+
+	*use_virt = alt_virt;
+	*use_phys = alt_phys;
+	return 0;
+}
+
+static void send_page_end(struct gpmi_nand_data *this,
+			const void *source, unsigned length,
+			void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+			const void *used_virt, dma_addr_t used_phys)
+{
+	struct device *dev = this->dev;
+	if (used_virt == source)
+		dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
+}
+
+static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
+{
+	struct device *dev = this->dev;
+
+	if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
+		dma_free_coherent(dev, this->page_buffer_size,
+					this->page_buffer_virt,
+					this->page_buffer_phys);
+	kfree(this->cmd_buffer);
+	kfree(this->data_buffer_dma);
+	kfree(this->raw_buffer);
+
+	this->cmd_buffer	= NULL;
+	this->data_buffer_dma	= NULL;
+	this->raw_buffer	= NULL;
+	this->page_buffer_virt	= NULL;
+	this->page_buffer_size	=  0;
+}
+
+/* Allocate the DMA buffers */
+static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
+{
+	struct bch_geometry *geo = &this->bch_geometry;
+	struct device *dev = this->dev;
+	struct mtd_info *mtd = nand_to_mtd(&this->nand);
+
+	/* [1] Allocate a command buffer. PAGE_SIZE is enough. */
+	this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
+	if (this->cmd_buffer == NULL)
+		goto error_alloc;
+
+	/*
+	 * [2] Allocate a read/write data buffer.
+	 *     The gpmi_alloc_dma_buffer can be called twice.
+	 *     We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer
+	 *     is called before the NAND identification; and we allocate a
+	 *     buffer of the real NAND page size when the gpmi_alloc_dma_buffer
+	 *     is called after.
+	 */
+	this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE,
+					GFP_DMA | GFP_KERNEL);
+	if (this->data_buffer_dma == NULL)
+		goto error_alloc;
+
+	/*
+	 * [3] Allocate the page buffer.
+	 *
+	 * Both the payload buffer and the auxiliary buffer must appear on
+	 * 32-bit boundaries. We presume the size of the payload buffer is a
+	 * power of two and is much larger than four, which guarantees the
+	 * auxiliary buffer will appear on a 32-bit boundary.
+	 */
+	this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
+	this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
+					&this->page_buffer_phys, GFP_DMA);
+	if (!this->page_buffer_virt)
+		goto error_alloc;
+
+	this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	if (!this->raw_buffer)
+		goto error_alloc;
+
+	/* Slice up the page buffer. */
+	this->payload_virt = this->page_buffer_virt;
+	this->payload_phys = this->page_buffer_phys;
+	this->auxiliary_virt = this->payload_virt + geo->payload_size;
+	this->auxiliary_phys = this->payload_phys + geo->payload_size;
+	return 0;
+
+error_alloc:
+	gpmi_free_dma_buffer(this);
+	return -ENOMEM;
+}
+
+static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	int ret;
+
+	/*
+	 * Every operation begins with a command byte and a series of zero or
+	 * more address bytes. These are distinguished by either the Address
+	 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+	 * asserted. When MTD is ready to execute the command, it will deassert
+	 * both latch enables.
+	 *
+	 * Rather than run a separate DMA operation for every single byte, we
+	 * queue them up and run a single DMA operation for the entire series
+	 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
+	 */
+	if ((ctrl & (NAND_ALE | NAND_CLE))) {
+		if (data != NAND_CMD_NONE)
+			this->cmd_buffer[this->command_length++] = data;
+		return;
+	}
+
+	if (!this->command_length)
+		return;
+
+	ret = gpmi_send_command(this);
+	if (ret)
+		dev_err(this->dev, "Chip: %u, Error %d\n",
+			this->current_chip, ret);
+
+	this->command_length = 0;
+}
+
+static int gpmi_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+
+	return gpmi_is_ready(this, this->current_chip);
+}
+
+static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	int ret;
+
+	/*
+	 * For power consumption matters, disable/enable the clock each time a
+	 * die is selected/unselected.
+	 */
+	if (this->current_chip < 0 && chipnr >= 0) {
+		ret = gpmi_enable_clk(this);
+		if (ret)
+			dev_err(this->dev, "Failed to enable the clock\n");
+	} else if (this->current_chip >= 0 && chipnr < 0) {
+		ret = gpmi_disable_clk(this);
+		if (ret)
+			dev_err(this->dev, "Failed to disable the clock\n");
+	}
+
+	/*
+	 * This driver currently supports only one NAND chip. Plus, dies share
+	 * the same configuration. So once timings have been applied on the
+	 * controller side, they will not change anymore. When the time will
+	 * come, the check on must_apply_timings will have to be dropped.
+	 */
+	if (chipnr >= 0 && this->hw.must_apply_timings) {
+		this->hw.must_apply_timings = false;
+		gpmi_nfc_apply_timings(this);
+	}
+
+	this->current_chip = chipnr;
+}
+
+static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+
+	dev_dbg(this->dev, "len is %d\n", len);
+
+	gpmi_read_data(this, buf, len);
+}
+
+static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+
+	dev_dbg(this->dev, "len is %d\n", len);
+
+	gpmi_send_data(this, buf, len);
+}
+
+static uint8_t gpmi_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	uint8_t *buf = this->data_buffer_dma;
+
+	gpmi_read_buf(mtd, buf, 1);
+	return buf[0];
+}
+
+/*
+ * Handles block mark swapping.
+ * It can be called in swapping the block mark, or swapping it back,
+ * because the the operations are the same.
+ */
+static void block_mark_swapping(struct gpmi_nand_data *this,
+				void *payload, void *auxiliary)
+{
+	struct bch_geometry *nfc_geo = &this->bch_geometry;
+	unsigned char *p;
+	unsigned char *a;
+	unsigned int  bit;
+	unsigned char mask;
+	unsigned char from_data;
+	unsigned char from_oob;
+
+	if (!this->swap_block_mark)
+		return;
+
+	/*
+	 * If control arrives here, we're swapping. Make some convenience
+	 * variables.
+	 */
+	bit = nfc_geo->block_mark_bit_offset;
+	p   = payload + nfc_geo->block_mark_byte_offset;
+	a   = auxiliary;
+
+	/*
+	 * Get the byte from the data area that overlays the block mark. Since
+	 * the ECC engine applies its own view to the bits in the page, the
+	 * physical block mark won't (in general) appear on a byte boundary in
+	 * the data.
+	 */
+	from_data = (p[0] >> bit) | (p[1] << (8 - bit));
+
+	/* Get the byte from the OOB. */
+	from_oob = a[0];
+
+	/* Swap them. */
+	a[0] = from_data;
+
+	mask = (0x1 << bit) - 1;
+	p[0] = (p[0] & mask) | (from_oob << bit);
+
+	mask = ~0 << bit;
+	p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
+}
+
+static int gpmi_ecc_read_page_data(struct nand_chip *chip,
+				   uint8_t *buf, int oob_required,
+				   int page)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *nfc_geo = &this->bch_geometry;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	dma_addr_t    payload_phys;
+	unsigned int  i;
+	unsigned char *status;
+	unsigned int  max_bitflips = 0;
+	int           ret;
+	bool          direct = false;
+
+	dev_dbg(this->dev, "page number is : %d\n", page);
+
+	payload_phys = this->payload_phys;
+
+	if (virt_addr_valid(buf)) {
+		dma_addr_t dest_phys;
+
+		dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
+					   DMA_FROM_DEVICE);
+		if (!dma_mapping_error(this->dev, dest_phys)) {
+			payload_phys = dest_phys;
+			direct = true;
+		}
+	}
+
+	/* go! */
+	ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
+
+	if (direct)
+		dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
+				 DMA_FROM_DEVICE);
+
+	if (ret) {
+		dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
+		return ret;
+	}
+
+	/* Loop over status bytes, accumulating ECC status. */
+	status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
+
+	if (!direct)
+		memcpy(buf, this->payload_virt, nfc_geo->payload_size);
+
+	for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+		if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
+			continue;
+
+		if (*status == STATUS_UNCORRECTABLE) {
+			int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
+			u8 *eccbuf = this->raw_buffer;
+			int offset, bitoffset;
+			int eccbytes;
+			int flips;
+
+			/* Read ECC bytes into our internal raw_buffer */
+			offset = nfc_geo->metadata_size * 8;
+			offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1);
+			offset -= eccbits;
+			bitoffset = offset % 8;
+			eccbytes = DIV_ROUND_UP(offset + eccbits, 8);
+			offset /= 8;
+			eccbytes -= offset;
+			nand_change_read_column_op(chip, offset, eccbuf,
+						   eccbytes, false);
+
+			/*
+			 * ECC data are not byte aligned and we may have
+			 * in-band data in the first and last byte of
+			 * eccbuf. Set non-eccbits to one so that
+			 * nand_check_erased_ecc_chunk() does not count them
+			 * as bitflips.
+			 */
+			if (bitoffset)
+				eccbuf[0] |= GENMASK(bitoffset - 1, 0);
+
+			bitoffset = (bitoffset + eccbits) % 8;
+			if (bitoffset)
+				eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset);
+
+			/*
+			 * The ECC hardware has an uncorrectable ECC status
+			 * code in case we have bitflips in an erased page. As
+			 * nothing was written into this subpage the ECC is
+			 * obviously wrong and we can not trust it. We assume
+			 * at this point that we are reading an erased page and
+			 * try to correct the bitflips in buffer up to
+			 * ecc_strength bitflips. If this is a page with random
+			 * data, we exceed this number of bitflips and have a
+			 * ECC failure. Otherwise we use the corrected buffer.
+			 */
+			if (i == 0) {
+				/* The first block includes metadata */
+				flips = nand_check_erased_ecc_chunk(
+						buf + i * nfc_geo->ecc_chunk_size,
+						nfc_geo->ecc_chunk_size,
+						eccbuf, eccbytes,
+						this->auxiliary_virt,
+						nfc_geo->metadata_size,
+						nfc_geo->ecc_strength);
+			} else {
+				flips = nand_check_erased_ecc_chunk(
+						buf + i * nfc_geo->ecc_chunk_size,
+						nfc_geo->ecc_chunk_size,
+						eccbuf, eccbytes,
+						NULL, 0,
+						nfc_geo->ecc_strength);
+			}
+
+			if (flips > 0) {
+				max_bitflips = max_t(unsigned int, max_bitflips,
+						     flips);
+				mtd->ecc_stats.corrected += flips;
+				continue;
+			}
+
+			mtd->ecc_stats.failed++;
+			continue;
+		}
+
+		mtd->ecc_stats.corrected += *status;
+		max_bitflips = max_t(unsigned int, max_bitflips, *status);
+	}
+
+	/* handle the block mark swapping */
+	block_mark_swapping(this, buf, this->auxiliary_virt);
+
+	if (oob_required) {
+		/*
+		 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
+		 * for details about our policy for delivering the OOB.
+		 *
+		 * We fill the caller's buffer with set bits, and then copy the
+		 * block mark to th caller's buffer. Note that, if block mark
+		 * swapping was necessary, it has already been done, so we can
+		 * rely on the first byte of the auxiliary buffer to contain
+		 * the block mark.
+		 */
+		memset(chip->oob_poi, ~0, mtd->oobsize);
+		chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0];
+	}
+
+	return max_bitflips;
+}
+
+static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			      uint8_t *buf, int oob_required, int page)
+{
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
+}
+
+/* Fake a virtual small page for the subpage read */
+static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+			uint32_t offs, uint32_t len, uint8_t *buf, int page)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	void __iomem *bch_regs = this->resources.bch_regs;
+	struct bch_geometry old_geo = this->bch_geometry;
+	struct bch_geometry *geo = &this->bch_geometry;
+	int size = chip->ecc.size; /* ECC chunk size */
+	int meta, n, page_size;
+	u32 r1_old, r2_old, r1_new, r2_new;
+	unsigned int max_bitflips;
+	int first, last, marker_pos;
+	int ecc_parity_size;
+	int col = 0;
+	int old_swap_block_mark = this->swap_block_mark;
+
+	/* The size of ECC parity */
+	ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
+
+	/* Align it with the chunk size */
+	first = offs / size;
+	last = (offs + len - 1) / size;
+
+	if (this->swap_block_mark) {
+		/*
+		 * Find the chunk which contains the Block Marker.
+		 * If this chunk is in the range of [first, last],
+		 * we have to read out the whole page.
+		 * Why? since we had swapped the data at the position of Block
+		 * Marker to the metadata which is bound with the chunk 0.
+		 */
+		marker_pos = geo->block_mark_byte_offset / size;
+		if (last >= marker_pos && first <= marker_pos) {
+			dev_dbg(this->dev,
+				"page:%d, first:%d, last:%d, marker at:%d\n",
+				page, first, last, marker_pos);
+			return gpmi_ecc_read_page(mtd, chip, buf, 0, page);
+		}
+	}
+
+	meta = geo->metadata_size;
+	if (first) {
+		col = meta + (size + ecc_parity_size) * first;
+		meta = 0;
+		buf = buf + first * size;
+	}
+
+	nand_read_page_op(chip, page, col, NULL, 0);
+
+	/* Save the old environment */
+	r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
+	r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
+
+	/* change the BCH registers and bch_geometry{} */
+	n = last - first + 1;
+	page_size = meta + (size + ecc_parity_size) * n;
+
+	r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
+			BM_BCH_FLASH0LAYOUT0_META_SIZE);
+	r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
+			| BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
+	writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
+
+	r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
+	r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
+	writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
+
+	geo->ecc_chunk_count = n;
+	geo->payload_size = n * size;
+	geo->page_size = page_size;
+	geo->auxiliary_status_offset = ALIGN(meta, 4);
+
+	dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
+		page, offs, len, col, first, n, page_size);
+
+	/* Read the subpage now */
+	this->swap_block_mark = false;
+	max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
+
+	/* Restore */
+	writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
+	writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
+	this->bch_geometry = old_geo;
+	this->swap_block_mark = old_swap_block_mark;
+
+	return max_bitflips;
+}
+
+static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, int oob_required, int page)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *nfc_geo = &this->bch_geometry;
+	const void *payload_virt;
+	dma_addr_t payload_phys;
+	const void *auxiliary_virt;
+	dma_addr_t auxiliary_phys;
+	int        ret;
+
+	dev_dbg(this->dev, "ecc write page.\n");
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	if (this->swap_block_mark) {
+		/*
+		 * If control arrives here, we're doing block mark swapping.
+		 * Since we can't modify the caller's buffers, we must copy them
+		 * into our own.
+		 */
+		memcpy(this->payload_virt, buf, mtd->writesize);
+		payload_virt = this->payload_virt;
+		payload_phys = this->payload_phys;
+
+		memcpy(this->auxiliary_virt, chip->oob_poi,
+				nfc_geo->auxiliary_size);
+		auxiliary_virt = this->auxiliary_virt;
+		auxiliary_phys = this->auxiliary_phys;
+
+		/* Handle block mark swapping. */
+		block_mark_swapping(this,
+				(void *)payload_virt, (void *)auxiliary_virt);
+	} else {
+		/*
+		 * If control arrives here, we're not doing block mark swapping,
+		 * so we can to try and use the caller's buffers.
+		 */
+		ret = send_page_prepare(this,
+				buf, mtd->writesize,
+				this->payload_virt, this->payload_phys,
+				nfc_geo->payload_size,
+				&payload_virt, &payload_phys);
+		if (ret) {
+			dev_err(this->dev, "Inadequate payload DMA buffer\n");
+			return 0;
+		}
+
+		ret = send_page_prepare(this,
+				chip->oob_poi, mtd->oobsize,
+				this->auxiliary_virt, this->auxiliary_phys,
+				nfc_geo->auxiliary_size,
+				&auxiliary_virt, &auxiliary_phys);
+		if (ret) {
+			dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
+			goto exit_auxiliary;
+		}
+	}
+
+	/* Ask the NFC. */
+	ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
+	if (ret)
+		dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
+
+	if (!this->swap_block_mark) {
+		send_page_end(this, chip->oob_poi, mtd->oobsize,
+				this->auxiliary_virt, this->auxiliary_phys,
+				nfc_geo->auxiliary_size,
+				auxiliary_virt, auxiliary_phys);
+exit_auxiliary:
+		send_page_end(this, buf, mtd->writesize,
+				this->payload_virt, this->payload_phys,
+				nfc_geo->payload_size,
+				payload_virt, payload_phys);
+	}
+
+	if (ret)
+		return ret;
+
+	return nand_prog_page_end_op(chip);
+}
+
+/*
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ *    true state of the block mark, no matter where that block mark appears in
+ *    the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ *    allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ *    return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ *    page, using the conventional definition of which bytes are data and which
+ *    are OOB. This gives the caller a way to see the actual, physical bytes
+ *    in the page, without the distortions applied by our ECC engine.
+ *
+ *
+ * What we do for this specific read operation depends on two questions:
+ *
+ * 1) Are we doing a "raw" read, or an ECC-based read?
+ *
+ * 2) Are we using block mark swapping or transcription?
+ *
+ * There are four cases, illustrated by the following Karnaugh map:
+ *
+ *                    |           Raw           |         ECC-based       |
+ *       -------------+-------------------------+-------------------------+
+ *                    | Read the conventional   |                         |
+ *                    | OOB at the end of the   |                         |
+ *       Swapping     | page and return it. It  |                         |
+ *                    | contains exactly what   |                         |
+ *                    | we want.                | Read the block mark and |
+ *       -------------+-------------------------+ return it in a buffer   |
+ *                    | Read the conventional   | full of set bits.       |
+ *                    | OOB at the end of the   |                         |
+ *                    | page and also the block |                         |
+ *       Transcribing | mark in the metadata.   |                         |
+ *                    | Copy the block mark     |                         |
+ *                    | into the first byte of  |                         |
+ *                    | the OOB.                |                         |
+ *       -------------+-------------------------+-------------------------+
+ *
+ * Note that we break rule #4 in the Transcribing/Raw case because we're not
+ * giving an accurate view of the actual, physical bytes in the page (we're
+ * overwriting the block mark). That's OK because it's more important to follow
+ * rule #2.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ */
+static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+
+	dev_dbg(this->dev, "page number is %d\n", page);
+	/* clear the OOB buffer */
+	memset(chip->oob_poi, ~0, mtd->oobsize);
+
+	/* Read out the conventional OOB. */
+	nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	/*
+	 * Now, we want to make sure the block mark is correct. In the
+	 * non-transcribing case (!GPMI_IS_MX23()), we already have it.
+	 * Otherwise, we need to explicitly read it.
+	 */
+	if (GPMI_IS_MX23(this)) {
+		/* Read the block mark into the first byte of the OOB buffer. */
+		nand_read_page_op(chip, page, 0, NULL, 0);
+		chip->oob_poi[0] = chip->read_byte(mtd);
+	}
+
+	return 0;
+}
+
+static int
+gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
+{
+	struct mtd_oob_region of = { };
+
+	/* Do we have available oob area? */
+	mtd_ooblayout_free(mtd, 0, &of);
+	if (!of.length)
+		return -EPERM;
+
+	if (!nand_is_slc(chip))
+		return -EPERM;
+
+	return nand_prog_page_op(chip, page, mtd->writesize + of.offset,
+				 chip->oob_poi + of.offset, of.length);
+}
+
+/*
+ * This function reads a NAND page without involving the ECC engine (no HW
+ * ECC correction).
+ * The tricky part in the GPMI/BCH controller is that it stores ECC bits
+ * inline (interleaved with payload DATA), and do not align data chunk on
+ * byte boundaries.
+ * We thus need to take care moving the payload data and ECC bits stored in the
+ * page into the provided buffers, which is why we're using gpmi_copy_bits.
+ *
+ * See set_geometry_by_ecc_info inline comments to have a full description
+ * of the layout used by the GPMI controller.
+ */
+static int gpmi_ecc_read_page_raw(struct mtd_info *mtd,
+				  struct nand_chip *chip, uint8_t *buf,
+				  int oob_required, int page)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *nfc_geo = &this->bch_geometry;
+	int eccsize = nfc_geo->ecc_chunk_size;
+	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
+	u8 *tmp_buf = this->raw_buffer;
+	size_t src_bit_off;
+	size_t oob_bit_off;
+	size_t oob_byte_off;
+	uint8_t *oob = chip->oob_poi;
+	int step;
+
+	nand_read_page_op(chip, page, 0, tmp_buf,
+			  mtd->writesize + mtd->oobsize);
+
+	/*
+	 * If required, swap the bad block marker and the data stored in the
+	 * metadata section, so that we don't wrongly consider a block as bad.
+	 *
+	 * See the layout description for a detailed explanation on why this
+	 * is needed.
+	 */
+	if (this->swap_block_mark)
+		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
+
+	/*
+	 * Copy the metadata section into the oob buffer (this section is
+	 * guaranteed to be aligned on a byte boundary).
+	 */
+	if (oob_required)
+		memcpy(oob, tmp_buf, nfc_geo->metadata_size);
+
+	oob_bit_off = nfc_geo->metadata_size * 8;
+	src_bit_off = oob_bit_off;
+
+	/* Extract interleaved payload data and ECC bits */
+	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
+		if (buf)
+			gpmi_copy_bits(buf, step * eccsize * 8,
+				       tmp_buf, src_bit_off,
+				       eccsize * 8);
+		src_bit_off += eccsize * 8;
+
+		/* Align last ECC block to align a byte boundary */
+		if (step == nfc_geo->ecc_chunk_count - 1 &&
+		    (oob_bit_off + eccbits) % 8)
+			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
+
+		if (oob_required)
+			gpmi_copy_bits(oob, oob_bit_off,
+				       tmp_buf, src_bit_off,
+				       eccbits);
+
+		src_bit_off += eccbits;
+		oob_bit_off += eccbits;
+	}
+
+	if (oob_required) {
+		oob_byte_off = oob_bit_off / 8;
+
+		if (oob_byte_off < mtd->oobsize)
+			memcpy(oob + oob_byte_off,
+			       tmp_buf + mtd->writesize + oob_byte_off,
+			       mtd->oobsize - oob_byte_off);
+	}
+
+	return 0;
+}
+
+/*
+ * This function writes a NAND page without involving the ECC engine (no HW
+ * ECC generation).
+ * The tricky part in the GPMI/BCH controller is that it stores ECC bits
+ * inline (interleaved with payload DATA), and do not align data chunk on
+ * byte boundaries.
+ * We thus need to take care moving the OOB area at the right place in the
+ * final page, which is why we're using gpmi_copy_bits.
+ *
+ * See set_geometry_by_ecc_info inline comments to have a full description
+ * of the layout used by the GPMI controller.
+ */
+static int gpmi_ecc_write_page_raw(struct mtd_info *mtd,
+				   struct nand_chip *chip,
+				   const uint8_t *buf,
+				   int oob_required, int page)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	struct bch_geometry *nfc_geo = &this->bch_geometry;
+	int eccsize = nfc_geo->ecc_chunk_size;
+	int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len;
+	u8 *tmp_buf = this->raw_buffer;
+	uint8_t *oob = chip->oob_poi;
+	size_t dst_bit_off;
+	size_t oob_bit_off;
+	size_t oob_byte_off;
+	int step;
+
+	/*
+	 * Initialize all bits to 1 in case we don't have a buffer for the
+	 * payload or oob data in order to leave unspecified bits of data
+	 * to their initial state.
+	 */
+	if (!buf || !oob_required)
+		memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize);
+
+	/*
+	 * First copy the metadata section (stored in oob buffer) at the
+	 * beginning of the page, as imposed by the GPMI layout.
+	 */
+	memcpy(tmp_buf, oob, nfc_geo->metadata_size);
+	oob_bit_off = nfc_geo->metadata_size * 8;
+	dst_bit_off = oob_bit_off;
+
+	/* Interleave payload data and ECC bits */
+	for (step = 0; step < nfc_geo->ecc_chunk_count; step++) {
+		if (buf)
+			gpmi_copy_bits(tmp_buf, dst_bit_off,
+				       buf, step * eccsize * 8, eccsize * 8);
+		dst_bit_off += eccsize * 8;
+
+		/* Align last ECC block to align a byte boundary */
+		if (step == nfc_geo->ecc_chunk_count - 1 &&
+		    (oob_bit_off + eccbits) % 8)
+			eccbits += 8 - ((oob_bit_off + eccbits) % 8);
+
+		if (oob_required)
+			gpmi_copy_bits(tmp_buf, dst_bit_off,
+				       oob, oob_bit_off, eccbits);
+
+		dst_bit_off += eccbits;
+		oob_bit_off += eccbits;
+	}
+
+	oob_byte_off = oob_bit_off / 8;
+
+	if (oob_required && oob_byte_off < mtd->oobsize)
+		memcpy(tmp_buf + mtd->writesize + oob_byte_off,
+		       oob + oob_byte_off, mtd->oobsize - oob_byte_off);
+
+	/*
+	 * If required, swap the bad block marker and the first byte of the
+	 * metadata section, so that we don't modify the bad block marker.
+	 *
+	 * See the layout description for a detailed explanation on why this
+	 * is needed.
+	 */
+	if (this->swap_block_mark)
+		swap(tmp_buf[0], tmp_buf[mtd->writesize]);
+
+	return nand_prog_page_op(chip, page, 0, tmp_buf,
+				 mtd->writesize + mtd->oobsize);
+}
+
+static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 int page)
+{
+	return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page);
+}
+
+static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 int page)
+{
+	return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page);
+}
+
+static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	int ret = 0;
+	uint8_t *block_mark;
+	int column, page, chipnr;
+
+	chipnr = (int)(ofs >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	column = !GPMI_IS_MX23(this) ? mtd->writesize : 0;
+
+	/* Write the block mark. */
+	block_mark = this->data_buffer_dma;
+	block_mark[0] = 0; /* bad block marker */
+
+	/* Shift to get page */
+	page = (int)(ofs >> chip->page_shift);
+
+	ret = nand_prog_page_op(chip, page, column, block_mark, 1);
+
+	chip->select_chip(mtd, -1);
+
+	return ret;
+}
+
+static int nand_boot_set_geometry(struct gpmi_nand_data *this)
+{
+	struct boot_rom_geometry *geometry = &this->rom_geometry;
+
+	/*
+	 * Set the boot block stride size.
+	 *
+	 * In principle, we should be reading this from the OTP bits, since
+	 * that's where the ROM is going to get it. In fact, we don't have any
+	 * way to read the OTP bits, so we go with the default and hope for the
+	 * best.
+	 */
+	geometry->stride_size_in_pages = 64;
+
+	/*
+	 * Set the search area stride exponent.
+	 *
+	 * In principle, we should be reading this from the OTP bits, since
+	 * that's where the ROM is going to get it. In fact, we don't have any
+	 * way to read the OTP bits, so we go with the default and hope for the
+	 * best.
+	 */
+	geometry->search_area_stride_exponent = 2;
+	return 0;
+}
+
+static const char  *fingerprint = "STMP";
+static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
+{
+	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+	struct device *dev = this->dev;
+	struct nand_chip *chip = &this->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int search_area_size_in_strides;
+	unsigned int stride;
+	unsigned int page;
+	uint8_t *buffer = chip->data_buf;
+	int saved_chip_number;
+	int found_an_ncb_fingerprint = false;
+
+	/* Compute the number of strides in a search area. */
+	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+
+	saved_chip_number = this->current_chip;
+	chip->select_chip(mtd, 0);
+
+	/*
+	 * Loop through the first search area, looking for the NCB fingerprint.
+	 */
+	dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
+
+	for (stride = 0; stride < search_area_size_in_strides; stride++) {
+		/* Compute the page addresses. */
+		page = stride * rom_geo->stride_size_in_pages;
+
+		dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
+
+		/*
+		 * Read the NCB fingerprint. The fingerprint is four bytes long
+		 * and starts in the 12th byte of the page.
+		 */
+		nand_read_page_op(chip, page, 12, NULL, 0);
+		chip->read_buf(mtd, buffer, strlen(fingerprint));
+
+		/* Look for the fingerprint. */
+		if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
+			found_an_ncb_fingerprint = true;
+			break;
+		}
+
+	}
+
+	chip->select_chip(mtd, saved_chip_number);
+
+	if (found_an_ncb_fingerprint)
+		dev_dbg(dev, "\tFound a fingerprint\n");
+	else
+		dev_dbg(dev, "\tNo fingerprint found\n");
+	return found_an_ncb_fingerprint;
+}
+
+/* Writes a transcription stamp. */
+static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
+{
+	struct device *dev = this->dev;
+	struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+	struct nand_chip *chip = &this->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int block_size_in_pages;
+	unsigned int search_area_size_in_strides;
+	unsigned int search_area_size_in_pages;
+	unsigned int search_area_size_in_blocks;
+	unsigned int block;
+	unsigned int stride;
+	unsigned int page;
+	uint8_t      *buffer = chip->data_buf;
+	int saved_chip_number;
+	int status;
+
+	/* Compute the search area geometry. */
+	block_size_in_pages = mtd->erasesize / mtd->writesize;
+	search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+	search_area_size_in_pages = search_area_size_in_strides *
+					rom_geo->stride_size_in_pages;
+	search_area_size_in_blocks =
+		  (search_area_size_in_pages + (block_size_in_pages - 1)) /
+				    block_size_in_pages;
+
+	dev_dbg(dev, "Search Area Geometry :\n");
+	dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
+	dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
+	dev_dbg(dev, "\tin Pages  : %u\n", search_area_size_in_pages);
+
+	/* Select chip 0. */
+	saved_chip_number = this->current_chip;
+	chip->select_chip(mtd, 0);
+
+	/* Loop over blocks in the first search area, erasing them. */
+	dev_dbg(dev, "Erasing the search area...\n");
+
+	for (block = 0; block < search_area_size_in_blocks; block++) {
+		/* Erase this block. */
+		dev_dbg(dev, "\tErasing block 0x%x\n", block);
+		status = nand_erase_op(chip, block);
+		if (status)
+			dev_err(dev, "[%s] Erase failed.\n", __func__);
+	}
+
+	/* Write the NCB fingerprint into the page buffer. */
+	memset(buffer, ~0, mtd->writesize);
+	memcpy(buffer + 12, fingerprint, strlen(fingerprint));
+
+	/* Loop through the first search area, writing NCB fingerprints. */
+	dev_dbg(dev, "Writing NCB fingerprints...\n");
+	for (stride = 0; stride < search_area_size_in_strides; stride++) {
+		/* Compute the page addresses. */
+		page = stride * rom_geo->stride_size_in_pages;
+
+		/* Write the first page of the current stride. */
+		dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
+
+		status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page);
+		if (status)
+			dev_err(dev, "[%s] Write failed.\n", __func__);
+	}
+
+	/* Deselect chip 0. */
+	chip->select_chip(mtd, saved_chip_number);
+	return 0;
+}
+
+static int mx23_boot_init(struct gpmi_nand_data  *this)
+{
+	struct device *dev = this->dev;
+	struct nand_chip *chip = &this->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int block_count;
+	unsigned int block;
+	int     chipnr;
+	int     page;
+	loff_t  byte;
+	uint8_t block_mark;
+	int     ret = 0;
+
+	/*
+	 * If control arrives here, we can't use block mark swapping, which
+	 * means we're forced to use transcription. First, scan for the
+	 * transcription stamp. If we find it, then we don't have to do
+	 * anything -- the block marks are already transcribed.
+	 */
+	if (mx23_check_transcription_stamp(this))
+		return 0;
+
+	/*
+	 * If control arrives here, we couldn't find a transcription stamp, so
+	 * so we presume the block marks are in the conventional location.
+	 */
+	dev_dbg(dev, "Transcribing bad block marks...\n");
+
+	/* Compute the number of blocks in the entire medium. */
+	block_count = chip->chipsize >> chip->phys_erase_shift;
+
+	/*
+	 * Loop over all the blocks in the medium, transcribing block marks as
+	 * we go.
+	 */
+	for (block = 0; block < block_count; block++) {
+		/*
+		 * Compute the chip, page and byte addresses for this block's
+		 * conventional mark.
+		 */
+		chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
+		page = block << (chip->phys_erase_shift - chip->page_shift);
+		byte = block <<  chip->phys_erase_shift;
+
+		/* Send the command to read the conventional block mark. */
+		chip->select_chip(mtd, chipnr);
+		nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
+		block_mark = chip->read_byte(mtd);
+		chip->select_chip(mtd, -1);
+
+		/*
+		 * Check if the block is marked bad. If so, we need to mark it
+		 * again, but this time the result will be a mark in the
+		 * location where we transcribe block marks.
+		 */
+		if (block_mark != 0xff) {
+			dev_dbg(dev, "Transcribing mark in block %u\n", block);
+			ret = chip->block_markbad(mtd, byte);
+			if (ret)
+				dev_err(dev,
+					"Failed to mark block bad with ret %d\n",
+					ret);
+		}
+	}
+
+	/* Write the stamp that indicates we've transcribed the block marks. */
+	mx23_write_transcription_stamp(this);
+	return 0;
+}
+
+static int nand_boot_init(struct gpmi_nand_data  *this)
+{
+	nand_boot_set_geometry(this);
+
+	/* This is ROM arch-specific initilization before the BBT scanning. */
+	if (GPMI_IS_MX23(this))
+		return mx23_boot_init(this);
+	return 0;
+}
+
+static int gpmi_set_geometry(struct gpmi_nand_data *this)
+{
+	int ret;
+
+	/* Free the temporary DMA memory for reading ID. */
+	gpmi_free_dma_buffer(this);
+
+	/* Set up the NFC geometry which is used by BCH. */
+	ret = bch_set_geometry(this);
+	if (ret) {
+		dev_err(this->dev, "Error setting BCH geometry : %d\n", ret);
+		return ret;
+	}
+
+	/* Alloc the new DMA buffers according to the pagesize and oobsize */
+	return gpmi_alloc_dma_buffer(this);
+}
+
+static int gpmi_init_last(struct gpmi_nand_data *this)
+{
+	struct nand_chip *chip = &this->nand;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct bch_geometry *bch_geo = &this->bch_geometry;
+	int ret;
+
+	/* Set up the medium geometry */
+	ret = gpmi_set_geometry(this);
+	if (ret)
+		return ret;
+
+	/* Init the nand_ecc_ctrl{} */
+	ecc->read_page	= gpmi_ecc_read_page;
+	ecc->write_page	= gpmi_ecc_write_page;
+	ecc->read_oob	= gpmi_ecc_read_oob;
+	ecc->write_oob	= gpmi_ecc_write_oob;
+	ecc->read_page_raw = gpmi_ecc_read_page_raw;
+	ecc->write_page_raw = gpmi_ecc_write_page_raw;
+	ecc->read_oob_raw = gpmi_ecc_read_oob_raw;
+	ecc->write_oob_raw = gpmi_ecc_write_oob_raw;
+	ecc->mode	= NAND_ECC_HW;
+	ecc->size	= bch_geo->ecc_chunk_size;
+	ecc->strength	= bch_geo->ecc_strength;
+	mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops);
+
+	/*
+	 * We only enable the subpage read when:
+	 *  (1) the chip is imx6, and
+	 *  (2) the size of the ECC parity is byte aligned.
+	 */
+	if (GPMI_IS_MX6(this) &&
+		((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) {
+		ecc->read_subpage = gpmi_ecc_read_subpage;
+		chip->options |= NAND_SUBPAGE_READ;
+	}
+
+	return 0;
+}
+
+static int gpmi_nand_attach_chip(struct nand_chip *chip)
+{
+	struct gpmi_nand_data *this = nand_get_controller_data(chip);
+	int ret;
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+		if (of_property_read_bool(this->dev->of_node,
+					  "fsl,no-blockmark-swap"))
+			this->swap_block_mark = false;
+	}
+	dev_dbg(this->dev, "Blockmark swapping %sabled\n",
+		this->swap_block_mark ? "en" : "dis");
+
+	ret = gpmi_init_last(this);
+	if (ret)
+		return ret;
+
+	chip->options |= NAND_SKIP_BBTSCAN;
+
+	return 0;
+}
+
+static const struct nand_controller_ops gpmi_nand_controller_ops = {
+	.attach_chip = gpmi_nand_attach_chip,
+};
+
+static int gpmi_nand_init(struct gpmi_nand_data *this)
+{
+	struct nand_chip *chip = &this->nand;
+	struct mtd_info  *mtd = nand_to_mtd(chip);
+	int ret;
+
+	/* init current chip */
+	this->current_chip	= -1;
+
+	/* init the MTD data structures */
+	mtd->name		= "gpmi-nand";
+	mtd->dev.parent		= this->dev;
+
+	/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
+	nand_set_controller_data(chip, this);
+	nand_set_flash_node(chip, this->pdev->dev.of_node);
+	chip->select_chip	= gpmi_select_chip;
+	chip->setup_data_interface = gpmi_setup_data_interface;
+	chip->cmd_ctrl		= gpmi_cmd_ctrl;
+	chip->dev_ready		= gpmi_dev_ready;
+	chip->read_byte		= gpmi_read_byte;
+	chip->read_buf		= gpmi_read_buf;
+	chip->write_buf		= gpmi_write_buf;
+	chip->badblock_pattern	= &gpmi_bbt_descr;
+	chip->block_markbad	= gpmi_block_markbad;
+	chip->options		|= NAND_NO_SUBPAGE_WRITE;
+
+	/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
+	this->swap_block_mark = !GPMI_IS_MX23(this);
+
+	/*
+	 * Allocate a temporary DMA buffer for reading ID in the
+	 * nand_scan_ident().
+	 */
+	this->bch_geometry.payload_size = 1024;
+	this->bch_geometry.auxiliary_size = 128;
+	ret = gpmi_alloc_dma_buffer(this);
+	if (ret)
+		goto err_out;
+
+	chip->dummy_controller.ops = &gpmi_nand_controller_ops;
+	ret = nand_scan(mtd, GPMI_IS_MX6(this) ? 2 : 1);
+	if (ret)
+		goto err_out;
+
+	ret = nand_boot_init(this);
+	if (ret)
+		goto err_nand_cleanup;
+	ret = nand_create_bbt(chip);
+	if (ret)
+		goto err_nand_cleanup;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		goto err_nand_cleanup;
+	return 0;
+
+err_nand_cleanup:
+	nand_cleanup(chip);
+err_out:
+	gpmi_free_dma_buffer(this);
+	return ret;
+}
+
+static const struct of_device_id gpmi_nand_id_table[] = {
+	{
+		.compatible = "fsl,imx23-gpmi-nand",
+		.data = &gpmi_devdata_imx23,
+	}, {
+		.compatible = "fsl,imx28-gpmi-nand",
+		.data = &gpmi_devdata_imx28,
+	}, {
+		.compatible = "fsl,imx6q-gpmi-nand",
+		.data = &gpmi_devdata_imx6q,
+	}, {
+		.compatible = "fsl,imx6sx-gpmi-nand",
+		.data = &gpmi_devdata_imx6sx,
+	}, {
+		.compatible = "fsl,imx7d-gpmi-nand",
+		.data = &gpmi_devdata_imx7d,
+	}, {}
+};
+MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
+
+static int gpmi_nand_probe(struct platform_device *pdev)
+{
+	struct gpmi_nand_data *this;
+	const struct of_device_id *of_id;
+	int ret;
+
+	this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
+	if (!this)
+		return -ENOMEM;
+
+	of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
+	if (of_id) {
+		this->devdata = of_id->data;
+	} else {
+		dev_err(&pdev->dev, "Failed to find the right device id.\n");
+		return -ENODEV;
+	}
+
+	platform_set_drvdata(pdev, this);
+	this->pdev  = pdev;
+	this->dev   = &pdev->dev;
+
+	ret = acquire_resources(this);
+	if (ret)
+		goto exit_acquire_resources;
+
+	ret = gpmi_init(this);
+	if (ret)
+		goto exit_nfc_init;
+
+	ret = gpmi_nand_init(this);
+	if (ret)
+		goto exit_nfc_init;
+
+	dev_info(this->dev, "driver registered.\n");
+
+	return 0;
+
+exit_nfc_init:
+	release_resources(this);
+exit_acquire_resources:
+
+	return ret;
+}
+
+static int gpmi_nand_remove(struct platform_device *pdev)
+{
+	struct gpmi_nand_data *this = platform_get_drvdata(pdev);
+
+	nand_release(nand_to_mtd(&this->nand));
+	gpmi_free_dma_buffer(this);
+	release_resources(this);
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int gpmi_pm_suspend(struct device *dev)
+{
+	struct gpmi_nand_data *this = dev_get_drvdata(dev);
+
+	release_dma_channels(this);
+	return 0;
+}
+
+static int gpmi_pm_resume(struct device *dev)
+{
+	struct gpmi_nand_data *this = dev_get_drvdata(dev);
+	int ret;
+
+	ret = acquire_dma_channels(this);
+	if (ret < 0)
+		return ret;
+
+	/* re-init the GPMI registers */
+	ret = gpmi_init(this);
+	if (ret) {
+		dev_err(this->dev, "Error setting GPMI : %d\n", ret);
+		return ret;
+	}
+
+	/* re-init the BCH registers */
+	ret = bch_set_geometry(this);
+	if (ret) {
+		dev_err(this->dev, "Error setting BCH : %d\n", ret);
+		return ret;
+	}
+
+	return 0;
+}
+#endif /* CONFIG_PM_SLEEP */
+
+static const struct dev_pm_ops gpmi_pm_ops = {
+	SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
+};
+
+static struct platform_driver gpmi_nand_driver = {
+	.driver = {
+		.name = "gpmi-nand",
+		.pm = &gpmi_pm_ops,
+		.of_match_table = gpmi_nand_id_table,
+	},
+	.probe   = gpmi_nand_probe,
+	.remove  = gpmi_nand_remove,
+};
+module_platform_driver(gpmi_nand_driver);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
new file mode 100644
index 0000000..69cd0cb
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
@@ -0,0 +1,210 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ */
+#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H
+#define __DRIVERS_MTD_NAND_GPMI_NAND_H
+
+#include <linux/mtd/rawnand.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+
+#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */
+struct resources {
+	void __iomem  *gpmi_regs;
+	void __iomem  *bch_regs;
+	unsigned int  dma_low_channel;
+	unsigned int  dma_high_channel;
+	struct clk    *clock[GPMI_CLK_MAX];
+};
+
+/**
+ * struct bch_geometry - BCH geometry description.
+ * @gf_len:                   The length of Galois Field. (e.g., 13 or 14)
+ * @ecc_strength:             A number that describes the strength of the ECC
+ *                            algorithm.
+ * @page_size:                The size, in bytes, of a physical page, including
+ *                            both data and OOB.
+ * @metadata_size:            The size, in bytes, of the metadata.
+ * @ecc_chunk_size:           The size, in bytes, of a single ECC chunk. Note
+ *                            the first chunk in the page includes both data and
+ *                            metadata, so it's a bit larger than this value.
+ * @ecc_chunk_count:          The number of ECC chunks in the page,
+ * @payload_size:             The size, in bytes, of the payload buffer.
+ * @auxiliary_size:           The size, in bytes, of the auxiliary buffer.
+ * @auxiliary_status_offset:  The offset into the auxiliary buffer at which
+ *                            the ECC status appears.
+ * @block_mark_byte_offset:   The byte offset in the ECC-based page view at
+ *                            which the underlying physical block mark appears.
+ * @block_mark_bit_offset:    The bit offset into the ECC-based page view at
+ *                            which the underlying physical block mark appears.
+ */
+struct bch_geometry {
+	unsigned int  gf_len;
+	unsigned int  ecc_strength;
+	unsigned int  page_size;
+	unsigned int  metadata_size;
+	unsigned int  ecc_chunk_size;
+	unsigned int  ecc_chunk_count;
+	unsigned int  payload_size;
+	unsigned int  auxiliary_size;
+	unsigned int  auxiliary_status_offset;
+	unsigned int  block_mark_byte_offset;
+	unsigned int  block_mark_bit_offset;
+};
+
+/**
+ * struct boot_rom_geometry - Boot ROM geometry description.
+ * @stride_size_in_pages:        The size of a boot block stride, in pages.
+ * @search_area_stride_exponent: The logarithm to base 2 of the size of a
+ *                               search area in boot block strides.
+ */
+struct boot_rom_geometry {
+	unsigned int  stride_size_in_pages;
+	unsigned int  search_area_stride_exponent;
+};
+
+enum gpmi_type {
+	IS_MX23,
+	IS_MX28,
+	IS_MX6Q,
+	IS_MX6SX,
+	IS_MX7D,
+};
+
+struct gpmi_devdata {
+	enum gpmi_type type;
+	int bch_max_ecc_strength;
+	int max_chain_delay; /* See the async EDO mode */
+	const char * const *clks;
+	const int clks_count;
+};
+
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
+ * @must_apply_timings:        Whether controller timings have already been
+ *                             applied or not (useful only while there is
+ *                             support for only one chip select)
+ * @clk_rate:                  The clock rate that must be used to derive the
+ *                             following parameters
+ * @timing0:                   HW_GPMI_TIMING0 register
+ * @timing1:                   HW_GPMI_TIMING1 register
+ * @ctrl1n:                    HW_GPMI_CTRL1n register
+ */
+struct gpmi_nfc_hardware_timing {
+	bool must_apply_timings;
+	unsigned long int clk_rate;
+	u32 timing0;
+	u32 timing1;
+	u32 ctrl1n;
+};
+
+struct gpmi_nand_data {
+	/* Devdata */
+	const struct gpmi_devdata *devdata;
+
+	/* System Interface */
+	struct device		*dev;
+	struct platform_device	*pdev;
+
+	/* Resources */
+	struct resources	resources;
+
+	/* Flash Hardware */
+	struct gpmi_nfc_hardware_timing hw;
+
+	/* BCH */
+	struct bch_geometry	bch_geometry;
+	struct completion	bch_done;
+
+	/* NAND Boot issue */
+	bool			swap_block_mark;
+	struct boot_rom_geometry rom_geometry;
+
+	/* MTD / NAND */
+	struct nand_chip	nand;
+
+	/* General-use Variables */
+	int			current_chip;
+	unsigned int		command_length;
+
+	struct scatterlist	cmd_sgl;
+	char			*cmd_buffer;
+
+	struct scatterlist	data_sgl;
+	char			*data_buffer_dma;
+
+	void			*page_buffer_virt;
+	dma_addr_t		page_buffer_phys;
+	unsigned int		page_buffer_size;
+
+	void			*payload_virt;
+	dma_addr_t		payload_phys;
+
+	void			*auxiliary_virt;
+	dma_addr_t		auxiliary_phys;
+
+	void			*raw_buffer;
+
+	/* DMA channels */
+#define DMA_CHANS		8
+	struct dma_chan		*dma_chans[DMA_CHANS];
+	struct completion	dma_done;
+
+	/* private */
+	void			*private;
+};
+
+/* Common Services */
+int common_nfc_set_geometry(struct gpmi_nand_data *);
+struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
+bool prepare_data_dma(struct gpmi_nand_data *, const void *buf, int len,
+		      enum dma_data_direction dr);
+int start_dma_without_bch_irq(struct gpmi_nand_data *,
+			      struct dma_async_tx_descriptor *);
+int start_dma_with_bch_irq(struct gpmi_nand_data *,
+			   struct dma_async_tx_descriptor *);
+
+/* GPMI-NAND helper function library */
+int gpmi_init(struct gpmi_nand_data *);
+void gpmi_clear_bch(struct gpmi_nand_data *);
+void gpmi_dump_info(struct gpmi_nand_data *);
+int bch_set_geometry(struct gpmi_nand_data *);
+int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
+int gpmi_send_command(struct gpmi_nand_data *);
+int gpmi_enable_clk(struct gpmi_nand_data *this);
+int gpmi_disable_clk(struct gpmi_nand_data *this);
+int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
+			      const struct nand_data_interface *conf);
+void gpmi_nfc_apply_timings(struct gpmi_nand_data *this);
+int gpmi_read_data(struct gpmi_nand_data *, void *buf, int len);
+int gpmi_send_data(struct gpmi_nand_data *, const void *buf, int len);
+
+int gpmi_send_page(struct gpmi_nand_data *,
+		   dma_addr_t payload, dma_addr_t auxiliary);
+int gpmi_read_page(struct gpmi_nand_data *,
+		   dma_addr_t payload, dma_addr_t auxiliary);
+
+void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
+		    const u8 *src, size_t src_bit_off,
+		    size_t nbits);
+
+/* BCH : Status Block Completion Codes */
+#define STATUS_GOOD		0x00
+#define STATUS_ERASED		0xff
+#define STATUS_UNCORRECTABLE	0xfe
+
+/* Use the devdata to distinguish different Archs. */
+#define GPMI_IS_MX23(x)		((x)->devdata->type == IS_MX23)
+#define GPMI_IS_MX28(x)		((x)->devdata->type == IS_MX28)
+#define GPMI_IS_MX6Q(x)		((x)->devdata->type == IS_MX6Q)
+#define GPMI_IS_MX6SX(x)	((x)->devdata->type == IS_MX6SX)
+#define GPMI_IS_MX7D(x)		((x)->devdata->type == IS_MX7D)
+
+#define GPMI_IS_MX6(x)		(GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \
+				 GPMI_IS_MX7D(x))
+#endif
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
new file mode 100644
index 0000000..d92bf32
--- /dev/null
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
@@ -0,0 +1,192 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright 2008-2011 Freescale Semiconductor, Inc.
+ * Copyright 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#ifndef __GPMI_NAND_GPMI_REGS_H
+#define __GPMI_NAND_GPMI_REGS_H
+
+#define HW_GPMI_CTRL0					0x00000000
+#define HW_GPMI_CTRL0_SET				0x00000004
+#define HW_GPMI_CTRL0_CLR				0x00000008
+#define HW_GPMI_CTRL0_TOG				0x0000000c
+
+#define BP_GPMI_CTRL0_COMMAND_MODE			24
+#define BM_GPMI_CTRL0_COMMAND_MODE	(3 << BP_GPMI_CTRL0_COMMAND_MODE)
+#define BF_GPMI_CTRL0_COMMAND_MODE(v)	\
+	(((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE)
+#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE		0x0
+#define BV_GPMI_CTRL0_COMMAND_MODE__READ		0x1
+#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE	0x2
+#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY	0x3
+
+#define BM_GPMI_CTRL0_WORD_LENGTH			(1 << 23)
+#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT		0x0
+#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT		0x1
+
+/*
+ *  Difference in LOCK_CS between imx23 and imx28 :
+ *  This bit may impact the _POWER_ consumption. So some chips
+ *  do not set it.
+ */
+#define MX23_BP_GPMI_CTRL0_LOCK_CS			22
+#define MX28_BP_GPMI_CTRL0_LOCK_CS			27
+#define LOCK_CS_ENABLE					0x1
+#define BF_GPMI_CTRL0_LOCK_CS(v, x)			0x0
+
+/* Difference in CS between imx23 and imx28 */
+#define BP_GPMI_CTRL0_CS				20
+#define MX23_BM_GPMI_CTRL0_CS		(3 << BP_GPMI_CTRL0_CS)
+#define MX28_BM_GPMI_CTRL0_CS		(7 << BP_GPMI_CTRL0_CS)
+#define BF_GPMI_CTRL0_CS(v, x)		(((v) << BP_GPMI_CTRL0_CS) & \
+						(GPMI_IS_MX23((x)) \
+						? MX23_BM_GPMI_CTRL0_CS	\
+						: MX28_BM_GPMI_CTRL0_CS))
+
+#define BP_GPMI_CTRL0_ADDRESS				17
+#define BM_GPMI_CTRL0_ADDRESS		(3 << BP_GPMI_CTRL0_ADDRESS)
+#define BF_GPMI_CTRL0_ADDRESS(v)	\
+		(((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS)
+#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA		0x0
+#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE			0x1
+#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE			0x2
+
+#define BM_GPMI_CTRL0_ADDRESS_INCREMENT			(1 << 16)
+#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED	0x0
+#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED	0x1
+
+#define BP_GPMI_CTRL0_XFER_COUNT			0
+#define BM_GPMI_CTRL0_XFER_COUNT	(0xffff << BP_GPMI_CTRL0_XFER_COUNT)
+#define BF_GPMI_CTRL0_XFER_COUNT(v)	\
+		(((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT)
+
+#define HW_GPMI_COMPARE					0x00000010
+
+#define HW_GPMI_ECCCTRL					0x00000020
+#define HW_GPMI_ECCCTRL_SET				0x00000024
+#define HW_GPMI_ECCCTRL_CLR				0x00000028
+#define HW_GPMI_ECCCTRL_TOG				0x0000002c
+
+#define BP_GPMI_ECCCTRL_ECC_CMD				13
+#define BM_GPMI_ECCCTRL_ECC_CMD		(3 << BP_GPMI_ECCCTRL_ECC_CMD)
+#define BF_GPMI_ECCCTRL_ECC_CMD(v)	\
+		(((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD)
+#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE		0x0
+#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE		0x1
+
+#define BM_GPMI_ECCCTRL_ENABLE_ECC			(1 << 12)
+#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE		0x1
+#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE		0x0
+
+#define BP_GPMI_ECCCTRL_BUFFER_MASK			0
+#define BM_GPMI_ECCCTRL_BUFFER_MASK	(0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK)
+#define BF_GPMI_ECCCTRL_BUFFER_MASK(v)	\
+	(((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK)
+#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY	0x100
+#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE		0x1FF
+
+#define HW_GPMI_ECCCOUNT				0x00000030
+#define HW_GPMI_PAYLOAD					0x00000040
+#define HW_GPMI_AUXILIARY				0x00000050
+#define HW_GPMI_CTRL1					0x00000060
+#define HW_GPMI_CTRL1_SET				0x00000064
+#define HW_GPMI_CTRL1_CLR				0x00000068
+#define HW_GPMI_CTRL1_TOG				0x0000006c
+
+#define BP_GPMI_CTRL1_DECOUPLE_CS			24
+#define BM_GPMI_CTRL1_DECOUPLE_CS	(1 << BP_GPMI_CTRL1_DECOUPLE_CS)
+
+#define BP_GPMI_CTRL1_WRN_DLY_SEL			22
+#define BM_GPMI_CTRL1_WRN_DLY_SEL	(0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL)
+#define BF_GPMI_CTRL1_WRN_DLY_SEL(v)  \
+	(((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL)
+#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS		0x0
+#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS		0x1
+#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS		0x2
+#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY		0x3
+
+#define BM_GPMI_CTRL1_BCH_MODE				(1 << 18)
+
+#define BP_GPMI_CTRL1_DLL_ENABLE			17
+#define BM_GPMI_CTRL1_DLL_ENABLE	(1 << BP_GPMI_CTRL1_DLL_ENABLE)
+
+#define BP_GPMI_CTRL1_HALF_PERIOD			16
+#define BM_GPMI_CTRL1_HALF_PERIOD	(1 << BP_GPMI_CTRL1_HALF_PERIOD)
+
+#define BP_GPMI_CTRL1_RDN_DELAY				12
+#define BM_GPMI_CTRL1_RDN_DELAY		(0xf << BP_GPMI_CTRL1_RDN_DELAY)
+#define BF_GPMI_CTRL1_RDN_DELAY(v)	\
+		(((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY)
+
+#define BM_GPMI_CTRL1_DEV_RESET				(1 << 3)
+#define BV_GPMI_CTRL1_DEV_RESET__ENABLED		0x0
+#define BV_GPMI_CTRL1_DEV_RESET__DISABLED		0x1
+
+#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY		(1 << 2)
+#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW	0x0
+#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH	0x1
+
+#define BM_GPMI_CTRL1_CAMERA_MODE			(1 << 1)
+#define BV_GPMI_CTRL1_GPMI_MODE__NAND			0x0
+#define BV_GPMI_CTRL1_GPMI_MODE__ATA			0x1
+
+#define BM_GPMI_CTRL1_GPMI_MODE				(1 << 0)
+
+#define BM_GPMI_CTRL1_CLEAR_MASK (BM_GPMI_CTRL1_WRN_DLY_SEL | \
+				  BM_GPMI_CTRL1_DLL_ENABLE |  \
+				  BM_GPMI_CTRL1_RDN_DELAY |   \
+				  BM_GPMI_CTRL1_HALF_PERIOD)
+
+#define HW_GPMI_TIMING0					0x00000070
+
+#define BP_GPMI_TIMING0_ADDRESS_SETUP			16
+#define BM_GPMI_TIMING0_ADDRESS_SETUP	(0xff << BP_GPMI_TIMING0_ADDRESS_SETUP)
+#define BF_GPMI_TIMING0_ADDRESS_SETUP(v)	\
+	(((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP)
+
+#define BP_GPMI_TIMING0_DATA_HOLD			8
+#define BM_GPMI_TIMING0_DATA_HOLD	(0xff << BP_GPMI_TIMING0_DATA_HOLD)
+#define BF_GPMI_TIMING0_DATA_HOLD(v)		\
+	(((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD)
+
+#define BP_GPMI_TIMING0_DATA_SETUP			0
+#define BM_GPMI_TIMING0_DATA_SETUP	(0xff << BP_GPMI_TIMING0_DATA_SETUP)
+#define BF_GPMI_TIMING0_DATA_SETUP(v)		\
+	(((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP)
+
+#define HW_GPMI_TIMING1					0x00000080
+#define BP_GPMI_TIMING1_BUSY_TIMEOUT			16
+#define BM_GPMI_TIMING1_BUSY_TIMEOUT	(0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT)
+#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v)		\
+	(((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT)
+
+#define HW_GPMI_TIMING2					0x00000090
+#define HW_GPMI_DATA					0x000000a0
+
+/* MX28 uses this to detect READY. */
+#define HW_GPMI_STAT					0x000000b0
+#define MX28_BP_GPMI_STAT_READY_BUSY			24
+#define MX28_BM_GPMI_STAT_READY_BUSY	(0xff << MX28_BP_GPMI_STAT_READY_BUSY)
+#define MX28_BF_GPMI_STAT_READY_BUSY(v)		\
+	(((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY)
+
+/* MX23 uses this to detect READY. */
+#define HW_GPMI_DEBUG					0x000000c0
+#define MX23_BP_GPMI_DEBUG_READY0			28
+#define MX23_BM_GPMI_DEBUG_READY0	(1 << MX23_BP_GPMI_DEBUG_READY0)
+#endif
diff --git a/drivers/mtd/nand/raw/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c
new file mode 100644
index 0000000..950dc77
--- /dev/null
+++ b/drivers/mtd/nand/raw/hisi504_nand.c
@@ -0,0 +1,895 @@
+/*
+ * Hisilicon NAND Flash controller driver
+ *
+ * Copyright © 2012-2014 HiSilicon Technologies Co., Ltd.
+ *              http://www.hisilicon.com
+ *
+ * Author: Zhou Wang <wangzhou.bry@gmail.com>
+ * The initial developer of the original code is Zhiyong Cai
+ * <caizhiyong@huawei.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+#include <linux/of.h>
+#include <linux/mtd/mtd.h>
+#include <linux/sizes.h>
+#include <linux/clk.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/dma-mapping.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/partitions.h>
+
+#define HINFC504_MAX_CHIP                               (4)
+#define HINFC504_W_LATCH                                (5)
+#define HINFC504_R_LATCH                                (7)
+#define HINFC504_RW_LATCH                               (3)
+
+#define HINFC504_NFC_TIMEOUT				(2 * HZ)
+#define HINFC504_NFC_PM_TIMEOUT				(1 * HZ)
+#define HINFC504_NFC_DMA_TIMEOUT			(5 * HZ)
+#define HINFC504_CHIP_DELAY				(25)
+
+#define HINFC504_REG_BASE_ADDRESS_LEN			(0x100)
+#define HINFC504_BUFFER_BASE_ADDRESS_LEN		(2048 + 128)
+
+#define HINFC504_ADDR_CYCLE_MASK			0x4
+
+#define HINFC504_CON					0x00
+#define HINFC504_CON_OP_MODE_NORMAL			BIT(0)
+#define HINFC504_CON_PAGEISZE_SHIFT			(1)
+#define HINFC504_CON_PAGESIZE_MASK			(0x07)
+#define HINFC504_CON_BUS_WIDTH				BIT(4)
+#define HINFC504_CON_READY_BUSY_SEL			BIT(8)
+#define HINFC504_CON_ECCTYPE_SHIFT			(9)
+#define HINFC504_CON_ECCTYPE_MASK			(0x07)
+
+#define HINFC504_PWIDTH					0x04
+#define SET_HINFC504_PWIDTH(_w_lcnt, _r_lcnt, _rw_hcnt) \
+	((_w_lcnt) | (((_r_lcnt) & 0x0F) << 4) | (((_rw_hcnt) & 0x0F) << 8))
+
+#define HINFC504_CMD					0x0C
+#define HINFC504_ADDRL					0x10
+#define HINFC504_ADDRH					0x14
+#define HINFC504_DATA_NUM				0x18
+
+#define HINFC504_OP					0x1C
+#define HINFC504_OP_READ_DATA_EN			BIT(1)
+#define HINFC504_OP_WAIT_READY_EN			BIT(2)
+#define HINFC504_OP_CMD2_EN				BIT(3)
+#define HINFC504_OP_WRITE_DATA_EN			BIT(4)
+#define HINFC504_OP_ADDR_EN				BIT(5)
+#define HINFC504_OP_CMD1_EN				BIT(6)
+#define HINFC504_OP_NF_CS_SHIFT                         (7)
+#define HINFC504_OP_NF_CS_MASK				(3)
+#define HINFC504_OP_ADDR_CYCLE_SHIFT			(9)
+#define HINFC504_OP_ADDR_CYCLE_MASK			(7)
+
+#define HINFC504_STATUS                                 0x20
+#define HINFC504_READY					BIT(0)
+
+#define HINFC504_INTEN					0x24
+#define HINFC504_INTEN_DMA				BIT(9)
+#define HINFC504_INTEN_UE				BIT(6)
+#define HINFC504_INTEN_CE				BIT(5)
+
+#define HINFC504_INTS					0x28
+#define HINFC504_INTS_DMA				BIT(9)
+#define HINFC504_INTS_UE				BIT(6)
+#define HINFC504_INTS_CE				BIT(5)
+
+#define HINFC504_INTCLR                                 0x2C
+#define HINFC504_INTCLR_DMA				BIT(9)
+#define HINFC504_INTCLR_UE				BIT(6)
+#define HINFC504_INTCLR_CE				BIT(5)
+
+#define HINFC504_ECC_STATUS                             0x5C
+#define HINFC504_ECC_16_BIT_SHIFT                       12
+
+#define HINFC504_DMA_CTRL				0x60
+#define HINFC504_DMA_CTRL_DMA_START			BIT(0)
+#define HINFC504_DMA_CTRL_WE				BIT(1)
+#define HINFC504_DMA_CTRL_DATA_AREA_EN			BIT(2)
+#define HINFC504_DMA_CTRL_OOB_AREA_EN			BIT(3)
+#define HINFC504_DMA_CTRL_BURST4_EN			BIT(4)
+#define HINFC504_DMA_CTRL_BURST8_EN			BIT(5)
+#define HINFC504_DMA_CTRL_BURST16_EN			BIT(6)
+#define HINFC504_DMA_CTRL_ADDR_NUM_SHIFT		(7)
+#define HINFC504_DMA_CTRL_ADDR_NUM_MASK                 (1)
+#define HINFC504_DMA_CTRL_CS_SHIFT			(8)
+#define HINFC504_DMA_CTRL_CS_MASK			(0x03)
+
+#define HINFC504_DMA_ADDR_DATA				0x64
+#define HINFC504_DMA_ADDR_OOB				0x68
+
+#define HINFC504_DMA_LEN				0x6C
+#define HINFC504_DMA_LEN_OOB_SHIFT			(16)
+#define HINFC504_DMA_LEN_OOB_MASK			(0xFFF)
+
+#define HINFC504_DMA_PARA				0x70
+#define HINFC504_DMA_PARA_DATA_RW_EN			BIT(0)
+#define HINFC504_DMA_PARA_OOB_RW_EN			BIT(1)
+#define HINFC504_DMA_PARA_DATA_EDC_EN			BIT(2)
+#define HINFC504_DMA_PARA_OOB_EDC_EN			BIT(3)
+#define HINFC504_DMA_PARA_DATA_ECC_EN			BIT(4)
+#define HINFC504_DMA_PARA_OOB_ECC_EN			BIT(5)
+
+#define HINFC_VERSION                                   0x74
+#define HINFC504_LOG_READ_ADDR				0x7C
+#define HINFC504_LOG_READ_LEN				0x80
+
+#define HINFC504_NANDINFO_LEN				0x10
+
+struct hinfc_host {
+	struct nand_chip	chip;
+	struct device		*dev;
+	void __iomem		*iobase;
+	void __iomem		*mmio;
+	struct completion       cmd_complete;
+	unsigned int		offset;
+	unsigned int		command;
+	int			chipselect;
+	unsigned int		addr_cycle;
+	u32                     addr_value[2];
+	u32                     cache_addr_value[2];
+	char			*buffer;
+	dma_addr_t		dma_buffer;
+	dma_addr_t		dma_oob;
+	int			version;
+	unsigned int            irq_status; /* interrupt status */
+};
+
+static inline unsigned int hinfc_read(struct hinfc_host *host, unsigned int reg)
+{
+	return readl(host->iobase + reg);
+}
+
+static inline void hinfc_write(struct hinfc_host *host, unsigned int value,
+			       unsigned int reg)
+{
+	writel(value, host->iobase + reg);
+}
+
+static void wait_controller_finished(struct hinfc_host *host)
+{
+	unsigned long timeout = jiffies + HINFC504_NFC_TIMEOUT;
+	int val;
+
+	while (time_before(jiffies, timeout)) {
+		val = hinfc_read(host, HINFC504_STATUS);
+		if (host->command == NAND_CMD_ERASE2) {
+			/* nfc is ready */
+			while (!(val & HINFC504_READY))	{
+				usleep_range(500, 1000);
+				val = hinfc_read(host, HINFC504_STATUS);
+			}
+			return;
+		}
+
+		if (val & HINFC504_READY)
+			return;
+	}
+
+	/* wait cmd timeout */
+	dev_err(host->dev, "Wait NAND controller exec cmd timeout.\n");
+}
+
+static void hisi_nfc_dma_transfer(struct hinfc_host *host, int todev)
+{
+	struct nand_chip *chip = &host->chip;
+	struct mtd_info	*mtd = nand_to_mtd(chip);
+	unsigned long val;
+	int ret;
+
+	hinfc_write(host, host->dma_buffer, HINFC504_DMA_ADDR_DATA);
+	hinfc_write(host, host->dma_oob, HINFC504_DMA_ADDR_OOB);
+
+	if (chip->ecc.mode == NAND_ECC_NONE) {
+		hinfc_write(host, ((mtd->oobsize & HINFC504_DMA_LEN_OOB_MASK)
+			<< HINFC504_DMA_LEN_OOB_SHIFT), HINFC504_DMA_LEN);
+
+		hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN
+			| HINFC504_DMA_PARA_OOB_RW_EN, HINFC504_DMA_PARA);
+	} else {
+		if (host->command == NAND_CMD_READOOB)
+			hinfc_write(host, HINFC504_DMA_PARA_OOB_RW_EN
+			| HINFC504_DMA_PARA_OOB_EDC_EN
+			| HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA);
+		else
+			hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN
+			| HINFC504_DMA_PARA_OOB_RW_EN
+			| HINFC504_DMA_PARA_DATA_EDC_EN
+			| HINFC504_DMA_PARA_OOB_EDC_EN
+			| HINFC504_DMA_PARA_DATA_ECC_EN
+			| HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA);
+
+	}
+
+	val = (HINFC504_DMA_CTRL_DMA_START | HINFC504_DMA_CTRL_BURST4_EN
+		| HINFC504_DMA_CTRL_BURST8_EN | HINFC504_DMA_CTRL_BURST16_EN
+		| HINFC504_DMA_CTRL_DATA_AREA_EN | HINFC504_DMA_CTRL_OOB_AREA_EN
+		| ((host->addr_cycle == 4 ? 1 : 0)
+			<< HINFC504_DMA_CTRL_ADDR_NUM_SHIFT)
+		| ((host->chipselect & HINFC504_DMA_CTRL_CS_MASK)
+			<< HINFC504_DMA_CTRL_CS_SHIFT));
+
+	if (todev)
+		val |= HINFC504_DMA_CTRL_WE;
+
+	init_completion(&host->cmd_complete);
+
+	hinfc_write(host, val, HINFC504_DMA_CTRL);
+	ret = wait_for_completion_timeout(&host->cmd_complete,
+			HINFC504_NFC_DMA_TIMEOUT);
+
+	if (!ret) {
+		dev_err(host->dev, "DMA operation(irq) timeout!\n");
+		/* sanity check */
+		val = hinfc_read(host, HINFC504_DMA_CTRL);
+		if (!(val & HINFC504_DMA_CTRL_DMA_START))
+			dev_err(host->dev, "DMA is already done but without irq ACK!\n");
+		else
+			dev_err(host->dev, "DMA is really timeout!\n");
+	}
+}
+
+static int hisi_nfc_send_cmd_pageprog(struct hinfc_host *host)
+{
+	host->addr_value[0] &= 0xffff0000;
+
+	hinfc_write(host, host->addr_value[0], HINFC504_ADDRL);
+	hinfc_write(host, host->addr_value[1], HINFC504_ADDRH);
+	hinfc_write(host, NAND_CMD_PAGEPROG << 8 | NAND_CMD_SEQIN,
+		    HINFC504_CMD);
+
+	hisi_nfc_dma_transfer(host, 1);
+
+	return 0;
+}
+
+static int hisi_nfc_send_cmd_readstart(struct hinfc_host *host)
+{
+	struct mtd_info	*mtd = nand_to_mtd(&host->chip);
+
+	if ((host->addr_value[0] == host->cache_addr_value[0]) &&
+	    (host->addr_value[1] == host->cache_addr_value[1]))
+		return 0;
+
+	host->addr_value[0] &= 0xffff0000;
+
+	hinfc_write(host, host->addr_value[0], HINFC504_ADDRL);
+	hinfc_write(host, host->addr_value[1], HINFC504_ADDRH);
+	hinfc_write(host, NAND_CMD_READSTART << 8 | NAND_CMD_READ0,
+		    HINFC504_CMD);
+
+	hinfc_write(host, 0, HINFC504_LOG_READ_ADDR);
+	hinfc_write(host, mtd->writesize + mtd->oobsize,
+		    HINFC504_LOG_READ_LEN);
+
+	hisi_nfc_dma_transfer(host, 0);
+
+	host->cache_addr_value[0] = host->addr_value[0];
+	host->cache_addr_value[1] = host->addr_value[1];
+
+	return 0;
+}
+
+static int hisi_nfc_send_cmd_erase(struct hinfc_host *host)
+{
+	hinfc_write(host, host->addr_value[0], HINFC504_ADDRL);
+	hinfc_write(host, (NAND_CMD_ERASE2 << 8) | NAND_CMD_ERASE1,
+		    HINFC504_CMD);
+
+	hinfc_write(host, HINFC504_OP_WAIT_READY_EN
+		| HINFC504_OP_CMD2_EN
+		| HINFC504_OP_CMD1_EN
+		| HINFC504_OP_ADDR_EN
+		| ((host->chipselect & HINFC504_OP_NF_CS_MASK)
+			<< HINFC504_OP_NF_CS_SHIFT)
+		| ((host->addr_cycle & HINFC504_OP_ADDR_CYCLE_MASK)
+			<< HINFC504_OP_ADDR_CYCLE_SHIFT),
+		HINFC504_OP);
+
+	wait_controller_finished(host);
+
+	return 0;
+}
+
+static int hisi_nfc_send_cmd_readid(struct hinfc_host *host)
+{
+	hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM);
+	hinfc_write(host, NAND_CMD_READID, HINFC504_CMD);
+	hinfc_write(host, 0, HINFC504_ADDRL);
+
+	hinfc_write(host, HINFC504_OP_CMD1_EN | HINFC504_OP_ADDR_EN
+		| HINFC504_OP_READ_DATA_EN
+		| ((host->chipselect & HINFC504_OP_NF_CS_MASK)
+			<< HINFC504_OP_NF_CS_SHIFT)
+		| 1 << HINFC504_OP_ADDR_CYCLE_SHIFT, HINFC504_OP);
+
+	wait_controller_finished(host);
+
+	return 0;
+}
+
+static int hisi_nfc_send_cmd_status(struct hinfc_host *host)
+{
+	hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM);
+	hinfc_write(host, NAND_CMD_STATUS, HINFC504_CMD);
+	hinfc_write(host, HINFC504_OP_CMD1_EN
+		| HINFC504_OP_READ_DATA_EN
+		| ((host->chipselect & HINFC504_OP_NF_CS_MASK)
+			<< HINFC504_OP_NF_CS_SHIFT),
+		HINFC504_OP);
+
+	wait_controller_finished(host);
+
+	return 0;
+}
+
+static int hisi_nfc_send_cmd_reset(struct hinfc_host *host, int chipselect)
+{
+	hinfc_write(host, NAND_CMD_RESET, HINFC504_CMD);
+
+	hinfc_write(host, HINFC504_OP_CMD1_EN
+		| ((chipselect & HINFC504_OP_NF_CS_MASK)
+			<< HINFC504_OP_NF_CS_SHIFT)
+		| HINFC504_OP_WAIT_READY_EN,
+		HINFC504_OP);
+
+	wait_controller_finished(host);
+
+	return 0;
+}
+
+static void hisi_nfc_select_chip(struct mtd_info *mtd, int chipselect)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+
+	if (chipselect < 0)
+		return;
+
+	host->chipselect = chipselect;
+}
+
+static uint8_t hisi_nfc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+
+	if (host->command == NAND_CMD_STATUS)
+		return *(uint8_t *)(host->mmio);
+
+	host->offset++;
+
+	if (host->command == NAND_CMD_READID)
+		return *(uint8_t *)(host->mmio + host->offset - 1);
+
+	return *(uint8_t *)(host->buffer + host->offset - 1);
+}
+
+static u16 hisi_nfc_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+
+	host->offset += 2;
+	return *(u16 *)(host->buffer + host->offset - 2);
+}
+
+static void
+hisi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+
+	memcpy(host->buffer + host->offset, buf, len);
+	host->offset += len;
+}
+
+static void hisi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+
+	memcpy(buf, host->buffer + host->offset, len);
+	host->offset += len;
+}
+
+static void set_addr(struct mtd_info *mtd, int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+	unsigned int command = host->command;
+
+	host->addr_cycle    = 0;
+	host->addr_value[0] = 0;
+	host->addr_value[1] = 0;
+
+	/* Serially input address */
+	if (column != -1) {
+		/* Adjust columns for 16 bit buswidth */
+		if (chip->options & NAND_BUSWIDTH_16 &&
+				!nand_opcode_8bits(command))
+			column >>= 1;
+
+		host->addr_value[0] = column & 0xffff;
+		host->addr_cycle    = 2;
+	}
+	if (page_addr != -1) {
+		host->addr_value[0] |= (page_addr & 0xffff)
+			<< (host->addr_cycle * 8);
+		host->addr_cycle    += 2;
+		if (chip->options & NAND_ROW_ADDR_3) {
+			host->addr_cycle += 1;
+			if (host->command == NAND_CMD_ERASE1)
+				host->addr_value[0] |= ((page_addr >> 16) & 0xff) << 16;
+			else
+				host->addr_value[1] |= ((page_addr >> 16) & 0xff);
+		}
+	}
+}
+
+static void hisi_nfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column,
+		int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+	int is_cache_invalid = 1;
+	unsigned int flag = 0;
+
+	host->command =  command;
+
+	switch (command) {
+	case NAND_CMD_READ0:
+	case NAND_CMD_READOOB:
+		if (command == NAND_CMD_READ0)
+			host->offset = column;
+		else
+			host->offset = column + mtd->writesize;
+
+		is_cache_invalid = 0;
+		set_addr(mtd, column, page_addr);
+		hisi_nfc_send_cmd_readstart(host);
+		break;
+
+	case NAND_CMD_SEQIN:
+		host->offset = column;
+		set_addr(mtd, column, page_addr);
+		break;
+
+	case NAND_CMD_ERASE1:
+		set_addr(mtd, column, page_addr);
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		hisi_nfc_send_cmd_pageprog(host);
+		break;
+
+	case NAND_CMD_ERASE2:
+		hisi_nfc_send_cmd_erase(host);
+		break;
+
+	case NAND_CMD_READID:
+		host->offset = column;
+		memset(host->mmio, 0, 0x10);
+		hisi_nfc_send_cmd_readid(host);
+		break;
+
+	case NAND_CMD_STATUS:
+		flag = hinfc_read(host, HINFC504_CON);
+		if (chip->ecc.mode == NAND_ECC_HW)
+			hinfc_write(host,
+				    flag & ~(HINFC504_CON_ECCTYPE_MASK <<
+				    HINFC504_CON_ECCTYPE_SHIFT), HINFC504_CON);
+
+		host->offset = 0;
+		memset(host->mmio, 0, 0x10);
+		hisi_nfc_send_cmd_status(host);
+		hinfc_write(host, flag, HINFC504_CON);
+		break;
+
+	case NAND_CMD_RESET:
+		hisi_nfc_send_cmd_reset(host, host->chipselect);
+		break;
+
+	default:
+		dev_err(host->dev, "Error: unsupported cmd(cmd=%x, col=%x, page=%x)\n",
+			command, column, page_addr);
+	}
+
+	if (is_cache_invalid) {
+		host->cache_addr_value[0] = ~0;
+		host->cache_addr_value[1] = ~0;
+	}
+}
+
+static irqreturn_t hinfc_irq_handle(int irq, void *devid)
+{
+	struct hinfc_host *host = devid;
+	unsigned int flag;
+
+	flag = hinfc_read(host, HINFC504_INTS);
+	/* store interrupts state */
+	host->irq_status |= flag;
+
+	if (flag & HINFC504_INTS_DMA) {
+		hinfc_write(host, HINFC504_INTCLR_DMA, HINFC504_INTCLR);
+		complete(&host->cmd_complete);
+	} else if (flag & HINFC504_INTS_CE) {
+		hinfc_write(host, HINFC504_INTCLR_CE, HINFC504_INTCLR);
+	} else if (flag & HINFC504_INTS_UE) {
+		hinfc_write(host, HINFC504_INTCLR_UE, HINFC504_INTCLR);
+	}
+
+	return IRQ_HANDLED;
+}
+
+static int hisi_nand_read_page_hwecc(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+	struct hinfc_host *host = nand_get_controller_data(chip);
+	int max_bitflips = 0, stat = 0, stat_max = 0, status_ecc;
+	int stat_1, stat_2;
+
+	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	/* errors which can not be corrected by ECC */
+	if (host->irq_status & HINFC504_INTS_UE) {
+		mtd->ecc_stats.failed++;
+	} else if (host->irq_status & HINFC504_INTS_CE) {
+		/* TODO: need add other ECC modes! */
+		switch (chip->ecc.strength) {
+		case 16:
+			status_ecc = hinfc_read(host, HINFC504_ECC_STATUS) >>
+					HINFC504_ECC_16_BIT_SHIFT & 0x0fff;
+			stat_2 = status_ecc & 0x3f;
+			stat_1 = status_ecc >> 6 & 0x3f;
+			stat = stat_1 + stat_2;
+			stat_max = max_t(int, stat_1, stat_2);
+		}
+		mtd->ecc_stats.corrected += stat;
+		max_bitflips = max_t(int, max_bitflips, stat_max);
+	}
+	host->irq_status = 0;
+
+	return max_bitflips;
+}
+
+static int hisi_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	struct hinfc_host *host = nand_get_controller_data(chip);
+
+	nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+
+	if (host->irq_status & HINFC504_INTS_UE) {
+		host->irq_status = 0;
+		return -EBADMSG;
+	}
+
+	host->irq_status = 0;
+	return 0;
+}
+
+static int hisi_nand_write_page_hwecc(struct mtd_info *mtd,
+		struct nand_chip *chip, const uint8_t *buf, int oob_required,
+		int page)
+{
+	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	if (oob_required)
+		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static void hisi_nfc_host_init(struct hinfc_host *host)
+{
+	struct nand_chip *chip = &host->chip;
+	unsigned int flag = 0;
+
+	host->version = hinfc_read(host, HINFC_VERSION);
+	host->addr_cycle		= 0;
+	host->addr_value[0]		= 0;
+	host->addr_value[1]		= 0;
+	host->cache_addr_value[0]	= ~0;
+	host->cache_addr_value[1]	= ~0;
+	host->chipselect		= 0;
+
+	/* default page size: 2K, ecc_none. need modify */
+	flag = HINFC504_CON_OP_MODE_NORMAL | HINFC504_CON_READY_BUSY_SEL
+		| ((0x001 & HINFC504_CON_PAGESIZE_MASK)
+			<< HINFC504_CON_PAGEISZE_SHIFT)
+		| ((0x0 & HINFC504_CON_ECCTYPE_MASK)
+			<< HINFC504_CON_ECCTYPE_SHIFT)
+		| ((chip->options & NAND_BUSWIDTH_16) ?
+			HINFC504_CON_BUS_WIDTH : 0);
+	hinfc_write(host, flag, HINFC504_CON);
+
+	memset(host->mmio, 0xff, HINFC504_BUFFER_BASE_ADDRESS_LEN);
+
+	hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH,
+		    HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH);
+
+	/* enable DMA irq */
+	hinfc_write(host, HINFC504_INTEN_DMA, HINFC504_INTEN);
+}
+
+static int hisi_ooblayout_ecc(struct mtd_info *mtd, int section,
+			      struct mtd_oob_region *oobregion)
+{
+	/* FIXME: add ECC bytes position */
+	return -ENOTSUPP;
+}
+
+static int hisi_ooblayout_free(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 2;
+	oobregion->length = 6;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops hisi_ooblayout_ops = {
+	.ecc = hisi_ooblayout_ecc,
+	.free = hisi_ooblayout_free,
+};
+
+static int hisi_nfc_ecc_probe(struct hinfc_host *host)
+{
+	unsigned int flag;
+	int size, strength, ecc_bits;
+	struct device *dev = host->dev;
+	struct nand_chip *chip = &host->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	size = chip->ecc.size;
+	strength = chip->ecc.strength;
+	if (size != 1024) {
+		dev_err(dev, "error ecc size: %d\n", size);
+		return -EINVAL;
+	}
+
+	if ((size == 1024) && ((strength != 8) && (strength != 16) &&
+				(strength != 24) && (strength != 40))) {
+		dev_err(dev, "ecc size and strength do not match\n");
+		return -EINVAL;
+	}
+
+	chip->ecc.size = size;
+	chip->ecc.strength = strength;
+
+	chip->ecc.read_page = hisi_nand_read_page_hwecc;
+	chip->ecc.read_oob = hisi_nand_read_oob;
+	chip->ecc.write_page = hisi_nand_write_page_hwecc;
+
+	switch (chip->ecc.strength) {
+	case 16:
+		ecc_bits = 6;
+		if (mtd->writesize == 2048)
+			mtd_set_ooblayout(mtd, &hisi_ooblayout_ops);
+
+		/* TODO: add more page size support */
+		break;
+
+	/* TODO: add more ecc strength support */
+	default:
+		dev_err(dev, "not support strength: %d\n", chip->ecc.strength);
+		return -EINVAL;
+	}
+
+	flag = hinfc_read(host, HINFC504_CON);
+	/* add ecc type configure */
+	flag |= ((ecc_bits & HINFC504_CON_ECCTYPE_MASK)
+						<< HINFC504_CON_ECCTYPE_SHIFT);
+	hinfc_write(host, flag, HINFC504_CON);
+
+	/* enable ecc irq */
+	flag = hinfc_read(host, HINFC504_INTEN) & 0xfff;
+	hinfc_write(host, flag | HINFC504_INTEN_UE | HINFC504_INTEN_CE,
+		    HINFC504_INTEN);
+
+	return 0;
+}
+
+static int hisi_nfc_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct hinfc_host *host = nand_get_controller_data(chip);
+	int flag;
+
+	host->buffer = dmam_alloc_coherent(host->dev,
+					   mtd->writesize + mtd->oobsize,
+					   &host->dma_buffer, GFP_KERNEL);
+	if (!host->buffer)
+		return -ENOMEM;
+
+	host->dma_oob = host->dma_buffer + mtd->writesize;
+	memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize);
+
+	flag = hinfc_read(host, HINFC504_CON);
+	flag &= ~(HINFC504_CON_PAGESIZE_MASK << HINFC504_CON_PAGEISZE_SHIFT);
+	switch (mtd->writesize) {
+	case 2048:
+		flag |= (0x001 << HINFC504_CON_PAGEISZE_SHIFT);
+		break;
+	/*
+	 * TODO: add more pagesize support,
+	 * default pagesize has been set in hisi_nfc_host_init
+	 */
+	default:
+		dev_err(host->dev, "NON-2KB page size nand flash\n");
+		return -EINVAL;
+	}
+	hinfc_write(host, flag, HINFC504_CON);
+
+	if (chip->ecc.mode == NAND_ECC_HW)
+		hisi_nfc_ecc_probe(host);
+
+	return 0;
+}
+
+static const struct nand_controller_ops hisi_nfc_controller_ops = {
+	.attach_chip = hisi_nfc_attach_chip,
+};
+
+static int hisi_nfc_probe(struct platform_device *pdev)
+{
+	int ret = 0, irq, max_chips = HINFC504_MAX_CHIP;
+	struct device *dev = &pdev->dev;
+	struct hinfc_host *host;
+	struct nand_chip  *chip;
+	struct mtd_info   *mtd;
+	struct resource	  *res;
+	struct device_node *np = dev->of_node;
+
+	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
+	if (!host)
+		return -ENOMEM;
+	host->dev = dev;
+
+	platform_set_drvdata(pdev, host);
+	chip = &host->chip;
+	mtd  = nand_to_mtd(chip);
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "no IRQ resource defined\n");
+		return -ENXIO;
+	}
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	host->iobase = devm_ioremap_resource(dev, res);
+	if (IS_ERR(host->iobase))
+		return PTR_ERR(host->iobase);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+	host->mmio = devm_ioremap_resource(dev, res);
+	if (IS_ERR(host->mmio)) {
+		dev_err(dev, "devm_ioremap_resource[1] fail\n");
+		return PTR_ERR(host->mmio);
+	}
+
+	mtd->name		= "hisi_nand";
+	mtd->dev.parent         = &pdev->dev;
+
+	nand_set_controller_data(chip, host);
+	nand_set_flash_node(chip, np);
+	chip->cmdfunc		= hisi_nfc_cmdfunc;
+	chip->select_chip	= hisi_nfc_select_chip;
+	chip->read_byte		= hisi_nfc_read_byte;
+	chip->read_word		= hisi_nfc_read_word;
+	chip->write_buf		= hisi_nfc_write_buf;
+	chip->read_buf		= hisi_nfc_read_buf;
+	chip->chip_delay	= HINFC504_CHIP_DELAY;
+	chip->set_features	= nand_get_set_features_notsupp;
+	chip->get_features	= nand_get_set_features_notsupp;
+
+	hisi_nfc_host_init(host);
+
+	ret = devm_request_irq(dev, irq, hinfc_irq_handle, 0x0, "nandc", host);
+	if (ret) {
+		dev_err(dev, "failed to request IRQ\n");
+		return ret;
+	}
+
+	chip->dummy_controller.ops = &hisi_nfc_controller_ops;
+	ret = nand_scan(mtd, max_chips);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(dev, "Err MTD partition=%d\n", ret);
+		nand_cleanup(chip);
+		return ret;
+	}
+
+	return 0;
+}
+
+static int hisi_nfc_remove(struct platform_device *pdev)
+{
+	struct hinfc_host *host = platform_get_drvdata(pdev);
+	struct mtd_info *mtd = nand_to_mtd(&host->chip);
+
+	nand_release(mtd);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int hisi_nfc_suspend(struct device *dev)
+{
+	struct hinfc_host *host = dev_get_drvdata(dev);
+	unsigned long timeout = jiffies + HINFC504_NFC_PM_TIMEOUT;
+
+	while (time_before(jiffies, timeout)) {
+		if (((hinfc_read(host, HINFC504_STATUS) & 0x1) == 0x0) &&
+		    (hinfc_read(host, HINFC504_DMA_CTRL) &
+		     HINFC504_DMA_CTRL_DMA_START)) {
+			cond_resched();
+			return 0;
+		}
+	}
+
+	dev_err(host->dev, "nand controller suspend timeout.\n");
+
+	return -EAGAIN;
+}
+
+static int hisi_nfc_resume(struct device *dev)
+{
+	int cs;
+	struct hinfc_host *host = dev_get_drvdata(dev);
+	struct nand_chip *chip = &host->chip;
+
+	for (cs = 0; cs < chip->numchips; cs++)
+		hisi_nfc_send_cmd_reset(host, cs);
+	hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH,
+		    HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH);
+
+	return 0;
+}
+#endif
+static SIMPLE_DEV_PM_OPS(hisi_nfc_pm_ops, hisi_nfc_suspend, hisi_nfc_resume);
+
+static const struct of_device_id nfc_id_table[] = {
+	{ .compatible = "hisilicon,504-nfc" },
+	{}
+};
+MODULE_DEVICE_TABLE(of, nfc_id_table);
+
+static struct platform_driver hisi_nfc_driver = {
+	.driver = {
+		.name  = "hisi_nand",
+		.of_match_table = nfc_id_table,
+		.pm = &hisi_nfc_pm_ops,
+	},
+	.probe		= hisi_nfc_probe,
+	.remove		= hisi_nfc_remove,
+};
+
+module_platform_driver(hisi_nfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Zhou Wang");
+MODULE_AUTHOR("Zhiyong Cai");
+MODULE_DESCRIPTION("Hisilicon Nand Flash Controller Driver");
diff --git a/drivers/mtd/nand/raw/jz4740_nand.c b/drivers/mtd/nand/raw/jz4740_nand.c
new file mode 100644
index 0000000..a751545
--- /dev/null
+++ b/drivers/mtd/nand/raw/jz4740_nand.c
@@ -0,0 +1,543 @@
+/*
+ *  Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
+ *  JZ4740 SoC NAND controller driver
+ *
+ *  This program is free software; you can redistribute it and/or modify it
+ *  under  the terms of the GNU General  Public License as published by the
+ *  Free Software Foundation;  either version 2 of the License, or (at your
+ *  option) any later version.
+ *
+ *  You should have received a copy of the GNU General Public License along
+ *  with this program; if not, write to the Free Software Foundation, Inc.,
+ *  675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ */
+
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+
+#include <linux/gpio/consumer.h>
+
+#include <linux/platform_data/jz4740/jz4740_nand.h>
+
+#define JZ_REG_NAND_CTRL	0x50
+#define JZ_REG_NAND_ECC_CTRL	0x100
+#define JZ_REG_NAND_DATA	0x104
+#define JZ_REG_NAND_PAR0	0x108
+#define JZ_REG_NAND_PAR1	0x10C
+#define JZ_REG_NAND_PAR2	0x110
+#define JZ_REG_NAND_IRQ_STAT	0x114
+#define JZ_REG_NAND_IRQ_CTRL	0x118
+#define JZ_REG_NAND_ERR(x)	(0x11C + ((x) << 2))
+
+#define JZ_NAND_ECC_CTRL_PAR_READY	BIT(4)
+#define JZ_NAND_ECC_CTRL_ENCODING	BIT(3)
+#define JZ_NAND_ECC_CTRL_RS		BIT(2)
+#define JZ_NAND_ECC_CTRL_RESET		BIT(1)
+#define JZ_NAND_ECC_CTRL_ENABLE		BIT(0)
+
+#define JZ_NAND_STATUS_ERR_COUNT	(BIT(31) | BIT(30) | BIT(29))
+#define JZ_NAND_STATUS_PAD_FINISH	BIT(4)
+#define JZ_NAND_STATUS_DEC_FINISH	BIT(3)
+#define JZ_NAND_STATUS_ENC_FINISH	BIT(2)
+#define JZ_NAND_STATUS_UNCOR_ERROR	BIT(1)
+#define JZ_NAND_STATUS_ERROR		BIT(0)
+
+#define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
+#define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
+#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa
+
+#define JZ_NAND_MEM_CMD_OFFSET 0x08000
+#define JZ_NAND_MEM_ADDR_OFFSET 0x10000
+
+struct jz_nand {
+	struct nand_chip chip;
+	void __iomem *base;
+	struct resource *mem;
+
+	unsigned char banks[JZ_NAND_NUM_BANKS];
+	void __iomem *bank_base[JZ_NAND_NUM_BANKS];
+	struct resource *bank_mem[JZ_NAND_NUM_BANKS];
+
+	int selected_bank;
+
+	struct gpio_desc *busy_gpio;
+	bool is_reading;
+};
+
+static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct jz_nand, chip);
+}
+
+static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct jz_nand *nand = mtd_to_jz_nand(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint32_t ctrl;
+	int banknr;
+
+	ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
+	ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK;
+
+	if (chipnr == -1) {
+		banknr = -1;
+	} else {
+		banknr = nand->banks[chipnr] - 1;
+		chip->IO_ADDR_R = nand->bank_base[banknr];
+		chip->IO_ADDR_W = nand->bank_base[banknr];
+	}
+	writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
+
+	nand->selected_bank = banknr;
+}
+
+static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+	struct jz_nand *nand = mtd_to_jz_nand(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint32_t reg;
+	void __iomem *bank_base = nand->bank_base[nand->selected_bank];
+
+	BUG_ON(nand->selected_bank < 0);
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
+		if (ctrl & NAND_ALE)
+			bank_base += JZ_NAND_MEM_ADDR_OFFSET;
+		else if (ctrl & NAND_CLE)
+			bank_base += JZ_NAND_MEM_CMD_OFFSET;
+		chip->IO_ADDR_W = bank_base;
+
+		reg = readl(nand->base + JZ_REG_NAND_CTRL);
+		if (ctrl & NAND_NCE)
+			reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
+		else
+			reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
+		writel(reg, nand->base + JZ_REG_NAND_CTRL);
+	}
+	if (dat != NAND_CMD_NONE)
+		writeb(dat, chip->IO_ADDR_W);
+}
+
+static int jz_nand_dev_ready(struct mtd_info *mtd)
+{
+	struct jz_nand *nand = mtd_to_jz_nand(mtd);
+	return gpiod_get_value_cansleep(nand->busy_gpio);
+}
+
+static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
+{
+	struct jz_nand *nand = mtd_to_jz_nand(mtd);
+	uint32_t reg;
+
+	writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
+	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
+
+	reg |= JZ_NAND_ECC_CTRL_RESET;
+	reg |= JZ_NAND_ECC_CTRL_ENABLE;
+	reg |= JZ_NAND_ECC_CTRL_RS;
+
+	switch (mode) {
+	case NAND_ECC_READ:
+		reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
+		nand->is_reading = true;
+		break;
+	case NAND_ECC_WRITE:
+		reg |= JZ_NAND_ECC_CTRL_ENCODING;
+		nand->is_reading = false;
+		break;
+	default:
+		break;
+	}
+
+	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
+}
+
+static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat,
+	uint8_t *ecc_code)
+{
+	struct jz_nand *nand = mtd_to_jz_nand(mtd);
+	uint32_t reg, status;
+	int i;
+	unsigned int timeout = 1000;
+	static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
+						0x8b, 0xff, 0xb7, 0x6f};
+
+	if (nand->is_reading)
+		return 0;
+
+	do {
+		status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
+	} while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
+
+	if (timeout == 0)
+	    return -1;
+
+	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
+	reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
+	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
+
+	for (i = 0; i < 9; ++i)
+		ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
+
+	/* If the written data is completly 0xff, we also want to write 0xff as
+	 * ecc, otherwise we will get in trouble when doing subpage writes. */
+	if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
+		memset(ecc_code, 0xff, 9);
+
+	return 0;
+}
+
+static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
+{
+	int offset = index & 0x7;
+	uint16_t data;
+
+	index += (index >> 3);
+
+	data = dat[index];
+	data |= dat[index+1] << 8;
+
+	mask ^= (data >> offset) & 0x1ff;
+	data &= ~(0x1ff << offset);
+	data |= (mask << offset);
+
+	dat[index] = data & 0xff;
+	dat[index+1] = (data >> 8) & 0xff;
+}
+
+static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat,
+	uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	struct jz_nand *nand = mtd_to_jz_nand(mtd);
+	int i, error_count, index;
+	uint32_t reg, status, error;
+	unsigned int timeout = 1000;
+
+	for (i = 0; i < 9; ++i)
+		writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
+
+	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
+	reg |= JZ_NAND_ECC_CTRL_PAR_READY;
+	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
+
+	do {
+		status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
+	} while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
+
+	if (timeout == 0)
+		return -ETIMEDOUT;
+
+	reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
+	reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
+	writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
+
+	if (status & JZ_NAND_STATUS_ERROR) {
+		if (status & JZ_NAND_STATUS_UNCOR_ERROR)
+			return -EBADMSG;
+
+		error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
+
+		for (i = 0; i < error_count; ++i) {
+			error = readl(nand->base + JZ_REG_NAND_ERR(i));
+			index = ((error >> 16) & 0x1ff) - 1;
+			if (index >= 0 && index < 512)
+				jz_nand_correct_data(dat, index, error & 0x1ff);
+		}
+
+		return error_count;
+	}
+
+	return 0;
+}
+
+static int jz_nand_ioremap_resource(struct platform_device *pdev,
+	const char *name, struct resource **res, void *__iomem *base)
+{
+	int ret;
+
+	*res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
+	if (!*res) {
+		dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
+		ret = -ENXIO;
+		goto err;
+	}
+
+	*res = request_mem_region((*res)->start, resource_size(*res),
+				pdev->name);
+	if (!*res) {
+		dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
+		ret = -EBUSY;
+		goto err;
+	}
+
+	*base = ioremap((*res)->start, resource_size(*res));
+	if (!*base) {
+		dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
+		ret = -EBUSY;
+		goto err_release_mem;
+	}
+
+	return 0;
+
+err_release_mem:
+	release_mem_region((*res)->start, resource_size(*res));
+err:
+	*res = NULL;
+	*base = NULL;
+	return ret;
+}
+
+static inline void jz_nand_iounmap_resource(struct resource *res,
+					    void __iomem *base)
+{
+	iounmap(base);
+	release_mem_region(res->start, resource_size(res));
+}
+
+static int jz_nand_detect_bank(struct platform_device *pdev,
+			       struct jz_nand *nand, unsigned char bank,
+			       size_t chipnr, uint8_t *nand_maf_id,
+			       uint8_t *nand_dev_id)
+{
+	int ret;
+	char res_name[6];
+	uint32_t ctrl;
+	struct nand_chip *chip = &nand->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 id[2];
+
+	/* Request I/O resource. */
+	sprintf(res_name, "bank%d", bank);
+	ret = jz_nand_ioremap_resource(pdev, res_name,
+					&nand->bank_mem[bank - 1],
+					&nand->bank_base[bank - 1]);
+	if (ret)
+		return ret;
+
+	/* Enable chip in bank. */
+	ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
+	ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1);
+	writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
+
+	if (chipnr == 0) {
+		/* Detect first chip. */
+		ret = nand_scan(mtd, 1);
+		if (ret)
+			goto notfound_id;
+
+		/* Retrieve the IDs from the first chip. */
+		chip->select_chip(mtd, 0);
+		nand_reset_op(chip);
+		nand_readid_op(chip, 0, id, sizeof(id));
+		*nand_maf_id = id[0];
+		*nand_dev_id = id[1];
+	} else {
+		/* Detect additional chip. */
+		chip->select_chip(mtd, chipnr);
+		nand_reset_op(chip);
+		nand_readid_op(chip, 0, id, sizeof(id));
+		if (*nand_maf_id != id[0] || *nand_dev_id != id[1]) {
+			ret = -ENODEV;
+			goto notfound_id;
+		}
+
+		/* Update size of the MTD. */
+		chip->numchips++;
+		mtd->size += chip->chipsize;
+	}
+
+	dev_info(&pdev->dev, "Found chip %zu on bank %i\n", chipnr, bank);
+	return 0;
+
+notfound_id:
+	dev_info(&pdev->dev, "No chip found on bank %i\n", bank);
+	ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1));
+	writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
+	jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
+				 nand->bank_base[bank - 1]);
+	return ret;
+}
+
+static int jz_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct device *dev = mtd->dev.parent;
+	struct jz_nand_platform_data *pdata = dev_get_platdata(dev);
+	struct platform_device *pdev = to_platform_device(dev);
+
+	if (pdata && pdata->ident_callback)
+		pdata->ident_callback(pdev, mtd, &pdata->partitions,
+				      &pdata->num_partitions);
+
+	return 0;
+}
+
+static const struct nand_controller_ops jz_nand_controller_ops = {
+	.attach_chip = jz_nand_attach_chip,
+};
+
+static int jz_nand_probe(struct platform_device *pdev)
+{
+	int ret;
+	struct jz_nand *nand;
+	struct nand_chip *chip;
+	struct mtd_info *mtd;
+	struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
+	size_t chipnr, bank_idx;
+	uint8_t nand_maf_id = 0, nand_dev_id = 0;
+
+	nand = kzalloc(sizeof(*nand), GFP_KERNEL);
+	if (!nand)
+		return -ENOMEM;
+
+	ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
+	if (ret)
+		goto err_free;
+
+	nand->busy_gpio = devm_gpiod_get_optional(&pdev->dev, "busy", GPIOD_IN);
+	if (IS_ERR(nand->busy_gpio)) {
+		ret = PTR_ERR(nand->busy_gpio);
+		dev_err(&pdev->dev, "Failed to request busy gpio %d\n",
+		    ret);
+		goto err_iounmap_mmio;
+	}
+
+	chip		= &nand->chip;
+	mtd		= nand_to_mtd(chip);
+	mtd->dev.parent = &pdev->dev;
+	mtd->name	= "jz4740-nand";
+
+	chip->ecc.hwctl		= jz_nand_hwctl;
+	chip->ecc.calculate	= jz_nand_calculate_ecc_rs;
+	chip->ecc.correct	= jz_nand_correct_ecc_rs;
+	chip->ecc.mode		= NAND_ECC_HW_OOB_FIRST;
+	chip->ecc.size		= 512;
+	chip->ecc.bytes		= 9;
+	chip->ecc.strength	= 4;
+	chip->ecc.options	= NAND_ECC_GENERIC_ERASED_CHECK;
+
+	chip->chip_delay = 50;
+	chip->cmd_ctrl = jz_nand_cmd_ctrl;
+	chip->select_chip = jz_nand_select_chip;
+	chip->dummy_controller.ops = &jz_nand_controller_ops;
+
+	if (nand->busy_gpio)
+		chip->dev_ready = jz_nand_dev_ready;
+
+	platform_set_drvdata(pdev, nand);
+
+	/* We are going to autodetect NAND chips in the banks specified in the
+	 * platform data. Although nand_scan_ident() can detect multiple chips,
+	 * it requires those chips to be numbered consecuitively, which is not
+	 * always the case for external memory banks. And a fixed chip-to-bank
+	 * mapping is not practical either, since for example Dingoo units
+	 * produced at different times have NAND chips in different banks.
+	 */
+	chipnr = 0;
+	for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) {
+		unsigned char bank;
+
+		/* If there is no platform data, look for NAND in bank 1,
+		 * which is the most likely bank since it is the only one
+		 * that can be booted from.
+		 */
+		bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1;
+		if (bank == 0)
+			break;
+		if (bank > JZ_NAND_NUM_BANKS) {
+			dev_warn(&pdev->dev,
+				"Skipping non-existing bank: %d\n", bank);
+			continue;
+		}
+		/* The detection routine will directly or indirectly call
+		 * jz_nand_select_chip(), so nand->banks has to contain the
+		 * bank we're checking.
+		 */
+		nand->banks[chipnr] = bank;
+		if (jz_nand_detect_bank(pdev, nand, bank, chipnr,
+					&nand_maf_id, &nand_dev_id) == 0)
+			chipnr++;
+		else
+			nand->banks[chipnr] = 0;
+	}
+	if (chipnr == 0) {
+		dev_err(&pdev->dev, "No NAND chips found\n");
+		goto err_iounmap_mmio;
+	}
+
+	ret = mtd_device_register(mtd, pdata ? pdata->partitions : NULL,
+				  pdata ? pdata->num_partitions : 0);
+
+	if (ret) {
+		dev_err(&pdev->dev, "Failed to add mtd device\n");
+		goto err_cleanup_nand;
+	}
+
+	dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
+
+	return 0;
+
+err_cleanup_nand:
+	nand_cleanup(chip);
+	while (chipnr--) {
+		unsigned char bank = nand->banks[chipnr];
+		jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
+					 nand->bank_base[bank - 1]);
+	}
+	writel(0, nand->base + JZ_REG_NAND_CTRL);
+err_iounmap_mmio:
+	jz_nand_iounmap_resource(nand->mem, nand->base);
+err_free:
+	kfree(nand);
+	return ret;
+}
+
+static int jz_nand_remove(struct platform_device *pdev)
+{
+	struct jz_nand *nand = platform_get_drvdata(pdev);
+	size_t i;
+
+	nand_release(nand_to_mtd(&nand->chip));
+
+	/* Deassert and disable all chips */
+	writel(0, nand->base + JZ_REG_NAND_CTRL);
+
+	for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) {
+		unsigned char bank = nand->banks[i];
+		if (bank != 0) {
+			jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
+						 nand->bank_base[bank - 1]);
+		}
+	}
+
+	jz_nand_iounmap_resource(nand->mem, nand->base);
+
+	kfree(nand);
+
+	return 0;
+}
+
+static struct platform_driver jz_nand_driver = {
+	.probe = jz_nand_probe,
+	.remove = jz_nand_remove,
+	.driver = {
+		.name = "jz4740-nand",
+	},
+};
+
+module_platform_driver(jz_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
+MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
+MODULE_ALIAS("platform:jz4740-nand");
diff --git a/drivers/mtd/nand/raw/jz4780_bch.c b/drivers/mtd/nand/raw/jz4780_bch.c
new file mode 100644
index 0000000..731c605
--- /dev/null
+++ b/drivers/mtd/nand/raw/jz4780_bch.c
@@ -0,0 +1,380 @@
+/*
+ * JZ4780 BCH controller
+ *
+ * Copyright (c) 2015 Imagination Technologies
+ * Author: Alex Smith <alex.smith@imgtec.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ */
+
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+
+#include "jz4780_bch.h"
+
+#define BCH_BHCR			0x0
+#define BCH_BHCCR			0x8
+#define BCH_BHCNT			0xc
+#define BCH_BHDR			0x10
+#define BCH_BHPAR0			0x14
+#define BCH_BHERR0			0x84
+#define BCH_BHINT			0x184
+#define BCH_BHINTES			0x188
+#define BCH_BHINTEC			0x18c
+#define BCH_BHINTE			0x190
+
+#define BCH_BHCR_BSEL_SHIFT		4
+#define BCH_BHCR_BSEL_MASK		(0x7f << BCH_BHCR_BSEL_SHIFT)
+#define BCH_BHCR_ENCE			BIT(2)
+#define BCH_BHCR_INIT			BIT(1)
+#define BCH_BHCR_BCHE			BIT(0)
+
+#define BCH_BHCNT_PARITYSIZE_SHIFT	16
+#define BCH_BHCNT_PARITYSIZE_MASK	(0x7f << BCH_BHCNT_PARITYSIZE_SHIFT)
+#define BCH_BHCNT_BLOCKSIZE_SHIFT	0
+#define BCH_BHCNT_BLOCKSIZE_MASK	(0x7ff << BCH_BHCNT_BLOCKSIZE_SHIFT)
+
+#define BCH_BHERR_MASK_SHIFT		16
+#define BCH_BHERR_MASK_MASK		(0xffff << BCH_BHERR_MASK_SHIFT)
+#define BCH_BHERR_INDEX_SHIFT		0
+#define BCH_BHERR_INDEX_MASK		(0x7ff << BCH_BHERR_INDEX_SHIFT)
+
+#define BCH_BHINT_ERRC_SHIFT		24
+#define BCH_BHINT_ERRC_MASK		(0x7f << BCH_BHINT_ERRC_SHIFT)
+#define BCH_BHINT_TERRC_SHIFT		16
+#define BCH_BHINT_TERRC_MASK		(0x7f << BCH_BHINT_TERRC_SHIFT)
+#define BCH_BHINT_DECF			BIT(3)
+#define BCH_BHINT_ENCF			BIT(2)
+#define BCH_BHINT_UNCOR			BIT(1)
+#define BCH_BHINT_ERR			BIT(0)
+
+#define BCH_CLK_RATE			(200 * 1000 * 1000)
+
+/* Timeout for BCH calculation/correction. */
+#define BCH_TIMEOUT_US			100000
+
+struct jz4780_bch {
+	struct device *dev;
+	void __iomem *base;
+	struct clk *clk;
+	struct mutex lock;
+};
+
+static void jz4780_bch_init(struct jz4780_bch *bch,
+			    struct jz4780_bch_params *params, bool encode)
+{
+	u32 reg;
+
+	/* Clear interrupt status. */
+	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
+
+	/* Set up BCH count register. */
+	reg = params->size << BCH_BHCNT_BLOCKSIZE_SHIFT;
+	reg |= params->bytes << BCH_BHCNT_PARITYSIZE_SHIFT;
+	writel(reg, bch->base + BCH_BHCNT);
+
+	/* Initialise and enable BCH. */
+	reg = BCH_BHCR_BCHE | BCH_BHCR_INIT;
+	reg |= params->strength << BCH_BHCR_BSEL_SHIFT;
+	if (encode)
+		reg |= BCH_BHCR_ENCE;
+	writel(reg, bch->base + BCH_BHCR);
+}
+
+static void jz4780_bch_disable(struct jz4780_bch *bch)
+{
+	writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT);
+	writel(BCH_BHCR_BCHE, bch->base + BCH_BHCCR);
+}
+
+static void jz4780_bch_write_data(struct jz4780_bch *bch, const void *buf,
+				  size_t size)
+{
+	size_t size32 = size / sizeof(u32);
+	size_t size8 = size % sizeof(u32);
+	const u32 *src32;
+	const u8 *src8;
+
+	src32 = (const u32 *)buf;
+	while (size32--)
+		writel(*src32++, bch->base + BCH_BHDR);
+
+	src8 = (const u8 *)src32;
+	while (size8--)
+		writeb(*src8++, bch->base + BCH_BHDR);
+}
+
+static void jz4780_bch_read_parity(struct jz4780_bch *bch, void *buf,
+				   size_t size)
+{
+	size_t size32 = size / sizeof(u32);
+	size_t size8 = size % sizeof(u32);
+	u32 *dest32;
+	u8 *dest8;
+	u32 val, offset = 0;
+
+	dest32 = (u32 *)buf;
+	while (size32--) {
+		*dest32++ = readl(bch->base + BCH_BHPAR0 + offset);
+		offset += sizeof(u32);
+	}
+
+	dest8 = (u8 *)dest32;
+	val = readl(bch->base + BCH_BHPAR0 + offset);
+	switch (size8) {
+	case 3:
+		dest8[2] = (val >> 16) & 0xff;
+	case 2:
+		dest8[1] = (val >> 8) & 0xff;
+	case 1:
+		dest8[0] = val & 0xff;
+		break;
+	}
+}
+
+static bool jz4780_bch_wait_complete(struct jz4780_bch *bch, unsigned int irq,
+				     u32 *status)
+{
+	u32 reg;
+	int ret;
+
+	/*
+	 * While we could use interrupts here and sleep until the operation
+	 * completes, the controller works fairly quickly (usually a few
+	 * microseconds) and so the overhead of sleeping until we get an
+	 * interrupt quite noticeably decreases performance.
+	 */
+	ret = readl_poll_timeout(bch->base + BCH_BHINT, reg,
+				 (reg & irq) == irq, 0, BCH_TIMEOUT_US);
+	if (ret)
+		return false;
+
+	if (status)
+		*status = reg;
+
+	writel(reg, bch->base + BCH_BHINT);
+	return true;
+}
+
+/**
+ * jz4780_bch_calculate() - calculate ECC for a data buffer
+ * @bch: BCH device.
+ * @params: BCH parameters.
+ * @buf: input buffer with raw data.
+ * @ecc_code: output buffer with ECC.
+ *
+ * Return: 0 on success, -ETIMEDOUT if timed out while waiting for BCH
+ * controller.
+ */
+int jz4780_bch_calculate(struct jz4780_bch *bch, struct jz4780_bch_params *params,
+			 const u8 *buf, u8 *ecc_code)
+{
+	int ret = 0;
+
+	mutex_lock(&bch->lock);
+	jz4780_bch_init(bch, params, true);
+	jz4780_bch_write_data(bch, buf, params->size);
+
+	if (jz4780_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL)) {
+		jz4780_bch_read_parity(bch, ecc_code, params->bytes);
+	} else {
+		dev_err(bch->dev, "timed out while calculating ECC\n");
+		ret = -ETIMEDOUT;
+	}
+
+	jz4780_bch_disable(bch);
+	mutex_unlock(&bch->lock);
+	return ret;
+}
+EXPORT_SYMBOL(jz4780_bch_calculate);
+
+/**
+ * jz4780_bch_correct() - detect and correct bit errors
+ * @bch: BCH device.
+ * @params: BCH parameters.
+ * @buf: raw data read from the chip.
+ * @ecc_code: ECC read from the chip.
+ *
+ * Given the raw data and the ECC read from the NAND device, detects and
+ * corrects errors in the data.
+ *
+ * Return: the number of bit errors corrected, -EBADMSG if there are too many
+ * errors to correct or -ETIMEDOUT if we timed out waiting for the controller.
+ */
+int jz4780_bch_correct(struct jz4780_bch *bch, struct jz4780_bch_params *params,
+		       u8 *buf, u8 *ecc_code)
+{
+	u32 reg, mask, index;
+	int i, ret, count;
+
+	mutex_lock(&bch->lock);
+
+	jz4780_bch_init(bch, params, false);
+	jz4780_bch_write_data(bch, buf, params->size);
+	jz4780_bch_write_data(bch, ecc_code, params->bytes);
+
+	if (!jz4780_bch_wait_complete(bch, BCH_BHINT_DECF, &reg)) {
+		dev_err(bch->dev, "timed out while correcting data\n");
+		ret = -ETIMEDOUT;
+		goto out;
+	}
+
+	if (reg & BCH_BHINT_UNCOR) {
+		dev_warn(bch->dev, "uncorrectable ECC error\n");
+		ret = -EBADMSG;
+		goto out;
+	}
+
+	/* Correct any detected errors. */
+	if (reg & BCH_BHINT_ERR) {
+		count = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT;
+		ret = (reg & BCH_BHINT_TERRC_MASK) >> BCH_BHINT_TERRC_SHIFT;
+
+		for (i = 0; i < count; i++) {
+			reg = readl(bch->base + BCH_BHERR0 + (i * 4));
+			mask = (reg & BCH_BHERR_MASK_MASK) >>
+						BCH_BHERR_MASK_SHIFT;
+			index = (reg & BCH_BHERR_INDEX_MASK) >>
+						BCH_BHERR_INDEX_SHIFT;
+			buf[(index * 2) + 0] ^= mask;
+			buf[(index * 2) + 1] ^= mask >> 8;
+		}
+	} else {
+		ret = 0;
+	}
+
+out:
+	jz4780_bch_disable(bch);
+	mutex_unlock(&bch->lock);
+	return ret;
+}
+EXPORT_SYMBOL(jz4780_bch_correct);
+
+/**
+ * jz4780_bch_get() - get the BCH controller device
+ * @np: BCH device tree node.
+ *
+ * Gets the BCH controller device from the specified device tree node. The
+ * device must be released with jz4780_bch_release() when it is no longer being
+ * used.
+ *
+ * Return: a pointer to jz4780_bch, errors are encoded into the pointer.
+ * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet.
+ */
+static struct jz4780_bch *jz4780_bch_get(struct device_node *np)
+{
+	struct platform_device *pdev;
+	struct jz4780_bch *bch;
+
+	pdev = of_find_device_by_node(np);
+	if (!pdev || !platform_get_drvdata(pdev))
+		return ERR_PTR(-EPROBE_DEFER);
+
+	get_device(&pdev->dev);
+
+	bch = platform_get_drvdata(pdev);
+	clk_prepare_enable(bch->clk);
+
+	return bch;
+}
+
+/**
+ * of_jz4780_bch_get() - get the BCH controller from a DT node
+ * @of_node: the node that contains a bch-controller property.
+ *
+ * Get the bch-controller property from the given device tree
+ * node and pass it to jz4780_bch_get to do the work.
+ *
+ * Return: a pointer to jz4780_bch, errors are encoded into the pointer.
+ * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet.
+ */
+struct jz4780_bch *of_jz4780_bch_get(struct device_node *of_node)
+{
+	struct jz4780_bch *bch = NULL;
+	struct device_node *np;
+
+	np = of_parse_phandle(of_node, "ingenic,bch-controller", 0);
+
+	if (np) {
+		bch = jz4780_bch_get(np);
+		of_node_put(np);
+	}
+	return bch;
+}
+EXPORT_SYMBOL(of_jz4780_bch_get);
+
+/**
+ * jz4780_bch_release() - release the BCH controller device
+ * @bch: BCH device.
+ */
+void jz4780_bch_release(struct jz4780_bch *bch)
+{
+	clk_disable_unprepare(bch->clk);
+	put_device(bch->dev);
+}
+EXPORT_SYMBOL(jz4780_bch_release);
+
+static int jz4780_bch_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct jz4780_bch *bch;
+	struct resource *res;
+
+	bch = devm_kzalloc(dev, sizeof(*bch), GFP_KERNEL);
+	if (!bch)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	bch->base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(bch->base))
+		return PTR_ERR(bch->base);
+
+	jz4780_bch_disable(bch);
+
+	bch->clk = devm_clk_get(dev, NULL);
+	if (IS_ERR(bch->clk)) {
+		dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(bch->clk));
+		return PTR_ERR(bch->clk);
+	}
+
+	clk_set_rate(bch->clk, BCH_CLK_RATE);
+
+	mutex_init(&bch->lock);
+
+	bch->dev = dev;
+	platform_set_drvdata(pdev, bch);
+
+	return 0;
+}
+
+static const struct of_device_id jz4780_bch_dt_match[] = {
+	{ .compatible = "ingenic,jz4780-bch" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, jz4780_bch_dt_match);
+
+static struct platform_driver jz4780_bch_driver = {
+	.probe		= jz4780_bch_probe,
+	.driver	= {
+		.name	= "jz4780-bch",
+		.of_match_table = of_match_ptr(jz4780_bch_dt_match),
+	},
+};
+module_platform_driver(jz4780_bch_driver);
+
+MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
+MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
+MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/jz4780_bch.h b/drivers/mtd/nand/raw/jz4780_bch.h
new file mode 100644
index 0000000..bf47180
--- /dev/null
+++ b/drivers/mtd/nand/raw/jz4780_bch.h
@@ -0,0 +1,43 @@
+/*
+ * JZ4780 BCH controller
+ *
+ * Copyright (c) 2015 Imagination Technologies
+ * Author: Alex Smith <alex.smith@imgtec.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ */
+
+#ifndef __DRIVERS_MTD_NAND_JZ4780_BCH_H__
+#define __DRIVERS_MTD_NAND_JZ4780_BCH_H__
+
+#include <linux/types.h>
+
+struct device;
+struct device_node;
+struct jz4780_bch;
+
+/**
+ * struct jz4780_bch_params - BCH parameters
+ * @size: data bytes per ECC step.
+ * @bytes: ECC bytes per step.
+ * @strength: number of correctable bits per ECC step.
+ */
+struct jz4780_bch_params {
+	int size;
+	int bytes;
+	int strength;
+};
+
+int jz4780_bch_calculate(struct jz4780_bch *bch,
+				struct jz4780_bch_params *params,
+				const u8 *buf, u8 *ecc_code);
+int jz4780_bch_correct(struct jz4780_bch *bch,
+			      struct jz4780_bch_params *params, u8 *buf,
+			      u8 *ecc_code);
+
+void jz4780_bch_release(struct jz4780_bch *bch);
+struct jz4780_bch *of_jz4780_bch_get(struct device_node *np);
+
+#endif /* __DRIVERS_MTD_NAND_JZ4780_BCH_H__ */
diff --git a/drivers/mtd/nand/raw/jz4780_nand.c b/drivers/mtd/nand/raw/jz4780_nand.c
new file mode 100644
index 0000000..db4fa60
--- /dev/null
+++ b/drivers/mtd/nand/raw/jz4780_nand.c
@@ -0,0 +1,415 @@
+/*
+ * JZ4780 NAND driver
+ *
+ * Copyright (c) 2015 Imagination Technologies
+ * Author: Alex Smith <alex.smith@imgtec.com>
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ */
+
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/io.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/gpio/consumer.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+
+#include <linux/jz4780-nemc.h>
+
+#include "jz4780_bch.h"
+
+#define DRV_NAME	"jz4780-nand"
+
+#define OFFSET_DATA	0x00000000
+#define OFFSET_CMD	0x00400000
+#define OFFSET_ADDR	0x00800000
+
+/* Command delay when there is no R/B pin. */
+#define RB_DELAY_US	100
+
+struct jz4780_nand_cs {
+	unsigned int bank;
+	void __iomem *base;
+};
+
+struct jz4780_nand_controller {
+	struct device *dev;
+	struct jz4780_bch *bch;
+	struct nand_controller controller;
+	unsigned int num_banks;
+	struct list_head chips;
+	int selected;
+	struct jz4780_nand_cs cs[];
+};
+
+struct jz4780_nand_chip {
+	struct nand_chip chip;
+	struct list_head chip_list;
+
+	struct gpio_desc *busy_gpio;
+	struct gpio_desc *wp_gpio;
+	unsigned int reading: 1;
+};
+
+static inline struct jz4780_nand_chip *to_jz4780_nand_chip(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct jz4780_nand_chip, chip);
+}
+
+static inline struct jz4780_nand_controller
+*to_jz4780_nand_controller(struct nand_controller *ctrl)
+{
+	return container_of(ctrl, struct jz4780_nand_controller, controller);
+}
+
+static void jz4780_nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
+	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
+	struct jz4780_nand_cs *cs;
+
+	/* Ensure the currently selected chip is deasserted. */
+	if (chipnr == -1 && nfc->selected >= 0) {
+		cs = &nfc->cs[nfc->selected];
+		jz4780_nemc_assert(nfc->dev, cs->bank, false);
+	}
+
+	nfc->selected = chipnr;
+}
+
+static void jz4780_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+				 unsigned int ctrl)
+{
+	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
+	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
+	struct jz4780_nand_cs *cs;
+
+	if (WARN_ON(nfc->selected < 0))
+		return;
+
+	cs = &nfc->cs[nfc->selected];
+
+	jz4780_nemc_assert(nfc->dev, cs->bank, ctrl & NAND_NCE);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_ALE)
+		writeb(cmd, cs->base + OFFSET_ADDR);
+	else if (ctrl & NAND_CLE)
+		writeb(cmd, cs->base + OFFSET_CMD);
+}
+
+static int jz4780_nand_dev_ready(struct mtd_info *mtd)
+{
+	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
+
+	return !gpiod_get_value_cansleep(nand->busy_gpio);
+}
+
+static void jz4780_nand_ecc_hwctl(struct mtd_info *mtd, int mode)
+{
+	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
+
+	nand->reading = (mode == NAND_ECC_READ);
+}
+
+static int jz4780_nand_ecc_calculate(struct mtd_info *mtd, const u8 *dat,
+				     u8 *ecc_code)
+{
+	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
+	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
+	struct jz4780_bch_params params;
+
+	/*
+	 * Don't need to generate the ECC when reading, BCH does it for us as
+	 * part of decoding/correction.
+	 */
+	if (nand->reading)
+		return 0;
+
+	params.size = nand->chip.ecc.size;
+	params.bytes = nand->chip.ecc.bytes;
+	params.strength = nand->chip.ecc.strength;
+
+	return jz4780_bch_calculate(nfc->bch, &params, dat, ecc_code);
+}
+
+static int jz4780_nand_ecc_correct(struct mtd_info *mtd, u8 *dat,
+				   u8 *read_ecc, u8 *calc_ecc)
+{
+	struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd);
+	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller);
+	struct jz4780_bch_params params;
+
+	params.size = nand->chip.ecc.size;
+	params.bytes = nand->chip.ecc.bytes;
+	params.strength = nand->chip.ecc.strength;
+
+	return jz4780_bch_correct(nfc->bch, &params, dat, read_ecc);
+}
+
+static int jz4780_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(chip->controller);
+	int eccbytes;
+
+	chip->ecc.bytes = fls((1 + 8) * chip->ecc.size)	*
+				(chip->ecc.strength / 8);
+
+	switch (chip->ecc.mode) {
+	case NAND_ECC_HW:
+		if (!nfc->bch) {
+			dev_err(nfc->dev,
+				"HW BCH selected, but BCH controller not found\n");
+			return -ENODEV;
+		}
+
+		chip->ecc.hwctl = jz4780_nand_ecc_hwctl;
+		chip->ecc.calculate = jz4780_nand_ecc_calculate;
+		chip->ecc.correct = jz4780_nand_ecc_correct;
+		/* fall through */
+	case NAND_ECC_SOFT:
+		dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n",
+			 (nfc->bch) ? "hardware BCH" : "software ECC",
+			 chip->ecc.strength, chip->ecc.size, chip->ecc.bytes);
+		break;
+	case NAND_ECC_NONE:
+		dev_info(nfc->dev, "not using ECC\n");
+		break;
+	default:
+		dev_err(nfc->dev, "ECC mode %d not supported\n",
+			chip->ecc.mode);
+		return -EINVAL;
+	}
+
+	/* The NAND core will generate the ECC layout for SW ECC */
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return 0;
+
+	/* Generate ECC layout. ECC codes are right aligned in the OOB area. */
+	eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes;
+
+	if (eccbytes > mtd->oobsize - 2) {
+		dev_err(nfc->dev,
+			"invalid ECC config: required %d ECC bytes, but only %d are available",
+			eccbytes, mtd->oobsize - 2);
+		return -EINVAL;
+	}
+
+	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+
+	return 0;
+}
+
+static const struct nand_controller_ops jz4780_nand_controller_ops = {
+	.attach_chip = jz4780_nand_attach_chip,
+};
+
+static int jz4780_nand_init_chip(struct platform_device *pdev,
+				struct jz4780_nand_controller *nfc,
+				struct device_node *np,
+				unsigned int chipnr)
+{
+	struct device *dev = &pdev->dev;
+	struct jz4780_nand_chip *nand;
+	struct jz4780_nand_cs *cs;
+	struct resource *res;
+	struct nand_chip *chip;
+	struct mtd_info *mtd;
+	const __be32 *reg;
+	int ret = 0;
+
+	cs = &nfc->cs[chipnr];
+
+	reg = of_get_property(np, "reg", NULL);
+	if (!reg)
+		return -EINVAL;
+
+	cs->bank = be32_to_cpu(*reg);
+
+	jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, chipnr);
+	cs->base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(cs->base))
+		return PTR_ERR(cs->base);
+
+	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
+	if (!nand)
+		return -ENOMEM;
+
+	nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN);
+
+	if (IS_ERR(nand->busy_gpio)) {
+		ret = PTR_ERR(nand->busy_gpio);
+		dev_err(dev, "failed to request busy GPIO: %d\n", ret);
+		return ret;
+	} else if (nand->busy_gpio) {
+		nand->chip.dev_ready = jz4780_nand_dev_ready;
+	}
+
+	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
+
+	if (IS_ERR(nand->wp_gpio)) {
+		ret = PTR_ERR(nand->wp_gpio);
+		dev_err(dev, "failed to request WP GPIO: %d\n", ret);
+		return ret;
+	}
+
+	chip = &nand->chip;
+	mtd = nand_to_mtd(chip);
+	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
+				   cs->bank);
+	if (!mtd->name)
+		return -ENOMEM;
+	mtd->dev.parent = dev;
+
+	chip->IO_ADDR_R = cs->base + OFFSET_DATA;
+	chip->IO_ADDR_W = cs->base + OFFSET_DATA;
+	chip->chip_delay = RB_DELAY_US;
+	chip->options = NAND_NO_SUBPAGE_WRITE;
+	chip->select_chip = jz4780_nand_select_chip;
+	chip->cmd_ctrl = jz4780_nand_cmd_ctrl;
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->controller = &nfc->controller;
+	nand_set_flash_node(chip, np);
+
+	chip->controller->ops = &jz4780_nand_controller_ops;
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		nand_release(mtd);
+		return ret;
+	}
+
+	list_add_tail(&nand->chip_list, &nfc->chips);
+
+	return 0;
+}
+
+static void jz4780_nand_cleanup_chips(struct jz4780_nand_controller *nfc)
+{
+	struct jz4780_nand_chip *chip;
+
+	while (!list_empty(&nfc->chips)) {
+		chip = list_first_entry(&nfc->chips, struct jz4780_nand_chip, chip_list);
+		nand_release(nand_to_mtd(&chip->chip));
+		list_del(&chip->chip_list);
+	}
+}
+
+static int jz4780_nand_init_chips(struct jz4780_nand_controller *nfc,
+				  struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct device_node *np;
+	int i = 0;
+	int ret;
+	int num_chips = of_get_child_count(dev->of_node);
+
+	if (num_chips > nfc->num_banks) {
+		dev_err(dev, "found %d chips but only %d banks\n", num_chips, nfc->num_banks);
+		return -EINVAL;
+	}
+
+	for_each_child_of_node(dev->of_node, np) {
+		ret = jz4780_nand_init_chip(pdev, nfc, np, i);
+		if (ret) {
+			jz4780_nand_cleanup_chips(nfc);
+			return ret;
+		}
+
+		i++;
+	}
+
+	return 0;
+}
+
+static int jz4780_nand_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	unsigned int num_banks;
+	struct jz4780_nand_controller *nfc;
+	int ret;
+
+	num_banks = jz4780_nemc_num_banks(dev);
+	if (num_banks == 0) {
+		dev_err(dev, "no banks found\n");
+		return -ENODEV;
+	}
+
+	nfc = devm_kzalloc(dev, sizeof(*nfc) + (sizeof(nfc->cs[0]) * num_banks), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	/*
+	 * Check for BCH HW before we call nand_scan_ident, to prevent us from
+	 * having to call it again if the BCH driver returns -EPROBE_DEFER.
+	 */
+	nfc->bch = of_jz4780_bch_get(dev->of_node);
+	if (IS_ERR(nfc->bch))
+		return PTR_ERR(nfc->bch);
+
+	nfc->dev = dev;
+	nfc->num_banks = num_banks;
+
+	nand_controller_init(&nfc->controller);
+	INIT_LIST_HEAD(&nfc->chips);
+
+	ret = jz4780_nand_init_chips(nfc, pdev);
+	if (ret) {
+		if (nfc->bch)
+			jz4780_bch_release(nfc->bch);
+		return ret;
+	}
+
+	platform_set_drvdata(pdev, nfc);
+	return 0;
+}
+
+static int jz4780_nand_remove(struct platform_device *pdev)
+{
+	struct jz4780_nand_controller *nfc = platform_get_drvdata(pdev);
+
+	if (nfc->bch)
+		jz4780_bch_release(nfc->bch);
+
+	jz4780_nand_cleanup_chips(nfc);
+
+	return 0;
+}
+
+static const struct of_device_id jz4780_nand_dt_match[] = {
+	{ .compatible = "ingenic,jz4780-nand" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, jz4780_nand_dt_match);
+
+static struct platform_driver jz4780_nand_driver = {
+	.probe		= jz4780_nand_probe,
+	.remove		= jz4780_nand_remove,
+	.driver	= {
+		.name	= DRV_NAME,
+		.of_match_table = of_match_ptr(jz4780_nand_dt_match),
+	},
+};
+module_platform_driver(jz4780_nand_driver);
+
+MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>");
+MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>");
+MODULE_DESCRIPTION("Ingenic JZ4780 NAND driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c
new file mode 100644
index 0000000..e82abad
--- /dev/null
+++ b/drivers/mtd/nand/raw/lpc32xx_mlc.c
@@ -0,0 +1,916 @@
+/*
+ * Driver for NAND MLC Controller in LPC32xx
+ *
+ * Author: Roland Stigge <stigge@antcom.de>
+ *
+ * Copyright © 2011 WORK Microwave GmbH
+ * Copyright © 2011, 2012 Roland Stigge
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ *
+ * NAND Flash Controller Operation:
+ * - Read: Auto Decode
+ * - Write: Auto Encode
+ * - Tested Page Sizes: 2048, 4096
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/completion.h>
+#include <linux/interrupt.h>
+#include <linux/of.h>
+#include <linux/of_gpio.h>
+#include <linux/mtd/lpc32xx_mlc.h>
+#include <linux/io.h>
+#include <linux/mm.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/mtd/nand_ecc.h>
+
+#define DRV_NAME "lpc32xx_mlc"
+
+/**********************************************************************
+* MLC NAND controller register offsets
+**********************************************************************/
+
+#define MLC_BUFF(x)			(x + 0x00000)
+#define MLC_DATA(x)			(x + 0x08000)
+#define MLC_CMD(x)			(x + 0x10000)
+#define MLC_ADDR(x)			(x + 0x10004)
+#define MLC_ECC_ENC_REG(x)		(x + 0x10008)
+#define MLC_ECC_DEC_REG(x)		(x + 0x1000C)
+#define MLC_ECC_AUTO_ENC_REG(x)		(x + 0x10010)
+#define MLC_ECC_AUTO_DEC_REG(x)		(x + 0x10014)
+#define MLC_RPR(x)			(x + 0x10018)
+#define MLC_WPR(x)			(x + 0x1001C)
+#define MLC_RUBP(x)			(x + 0x10020)
+#define MLC_ROBP(x)			(x + 0x10024)
+#define MLC_SW_WP_ADD_LOW(x)		(x + 0x10028)
+#define MLC_SW_WP_ADD_HIG(x)		(x + 0x1002C)
+#define MLC_ICR(x)			(x + 0x10030)
+#define MLC_TIME_REG(x)			(x + 0x10034)
+#define MLC_IRQ_MR(x)			(x + 0x10038)
+#define MLC_IRQ_SR(x)			(x + 0x1003C)
+#define MLC_LOCK_PR(x)			(x + 0x10044)
+#define MLC_ISR(x)			(x + 0x10048)
+#define MLC_CEH(x)			(x + 0x1004C)
+
+/**********************************************************************
+* MLC_CMD bit definitions
+**********************************************************************/
+#define MLCCMD_RESET			0xFF
+
+/**********************************************************************
+* MLC_ICR bit definitions
+**********************************************************************/
+#define MLCICR_WPROT			(1 << 3)
+#define MLCICR_LARGEBLOCK		(1 << 2)
+#define MLCICR_LONGADDR			(1 << 1)
+#define MLCICR_16BIT			(1 << 0)  /* unsupported by LPC32x0! */
+
+/**********************************************************************
+* MLC_TIME_REG bit definitions
+**********************************************************************/
+#define MLCTIMEREG_TCEA_DELAY(n)	(((n) & 0x03) << 24)
+#define MLCTIMEREG_BUSY_DELAY(n)	(((n) & 0x1F) << 19)
+#define MLCTIMEREG_NAND_TA(n)		(((n) & 0x07) << 16)
+#define MLCTIMEREG_RD_HIGH(n)		(((n) & 0x0F) << 12)
+#define MLCTIMEREG_RD_LOW(n)		(((n) & 0x0F) << 8)
+#define MLCTIMEREG_WR_HIGH(n)		(((n) & 0x0F) << 4)
+#define MLCTIMEREG_WR_LOW(n)		(((n) & 0x0F) << 0)
+
+/**********************************************************************
+* MLC_IRQ_MR and MLC_IRQ_SR bit definitions
+**********************************************************************/
+#define MLCIRQ_NAND_READY		(1 << 5)
+#define MLCIRQ_CONTROLLER_READY		(1 << 4)
+#define MLCIRQ_DECODE_FAILURE		(1 << 3)
+#define MLCIRQ_DECODE_ERROR		(1 << 2)
+#define MLCIRQ_ECC_READY		(1 << 1)
+#define MLCIRQ_WRPROT_FAULT		(1 << 0)
+
+/**********************************************************************
+* MLC_LOCK_PR bit definitions
+**********************************************************************/
+#define MLCLOCKPR_MAGIC			0xA25E
+
+/**********************************************************************
+* MLC_ISR bit definitions
+**********************************************************************/
+#define MLCISR_DECODER_FAILURE		(1 << 6)
+#define MLCISR_ERRORS			((1 << 4) | (1 << 5))
+#define MLCISR_ERRORS_DETECTED		(1 << 3)
+#define MLCISR_ECC_READY		(1 << 2)
+#define MLCISR_CONTROLLER_READY		(1 << 1)
+#define MLCISR_NAND_READY		(1 << 0)
+
+/**********************************************************************
+* MLC_CEH bit definitions
+**********************************************************************/
+#define MLCCEH_NORMAL			(1 << 0)
+
+struct lpc32xx_nand_cfg_mlc {
+	uint32_t tcea_delay;
+	uint32_t busy_delay;
+	uint32_t nand_ta;
+	uint32_t rd_high;
+	uint32_t rd_low;
+	uint32_t wr_high;
+	uint32_t wr_low;
+	int wp_gpio;
+	struct mtd_partition *parts;
+	unsigned num_parts;
+};
+
+static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+
+	if (section >= nand_chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
+	oobregion->length = nand_chip->ecc.bytes;
+
+	return 0;
+}
+
+static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+
+	if (section >= nand_chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = 16 * section;
+	oobregion->length = 16 - nand_chip->ecc.bytes;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
+	.ecc = lpc32xx_ooblayout_ecc,
+	.free = lpc32xx_ooblayout_free,
+};
+
+static struct nand_bbt_descr lpc32xx_nand_bbt = {
+	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
+		   NAND_BBT_WRITE,
+	.pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
+};
+
+static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
+	.options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
+		   NAND_BBT_WRITE,
+	.pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
+};
+
+struct lpc32xx_nand_host {
+	struct platform_device	*pdev;
+	struct nand_chip	nand_chip;
+	struct lpc32xx_mlc_platform_data *pdata;
+	struct clk		*clk;
+	void __iomem		*io_base;
+	int			irq;
+	struct lpc32xx_nand_cfg_mlc	*ncfg;
+	struct completion       comp_nand;
+	struct completion       comp_controller;
+	uint32_t llptr;
+	/*
+	 * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
+	 */
+	dma_addr_t		oob_buf_phy;
+	/*
+	 * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
+	 */
+	uint8_t			*oob_buf;
+	/* Physical address of DMA base address */
+	dma_addr_t		io_base_phy;
+
+	struct completion	comp_dma;
+	struct dma_chan		*dma_chan;
+	struct dma_slave_config	dma_slave_config;
+	struct scatterlist	sgl;
+	uint8_t			*dma_buf;
+	uint8_t			*dummy_buf;
+	int			mlcsubpages; /* number of 512bytes-subpages */
+};
+
+/*
+ * Activate/Deactivate DMA Operation:
+ *
+ * Using the PL080 DMA Controller for transferring the 512 byte subpages
+ * instead of doing readl() / writel() in a loop slows it down significantly.
+ * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
+ *
+ * - readl() of 128 x 32 bits in a loop: ~20us
+ * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
+ * - DMA read of 512 bytes (32 bit, no bursts): ~100us
+ *
+ * This applies to the transfer itself. In the DMA case: only the
+ * wait_for_completion() (DMA setup _not_ included).
+ *
+ * Note that the 512 bytes subpage transfer is done directly from/to a
+ * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
+ * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
+ * controller transferring data between its internal buffer to/from the NAND
+ * chip.)
+ *
+ * Therefore, using the PL080 DMA is disabled by default, for now.
+ *
+ */
+static int use_dma;
+
+static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
+{
+	uint32_t clkrate, tmp;
+
+	/* Reset MLC controller */
+	writel(MLCCMD_RESET, MLC_CMD(host->io_base));
+	udelay(1000);
+
+	/* Get base clock for MLC block */
+	clkrate = clk_get_rate(host->clk);
+	if (clkrate == 0)
+		clkrate = 104000000;
+
+	/* Unlock MLC_ICR
+	 * (among others, will be locked again automatically) */
+	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
+
+	/* Configure MLC Controller: Large Block, 5 Byte Address */
+	tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
+	writel(tmp, MLC_ICR(host->io_base));
+
+	/* Unlock MLC_TIME_REG
+	 * (among others, will be locked again automatically) */
+	writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
+
+	/* Compute clock setup values, see LPC and NAND manual */
+	tmp = 0;
+	tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
+	tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
+	tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
+	tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
+	tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
+	tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
+	tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
+	writel(tmp, MLC_TIME_REG(host->io_base));
+
+	/* Enable IRQ for CONTROLLER_READY and NAND_READY */
+	writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
+			MLC_IRQ_MR(host->io_base));
+
+	/* Normal nCE operation: nCE controlled by controller */
+	writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
+}
+
+/*
+ * Hardware specific access to control lines
+ */
+static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+				  unsigned int ctrl)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
+
+	if (cmd != NAND_CMD_NONE) {
+		if (ctrl & NAND_CLE)
+			writel(cmd, MLC_CMD(host->io_base));
+		else
+			writel(cmd, MLC_ADDR(host->io_base));
+	}
+}
+
+/*
+ * Read Device Ready (NAND device _and_ controller ready)
+ */
+static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
+
+	if ((readb(MLC_ISR(host->io_base)) &
+	     (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
+	    (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
+		return  1;
+
+	return 0;
+}
+
+static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
+{
+	uint8_t sr;
+
+	/* Clear interrupt flag by reading status */
+	sr = readb(MLC_IRQ_SR(host->io_base));
+	if (sr & MLCIRQ_NAND_READY)
+		complete(&host->comp_nand);
+	if (sr & MLCIRQ_CONTROLLER_READY)
+		complete(&host->comp_controller);
+
+	return IRQ_HANDLED;
+}
+
+static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
+		goto exit;
+
+	wait_for_completion(&host->comp_nand);
+
+	while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
+		/* Seems to be delayed sometimes by controller */
+		dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
+		cpu_relax();
+	}
+
+exit:
+	return NAND_STATUS_READY;
+}
+
+static int lpc32xx_waitfunc_controller(struct mtd_info *mtd,
+				       struct nand_chip *chip)
+{
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
+		goto exit;
+
+	wait_for_completion(&host->comp_controller);
+
+	while (!(readb(MLC_ISR(host->io_base)) &
+		 MLCISR_CONTROLLER_READY)) {
+		dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
+		cpu_relax();
+	}
+
+exit:
+	return NAND_STATUS_READY;
+}
+
+static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	lpc32xx_waitfunc_nand(mtd, chip);
+	lpc32xx_waitfunc_controller(mtd, chip);
+
+	return NAND_STATUS_READY;
+}
+
+/*
+ * Enable NAND write protect
+ */
+static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
+{
+	if (gpio_is_valid(host->ncfg->wp_gpio))
+		gpio_set_value(host->ncfg->wp_gpio, 0);
+}
+
+/*
+ * Disable NAND write protect
+ */
+static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
+{
+	if (gpio_is_valid(host->ncfg->wp_gpio))
+		gpio_set_value(host->ncfg->wp_gpio, 1);
+}
+
+static void lpc32xx_dma_complete_func(void *completion)
+{
+	complete(completion);
+}
+
+static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
+			    enum dma_transfer_direction dir)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	struct dma_async_tx_descriptor *desc;
+	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
+	int res;
+
+	sg_init_one(&host->sgl, mem, len);
+
+	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
+			 DMA_BIDIRECTIONAL);
+	if (res != 1) {
+		dev_err(mtd->dev.parent, "Failed to map sg list\n");
+		return -ENXIO;
+	}
+	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
+				       flags);
+	if (!desc) {
+		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
+		goto out1;
+	}
+
+	init_completion(&host->comp_dma);
+	desc->callback = lpc32xx_dma_complete_func;
+	desc->callback_param = &host->comp_dma;
+
+	dmaengine_submit(desc);
+	dma_async_issue_pending(host->dma_chan);
+
+	wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
+
+	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
+		     DMA_BIDIRECTIONAL);
+	return 0;
+out1:
+	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
+		     DMA_BIDIRECTIONAL);
+	return -ENXIO;
+}
+
+static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			     uint8_t *buf, int oob_required, int page)
+{
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	int i, j;
+	uint8_t *oobbuf = chip->oob_poi;
+	uint32_t mlc_isr;
+	int res;
+	uint8_t *dma_buf;
+	bool dma_mapped;
+
+	if ((void *)buf <= high_memory) {
+		dma_buf = buf;
+		dma_mapped = true;
+	} else {
+		dma_buf = host->dma_buf;
+		dma_mapped = false;
+	}
+
+	/* Writing Command and Address */
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	/* For all sub-pages */
+	for (i = 0; i < host->mlcsubpages; i++) {
+		/* Start Auto Decode Command */
+		writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
+
+		/* Wait for Controller Ready */
+		lpc32xx_waitfunc_controller(mtd, chip);
+
+		/* Check ECC Error status */
+		mlc_isr = readl(MLC_ISR(host->io_base));
+		if (mlc_isr & MLCISR_DECODER_FAILURE) {
+			mtd->ecc_stats.failed++;
+			dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
+		} else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
+			mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
+		}
+
+		/* Read 512 + 16 Bytes */
+		if (use_dma) {
+			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
+					       DMA_DEV_TO_MEM);
+			if (res)
+				return res;
+		} else {
+			for (j = 0; j < (512 >> 2); j++) {
+				*((uint32_t *)(buf)) =
+					readl(MLC_BUFF(host->io_base));
+				buf += 4;
+			}
+		}
+		for (j = 0; j < (16 >> 2); j++) {
+			*((uint32_t *)(oobbuf)) =
+				readl(MLC_BUFF(host->io_base));
+			oobbuf += 4;
+		}
+	}
+
+	if (use_dma && !dma_mapped)
+		memcpy(buf, dma_buf, mtd->writesize);
+
+	return 0;
+}
+
+static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd,
+				       struct nand_chip *chip,
+				       const uint8_t *buf, int oob_required,
+				       int page)
+{
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	const uint8_t *oobbuf = chip->oob_poi;
+	uint8_t *dma_buf = (uint8_t *)buf;
+	int res;
+	int i, j;
+
+	if (use_dma && (void *)buf >= high_memory) {
+		dma_buf = host->dma_buf;
+		memcpy(dma_buf, buf, mtd->writesize);
+	}
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	for (i = 0; i < host->mlcsubpages; i++) {
+		/* Start Encode */
+		writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
+
+		/* Write 512 + 6 Bytes to Buffer */
+		if (use_dma) {
+			res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
+					       DMA_MEM_TO_DEV);
+			if (res)
+				return res;
+		} else {
+			for (j = 0; j < (512 >> 2); j++) {
+				writel(*((uint32_t *)(buf)),
+				       MLC_BUFF(host->io_base));
+				buf += 4;
+			}
+		}
+		writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
+		oobbuf += 4;
+		writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
+		oobbuf += 12;
+
+		/* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
+		writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
+
+		/* Wait for Controller Ready */
+		lpc32xx_waitfunc_controller(mtd, chip);
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
+{
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	/* Read whole page - necessary with MLC controller! */
+	lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page);
+
+	return 0;
+}
+
+static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			      int page)
+{
+	/* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
+	return 0;
+}
+
+/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
+static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode)
+{
+	/* Always enabled! */
+}
+
+static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
+{
+	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
+	dma_cap_mask_t mask;
+
+	if (!host->pdata || !host->pdata->dma_filter) {
+		dev_err(mtd->dev.parent, "no DMA platform data\n");
+		return -ENOENT;
+	}
+
+	dma_cap_zero(mask);
+	dma_cap_set(DMA_SLAVE, mask);
+	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
+					     "nand-mlc");
+	if (!host->dma_chan) {
+		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
+		return -EBUSY;
+	}
+
+	/*
+	 * Set direction to a sensible value even if the dmaengine driver
+	 * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
+	 * driver criticizes it as "alien transfer direction".
+	 */
+	host->dma_slave_config.direction = DMA_DEV_TO_MEM;
+	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+	host->dma_slave_config.src_maxburst = 128;
+	host->dma_slave_config.dst_maxburst = 128;
+	/* DMA controller does flow control: */
+	host->dma_slave_config.device_fc = false;
+	host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
+	host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
+	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
+		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
+		goto out1;
+	}
+
+	return 0;
+out1:
+	dma_release_channel(host->dma_chan);
+	return -ENXIO;
+}
+
+static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
+{
+	struct lpc32xx_nand_cfg_mlc *ncfg;
+	struct device_node *np = dev->of_node;
+
+	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
+	if (!ncfg)
+		return NULL;
+
+	of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
+	of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
+	of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
+	of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
+	of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
+	of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
+	of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
+
+	if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
+	    !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
+	    !ncfg->wr_low) {
+		dev_err(dev, "chip parameters not specified correctly\n");
+		return NULL;
+	}
+
+	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
+
+	return ncfg;
+}
+
+static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	struct device *dev = &host->pdev->dev;
+
+	host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
+	if (!host->dma_buf)
+		return -ENOMEM;
+
+	host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
+	if (!host->dummy_buf)
+		return -ENOMEM;
+
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->ecc.size = 512;
+	mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
+	host->mlcsubpages = mtd->writesize / 512;
+
+	return 0;
+}
+
+static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
+	.attach_chip = lpc32xx_nand_attach_chip,
+};
+
+/*
+ * Probe for NAND controller
+ */
+static int lpc32xx_nand_probe(struct platform_device *pdev)
+{
+	struct lpc32xx_nand_host *host;
+	struct mtd_info *mtd;
+	struct nand_chip *nand_chip;
+	struct resource *rc;
+	int res;
+
+	/* Allocate memory for the device structure (and zero it) */
+	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
+	if (!host)
+		return -ENOMEM;
+
+	host->pdev = pdev;
+
+	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
+	if (IS_ERR(host->io_base))
+		return PTR_ERR(host->io_base);
+
+	host->io_base_phy = rc->start;
+
+	nand_chip = &host->nand_chip;
+	mtd = nand_to_mtd(nand_chip);
+	if (pdev->dev.of_node)
+		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
+	if (!host->ncfg) {
+		dev_err(&pdev->dev,
+			"Missing or bad NAND config from device tree\n");
+		return -ENOENT;
+	}
+	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
+		return -EPROBE_DEFER;
+	if (gpio_is_valid(host->ncfg->wp_gpio) &&
+			gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
+		dev_err(&pdev->dev, "GPIO not available\n");
+		return -EBUSY;
+	}
+	lpc32xx_wp_disable(host);
+
+	host->pdata = dev_get_platdata(&pdev->dev);
+
+	/* link the private data structures */
+	nand_set_controller_data(nand_chip, host);
+	nand_set_flash_node(nand_chip, pdev->dev.of_node);
+	mtd->dev.parent = &pdev->dev;
+
+	/* Get NAND clock */
+	host->clk = clk_get(&pdev->dev, NULL);
+	if (IS_ERR(host->clk)) {
+		dev_err(&pdev->dev, "Clock initialization failure\n");
+		res = -ENOENT;
+		goto free_gpio;
+	}
+	res = clk_prepare_enable(host->clk);
+	if (res)
+		goto put_clk;
+
+	nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
+	nand_chip->dev_ready = lpc32xx_nand_device_ready;
+	nand_chip->chip_delay = 25; /* us */
+	nand_chip->IO_ADDR_R = MLC_DATA(host->io_base);
+	nand_chip->IO_ADDR_W = MLC_DATA(host->io_base);
+
+	/* Init NAND controller */
+	lpc32xx_nand_setup(host);
+
+	platform_set_drvdata(pdev, host);
+
+	/* Initialize function pointers */
+	nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
+	nand_chip->ecc.read_page_raw = lpc32xx_read_page;
+	nand_chip->ecc.read_page = lpc32xx_read_page;
+	nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
+	nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
+	nand_chip->ecc.write_oob = lpc32xx_write_oob;
+	nand_chip->ecc.read_oob = lpc32xx_read_oob;
+	nand_chip->ecc.strength = 4;
+	nand_chip->ecc.bytes = 10;
+	nand_chip->waitfunc = lpc32xx_waitfunc;
+
+	nand_chip->options = NAND_NO_SUBPAGE_WRITE;
+	nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+	nand_chip->bbt_td = &lpc32xx_nand_bbt;
+	nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
+
+	if (use_dma) {
+		res = lpc32xx_dma_setup(host);
+		if (res) {
+			res = -EIO;
+			goto unprepare_clk;
+		}
+	}
+
+	/* initially clear interrupt status */
+	readb(MLC_IRQ_SR(host->io_base));
+
+	init_completion(&host->comp_nand);
+	init_completion(&host->comp_controller);
+
+	host->irq = platform_get_irq(pdev, 0);
+	if (host->irq < 0) {
+		dev_err(&pdev->dev, "failed to get platform irq\n");
+		res = -EINVAL;
+		goto release_dma_chan;
+	}
+
+	if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
+			IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
+		dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
+		res = -ENXIO;
+		goto release_dma_chan;
+	}
+
+	/*
+	 * Scan to find existence of the device and get the type of NAND device:
+	 * SMALL block or LARGE block.
+	 */
+	nand_chip->dummy_controller.ops = &lpc32xx_nand_controller_ops;
+	res = nand_scan(mtd, 1);
+	if (res)
+		goto free_irq;
+
+	mtd->name = DRV_NAME;
+
+	res = mtd_device_register(mtd, host->ncfg->parts,
+				  host->ncfg->num_parts);
+	if (res)
+		goto cleanup_nand;
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(nand_chip);
+free_irq:
+	free_irq(host->irq, host);
+release_dma_chan:
+	if (use_dma)
+		dma_release_channel(host->dma_chan);
+unprepare_clk:
+	clk_disable_unprepare(host->clk);
+put_clk:
+	clk_put(host->clk);
+free_gpio:
+	lpc32xx_wp_enable(host);
+	gpio_free(host->ncfg->wp_gpio);
+
+	return res;
+}
+
+/*
+ * Remove NAND device
+ */
+static int lpc32xx_nand_remove(struct platform_device *pdev)
+{
+	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
+
+	nand_release(mtd);
+	free_irq(host->irq, host);
+	if (use_dma)
+		dma_release_channel(host->dma_chan);
+
+	clk_disable_unprepare(host->clk);
+	clk_put(host->clk);
+
+	lpc32xx_wp_enable(host);
+	gpio_free(host->ncfg->wp_gpio);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int lpc32xx_nand_resume(struct platform_device *pdev)
+{
+	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+	int ret;
+
+	/* Re-enable NAND clock */
+	ret = clk_prepare_enable(host->clk);
+	if (ret)
+		return ret;
+
+	/* Fresh init of NAND controller */
+	lpc32xx_nand_setup(host);
+
+	/* Disable write protect */
+	lpc32xx_wp_disable(host);
+
+	return 0;
+}
+
+static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
+{
+	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+
+	/* Enable write protect for safety */
+	lpc32xx_wp_enable(host);
+
+	/* Disable clock */
+	clk_disable_unprepare(host->clk);
+	return 0;
+}
+
+#else
+#define lpc32xx_nand_resume NULL
+#define lpc32xx_nand_suspend NULL
+#endif
+
+static const struct of_device_id lpc32xx_nand_match[] = {
+	{ .compatible = "nxp,lpc3220-mlc" },
+	{ /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
+
+static struct platform_driver lpc32xx_nand_driver = {
+	.probe		= lpc32xx_nand_probe,
+	.remove		= lpc32xx_nand_remove,
+	.resume		= lpc32xx_nand_resume,
+	.suspend	= lpc32xx_nand_suspend,
+	.driver		= {
+		.name	= DRV_NAME,
+		.of_match_table = lpc32xx_nand_match,
+	},
+};
+
+module_platform_driver(lpc32xx_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
+MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");
diff --git a/drivers/mtd/nand/raw/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c
new file mode 100644
index 0000000..a4e8b7e
--- /dev/null
+++ b/drivers/mtd/nand/raw/lpc32xx_slc.c
@@ -0,0 +1,1041 @@
+/*
+ * NXP LPC32XX NAND SLC driver
+ *
+ * Authors:
+ *    Kevin Wells <kevin.wells@nxp.com>
+ *    Roland Stigge <stigge@antcom.de>
+ *
+ * Copyright © 2011 NXP Semiconductors
+ * Copyright © 2012 Roland Stigge
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/mm.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/gpio.h>
+#include <linux/of.h>
+#include <linux/of_gpio.h>
+#include <linux/mtd/lpc32xx_slc.h>
+
+#define LPC32XX_MODNAME		"lpc32xx-nand"
+
+/**********************************************************************
+* SLC NAND controller register offsets
+**********************************************************************/
+
+#define SLC_DATA(x)		(x + 0x000)
+#define SLC_ADDR(x)		(x + 0x004)
+#define SLC_CMD(x)		(x + 0x008)
+#define SLC_STOP(x)		(x + 0x00C)
+#define SLC_CTRL(x)		(x + 0x010)
+#define SLC_CFG(x)		(x + 0x014)
+#define SLC_STAT(x)		(x + 0x018)
+#define SLC_INT_STAT(x)		(x + 0x01C)
+#define SLC_IEN(x)		(x + 0x020)
+#define SLC_ISR(x)		(x + 0x024)
+#define SLC_ICR(x)		(x + 0x028)
+#define SLC_TAC(x)		(x + 0x02C)
+#define SLC_TC(x)		(x + 0x030)
+#define SLC_ECC(x)		(x + 0x034)
+#define SLC_DMA_DATA(x)		(x + 0x038)
+
+/**********************************************************************
+* slc_ctrl register definitions
+**********************************************************************/
+#define SLCCTRL_SW_RESET	(1 << 2) /* Reset the NAND controller bit */
+#define SLCCTRL_ECC_CLEAR	(1 << 1) /* Reset ECC bit */
+#define SLCCTRL_DMA_START	(1 << 0) /* Start DMA channel bit */
+
+/**********************************************************************
+* slc_cfg register definitions
+**********************************************************************/
+#define SLCCFG_CE_LOW		(1 << 5) /* Force CE low bit */
+#define SLCCFG_DMA_ECC		(1 << 4) /* Enable DMA ECC bit */
+#define SLCCFG_ECC_EN		(1 << 3) /* ECC enable bit */
+#define SLCCFG_DMA_BURST	(1 << 2) /* DMA burst bit */
+#define SLCCFG_DMA_DIR		(1 << 1) /* DMA write(0)/read(1) bit */
+#define SLCCFG_WIDTH		(1 << 0) /* External device width, 0=8bit */
+
+/**********************************************************************
+* slc_stat register definitions
+**********************************************************************/
+#define SLCSTAT_DMA_FIFO	(1 << 2) /* DMA FIFO has data bit */
+#define SLCSTAT_SLC_FIFO	(1 << 1) /* SLC FIFO has data bit */
+#define SLCSTAT_NAND_READY	(1 << 0) /* NAND device is ready bit */
+
+/**********************************************************************
+* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
+**********************************************************************/
+#define SLCSTAT_INT_TC		(1 << 1) /* Transfer count bit */
+#define SLCSTAT_INT_RDY_EN	(1 << 0) /* Ready interrupt bit */
+
+/**********************************************************************
+* slc_tac register definitions
+**********************************************************************/
+/* Computation of clock cycles on basis of controller and device clock rates */
+#define SLCTAC_CLOCKS(c, n, s)	(min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s)
+
+/* Clock setting for RDY write sample wait time in 2*n clocks */
+#define SLCTAC_WDR(n)		(((n) & 0xF) << 28)
+/* Write pulse width in clock cycles, 1 to 16 clocks */
+#define SLCTAC_WWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 24))
+/* Write hold time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_WHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 20))
+/* Write setup time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_WSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 16))
+/* Clock setting for RDY read sample wait time in 2*n clocks */
+#define SLCTAC_RDR(n)		(((n) & 0xF) << 12)
+/* Read pulse width in clock cycles, 1 to 16 clocks */
+#define SLCTAC_RWIDTH(c, n)	(SLCTAC_CLOCKS(c, n, 8))
+/* Read hold time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_RHOLD(c, n)	(SLCTAC_CLOCKS(c, n, 4))
+/* Read setup time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_RSETUP(c, n)	(SLCTAC_CLOCKS(c, n, 0))
+
+/**********************************************************************
+* slc_ecc register definitions
+**********************************************************************/
+/* ECC line party fetch macro */
+#define SLCECC_TO_LINEPAR(n)	(((n) >> 6) & 0x7FFF)
+#define SLCECC_TO_COLPAR(n)	((n) & 0x3F)
+
+/*
+ * DMA requires storage space for the DMA local buffer and the hardware ECC
+ * storage area. The DMA local buffer is only used if DMA mapping fails
+ * during runtime.
+ */
+#define LPC32XX_DMA_DATA_SIZE		4096
+#define LPC32XX_ECC_SAVE_SIZE		((4096 / 256) * 4)
+
+/* Number of bytes used for ECC stored in NAND per 256 bytes */
+#define LPC32XX_SLC_DEV_ECC_BYTES	3
+
+/*
+ * If the NAND base clock frequency can't be fetched, this frequency will be
+ * used instead as the base. This rate is used to setup the timing registers
+ * used for NAND accesses.
+ */
+#define LPC32XX_DEF_BUS_RATE		133250000
+
+/* Milliseconds for DMA FIFO timeout (unlikely anyway) */
+#define LPC32XX_DMA_TIMEOUT		100
+
+/*
+ * NAND ECC Layout for small page NAND devices
+ * Note: For large and huge page devices, the default layouts are used
+ */
+static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = 6;
+	oobregion->offset = 10;
+
+	return 0;
+}
+
+static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	if (section > 1)
+		return -ERANGE;
+
+	if (!section) {
+		oobregion->offset = 0;
+		oobregion->length = 4;
+	} else {
+		oobregion->offset = 6;
+		oobregion->length = 4;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
+	.ecc = lpc32xx_ooblayout_ecc,
+	.free = lpc32xx_ooblayout_free,
+};
+
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+/*
+ * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
+ * Note: Large page devices used the default layout
+ */
+static struct nand_bbt_descr bbt_smallpage_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	0,
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	0,
+	.len = 4,
+	.veroffs = 6,
+	.maxblocks = 4,
+	.pattern = mirror_pattern
+};
+
+/*
+ * NAND platform configuration structure
+ */
+struct lpc32xx_nand_cfg_slc {
+	uint32_t wdr_clks;
+	uint32_t wwidth;
+	uint32_t whold;
+	uint32_t wsetup;
+	uint32_t rdr_clks;
+	uint32_t rwidth;
+	uint32_t rhold;
+	uint32_t rsetup;
+	int wp_gpio;
+	struct mtd_partition *parts;
+	unsigned num_parts;
+};
+
+struct lpc32xx_nand_host {
+	struct nand_chip	nand_chip;
+	struct lpc32xx_slc_platform_data *pdata;
+	struct clk		*clk;
+	void __iomem		*io_base;
+	struct lpc32xx_nand_cfg_slc *ncfg;
+
+	struct completion	comp;
+	struct dma_chan		*dma_chan;
+	uint32_t		dma_buf_len;
+	struct dma_slave_config	dma_slave_config;
+	struct scatterlist	sgl;
+
+	/*
+	 * DMA and CPU addresses of ECC work area and data buffer
+	 */
+	uint32_t		*ecc_buf;
+	uint8_t			*data_buf;
+	dma_addr_t		io_base_dma;
+};
+
+static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
+{
+	uint32_t clkrate, tmp;
+
+	/* Reset SLC controller */
+	writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
+	udelay(1000);
+
+	/* Basic setup */
+	writel(0, SLC_CFG(host->io_base));
+	writel(0, SLC_IEN(host->io_base));
+	writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
+		SLC_ICR(host->io_base));
+
+	/* Get base clock for SLC block */
+	clkrate = clk_get_rate(host->clk);
+	if (clkrate == 0)
+		clkrate = LPC32XX_DEF_BUS_RATE;
+
+	/* Compute clock setup values */
+	tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
+		SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) |
+		SLCTAC_WHOLD(clkrate, host->ncfg->whold) |
+		SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) |
+		SLCTAC_RDR(host->ncfg->rdr_clks) |
+		SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) |
+		SLCTAC_RHOLD(clkrate, host->ncfg->rhold) |
+		SLCTAC_RSETUP(clkrate, host->ncfg->rsetup);
+	writel(tmp, SLC_TAC(host->io_base));
+}
+
+/*
+ * Hardware specific access to control lines
+ */
+static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+	unsigned int ctrl)
+{
+	uint32_t tmp;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	/* Does CE state need to be changed? */
+	tmp = readl(SLC_CFG(host->io_base));
+	if (ctrl & NAND_NCE)
+		tmp |= SLCCFG_CE_LOW;
+	else
+		tmp &= ~SLCCFG_CE_LOW;
+	writel(tmp, SLC_CFG(host->io_base));
+
+	if (cmd != NAND_CMD_NONE) {
+		if (ctrl & NAND_CLE)
+			writel(cmd, SLC_CMD(host->io_base));
+		else
+			writel(cmd, SLC_ADDR(host->io_base));
+	}
+}
+
+/*
+ * Read the Device Ready pin
+ */
+static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	int rdy = 0;
+
+	if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
+		rdy = 1;
+
+	return rdy;
+}
+
+/*
+ * Enable NAND write protect
+ */
+static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
+{
+	if (gpio_is_valid(host->ncfg->wp_gpio))
+		gpio_set_value(host->ncfg->wp_gpio, 0);
+}
+
+/*
+ * Disable NAND write protect
+ */
+static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
+{
+	if (gpio_is_valid(host->ncfg->wp_gpio))
+		gpio_set_value(host->ncfg->wp_gpio, 1);
+}
+
+/*
+ * Prepares SLC for transfers with H/W ECC enabled
+ */
+static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
+{
+	/* Hardware ECC is enabled automatically in hardware as needed */
+}
+
+/*
+ * Calculates the ECC for the data
+ */
+static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
+				      const unsigned char *buf,
+				      unsigned char *code)
+{
+	/*
+	 * ECC is calculated automatically in hardware during syndrome read
+	 * and write operations, so it doesn't need to be calculated here.
+	 */
+	return 0;
+}
+
+/*
+ * Read a single byte from NAND device
+ */
+static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	return (uint8_t)readl(SLC_DATA(host->io_base));
+}
+
+/*
+ * Simple device read without ECC
+ */
+static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	/* Direct device read with no ECC */
+	while (len-- > 0)
+		*buf++ = (uint8_t)readl(SLC_DATA(host->io_base));
+}
+
+/*
+ * Simple device write without ECC
+ */
+static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	/* Direct device write with no ECC */
+	while (len-- > 0)
+		writel((uint32_t)*buf++, SLC_DATA(host->io_base));
+}
+
+/*
+ * Read the OOB data from the device without ECC using FIFO method
+ */
+static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
+					  struct nand_chip *chip, int page)
+{
+	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+}
+
+/*
+ * Write the OOB data to the device without ECC using FIFO method
+ */
+static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
+	struct nand_chip *chip, int page)
+{
+	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
+				 mtd->oobsize);
+}
+
+/*
+ * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
+ */
+static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count)
+{
+	int i;
+
+	for (i = 0; i < (count * 3); i += 3) {
+		uint32_t ce = ecc[i / 3];
+		ce = ~(ce << 2) & 0xFFFFFF;
+		spare[i + 2] = (uint8_t)(ce & 0xFF);
+		ce >>= 8;
+		spare[i + 1] = (uint8_t)(ce & 0xFF);
+		ce >>= 8;
+		spare[i] = (uint8_t)(ce & 0xFF);
+	}
+}
+
+static void lpc32xx_dma_complete_func(void *completion)
+{
+	complete(completion);
+}
+
+static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
+			    void *mem, int len, enum dma_transfer_direction dir)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	struct dma_async_tx_descriptor *desc;
+	int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
+	int res;
+
+	host->dma_slave_config.direction = dir;
+	host->dma_slave_config.src_addr = dma;
+	host->dma_slave_config.dst_addr = dma;
+	host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+	host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+	host->dma_slave_config.src_maxburst = 4;
+	host->dma_slave_config.dst_maxburst = 4;
+	/* DMA controller does flow control: */
+	host->dma_slave_config.device_fc = false;
+	if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
+		dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
+		return -ENXIO;
+	}
+
+	sg_init_one(&host->sgl, mem, len);
+
+	res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
+			 DMA_BIDIRECTIONAL);
+	if (res != 1) {
+		dev_err(mtd->dev.parent, "Failed to map sg list\n");
+		return -ENXIO;
+	}
+	desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
+				       flags);
+	if (!desc) {
+		dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
+		goto out1;
+	}
+
+	init_completion(&host->comp);
+	desc->callback = lpc32xx_dma_complete_func;
+	desc->callback_param = &host->comp;
+
+	dmaengine_submit(desc);
+	dma_async_issue_pending(host->dma_chan);
+
+	wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
+
+	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
+		     DMA_BIDIRECTIONAL);
+
+	return 0;
+out1:
+	dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
+		     DMA_BIDIRECTIONAL);
+	return -ENXIO;
+}
+
+/*
+ * DMA read/write transfers with ECC support
+ */
+static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages,
+			int read)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	int i, status = 0;
+	unsigned long timeout;
+	int res;
+	enum dma_transfer_direction dir =
+		read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
+	uint8_t *dma_buf;
+	bool dma_mapped;
+
+	if ((void *)buf <= high_memory) {
+		dma_buf = buf;
+		dma_mapped = true;
+	} else {
+		dma_buf = host->data_buf;
+		dma_mapped = false;
+		if (!read)
+			memcpy(host->data_buf, buf, mtd->writesize);
+	}
+
+	if (read) {
+		writel(readl(SLC_CFG(host->io_base)) |
+		       SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
+		       SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
+	} else {
+		writel((readl(SLC_CFG(host->io_base)) |
+			SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
+		       ~SLCCFG_DMA_DIR,
+			SLC_CFG(host->io_base));
+	}
+
+	/* Clear initial ECC */
+	writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
+
+	/* Transfer size is data area only */
+	writel(mtd->writesize, SLC_TC(host->io_base));
+
+	/* Start transfer in the NAND controller */
+	writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
+	       SLC_CTRL(host->io_base));
+
+	for (i = 0; i < chip->ecc.steps; i++) {
+		/* Data */
+		res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
+				       dma_buf + i * chip->ecc.size,
+				       mtd->writesize / chip->ecc.steps, dir);
+		if (res)
+			return res;
+
+		/* Always _read_ ECC */
+		if (i == chip->ecc.steps - 1)
+			break;
+		if (!read) /* ECC availability delayed on write */
+			udelay(10);
+		res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
+				       &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
+		if (res)
+			return res;
+	}
+
+	/*
+	 * According to NXP, the DMA can be finished here, but the NAND
+	 * controller may still have buffered data. After porting to using the
+	 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
+	 * appears to be always true, according to tests. Keeping the check for
+	 * safety reasons for now.
+	 */
+	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) {
+		dev_warn(mtd->dev.parent, "FIFO not empty!\n");
+		timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT);
+		while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) &&
+		       time_before(jiffies, timeout))
+			cpu_relax();
+		if (!time_before(jiffies, timeout)) {
+			dev_err(mtd->dev.parent, "FIFO held data too long\n");
+			status = -EIO;
+		}
+	}
+
+	/* Read last calculated ECC value */
+	if (!read)
+		udelay(10);
+	host->ecc_buf[chip->ecc.steps - 1] =
+		readl(SLC_ECC(host->io_base));
+
+	/* Flush DMA */
+	dmaengine_terminate_all(host->dma_chan);
+
+	if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
+	    readl(SLC_TC(host->io_base))) {
+		/* Something is left in the FIFO, something is wrong */
+		dev_err(mtd->dev.parent, "DMA FIFO failure\n");
+		status = -EIO;
+	}
+
+	/* Stop DMA & HW ECC */
+	writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
+	       SLC_CTRL(host->io_base));
+	writel(readl(SLC_CFG(host->io_base)) &
+	       ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
+		 SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
+
+	if (!dma_mapped && read)
+		memcpy(buf, host->data_buf, mtd->writesize);
+
+	return status;
+}
+
+/*
+ * Read the data and OOB data from the device, use ECC correction with the
+ * data, disable ECC for the OOB data
+ */
+static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
+					   struct nand_chip *chip, uint8_t *buf,
+					   int oob_required, int page)
+{
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	struct mtd_oob_region oobregion = { };
+	int stat, i, status, error;
+	uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
+
+	/* Issue read command */
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	/* Read data and oob, calculate ECC */
+	status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
+
+	/* Get OOB data */
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	/* Convert to stored ECC format */
+	lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps);
+
+	/* Pointer to ECC data retrieved from NAND spare area */
+	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
+	if (error)
+		return error;
+
+	oobecc = chip->oob_poi + oobregion.offset;
+
+	for (i = 0; i < chip->ecc.steps; i++) {
+		stat = chip->ecc.correct(mtd, buf, oobecc,
+					 &tmpecc[i * chip->ecc.bytes]);
+		if (stat < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += stat;
+
+		buf += chip->ecc.size;
+		oobecc += chip->ecc.bytes;
+	}
+
+	return status;
+}
+
+/*
+ * Read the data and OOB data from the device, no ECC correction with the
+ * data or OOB data
+ */
+static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
+					       struct nand_chip *chip,
+					       uint8_t *buf, int oob_required,
+					       int page)
+{
+	/* Issue read command */
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	/* Raw reads can just use the FIFO interface */
+	chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+/*
+ * Write the data and OOB data to the device, use ECC with the data,
+ * disable ECC for the OOB data
+ */
+static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
+					    struct nand_chip *chip,
+					    const uint8_t *buf,
+					    int oob_required, int page)
+{
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+	struct mtd_oob_region oobregion = { };
+	uint8_t *pb;
+	int error;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	/* Write data, calculate ECC on outbound data */
+	error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0);
+	if (error)
+		return error;
+
+	/*
+	 * The calculated ECC needs some manual work done to it before
+	 * committing it to NAND. Process the calculated ECC and place
+	 * the resultant values directly into the OOB buffer. */
+	error = mtd_ooblayout_ecc(mtd, 0, &oobregion);
+	if (error)
+		return error;
+
+	pb = chip->oob_poi + oobregion.offset;
+	lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps);
+
+	/* Write ECC data to device */
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+/*
+ * Write the data and OOB data to the device, no ECC correction with the
+ * data or OOB data
+ */
+static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
+						struct nand_chip *chip,
+						const uint8_t *buf,
+						int oob_required, int page)
+{
+	/* Raw writes can just use the FIFO interface */
+	nand_prog_page_begin_op(chip, page, 0, buf,
+				chip->ecc.size * chip->ecc.steps);
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
+{
+	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
+	dma_cap_mask_t mask;
+
+	if (!host->pdata || !host->pdata->dma_filter) {
+		dev_err(mtd->dev.parent, "no DMA platform data\n");
+		return -ENOENT;
+	}
+
+	dma_cap_zero(mask);
+	dma_cap_set(DMA_SLAVE, mask);
+	host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
+					     "nand-slc");
+	if (!host->dma_chan) {
+		dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
+		return -EBUSY;
+	}
+
+	return 0;
+}
+
+static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
+{
+	struct lpc32xx_nand_cfg_slc *ncfg;
+	struct device_node *np = dev->of_node;
+
+	ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
+	if (!ncfg)
+		return NULL;
+
+	of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks);
+	of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth);
+	of_property_read_u32(np, "nxp,whold", &ncfg->whold);
+	of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup);
+	of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks);
+	of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth);
+	of_property_read_u32(np, "nxp,rhold", &ncfg->rhold);
+	of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup);
+
+	if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold ||
+	    !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth ||
+	    !ncfg->rhold || !ncfg->rsetup) {
+		dev_err(dev, "chip parameters not specified correctly\n");
+		return NULL;
+	}
+
+	ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
+
+	return ncfg;
+}
+
+static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
+
+	/* OOB and ECC CPU and DMA work areas */
+	host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
+
+	/*
+	 * Small page FLASH has a unique OOB layout, but large and huge
+	 * page FLASH use the standard layout. Small page FLASH uses a
+	 * custom BBT marker layout.
+	 */
+	if (mtd->writesize <= 512)
+		mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
+
+	/* These sizes remain the same regardless of page size */
+	chip->ecc.size = 256;
+	chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
+	chip->ecc.prepad = 0;
+	chip->ecc.postpad = 0;
+
+	/*
+	 * Use a custom BBT marker setup for small page FLASH that
+	 * won't interfere with the ECC layout. Large and huge page
+	 * FLASH use the standard layout.
+	 */
+	if ((chip->bbt_options & NAND_BBT_USE_FLASH) &&
+	    mtd->writesize <= 512) {
+		chip->bbt_td = &bbt_smallpage_main_descr;
+		chip->bbt_md = &bbt_smallpage_mirror_descr;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
+	.attach_chip = lpc32xx_nand_attach_chip,
+};
+
+/*
+ * Probe for NAND controller
+ */
+static int lpc32xx_nand_probe(struct platform_device *pdev)
+{
+	struct lpc32xx_nand_host *host;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	struct resource *rc;
+	int res;
+
+	/* Allocate memory for the device structure (and zero it) */
+	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
+	if (!host)
+		return -ENOMEM;
+
+	rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	host->io_base = devm_ioremap_resource(&pdev->dev, rc);
+	if (IS_ERR(host->io_base))
+		return PTR_ERR(host->io_base);
+
+	host->io_base_dma = rc->start;
+	if (pdev->dev.of_node)
+		host->ncfg = lpc32xx_parse_dt(&pdev->dev);
+	if (!host->ncfg) {
+		dev_err(&pdev->dev,
+			"Missing or bad NAND config from device tree\n");
+		return -ENOENT;
+	}
+	if (host->ncfg->wp_gpio == -EPROBE_DEFER)
+		return -EPROBE_DEFER;
+	if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev,
+			host->ncfg->wp_gpio, "NAND WP")) {
+		dev_err(&pdev->dev, "GPIO not available\n");
+		return -EBUSY;
+	}
+	lpc32xx_wp_disable(host);
+
+	host->pdata = dev_get_platdata(&pdev->dev);
+
+	chip = &host->nand_chip;
+	mtd = nand_to_mtd(chip);
+	nand_set_controller_data(chip, host);
+	nand_set_flash_node(chip, pdev->dev.of_node);
+	mtd->owner = THIS_MODULE;
+	mtd->dev.parent = &pdev->dev;
+
+	/* Get NAND clock */
+	host->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(host->clk)) {
+		dev_err(&pdev->dev, "Clock failure\n");
+		res = -ENOENT;
+		goto enable_wp;
+	}
+	res = clk_prepare_enable(host->clk);
+	if (res)
+		goto enable_wp;
+
+	/* Set NAND IO addresses and command/ready functions */
+	chip->IO_ADDR_R = SLC_DATA(host->io_base);
+	chip->IO_ADDR_W = SLC_DATA(host->io_base);
+	chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
+	chip->dev_ready = lpc32xx_nand_device_ready;
+	chip->chip_delay = 20; /* 20us command delay time */
+
+	/* Init NAND controller */
+	lpc32xx_nand_setup(host);
+
+	platform_set_drvdata(pdev, host);
+
+	/* NAND callbacks for LPC32xx SLC hardware */
+	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
+	chip->read_byte = lpc32xx_nand_read_byte;
+	chip->read_buf = lpc32xx_nand_read_buf;
+	chip->write_buf = lpc32xx_nand_write_buf;
+	chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
+	chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
+	chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
+	chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
+	chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
+	chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
+	chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
+	chip->ecc.correct = nand_correct_data;
+	chip->ecc.strength = 1;
+	chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
+
+	/*
+	 * Allocate a large enough buffer for a single huge page plus
+	 * extra space for the spare area and ECC storage area
+	 */
+	host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
+	host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
+				      GFP_KERNEL);
+	if (host->data_buf == NULL) {
+		res = -ENOMEM;
+		goto unprepare_clk;
+	}
+
+	res = lpc32xx_nand_dma_setup(host);
+	if (res) {
+		res = -EIO;
+		goto unprepare_clk;
+	}
+
+	/* Find NAND device */
+	chip->dummy_controller.ops = &lpc32xx_nand_controller_ops;
+	res = nand_scan(mtd, 1);
+	if (res)
+		goto release_dma;
+
+	mtd->name = "nxp_lpc3220_slc";
+	res = mtd_device_register(mtd, host->ncfg->parts,
+				  host->ncfg->num_parts);
+	if (res)
+		goto cleanup_nand;
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(chip);
+release_dma:
+	dma_release_channel(host->dma_chan);
+unprepare_clk:
+	clk_disable_unprepare(host->clk);
+enable_wp:
+	lpc32xx_wp_enable(host);
+
+	return res;
+}
+
+/*
+ * Remove NAND device.
+ */
+static int lpc32xx_nand_remove(struct platform_device *pdev)
+{
+	uint32_t tmp;
+	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
+
+	nand_release(mtd);
+	dma_release_channel(host->dma_chan);
+
+	/* Force CE high */
+	tmp = readl(SLC_CTRL(host->io_base));
+	tmp &= ~SLCCFG_CE_LOW;
+	writel(tmp, SLC_CTRL(host->io_base));
+
+	clk_disable_unprepare(host->clk);
+	lpc32xx_wp_enable(host);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int lpc32xx_nand_resume(struct platform_device *pdev)
+{
+	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+	int ret;
+
+	/* Re-enable NAND clock */
+	ret = clk_prepare_enable(host->clk);
+	if (ret)
+		return ret;
+
+	/* Fresh init of NAND controller */
+	lpc32xx_nand_setup(host);
+
+	/* Disable write protect */
+	lpc32xx_wp_disable(host);
+
+	return 0;
+}
+
+static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
+{
+	uint32_t tmp;
+	struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+
+	/* Force CE high */
+	tmp = readl(SLC_CTRL(host->io_base));
+	tmp &= ~SLCCFG_CE_LOW;
+	writel(tmp, SLC_CTRL(host->io_base));
+
+	/* Enable write protect for safety */
+	lpc32xx_wp_enable(host);
+
+	/* Disable clock */
+	clk_disable_unprepare(host->clk);
+
+	return 0;
+}
+
+#else
+#define lpc32xx_nand_resume NULL
+#define lpc32xx_nand_suspend NULL
+#endif
+
+static const struct of_device_id lpc32xx_nand_match[] = {
+	{ .compatible = "nxp,lpc3220-slc" },
+	{ /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
+
+static struct platform_driver lpc32xx_nand_driver = {
+	.probe		= lpc32xx_nand_probe,
+	.remove		= lpc32xx_nand_remove,
+	.resume		= lpc32xx_nand_resume,
+	.suspend	= lpc32xx_nand_suspend,
+	.driver		= {
+		.name	= LPC32XX_MODNAME,
+		.of_match_table = lpc32xx_nand_match,
+	},
+};
+
+module_platform_driver(lpc32xx_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
+MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
+MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c
new file mode 100644
index 0000000..c7573cc
--- /dev/null
+++ b/drivers/mtd/nand/raw/marvell_nand.c
@@ -0,0 +1,2980 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Marvell NAND flash controller driver
+ *
+ * Copyright (C) 2017 Marvell
+ * Author: Miquel RAYNAL <miquel.raynal@free-electrons.com>
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/clk.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of_platform.h>
+#include <linux/iopoll.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <linux/mfd/syscon.h>
+#include <linux/regmap.h>
+#include <asm/unaligned.h>
+
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/dma/pxa-dma.h>
+#include <linux/platform_data/mtd-nand-pxa3xx.h>
+
+/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */
+#define FIFO_DEPTH		8
+#define FIFO_REP(x)		(x / sizeof(u32))
+#define BCH_SEQ_READS		(32 / FIFO_DEPTH)
+/* NFC does not support transfers of larger chunks at a time */
+#define MAX_CHUNK_SIZE		2112
+/* NFCv1 cannot read more that 7 bytes of ID */
+#define NFCV1_READID_LEN	7
+/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */
+#define POLL_PERIOD		0
+#define POLL_TIMEOUT		100000
+/* Interrupt maximum wait period in ms */
+#define IRQ_TIMEOUT		1000
+/* Latency in clock cycles between SoC pins and NFC logic */
+#define MIN_RD_DEL_CNT		3
+/* Maximum number of contiguous address cycles */
+#define MAX_ADDRESS_CYC_NFCV1	5
+#define MAX_ADDRESS_CYC_NFCV2	7
+/* System control registers/bits to enable the NAND controller on some SoCs */
+#define GENCONF_SOC_DEVICE_MUX	0x208
+#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
+#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20)
+#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21)
+#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25)
+#define GENCONF_CLK_GATING_CTRL	0x220
+#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2)
+#define GENCONF_ND_CLK_CTRL	0x700
+#define GENCONF_ND_CLK_CTRL_EN	BIT(0)
+
+/* NAND controller data flash control register */
+#define NDCR			0x00
+#define NDCR_ALL_INT		GENMASK(11, 0)
+#define NDCR_CS1_CMDDM		BIT(7)
+#define NDCR_CS0_CMDDM		BIT(8)
+#define NDCR_RDYM		BIT(11)
+#define NDCR_ND_ARB_EN		BIT(12)
+#define NDCR_RA_START		BIT(15)
+#define NDCR_RD_ID_CNT(x)	(min_t(unsigned int, x, 0x7) << 16)
+#define NDCR_PAGE_SZ(x)		(x >= 2048 ? BIT(24) : 0)
+#define NDCR_DWIDTH_M		BIT(26)
+#define NDCR_DWIDTH_C		BIT(27)
+#define NDCR_ND_RUN		BIT(28)
+#define NDCR_DMA_EN		BIT(29)
+#define NDCR_ECC_EN		BIT(30)
+#define NDCR_SPARE_EN		BIT(31)
+#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \
+				    NDCR_DWIDTH_M | NDCR_DWIDTH_C))
+
+/* NAND interface timing parameter 0 register */
+#define NDTR0			0x04
+#define NDTR0_TRP(x)		((min_t(unsigned int, x, 0xF) & 0x7) << 0)
+#define NDTR0_TRH(x)		(min_t(unsigned int, x, 0x7) << 3)
+#define NDTR0_ETRP(x)		((min_t(unsigned int, x, 0xF) & 0x8) << 3)
+#define NDTR0_SEL_NRE_EDGE	BIT(7)
+#define NDTR0_TWP(x)		(min_t(unsigned int, x, 0x7) << 8)
+#define NDTR0_TWH(x)		(min_t(unsigned int, x, 0x7) << 11)
+#define NDTR0_TCS(x)		(min_t(unsigned int, x, 0x7) << 16)
+#define NDTR0_TCH(x)		(min_t(unsigned int, x, 0x7) << 19)
+#define NDTR0_RD_CNT_DEL(x)	(min_t(unsigned int, x, 0xF) << 22)
+#define NDTR0_SELCNTR		BIT(26)
+#define NDTR0_TADL(x)		(min_t(unsigned int, x, 0x1F) << 27)
+
+/* NAND interface timing parameter 1 register */
+#define NDTR1			0x0C
+#define NDTR1_TAR(x)		(min_t(unsigned int, x, 0xF) << 0)
+#define NDTR1_TWHR(x)		(min_t(unsigned int, x, 0xF) << 4)
+#define NDTR1_TRHW(x)		(min_t(unsigned int, x / 16, 0x3) << 8)
+#define NDTR1_PRESCALE		BIT(14)
+#define NDTR1_WAIT_MODE		BIT(15)
+#define NDTR1_TR(x)		(min_t(unsigned int, x, 0xFFFF) << 16)
+
+/* NAND controller status register */
+#define NDSR			0x14
+#define NDSR_WRCMDREQ		BIT(0)
+#define NDSR_RDDREQ		BIT(1)
+#define NDSR_WRDREQ		BIT(2)
+#define NDSR_CORERR		BIT(3)
+#define NDSR_UNCERR		BIT(4)
+#define NDSR_CMDD(cs)		BIT(8 - cs)
+#define NDSR_RDY(rb)		BIT(11 + rb)
+#define NDSR_ERRCNT(x)		((x >> 16) & 0x1F)
+
+/* NAND ECC control register */
+#define NDECCCTRL		0x28
+#define NDECCCTRL_BCH_EN	BIT(0)
+
+/* NAND controller data buffer register */
+#define NDDB			0x40
+
+/* NAND controller command buffer 0 register */
+#define NDCB0			0x48
+#define NDCB0_CMD1(x)		((x & 0xFF) << 0)
+#define NDCB0_CMD2(x)		((x & 0xFF) << 8)
+#define NDCB0_ADDR_CYC(x)	((x & 0x7) << 16)
+#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7)
+#define NDCB0_DBC		BIT(19)
+#define NDCB0_CMD_TYPE(x)	((x & 0x7) << 21)
+#define NDCB0_CSEL		BIT(24)
+#define NDCB0_RDY_BYP		BIT(27)
+#define NDCB0_LEN_OVRD		BIT(28)
+#define NDCB0_CMD_XTYPE(x)	((x & 0x7) << 29)
+
+/* NAND controller command buffer 1 register */
+#define NDCB1			0x4C
+#define NDCB1_COLS(x)		((x & 0xFFFF) << 0)
+#define NDCB1_ADDRS_PAGE(x)	(x << 16)
+
+/* NAND controller command buffer 2 register */
+#define NDCB2			0x50
+#define NDCB2_ADDR5_PAGE(x)	(((x >> 16) & 0xFF) << 0)
+#define NDCB2_ADDR5_CYC(x)	((x & 0xFF) << 0)
+
+/* NAND controller command buffer 3 register */
+#define NDCB3			0x54
+#define NDCB3_ADDR6_CYC(x)	((x & 0xFF) << 16)
+#define NDCB3_ADDR7_CYC(x)	((x & 0xFF) << 24)
+
+/* NAND controller command buffer 0 register 'type' and 'xtype' fields */
+#define TYPE_READ		0
+#define TYPE_WRITE		1
+#define TYPE_ERASE		2
+#define TYPE_READ_ID		3
+#define TYPE_STATUS		4
+#define TYPE_RESET		5
+#define TYPE_NAKED_CMD		6
+#define TYPE_NAKED_ADDR		7
+#define TYPE_MASK		7
+#define XTYPE_MONOLITHIC_RW	0
+#define XTYPE_LAST_NAKED_RW	1
+#define XTYPE_FINAL_COMMAND	3
+#define XTYPE_READ		4
+#define XTYPE_WRITE_DISPATCH	4
+#define XTYPE_NAKED_RW		5
+#define XTYPE_COMMAND_DISPATCH	6
+#define XTYPE_MASK		7
+
+/**
+ * Marvell ECC engine works differently than the others, in order to limit the
+ * size of the IP, hardware engineers chose to set a fixed strength at 16 bits
+ * per subpage, and depending on a the desired strength needed by the NAND chip,
+ * a particular layout mixing data/spare/ecc is defined, with a possible last
+ * chunk smaller that the others.
+ *
+ * @writesize:		Full page size on which the layout applies
+ * @chunk:		Desired ECC chunk size on which the layout applies
+ * @strength:		Desired ECC strength (per chunk size bytes) on which the
+ *			layout applies
+ * @nchunks:		Total number of chunks
+ * @full_chunk_cnt:	Number of full-sized chunks, which is the number of
+ *			repetitions of the pattern:
+ *			(data_bytes + spare_bytes + ecc_bytes).
+ * @data_bytes:		Number of data bytes per chunk
+ * @spare_bytes:	Number of spare bytes per chunk
+ * @ecc_bytes:		Number of ecc bytes per chunk
+ * @last_data_bytes:	Number of data bytes in the last chunk
+ * @last_spare_bytes:	Number of spare bytes in the last chunk
+ * @last_ecc_bytes:	Number of ecc bytes in the last chunk
+ */
+struct marvell_hw_ecc_layout {
+	/* Constraints */
+	int writesize;
+	int chunk;
+	int strength;
+	/* Corresponding layout */
+	int nchunks;
+	int full_chunk_cnt;
+	int data_bytes;
+	int spare_bytes;
+	int ecc_bytes;
+	int last_data_bytes;
+	int last_spare_bytes;
+	int last_ecc_bytes;
+};
+
+#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb)	\
+	{								\
+		.writesize = ws,					\
+		.chunk = dc,						\
+		.strength = ds,						\
+		.nchunks = nc,						\
+		.full_chunk_cnt = fcc,					\
+		.data_bytes = db,					\
+		.spare_bytes = sb,					\
+		.ecc_bytes = eb,					\
+		.last_data_bytes = ldb,					\
+		.last_spare_bytes = lsb,				\
+		.last_ecc_bytes = leb,					\
+	}
+
+/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */
+static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = {
+	MARVELL_LAYOUT(  512,   512,  1,  1,  1,  512,  8,  8,  0,  0,  0),
+	MARVELL_LAYOUT( 2048,   512,  1,  1,  1, 2048, 40, 24,  0,  0,  0),
+	MARVELL_LAYOUT( 2048,   512,  4,  1,  1, 2048, 32, 30,  0,  0,  0),
+	MARVELL_LAYOUT( 4096,   512,  4,  2,  2, 2048, 32, 30,  0,  0,  0),
+	MARVELL_LAYOUT( 4096,   512,  8,  5,  4, 1024,  0, 30,  0, 64, 30),
+};
+
+/**
+ * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection
+ * is made by a field in NDCB0 register, and in another field in NDCB2 register.
+ * The datasheet describes the logic with an error: ADDR5 field is once
+ * declared at the beginning of NDCB2, and another time at its end. Because the
+ * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical
+ * to use the last bit of this field instead of the first ones.
+ *
+ * @cs:			Wanted CE lane.
+ * @ndcb0_csel:		Value of the NDCB0 register with or without the flag
+ *			selecting the wanted CE lane. This is set once when
+ *			the Device Tree is probed.
+ * @rb:			Ready/Busy pin for the flash chip
+ */
+struct marvell_nand_chip_sel {
+	unsigned int cs;
+	u32 ndcb0_csel;
+	unsigned int rb;
+};
+
+/**
+ * NAND chip structure: stores NAND chip device related information
+ *
+ * @chip:		Base NAND chip structure
+ * @node:		Used to store NAND chips into a list
+ * @layout		NAND layout when using hardware ECC
+ * @ndcr:		Controller register value for this NAND chip
+ * @ndtr0:		Timing registers 0 value for this NAND chip
+ * @ndtr1:		Timing registers 1 value for this NAND chip
+ * @selected_die:	Current active CS
+ * @nsels:		Number of CS lines required by the NAND chip
+ * @sels:		Array of CS lines descriptions
+ */
+struct marvell_nand_chip {
+	struct nand_chip chip;
+	struct list_head node;
+	const struct marvell_hw_ecc_layout *layout;
+	u32 ndcr;
+	u32 ndtr0;
+	u32 ndtr1;
+	int addr_cyc;
+	int selected_die;
+	unsigned int nsels;
+	struct marvell_nand_chip_sel sels[0];
+};
+
+static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip)
+{
+	return container_of(chip, struct marvell_nand_chip, chip);
+}
+
+static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip
+							*nand)
+{
+	return &nand->sels[nand->selected_die];
+}
+
+/**
+ * NAND controller capabilities for distinction between compatible strings
+ *
+ * @max_cs_nb:		Number of Chip Select lines available
+ * @max_rb_nb:		Number of Ready/Busy lines available
+ * @need_system_controller: Indicates if the SoC needs to have access to the
+ *                      system controller (ie. to enable the NAND controller)
+ * @legacy_of_bindings:	Indicates if DT parsing must be done using the old
+ *			fashion way
+ * @is_nfcv2:		NFCv2 has numerous enhancements compared to NFCv1, ie.
+ *			BCH error detection and correction algorithm,
+ *			NDCB3 register has been added
+ * @use_dma:		Use dma for data transfers
+ */
+struct marvell_nfc_caps {
+	unsigned int max_cs_nb;
+	unsigned int max_rb_nb;
+	bool need_system_controller;
+	bool legacy_of_bindings;
+	bool is_nfcv2;
+	bool use_dma;
+};
+
+/**
+ * NAND controller structure: stores Marvell NAND controller information
+ *
+ * @controller:		Base controller structure
+ * @dev:		Parent device (used to print error messages)
+ * @regs:		NAND controller registers
+ * @core_clk:		Core clock
+ * @reg_clk:		Regiters clock
+ * @complete:		Completion object to wait for NAND controller events
+ * @assigned_cs:	Bitmask describing already assigned CS lines
+ * @chips:		List containing all the NAND chips attached to
+ *			this NAND controller
+ * @caps:		NAND controller capabilities for each compatible string
+ * @dma_chan:		DMA channel (NFCv1 only)
+ * @dma_buf:		32-bit aligned buffer for DMA transfers (NFCv1 only)
+ */
+struct marvell_nfc {
+	struct nand_controller controller;
+	struct device *dev;
+	void __iomem *regs;
+	struct clk *core_clk;
+	struct clk *reg_clk;
+	struct completion complete;
+	unsigned long assigned_cs;
+	struct list_head chips;
+	struct nand_chip *selected_chip;
+	const struct marvell_nfc_caps *caps;
+
+	/* DMA (NFCv1 only) */
+	bool use_dma;
+	struct dma_chan *dma_chan;
+	u8 *dma_buf;
+};
+
+static inline struct marvell_nfc *to_marvell_nfc(struct nand_controller *ctrl)
+{
+	return container_of(ctrl, struct marvell_nfc, controller);
+}
+
+/**
+ * NAND controller timings expressed in NAND Controller clock cycles
+ *
+ * @tRP:		ND_nRE pulse width
+ * @tRH:		ND_nRE high duration
+ * @tWP:		ND_nWE pulse time
+ * @tWH:		ND_nWE high duration
+ * @tCS:		Enable signal setup time
+ * @tCH:		Enable signal hold time
+ * @tADL:		Address to write data delay
+ * @tAR:		ND_ALE low to ND_nRE low delay
+ * @tWHR:		ND_nWE high to ND_nRE low for status read
+ * @tRHW:		ND_nRE high duration, read to write delay
+ * @tR:			ND_nWE high to ND_nRE low for read
+ */
+struct marvell_nfc_timings {
+	/* NDTR0 fields */
+	unsigned int tRP;
+	unsigned int tRH;
+	unsigned int tWP;
+	unsigned int tWH;
+	unsigned int tCS;
+	unsigned int tCH;
+	unsigned int tADL;
+	/* NDTR1 fields */
+	unsigned int tAR;
+	unsigned int tWHR;
+	unsigned int tRHW;
+	unsigned int tR;
+};
+
+/**
+ * Derives a duration in numbers of clock cycles.
+ *
+ * @ps: Duration in pico-seconds
+ * @period_ns:  Clock period in nano-seconds
+ *
+ * Convert the duration in nano-seconds, then divide by the period and
+ * return the number of clock periods.
+ */
+#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns))
+#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \
+						     period_ns))
+
+/**
+ * NAND driver structure filled during the parsing of the ->exec_op() subop
+ * subset of instructions.
+ *
+ * @ndcb:		Array of values written to NDCBx registers
+ * @cle_ale_delay_ns:	Optional delay after the last CMD or ADDR cycle
+ * @rdy_timeout_ms:	Timeout for waits on Ready/Busy pin
+ * @rdy_delay_ns:	Optional delay after waiting for the RB pin
+ * @data_delay_ns:	Optional delay after the data xfer
+ * @data_instr_idx:	Index of the data instruction in the subop
+ * @data_instr:		Pointer to the data instruction in the subop
+ */
+struct marvell_nfc_op {
+	u32 ndcb[4];
+	unsigned int cle_ale_delay_ns;
+	unsigned int rdy_timeout_ms;
+	unsigned int rdy_delay_ns;
+	unsigned int data_delay_ns;
+	unsigned int data_instr_idx;
+	const struct nand_op_instr *data_instr;
+};
+
+/*
+ * Internal helper to conditionnally apply a delay (from the above structure,
+ * most of the time).
+ */
+static void cond_delay(unsigned int ns)
+{
+	if (!ns)
+		return;
+
+	if (ns < 10000)
+		ndelay(ns);
+	else
+		udelay(DIV_ROUND_UP(ns, 1000));
+}
+
+/*
+ * The controller has many flags that could generate interrupts, most of them
+ * are disabled and polling is used. For the very slow signals, using interrupts
+ * may relax the CPU charge.
+ */
+static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask)
+{
+	u32 reg;
+
+	/* Writing 1 disables the interrupt */
+	reg = readl_relaxed(nfc->regs + NDCR);
+	writel_relaxed(reg | int_mask, nfc->regs + NDCR);
+}
+
+static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask)
+{
+	u32 reg;
+
+	/* Writing 0 enables the interrupt */
+	reg = readl_relaxed(nfc->regs + NDCR);
+	writel_relaxed(reg & ~int_mask, nfc->regs + NDCR);
+}
+
+static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask)
+{
+	writel_relaxed(int_mask, nfc->regs + NDSR);
+}
+
+static void marvell_nfc_force_byte_access(struct nand_chip *chip,
+					  bool force_8bit)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 ndcr;
+
+	/*
+	 * Callers of this function do not verify if the NAND is using a 16-bit
+	 * an 8-bit bus for normal operations, so we need to take care of that
+	 * here by leaving the configuration unchanged if the NAND does not have
+	 * the NAND_BUSWIDTH_16 flag set.
+	 */
+	if (!(chip->options & NAND_BUSWIDTH_16))
+		return;
+
+	ndcr = readl_relaxed(nfc->regs + NDCR);
+
+	if (force_8bit)
+		ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C);
+	else
+		ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
+
+	writel_relaxed(ndcr, nfc->regs + NDCR);
+}
+
+static int marvell_nfc_wait_ndrun(struct nand_chip *chip)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 val;
+	int ret;
+
+	/*
+	 * The command is being processed, wait for the ND_RUN bit to be
+	 * cleared by the NFC. If not, we must clear it by hand.
+	 */
+	ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val,
+					 (val & NDCR_ND_RUN) == 0,
+					 POLL_PERIOD, POLL_TIMEOUT);
+	if (ret) {
+		dev_err(nfc->dev, "Timeout on NAND controller run mode\n");
+		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
+			       nfc->regs + NDCR);
+		return ret;
+	}
+
+	return 0;
+}
+
+/*
+ * Any time a command has to be sent to the controller, the following sequence
+ * has to be followed:
+ * - call marvell_nfc_prepare_cmd()
+ *      -> activate the ND_RUN bit that will kind of 'start a job'
+ *      -> wait the signal indicating the NFC is waiting for a command
+ * - send the command (cmd and address cycles)
+ * - enventually send or receive the data
+ * - call marvell_nfc_end_cmd() with the corresponding flag
+ *      -> wait the flag to be triggered or cancel the job with a timeout
+ *
+ * The following helpers are here to factorize the code a bit so that
+ * specialized functions responsible for executing the actual NAND
+ * operations do not have to replicate the same code blocks.
+ */
+static int marvell_nfc_prepare_cmd(struct nand_chip *chip)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 ndcr, val;
+	int ret;
+
+	/* Poll ND_RUN and clear NDSR before issuing any command */
+	ret = marvell_nfc_wait_ndrun(chip);
+	if (ret) {
+		dev_err(nfc->dev, "Last operation did not succeed\n");
+		return ret;
+	}
+
+	ndcr = readl_relaxed(nfc->regs + NDCR);
+	writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR);
+
+	/* Assert ND_RUN bit and wait the NFC to be ready */
+	writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR);
+	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
+					 val & NDSR_WRCMDREQ,
+					 POLL_PERIOD, POLL_TIMEOUT);
+	if (ret) {
+		dev_err(nfc->dev, "Timeout on WRCMDRE\n");
+		return -ETIMEDOUT;
+	}
+
+	/* Command may be written, clear WRCMDREQ status bit */
+	writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR);
+
+	return 0;
+}
+
+static void marvell_nfc_send_cmd(struct nand_chip *chip,
+				 struct marvell_nfc_op *nfc_op)
+{
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+
+	dev_dbg(nfc->dev, "\nNDCR:  0x%08x\n"
+		"NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n",
+		(u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0],
+		nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]);
+
+	writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0],
+		       nfc->regs + NDCB0);
+	writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0);
+	writel(nfc_op->ndcb[2], nfc->regs + NDCB0);
+
+	/*
+	 * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7
+	 * fields are used (only available on NFCv2).
+	 */
+	if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD ||
+	    NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) {
+		if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2))
+			writel(nfc_op->ndcb[3], nfc->regs + NDCB0);
+	}
+}
+
+static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag,
+			       const char *label)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 val;
+	int ret;
+
+	ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val,
+					 val & flag,
+					 POLL_PERIOD, POLL_TIMEOUT);
+
+	if (ret) {
+		dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n",
+			label, val);
+		if (nfc->dma_chan)
+			dmaengine_terminate_all(nfc->dma_chan);
+		return ret;
+	}
+
+	/*
+	 * DMA function uses this helper to poll on CMDD bits without wanting
+	 * them to be cleared.
+	 */
+	if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN))
+		return 0;
+
+	writel_relaxed(flag, nfc->regs + NDSR);
+
+	return 0;
+}
+
+static int marvell_nfc_wait_cmdd(struct nand_chip *chip)
+{
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel);
+
+	return marvell_nfc_end_cmd(chip, cs_flag, "CMDD");
+}
+
+static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	int ret;
+
+	/* Timeout is expressed in ms */
+	if (!timeout_ms)
+		timeout_ms = IRQ_TIMEOUT;
+
+	init_completion(&nfc->complete);
+
+	marvell_nfc_enable_int(nfc, NDCR_RDYM);
+	ret = wait_for_completion_timeout(&nfc->complete,
+					  msecs_to_jiffies(timeout_ms));
+	marvell_nfc_disable_int(nfc, NDCR_RDYM);
+	marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1));
+	if (!ret) {
+		dev_err(nfc->dev, "Timeout waiting for RB signal\n");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 ndcr_generic;
+
+	if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die)
+		return;
+
+	if (die_nr < 0 || die_nr >= marvell_nand->nsels) {
+		nfc->selected_chip = NULL;
+		marvell_nand->selected_die = -1;
+		return;
+	}
+
+	writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0);
+	writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1);
+
+	/*
+	 * Reset the NDCR register to a clean state for this particular chip,
+	 * also clear ND_RUN bit.
+	 */
+	ndcr_generic = readl_relaxed(nfc->regs + NDCR) &
+		       NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN;
+	writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR);
+
+	/* Also reset the interrupt status register */
+	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
+
+	nfc->selected_chip = chip;
+	marvell_nand->selected_die = die_nr;
+}
+
+static irqreturn_t marvell_nfc_isr(int irq, void *dev_id)
+{
+	struct marvell_nfc *nfc = dev_id;
+	u32 st = readl_relaxed(nfc->regs + NDSR);
+	u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT;
+
+	/*
+	 * RDY interrupt mask is one bit in NDCR while there are two status
+	 * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]).
+	 */
+	if (st & NDSR_RDY(1))
+		st |= NDSR_RDY(0);
+
+	if (!(st & ien))
+		return IRQ_NONE;
+
+	marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT);
+
+	if (st & (NDSR_RDY(0) | NDSR_RDY(1)))
+		complete(&nfc->complete);
+
+	return IRQ_HANDLED;
+}
+
+/* HW ECC related functions */
+static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
+
+	if (!(ndcr & NDCR_ECC_EN)) {
+		writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR);
+
+		/*
+		 * When enabling BCH, set threshold to 0 to always know the
+		 * number of corrected bitflips.
+		 */
+		if (chip->ecc.algo == NAND_ECC_BCH)
+			writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL);
+	}
+}
+
+static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	u32 ndcr = readl_relaxed(nfc->regs + NDCR);
+
+	if (ndcr & NDCR_ECC_EN) {
+		writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR);
+		if (chip->ecc.algo == NAND_ECC_BCH)
+			writel_relaxed(0, nfc->regs + NDECCCTRL);
+	}
+}
+
+/* DMA related helpers */
+static void marvell_nfc_enable_dma(struct marvell_nfc *nfc)
+{
+	u32 reg;
+
+	reg = readl_relaxed(nfc->regs + NDCR);
+	writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR);
+}
+
+static void marvell_nfc_disable_dma(struct marvell_nfc *nfc)
+{
+	u32 reg;
+
+	reg = readl_relaxed(nfc->regs + NDCR);
+	writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR);
+}
+
+/* Read/write PIO/DMA accessors */
+static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc,
+				     enum dma_data_direction direction,
+				     unsigned int len)
+{
+	unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE);
+	struct dma_async_tx_descriptor *tx;
+	struct scatterlist sg;
+	dma_cookie_t cookie;
+	int ret;
+
+	marvell_nfc_enable_dma(nfc);
+	/* Prepare the DMA transfer */
+	sg_init_one(&sg, nfc->dma_buf, dma_len);
+	dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
+	tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1,
+				     direction == DMA_FROM_DEVICE ?
+				     DMA_DEV_TO_MEM : DMA_MEM_TO_DEV,
+				     DMA_PREP_INTERRUPT);
+	if (!tx) {
+		dev_err(nfc->dev, "Could not prepare DMA S/G list\n");
+		return -ENXIO;
+	}
+
+	/* Do the task and wait for it to finish */
+	cookie = dmaengine_submit(tx);
+	ret = dma_submit_error(cookie);
+	if (ret)
+		return -EIO;
+
+	dma_async_issue_pending(nfc->dma_chan);
+	ret = marvell_nfc_wait_cmdd(nfc->selected_chip);
+	dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction);
+	marvell_nfc_disable_dma(nfc);
+	if (ret) {
+		dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n",
+			dmaengine_tx_status(nfc->dma_chan, cookie, NULL));
+		dmaengine_terminate_all(nfc->dma_chan);
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in,
+					unsigned int len)
+{
+	unsigned int last_len = len % FIFO_DEPTH;
+	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
+	int i;
+
+	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
+		ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH));
+
+	if (last_len) {
+		u8 tmp_buf[FIFO_DEPTH];
+
+		ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
+		memcpy(in + last_full_offset, tmp_buf, last_len);
+	}
+
+	return 0;
+}
+
+static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out,
+					 unsigned int len)
+{
+	unsigned int last_len = len % FIFO_DEPTH;
+	unsigned int last_full_offset = round_down(len, FIFO_DEPTH);
+	int i;
+
+	for (i = 0; i < last_full_offset; i += FIFO_DEPTH)
+		iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH));
+
+	if (last_len) {
+		u8 tmp_buf[FIFO_DEPTH];
+
+		memcpy(tmp_buf, out + last_full_offset, last_len);
+		iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH));
+	}
+
+	return 0;
+}
+
+static void marvell_nfc_check_empty_chunk(struct nand_chip *chip,
+					  u8 *data, int data_len,
+					  u8 *spare, int spare_len,
+					  u8 *ecc, int ecc_len,
+					  unsigned int *max_bitflips)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int bf;
+
+	/*
+	 * Blank pages (all 0xFF) that have not been written may be recognized
+	 * as bad if bitflips occur, so whenever an uncorrectable error occurs,
+	 * check if the entire page (with ECC bytes) is actually blank or not.
+	 */
+	if (!data)
+		data_len = 0;
+	if (!spare)
+		spare_len = 0;
+	if (!ecc)
+		ecc_len = 0;
+
+	bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len,
+					 spare, spare_len, chip->ecc.strength);
+	if (bf < 0) {
+		mtd->ecc_stats.failed++;
+		return;
+	}
+
+	/* Update the stats and max_bitflips */
+	mtd->ecc_stats.corrected += bf;
+	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
+}
+
+/*
+ * Check a chunk is correct or not according to hardware ECC engine.
+ * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however
+ * mtd->ecc_stats.failure is not, the function will instead return a non-zero
+ * value indicating that a check on the emptyness of the subpage must be
+ * performed before declaring the subpage corrupted.
+ */
+static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip,
+				      unsigned int *max_bitflips)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	int bf = 0;
+	u32 ndsr;
+
+	ndsr = readl_relaxed(nfc->regs + NDSR);
+
+	/* Check uncorrectable error flag */
+	if (ndsr & NDSR_UNCERR) {
+		writel_relaxed(ndsr, nfc->regs + NDSR);
+
+		/*
+		 * Do not increment ->ecc_stats.failed now, instead, return a
+		 * non-zero value to indicate that this chunk was apparently
+		 * bad, and it should be check to see if it empty or not. If
+		 * the chunk (with ECC bytes) is not declared empty, the calling
+		 * function must increment the failure count.
+		 */
+		return -EBADMSG;
+	}
+
+	/* Check correctable error flag */
+	if (ndsr & NDSR_CORERR) {
+		writel_relaxed(ndsr, nfc->regs + NDSR);
+
+		if (chip->ecc.algo == NAND_ECC_BCH)
+			bf = NDSR_ERRCNT(ndsr);
+		else
+			bf = 1;
+	}
+
+	/* Update the stats and max_bitflips */
+	mtd->ecc_stats.corrected += bf;
+	*max_bitflips = max_t(unsigned int, *max_bitflips, bf);
+
+	return 0;
+}
+
+/* Hamming read helpers */
+static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip,
+					       u8 *data_buf, u8 *oob_buf,
+					       bool raw, int page)
+{
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	struct marvell_nfc_op nfc_op = {
+		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
+			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+			   NDCB0_DBC |
+			   NDCB0_CMD1(NAND_CMD_READ0) |
+			   NDCB0_CMD2(NAND_CMD_READSTART),
+		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
+		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
+	};
+	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
+	int ret;
+
+	/* NFCv2 needs more information about the operation being executed */
+	if (nfc->caps->is_nfcv2)
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+				  "RDDREQ while draining FIFO (data/oob)");
+	if (ret)
+		return ret;
+
+	/*
+	 * Read the page then the OOB area. Unlike what is shown in current
+	 * documentation, spare bytes are protected by the ECC engine, and must
+	 * be at the beginning of the OOB area or running this driver on legacy
+	 * systems will prevent the discovery of the BBM/BBT.
+	 */
+	if (nfc->use_dma) {
+		marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE,
+					  lt->data_bytes + oob_bytes);
+		memcpy(data_buf, nfc->dma_buf, lt->data_bytes);
+		memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes);
+	} else {
+		marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes);
+		marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes);
+	}
+
+	ret = marvell_nfc_wait_cmdd(chip);
+
+	return ret;
+}
+
+static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd,
+						struct nand_chip *chip, u8 *buf,
+						int oob_required, int page)
+{
+	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi,
+						   true, page);
+}
+
+static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd,
+					    struct nand_chip *chip,
+					    u8 *buf, int oob_required,
+					    int page)
+{
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
+	int max_bitflips = 0, ret;
+	u8 *raw_buf;
+
+	marvell_nfc_enable_hw_ecc(chip);
+	marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false,
+					    page);
+	ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
+	marvell_nfc_disable_hw_ecc(chip);
+
+	if (!ret)
+		return max_bitflips;
+
+	/*
+	 * When ECC failures are detected, check if the full page has been
+	 * written or not. Ignore the failure if it is actually empty.
+	 */
+	raw_buf = kmalloc(full_sz, GFP_KERNEL);
+	if (!raw_buf)
+		return -ENOMEM;
+
+	marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf +
+					    lt->data_bytes, true, page);
+	marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0,
+				      &max_bitflips);
+	kfree(raw_buf);
+
+	return max_bitflips;
+}
+
+/*
+ * Spare area in Hamming layouts is not protected by the ECC engine (even if
+ * it appears before the ECC bytes when reading), the ->read_oob_raw() function
+ * also stands for ->read_oob().
+ */
+static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd,
+					       struct nand_chip *chip, int page)
+{
+	/* Invalidate page cache */
+	chip->pagebuf = -1;
+
+	return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf,
+						   chip->oob_poi, true, page);
+}
+
+/* Hamming write helpers */
+static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip,
+						const u8 *data_buf,
+						const u8 *oob_buf, bool raw,
+						int page)
+{
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	struct marvell_nfc_op nfc_op = {
+		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) |
+			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+			   NDCB0_CMD1(NAND_CMD_SEQIN) |
+			   NDCB0_CMD2(NAND_CMD_PAGEPROG) |
+			   NDCB0_DBC,
+		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
+		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
+	};
+	unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0);
+	int ret;
+
+	/* NFCv2 needs more information about the operation being executed */
+	if (nfc->caps->is_nfcv2)
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
+				  "WRDREQ while loading FIFO (data)");
+	if (ret)
+		return ret;
+
+	/* Write the page then the OOB area */
+	if (nfc->use_dma) {
+		memcpy(nfc->dma_buf, data_buf, lt->data_bytes);
+		memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes);
+		marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes +
+					  lt->ecc_bytes + lt->spare_bytes);
+	} else {
+		marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes);
+		marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes);
+	}
+
+	ret = marvell_nfc_wait_cmdd(chip);
+	if (ret)
+		return ret;
+
+	ret = marvell_nfc_wait_op(chip,
+				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
+	return ret;
+}
+
+static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd,
+						 struct nand_chip *chip,
+						 const u8 *buf,
+						 int oob_required, int page)
+{
+	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
+						    true, page);
+}
+
+static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd,
+					     struct nand_chip *chip,
+					     const u8 *buf,
+					     int oob_required, int page)
+{
+	int ret;
+
+	marvell_nfc_enable_hw_ecc(chip);
+	ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi,
+						   false, page);
+	marvell_nfc_disable_hw_ecc(chip);
+
+	return ret;
+}
+
+/*
+ * Spare area in Hamming layouts is not protected by the ECC engine (even if
+ * it appears before the ECC bytes when reading), the ->write_oob_raw() function
+ * also stands for ->write_oob().
+ */
+static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd,
+						struct nand_chip *chip,
+						int page)
+{
+	/* Invalidate page cache */
+	chip->pagebuf = -1;
+
+	memset(chip->data_buf, 0xFF, mtd->writesize);
+
+	return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf,
+						    chip->oob_poi, true, page);
+}
+
+/* BCH read helpers */
+static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd,
+						struct nand_chip *chip, u8 *buf,
+						int oob_required, int page)
+{
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	u8 *oob = chip->oob_poi;
+	int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
+	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
+		lt->last_spare_bytes;
+	int data_len = lt->data_bytes;
+	int spare_len = lt->spare_bytes;
+	int ecc_len = lt->ecc_bytes;
+	int chunk;
+
+	if (oob_required)
+		memset(chip->oob_poi, 0xFF, mtd->oobsize);
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	for (chunk = 0; chunk < lt->nchunks; chunk++) {
+		/* Update last chunk length */
+		if (chunk >= lt->full_chunk_cnt) {
+			data_len = lt->last_data_bytes;
+			spare_len = lt->last_spare_bytes;
+			ecc_len = lt->last_ecc_bytes;
+		}
+
+		/* Read data bytes*/
+		nand_change_read_column_op(chip, chunk * chunk_size,
+					   buf + (lt->data_bytes * chunk),
+					   data_len, false);
+
+		/* Read spare bytes */
+		nand_read_data_op(chip, oob + (lt->spare_bytes * chunk),
+				  spare_len, false);
+
+		/* Read ECC bytes */
+		nand_read_data_op(chip, oob + ecc_offset +
+				  (ALIGN(lt->ecc_bytes, 32) * chunk),
+				  ecc_len, false);
+	}
+
+	return 0;
+}
+
+static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk,
+					      u8 *data, unsigned int data_len,
+					      u8 *spare, unsigned int spare_len,
+					      int page)
+{
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	int i, ret;
+	struct marvell_nfc_op nfc_op = {
+		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) |
+			   NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+			   NDCB0_LEN_OVRD,
+		.ndcb[1] = NDCB1_ADDRS_PAGE(page),
+		.ndcb[2] = NDCB2_ADDR5_PAGE(page),
+		.ndcb[3] = data_len + spare_len,
+	};
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return;
+
+	if (chunk == 0)
+		nfc_op.ndcb[0] |= NDCB0_DBC |
+				  NDCB0_CMD1(NAND_CMD_READ0) |
+				  NDCB0_CMD2(NAND_CMD_READSTART);
+
+	/*
+	 * Trigger the monolithic read on the first chunk, then naked read on
+	 * intermediate chunks and finally a last naked read on the last chunk.
+	 */
+	if (chunk == 0)
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW);
+	else if (chunk < lt->nchunks - 1)
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
+	else
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+
+	/*
+	 * According to the datasheet, when reading from NDDB
+	 * with BCH enabled, after each 32 bytes reads, we
+	 * have to make sure that the NDSR.RDDREQ bit is set.
+	 *
+	 * Drain the FIFO, 8 32-bit reads at a time, and skip
+	 * the polling on the last read.
+	 *
+	 * Length is a multiple of 32 bytes, hence it is a multiple of 8 too.
+	 */
+	for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
+		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+				    "RDDREQ while draining FIFO (data)");
+		marvell_nfc_xfer_data_in_pio(nfc, data,
+					     FIFO_DEPTH * BCH_SEQ_READS);
+		data += FIFO_DEPTH * BCH_SEQ_READS;
+	}
+
+	for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) {
+		marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+				    "RDDREQ while draining FIFO (OOB)");
+		marvell_nfc_xfer_data_in_pio(nfc, spare,
+					     FIFO_DEPTH * BCH_SEQ_READS);
+		spare += FIFO_DEPTH * BCH_SEQ_READS;
+	}
+}
+
+static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd,
+					    struct nand_chip *chip,
+					    u8 *buf, int oob_required,
+					    int page)
+{
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len;
+	u8 *data = buf, *spare = chip->oob_poi, *ecc;
+	int max_bitflips = 0;
+	u32 failure_mask = 0;
+	int chunk, ecc_offset_in_page, ret;
+
+	/*
+	 * With BCH, OOB is not fully used (and thus not read entirely), not
+	 * expected bytes could show up at the end of the OOB buffer if not
+	 * explicitly erased.
+	 */
+	if (oob_required)
+		memset(chip->oob_poi, 0xFF, mtd->oobsize);
+
+	marvell_nfc_enable_hw_ecc(chip);
+
+	for (chunk = 0; chunk < lt->nchunks; chunk++) {
+		/* Update length for the last chunk */
+		if (chunk >= lt->full_chunk_cnt) {
+			data_len = lt->last_data_bytes;
+			spare_len = lt->last_spare_bytes;
+		}
+
+		/* Read the chunk and detect number of bitflips */
+		marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len,
+						  spare, spare_len, page);
+		ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips);
+		if (ret)
+			failure_mask |= BIT(chunk);
+
+		data += data_len;
+		spare += spare_len;
+	}
+
+	marvell_nfc_disable_hw_ecc(chip);
+
+	if (!failure_mask)
+		return max_bitflips;
+
+	/*
+	 * Please note that dumping the ECC bytes during a normal read with OOB
+	 * area would add a significant overhead as ECC bytes are "consumed" by
+	 * the controller in normal mode and must be re-read in raw mode. To
+	 * avoid dropping the performances, we prefer not to include them. The
+	 * user should re-read the page in raw mode if ECC bytes are required.
+	 *
+	 * However, for any subpage read error reported by ->correct(), the ECC
+	 * bytes must be read in raw mode and the full subpage must be checked
+	 * to see if it is entirely empty of if there was an actual error.
+	 */
+	for (chunk = 0; chunk < lt->nchunks; chunk++) {
+		/* No failure reported for this chunk, move to the next one */
+		if (!(failure_mask & BIT(chunk)))
+			continue;
+
+		/* Derive ECC bytes positions (in page/buffer) and length */
+		ecc = chip->oob_poi +
+			(lt->full_chunk_cnt * lt->spare_bytes) +
+			lt->last_spare_bytes +
+			(chunk * ALIGN(lt->ecc_bytes, 32));
+		ecc_offset_in_page =
+			(chunk * (lt->data_bytes + lt->spare_bytes +
+				  lt->ecc_bytes)) +
+			(chunk < lt->full_chunk_cnt ?
+			 lt->data_bytes + lt->spare_bytes :
+			 lt->last_data_bytes + lt->last_spare_bytes);
+		ecc_len = chunk < lt->full_chunk_cnt ?
+			lt->ecc_bytes : lt->last_ecc_bytes;
+
+		/* Do the actual raw read of the ECC bytes */
+		nand_change_read_column_op(chip, ecc_offset_in_page,
+					   ecc, ecc_len, false);
+
+		/* Derive data/spare bytes positions (in buffer) and length */
+		data = buf + (chunk * lt->data_bytes);
+		data_len = chunk < lt->full_chunk_cnt ?
+			lt->data_bytes : lt->last_data_bytes;
+		spare = chip->oob_poi + (chunk * (lt->spare_bytes +
+						  lt->ecc_bytes));
+		spare_len = chunk < lt->full_chunk_cnt ?
+			lt->spare_bytes : lt->last_spare_bytes;
+
+		/* Check the entire chunk (data + spare + ecc) for emptyness */
+		marvell_nfc_check_empty_chunk(chip, data, data_len, spare,
+					      spare_len, ecc, ecc_len,
+					      &max_bitflips);
+	}
+
+	return max_bitflips;
+}
+
+static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd,
+					       struct nand_chip *chip, int page)
+{
+	/* Invalidate page cache */
+	chip->pagebuf = -1;
+
+	return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page);
+}
+
+static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd,
+					   struct nand_chip *chip, int page)
+{
+	/* Invalidate page cache */
+	chip->pagebuf = -1;
+
+	return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page);
+}
+
+/* BCH write helpers */
+static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd,
+						 struct nand_chip *chip,
+						 const u8 *buf,
+						 int oob_required, int page)
+{
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes;
+	int data_len = lt->data_bytes;
+	int spare_len = lt->spare_bytes;
+	int ecc_len = lt->ecc_bytes;
+	int spare_offset = 0;
+	int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) +
+		lt->last_spare_bytes;
+	int chunk;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	for (chunk = 0; chunk < lt->nchunks; chunk++) {
+		if (chunk >= lt->full_chunk_cnt) {
+			data_len = lt->last_data_bytes;
+			spare_len = lt->last_spare_bytes;
+			ecc_len = lt->last_ecc_bytes;
+		}
+
+		/* Point to the column of the next chunk */
+		nand_change_write_column_op(chip, chunk * full_chunk_size,
+					    NULL, 0, false);
+
+		/* Write the data */
+		nand_write_data_op(chip, buf + (chunk * lt->data_bytes),
+				   data_len, false);
+
+		if (!oob_required)
+			continue;
+
+		/* Write the spare bytes */
+		if (spare_len)
+			nand_write_data_op(chip, chip->oob_poi + spare_offset,
+					   spare_len, false);
+
+		/* Write the ECC bytes */
+		if (ecc_len)
+			nand_write_data_op(chip, chip->oob_poi + ecc_offset,
+					   ecc_len, false);
+
+		spare_offset += spare_len;
+		ecc_offset += ALIGN(ecc_len, 32);
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int
+marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk,
+				   const u8 *data, unsigned int data_len,
+				   const u8 *spare, unsigned int spare_len,
+				   int page)
+{
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	u32 xtype;
+	int ret;
+	struct marvell_nfc_op nfc_op = {
+		.ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD,
+		.ndcb[3] = data_len + spare_len,
+	};
+
+	/*
+	 * First operation dispatches the CMD_SEQIN command, issue the address
+	 * cycles and asks for the first chunk of data.
+	 * All operations in the middle (if any) will issue a naked write and
+	 * also ask for data.
+	 * Last operation (if any) asks for the last chunk of data through a
+	 * last naked write.
+	 */
+	if (chunk == 0) {
+		if (lt->nchunks == 1)
+			xtype = XTYPE_MONOLITHIC_RW;
+		else
+			xtype = XTYPE_WRITE_DISPATCH;
+
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(xtype) |
+				  NDCB0_ADDR_CYC(marvell_nand->addr_cyc) |
+				  NDCB0_CMD1(NAND_CMD_SEQIN);
+		nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page);
+		nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page);
+	} else if (chunk < lt->nchunks - 1) {
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW);
+	} else {
+		nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+	}
+
+	/* Always dispatch the PAGEPROG command on the last chunk */
+	if (chunk == lt->nchunks - 1)
+		nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC;
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ,
+				  "WRDREQ while loading FIFO (data)");
+	if (ret)
+		return ret;
+
+	/* Transfer the contents */
+	iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len));
+	iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len));
+
+	return 0;
+}
+
+static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd,
+					     struct nand_chip *chip,
+					     const u8 *buf,
+					     int oob_required, int page)
+{
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+	const u8 *data = buf;
+	const u8 *spare = chip->oob_poi;
+	int data_len = lt->data_bytes;
+	int spare_len = lt->spare_bytes;
+	int chunk, ret;
+
+	/* Spare data will be written anyway, so clear it to avoid garbage */
+	if (!oob_required)
+		memset(chip->oob_poi, 0xFF, mtd->oobsize);
+
+	marvell_nfc_enable_hw_ecc(chip);
+
+	for (chunk = 0; chunk < lt->nchunks; chunk++) {
+		if (chunk >= lt->full_chunk_cnt) {
+			data_len = lt->last_data_bytes;
+			spare_len = lt->last_spare_bytes;
+		}
+
+		marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len,
+						   spare, spare_len, page);
+		data += data_len;
+		spare += spare_len;
+
+		/*
+		 * Waiting only for CMDD or PAGED is not enough, ECC are
+		 * partially written. No flag is set once the operation is
+		 * really finished but the ND_RUN bit is cleared, so wait for it
+		 * before stepping into the next command.
+		 */
+		marvell_nfc_wait_ndrun(chip);
+	}
+
+	ret = marvell_nfc_wait_op(chip,
+				  PSEC_TO_MSEC(chip->data_interface.timings.sdr.tPROG_max));
+
+	marvell_nfc_disable_hw_ecc(chip);
+
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd,
+						struct nand_chip *chip,
+						int page)
+{
+	/* Invalidate page cache */
+	chip->pagebuf = -1;
+
+	memset(chip->data_buf, 0xFF, mtd->writesize);
+
+	return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page);
+}
+
+static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd,
+					    struct nand_chip *chip, int page)
+{
+	/* Invalidate page cache */
+	chip->pagebuf = -1;
+
+	memset(chip->data_buf, 0xFF, mtd->writesize);
+
+	return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page);
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void marvell_nfc_parse_instructions(struct nand_chip *chip,
+					   const struct nand_subop *subop,
+					   struct marvell_nfc_op *nfc_op)
+{
+	const struct nand_op_instr *instr = NULL;
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	bool first_cmd = true;
+	unsigned int op_id;
+	int i;
+
+	/* Reset the input structure as most of its fields will be OR'ed */
+	memset(nfc_op, 0, sizeof(struct marvell_nfc_op));
+
+	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+		unsigned int offset, naddrs;
+		const u8 *addrs;
+		int len;
+
+		instr = &subop->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			if (first_cmd)
+				nfc_op->ndcb[0] |=
+					NDCB0_CMD1(instr->ctx.cmd.opcode);
+			else
+				nfc_op->ndcb[0] |=
+					NDCB0_CMD2(instr->ctx.cmd.opcode) |
+					NDCB0_DBC;
+
+			nfc_op->cle_ale_delay_ns = instr->delay_ns;
+			first_cmd = false;
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			offset = nand_subop_get_addr_start_off(subop, op_id);
+			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+			addrs = &instr->ctx.addr.addrs[offset];
+
+			nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs);
+
+			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+				nfc_op->ndcb[1] |= addrs[i] << (8 * i);
+
+			if (naddrs >= 5)
+				nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]);
+			if (naddrs >= 6)
+				nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]);
+			if (naddrs == 7)
+				nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]);
+
+			nfc_op->cle_ale_delay_ns = instr->delay_ns;
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			nfc_op->data_instr = instr;
+			nfc_op->data_instr_idx = op_id;
+			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ);
+			if (nfc->caps->is_nfcv2) {
+				nfc_op->ndcb[0] |=
+					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
+					NDCB0_LEN_OVRD;
+				len = nand_subop_get_data_len(subop, op_id);
+				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
+			}
+			nfc_op->data_delay_ns = instr->delay_ns;
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			nfc_op->data_instr = instr;
+			nfc_op->data_instr_idx = op_id;
+			nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE);
+			if (nfc->caps->is_nfcv2) {
+				nfc_op->ndcb[0] |=
+					NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) |
+					NDCB0_LEN_OVRD;
+				len = nand_subop_get_data_len(subop, op_id);
+				nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH);
+			}
+			nfc_op->data_delay_ns = instr->delay_ns;
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+			nfc_op->rdy_delay_ns = instr->delay_ns;
+			break;
+		}
+	}
+}
+
+static int marvell_nfc_xfer_data_pio(struct nand_chip *chip,
+				     const struct nand_subop *subop,
+				     struct marvell_nfc_op *nfc_op)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	const struct nand_op_instr *instr = nfc_op->data_instr;
+	unsigned int op_id = nfc_op->data_instr_idx;
+	unsigned int len = nand_subop_get_data_len(subop, op_id);
+	unsigned int offset = nand_subop_get_data_start_off(subop, op_id);
+	bool reading = (instr->type == NAND_OP_DATA_IN_INSTR);
+	int ret;
+
+	if (instr->ctx.data.force_8bit)
+		marvell_nfc_force_byte_access(chip, true);
+
+	if (reading) {
+		u8 *in = instr->ctx.data.buf.in + offset;
+
+		ret = marvell_nfc_xfer_data_in_pio(nfc, in, len);
+	} else {
+		const u8 *out = instr->ctx.data.buf.out + offset;
+
+		ret = marvell_nfc_xfer_data_out_pio(nfc, out, len);
+	}
+
+	if (instr->ctx.data.force_8bit)
+		marvell_nfc_force_byte_access(chip, false);
+
+	return ret;
+}
+
+static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip,
+					      const struct nand_subop *subop)
+{
+	struct marvell_nfc_op nfc_op;
+	bool reading;
+	int ret;
+
+	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
+	reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
+				  "RDDREQ/WRDREQ while draining raw data");
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.cle_ale_delay_ns);
+
+	if (reading) {
+		if (nfc_op.rdy_timeout_ms) {
+			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+			if (ret)
+				return ret;
+		}
+
+		cond_delay(nfc_op.rdy_delay_ns);
+	}
+
+	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
+	ret = marvell_nfc_wait_cmdd(chip);
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.data_delay_ns);
+
+	if (!reading) {
+		if (nfc_op.rdy_timeout_ms) {
+			ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+			if (ret)
+				return ret;
+		}
+
+		cond_delay(nfc_op.rdy_delay_ns);
+	}
+
+	/*
+	 * NDCR ND_RUN bit should be cleared automatically at the end of each
+	 * operation but experience shows that the behavior is buggy when it
+	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
+	 */
+	if (!reading) {
+		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+
+		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
+			       nfc->regs + NDCR);
+	}
+
+	return 0;
+}
+
+static int marvell_nfc_naked_access_exec(struct nand_chip *chip,
+					 const struct nand_subop *subop)
+{
+	struct marvell_nfc_op nfc_op;
+	int ret;
+
+	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
+
+	/*
+	 * Naked access are different in that they need to be flagged as naked
+	 * by the controller. Reset the controller registers fields that inform
+	 * on the type and refill them according to the ongoing operation.
+	 */
+	nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) |
+			    NDCB0_CMD_XTYPE(XTYPE_MASK));
+	switch (subop->instrs[0].type) {
+	case NAND_OP_CMD_INSTR:
+		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD);
+		break;
+	case NAND_OP_ADDR_INSTR:
+		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR);
+		break;
+	case NAND_OP_DATA_IN_INSTR:
+		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) |
+				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+		break;
+	case NAND_OP_DATA_OUT_INSTR:
+		nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) |
+				  NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW);
+		break;
+	default:
+		/* This should never happen */
+		break;
+	}
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+
+	if (!nfc_op.data_instr) {
+		ret = marvell_nfc_wait_cmdd(chip);
+		cond_delay(nfc_op.cle_ale_delay_ns);
+		return ret;
+	}
+
+	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ,
+				  "RDDREQ/WRDREQ while draining raw data");
+	if (ret)
+		return ret;
+
+	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
+	ret = marvell_nfc_wait_cmdd(chip);
+	if (ret)
+		return ret;
+
+	/*
+	 * NDCR ND_RUN bit should be cleared automatically at the end of each
+	 * operation but experience shows that the behavior is buggy when it
+	 * comes to writes (with LEN_OVRD). Clear it by hand in this case.
+	 */
+	if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) {
+		struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+
+		writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN,
+			       nfc->regs + NDCR);
+	}
+
+	return 0;
+}
+
+static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip,
+					  const struct nand_subop *subop)
+{
+	struct marvell_nfc_op nfc_op;
+	int ret;
+
+	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
+
+	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+	cond_delay(nfc_op.rdy_delay_ns);
+
+	return ret;
+}
+
+static int marvell_nfc_read_id_type_exec(struct nand_chip *chip,
+					 const struct nand_subop *subop)
+{
+	struct marvell_nfc_op nfc_op;
+	int ret;
+
+	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
+	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
+	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID);
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+				  "RDDREQ while reading ID");
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.cle_ale_delay_ns);
+
+	if (nfc_op.rdy_timeout_ms) {
+		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+		if (ret)
+			return ret;
+	}
+
+	cond_delay(nfc_op.rdy_delay_ns);
+
+	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
+	ret = marvell_nfc_wait_cmdd(chip);
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.data_delay_ns);
+
+	return 0;
+}
+
+static int marvell_nfc_read_status_exec(struct nand_chip *chip,
+					const struct nand_subop *subop)
+{
+	struct marvell_nfc_op nfc_op;
+	int ret;
+
+	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
+	nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ);
+	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS);
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ,
+				  "RDDREQ while reading status");
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.cle_ale_delay_ns);
+
+	if (nfc_op.rdy_timeout_ms) {
+		ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+		if (ret)
+			return ret;
+	}
+
+	cond_delay(nfc_op.rdy_delay_ns);
+
+	marvell_nfc_xfer_data_pio(chip, subop, &nfc_op);
+	ret = marvell_nfc_wait_cmdd(chip);
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.data_delay_ns);
+
+	return 0;
+}
+
+static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip,
+					   const struct nand_subop *subop)
+{
+	struct marvell_nfc_op nfc_op;
+	int ret;
+
+	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
+	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET);
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_wait_cmdd(chip);
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.cle_ale_delay_ns);
+
+	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.rdy_delay_ns);
+
+	return 0;
+}
+
+static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip,
+					   const struct nand_subop *subop)
+{
+	struct marvell_nfc_op nfc_op;
+	int ret;
+
+	marvell_nfc_parse_instructions(chip, subop, &nfc_op);
+	nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE);
+
+	ret = marvell_nfc_prepare_cmd(chip);
+	if (ret)
+		return ret;
+
+	marvell_nfc_send_cmd(chip, &nfc_op);
+	ret = marvell_nfc_wait_cmdd(chip);
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.cle_ale_delay_ns);
+
+	ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms);
+	if (ret)
+		return ret;
+
+	cond_delay(nfc_op.rdy_delay_ns);
+
+	return 0;
+}
+
+static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER(
+	/* Monolithic reads/writes */
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_monolithic_access_exec,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_monolithic_access_exec,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2),
+		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+	/* Naked commands */
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_naked_access_exec,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_naked_access_exec,
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_naked_access_exec,
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_naked_access_exec,
+		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_naked_waitrdy_exec,
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+	);
+
+static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER(
+	/* Naked commands not supported, use a function for each pattern */
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_read_id_type_exec,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_erase_cmd_type_exec,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1),
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_read_status_exec,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_reset_cmd_type_exec,
+		NAND_OP_PARSER_PAT_CMD_ELEM(false),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+	NAND_OP_PARSER_PATTERN(
+		marvell_nfc_naked_waitrdy_exec,
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+	);
+
+static int marvell_nfc_exec_op(struct nand_chip *chip,
+			       const struct nand_operation *op,
+			       bool check_only)
+{
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+
+	if (nfc->caps->is_nfcv2)
+		return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser,
+					      op, check_only);
+	else
+		return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser,
+					      op, check_only);
+}
+
+/*
+ * Layouts were broken in old pxa3xx_nand driver, these are supposed to be
+ * usable.
+ */
+static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) +
+			    lt->last_ecc_bytes;
+	oobregion->offset = mtd->oobsize - oobregion->length;
+
+	return 0;
+}
+
+static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout;
+
+	if (section)
+		return -ERANGE;
+
+	/*
+	 * Bootrom looks in bytes 0 & 5 for bad blocks for the
+	 * 4KB page / 4bit BCH combination.
+	 */
+	if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K)
+		oobregion->offset = 6;
+	else
+		oobregion->offset = 2;
+
+	oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) +
+			    lt->last_spare_bytes - oobregion->offset;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = {
+	.ecc = marvell_nand_ooblayout_ecc,
+	.free = marvell_nand_ooblayout_free,
+};
+
+static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+					 struct nand_ecc_ctrl *ecc)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	const struct marvell_hw_ecc_layout *l;
+	int i;
+
+	if (!nfc->caps->is_nfcv2 &&
+	    (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) {
+		dev_err(nfc->dev,
+			"NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n",
+			mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize);
+		return -ENOTSUPP;
+	}
+
+	to_marvell_nand(chip)->layout = NULL;
+	for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) {
+		l = &marvell_nfc_layouts[i];
+		if (mtd->writesize == l->writesize &&
+		    ecc->size == l->chunk && ecc->strength == l->strength) {
+			to_marvell_nand(chip)->layout = l;
+			break;
+		}
+	}
+
+	if (!to_marvell_nand(chip)->layout ||
+	    (!nfc->caps->is_nfcv2 && ecc->strength > 1)) {
+		dev_err(nfc->dev,
+			"ECC strength %d at page size %d is not supported\n",
+			ecc->strength, mtd->writesize);
+		return -ENOTSUPP;
+	}
+
+	mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops);
+	ecc->steps = l->nchunks;
+	ecc->size = l->data_bytes;
+
+	if (ecc->strength == 1) {
+		chip->ecc.algo = NAND_ECC_HAMMING;
+		ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw;
+		ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page;
+		ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw;
+		ecc->read_oob = ecc->read_oob_raw;
+		ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw;
+		ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page;
+		ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw;
+		ecc->write_oob = ecc->write_oob_raw;
+	} else {
+		chip->ecc.algo = NAND_ECC_BCH;
+		ecc->strength = 16;
+		ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw;
+		ecc->read_page = marvell_nfc_hw_ecc_bch_read_page;
+		ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw;
+		ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob;
+		ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw;
+		ecc->write_page = marvell_nfc_hw_ecc_bch_write_page;
+		ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw;
+		ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob;
+	}
+
+	return 0;
+}
+
+static int marvell_nand_ecc_init(struct mtd_info *mtd,
+				 struct nand_ecc_ctrl *ecc)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	int ret;
+
+	if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) {
+		if (chip->ecc_step_ds && chip->ecc_strength_ds) {
+			ecc->size = chip->ecc_step_ds;
+			ecc->strength = chip->ecc_strength_ds;
+		} else {
+			dev_info(nfc->dev,
+				 "No minimum ECC strength, using 1b/512B\n");
+			ecc->size = 512;
+			ecc->strength = 1;
+		}
+	}
+
+	switch (ecc->mode) {
+	case NAND_ECC_HW:
+		ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc);
+		if (ret)
+			return ret;
+		break;
+	case NAND_ECC_NONE:
+	case NAND_ECC_SOFT:
+	case NAND_ECC_ON_DIE:
+		if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 &&
+		    mtd->writesize != SZ_2K) {
+			dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n",
+				mtd->writesize);
+			return -EINVAL;
+		}
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
+static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	8,
+	.len = 6,
+	.veroffs = 14,
+	.maxblocks = 8,	/* Last 8 blocks in each chip */
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+		   NAND_BBT_2BIT | NAND_BBT_VERSION,
+	.offs =	8,
+	.len = 6,
+	.veroffs = 14,
+	.maxblocks = 8,	/* Last 8 blocks in each chip */
+	.pattern = bbt_mirror_pattern
+};
+
+static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr,
+					    const struct nand_data_interface
+					    *conf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2;
+	const struct nand_sdr_timings *sdr;
+	struct marvell_nfc_timings nfc_tmg;
+	int read_delay;
+
+	sdr = nand_get_sdr_timings(conf);
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	/*
+	 * SDR timings are given in pico-seconds while NFC timings must be
+	 * expressed in NAND controller clock cycles, which is half of the
+	 * frequency of the accessible ECC clock retrieved by clk_get_rate().
+	 * This is not written anywhere in the datasheet but was observed
+	 * with an oscilloscope.
+	 *
+	 * NFC datasheet gives equations from which thoses calculations
+	 * are derived, they tend to be slightly more restrictives than the
+	 * given core timings and may improve the overall speed.
+	 */
+	nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1;
+	nfc_tmg.tRH = nfc_tmg.tRP;
+	nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1;
+	nfc_tmg.tWH = nfc_tmg.tWP;
+	nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns);
+	nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1;
+	nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns);
+	/*
+	 * Read delay is the time of propagation from SoC pins to NFC internal
+	 * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In
+	 * EDO mode, an additional delay of tRH must be taken into account so
+	 * the data is sampled on the falling edge instead of the rising edge.
+	 */
+	read_delay = sdr->tRC_min >= 30000 ?
+		MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH;
+
+	nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns);
+	/*
+	 * tWHR and tRHW are supposed to be read to write delays (and vice
+	 * versa) but in some cases, ie. when doing a change column, they must
+	 * be greater than that to be sure tCCS delay is respected.
+	 */
+	nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min),
+				 period_ns) - 2,
+	nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min),
+				 period_ns);
+
+	/*
+	 * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays.
+	 * NFCv1: No WAIT_MODE, tR must be maximal.
+	 */
+	if (nfc->caps->is_nfcv2) {
+		nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns);
+	} else {
+		nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max,
+					 period_ns);
+		if (nfc_tmg.tR + 3 > nfc_tmg.tCH)
+			nfc_tmg.tR = nfc_tmg.tCH - 3;
+		else
+			nfc_tmg.tR = 0;
+	}
+
+	if (chipnr < 0)
+		return 0;
+
+	marvell_nand->ndtr0 =
+		NDTR0_TRP(nfc_tmg.tRP) |
+		NDTR0_TRH(nfc_tmg.tRH) |
+		NDTR0_ETRP(nfc_tmg.tRP) |
+		NDTR0_TWP(nfc_tmg.tWP) |
+		NDTR0_TWH(nfc_tmg.tWH) |
+		NDTR0_TCS(nfc_tmg.tCS) |
+		NDTR0_TCH(nfc_tmg.tCH);
+
+	marvell_nand->ndtr1 =
+		NDTR1_TAR(nfc_tmg.tAR) |
+		NDTR1_TWHR(nfc_tmg.tWHR) |
+		NDTR1_TR(nfc_tmg.tR);
+
+	if (nfc->caps->is_nfcv2) {
+		marvell_nand->ndtr0 |=
+			NDTR0_RD_CNT_DEL(read_delay) |
+			NDTR0_SELCNTR |
+			NDTR0_TADL(nfc_tmg.tADL);
+
+		marvell_nand->ndtr1 |=
+			NDTR1_TRHW(nfc_tmg.tRHW) |
+			NDTR1_WAIT_MODE;
+	}
+
+	return 0;
+}
+
+static int marvell_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip);
+	struct marvell_nfc *nfc = to_marvell_nfc(chip->controller);
+	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(nfc->dev);
+	int ret;
+
+	if (pdata && pdata->flash_bbt)
+		chip->bbt_options |= NAND_BBT_USE_FLASH;
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
+		/*
+		 * We'll use a bad block table stored in-flash and don't
+		 * allow writing the bad block marker to the flash.
+		 */
+		chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
+		chip->bbt_td = &bbt_main_descr;
+		chip->bbt_md = &bbt_mirror_descr;
+	}
+
+	/* Save the chip-specific fields of NDCR */
+	marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize);
+	if (chip->options & NAND_BUSWIDTH_16)
+		marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C;
+
+	/*
+	 * On small page NANDs, only one cycle is needed to pass the
+	 * column address.
+	 */
+	if (mtd->writesize <= 512) {
+		marvell_nand->addr_cyc = 1;
+	} else {
+		marvell_nand->addr_cyc = 2;
+		marvell_nand->ndcr |= NDCR_RA_START;
+	}
+
+	/*
+	 * Now add the number of cycles needed to pass the row
+	 * address.
+	 *
+	 * Addressing a chip using CS 2 or 3 should also need the third row
+	 * cycle but due to inconsistance in the documentation and lack of
+	 * hardware to test this situation, this case is not supported.
+	 */
+	if (chip->options & NAND_ROW_ADDR_3)
+		marvell_nand->addr_cyc += 3;
+	else
+		marvell_nand->addr_cyc += 2;
+
+	if (pdata) {
+		chip->ecc.size = pdata->ecc_step_size;
+		chip->ecc.strength = pdata->ecc_strength;
+	}
+
+	ret = marvell_nand_ecc_init(mtd, &chip->ecc);
+	if (ret) {
+		dev_err(nfc->dev, "ECC init failed: %d\n", ret);
+		return ret;
+	}
+
+	if (chip->ecc.mode == NAND_ECC_HW) {
+		/*
+		 * Subpage write not available with hardware ECC, prohibit also
+		 * subpage read as in userspace subpage access would still be
+		 * allowed and subpage write, if used, would lead to numerous
+		 * uncorrectable ECC errors.
+		 */
+		chip->options |= NAND_NO_SUBPAGE_WRITE;
+	}
+
+	if (pdata || nfc->caps->legacy_of_bindings) {
+		/*
+		 * We keep the MTD name unchanged to avoid breaking platforms
+		 * where the MTD cmdline parser is used and the bootloader
+		 * has not been updated to use the new naming scheme.
+		 */
+		mtd->name = "pxa3xx_nand-0";
+	} else if (!mtd->name) {
+		/*
+		 * If the new bindings are used and the bootloader has not been
+		 * updated to pass a new mtdparts parameter on the cmdline, you
+		 * should define the following property in your NAND node, ie:
+		 *
+		 *	label = "main-storage";
+		 *
+		 * This way, mtd->name will be set by the core when
+		 * nand_set_flash_node() is called.
+		 */
+		mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
+					   "%s:nand.%d", dev_name(nfc->dev),
+					   marvell_nand->sels[0].cs);
+		if (!mtd->name) {
+			dev_err(nfc->dev, "Failed to allocate mtd->name\n");
+			return -ENOMEM;
+		}
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops marvell_nand_controller_ops = {
+	.attach_chip = marvell_nand_attach_chip,
+};
+
+static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
+				  struct device_node *np)
+{
+	struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev);
+	struct marvell_nand_chip *marvell_nand;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	int nsels, ret, i;
+	u32 cs, rb;
+
+	/*
+	 * The legacy "num-cs" property indicates the number of CS on the only
+	 * chip connected to the controller (legacy bindings does not support
+	 * more than one chip). The CS and RB pins are always the #0.
+	 *
+	 * When not using legacy bindings, a couple of "reg" and "nand-rb"
+	 * properties must be filled. For each chip, expressed as a subnode,
+	 * "reg" points to the CS lines and "nand-rb" to the RB line.
+	 */
+	if (pdata || nfc->caps->legacy_of_bindings) {
+		nsels = 1;
+	} else {
+		nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
+		if (nsels <= 0) {
+			dev_err(dev, "missing/invalid reg property\n");
+			return -EINVAL;
+		}
+	}
+
+	/* Alloc the nand chip structure */
+	marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) +
+				    (nsels *
+				     sizeof(struct marvell_nand_chip_sel)),
+				    GFP_KERNEL);
+	if (!marvell_nand) {
+		dev_err(dev, "could not allocate chip structure\n");
+		return -ENOMEM;
+	}
+
+	marvell_nand->nsels = nsels;
+	marvell_nand->selected_die = -1;
+
+	for (i = 0; i < nsels; i++) {
+		if (pdata || nfc->caps->legacy_of_bindings) {
+			/*
+			 * Legacy bindings use the CS lines in natural
+			 * order (0, 1, ...)
+			 */
+			cs = i;
+		} else {
+			/* Retrieve CS id */
+			ret = of_property_read_u32_index(np, "reg", i, &cs);
+			if (ret) {
+				dev_err(dev, "could not retrieve reg property: %d\n",
+					ret);
+				return ret;
+			}
+		}
+
+		if (cs >= nfc->caps->max_cs_nb) {
+			dev_err(dev, "invalid reg value: %u (max CS = %d)\n",
+				cs, nfc->caps->max_cs_nb);
+			return -EINVAL;
+		}
+
+		if (test_and_set_bit(cs, &nfc->assigned_cs)) {
+			dev_err(dev, "CS %d already assigned\n", cs);
+			return -EINVAL;
+		}
+
+		/*
+		 * The cs variable represents the chip select id, which must be
+		 * converted in bit fields for NDCB0 and NDCB2 to select the
+		 * right chip. Unfortunately, due to a lack of information on
+		 * the subject and incoherent documentation, the user should not
+		 * use CS1 and CS3 at all as asserting them is not supported in
+		 * a reliable way (due to multiplexing inside ADDR5 field).
+		 */
+		marvell_nand->sels[i].cs = cs;
+		switch (cs) {
+		case 0:
+		case 2:
+			marvell_nand->sels[i].ndcb0_csel = 0;
+			break;
+		case 1:
+		case 3:
+			marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL;
+			break;
+		default:
+			return -EINVAL;
+		}
+
+		/* Retrieve RB id */
+		if (pdata || nfc->caps->legacy_of_bindings) {
+			/* Legacy bindings always use RB #0 */
+			rb = 0;
+		} else {
+			ret = of_property_read_u32_index(np, "nand-rb", i,
+							 &rb);
+			if (ret) {
+				dev_err(dev,
+					"could not retrieve RB property: %d\n",
+					ret);
+				return ret;
+			}
+		}
+
+		if (rb >= nfc->caps->max_rb_nb) {
+			dev_err(dev, "invalid reg value: %u (max RB = %d)\n",
+				rb, nfc->caps->max_rb_nb);
+			return -EINVAL;
+		}
+
+		marvell_nand->sels[i].rb = rb;
+	}
+
+	chip = &marvell_nand->chip;
+	chip->controller = &nfc->controller;
+	nand_set_flash_node(chip, np);
+
+	chip->exec_op = marvell_nfc_exec_op;
+	chip->select_chip = marvell_nfc_select_chip;
+	if (!of_property_read_bool(np, "marvell,nand-keep-config"))
+		chip->setup_data_interface = marvell_nfc_setup_data_interface;
+
+	mtd = nand_to_mtd(chip);
+	mtd->dev.parent = dev;
+
+	/*
+	 * Default to HW ECC engine mode. If the nand-ecc-mode property is given
+	 * in the DT node, this entry will be overwritten in nand_scan_ident().
+	 */
+	chip->ecc.mode = NAND_ECC_HW;
+
+	/*
+	 * Save a reference value for timing registers before
+	 * ->setup_data_interface() is called.
+	 */
+	marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0);
+	marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1);
+
+	chip->options |= NAND_BUSWIDTH_AUTO;
+
+	ret = nand_scan(mtd, marvell_nand->nsels);
+	if (ret) {
+		dev_err(dev, "could not scan the nand chip\n");
+		return ret;
+	}
+
+	if (pdata)
+		/* Legacy bindings support only one chip */
+		ret = mtd_device_register(mtd, pdata->parts, pdata->nr_parts);
+	else
+		ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(dev, "failed to register mtd device: %d\n", ret);
+		nand_release(mtd);
+		return ret;
+	}
+
+	list_add_tail(&marvell_nand->node, &nfc->chips);
+
+	return 0;
+}
+
+static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc)
+{
+	struct device_node *np = dev->of_node;
+	struct device_node *nand_np;
+	int max_cs = nfc->caps->max_cs_nb;
+	int nchips;
+	int ret;
+
+	if (!np)
+		nchips = 1;
+	else
+		nchips = of_get_child_count(np);
+
+	if (nchips > max_cs) {
+		dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips,
+			max_cs);
+		return -EINVAL;
+	}
+
+	/*
+	 * Legacy bindings do not use child nodes to exhibit NAND chip
+	 * properties and layout. Instead, NAND properties are mixed with the
+	 * controller ones, and partitions are defined as direct subnodes of the
+	 * NAND controller node.
+	 */
+	if (nfc->caps->legacy_of_bindings) {
+		ret = marvell_nand_chip_init(dev, nfc, np);
+		return ret;
+	}
+
+	for_each_child_of_node(np, nand_np) {
+		ret = marvell_nand_chip_init(dev, nfc, nand_np);
+		if (ret) {
+			of_node_put(nand_np);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc)
+{
+	struct marvell_nand_chip *entry, *temp;
+
+	list_for_each_entry_safe(entry, temp, &nfc->chips, node) {
+		nand_release(nand_to_mtd(&entry->chip));
+		list_del(&entry->node);
+	}
+}
+
+static int marvell_nfc_init_dma(struct marvell_nfc *nfc)
+{
+	struct platform_device *pdev = container_of(nfc->dev,
+						    struct platform_device,
+						    dev);
+	struct dma_slave_config config = {};
+	struct resource *r;
+	int ret;
+
+	if (!IS_ENABLED(CONFIG_PXA_DMA)) {
+		dev_warn(nfc->dev,
+			 "DMA not enabled in configuration\n");
+		return -ENOTSUPP;
+	}
+
+	ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32));
+	if (ret)
+		return ret;
+
+	nfc->dma_chan =	dma_request_slave_channel(nfc->dev, "data");
+	if (!nfc->dma_chan) {
+		dev_err(nfc->dev,
+			"Unable to request data DMA channel\n");
+		return -ENODEV;
+	}
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!r)
+		return -ENXIO;
+
+	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+	config.src_addr = r->start + NDDB;
+	config.dst_addr = r->start + NDDB;
+	config.src_maxburst = 32;
+	config.dst_maxburst = 32;
+	ret = dmaengine_slave_config(nfc->dma_chan, &config);
+	if (ret < 0) {
+		dev_err(nfc->dev, "Failed to configure DMA channel\n");
+		return ret;
+	}
+
+	/*
+	 * DMA must act on length multiple of 32 and this length may be
+	 * bigger than the destination buffer. Use this buffer instead
+	 * for DMA transfers and then copy the desired amount of data to
+	 * the provided buffer.
+	 */
+	nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA);
+	if (!nfc->dma_buf)
+		return -ENOMEM;
+
+	nfc->use_dma = true;
+
+	return 0;
+}
+
+static void marvell_nfc_reset(struct marvell_nfc *nfc)
+{
+	/*
+	 * ECC operations and interruptions are only enabled when specifically
+	 * needed. ECC shall not be activated in the early stages (fails probe).
+	 * Arbiter flag, even if marked as "reserved", must be set (empirical).
+	 * SPARE_EN bit must always be set or ECC bytes will not be at the same
+	 * offset in the read page and this will fail the protection.
+	 */
+	writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN |
+		       NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR);
+	writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR);
+	writel_relaxed(0, nfc->regs + NDECCCTRL);
+}
+
+static int marvell_nfc_init(struct marvell_nfc *nfc)
+{
+	struct device_node *np = nfc->dev->of_node;
+
+	/*
+	 * Some SoCs like A7k/A8k need to enable manually the NAND
+	 * controller, gated clocks and reset bits to avoid being bootloader
+	 * dependent. This is done through the use of the System Functions
+	 * registers.
+	 */
+	if (nfc->caps->need_system_controller) {
+		struct regmap *sysctrl_base =
+			syscon_regmap_lookup_by_phandle(np,
+							"marvell,system-controller");
+		u32 reg;
+
+		if (IS_ERR(sysctrl_base))
+			return PTR_ERR(sysctrl_base);
+
+		reg = GENCONF_SOC_DEVICE_MUX_NFC_EN |
+		      GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST |
+		      GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST |
+		      GENCONF_SOC_DEVICE_MUX_NFC_INT_EN;
+		regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
+
+		regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, &reg);
+		reg |= GENCONF_CLK_GATING_CTRL_ND_GATE;
+		regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg);
+
+		regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, &reg);
+		reg |= GENCONF_ND_CLK_CTRL_EN;
+		regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg);
+	}
+
+	/* Configure the DMA if appropriate */
+	if (!nfc->caps->is_nfcv2)
+		marvell_nfc_init_dma(nfc);
+
+	marvell_nfc_reset(nfc);
+
+	return 0;
+}
+
+static int marvell_nfc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct resource *r;
+	struct marvell_nfc *nfc;
+	int ret;
+	int irq;
+
+	nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc),
+			   GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->dev = dev;
+	nand_controller_init(&nfc->controller);
+	nfc->controller.ops = &marvell_nand_controller_ops;
+	INIT_LIST_HEAD(&nfc->chips);
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->regs = devm_ioremap_resource(dev, r);
+	if (IS_ERR(nfc->regs))
+		return PTR_ERR(nfc->regs);
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "failed to retrieve irq\n");
+		return irq;
+	}
+
+	nfc->core_clk = devm_clk_get(&pdev->dev, "core");
+
+	/* Managed the legacy case (when the first clock was not named) */
+	if (nfc->core_clk == ERR_PTR(-ENOENT))
+		nfc->core_clk = devm_clk_get(&pdev->dev, NULL);
+
+	if (IS_ERR(nfc->core_clk))
+		return PTR_ERR(nfc->core_clk);
+
+	ret = clk_prepare_enable(nfc->core_clk);
+	if (ret)
+		return ret;
+
+	nfc->reg_clk = devm_clk_get(&pdev->dev, "reg");
+	if (IS_ERR(nfc->reg_clk)) {
+		if (PTR_ERR(nfc->reg_clk) != -ENOENT) {
+			ret = PTR_ERR(nfc->reg_clk);
+			goto unprepare_core_clk;
+		}
+
+		nfc->reg_clk = NULL;
+	}
+
+	ret = clk_prepare_enable(nfc->reg_clk);
+	if (ret)
+		goto unprepare_core_clk;
+
+	marvell_nfc_disable_int(nfc, NDCR_ALL_INT);
+	marvell_nfc_clear_int(nfc, NDCR_ALL_INT);
+	ret = devm_request_irq(dev, irq, marvell_nfc_isr,
+			       0, "marvell-nfc", nfc);
+	if (ret)
+		goto unprepare_reg_clk;
+
+	/* Get NAND controller capabilities */
+	if (pdev->id_entry)
+		nfc->caps = (void *)pdev->id_entry->driver_data;
+	else
+		nfc->caps = of_device_get_match_data(&pdev->dev);
+
+	if (!nfc->caps) {
+		dev_err(dev, "Could not retrieve NFC caps\n");
+		ret = -EINVAL;
+		goto unprepare_reg_clk;
+	}
+
+	/* Init the controller and then probe the chips */
+	ret = marvell_nfc_init(nfc);
+	if (ret)
+		goto unprepare_reg_clk;
+
+	platform_set_drvdata(pdev, nfc);
+
+	ret = marvell_nand_chips_init(dev, nfc);
+	if (ret)
+		goto unprepare_reg_clk;
+
+	return 0;
+
+unprepare_reg_clk:
+	clk_disable_unprepare(nfc->reg_clk);
+unprepare_core_clk:
+	clk_disable_unprepare(nfc->core_clk);
+
+	return ret;
+}
+
+static int marvell_nfc_remove(struct platform_device *pdev)
+{
+	struct marvell_nfc *nfc = platform_get_drvdata(pdev);
+
+	marvell_nand_chips_cleanup(nfc);
+
+	if (nfc->use_dma) {
+		dmaengine_terminate_all(nfc->dma_chan);
+		dma_release_channel(nfc->dma_chan);
+	}
+
+	clk_disable_unprepare(nfc->reg_clk);
+	clk_disable_unprepare(nfc->core_clk);
+
+	return 0;
+}
+
+static int __maybe_unused marvell_nfc_suspend(struct device *dev)
+{
+	struct marvell_nfc *nfc = dev_get_drvdata(dev);
+	struct marvell_nand_chip *chip;
+
+	list_for_each_entry(chip, &nfc->chips, node)
+		marvell_nfc_wait_ndrun(&chip->chip);
+
+	clk_disable_unprepare(nfc->reg_clk);
+	clk_disable_unprepare(nfc->core_clk);
+
+	return 0;
+}
+
+static int __maybe_unused marvell_nfc_resume(struct device *dev)
+{
+	struct marvell_nfc *nfc = dev_get_drvdata(dev);
+	int ret;
+
+	ret = clk_prepare_enable(nfc->core_clk);
+	if (ret < 0)
+		return ret;
+
+	ret = clk_prepare_enable(nfc->reg_clk);
+	if (ret < 0)
+		return ret;
+
+	/*
+	 * Reset nfc->selected_chip so the next command will cause the timing
+	 * registers to be restored in marvell_nfc_select_chip().
+	 */
+	nfc->selected_chip = NULL;
+
+	/* Reset registers that have lost their contents */
+	marvell_nfc_reset(nfc);
+
+	return 0;
+}
+
+static const struct dev_pm_ops marvell_nfc_pm_ops = {
+	SET_SYSTEM_SLEEP_PM_OPS(marvell_nfc_suspend, marvell_nfc_resume)
+};
+
+static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = {
+	.max_cs_nb = 4,
+	.max_rb_nb = 2,
+	.need_system_controller = true,
+	.is_nfcv2 = true,
+};
+
+static const struct marvell_nfc_caps marvell_armada370_nfc_caps = {
+	.max_cs_nb = 4,
+	.max_rb_nb = 2,
+	.is_nfcv2 = true,
+};
+
+static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = {
+	.max_cs_nb = 2,
+	.max_rb_nb = 1,
+	.use_dma = true,
+};
+
+static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = {
+	.max_cs_nb = 4,
+	.max_rb_nb = 2,
+	.need_system_controller = true,
+	.legacy_of_bindings = true,
+	.is_nfcv2 = true,
+};
+
+static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = {
+	.max_cs_nb = 4,
+	.max_rb_nb = 2,
+	.legacy_of_bindings = true,
+	.is_nfcv2 = true,
+};
+
+static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = {
+	.max_cs_nb = 2,
+	.max_rb_nb = 1,
+	.legacy_of_bindings = true,
+	.use_dma = true,
+};
+
+static const struct platform_device_id marvell_nfc_platform_ids[] = {
+	{
+		.name = "pxa3xx-nand",
+		.driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps,
+	},
+	{ /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids);
+
+static const struct of_device_id marvell_nfc_of_ids[] = {
+	{
+		.compatible = "marvell,armada-8k-nand-controller",
+		.data = &marvell_armada_8k_nfc_caps,
+	},
+	{
+		.compatible = "marvell,armada370-nand-controller",
+		.data = &marvell_armada370_nfc_caps,
+	},
+	{
+		.compatible = "marvell,pxa3xx-nand-controller",
+		.data = &marvell_pxa3xx_nfc_caps,
+	},
+	/* Support for old/deprecated bindings: */
+	{
+		.compatible = "marvell,armada-8k-nand",
+		.data = &marvell_armada_8k_nfc_legacy_caps,
+	},
+	{
+		.compatible = "marvell,armada370-nand",
+		.data = &marvell_armada370_nfc_legacy_caps,
+	},
+	{
+		.compatible = "marvell,pxa3xx-nand",
+		.data = &marvell_pxa3xx_nfc_legacy_caps,
+	},
+	{ /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids);
+
+static struct platform_driver marvell_nfc_driver = {
+	.driver	= {
+		.name		= "marvell-nfc",
+		.of_match_table = marvell_nfc_of_ids,
+		.pm		= &marvell_nfc_pm_ops,
+	},
+	.id_table = marvell_nfc_platform_ids,
+	.probe = marvell_nfc_probe,
+	.remove	= marvell_nfc_remove,
+};
+module_platform_driver(marvell_nfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Marvell NAND controller driver");
diff --git a/drivers/mtd/nand/raw/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c
new file mode 100644
index 0000000..6d1740d
--- /dev/null
+++ b/drivers/mtd/nand/raw/mpc5121_nfc.c
@@ -0,0 +1,856 @@
+/*
+ * Copyright 2004-2008 Freescale Semiconductor, Inc.
+ * Copyright 2009 Semihalf.
+ *
+ * Approved as OSADL project by a majority of OSADL members and funded
+ * by OSADL membership fees in 2009;  for details see www.osadl.org.
+ *
+ * Based on original driver from Freescale Semiconductor
+ * written by John Rigby <jrigby@freescale.com> on basis of mxc_nand.c.
+ * Reworked and extended by Piotr Ziecik <kosmo@semihalf.com>.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ */
+
+#include <linux/module.h>
+#include <linux/clk.h>
+#include <linux/gfp.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+
+#include <asm/mpc5121.h>
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n)	((n) *  0x200)
+
+/* Addresses for NFC SPARE BUFFER areas */
+#define NFC_SPARE_BUFFERS	8
+#define NFC_SPARE_LEN		0x40
+#define NFC_SPARE_AREA(n)	(0x1000 + ((n) * NFC_SPARE_LEN))
+
+/* MPC5121 NFC registers */
+#define NFC_BUF_ADDR		0x1E04
+#define NFC_FLASH_ADDR		0x1E06
+#define NFC_FLASH_CMD		0x1E08
+#define NFC_CONFIG		0x1E0A
+#define NFC_ECC_STATUS1		0x1E0C
+#define NFC_ECC_STATUS2		0x1E0E
+#define NFC_SPAS		0x1E10
+#define NFC_WRPROT		0x1E12
+#define NFC_NF_WRPRST		0x1E18
+#define NFC_CONFIG1		0x1E1A
+#define NFC_CONFIG2		0x1E1C
+#define NFC_UNLOCKSTART_BLK0	0x1E20
+#define NFC_UNLOCKEND_BLK0	0x1E22
+#define NFC_UNLOCKSTART_BLK1	0x1E24
+#define NFC_UNLOCKEND_BLK1	0x1E26
+#define NFC_UNLOCKSTART_BLK2	0x1E28
+#define NFC_UNLOCKEND_BLK2	0x1E2A
+#define NFC_UNLOCKSTART_BLK3	0x1E2C
+#define NFC_UNLOCKEND_BLK3	0x1E2E
+
+/* Bit Definitions: NFC_BUF_ADDR */
+#define NFC_RBA_MASK		(7 << 0)
+#define NFC_ACTIVE_CS_SHIFT	5
+#define NFC_ACTIVE_CS_MASK	(3 << NFC_ACTIVE_CS_SHIFT)
+
+/* Bit Definitions: NFC_CONFIG */
+#define NFC_BLS_UNLOCKED	(1 << 1)
+
+/* Bit Definitions: NFC_CONFIG1 */
+#define NFC_ECC_4BIT		(1 << 0)
+#define NFC_FULL_PAGE_DMA	(1 << 1)
+#define NFC_SPARE_ONLY		(1 << 2)
+#define NFC_ECC_ENABLE		(1 << 3)
+#define NFC_INT_MASK		(1 << 4)
+#define NFC_BIG_ENDIAN		(1 << 5)
+#define NFC_RESET		(1 << 6)
+#define NFC_CE			(1 << 7)
+#define NFC_ONE_CYCLE		(1 << 8)
+#define NFC_PPB_32		(0 << 9)
+#define NFC_PPB_64		(1 << 9)
+#define NFC_PPB_128		(2 << 9)
+#define NFC_PPB_256		(3 << 9)
+#define NFC_PPB_MASK		(3 << 9)
+#define NFC_FULL_PAGE_INT	(1 << 11)
+
+/* Bit Definitions: NFC_CONFIG2 */
+#define NFC_COMMAND		(1 << 0)
+#define NFC_ADDRESS		(1 << 1)
+#define NFC_INPUT		(1 << 2)
+#define NFC_OUTPUT		(1 << 3)
+#define NFC_ID			(1 << 4)
+#define NFC_STATUS		(1 << 5)
+#define NFC_CMD_FAIL		(1 << 15)
+#define NFC_INT			(1 << 15)
+
+/* Bit Definitions: NFC_WRPROT */
+#define NFC_WPC_LOCK_TIGHT	(1 << 0)
+#define NFC_WPC_LOCK		(1 << 1)
+#define NFC_WPC_UNLOCK		(1 << 2)
+
+#define	DRV_NAME		"mpc5121_nfc"
+
+/* Timeouts */
+#define NFC_RESET_TIMEOUT	1000		/* 1 ms */
+#define NFC_TIMEOUT		(HZ / 10)	/* 1/10 s */
+
+struct mpc5121_nfc_prv {
+	struct nand_chip	chip;
+	int			irq;
+	void __iomem		*regs;
+	struct clk		*clk;
+	wait_queue_head_t	irq_waitq;
+	uint			column;
+	int			spareonly;
+	void __iomem		*csreg;
+	struct device		*dev;
+};
+
+static void mpc5121_nfc_done(struct mtd_info *mtd);
+
+/* Read NFC register */
+static inline u16 nfc_read(struct mtd_info *mtd, uint reg)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+
+	return in_be16(prv->regs + reg);
+}
+
+/* Write NFC register */
+static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+
+	out_be16(prv->regs + reg, val);
+}
+
+/* Set bits in NFC register */
+static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits)
+{
+	nfc_write(mtd, reg, nfc_read(mtd, reg) | bits);
+}
+
+/* Clear bits in NFC register */
+static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits)
+{
+	nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits);
+}
+
+/* Invoke address cycle */
+static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr)
+{
+	nfc_write(mtd, NFC_FLASH_ADDR, addr);
+	nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS);
+	mpc5121_nfc_done(mtd);
+}
+
+/* Invoke command cycle */
+static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd)
+{
+	nfc_write(mtd, NFC_FLASH_CMD, cmd);
+	nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND);
+	mpc5121_nfc_done(mtd);
+}
+
+/* Send data from NFC buffers to NAND flash */
+static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd)
+{
+	nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
+	nfc_write(mtd, NFC_CONFIG2, NFC_INPUT);
+	mpc5121_nfc_done(mtd);
+}
+
+/* Receive data from NAND flash */
+static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd)
+{
+	nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
+	nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT);
+	mpc5121_nfc_done(mtd);
+}
+
+/* Receive ID from NAND flash */
+static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd)
+{
+	nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
+	nfc_write(mtd, NFC_CONFIG2, NFC_ID);
+	mpc5121_nfc_done(mtd);
+}
+
+/* Receive status from NAND flash */
+static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd)
+{
+	nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK);
+	nfc_write(mtd, NFC_CONFIG2, NFC_STATUS);
+	mpc5121_nfc_done(mtd);
+}
+
+/* NFC interrupt handler */
+static irqreturn_t mpc5121_nfc_irq(int irq, void *data)
+{
+	struct mtd_info *mtd = data;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+
+	nfc_set(mtd, NFC_CONFIG1, NFC_INT_MASK);
+	wake_up(&prv->irq_waitq);
+
+	return IRQ_HANDLED;
+}
+
+/* Wait for operation complete */
+static void mpc5121_nfc_done(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+	int rv;
+
+	if ((nfc_read(mtd, NFC_CONFIG2) & NFC_INT) == 0) {
+		nfc_clear(mtd, NFC_CONFIG1, NFC_INT_MASK);
+		rv = wait_event_timeout(prv->irq_waitq,
+			(nfc_read(mtd, NFC_CONFIG2) & NFC_INT), NFC_TIMEOUT);
+
+		if (!rv)
+			dev_warn(prv->dev,
+				"Timeout while waiting for interrupt.\n");
+	}
+
+	nfc_clear(mtd, NFC_CONFIG2, NFC_INT);
+}
+
+/* Do address cycle(s) */
+static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 pagemask = chip->pagemask;
+
+	if (column != -1) {
+		mpc5121_nfc_send_addr(mtd, column);
+		if (mtd->writesize > 512)
+			mpc5121_nfc_send_addr(mtd, column >> 8);
+	}
+
+	if (page != -1) {
+		do {
+			mpc5121_nfc_send_addr(mtd, page & 0xFF);
+			page >>= 8;
+			pagemask >>= 8;
+		} while (pagemask);
+	}
+}
+
+/* Control chip select signals */
+static void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+	if (chip < 0) {
+		nfc_clear(mtd, NFC_CONFIG1, NFC_CE);
+		return;
+	}
+
+	nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK);
+	nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) &
+							NFC_ACTIVE_CS_MASK);
+	nfc_set(mtd, NFC_CONFIG1, NFC_CE);
+}
+
+/* Init external chip select logic on ADS5121 board */
+static int ads5121_chipselect_init(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+	struct device_node *dn;
+
+	dn = of_find_compatible_node(NULL, NULL, "fsl,mpc5121ads-cpld");
+	if (dn) {
+		prv->csreg = of_iomap(dn, 0);
+		of_node_put(dn);
+		if (!prv->csreg)
+			return -ENOMEM;
+
+		/* CPLD Register 9 controls NAND /CE Lines */
+		prv->csreg += 9;
+		return 0;
+	}
+
+	return -EINVAL;
+}
+
+/* Control chips select signal on ADS5121 board */
+static void ads5121_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand);
+	u8 v;
+
+	v = in_8(prv->csreg);
+	v |= 0x0F;
+
+	if (chip >= 0) {
+		mpc5121_nfc_select_chip(mtd, 0);
+		v &= ~(1 << chip);
+	} else
+		mpc5121_nfc_select_chip(mtd, -1);
+
+	out_8(prv->csreg, v);
+}
+
+/* Read NAND Ready/Busy signal */
+static int mpc5121_nfc_dev_ready(struct mtd_info *mtd)
+{
+	/*
+	 * NFC handles ready/busy signal internally. Therefore, this function
+	 * always returns status as ready.
+	 */
+	return 1;
+}
+
+/* Write command to NAND flash */
+static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command,
+							int column, int page)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+
+	prv->column = (column >= 0) ? column : 0;
+	prv->spareonly = 0;
+
+	switch (command) {
+	case NAND_CMD_PAGEPROG:
+		mpc5121_nfc_send_prog_page(mtd);
+		break;
+	/*
+	 * NFC does not support sub-page reads and writes,
+	 * so emulate them using full page transfers.
+	 */
+	case NAND_CMD_READ0:
+		column = 0;
+		break;
+
+	case NAND_CMD_READ1:
+		prv->column += 256;
+		command = NAND_CMD_READ0;
+		column = 0;
+		break;
+
+	case NAND_CMD_READOOB:
+		prv->spareonly = 1;
+		command = NAND_CMD_READ0;
+		column = 0;
+		break;
+
+	case NAND_CMD_SEQIN:
+		mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page);
+		column = 0;
+		break;
+
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_READID:
+	case NAND_CMD_STATUS:
+		break;
+
+	default:
+		return;
+	}
+
+	mpc5121_nfc_send_cmd(mtd, command);
+	mpc5121_nfc_addr_cycle(mtd, column, page);
+
+	switch (command) {
+	case NAND_CMD_READ0:
+		if (mtd->writesize > 512)
+			mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART);
+		mpc5121_nfc_send_read_page(mtd);
+		break;
+
+	case NAND_CMD_READID:
+		mpc5121_nfc_send_read_id(mtd);
+		break;
+
+	case NAND_CMD_STATUS:
+		mpc5121_nfc_send_read_status(mtd);
+		if (chip->options & NAND_BUSWIDTH_16)
+			prv->column = 1;
+		else
+			prv->column = 0;
+		break;
+	}
+}
+
+/* Copy data from/to NFC spare buffers. */
+static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset,
+						u8 *buffer, uint size, int wr)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand);
+	uint o, s, sbsize, blksize;
+
+	/*
+	 * NAND spare area is available through NFC spare buffers.
+	 * The NFC divides spare area into (page_size / 512) chunks.
+	 * Each chunk is placed into separate spare memory area, using
+	 * first (spare_size / num_of_chunks) bytes of the buffer.
+	 *
+	 * For NAND device in which the spare area is not divided fully
+	 * by the number of chunks, number of used bytes in each spare
+	 * buffer is rounded down to the nearest even number of bytes,
+	 * and all remaining bytes are added to the last used spare area.
+	 *
+	 * For more information read section 26.6.10 of MPC5121e
+	 * Microcontroller Reference Manual, Rev. 3.
+	 */
+
+	/* Calculate number of valid bytes in each spare buffer */
+	sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1;
+
+	while (size) {
+		/* Calculate spare buffer number */
+		s = offset / sbsize;
+		if (s > NFC_SPARE_BUFFERS - 1)
+			s = NFC_SPARE_BUFFERS - 1;
+
+		/*
+		 * Calculate offset to requested data block in selected spare
+		 * buffer and its size.
+		 */
+		o = offset - (s * sbsize);
+		blksize = min(sbsize - o, size);
+
+		if (wr)
+			memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o,
+							buffer, blksize);
+		else
+			memcpy_fromio(buffer,
+				prv->regs + NFC_SPARE_AREA(s) + o, blksize);
+
+		buffer += blksize;
+		offset += blksize;
+		size -= blksize;
+	};
+}
+
+/* Copy data from/to NFC main and spare buffers */
+static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len,
+									int wr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+	uint c = prv->column;
+	uint l;
+
+	/* Handle spare area access */
+	if (prv->spareonly || c >= mtd->writesize) {
+		/* Calculate offset from beginning of spare area */
+		if (c >= mtd->writesize)
+			c -= mtd->writesize;
+
+		prv->column += len;
+		mpc5121_nfc_copy_spare(mtd, c, buf, len, wr);
+		return;
+	}
+
+	/*
+	 * Handle main area access - limit copy length to prevent
+	 * crossing main/spare boundary.
+	 */
+	l = min((uint)len, mtd->writesize - c);
+	prv->column += l;
+
+	if (wr)
+		memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l);
+	else
+		memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l);
+
+	/* Handle crossing main/spare boundary */
+	if (l != len) {
+		buf += l;
+		len -= l;
+		mpc5121_nfc_buf_copy(mtd, buf, len, wr);
+	}
+}
+
+/* Read data from NFC buffers */
+static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	mpc5121_nfc_buf_copy(mtd, buf, len, 0);
+}
+
+/* Write data to NFC buffers */
+static void mpc5121_nfc_write_buf(struct mtd_info *mtd,
+						const u_char *buf, int len)
+{
+	mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1);
+}
+
+/* Read byte from NFC buffers */
+static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd)
+{
+	u8 tmp;
+
+	mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp));
+
+	return tmp;
+}
+
+/* Read word from NFC buffers */
+static u16 mpc5121_nfc_read_word(struct mtd_info *mtd)
+{
+	u16 tmp;
+
+	mpc5121_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
+
+	return tmp;
+}
+
+/*
+ * Read NFC configuration from Reset Config Word
+ *
+ * NFC is configured during reset in basis of information stored
+ * in Reset Config Word. There is no other way to set NAND block
+ * size, spare size and bus width.
+ */
+static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+	struct mpc512x_reset_module *rm;
+	struct device_node *rmnode;
+	uint rcw_pagesize = 0;
+	uint rcw_sparesize = 0;
+	uint rcw_width;
+	uint rcwh;
+	uint romloc, ps;
+	int ret = 0;
+
+	rmnode = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-reset");
+	if (!rmnode) {
+		dev_err(prv->dev, "Missing 'fsl,mpc5121-reset' "
+					"node in device tree!\n");
+		return -ENODEV;
+	}
+
+	rm = of_iomap(rmnode, 0);
+	if (!rm) {
+		dev_err(prv->dev, "Error mapping reset module node!\n");
+		ret = -EBUSY;
+		goto out;
+	}
+
+	rcwh = in_be32(&rm->rcwhr);
+
+	/* Bit 6: NFC bus width */
+	rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1;
+
+	/* Bit 7: NFC Page/Spare size */
+	ps = (rcwh >> 7) & 0x1;
+
+	/* Bits [22:21]: ROM Location */
+	romloc = (rcwh >> 21) & 0x3;
+
+	/* Decode RCW bits */
+	switch ((ps << 2) | romloc) {
+	case 0x00:
+	case 0x01:
+		rcw_pagesize = 512;
+		rcw_sparesize = 16;
+		break;
+	case 0x02:
+	case 0x03:
+		rcw_pagesize = 4096;
+		rcw_sparesize = 128;
+		break;
+	case 0x04:
+	case 0x05:
+		rcw_pagesize = 2048;
+		rcw_sparesize = 64;
+		break;
+	case 0x06:
+	case 0x07:
+		rcw_pagesize = 4096;
+		rcw_sparesize = 218;
+		break;
+	}
+
+	mtd->writesize = rcw_pagesize;
+	mtd->oobsize = rcw_sparesize;
+	if (rcw_width == 2)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	dev_notice(prv->dev, "Configured for "
+				"%u-bit NAND, page size %u "
+				"with %u spare.\n",
+				rcw_width * 8, rcw_pagesize,
+				rcw_sparesize);
+	iounmap(rm);
+out:
+	of_node_put(rmnode);
+	return ret;
+}
+
+/* Free driver resources */
+static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip);
+
+	if (prv->clk)
+		clk_disable_unprepare(prv->clk);
+
+	if (prv->csreg)
+		iounmap(prv->csreg);
+}
+
+static int mpc5121_nfc_probe(struct platform_device *op)
+{
+	struct device_node *dn = op->dev.of_node;
+	struct clk *clk;
+	struct device *dev = &op->dev;
+	struct mpc5121_nfc_prv *prv;
+	struct resource res;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	unsigned long regs_paddr, regs_size;
+	const __be32 *chips_no;
+	int resettime = 0;
+	int retval = 0;
+	int rev, len;
+
+	/*
+	 * Check SoC revision. This driver supports only NFC
+	 * in MPC5121 revision 2 and MPC5123 revision 3.
+	 */
+	rev = (mfspr(SPRN_SVR) >> 4) & 0xF;
+	if ((rev != 2) && (rev != 3)) {
+		dev_err(dev, "SoC revision %u is not supported!\n", rev);
+		return -ENXIO;
+	}
+
+	prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL);
+	if (!prv)
+		return -ENOMEM;
+
+	chip = &prv->chip;
+	mtd = nand_to_mtd(chip);
+
+	mtd->dev.parent = dev;
+	nand_set_controller_data(chip, prv);
+	nand_set_flash_node(chip, dn);
+	prv->dev = dev;
+
+	/* Read NFC configuration from Reset Config Word */
+	retval = mpc5121_nfc_read_hw_config(mtd);
+	if (retval) {
+		dev_err(dev, "Unable to read NFC config!\n");
+		return retval;
+	}
+
+	prv->irq = irq_of_parse_and_map(dn, 0);
+	if (prv->irq == NO_IRQ) {
+		dev_err(dev, "Error mapping IRQ!\n");
+		return -EINVAL;
+	}
+
+	retval = of_address_to_resource(dn, 0, &res);
+	if (retval) {
+		dev_err(dev, "Error parsing memory region!\n");
+		return retval;
+	}
+
+	chips_no = of_get_property(dn, "chips", &len);
+	if (!chips_no || len != sizeof(*chips_no)) {
+		dev_err(dev, "Invalid/missing 'chips' property!\n");
+		return -EINVAL;
+	}
+
+	regs_paddr = res.start;
+	regs_size = resource_size(&res);
+
+	if (!devm_request_mem_region(dev, regs_paddr, regs_size, DRV_NAME)) {
+		dev_err(dev, "Error requesting memory region!\n");
+		return -EBUSY;
+	}
+
+	prv->regs = devm_ioremap(dev, regs_paddr, regs_size);
+	if (!prv->regs) {
+		dev_err(dev, "Error mapping memory region!\n");
+		return -ENOMEM;
+	}
+
+	mtd->name = "MPC5121 NAND";
+	chip->dev_ready = mpc5121_nfc_dev_ready;
+	chip->cmdfunc = mpc5121_nfc_command;
+	chip->read_byte = mpc5121_nfc_read_byte;
+	chip->read_word = mpc5121_nfc_read_word;
+	chip->read_buf = mpc5121_nfc_read_buf;
+	chip->write_buf = mpc5121_nfc_write_buf;
+	chip->select_chip = mpc5121_nfc_select_chip;
+	chip->set_features	= nand_get_set_features_notsupp;
+	chip->get_features	= nand_get_set_features_notsupp;
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+	chip->ecc.mode = NAND_ECC_SOFT;
+	chip->ecc.algo = NAND_ECC_HAMMING;
+
+	/* Support external chip-select logic on ADS5121 board */
+	if (of_machine_is_compatible("fsl,mpc5121ads")) {
+		retval = ads5121_chipselect_init(mtd);
+		if (retval) {
+			dev_err(dev, "Chipselect init error!\n");
+			return retval;
+		}
+
+		chip->select_chip = ads5121_select_chip;
+	}
+
+	/* Enable NFC clock */
+	clk = devm_clk_get(dev, "ipg");
+	if (IS_ERR(clk)) {
+		dev_err(dev, "Unable to acquire NFC clock!\n");
+		retval = PTR_ERR(clk);
+		goto error;
+	}
+	retval = clk_prepare_enable(clk);
+	if (retval) {
+		dev_err(dev, "Unable to enable NFC clock!\n");
+		goto error;
+	}
+	prv->clk = clk;
+
+	/* Reset NAND Flash controller */
+	nfc_set(mtd, NFC_CONFIG1, NFC_RESET);
+	while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) {
+		if (resettime++ >= NFC_RESET_TIMEOUT) {
+			dev_err(dev, "Timeout while resetting NFC!\n");
+			retval = -EINVAL;
+			goto error;
+		}
+
+		udelay(1);
+	}
+
+	/* Enable write to NFC memory */
+	nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED);
+
+	/* Enable write to all NAND pages */
+	nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000);
+	nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF);
+	nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK);
+
+	/*
+	 * Setup NFC:
+	 *	- Big Endian transfers,
+	 *	- Interrupt after full page read/write.
+	 */
+	nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK |
+							NFC_FULL_PAGE_INT);
+
+	/* Set spare area size */
+	nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1);
+
+	init_waitqueue_head(&prv->irq_waitq);
+	retval = devm_request_irq(dev, prv->irq, &mpc5121_nfc_irq, 0, DRV_NAME,
+									mtd);
+	if (retval) {
+		dev_err(dev, "Error requesting IRQ!\n");
+		goto error;
+	}
+
+	/* Detect NAND chips */
+	retval = nand_scan(mtd, be32_to_cpup(chips_no));
+	if (retval) {
+		dev_err(dev, "NAND Flash not found !\n");
+		goto error;
+	}
+
+	/* Set erase block size */
+	switch (mtd->erasesize / mtd->writesize) {
+	case 32:
+		nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32);
+		break;
+
+	case 64:
+		nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64);
+		break;
+
+	case 128:
+		nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128);
+		break;
+
+	case 256:
+		nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256);
+		break;
+
+	default:
+		dev_err(dev, "Unsupported NAND flash!\n");
+		retval = -ENXIO;
+		goto error;
+	}
+
+	dev_set_drvdata(dev, mtd);
+
+	/* Register device in MTD */
+	retval = mtd_device_register(mtd, NULL, 0);
+	if (retval) {
+		dev_err(dev, "Error adding MTD device!\n");
+		goto error;
+	}
+
+	return 0;
+error:
+	mpc5121_nfc_free(dev, mtd);
+	return retval;
+}
+
+static int mpc5121_nfc_remove(struct platform_device *op)
+{
+	struct device *dev = &op->dev;
+	struct mtd_info *mtd = dev_get_drvdata(dev);
+
+	nand_release(mtd);
+	mpc5121_nfc_free(dev, mtd);
+
+	return 0;
+}
+
+static const struct of_device_id mpc5121_nfc_match[] = {
+	{ .compatible = "fsl,mpc5121-nfc", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, mpc5121_nfc_match);
+
+static struct platform_driver mpc5121_nfc_driver = {
+	.probe		= mpc5121_nfc_probe,
+	.remove		= mpc5121_nfc_remove,
+	.driver		= {
+		.name = DRV_NAME,
+		.of_match_table = mpc5121_nfc_match,
+	},
+};
+
+module_platform_driver(mpc5121_nfc_driver);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("MPC5121 NAND MTD driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/mtk_ecc.c b/drivers/mtd/nand/raw/mtk_ecc.c
new file mode 100644
index 0000000..6432bd7
--- /dev/null
+++ b/drivers/mtd/nand/raw/mtk_ecc.c
@@ -0,0 +1,603 @@
+/*
+ * MTK ECC controller driver.
+ * Copyright (C) 2016  MediaTek Inc.
+ * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
+ *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/clk.h>
+#include <linux/module.h>
+#include <linux/iopoll.h>
+#include <linux/of.h>
+#include <linux/of_platform.h>
+#include <linux/mutex.h>
+
+#include "mtk_ecc.h"
+
+#define ECC_IDLE_MASK		BIT(0)
+#define ECC_IRQ_EN		BIT(0)
+#define ECC_PG_IRQ_SEL		BIT(1)
+#define ECC_OP_ENABLE		(1)
+#define ECC_OP_DISABLE		(0)
+
+#define ECC_ENCCON		(0x00)
+#define ECC_ENCCNFG		(0x04)
+#define		ECC_MS_SHIFT		(16)
+#define ECC_ENCDIADDR		(0x08)
+#define ECC_ENCIDLE		(0x0C)
+#define ECC_DECCON		(0x100)
+#define ECC_DECCNFG		(0x104)
+#define		DEC_EMPTY_EN		BIT(31)
+#define		DEC_CNFG_CORRECT	(0x3 << 12)
+#define ECC_DECIDLE		(0x10C)
+#define ECC_DECENUM0		(0x114)
+
+#define ECC_TIMEOUT		(500000)
+
+#define ECC_IDLE_REG(op)	((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE)
+#define ECC_CTL_REG(op)		((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON)
+
+struct mtk_ecc_caps {
+	u32 err_mask;
+	const u8 *ecc_strength;
+	const u32 *ecc_regs;
+	u8 num_ecc_strength;
+	u8 ecc_mode_shift;
+	u32 parity_bits;
+	int pg_irq_sel;
+};
+
+struct mtk_ecc {
+	struct device *dev;
+	const struct mtk_ecc_caps *caps;
+	void __iomem *regs;
+	struct clk *clk;
+
+	struct completion done;
+	struct mutex lock;
+	u32 sectors;
+
+	u8 *eccdata;
+};
+
+/* ecc strength that each IP supports */
+static const u8 ecc_strength_mt2701[] = {
+	4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+	40, 44, 48, 52, 56, 60
+};
+
+static const u8 ecc_strength_mt2712[] = {
+	4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36,
+	40, 44, 48, 52, 56, 60, 68, 72, 80
+};
+
+static const u8 ecc_strength_mt7622[] = {
+	4, 6, 8, 10, 12, 14, 16
+};
+
+enum mtk_ecc_regs {
+	ECC_ENCPAR00,
+	ECC_ENCIRQ_EN,
+	ECC_ENCIRQ_STA,
+	ECC_DECDONE,
+	ECC_DECIRQ_EN,
+	ECC_DECIRQ_STA,
+};
+
+static int mt2701_ecc_regs[] = {
+	[ECC_ENCPAR00] =        0x10,
+	[ECC_ENCIRQ_EN] =       0x80,
+	[ECC_ENCIRQ_STA] =      0x84,
+	[ECC_DECDONE] =         0x124,
+	[ECC_DECIRQ_EN] =       0x200,
+	[ECC_DECIRQ_STA] =      0x204,
+};
+
+static int mt2712_ecc_regs[] = {
+	[ECC_ENCPAR00] =        0x300,
+	[ECC_ENCIRQ_EN] =       0x80,
+	[ECC_ENCIRQ_STA] =      0x84,
+	[ECC_DECDONE] =         0x124,
+	[ECC_DECIRQ_EN] =       0x200,
+	[ECC_DECIRQ_STA] =      0x204,
+};
+
+static int mt7622_ecc_regs[] = {
+	[ECC_ENCPAR00] =        0x10,
+	[ECC_ENCIRQ_EN] =       0x30,
+	[ECC_ENCIRQ_STA] =      0x34,
+	[ECC_DECDONE] =         0x11c,
+	[ECC_DECIRQ_EN] =       0x140,
+	[ECC_DECIRQ_STA] =      0x144,
+};
+
+static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc,
+				     enum mtk_ecc_operation op)
+{
+	struct device *dev = ecc->dev;
+	u32 val;
+	int ret;
+
+	ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val,
+					val & ECC_IDLE_MASK,
+					10, ECC_TIMEOUT);
+	if (ret)
+		dev_warn(dev, "%s NOT idle\n",
+			 op == ECC_ENCODE ? "encoder" : "decoder");
+}
+
+static irqreturn_t mtk_ecc_irq(int irq, void *id)
+{
+	struct mtk_ecc *ecc = id;
+	u32 dec, enc;
+
+	dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA])
+		    & ECC_IRQ_EN;
+	if (dec) {
+		dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
+		if (dec & ecc->sectors) {
+			/*
+			 * Clear decode IRQ status once again to ensure that
+			 * there will be no extra IRQ.
+			 */
+			readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]);
+			ecc->sectors = 0;
+			complete(&ecc->done);
+		} else {
+			return IRQ_HANDLED;
+		}
+	} else {
+		enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA])
+		      & ECC_IRQ_EN;
+		if (enc)
+			complete(&ecc->done);
+		else
+			return IRQ_NONE;
+	}
+
+	return IRQ_HANDLED;
+}
+
+static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+{
+	u32 ecc_bit, dec_sz, enc_sz;
+	u32 reg, i;
+
+	for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+		if (ecc->caps->ecc_strength[i] == config->strength)
+			break;
+	}
+
+	if (i == ecc->caps->num_ecc_strength) {
+		dev_err(ecc->dev, "invalid ecc strength %d\n",
+			config->strength);
+		return -EINVAL;
+	}
+
+	ecc_bit = i;
+
+	if (config->op == ECC_ENCODE) {
+		/* configure ECC encoder (in bits) */
+		enc_sz = config->len << 3;
+
+		reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
+		reg |= (enc_sz << ECC_MS_SHIFT);
+		writel(reg, ecc->regs + ECC_ENCCNFG);
+
+		if (config->mode != ECC_NFI_MODE)
+			writel(lower_32_bits(config->addr),
+			       ecc->regs + ECC_ENCDIADDR);
+
+	} else {
+		/* configure ECC decoder (in bits) */
+		dec_sz = (config->len << 3) +
+			 config->strength * ecc->caps->parity_bits;
+
+		reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift);
+		reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT;
+		reg |= DEC_EMPTY_EN;
+		writel(reg, ecc->regs + ECC_DECCNFG);
+
+		if (config->sectors)
+			ecc->sectors = 1 << (config->sectors - 1);
+	}
+
+	return 0;
+}
+
+void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats,
+		       int sectors)
+{
+	u32 offset, i, err;
+	u32 bitflips = 0;
+
+	stats->corrected = 0;
+	stats->failed = 0;
+
+	for (i = 0; i < sectors; i++) {
+		offset = (i >> 2) << 2;
+		err = readl(ecc->regs + ECC_DECENUM0 + offset);
+		err = err >> ((i % 4) * 8);
+		err &= ecc->caps->err_mask;
+		if (err == ecc->caps->err_mask) {
+			/* uncorrectable errors */
+			stats->failed++;
+			continue;
+		}
+
+		stats->corrected += err;
+		bitflips = max_t(u32, bitflips, err);
+	}
+
+	stats->bitflips = bitflips;
+}
+EXPORT_SYMBOL(mtk_ecc_get_stats);
+
+void mtk_ecc_release(struct mtk_ecc *ecc)
+{
+	clk_disable_unprepare(ecc->clk);
+	put_device(ecc->dev);
+}
+EXPORT_SYMBOL(mtk_ecc_release);
+
+static void mtk_ecc_hw_init(struct mtk_ecc *ecc)
+{
+	mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+	writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON);
+
+	mtk_ecc_wait_idle(ecc, ECC_DECODE);
+	writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON);
+}
+
+static struct mtk_ecc *mtk_ecc_get(struct device_node *np)
+{
+	struct platform_device *pdev;
+	struct mtk_ecc *ecc;
+
+	pdev = of_find_device_by_node(np);
+	if (!pdev || !platform_get_drvdata(pdev))
+		return ERR_PTR(-EPROBE_DEFER);
+
+	get_device(&pdev->dev);
+	ecc = platform_get_drvdata(pdev);
+	clk_prepare_enable(ecc->clk);
+	mtk_ecc_hw_init(ecc);
+
+	return ecc;
+}
+
+struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node)
+{
+	struct mtk_ecc *ecc = NULL;
+	struct device_node *np;
+
+	np = of_parse_phandle(of_node, "ecc-engine", 0);
+	if (np) {
+		ecc = mtk_ecc_get(np);
+		of_node_put(np);
+	}
+
+	return ecc;
+}
+EXPORT_SYMBOL(of_mtk_ecc_get);
+
+int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config)
+{
+	enum mtk_ecc_operation op = config->op;
+	u16 reg_val;
+	int ret;
+
+	ret = mutex_lock_interruptible(&ecc->lock);
+	if (ret) {
+		dev_err(ecc->dev, "interrupted when attempting to lock\n");
+		return ret;
+	}
+
+	mtk_ecc_wait_idle(ecc, op);
+
+	ret = mtk_ecc_config(ecc, config);
+	if (ret) {
+		mutex_unlock(&ecc->lock);
+		return ret;
+	}
+
+	if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) {
+		init_completion(&ecc->done);
+		reg_val = ECC_IRQ_EN;
+		/*
+		 * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it
+		 * means this chip can only generate one ecc irq during page
+		 * read / write. If is 0, generate one ecc irq each ecc step.
+		 */
+		if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE)
+			reg_val |= ECC_PG_IRQ_SEL;
+		if (op == ECC_ENCODE)
+			writew(reg_val, ecc->regs +
+			       ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
+		else
+			writew(reg_val, ecc->regs +
+			       ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
+	}
+
+	writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op));
+
+	return 0;
+}
+EXPORT_SYMBOL(mtk_ecc_enable);
+
+void mtk_ecc_disable(struct mtk_ecc *ecc)
+{
+	enum mtk_ecc_operation op = ECC_ENCODE;
+
+	/* find out the running operation */
+	if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE)
+		op = ECC_DECODE;
+
+	/* disable it */
+	mtk_ecc_wait_idle(ecc, op);
+	if (op == ECC_DECODE) {
+		/*
+		 * Clear decode IRQ status in case there is a timeout to wait
+		 * decode IRQ.
+		 */
+		readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]);
+		writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]);
+	} else {
+		writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]);
+	}
+
+	writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op));
+
+	mutex_unlock(&ecc->lock);
+}
+EXPORT_SYMBOL(mtk_ecc_disable);
+
+int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op)
+{
+	int ret;
+
+	ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500));
+	if (!ret) {
+		dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n",
+			(op == ECC_ENCODE) ? "encoder" : "decoder");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(mtk_ecc_wait_done);
+
+int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config,
+		   u8 *data, u32 bytes)
+{
+	dma_addr_t addr;
+	u32 len;
+	int ret;
+
+	addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE);
+	ret = dma_mapping_error(ecc->dev, addr);
+	if (ret) {
+		dev_err(ecc->dev, "dma mapping error\n");
+		return -EINVAL;
+	}
+
+	config->op = ECC_ENCODE;
+	config->addr = addr;
+	ret = mtk_ecc_enable(ecc, config);
+	if (ret) {
+		dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+		return ret;
+	}
+
+	ret = mtk_ecc_wait_done(ecc, ECC_ENCODE);
+	if (ret)
+		goto timeout;
+
+	mtk_ecc_wait_idle(ecc, ECC_ENCODE);
+
+	/* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */
+	len = (config->strength * ecc->caps->parity_bits + 7) >> 3;
+
+	/* write the parity bytes generated by the ECC back to temp buffer */
+	__ioread32_copy(ecc->eccdata,
+			ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00],
+			round_up(len, 4));
+
+	/* copy into possibly unaligned OOB region with actual length */
+	memcpy(data + bytes, ecc->eccdata, len);
+timeout:
+
+	dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE);
+	mtk_ecc_disable(ecc);
+
+	return ret;
+}
+EXPORT_SYMBOL(mtk_ecc_encode);
+
+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p)
+{
+	const u8 *ecc_strength = ecc->caps->ecc_strength;
+	int i;
+
+	for (i = 0; i < ecc->caps->num_ecc_strength; i++) {
+		if (*p <= ecc_strength[i]) {
+			if (!i)
+				*p = ecc_strength[i];
+			else if (*p != ecc_strength[i])
+				*p = ecc_strength[i - 1];
+			return;
+		}
+	}
+
+	*p = ecc_strength[ecc->caps->num_ecc_strength - 1];
+}
+EXPORT_SYMBOL(mtk_ecc_adjust_strength);
+
+unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc)
+{
+	return ecc->caps->parity_bits;
+}
+EXPORT_SYMBOL(mtk_ecc_get_parity_bits);
+
+static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = {
+	.err_mask = 0x3f,
+	.ecc_strength = ecc_strength_mt2701,
+	.ecc_regs = mt2701_ecc_regs,
+	.num_ecc_strength = 20,
+	.ecc_mode_shift = 5,
+	.parity_bits = 14,
+	.pg_irq_sel = 0,
+};
+
+static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = {
+	.err_mask = 0x7f,
+	.ecc_strength = ecc_strength_mt2712,
+	.ecc_regs = mt2712_ecc_regs,
+	.num_ecc_strength = 23,
+	.ecc_mode_shift = 5,
+	.parity_bits = 14,
+	.pg_irq_sel = 1,
+};
+
+static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = {
+	.err_mask = 0x3f,
+	.ecc_strength = ecc_strength_mt7622,
+	.ecc_regs = mt7622_ecc_regs,
+	.num_ecc_strength = 7,
+	.ecc_mode_shift = 4,
+	.parity_bits = 13,
+	.pg_irq_sel = 0,
+};
+
+static const struct of_device_id mtk_ecc_dt_match[] = {
+	{
+		.compatible = "mediatek,mt2701-ecc",
+		.data = &mtk_ecc_caps_mt2701,
+	}, {
+		.compatible = "mediatek,mt2712-ecc",
+		.data = &mtk_ecc_caps_mt2712,
+	}, {
+		.compatible = "mediatek,mt7622-ecc",
+		.data = &mtk_ecc_caps_mt7622,
+	},
+	{},
+};
+
+static int mtk_ecc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct mtk_ecc *ecc;
+	struct resource *res;
+	u32 max_eccdata_size;
+	int irq, ret;
+
+	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
+	if (!ecc)
+		return -ENOMEM;
+
+	ecc->caps = of_device_get_match_data(dev);
+
+	max_eccdata_size = ecc->caps->num_ecc_strength - 1;
+	max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size];
+	max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3;
+	max_eccdata_size = round_up(max_eccdata_size, 4);
+	ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL);
+	if (!ecc->eccdata)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	ecc->regs = devm_ioremap_resource(dev, res);
+	if (IS_ERR(ecc->regs)) {
+		dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs));
+		return PTR_ERR(ecc->regs);
+	}
+
+	ecc->clk = devm_clk_get(dev, NULL);
+	if (IS_ERR(ecc->clk)) {
+		dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk));
+		return PTR_ERR(ecc->clk);
+	}
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "failed to get irq: %d\n", irq);
+		return irq;
+	}
+
+	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+	if (ret) {
+		dev_err(dev, "failed to set DMA mask\n");
+		return ret;
+	}
+
+	ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc);
+	if (ret) {
+		dev_err(dev, "failed to request irq\n");
+		return -EINVAL;
+	}
+
+	ecc->dev = dev;
+	mutex_init(&ecc->lock);
+	platform_set_drvdata(pdev, ecc);
+	dev_info(dev, "probed\n");
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mtk_ecc_suspend(struct device *dev)
+{
+	struct mtk_ecc *ecc = dev_get_drvdata(dev);
+
+	clk_disable_unprepare(ecc->clk);
+
+	return 0;
+}
+
+static int mtk_ecc_resume(struct device *dev)
+{
+	struct mtk_ecc *ecc = dev_get_drvdata(dev);
+	int ret;
+
+	ret = clk_prepare_enable(ecc->clk);
+	if (ret) {
+		dev_err(dev, "failed to enable clk\n");
+		return ret;
+	}
+
+	return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume);
+#endif
+
+MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match);
+
+static struct platform_driver mtk_ecc_driver = {
+	.probe  = mtk_ecc_probe,
+	.driver = {
+		.name  = "mtk-ecc",
+		.of_match_table = of_match_ptr(mtk_ecc_dt_match),
+#ifdef CONFIG_PM_SLEEP
+		.pm = &mtk_ecc_pm_ops,
+#endif
+	},
+};
+
+module_platform_driver(mtk_ecc_driver);
+
+MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
+MODULE_DESCRIPTION("MTK Nand ECC Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/mtk_ecc.h b/drivers/mtd/nand/raw/mtk_ecc.h
new file mode 100644
index 0000000..a455df0
--- /dev/null
+++ b/drivers/mtd/nand/raw/mtk_ecc.h
@@ -0,0 +1,49 @@
+/*
+ * MTK SDG1 ECC controller
+ *
+ * Copyright (c) 2016 Mediatek
+ * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
+ *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 as published
+ * by the Free Software Foundation.
+ */
+
+#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__
+#define __DRIVERS_MTD_NAND_MTK_ECC_H__
+
+#include <linux/types.h>
+
+enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1};
+enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE};
+
+struct device_node;
+struct mtk_ecc;
+
+struct mtk_ecc_stats {
+	u32 corrected;
+	u32 bitflips;
+	u32 failed;
+};
+
+struct mtk_ecc_config {
+	enum mtk_ecc_operation op;
+	enum mtk_ecc_mode mode;
+	dma_addr_t addr;
+	u32 strength;
+	u32 sectors;
+	u32 len;
+};
+
+int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32);
+void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int);
+int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation);
+int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *);
+void mtk_ecc_disable(struct mtk_ecc *);
+void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p);
+unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc);
+
+struct mtk_ecc *of_mtk_ecc_get(struct device_node *);
+void mtk_ecc_release(struct mtk_ecc *);
+
+#endif
diff --git a/drivers/mtd/nand/raw/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c
new file mode 100644
index 0000000..57b5ed1
--- /dev/null
+++ b/drivers/mtd/nand/raw/mtk_nand.c
@@ -0,0 +1,1604 @@
+/*
+ * MTK NAND Flash controller driver.
+ * Copyright (C) 2016 MediaTek Inc.
+ * Authors:	Xiaolei Li		<xiaolei.li@mediatek.com>
+ *		Jorge Ramirez-Ortiz	<jorge.ramirez-ortiz@linaro.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/clk.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/mtd.h>
+#include <linux/module.h>
+#include <linux/iopoll.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include "mtk_ecc.h"
+
+/* NAND controller register definition */
+#define NFI_CNFG		(0x00)
+#define		CNFG_AHB		BIT(0)
+#define		CNFG_READ_EN		BIT(1)
+#define		CNFG_DMA_BURST_EN	BIT(2)
+#define		CNFG_BYTE_RW		BIT(6)
+#define		CNFG_HW_ECC_EN		BIT(8)
+#define		CNFG_AUTO_FMT_EN	BIT(9)
+#define		CNFG_OP_CUST		(6 << 12)
+#define NFI_PAGEFMT		(0x04)
+#define		PAGEFMT_FDM_ECC_SHIFT	(12)
+#define		PAGEFMT_FDM_SHIFT	(8)
+#define		PAGEFMT_SEC_SEL_512	BIT(2)
+#define		PAGEFMT_512_2K		(0)
+#define		PAGEFMT_2K_4K		(1)
+#define		PAGEFMT_4K_8K		(2)
+#define		PAGEFMT_8K_16K		(3)
+/* NFI control */
+#define NFI_CON			(0x08)
+#define		CON_FIFO_FLUSH		BIT(0)
+#define		CON_NFI_RST		BIT(1)
+#define		CON_BRD			BIT(8)  /* burst  read */
+#define		CON_BWR			BIT(9)	/* burst  write */
+#define		CON_SEC_SHIFT		(12)
+/* Timming control register */
+#define NFI_ACCCON		(0x0C)
+#define NFI_INTR_EN		(0x10)
+#define		INTR_AHB_DONE_EN	BIT(6)
+#define NFI_INTR_STA		(0x14)
+#define NFI_CMD			(0x20)
+#define NFI_ADDRNOB		(0x30)
+#define NFI_COLADDR		(0x34)
+#define NFI_ROWADDR		(0x38)
+#define NFI_STRDATA		(0x40)
+#define		STAR_EN			(1)
+#define		STAR_DE			(0)
+#define NFI_CNRNB		(0x44)
+#define NFI_DATAW		(0x50)
+#define NFI_DATAR		(0x54)
+#define NFI_PIO_DIRDY		(0x58)
+#define		PIO_DI_RDY		(0x01)
+#define NFI_STA			(0x60)
+#define		STA_CMD			BIT(0)
+#define		STA_ADDR		BIT(1)
+#define		STA_BUSY		BIT(8)
+#define		STA_EMP_PAGE		BIT(12)
+#define		NFI_FSM_CUSTDATA	(0xe << 16)
+#define		NFI_FSM_MASK		(0xf << 16)
+#define NFI_ADDRCNTR		(0x70)
+#define		CNTR_MASK		GENMASK(16, 12)
+#define		ADDRCNTR_SEC_SHIFT	(12)
+#define		ADDRCNTR_SEC(val) \
+		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
+#define NFI_STRADDR		(0x80)
+#define NFI_BYTELEN		(0x84)
+#define NFI_CSEL		(0x90)
+#define NFI_FDML(x)		(0xA0 + (x) * sizeof(u32) * 2)
+#define NFI_FDMM(x)		(0xA4 + (x) * sizeof(u32) * 2)
+#define NFI_FDM_MAX_SIZE	(8)
+#define NFI_FDM_MIN_SIZE	(1)
+#define NFI_MASTER_STA		(0x224)
+#define		MASTER_STA_MASK		(0x0FFF)
+#define NFI_EMPTY_THRESH	(0x23C)
+
+#define MTK_NAME		"mtk-nand"
+#define KB(x)			((x) * 1024UL)
+#define MB(x)			(KB(x) * 1024UL)
+
+#define MTK_TIMEOUT		(500000)
+#define MTK_RESET_TIMEOUT	(1000000)
+#define MTK_NAND_MAX_NSELS	(2)
+#define MTK_NFC_MIN_SPARE	(16)
+#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
+	((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
+	(tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
+
+struct mtk_nfc_caps {
+	const u8 *spare_size;
+	u8 num_spare_size;
+	u8 pageformat_spare_shift;
+	u8 nfi_clk_div;
+	u8 max_sector;
+	u32 max_sector_size;
+};
+
+struct mtk_nfc_bad_mark_ctl {
+	void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
+	u32 sec;
+	u32 pos;
+};
+
+/*
+ * FDM: region used to store free OOB data
+ */
+struct mtk_nfc_fdm {
+	u32 reg_size;
+	u32 ecc_size;
+};
+
+struct mtk_nfc_nand_chip {
+	struct list_head node;
+	struct nand_chip nand;
+
+	struct mtk_nfc_bad_mark_ctl bad_mark;
+	struct mtk_nfc_fdm fdm;
+	u32 spare_per_sector;
+
+	int nsels;
+	u8 sels[0];
+	/* nothing after this field */
+};
+
+struct mtk_nfc_clk {
+	struct clk *nfi_clk;
+	struct clk *pad_clk;
+};
+
+struct mtk_nfc {
+	struct nand_controller controller;
+	struct mtk_ecc_config ecc_cfg;
+	struct mtk_nfc_clk clk;
+	struct mtk_ecc *ecc;
+
+	struct device *dev;
+	const struct mtk_nfc_caps *caps;
+	void __iomem *regs;
+
+	struct completion done;
+	struct list_head chips;
+
+	u8 *buffer;
+};
+
+/*
+ * supported spare size of each IP.
+ * order should be the same with the spare size bitfiled defination of
+ * register NFI_PAGEFMT.
+ */
+static const u8 spare_size_mt2701[] = {
+	16, 26, 27, 28, 32, 36, 40, 44,	48, 49, 50, 51, 52, 62, 63, 64
+};
+
+static const u8 spare_size_mt2712[] = {
+	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
+	74
+};
+
+static const u8 spare_size_mt7622[] = {
+	16, 26, 27, 28
+};
+
+static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
+{
+	return container_of(nand, struct mtk_nfc_nand_chip, nand);
+}
+
+static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+	return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *oob_ptr(struct nand_chip *chip, int i)
+{
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	u8 *poi;
+
+	/* map the sector's FDM data to free oob:
+	 * the beginning of the oob area stores the FDM data of bad mark sectors
+	 */
+
+	if (i < mtk_nand->bad_mark.sec)
+		poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
+	else if (i == mtk_nand->bad_mark.sec)
+		poi = chip->oob_poi;
+	else
+		poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
+
+	return poi;
+}
+
+static inline int mtk_data_len(struct nand_chip *chip)
+{
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+
+	return chip->ecc.size + mtk_nand->spare_per_sector;
+}
+
+static inline u8 *mtk_data_ptr(struct nand_chip *chip,  int i)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+
+	return nfc->buffer + i * mtk_data_len(chip);
+}
+
+static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+
+	return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
+}
+
+static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
+{
+	writel(val, nfc->regs + reg);
+}
+
+static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
+{
+	writew(val, nfc->regs + reg);
+}
+
+static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
+{
+	writeb(val, nfc->regs + reg);
+}
+
+static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
+{
+	return readl_relaxed(nfc->regs + reg);
+}
+
+static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
+{
+	return readw_relaxed(nfc->regs + reg);
+}
+
+static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
+{
+	return readb_relaxed(nfc->regs + reg);
+}
+
+static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
+{
+	struct device *dev = nfc->dev;
+	u32 val;
+	int ret;
+
+	/* reset all registers and force the NFI master to terminate */
+	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
+
+	/* wait for the master to finish the last transaction */
+	ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
+				 !(val & MASTER_STA_MASK), 50,
+				 MTK_RESET_TIMEOUT);
+	if (ret)
+		dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
+			 NFI_MASTER_STA, val);
+
+	/* ensure any status register affected by the NFI master is reset */
+	nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
+	nfi_writew(nfc, STAR_DE, NFI_STRDATA);
+}
+
+static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
+{
+	struct device *dev = nfc->dev;
+	u32 val;
+	int ret;
+
+	nfi_writel(nfc, command, NFI_CMD);
+
+	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
+					!(val & STA_CMD), 10,  MTK_TIMEOUT);
+	if (ret) {
+		dev_warn(dev, "nfi core timed out entering command mode\n");
+		return -EIO;
+	}
+
+	return 0;
+}
+
+static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
+{
+	struct device *dev = nfc->dev;
+	u32 val;
+	int ret;
+
+	nfi_writel(nfc, addr, NFI_COLADDR);
+	nfi_writel(nfc, 0, NFI_ROWADDR);
+	nfi_writew(nfc, 1, NFI_ADDRNOB);
+
+	ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
+					!(val & STA_ADDR), 10, MTK_TIMEOUT);
+	if (ret) {
+		dev_warn(dev, "nfi core timed out entering address mode\n");
+		return -EIO;
+	}
+
+	return 0;
+}
+
+static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	u32 fmt, spare, i;
+
+	if (!mtd->writesize)
+		return 0;
+
+	spare = mtk_nand->spare_per_sector;
+
+	switch (mtd->writesize) {
+	case 512:
+		fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
+		break;
+	case KB(2):
+		if (chip->ecc.size == 512)
+			fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
+		else
+			fmt = PAGEFMT_512_2K;
+		break;
+	case KB(4):
+		if (chip->ecc.size == 512)
+			fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
+		else
+			fmt = PAGEFMT_2K_4K;
+		break;
+	case KB(8):
+		if (chip->ecc.size == 512)
+			fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
+		else
+			fmt = PAGEFMT_4K_8K;
+		break;
+	case KB(16):
+		fmt = PAGEFMT_8K_16K;
+		break;
+	default:
+		dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
+		return -EINVAL;
+	}
+
+	/*
+	 * the hardware will double the value for this eccsize, so we need to
+	 * halve it
+	 */
+	if (chip->ecc.size == 1024)
+		spare >>= 1;
+
+	for (i = 0; i < nfc->caps->num_spare_size; i++) {
+		if (nfc->caps->spare_size[i] == spare)
+			break;
+	}
+
+	if (i == nfc->caps->num_spare_size) {
+		dev_err(nfc->dev, "invalid spare size %d\n", spare);
+		return -EINVAL;
+	}
+
+	fmt |= i << nfc->caps->pageformat_spare_shift;
+
+	fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
+	fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
+	nfi_writel(nfc, fmt, NFI_PAGEFMT);
+
+	nfc->ecc_cfg.strength = chip->ecc.strength;
+	nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
+
+	return 0;
+}
+
+static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtk_nfc *nfc = nand_get_controller_data(nand);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
+
+	if (chip < 0)
+		return;
+
+	mtk_nfc_hw_runtime_config(mtd);
+
+	nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
+}
+
+static int mtk_nfc_dev_ready(struct mtd_info *mtd)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+
+	if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
+		return 0;
+
+	return 1;
+}
+
+static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+
+	if (ctrl & NAND_ALE) {
+		mtk_nfc_send_address(nfc, dat);
+	} else if (ctrl & NAND_CLE) {
+		mtk_nfc_hw_reset(nfc);
+
+		nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
+		mtk_nfc_send_command(nfc, dat);
+	}
+}
+
+static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
+{
+	int rc;
+	u8 val;
+
+	rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
+				       val & PIO_DI_RDY, 10, MTK_TIMEOUT);
+	if (rc < 0)
+		dev_err(nfc->dev, "data not ready\n");
+}
+
+static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	u32 reg;
+
+	/* after each byte read, the NFI_STA reg is reset by the hardware */
+	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
+	if (reg != NFI_FSM_CUSTDATA) {
+		reg = nfi_readw(nfc, NFI_CNFG);
+		reg |= CNFG_BYTE_RW | CNFG_READ_EN;
+		nfi_writew(nfc, reg, NFI_CNFG);
+
+		/*
+		 * set to max sector to allow the HW to continue reading over
+		 * unaligned accesses
+		 */
+		reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
+		nfi_writel(nfc, reg, NFI_CON);
+
+		/* trigger to fetch data */
+		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+	}
+
+	mtk_nfc_wait_ioready(nfc);
+
+	return nfi_readb(nfc, NFI_DATAR);
+}
+
+static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = mtk_nfc_read_byte(mtd);
+}
+
+static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	u32 reg;
+
+	reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
+
+	if (reg != NFI_FSM_CUSTDATA) {
+		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
+		nfi_writew(nfc, reg, NFI_CNFG);
+
+		reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
+		nfi_writel(nfc, reg, NFI_CON);
+
+		nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+	}
+
+	mtk_nfc_wait_ioready(nfc);
+	nfi_writeb(nfc, byte, NFI_DATAW);
+}
+
+static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		mtk_nfc_write_byte(mtd, buf[i]);
+}
+
+static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
+	const struct nand_sdr_timings *timings;
+	u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return -ENOTSUPP;
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	rate = clk_get_rate(nfc->clk.nfi_clk);
+	/* There is a frequency divider in some IPs */
+	rate /= nfc->caps->nfi_clk_div;
+
+	/* turn clock rate into KHZ */
+	rate /= 1000;
+
+	tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
+	tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
+	tpoecs &= 0xf;
+
+	tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
+	tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
+	tprecs &= 0x3f;
+
+	/* sdr interface has no tCR which means CE# low to RE# low */
+	tc2r = 0;
+
+	tw2r = timings->tWHR_min / 1000;
+	tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
+	tw2r = DIV_ROUND_UP(tw2r - 1, 2);
+	tw2r &= 0xf;
+
+	twh = max(timings->tREH_min, timings->tWH_min) / 1000;
+	twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
+	twh &= 0xf;
+
+	twst = timings->tWP_min / 1000;
+	twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
+	twst &= 0xf;
+
+	trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
+	trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
+	trlt &= 0xf;
+
+	/*
+	 * ACCON: access timing control register
+	 * -------------------------------------
+	 * 31:28: tpoecs, minimum required time for CS post pulling down after
+	 *        accessing the device
+	 * 27:22: tprecs, minimum required time for CS pre pulling down before
+	 *        accessing the device
+	 * 21:16: tc2r, minimum required time from NCEB low to NREB low
+	 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
+	 * 11:08: twh, write enable hold time
+	 * 07:04: twst, write wait states
+	 * 03:00: trlt, read wait states
+	 */
+	trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
+	nfi_writel(nfc, trlt, NFI_ACCCON);
+
+	return 0;
+}
+
+static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	int size = chip->ecc.size + mtk_nand->fdm.reg_size;
+
+	nfc->ecc_cfg.mode = ECC_DMA_MODE;
+	nfc->ecc_cfg.op = ECC_ENCODE;
+
+	return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
+}
+
+static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
+{
+	/* nop */
+}
+
+static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
+	u32 bad_pos = nand->bad_mark.pos;
+
+	if (raw)
+		bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
+	else
+		bad_pos += nand->bad_mark.sec * chip->ecc.size;
+
+	swap(chip->oob_poi[0], buf[bad_pos]);
+}
+
+static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
+				  u32 len, const u8 *buf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+	u32 start, end;
+	int i, ret;
+
+	start = offset / chip->ecc.size;
+	end = DIV_ROUND_UP(offset + len, chip->ecc.size);
+
+	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+	for (i = 0; i < chip->ecc.steps; i++) {
+		memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
+		       chip->ecc.size);
+
+		if (start > i || i >= end)
+			continue;
+
+		if (i == mtk_nand->bad_mark.sec)
+			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
+
+		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
+
+		/* program the CRC back to the OOB */
+		ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
+		if (ret < 0)
+			return ret;
+	}
+
+	return 0;
+}
+
+static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+	u32 i;
+
+	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+	for (i = 0; i < chip->ecc.steps; i++) {
+		if (buf)
+			memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
+			       chip->ecc.size);
+
+		if (i == mtk_nand->bad_mark.sec)
+			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
+
+		memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
+	}
+}
+
+static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
+				    u32 sectors)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+	u32 vall, valm;
+	u8 *oobptr;
+	int i, j;
+
+	for (i = 0; i < sectors; i++) {
+		oobptr = oob_ptr(chip, start + i);
+		vall = nfi_readl(nfc, NFI_FDML(i));
+		valm = nfi_readl(nfc, NFI_FDMM(i));
+
+		for (j = 0; j < fdm->reg_size; j++)
+			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
+	}
+}
+
+static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+	u32 vall, valm;
+	u8 *oobptr;
+	int i, j;
+
+	for (i = 0; i < chip->ecc.steps; i++) {
+		oobptr = oob_ptr(chip, i);
+		vall = 0;
+		valm = 0;
+		for (j = 0; j < 8; j++) {
+			if (j < 4)
+				vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
+						<< (j * 8);
+			else
+				valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
+						<< ((j - 4) * 8);
+		}
+		nfi_writel(nfc, vall, NFI_FDML(i));
+		nfi_writel(nfc, valm, NFI_FDMM(i));
+	}
+}
+
+static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				 const u8 *buf, int page, int len)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct device *dev = nfc->dev;
+	dma_addr_t addr;
+	u32 reg;
+	int ret;
+
+	addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
+	ret = dma_mapping_error(nfc->dev, addr);
+	if (ret) {
+		dev_err(nfc->dev, "dma mapping error\n");
+		return -EINVAL;
+	}
+
+	reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
+	nfi_writew(nfc, reg, NFI_CNFG);
+
+	nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
+	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
+	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
+
+	init_completion(&nfc->done);
+
+	reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
+	nfi_writel(nfc, reg, NFI_CON);
+	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+
+	ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
+	if (!ret) {
+		dev_err(dev, "program ahb done timeout\n");
+		nfi_writew(nfc, 0, NFI_INTR_EN);
+		ret = -ETIMEDOUT;
+		goto timeout;
+	}
+
+	ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
+					ADDRCNTR_SEC(reg) >= chip->ecc.steps,
+					10, MTK_TIMEOUT);
+	if (ret)
+		dev_err(dev, "hwecc write timeout\n");
+
+timeout:
+
+	dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
+	nfi_writel(nfc, 0, NFI_CON);
+
+	return ret;
+}
+
+static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			      const u8 *buf, int page, int raw)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	size_t len;
+	const u8 *bufpoi;
+	u32 reg;
+	int ret;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	if (!raw) {
+		/* OOB => FDM: from register,  ECC: from HW */
+		reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
+		nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
+
+		nfc->ecc_cfg.op = ECC_ENCODE;
+		nfc->ecc_cfg.mode = ECC_NFI_MODE;
+		ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
+		if (ret) {
+			/* clear NFI config */
+			reg = nfi_readw(nfc, NFI_CNFG);
+			reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
+			nfi_writew(nfc, reg, NFI_CNFG);
+
+			return ret;
+		}
+
+		memcpy(nfc->buffer, buf, mtd->writesize);
+		mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
+		bufpoi = nfc->buffer;
+
+		/* write OOB into the FDM registers (OOB area in MTK NAND) */
+		mtk_nfc_write_fdm(chip);
+	} else {
+		bufpoi = buf;
+	}
+
+	len = mtd->writesize + (raw ? mtd->oobsize : 0);
+	ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
+
+	if (!raw)
+		mtk_ecc_disable(nfc->ecc);
+
+	if (ret)
+		return ret;
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
+				    struct nand_chip *chip, const u8 *buf,
+				    int oob_on, int page)
+{
+	return mtk_nfc_write_page(mtd, chip, buf, page, 0);
+}
+
+static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				  const u8 *buf, int oob_on, int pg)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+
+	mtk_nfc_format_page(mtd, buf);
+	return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
+}
+
+static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
+				       struct nand_chip *chip, u32 offset,
+				       u32 data_len, const u8 *buf,
+				       int oob_on, int page)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	int ret;
+
+	ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
+	if (ret < 0)
+		return ret;
+
+	/* use the data in the private buffer (now with FDM and CRC) */
+	return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
+}
+
+static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+				 int page)
+{
+	return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
+}
+
+static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_ecc_stats stats;
+	int rc, i;
+
+	rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
+	if (rc) {
+		memset(buf, 0xff, sectors * chip->ecc.size);
+		for (i = 0; i < sectors; i++)
+			memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
+		return 0;
+	}
+
+	mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
+	mtd->ecc_stats.corrected += stats.corrected;
+	mtd->ecc_stats.failed += stats.failed;
+
+	return stats.bitflips;
+}
+
+static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+				u32 data_offs, u32 readlen,
+				u8 *bufpoi, int page, int raw)
+{
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	u32 spare = mtk_nand->spare_per_sector;
+	u32 column, sectors, start, end, reg;
+	dma_addr_t addr;
+	int bitflips;
+	size_t len;
+	u8 *buf;
+	int rc;
+
+	start = data_offs / chip->ecc.size;
+	end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
+
+	sectors = end - start;
+	column = start * (chip->ecc.size + spare);
+
+	len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
+	buf = bufpoi + start * chip->ecc.size;
+
+	nand_read_page_op(chip, page, column, NULL, 0);
+
+	addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
+	rc = dma_mapping_error(nfc->dev, addr);
+	if (rc) {
+		dev_err(nfc->dev, "dma mapping error\n");
+
+		return -EINVAL;
+	}
+
+	reg = nfi_readw(nfc, NFI_CNFG);
+	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
+	if (!raw) {
+		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
+		nfi_writew(nfc, reg, NFI_CNFG);
+
+		nfc->ecc_cfg.mode = ECC_NFI_MODE;
+		nfc->ecc_cfg.sectors = sectors;
+		nfc->ecc_cfg.op = ECC_DECODE;
+		rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
+		if (rc) {
+			dev_err(nfc->dev, "ecc enable\n");
+			/* clear NFI_CNFG */
+			reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
+				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
+			nfi_writew(nfc, reg, NFI_CNFG);
+			dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
+
+			return rc;
+		}
+	} else {
+		nfi_writew(nfc, reg, NFI_CNFG);
+	}
+
+	nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
+	nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
+	nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
+
+	init_completion(&nfc->done);
+	reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
+	nfi_writel(nfc, reg, NFI_CON);
+	nfi_writew(nfc, STAR_EN, NFI_STRDATA);
+
+	rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
+	if (!rc)
+		dev_warn(nfc->dev, "read ahb/dma done timeout\n");
+
+	rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
+				       ADDRCNTR_SEC(reg) >= sectors, 10,
+				       MTK_TIMEOUT);
+	if (rc < 0) {
+		dev_err(nfc->dev, "subpage done timeout\n");
+		bitflips = -EIO;
+	} else {
+		bitflips = 0;
+		if (!raw) {
+			rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
+			bitflips = rc < 0 ? -ETIMEDOUT :
+				mtk_nfc_update_ecc_stats(mtd, buf, sectors);
+			mtk_nfc_read_fdm(chip, start, sectors);
+		}
+	}
+
+	dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
+
+	if (raw)
+		goto done;
+
+	mtk_ecc_disable(nfc->ecc);
+
+	if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
+		mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
+done:
+	nfi_writel(nfc, 0, NFI_CON);
+
+	return bitflips;
+}
+
+static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
+				      struct nand_chip *chip, u32 off,
+				      u32 len, u8 *p, int pg)
+{
+	return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
+}
+
+static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
+				   struct nand_chip *chip, u8 *p,
+				   int oob_on, int pg)
+{
+	return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
+}
+
+static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				 u8 *buf, int oob_on, int page)
+{
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+	int i, ret;
+
+	memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
+	ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
+				   page, 1);
+	if (ret < 0)
+		return ret;
+
+	for (i = 0; i < chip->ecc.steps; i++) {
+		memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
+
+		if (i == mtk_nand->bad_mark.sec)
+			mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
+
+		if (buf)
+			memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
+			       chip->ecc.size);
+	}
+
+	return ret;
+}
+
+static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
+}
+
+static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
+{
+	/*
+	 * CNRNB: nand ready/busy register
+	 * -------------------------------
+	 * 7:4: timeout register for polling the NAND busy/ready signal
+	 * 0  : poll the status of the busy/ready signal after [7:4]*16 cycles.
+	 */
+	nfi_writew(nfc, 0xf1, NFI_CNRNB);
+	nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
+
+	mtk_nfc_hw_reset(nfc);
+
+	nfi_readl(nfc, NFI_INTR_STA);
+	nfi_writel(nfc, 0, NFI_INTR_EN);
+}
+
+static irqreturn_t mtk_nfc_irq(int irq, void *id)
+{
+	struct mtk_nfc *nfc = id;
+	u16 sta, ien;
+
+	sta = nfi_readw(nfc, NFI_INTR_STA);
+	ien = nfi_readw(nfc, NFI_INTR_EN);
+
+	if (!(sta & ien))
+		return IRQ_NONE;
+
+	nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
+	complete(&nfc->done);
+
+	return IRQ_HANDLED;
+}
+
+static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
+{
+	int ret;
+
+	ret = clk_prepare_enable(clk->nfi_clk);
+	if (ret) {
+		dev_err(dev, "failed to enable nfi clk\n");
+		return ret;
+	}
+
+	ret = clk_prepare_enable(clk->pad_clk);
+	if (ret) {
+		dev_err(dev, "failed to enable pad clk\n");
+		clk_disable_unprepare(clk->nfi_clk);
+		return ret;
+	}
+
+	return 0;
+}
+
+static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
+{
+	clk_disable_unprepare(clk->nfi_clk);
+	clk_disable_unprepare(clk->pad_clk);
+}
+
+static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oob_region)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
+	u32 eccsteps;
+
+	eccsteps = mtd->writesize / chip->ecc.size;
+
+	if (section >= eccsteps)
+		return -ERANGE;
+
+	oob_region->length = fdm->reg_size - fdm->ecc_size;
+	oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
+
+	return 0;
+}
+
+static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oob_region)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	u32 eccsteps;
+
+	if (section)
+		return -ERANGE;
+
+	eccsteps = mtd->writesize / chip->ecc.size;
+	oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
+	oob_region->length = mtd->oobsize - oob_region->offset;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
+	.free = mtk_nfc_ooblayout_free,
+	.ecc = mtk_nfc_ooblayout_ecc,
+};
+
+static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
+	struct mtk_nfc *nfc = nand_get_controller_data(nand);
+	u32 ecc_bytes;
+
+	ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
+				 mtk_ecc_get_parity_bits(nfc->ecc), 8);
+
+	fdm->reg_size = chip->spare_per_sector - ecc_bytes;
+	if (fdm->reg_size > NFI_FDM_MAX_SIZE)
+		fdm->reg_size = NFI_FDM_MAX_SIZE;
+
+	/* bad block mark storage */
+	fdm->ecc_size = 1;
+}
+
+static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
+				     struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+
+	if (mtd->writesize == 512) {
+		bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
+	} else {
+		bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
+		bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
+		bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
+	}
+}
+
+static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtk_nfc *nfc = nand_get_controller_data(nand);
+	const u8 *spare = nfc->caps->spare_size;
+	u32 eccsteps, i, closest_spare = 0;
+
+	eccsteps = mtd->writesize / nand->ecc.size;
+	*sps = mtd->oobsize / eccsteps;
+
+	if (nand->ecc.size == 1024)
+		*sps >>= 1;
+
+	if (*sps < MTK_NFC_MIN_SPARE)
+		return -EINVAL;
+
+	for (i = 0; i < nfc->caps->num_spare_size; i++) {
+		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
+			closest_spare = i;
+			if (*sps == spare[i])
+				break;
+		}
+	}
+
+	*sps = spare[closest_spare];
+
+	if (nand->ecc.size == 1024)
+		*sps <<= 1;
+
+	return 0;
+}
+
+static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct mtk_nfc *nfc = nand_get_controller_data(nand);
+	u32 spare;
+	int free, ret;
+
+	/* support only ecc hw mode */
+	if (nand->ecc.mode != NAND_ECC_HW) {
+		dev_err(dev, "ecc.mode not supported\n");
+		return -EINVAL;
+	}
+
+	/* if optional dt settings not present */
+	if (!nand->ecc.size || !nand->ecc.strength) {
+		/* use datasheet requirements */
+		nand->ecc.strength = nand->ecc_strength_ds;
+		nand->ecc.size = nand->ecc_step_ds;
+
+		/*
+		 * align eccstrength and eccsize
+		 * this controller only supports 512 and 1024 sizes
+		 */
+		if (nand->ecc.size < 1024) {
+			if (mtd->writesize > 512 &&
+			    nfc->caps->max_sector_size > 512) {
+				nand->ecc.size = 1024;
+				nand->ecc.strength <<= 1;
+			} else {
+				nand->ecc.size = 512;
+			}
+		} else {
+			nand->ecc.size = 1024;
+		}
+
+		ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
+		if (ret)
+			return ret;
+
+		/* calculate oob bytes except ecc parity data */
+		free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
+			+ 7) >> 3;
+		free = spare - free;
+
+		/*
+		 * enhance ecc strength if oob left is bigger than max FDM size
+		 * or reduce ecc strength if oob size is not enough for ecc
+		 * parity data.
+		 */
+		if (free > NFI_FDM_MAX_SIZE) {
+			spare -= NFI_FDM_MAX_SIZE;
+			nand->ecc.strength = (spare << 3) /
+					     mtk_ecc_get_parity_bits(nfc->ecc);
+		} else if (free < 0) {
+			spare -= NFI_FDM_MIN_SIZE;
+			nand->ecc.strength = (spare << 3) /
+					     mtk_ecc_get_parity_bits(nfc->ecc);
+		}
+	}
+
+	mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
+
+	dev_info(dev, "eccsize %d eccstrength %d\n",
+		 nand->ecc.size, nand->ecc.strength);
+
+	return 0;
+}
+
+static int mtk_nfc_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct device *dev = mtd->dev.parent;
+	struct mtk_nfc *nfc = nand_get_controller_data(chip);
+	struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
+	int len;
+	int ret;
+
+	if (chip->options & NAND_BUSWIDTH_16) {
+		dev_err(dev, "16bits buswidth not supported");
+		return -EINVAL;
+	}
+
+	/* store bbt magic in page, cause OOB is not protected */
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+	ret = mtk_nfc_ecc_init(dev, mtd);
+	if (ret)
+		return ret;
+
+	ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
+	if (ret)
+		return ret;
+
+	mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
+	mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
+
+	len = mtd->writesize + mtd->oobsize;
+	nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
+	if (!nfc->buffer)
+		return  -ENOMEM;
+
+	return 0;
+}
+
+static const struct nand_controller_ops mtk_nfc_controller_ops = {
+	.attach_chip = mtk_nfc_attach_chip,
+};
+
+static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
+				  struct device_node *np)
+{
+	struct mtk_nfc_nand_chip *chip;
+	struct nand_chip *nand;
+	struct mtd_info *mtd;
+	int nsels;
+	u32 tmp;
+	int ret;
+	int i;
+
+	if (!of_get_property(np, "reg", &nsels))
+		return -ENODEV;
+
+	nsels /= sizeof(u32);
+	if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
+		dev_err(dev, "invalid reg property size %d\n", nsels);
+		return -EINVAL;
+	}
+
+	chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
+			    GFP_KERNEL);
+	if (!chip)
+		return -ENOMEM;
+
+	chip->nsels = nsels;
+	for (i = 0; i < nsels; i++) {
+		ret = of_property_read_u32_index(np, "reg", i, &tmp);
+		if (ret) {
+			dev_err(dev, "reg property failure : %d\n", ret);
+			return ret;
+		}
+		chip->sels[i] = tmp;
+	}
+
+	nand = &chip->nand;
+	nand->controller = &nfc->controller;
+
+	nand_set_flash_node(nand, np);
+	nand_set_controller_data(nand, nfc);
+
+	nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
+	nand->dev_ready = mtk_nfc_dev_ready;
+	nand->select_chip = mtk_nfc_select_chip;
+	nand->write_byte = mtk_nfc_write_byte;
+	nand->write_buf = mtk_nfc_write_buf;
+	nand->read_byte = mtk_nfc_read_byte;
+	nand->read_buf = mtk_nfc_read_buf;
+	nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
+	nand->setup_data_interface = mtk_nfc_setup_data_interface;
+
+	/* set default mode in case dt entry is missing */
+	nand->ecc.mode = NAND_ECC_HW;
+
+	nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
+	nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
+	nand->ecc.write_page = mtk_nfc_write_page_hwecc;
+	nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
+	nand->ecc.write_oob = mtk_nfc_write_oob_std;
+
+	nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
+	nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
+	nand->ecc.read_page = mtk_nfc_read_page_hwecc;
+	nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
+	nand->ecc.read_oob = mtk_nfc_read_oob_std;
+
+	mtd = nand_to_mtd(nand);
+	mtd->owner = THIS_MODULE;
+	mtd->dev.parent = dev;
+	mtd->name = MTK_NAME;
+	mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
+
+	mtk_nfc_hw_init(nfc);
+
+	ret = nand_scan(mtd, nsels);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(dev, "mtd parse partition error\n");
+		nand_release(mtd);
+		return ret;
+	}
+
+	list_add_tail(&chip->node, &nfc->chips);
+
+	return 0;
+}
+
+static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
+{
+	struct device_node *np = dev->of_node;
+	struct device_node *nand_np;
+	int ret;
+
+	for_each_child_of_node(np, nand_np) {
+		ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
+		if (ret) {
+			of_node_put(nand_np);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
+	.spare_size = spare_size_mt2701,
+	.num_spare_size = 16,
+	.pageformat_spare_shift = 4,
+	.nfi_clk_div = 1,
+	.max_sector = 16,
+	.max_sector_size = 1024,
+};
+
+static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
+	.spare_size = spare_size_mt2712,
+	.num_spare_size = 19,
+	.pageformat_spare_shift = 16,
+	.nfi_clk_div = 2,
+	.max_sector = 16,
+	.max_sector_size = 1024,
+};
+
+static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
+	.spare_size = spare_size_mt7622,
+	.num_spare_size = 4,
+	.pageformat_spare_shift = 4,
+	.nfi_clk_div = 1,
+	.max_sector = 8,
+	.max_sector_size = 512,
+};
+
+static const struct of_device_id mtk_nfc_id_table[] = {
+	{
+		.compatible = "mediatek,mt2701-nfc",
+		.data = &mtk_nfc_caps_mt2701,
+	}, {
+		.compatible = "mediatek,mt2712-nfc",
+		.data = &mtk_nfc_caps_mt2712,
+	}, {
+		.compatible = "mediatek,mt7622-nfc",
+		.data = &mtk_nfc_caps_mt7622,
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
+
+static int mtk_nfc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct device_node *np = dev->of_node;
+	struct mtk_nfc *nfc;
+	struct resource *res;
+	int ret, irq;
+
+	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	spin_lock_init(&nfc->controller.lock);
+	init_waitqueue_head(&nfc->controller.wq);
+	INIT_LIST_HEAD(&nfc->chips);
+	nfc->controller.ops = &mtk_nfc_controller_ops;
+
+	/* probe defer if not ready */
+	nfc->ecc = of_mtk_ecc_get(np);
+	if (IS_ERR(nfc->ecc))
+		return PTR_ERR(nfc->ecc);
+	else if (!nfc->ecc)
+		return -ENODEV;
+
+	nfc->caps = of_device_get_match_data(dev);
+	nfc->dev = dev;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->regs = devm_ioremap_resource(dev, res);
+	if (IS_ERR(nfc->regs)) {
+		ret = PTR_ERR(nfc->regs);
+		goto release_ecc;
+	}
+
+	nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
+	if (IS_ERR(nfc->clk.nfi_clk)) {
+		dev_err(dev, "no clk\n");
+		ret = PTR_ERR(nfc->clk.nfi_clk);
+		goto release_ecc;
+	}
+
+	nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
+	if (IS_ERR(nfc->clk.pad_clk)) {
+		dev_err(dev, "no pad clk\n");
+		ret = PTR_ERR(nfc->clk.pad_clk);
+		goto release_ecc;
+	}
+
+	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
+	if (ret)
+		goto release_ecc;
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "no nfi irq resource\n");
+		ret = -EINVAL;
+		goto clk_disable;
+	}
+
+	ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
+	if (ret) {
+		dev_err(dev, "failed to request nfi irq\n");
+		goto clk_disable;
+	}
+
+	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+	if (ret) {
+		dev_err(dev, "failed to set dma mask\n");
+		goto clk_disable;
+	}
+
+	platform_set_drvdata(pdev, nfc);
+
+	ret = mtk_nfc_nand_chips_init(dev, nfc);
+	if (ret) {
+		dev_err(dev, "failed to init nand chips\n");
+		goto clk_disable;
+	}
+
+	return 0;
+
+clk_disable:
+	mtk_nfc_disable_clk(&nfc->clk);
+
+release_ecc:
+	mtk_ecc_release(nfc->ecc);
+
+	return ret;
+}
+
+static int mtk_nfc_remove(struct platform_device *pdev)
+{
+	struct mtk_nfc *nfc = platform_get_drvdata(pdev);
+	struct mtk_nfc_nand_chip *chip;
+
+	while (!list_empty(&nfc->chips)) {
+		chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
+					node);
+		nand_release(nand_to_mtd(&chip->nand));
+		list_del(&chip->node);
+	}
+
+	mtk_ecc_release(nfc->ecc);
+	mtk_nfc_disable_clk(&nfc->clk);
+
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int mtk_nfc_suspend(struct device *dev)
+{
+	struct mtk_nfc *nfc = dev_get_drvdata(dev);
+
+	mtk_nfc_disable_clk(&nfc->clk);
+
+	return 0;
+}
+
+static int mtk_nfc_resume(struct device *dev)
+{
+	struct mtk_nfc *nfc = dev_get_drvdata(dev);
+	struct mtk_nfc_nand_chip *chip;
+	struct nand_chip *nand;
+	int ret;
+	u32 i;
+
+	udelay(200);
+
+	ret = mtk_nfc_enable_clk(dev, &nfc->clk);
+	if (ret)
+		return ret;
+
+	/* reset NAND chip if VCC was powered off */
+	list_for_each_entry(chip, &nfc->chips, node) {
+		nand = &chip->nand;
+		for (i = 0; i < chip->nsels; i++)
+			nand_reset(nand, i);
+	}
+
+	return 0;
+}
+
+static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
+#endif
+
+static struct platform_driver mtk_nfc_driver = {
+	.probe  = mtk_nfc_probe,
+	.remove = mtk_nfc_remove,
+	.driver = {
+		.name  = MTK_NAME,
+		.of_match_table = mtk_nfc_id_table,
+#ifdef CONFIG_PM_SLEEP
+		.pm = &mtk_nfc_pm_ops,
+#endif
+	},
+};
+
+module_platform_driver(mtk_nfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
+MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c
new file mode 100644
index 0000000..4c9214d
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxc_nand.c
@@ -0,0 +1,1951 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
+ * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
+ */
+
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/interrupt.h>
+#include <linux/device.h>
+#include <linux/platform_device.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/completion.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_data/mtd-mxc_nand.h>
+
+#define DRIVER_NAME "mxc_nand"
+
+/* Addresses for NFC registers */
+#define NFC_V1_V2_BUF_SIZE		(host->regs + 0x00)
+#define NFC_V1_V2_BUF_ADDR		(host->regs + 0x04)
+#define NFC_V1_V2_FLASH_ADDR		(host->regs + 0x06)
+#define NFC_V1_V2_FLASH_CMD		(host->regs + 0x08)
+#define NFC_V1_V2_CONFIG		(host->regs + 0x0a)
+#define NFC_V1_V2_ECC_STATUS_RESULT	(host->regs + 0x0c)
+#define NFC_V1_V2_RSLTMAIN_AREA		(host->regs + 0x0e)
+#define NFC_V21_RSLTSPARE_AREA		(host->regs + 0x10)
+#define NFC_V1_V2_WRPROT		(host->regs + 0x12)
+#define NFC_V1_UNLOCKSTART_BLKADDR	(host->regs + 0x14)
+#define NFC_V1_UNLOCKEND_BLKADDR	(host->regs + 0x16)
+#define NFC_V21_UNLOCKSTART_BLKADDR0	(host->regs + 0x20)
+#define NFC_V21_UNLOCKSTART_BLKADDR1	(host->regs + 0x24)
+#define NFC_V21_UNLOCKSTART_BLKADDR2	(host->regs + 0x28)
+#define NFC_V21_UNLOCKSTART_BLKADDR3	(host->regs + 0x2c)
+#define NFC_V21_UNLOCKEND_BLKADDR0	(host->regs + 0x22)
+#define NFC_V21_UNLOCKEND_BLKADDR1	(host->regs + 0x26)
+#define NFC_V21_UNLOCKEND_BLKADDR2	(host->regs + 0x2a)
+#define NFC_V21_UNLOCKEND_BLKADDR3	(host->regs + 0x2e)
+#define NFC_V1_V2_NF_WRPRST		(host->regs + 0x18)
+#define NFC_V1_V2_CONFIG1		(host->regs + 0x1a)
+#define NFC_V1_V2_CONFIG2		(host->regs + 0x1c)
+
+#define NFC_V2_CONFIG1_ECC_MODE_4	(1 << 0)
+#define NFC_V1_V2_CONFIG1_SP_EN		(1 << 2)
+#define NFC_V1_V2_CONFIG1_ECC_EN	(1 << 3)
+#define NFC_V1_V2_CONFIG1_INT_MSK	(1 << 4)
+#define NFC_V1_V2_CONFIG1_BIG		(1 << 5)
+#define NFC_V1_V2_CONFIG1_RST		(1 << 6)
+#define NFC_V1_V2_CONFIG1_CE		(1 << 7)
+#define NFC_V2_CONFIG1_ONE_CYCLE	(1 << 8)
+#define NFC_V2_CONFIG1_PPB(x)		(((x) & 0x3) << 9)
+#define NFC_V2_CONFIG1_FP_INT		(1 << 11)
+
+#define NFC_V1_V2_CONFIG2_INT		(1 << 15)
+
+/*
+ * Operation modes for the NFC. Valid for v1, v2 and v3
+ * type controllers.
+ */
+#define NFC_CMD				(1 << 0)
+#define NFC_ADDR			(1 << 1)
+#define NFC_INPUT			(1 << 2)
+#define NFC_OUTPUT			(1 << 3)
+#define NFC_ID				(1 << 4)
+#define NFC_STATUS			(1 << 5)
+
+#define NFC_V3_FLASH_CMD		(host->regs_axi + 0x00)
+#define NFC_V3_FLASH_ADDR0		(host->regs_axi + 0x04)
+
+#define NFC_V3_CONFIG1			(host->regs_axi + 0x34)
+#define NFC_V3_CONFIG1_SP_EN		(1 << 0)
+#define NFC_V3_CONFIG1_RBA(x)		(((x) & 0x7 ) << 4)
+
+#define NFC_V3_ECC_STATUS_RESULT	(host->regs_axi + 0x38)
+
+#define NFC_V3_LAUNCH			(host->regs_axi + 0x40)
+
+#define NFC_V3_WRPROT			(host->regs_ip + 0x0)
+#define NFC_V3_WRPROT_LOCK_TIGHT	(1 << 0)
+#define NFC_V3_WRPROT_LOCK		(1 << 1)
+#define NFC_V3_WRPROT_UNLOCK		(1 << 2)
+#define NFC_V3_WRPROT_BLS_UNLOCK	(2 << 6)
+
+#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
+
+#define NFC_V3_CONFIG2			(host->regs_ip + 0x24)
+#define NFC_V3_CONFIG2_PS_512			(0 << 0)
+#define NFC_V3_CONFIG2_PS_2048			(1 << 0)
+#define NFC_V3_CONFIG2_PS_4096			(2 << 0)
+#define NFC_V3_CONFIG2_ONE_CYCLE		(1 << 2)
+#define NFC_V3_CONFIG2_ECC_EN			(1 << 3)
+#define NFC_V3_CONFIG2_2CMD_PHASES		(1 << 4)
+#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0		(1 << 5)
+#define NFC_V3_CONFIG2_ECC_MODE_8		(1 << 6)
+#define NFC_V3_CONFIG2_PPB(x, shift)		(((x) & 0x3) << shift)
+#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)	(((x) & 0x3) << 12)
+#define NFC_V3_CONFIG2_INT_MSK			(1 << 15)
+#define NFC_V3_CONFIG2_ST_CMD(x)		(((x) & 0xff) << 24)
+#define NFC_V3_CONFIG2_SPAS(x)			(((x) & 0xff) << 16)
+
+#define NFC_V3_CONFIG3				(host->regs_ip + 0x28)
+#define NFC_V3_CONFIG3_ADD_OP(x)		(((x) & 0x3) << 0)
+#define NFC_V3_CONFIG3_FW8			(1 << 3)
+#define NFC_V3_CONFIG3_SBB(x)			(((x) & 0x7) << 8)
+#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)	(((x) & 0x7) << 12)
+#define NFC_V3_CONFIG3_RBB_MODE			(1 << 15)
+#define NFC_V3_CONFIG3_NO_SDMA			(1 << 20)
+
+#define NFC_V3_IPC			(host->regs_ip + 0x2C)
+#define NFC_V3_IPC_CREQ			(1 << 0)
+#define NFC_V3_IPC_INT			(1 << 31)
+
+#define NFC_V3_DELAY_LINE		(host->regs_ip + 0x34)
+
+struct mxc_nand_host;
+
+struct mxc_nand_devtype_data {
+	void (*preset)(struct mtd_info *);
+	int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
+			 int page);
+	void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
+	void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
+	void (*send_page)(struct mtd_info *, unsigned int);
+	void (*send_read_id)(struct mxc_nand_host *);
+	uint16_t (*get_dev_status)(struct mxc_nand_host *);
+	int (*check_int)(struct mxc_nand_host *);
+	void (*irq_control)(struct mxc_nand_host *, int);
+	u32 (*get_ecc_status)(struct mxc_nand_host *);
+	const struct mtd_ooblayout_ops *ooblayout;
+	void (*select_chip)(struct mtd_info *mtd, int chip);
+	int (*setup_data_interface)(struct mtd_info *mtd, int csline,
+				    const struct nand_data_interface *conf);
+	void (*enable_hwecc)(struct nand_chip *chip, bool enable);
+
+	/*
+	 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
+	 * (CONFIG1:INT_MSK is set). To handle this the driver uses
+	 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
+	 */
+	int irqpending_quirk;
+	int needs_ip;
+
+	size_t regs_offset;
+	size_t spare0_offset;
+	size_t axi_offset;
+
+	int spare_len;
+	int eccbytes;
+	int eccsize;
+	int ppb_shift;
+};
+
+struct mxc_nand_host {
+	struct nand_chip	nand;
+	struct device		*dev;
+
+	void __iomem		*spare0;
+	void __iomem		*main_area0;
+
+	void __iomem		*base;
+	void __iomem		*regs;
+	void __iomem		*regs_axi;
+	void __iomem		*regs_ip;
+	int			status_request;
+	struct clk		*clk;
+	int			clk_act;
+	int			irq;
+	int			eccsize;
+	int			used_oobsize;
+	int			active_cs;
+
+	struct completion	op_completion;
+
+	uint8_t			*data_buf;
+	unsigned int		buf_start;
+
+	const struct mxc_nand_devtype_data *devtype_data;
+	struct mxc_nand_platform_data pdata;
+};
+
+static const char * const part_probes[] = {
+	"cmdlinepart", "RedBoot", "ofpart", NULL };
+
+static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
+{
+	int i;
+	u32 *t = trg;
+	const __iomem u32 *s = src;
+
+	for (i = 0; i < (size >> 2); i++)
+		*t++ = __raw_readl(s++);
+}
+
+static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
+{
+	int i;
+	u16 *t = trg;
+	const __iomem u16 *s = src;
+
+	/* We assume that src (IO) is always 32bit aligned */
+	if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
+		memcpy32_fromio(trg, src, size);
+		return;
+	}
+
+	for (i = 0; i < (size >> 1); i++)
+		*t++ = __raw_readw(s++);
+}
+
+static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
+{
+	/* __iowrite32_copy use 32bit size values so divide by 4 */
+	__iowrite32_copy(trg, src, size / 4);
+}
+
+static void memcpy16_toio(void __iomem *trg, const void *src, int size)
+{
+	int i;
+	__iomem u16 *t = trg;
+	const u16 *s = src;
+
+	/* We assume that trg (IO) is always 32bit aligned */
+	if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
+		memcpy32_toio(trg, src, size);
+		return;
+	}
+
+	for (i = 0; i < (size >> 1); i++)
+		__raw_writew(*s++, t++);
+}
+
+/*
+ * The controller splits a page into data chunks of 512 bytes + partial oob.
+ * There are writesize / 512 such chunks, the size of the partial oob parts is
+ * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
+ * contains additionally the byte lost by rounding (if any).
+ * This function handles the needed shuffling between host->data_buf (which
+ * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
+ * spare) and the NFC buffer.
+ */
+static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(this);
+	u16 i, oob_chunk_size;
+	u16 num_chunks = mtd->writesize / 512;
+
+	u8 *d = buf;
+	u8 __iomem *s = host->spare0;
+	u16 sparebuf_size = host->devtype_data->spare_len;
+
+	/* size of oob chunk for all but possibly the last one */
+	oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
+
+	if (bfrom) {
+		for (i = 0; i < num_chunks - 1; i++)
+			memcpy16_fromio(d + i * oob_chunk_size,
+					s + i * sparebuf_size,
+					oob_chunk_size);
+
+		/* the last chunk */
+		memcpy16_fromio(d + i * oob_chunk_size,
+				s + i * sparebuf_size,
+				host->used_oobsize - i * oob_chunk_size);
+	} else {
+		for (i = 0; i < num_chunks - 1; i++)
+			memcpy16_toio(&s[i * sparebuf_size],
+				      &d[i * oob_chunk_size],
+				      oob_chunk_size);
+
+		/* the last chunk */
+		memcpy16_toio(&s[i * sparebuf_size],
+			      &d[i * oob_chunk_size],
+			      host->used_oobsize - i * oob_chunk_size);
+	}
+}
+
+/*
+ * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
+ * the upper layers perform a read/write buf operation, the saved column address
+ * is used to index into the full page. So usually this function is called with
+ * column == 0 (unless no column cycle is needed indicated by column == -1)
+ */
+static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	/* Write out column address, if necessary */
+	if (column != -1) {
+		host->devtype_data->send_addr(host, column & 0xff,
+					      page_addr == -1);
+		if (mtd->writesize > 512)
+			/* another col addr cycle for 2k page */
+			host->devtype_data->send_addr(host,
+						      (column >> 8) & 0xff,
+						      false);
+	}
+
+	/* Write out page address, if necessary */
+	if (page_addr != -1) {
+		/* paddr_0 - p_addr_7 */
+		host->devtype_data->send_addr(host, (page_addr & 0xff), false);
+
+		if (mtd->writesize > 512) {
+			if (mtd->size >= 0x10000000) {
+				/* paddr_8 - paddr_15 */
+				host->devtype_data->send_addr(host,
+						(page_addr >> 8) & 0xff,
+						false);
+				host->devtype_data->send_addr(host,
+						(page_addr >> 16) & 0xff,
+						true);
+			} else
+				/* paddr_8 - paddr_15 */
+				host->devtype_data->send_addr(host,
+						(page_addr >> 8) & 0xff, true);
+		} else {
+			if (nand_chip->options & NAND_ROW_ADDR_3) {
+				/* paddr_8 - paddr_15 */
+				host->devtype_data->send_addr(host,
+						(page_addr >> 8) & 0xff,
+						false);
+				host->devtype_data->send_addr(host,
+						(page_addr >> 16) & 0xff,
+						true);
+			} else
+				/* paddr_8 - paddr_15 */
+				host->devtype_data->send_addr(host,
+						(page_addr >> 8) & 0xff, true);
+		}
+	}
+}
+
+static int check_int_v3(struct mxc_nand_host *host)
+{
+	uint32_t tmp;
+
+	tmp = readl(NFC_V3_IPC);
+	if (!(tmp & NFC_V3_IPC_INT))
+		return 0;
+
+	tmp &= ~NFC_V3_IPC_INT;
+	writel(tmp, NFC_V3_IPC);
+
+	return 1;
+}
+
+static int check_int_v1_v2(struct mxc_nand_host *host)
+{
+	uint32_t tmp;
+
+	tmp = readw(NFC_V1_V2_CONFIG2);
+	if (!(tmp & NFC_V1_V2_CONFIG2_INT))
+		return 0;
+
+	if (!host->devtype_data->irqpending_quirk)
+		writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
+
+	return 1;
+}
+
+static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
+{
+	uint16_t tmp;
+
+	tmp = readw(NFC_V1_V2_CONFIG1);
+
+	if (activate)
+		tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
+	else
+		tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
+
+	writew(tmp, NFC_V1_V2_CONFIG1);
+}
+
+static void irq_control_v3(struct mxc_nand_host *host, int activate)
+{
+	uint32_t tmp;
+
+	tmp = readl(NFC_V3_CONFIG2);
+
+	if (activate)
+		tmp &= ~NFC_V3_CONFIG2_INT_MSK;
+	else
+		tmp |= NFC_V3_CONFIG2_INT_MSK;
+
+	writel(tmp, NFC_V3_CONFIG2);
+}
+
+static void irq_control(struct mxc_nand_host *host, int activate)
+{
+	if (host->devtype_data->irqpending_quirk) {
+		if (activate)
+			enable_irq(host->irq);
+		else
+			disable_irq_nosync(host->irq);
+	} else {
+		host->devtype_data->irq_control(host, activate);
+	}
+}
+
+static u32 get_ecc_status_v1(struct mxc_nand_host *host)
+{
+	return readw(NFC_V1_V2_ECC_STATUS_RESULT);
+}
+
+static u32 get_ecc_status_v2(struct mxc_nand_host *host)
+{
+	return readl(NFC_V1_V2_ECC_STATUS_RESULT);
+}
+
+static u32 get_ecc_status_v3(struct mxc_nand_host *host)
+{
+	return readl(NFC_V3_ECC_STATUS_RESULT);
+}
+
+static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
+{
+	struct mxc_nand_host *host = dev_id;
+
+	if (!host->devtype_data->check_int(host))
+		return IRQ_NONE;
+
+	irq_control(host, 0);
+
+	complete(&host->op_completion);
+
+	return IRQ_HANDLED;
+}
+
+/* This function polls the NANDFC to wait for the basic operation to
+ * complete by checking the INT bit of config2 register.
+ */
+static int wait_op_done(struct mxc_nand_host *host, int useirq)
+{
+	int ret = 0;
+
+	/*
+	 * If operation is already complete, don't bother to setup an irq or a
+	 * loop.
+	 */
+	if (host->devtype_data->check_int(host))
+		return 0;
+
+	if (useirq) {
+		unsigned long timeout;
+
+		reinit_completion(&host->op_completion);
+
+		irq_control(host, 1);
+
+		timeout = wait_for_completion_timeout(&host->op_completion, HZ);
+		if (!timeout && !host->devtype_data->check_int(host)) {
+			dev_dbg(host->dev, "timeout waiting for irq\n");
+			ret = -ETIMEDOUT;
+		}
+	} else {
+		int max_retries = 8000;
+		int done;
+
+		do {
+			udelay(1);
+
+			done = host->devtype_data->check_int(host);
+			if (done)
+				break;
+
+		} while (--max_retries);
+
+		if (!done) {
+			dev_dbg(host->dev, "timeout polling for completion\n");
+			ret = -ETIMEDOUT;
+		}
+	}
+
+	WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
+
+	return ret;
+}
+
+static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
+{
+	/* fill command */
+	writel(cmd, NFC_V3_FLASH_CMD);
+
+	/* send out command */
+	writel(NFC_CMD, NFC_V3_LAUNCH);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, useirq);
+}
+
+/* This function issues the specified command to the NAND device and
+ * waits for completion. */
+static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
+{
+	dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
+
+	writew(cmd, NFC_V1_V2_FLASH_CMD);
+	writew(NFC_CMD, NFC_V1_V2_CONFIG2);
+
+	if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
+		int max_retries = 100;
+		/* Reset completion is indicated by NFC_CONFIG2 */
+		/* being set to 0 */
+		while (max_retries-- > 0) {
+			if (readw(NFC_V1_V2_CONFIG2) == 0) {
+				break;
+			}
+			udelay(1);
+		}
+		if (max_retries < 0)
+			dev_dbg(host->dev, "%s: RESET failed\n", __func__);
+	} else {
+		/* Wait for operation to complete */
+		wait_op_done(host, useirq);
+	}
+}
+
+static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
+{
+	/* fill address */
+	writel(addr, NFC_V3_FLASH_ADDR0);
+
+	/* send out address */
+	writel(NFC_ADDR, NFC_V3_LAUNCH);
+
+	wait_op_done(host, 0);
+}
+
+/* This function sends an address (or partial address) to the
+ * NAND device. The address is used to select the source/destination for
+ * a NAND command. */
+static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
+{
+	dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
+
+	writew(addr, NFC_V1_V2_FLASH_ADDR);
+	writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, islast);
+}
+
+static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint32_t tmp;
+
+	tmp = readl(NFC_V3_CONFIG1);
+	tmp &= ~(7 << 4);
+	writel(tmp, NFC_V3_CONFIG1);
+
+	/* transfer data from NFC ram to nand */
+	writel(ops, NFC_V3_LAUNCH);
+
+	wait_op_done(host, false);
+}
+
+static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	/* NANDFC buffer 0 is used for page read/write */
+	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+
+	writew(ops, NFC_V1_V2_CONFIG2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, true);
+}
+
+static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	int bufs, i;
+
+	if (mtd->writesize > 512)
+		bufs = 4;
+	else
+		bufs = 1;
+
+	for (i = 0; i < bufs; i++) {
+
+		/* NANDFC buffer 0 is used for page read/write */
+		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
+
+		writew(ops, NFC_V1_V2_CONFIG2);
+
+		/* Wait for operation to complete */
+		wait_op_done(host, true);
+	}
+}
+
+static void send_read_id_v3(struct mxc_nand_host *host)
+{
+	/* Read ID into main buffer */
+	writel(NFC_ID, NFC_V3_LAUNCH);
+
+	wait_op_done(host, true);
+
+	memcpy32_fromio(host->data_buf, host->main_area0, 16);
+}
+
+/* Request the NANDFC to perform a read of the NAND device ID. */
+static void send_read_id_v1_v2(struct mxc_nand_host *host)
+{
+	/* NANDFC buffer 0 is used for device ID output */
+	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+
+	writew(NFC_ID, NFC_V1_V2_CONFIG2);
+
+	/* Wait for operation to complete */
+	wait_op_done(host, true);
+
+	memcpy32_fromio(host->data_buf, host->main_area0, 16);
+}
+
+static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
+{
+	writew(NFC_STATUS, NFC_V3_LAUNCH);
+	wait_op_done(host, true);
+
+	return readl(NFC_V3_CONFIG1) >> 16;
+}
+
+/* This function requests the NANDFC to perform a read of the
+ * NAND device status and returns the current status. */
+static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
+{
+	void __iomem *main_buf = host->main_area0;
+	uint32_t store;
+	uint16_t ret;
+
+	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+
+	/*
+	 * The device status is stored in main_area0. To
+	 * prevent corruption of the buffer save the value
+	 * and restore it afterwards.
+	 */
+	store = readl(main_buf);
+
+	writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
+	wait_op_done(host, true);
+
+	ret = readw(main_buf);
+
+	writel(store, main_buf);
+
+	return ret;
+}
+
+static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	uint16_t config1;
+
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return;
+
+	config1 = readw(NFC_V1_V2_CONFIG1);
+
+	if (enable)
+		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+	else
+		config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
+
+	writew(config1, NFC_V1_V2_CONFIG1);
+}
+
+static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	uint32_t config2;
+
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return;
+
+	config2 = readl(NFC_V3_CONFIG2);
+
+	if (enable)
+		config2 |= NFC_V3_CONFIG2_ECC_EN;
+	else
+		config2 &= ~NFC_V3_CONFIG2_ECC_EN;
+
+	writel(config2, NFC_V3_CONFIG2);
+}
+
+/* This functions is used by upper layer to checks if device is ready */
+static int mxc_nand_dev_ready(struct mtd_info *mtd)
+{
+	/*
+	 * NFC handles R/B internally. Therefore, this function
+	 * always returns status as ready.
+	 */
+	return 1;
+}
+
+static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
+				 bool ecc, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	unsigned int bitflips_corrected = 0;
+	int no_subpages;
+	int i;
+
+	host->devtype_data->enable_hwecc(chip, ecc);
+
+	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+	mxc_do_addr_cycle(mtd, 0, page);
+
+	if (mtd->writesize > 512)
+		host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
+
+	no_subpages = mtd->writesize >> 9;
+
+	for (i = 0; i < no_subpages; i++) {
+		uint16_t ecc_stats;
+
+		/* NANDFC buffer 0 is used for page read/write */
+		writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
+
+		writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
+
+		/* Wait for operation to complete */
+		wait_op_done(host, true);
+
+		ecc_stats = get_ecc_status_v1(host);
+
+		ecc_stats >>= 2;
+
+		if (buf && ecc) {
+			switch (ecc_stats & 0x3) {
+			case 0:
+			default:
+				break;
+			case 1:
+				mtd->ecc_stats.corrected++;
+				bitflips_corrected = 1;
+				break;
+			case 2:
+				mtd->ecc_stats.failed++;
+				break;
+			}
+		}
+	}
+
+	if (buf)
+		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+	if (oob)
+		copy_spare(mtd, true, oob);
+
+	return bitflips_corrected;
+}
+
+static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
+				    void *oob, bool ecc, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	unsigned int max_bitflips = 0;
+	u32 ecc_stat, err;
+	int no_subpages;
+	u8 ecc_bit_mask, err_limit;
+
+	host->devtype_data->enable_hwecc(chip, ecc);
+
+	host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
+	mxc_do_addr_cycle(mtd, 0, page);
+
+	if (mtd->writesize > 512)
+		host->devtype_data->send_cmd(host,
+				NAND_CMD_READSTART, true);
+
+	host->devtype_data->send_page(mtd, NFC_OUTPUT);
+
+	if (buf)
+		memcpy32_fromio(buf, host->main_area0, mtd->writesize);
+	if (oob)
+		copy_spare(mtd, true, oob);
+
+	ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
+	err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
+
+	no_subpages = mtd->writesize >> 9;
+
+	ecc_stat = host->devtype_data->get_ecc_status(host);
+
+	do {
+		err = ecc_stat & ecc_bit_mask;
+		if (err > err_limit) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += err;
+			max_bitflips = max_t(unsigned int, max_bitflips, err);
+		}
+
+		ecc_stat >>= 4;
+	} while (--no_subpages);
+
+	return max_bitflips;
+}
+
+static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			      uint8_t *buf, int oob_required, int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	void *oob_buf;
+
+	if (oob_required)
+		oob_buf = chip->oob_poi;
+	else
+		oob_buf = NULL;
+
+	return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
+}
+
+static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				  uint8_t *buf, int oob_required, int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	void *oob_buf;
+
+	if (oob_required)
+		oob_buf = chip->oob_poi;
+	else
+		oob_buf = NULL;
+
+	return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
+}
+
+static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			     int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+	return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
+					     page);
+}
+
+static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
+			       bool ecc, int page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+	host->devtype_data->enable_hwecc(chip, ecc);
+
+	host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
+	mxc_do_addr_cycle(mtd, 0, page);
+
+	memcpy32_toio(host->main_area0, buf, mtd->writesize);
+	copy_spare(mtd, false, chip->oob_poi);
+
+	host->devtype_data->send_page(mtd, NFC_INPUT);
+	host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
+	mxc_do_addr_cycle(mtd, 0, page);
+
+	return 0;
+}
+
+static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+				   const uint8_t *buf, int oob_required,
+				   int page)
+{
+	return mxc_nand_write_page(chip, buf, true, page);
+}
+
+static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				   const uint8_t *buf, int oob_required, int page)
+{
+	return mxc_nand_write_page(chip, buf, false, page);
+}
+
+static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			      int page)
+{
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+
+	memset(host->data_buf, 0xff, mtd->writesize);
+
+	return mxc_nand_write_page(chip, host->data_buf, false, page);
+}
+
+static u_char mxc_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint8_t ret;
+
+	/* Check for status request */
+	if (host->status_request)
+		return host->devtype_data->get_dev_status(host) & 0xFF;
+
+	if (nand_chip->options & NAND_BUSWIDTH_16) {
+		/* only take the lower byte of each word */
+		ret = *(uint16_t *)(host->data_buf + host->buf_start);
+
+		host->buf_start += 2;
+	} else {
+		ret = *(uint8_t *)(host->data_buf + host->buf_start);
+		host->buf_start++;
+	}
+
+	dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
+	return ret;
+}
+
+static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint16_t ret;
+
+	ret = *(uint16_t *)(host->data_buf + host->buf_start);
+	host->buf_start += 2;
+
+	return ret;
+}
+
+/* Write data of length len to buffer buf. The data to be
+ * written on NAND Flash is first copied to RAMbuffer. After the Data Input
+ * Operation by the NFC, the data is written to NAND Flash */
+static void mxc_nand_write_buf(struct mtd_info *mtd,
+				const u_char *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	u16 col = host->buf_start;
+	int n = mtd->oobsize + mtd->writesize - col;
+
+	n = min(n, len);
+
+	memcpy(host->data_buf + col, buf, n);
+
+	host->buf_start += n;
+}
+
+/* Read the data buffer from the NAND Flash. To read the data from NAND
+ * Flash first the data output cycle is initiated by the NFC, which copies
+ * the data to RAMbuffer. This data of length len is then copied to buffer buf.
+ */
+static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	u16 col = host->buf_start;
+	int n = mtd->oobsize + mtd->writesize - col;
+
+	n = min(n, len);
+
+	memcpy(buf, host->data_buf + col, n);
+
+	host->buf_start += n;
+}
+
+/* This function is used by upper layer for select and
+ * deselect of the NAND chip */
+static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	if (chip == -1) {
+		/* Disable the NFC clock */
+		if (host->clk_act) {
+			clk_disable_unprepare(host->clk);
+			host->clk_act = 0;
+		}
+		return;
+	}
+
+	if (!host->clk_act) {
+		/* Enable the NFC clock */
+		clk_prepare_enable(host->clk);
+		host->clk_act = 1;
+	}
+}
+
+static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	if (chip == -1) {
+		/* Disable the NFC clock */
+		if (host->clk_act) {
+			clk_disable_unprepare(host->clk);
+			host->clk_act = 0;
+		}
+		return;
+	}
+
+	if (!host->clk_act) {
+		/* Enable the NFC clock */
+		clk_prepare_enable(host->clk);
+		host->clk_act = 1;
+	}
+
+	host->active_cs = chip;
+	writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
+}
+
+#define MXC_V1_ECCBYTES		5
+
+static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+
+	if (section >= nand_chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 6;
+	oobregion->length = MXC_V1_ECCBYTES;
+
+	return 0;
+}
+
+static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+
+	if (section > nand_chip->ecc.steps)
+		return -ERANGE;
+
+	if (!section) {
+		if (mtd->writesize <= 512) {
+			oobregion->offset = 0;
+			oobregion->length = 5;
+		} else {
+			oobregion->offset = 2;
+			oobregion->length = 4;
+		}
+	} else {
+		oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
+		if (section < nand_chip->ecc.steps)
+			oobregion->length = (section * 16) + 6 -
+					    oobregion->offset;
+		else
+			oobregion->length = mtd->oobsize - oobregion->offset;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
+	.ecc = mxc_v1_ooblayout_ecc,
+	.free = mxc_v1_ooblayout_free,
+};
+
+static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
+
+	if (section >= nand_chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * stepsize) + 7;
+	oobregion->length = nand_chip->ecc.bytes;
+
+	return 0;
+}
+
+static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
+
+	if (section >= nand_chip->ecc.steps)
+		return -ERANGE;
+
+	if (!section) {
+		if (mtd->writesize <= 512) {
+			oobregion->offset = 0;
+			oobregion->length = 5;
+		} else {
+			oobregion->offset = 2;
+			oobregion->length = 4;
+		}
+	} else {
+		oobregion->offset = section * stepsize;
+		oobregion->length = 7;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
+	.ecc = mxc_v2_ooblayout_ecc,
+	.free = mxc_v2_ooblayout_free,
+};
+
+/*
+ * v2 and v3 type controllers can do 4bit or 8bit ecc depending
+ * on how much oob the nand chip has. For 8bit ecc we need at least
+ * 26 bytes of oob data per 512 byte block.
+ */
+static int get_eccsize(struct mtd_info *mtd)
+{
+	int oobbytes_per_512 = 0;
+
+	oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
+
+	if (oobbytes_per_512 < 26)
+		return 4;
+	else
+		return 8;
+}
+
+static void preset_v1(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint16_t config1 = 0;
+
+	if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
+		config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+
+	if (!host->devtype_data->irqpending_quirk)
+		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
+
+	host->eccsize = 1;
+
+	writew(config1, NFC_V1_V2_CONFIG1);
+	/* preset operation */
+
+	/* Unlock the internal RAM Buffer */
+	writew(0x2, NFC_V1_V2_CONFIG);
+
+	/* Blocks to be unlocked */
+	writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
+	writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
+
+	/* Unlock Block Command for given address range */
+	writew(0x4, NFC_V1_V2_WRPROT);
+}
+
+static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	int tRC_min_ns, tRC_ps, ret;
+	unsigned long rate, rate_round;
+	const struct nand_sdr_timings *timings;
+	u16 config1;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return -ENOTSUPP;
+
+	config1 = readw(NFC_V1_V2_CONFIG1);
+
+	tRC_min_ns = timings->tRC_min / 1000;
+	rate = 1000000000 / tRC_min_ns;
+
+	/*
+	 * For tRC < 30ns we have to use EDO mode. In this case the controller
+	 * does one access per clock cycle. Otherwise the controller does one
+	 * access in two clock cycles, thus we have to double the rate to the
+	 * controller.
+	 */
+	if (tRC_min_ns < 30) {
+		rate_round = clk_round_rate(host->clk, rate);
+		config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
+		tRC_ps = 1000000000 / (rate_round / 1000);
+	} else {
+		rate *= 2;
+		rate_round = clk_round_rate(host->clk, rate);
+		config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
+		tRC_ps = 1000000000 / (rate_round / 1000 / 2);
+	}
+
+	/*
+	 * The timing values compared against are from the i.MX25 Automotive
+	 * datasheet, Table 50. NFC Timing Parameters
+	 */
+	if (timings->tCLS_min > tRC_ps - 1000 ||
+	    timings->tCLH_min > tRC_ps - 2000 ||
+	    timings->tCS_min > tRC_ps - 1000 ||
+	    timings->tCH_min > tRC_ps - 2000 ||
+	    timings->tWP_min > tRC_ps - 1500 ||
+	    timings->tALS_min > tRC_ps ||
+	    timings->tALH_min > tRC_ps - 3000 ||
+	    timings->tDS_min > tRC_ps ||
+	    timings->tDH_min > tRC_ps - 5000 ||
+	    timings->tWC_min > 2 * tRC_ps ||
+	    timings->tWH_min > tRC_ps - 2500 ||
+	    timings->tRR_min > 6 * tRC_ps ||
+	    timings->tRP_min > 3 * tRC_ps / 2 ||
+	    timings->tRC_min > 2 * tRC_ps ||
+	    timings->tREH_min > (tRC_ps / 2) - 2500) {
+		dev_dbg(host->dev, "Timing out of bounds\n");
+		return -EINVAL;
+	}
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	ret = clk_set_rate(host->clk, rate);
+	if (ret)
+		return ret;
+
+	writew(config1, NFC_V1_V2_CONFIG1);
+
+	dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
+		config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
+		"normal");
+
+	return 0;
+}
+
+static void preset_v2(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	uint16_t config1 = 0;
+
+	config1 |= NFC_V2_CONFIG1_FP_INT;
+
+	if (!host->devtype_data->irqpending_quirk)
+		config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
+
+	if (mtd->writesize) {
+		uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
+
+		if (nand_chip->ecc.mode == NAND_ECC_HW)
+			config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
+
+		host->eccsize = get_eccsize(mtd);
+		if (host->eccsize == 4)
+			config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
+
+		config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
+	} else {
+		host->eccsize = 1;
+	}
+
+	writew(config1, NFC_V1_V2_CONFIG1);
+	/* preset operation */
+
+	/* spare area size in 16-bit half-words */
+	writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
+
+	/* Unlock the internal RAM Buffer */
+	writew(0x2, NFC_V1_V2_CONFIG);
+
+	/* Blocks to be unlocked */
+	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
+	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
+	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
+	writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
+	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
+	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
+	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
+	writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
+
+	/* Unlock Block Command for given address range */
+	writew(0x4, NFC_V1_V2_WRPROT);
+}
+
+static void preset_v3(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	uint32_t config2, config3;
+	int i, addr_phases;
+
+	writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
+	writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
+
+	/* Unlock the internal RAM Buffer */
+	writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
+			NFC_V3_WRPROT);
+
+	/* Blocks to be unlocked */
+	for (i = 0; i < NAND_MAX_CHIPS; i++)
+		writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
+
+	writel(0, NFC_V3_IPC);
+
+	config2 = NFC_V3_CONFIG2_ONE_CYCLE |
+		NFC_V3_CONFIG2_2CMD_PHASES |
+		NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
+		NFC_V3_CONFIG2_ST_CMD(0x70) |
+		NFC_V3_CONFIG2_INT_MSK |
+		NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
+
+	addr_phases = fls(chip->pagemask) >> 3;
+
+	if (mtd->writesize == 2048) {
+		config2 |= NFC_V3_CONFIG2_PS_2048;
+		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
+	} else if (mtd->writesize == 4096) {
+		config2 |= NFC_V3_CONFIG2_PS_4096;
+		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
+	} else {
+		config2 |= NFC_V3_CONFIG2_PS_512;
+		config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
+	}
+
+	if (mtd->writesize) {
+		if (chip->ecc.mode == NAND_ECC_HW)
+			config2 |= NFC_V3_CONFIG2_ECC_EN;
+
+		config2 |= NFC_V3_CONFIG2_PPB(
+				ffs(mtd->erasesize / mtd->writesize) - 6,
+				host->devtype_data->ppb_shift);
+		host->eccsize = get_eccsize(mtd);
+		if (host->eccsize == 8)
+			config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
+	}
+
+	writel(config2, NFC_V3_CONFIG2);
+
+	config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
+			NFC_V3_CONFIG3_NO_SDMA |
+			NFC_V3_CONFIG3_RBB_MODE |
+			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
+			NFC_V3_CONFIG3_ADD_OP(0);
+
+	if (!(chip->options & NAND_BUSWIDTH_16))
+		config3 |= NFC_V3_CONFIG3_FW8;
+
+	writel(config3, NFC_V3_CONFIG3);
+
+	writel(0, NFC_V3_DELAY_LINE);
+}
+
+/* Used by the upper layer to write command to NAND Flash for
+ * different operations to be carried out on NAND Flash */
+static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
+				int column, int page_addr)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+
+	dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
+	      command, column, page_addr);
+
+	/* Reset command state information */
+	host->status_request = false;
+
+	/* Command pre-processing step */
+	switch (command) {
+	case NAND_CMD_RESET:
+		host->devtype_data->preset(mtd);
+		host->devtype_data->send_cmd(host, command, false);
+		break;
+
+	case NAND_CMD_STATUS:
+		host->buf_start = 0;
+		host->status_request = true;
+
+		host->devtype_data->send_cmd(host, command, true);
+		WARN_ONCE(column != -1 || page_addr != -1,
+			  "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
+			  command, column, page_addr);
+		mxc_do_addr_cycle(mtd, column, page_addr);
+		break;
+
+	case NAND_CMD_READID:
+		host->devtype_data->send_cmd(host, command, true);
+		mxc_do_addr_cycle(mtd, column, page_addr);
+		host->devtype_data->send_read_id(host);
+		host->buf_start = 0;
+		break;
+
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+		host->devtype_data->send_cmd(host, command, false);
+		WARN_ONCE(column != -1,
+			  "Unexpected column value (cmd=%u, col=%d)\n",
+			  command, column);
+		mxc_do_addr_cycle(mtd, column, page_addr);
+
+		break;
+	case NAND_CMD_PARAM:
+		host->devtype_data->send_cmd(host, command, false);
+		mxc_do_addr_cycle(mtd, column, page_addr);
+		host->devtype_data->send_page(mtd, NFC_OUTPUT);
+		memcpy32_fromio(host->data_buf, host->main_area0, 512);
+		host->buf_start = 0;
+		break;
+	default:
+		WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
+			  command);
+		break;
+	}
+}
+
+static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip,
+				 int addr, u8 *subfeature_param)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	int i;
+
+	host->buf_start = 0;
+
+	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+		chip->write_byte(mtd, subfeature_param[i]);
+
+	memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
+	host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
+	mxc_do_addr_cycle(mtd, addr, -1);
+	host->devtype_data->send_page(mtd, NFC_INPUT);
+
+	return 0;
+}
+
+static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip,
+				 int addr, u8 *subfeature_param)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
+	int i;
+
+	host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
+	mxc_do_addr_cycle(mtd, addr, -1);
+	host->devtype_data->send_page(mtd, NFC_OUTPUT);
+	memcpy32_fromio(host->data_buf, host->main_area0, 512);
+	host->buf_start = 0;
+
+	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+		*subfeature_param++ = chip->read_byte(mtd);
+
+	return 0;
+}
+
+/*
+ * The generic flash bbt decriptors overlap with our ecc
+ * hardware, so define some i.MX specific ones.
+ */
+static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 0,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+	    | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs = 0,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/* v1 + irqpending_quirk: i.MX21 */
+static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
+	.preset = preset_v1,
+	.read_page = mxc_nand_read_page_v1,
+	.send_cmd = send_cmd_v1_v2,
+	.send_addr = send_addr_v1_v2,
+	.send_page = send_page_v1,
+	.send_read_id = send_read_id_v1_v2,
+	.get_dev_status = get_dev_status_v1_v2,
+	.check_int = check_int_v1_v2,
+	.irq_control = irq_control_v1_v2,
+	.get_ecc_status = get_ecc_status_v1,
+	.ooblayout = &mxc_v1_ooblayout_ops,
+	.select_chip = mxc_nand_select_chip_v1_v3,
+	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
+	.irqpending_quirk = 1,
+	.needs_ip = 0,
+	.regs_offset = 0xe00,
+	.spare0_offset = 0x800,
+	.spare_len = 16,
+	.eccbytes = 3,
+	.eccsize = 1,
+};
+
+/* v1 + !irqpending_quirk: i.MX27, i.MX31 */
+static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
+	.preset = preset_v1,
+	.read_page = mxc_nand_read_page_v1,
+	.send_cmd = send_cmd_v1_v2,
+	.send_addr = send_addr_v1_v2,
+	.send_page = send_page_v1,
+	.send_read_id = send_read_id_v1_v2,
+	.get_dev_status = get_dev_status_v1_v2,
+	.check_int = check_int_v1_v2,
+	.irq_control = irq_control_v1_v2,
+	.get_ecc_status = get_ecc_status_v1,
+	.ooblayout = &mxc_v1_ooblayout_ops,
+	.select_chip = mxc_nand_select_chip_v1_v3,
+	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
+	.irqpending_quirk = 0,
+	.needs_ip = 0,
+	.regs_offset = 0xe00,
+	.spare0_offset = 0x800,
+	.axi_offset = 0,
+	.spare_len = 16,
+	.eccbytes = 3,
+	.eccsize = 1,
+};
+
+/* v21: i.MX25, i.MX35 */
+static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
+	.preset = preset_v2,
+	.read_page = mxc_nand_read_page_v2_v3,
+	.send_cmd = send_cmd_v1_v2,
+	.send_addr = send_addr_v1_v2,
+	.send_page = send_page_v2,
+	.send_read_id = send_read_id_v1_v2,
+	.get_dev_status = get_dev_status_v1_v2,
+	.check_int = check_int_v1_v2,
+	.irq_control = irq_control_v1_v2,
+	.get_ecc_status = get_ecc_status_v2,
+	.ooblayout = &mxc_v2_ooblayout_ops,
+	.select_chip = mxc_nand_select_chip_v2,
+	.setup_data_interface = mxc_nand_v2_setup_data_interface,
+	.enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
+	.irqpending_quirk = 0,
+	.needs_ip = 0,
+	.regs_offset = 0x1e00,
+	.spare0_offset = 0x1000,
+	.axi_offset = 0,
+	.spare_len = 64,
+	.eccbytes = 9,
+	.eccsize = 0,
+};
+
+/* v3.2a: i.MX51 */
+static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
+	.preset = preset_v3,
+	.read_page = mxc_nand_read_page_v2_v3,
+	.send_cmd = send_cmd_v3,
+	.send_addr = send_addr_v3,
+	.send_page = send_page_v3,
+	.send_read_id = send_read_id_v3,
+	.get_dev_status = get_dev_status_v3,
+	.check_int = check_int_v3,
+	.irq_control = irq_control_v3,
+	.get_ecc_status = get_ecc_status_v3,
+	.ooblayout = &mxc_v2_ooblayout_ops,
+	.select_chip = mxc_nand_select_chip_v1_v3,
+	.enable_hwecc = mxc_nand_enable_hwecc_v3,
+	.irqpending_quirk = 0,
+	.needs_ip = 1,
+	.regs_offset = 0,
+	.spare0_offset = 0x1000,
+	.axi_offset = 0x1e00,
+	.spare_len = 64,
+	.eccbytes = 0,
+	.eccsize = 0,
+	.ppb_shift = 7,
+};
+
+/* v3.2b: i.MX53 */
+static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
+	.preset = preset_v3,
+	.read_page = mxc_nand_read_page_v2_v3,
+	.send_cmd = send_cmd_v3,
+	.send_addr = send_addr_v3,
+	.send_page = send_page_v3,
+	.send_read_id = send_read_id_v3,
+	.get_dev_status = get_dev_status_v3,
+	.check_int = check_int_v3,
+	.irq_control = irq_control_v3,
+	.get_ecc_status = get_ecc_status_v3,
+	.ooblayout = &mxc_v2_ooblayout_ops,
+	.select_chip = mxc_nand_select_chip_v1_v3,
+	.enable_hwecc = mxc_nand_enable_hwecc_v3,
+	.irqpending_quirk = 0,
+	.needs_ip = 1,
+	.regs_offset = 0,
+	.spare0_offset = 0x1000,
+	.axi_offset = 0x1e00,
+	.spare_len = 64,
+	.eccbytes = 0,
+	.eccsize = 0,
+	.ppb_shift = 8,
+};
+
+static inline int is_imx21_nfc(struct mxc_nand_host *host)
+{
+	return host->devtype_data == &imx21_nand_devtype_data;
+}
+
+static inline int is_imx27_nfc(struct mxc_nand_host *host)
+{
+	return host->devtype_data == &imx27_nand_devtype_data;
+}
+
+static inline int is_imx25_nfc(struct mxc_nand_host *host)
+{
+	return host->devtype_data == &imx25_nand_devtype_data;
+}
+
+static inline int is_imx51_nfc(struct mxc_nand_host *host)
+{
+	return host->devtype_data == &imx51_nand_devtype_data;
+}
+
+static inline int is_imx53_nfc(struct mxc_nand_host *host)
+{
+	return host->devtype_data == &imx53_nand_devtype_data;
+}
+
+static const struct platform_device_id mxcnd_devtype[] = {
+	{
+		.name = "imx21-nand",
+		.driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
+	}, {
+		.name = "imx27-nand",
+		.driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
+	}, {
+		.name = "imx25-nand",
+		.driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
+	}, {
+		.name = "imx51-nand",
+		.driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
+	}, {
+		.name = "imx53-nand",
+		.driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
+	}, {
+		/* sentinel */
+	}
+};
+MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
+
+#ifdef CONFIG_OF
+static const struct of_device_id mxcnd_dt_ids[] = {
+	{
+		.compatible = "fsl,imx21-nand",
+		.data = &imx21_nand_devtype_data,
+	}, {
+		.compatible = "fsl,imx27-nand",
+		.data = &imx27_nand_devtype_data,
+	}, {
+		.compatible = "fsl,imx25-nand",
+		.data = &imx25_nand_devtype_data,
+	}, {
+		.compatible = "fsl,imx51-nand",
+		.data = &imx51_nand_devtype_data,
+	}, {
+		.compatible = "fsl,imx53-nand",
+		.data = &imx53_nand_devtype_data,
+	},
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
+
+static int mxcnd_probe_dt(struct mxc_nand_host *host)
+{
+	struct device_node *np = host->dev->of_node;
+	const struct of_device_id *of_id =
+		of_match_device(mxcnd_dt_ids, host->dev);
+
+	if (!np)
+		return 1;
+
+	host->devtype_data = of_id->data;
+
+	return 0;
+}
+#else
+static int mxcnd_probe_dt(struct mxc_nand_host *host)
+{
+	return 1;
+}
+#endif
+
+static int mxcnd_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct mxc_nand_host *host = nand_get_controller_data(chip);
+	struct device *dev = mtd->dev.parent;
+
+	switch (chip->ecc.mode) {
+	case NAND_ECC_HW:
+		chip->ecc.read_page = mxc_nand_read_page;
+		chip->ecc.read_page_raw = mxc_nand_read_page_raw;
+		chip->ecc.read_oob = mxc_nand_read_oob;
+		chip->ecc.write_page = mxc_nand_write_page_ecc;
+		chip->ecc.write_page_raw = mxc_nand_write_page_raw;
+		chip->ecc.write_oob = mxc_nand_write_oob;
+		break;
+
+	case NAND_ECC_SOFT:
+		break;
+
+	default:
+		return -EINVAL;
+	}
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
+		chip->bbt_td = &bbt_main_descr;
+		chip->bbt_md = &bbt_mirror_descr;
+	}
+
+	/* Allocate the right size buffer now */
+	devm_kfree(dev, (void *)host->data_buf);
+	host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
+				      GFP_KERNEL);
+	if (!host->data_buf)
+		return -ENOMEM;
+
+	/* Call preset again, with correct writesize chip time */
+	host->devtype_data->preset(mtd);
+
+	if (!chip->ecc.bytes) {
+		if (host->eccsize == 8)
+			chip->ecc.bytes = 18;
+		else if (host->eccsize == 4)
+			chip->ecc.bytes = 9;
+	}
+
+	/*
+	 * Experimentation shows that i.MX NFC can only handle up to 218 oob
+	 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
+	 * into copying invalid data to/from the spare IO buffer, as this
+	 * might cause ECC data corruption when doing sub-page write to a
+	 * partially written page.
+	 */
+	host->used_oobsize = min(mtd->oobsize, 218U);
+
+	if (chip->ecc.mode == NAND_ECC_HW) {
+		if (is_imx21_nfc(host) || is_imx27_nfc(host))
+			chip->ecc.strength = 1;
+		else
+			chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops mxcnd_controller_ops = {
+	.attach_chip = mxcnd_attach_chip,
+};
+
+static int mxcnd_probe(struct platform_device *pdev)
+{
+	struct nand_chip *this;
+	struct mtd_info *mtd;
+	struct mxc_nand_host *host;
+	struct resource *res;
+	int err = 0;
+
+	/* Allocate memory for MTD device structure and private data */
+	host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
+			GFP_KERNEL);
+	if (!host)
+		return -ENOMEM;
+
+	/* allocate a temporary buffer for the nand_scan_ident() */
+	host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
+	if (!host->data_buf)
+		return -ENOMEM;
+
+	host->dev = &pdev->dev;
+	/* structures must be linked */
+	this = &host->nand;
+	mtd = nand_to_mtd(this);
+	mtd->dev.parent = &pdev->dev;
+	mtd->name = DRIVER_NAME;
+
+	/* 50 us command delay time */
+	this->chip_delay = 5;
+
+	nand_set_controller_data(this, host);
+	nand_set_flash_node(this, pdev->dev.of_node),
+	this->dev_ready = mxc_nand_dev_ready;
+	this->cmdfunc = mxc_nand_command;
+	this->read_byte = mxc_nand_read_byte;
+	this->read_word = mxc_nand_read_word;
+	this->write_buf = mxc_nand_write_buf;
+	this->read_buf = mxc_nand_read_buf;
+	this->set_features = mxc_nand_set_features;
+	this->get_features = mxc_nand_get_features;
+
+	host->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(host->clk))
+		return PTR_ERR(host->clk);
+
+	err = mxcnd_probe_dt(host);
+	if (err > 0) {
+		struct mxc_nand_platform_data *pdata =
+					dev_get_platdata(&pdev->dev);
+		if (pdata) {
+			host->pdata = *pdata;
+			host->devtype_data = (struct mxc_nand_devtype_data *)
+						pdev->id_entry->driver_data;
+		} else {
+			err = -ENODEV;
+		}
+	}
+	if (err < 0)
+		return err;
+
+	this->setup_data_interface = host->devtype_data->setup_data_interface;
+
+	if (host->devtype_data->needs_ip) {
+		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+		host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
+		if (IS_ERR(host->regs_ip))
+			return PTR_ERR(host->regs_ip);
+
+		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+	} else {
+		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	}
+
+	host->base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(host->base))
+		return PTR_ERR(host->base);
+
+	host->main_area0 = host->base;
+
+	if (host->devtype_data->regs_offset)
+		host->regs = host->base + host->devtype_data->regs_offset;
+	host->spare0 = host->base + host->devtype_data->spare0_offset;
+	if (host->devtype_data->axi_offset)
+		host->regs_axi = host->base + host->devtype_data->axi_offset;
+
+	this->ecc.bytes = host->devtype_data->eccbytes;
+	host->eccsize = host->devtype_data->eccsize;
+
+	this->select_chip = host->devtype_data->select_chip;
+	this->ecc.size = 512;
+	mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
+
+	if (host->pdata.hw_ecc) {
+		this->ecc.mode = NAND_ECC_HW;
+	} else {
+		this->ecc.mode = NAND_ECC_SOFT;
+		this->ecc.algo = NAND_ECC_HAMMING;
+	}
+
+	/* NAND bus width determines access functions used by upper layer */
+	if (host->pdata.width == 2)
+		this->options |= NAND_BUSWIDTH_16;
+
+	/* update flash based bbt */
+	if (host->pdata.flash_bbt)
+		this->bbt_options |= NAND_BBT_USE_FLASH;
+
+	init_completion(&host->op_completion);
+
+	host->irq = platform_get_irq(pdev, 0);
+	if (host->irq < 0)
+		return host->irq;
+
+	/*
+	 * Use host->devtype_data->irq_control() here instead of irq_control()
+	 * because we must not disable_irq_nosync without having requested the
+	 * irq.
+	 */
+	host->devtype_data->irq_control(host, 0);
+
+	err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
+			0, DRIVER_NAME, host);
+	if (err)
+		return err;
+
+	err = clk_prepare_enable(host->clk);
+	if (err)
+		return err;
+	host->clk_act = 1;
+
+	/*
+	 * Now that we "own" the interrupt make sure the interrupt mask bit is
+	 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
+	 * on this machine.
+	 */
+	if (host->devtype_data->irqpending_quirk) {
+		disable_irq_nosync(host->irq);
+		host->devtype_data->irq_control(host, 1);
+	}
+
+	/* Scan the NAND device */
+	this->dummy_controller.ops = &mxcnd_controller_ops;
+	err = nand_scan(mtd, is_imx25_nfc(host) ? 4 : 1);
+	if (err)
+		goto escan;
+
+	/* Register the partitions */
+	err = mtd_device_parse_register(mtd, part_probes, NULL,
+					host->pdata.parts,
+					host->pdata.nr_parts);
+	if (err)
+		goto cleanup_nand;
+
+	platform_set_drvdata(pdev, host);
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(this);
+escan:
+	if (host->clk_act)
+		clk_disable_unprepare(host->clk);
+
+	return err;
+}
+
+static int mxcnd_remove(struct platform_device *pdev)
+{
+	struct mxc_nand_host *host = platform_get_drvdata(pdev);
+
+	nand_release(nand_to_mtd(&host->nand));
+	if (host->clk_act)
+		clk_disable_unprepare(host->clk);
+
+	return 0;
+}
+
+static struct platform_driver mxcnd_driver = {
+	.driver = {
+		   .name = DRIVER_NAME,
+		   .of_match_table = of_match_ptr(mxcnd_dt_ids),
+	},
+	.id_table = mxcnd_devtype,
+	.probe = mxcnd_probe,
+	.remove = mxcnd_remove,
+};
+module_platform_driver(mxcnd_driver);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("MXC NAND MTD driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/nand_amd.c b/drivers/mtd/nand/raw/nand_amd.c
new file mode 100644
index 0000000..22f060f
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_amd.c
@@ -0,0 +1,51 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/rawnand.h>
+
+static void amd_nand_decode_id(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	nand_decode_ext_id(chip);
+
+	/*
+	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
+	 * some Spansion chips have erasesize that conflicts with size
+	 * listed in nand_ids table.
+	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
+	 */
+	if (chip->id.data[4] != 0x00 && chip->id.data[5] == 0x00 &&
+	    chip->id.data[6] == 0x00 && chip->id.data[7] == 0x00 &&
+	    mtd->writesize == 512) {
+		mtd->erasesize = 128 * 1024;
+		mtd->erasesize <<= ((chip->id.data[3] & 0x03) << 1);
+	}
+}
+
+static int amd_nand_init(struct nand_chip *chip)
+{
+	if (nand_is_slc(chip))
+		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+	return 0;
+}
+
+const struct nand_manufacturer_ops amd_nand_manuf_ops = {
+	.detect = amd_nand_decode_id,
+	.init = amd_nand_init,
+};
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
new file mode 100644
index 0000000..d527e44
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -0,0 +1,6862 @@
+/*
+ *  Overview:
+ *   This is the generic MTD driver for NAND flash devices. It should be
+ *   capable of working with almost all NAND chips currently available.
+ *
+ *	Additional technical information is available on
+ *	http://www.linux-mtd.infradead.org/doc/nand.html
+ *
+ *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
+ *
+ *  Credits:
+ *	David Woodhouse for adding multichip support
+ *
+ *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ *	rework for 2K page size chips
+ *
+ *  TODO:
+ *	Enable cached programming for 2k page size chips
+ *	Check, if mtd->ecctype should be set to MTD_ECC_HW
+ *	if we have HW ECC support.
+ *	BBT table is not serialized, has to be fixed
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <linux/nmi.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/nand_bch.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <linux/io.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+
+static int nand_get_device(struct mtd_info *mtd, int new_state);
+
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops);
+
+/* Define default oob placement schemes for large and small page devices */
+static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section > 1)
+		return -ERANGE;
+
+	if (!section) {
+		oobregion->offset = 0;
+		if (mtd->oobsize == 16)
+			oobregion->length = 4;
+		else
+			oobregion->length = 3;
+	} else {
+		if (mtd->oobsize == 8)
+			return -ERANGE;
+
+		oobregion->offset = 6;
+		oobregion->length = ecc->total - 4;
+	}
+
+	return 0;
+}
+
+static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	if (section > 1)
+		return -ERANGE;
+
+	if (mtd->oobsize == 16) {
+		if (section)
+			return -ERANGE;
+
+		oobregion->length = 8;
+		oobregion->offset = 8;
+	} else {
+		oobregion->length = 2;
+		if (!section)
+			oobregion->offset = 3;
+		else
+			oobregion->offset = 6;
+	}
+
+	return 0;
+}
+
+const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
+	.ecc = nand_ooblayout_ecc_sp,
+	.free = nand_ooblayout_free_sp,
+};
+EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
+
+static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section || !ecc->total)
+		return -ERANGE;
+
+	oobregion->length = ecc->total;
+	oobregion->offset = mtd->oobsize - oobregion->length;
+
+	return 0;
+}
+
+static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = mtd->oobsize - ecc->total - 2;
+	oobregion->offset = 2;
+
+	return 0;
+}
+
+const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
+	.ecc = nand_ooblayout_ecc_lp,
+	.free = nand_ooblayout_free_lp,
+};
+EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
+
+/*
+ * Support the old "large page" layout used for 1-bit Hamming ECC where ECC
+ * are placed at a fixed offset.
+ */
+static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
+					 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	switch (mtd->oobsize) {
+	case 64:
+		oobregion->offset = 40;
+		break;
+	case 128:
+		oobregion->offset = 80;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	oobregion->length = ecc->total;
+	if (oobregion->offset + oobregion->length > mtd->oobsize)
+		return -ERANGE;
+
+	return 0;
+}
+
+static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
+					  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ecc_offset = 0;
+
+	if (section < 0 || section > 1)
+		return -ERANGE;
+
+	switch (mtd->oobsize) {
+	case 64:
+		ecc_offset = 40;
+		break;
+	case 128:
+		ecc_offset = 80;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	if (section == 0) {
+		oobregion->offset = 2;
+		oobregion->length = ecc_offset - 2;
+	} else {
+		oobregion->offset = ecc_offset + ecc->total;
+		oobregion->length = mtd->oobsize - oobregion->offset;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
+	.ecc = nand_ooblayout_ecc_lp_hamming,
+	.free = nand_ooblayout_free_lp_hamming,
+};
+
+static int check_offs_len(struct mtd_info *mtd,
+					loff_t ofs, uint64_t len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret = 0;
+
+	/* Start address must align on block boundary */
+	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
+		pr_debug("%s: unaligned address\n", __func__);
+		ret = -EINVAL;
+	}
+
+	/* Length must align on block boundary */
+	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
+		pr_debug("%s: length not block aligned\n", __func__);
+		ret = -EINVAL;
+	}
+
+	return ret;
+}
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Release chip lock and wake up anyone waiting on the device.
+ */
+static void nand_release_device(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* Release the controller and the chip */
+	spin_lock(&chip->controller->lock);
+	chip->controller->active = NULL;
+	chip->state = FL_READY;
+	wake_up(&chip->controller->wq);
+	spin_unlock(&chip->controller->lock);
+}
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswidth
+ */
+static uint8_t nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	return readb(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswidth with endianness conversion.
+ *
+ */
+static uint8_t nand_read_byte16(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswidth without endianness conversion.
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	return readw(chip->IO_ADDR_R);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chipnr: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	switch (chipnr) {
+	case -1:
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
+		break;
+	case 0:
+		break;
+
+	default:
+		BUG();
+	}
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write single byte to chip
+ * @mtd: MTD device structure
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0]
+ */
+static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	chip->write_buf(mtd, &byte, 1);
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
+ * @mtd: MTD device structure
+ * @byte: value to write
+ *
+ * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
+ */
+static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint16_t word = byte;
+
+	/*
+	 * It's not entirely clear what should happen to I/O[15:8] when writing
+	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
+	 *
+	 *    When the host supports a 16-bit bus width, only data is
+	 *    transferred at the 16-bit width. All address and command line
+	 *    transfers shall use only the lower 8-bits of the data bus. During
+	 *    command transfers, the host may place any value on the upper
+	 *    8-bits of the data bus. During address transfers, the host shall
+	 *    set the upper 8-bits of the data bus to 00h.
+	 *
+	 * One user of the write_byte callback is nand_set_features. The
+	 * four parameters are specified to be written to I/O[7:0], but this is
+	 * neither an address nor a command transfer. Let's assume a 0 on the
+	 * upper I/O lines is OK.
+	 */
+	chip->write_buf(mtd, (uint8_t *)&word, 2);
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswidth.
+ */
+static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	iowrite8_rep(chip->IO_ADDR_W, buf, len);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswidth.
+ */
+static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	ioread8_rep(chip->IO_ADDR_R, buf, len);
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswidth.
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u16 *p = (u16 *) buf;
+
+	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswidth.
+ */
+static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u16 *p = (u16 *) buf;
+
+	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
+{
+	int page, page_end, res;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u8 bad;
+
+	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
+		ofs += mtd->erasesize - mtd->writesize;
+
+	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+	page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1);
+
+	for (; page < page_end; page++) {
+		res = chip->ecc.read_oob(mtd, chip, page);
+		if (res < 0)
+			return res;
+
+		bad = chip->oob_poi[chip->badblockpos];
+
+		if (likely(chip->badblockbits == 8))
+			res = bad != 0xFF;
+		else
+			res = hweight8(bad) < chip->badblockbits;
+		if (res)
+			return res;
+	}
+
+	return 0;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by a hardware
+ * specific driver. It provides the details for writing a bad block marker to a
+ * block.
+ */
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_oob_ops ops;
+	uint8_t buf[2] = { 0, 0 };
+	int ret = 0, res, i = 0;
+
+	memset(&ops, 0, sizeof(ops));
+	ops.oobbuf = buf;
+	ops.ooboffs = chip->badblockpos;
+	if (chip->options & NAND_BUSWIDTH_16) {
+		ops.ooboffs &= ~0x01;
+		ops.len = ops.ooblen = 2;
+	} else {
+		ops.len = ops.ooblen = 1;
+	}
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	/* Write to first/last page(s) if necessary */
+	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
+		ofs += mtd->erasesize - mtd->writesize;
+	do {
+		res = nand_do_write_oob(mtd, ofs, &ops);
+		if (!ret)
+			ret = res;
+
+		i++;
+		ofs += mtd->writesize;
+	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
+
+	return ret;
+}
+
+/**
+ * nand_block_markbad_lowlevel - mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This function performs the generic NAND bad block marking steps (i.e., bad
+ * block table(s) and/or marker(s)). We only allow the hardware driver to
+ * specify how to write bad block markers to OOB (chip->block_markbad).
+ *
+ * We try operations in the following order:
+ *
+ *  (1) erase the affected block, to allow OOB marker to be written cleanly
+ *  (2) write bad block marker to OOB area of affected block (unless flag
+ *      NAND_BBT_NO_OOB_BBM is present)
+ *  (3) update the BBT
+ *
+ * Note that we retain the first error encountered in (2) or (3), finish the
+ * procedures, and dump the error in the end.
+*/
+static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int res, ret = 0;
+
+	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
+		struct erase_info einfo;
+
+		/* Attempt erase before marking OOB */
+		memset(&einfo, 0, sizeof(einfo));
+		einfo.addr = ofs;
+		einfo.len = 1ULL << chip->phys_erase_shift;
+		nand_erase_nand(mtd, &einfo, 0);
+
+		/* Write bad block marker to OOB */
+		nand_get_device(mtd, FL_WRITING);
+		ret = chip->block_markbad(mtd, ofs);
+		nand_release_device(mtd);
+	}
+
+	/* Mark block bad in BBT */
+	if (chip->bbt) {
+		res = nand_markbad_bbt(mtd, ofs);
+		if (!ret)
+			ret = res;
+	}
+
+	if (!ret)
+		mtd->ecc_stats.badblocks++;
+
+	return ret;
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ *
+ * Check, if the device is write protected. The function expects, that the
+ * device is already selected.
+ */
+static int nand_check_wp(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u8 status;
+	int ret;
+
+	/* Broken xD cards report WP despite being writable */
+	if (chip->options & NAND_BROKEN_XD)
+		return 0;
+
+	/* Check the WP bit */
+	ret = nand_status_op(chip, &status);
+	if (ret)
+		return ret;
+
+	return status & NAND_STATUS_WP ? 0 : 1;
+}
+
+/**
+ * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * Check if the block is marked as reserved.
+ */
+static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (!chip->bbt)
+		return 0;
+	/* Return info from the table */
+	return nand_isreserved_bbt(mtd, ofs);
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (!chip->bbt)
+		return chip->block_bad(mtd, ofs);
+
+	/* Return info from the table */
+	return nand_isbad_bbt(mtd, ofs, allowbbt);
+}
+
+/**
+ * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
+ * @mtd: MTD device structure
+ * @timeo: Timeout
+ *
+ * Helper function for nand_wait_ready used when needing to wait in interrupt
+ * context.
+ */
+static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int i;
+
+	/* Wait for the device to get ready */
+	for (i = 0; i < timeo; i++) {
+		if (chip->dev_ready(mtd))
+			break;
+		touch_softlockup_watchdog();
+		mdelay(1);
+	}
+}
+
+/**
+ * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
+ * @mtd: MTD device structure
+ *
+ * Wait for the ready pin after a command, and warn if a timeout occurs.
+ */
+void nand_wait_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	unsigned long timeo = 400;
+
+	if (in_interrupt() || oops_in_progress)
+		return panic_nand_wait_ready(mtd, timeo);
+
+	/* Wait until command is processed or timeout occurs */
+	timeo = jiffies + msecs_to_jiffies(timeo);
+	do {
+		if (chip->dev_ready(mtd))
+			return;
+		cond_resched();
+	} while (time_before(jiffies, timeo));
+
+	if (!chip->dev_ready(mtd))
+		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
+}
+EXPORT_SYMBOL_GPL(nand_wait_ready);
+
+/**
+ * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
+ * @mtd: MTD device structure
+ * @timeo: Timeout in ms
+ *
+ * Wait for status ready (i.e. command done) or timeout.
+ */
+static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret;
+
+	timeo = jiffies + msecs_to_jiffies(timeo);
+	do {
+		u8 status;
+
+		ret = nand_read_data_op(chip, &status, sizeof(status), true);
+		if (ret)
+			return;
+
+		if (status & NAND_STATUS_READY)
+			break;
+		touch_softlockup_watchdog();
+	} while (time_before(jiffies, timeo));
+};
+
+/**
+ * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
+ * @chip: NAND chip structure
+ * @timeout_ms: Timeout in ms
+ *
+ * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
+ * If that does not happen whitin the specified timeout, -ETIMEDOUT is
+ * returned.
+ *
+ * This helper is intended to be used when the controller does not have access
+ * to the NAND R/B pin.
+ *
+ * Be aware that calling this helper from an ->exec_op() implementation means
+ * ->exec_op() must be re-entrant.
+ *
+ * Return 0 if the NAND chip is ready, a negative error otherwise.
+ */
+int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
+{
+	const struct nand_sdr_timings *timings;
+	u8 status = 0;
+	int ret;
+
+	if (!chip->exec_op)
+		return -ENOTSUPP;
+
+	/* Wait tWB before polling the STATUS reg. */
+	timings = nand_get_sdr_timings(&chip->data_interface);
+	ndelay(PSEC_TO_NSEC(timings->tWB_max));
+
+	ret = nand_status_op(chip, NULL);
+	if (ret)
+		return ret;
+
+	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms);
+	do {
+		ret = nand_read_data_op(chip, &status, sizeof(status), true);
+		if (ret)
+			break;
+
+		if (status & NAND_STATUS_READY)
+			break;
+
+		/*
+		 * Typical lowest execution time for a tR on most NANDs is 10us,
+		 * use this as polling delay before doing something smarter (ie.
+		 * deriving a delay from the timeout value, timeout_ms/ratio).
+		 */
+		udelay(10);
+	} while	(time_before(jiffies, timeout_ms));
+
+	/*
+	 * We have to exit READ_STATUS mode in order to read real data on the
+	 * bus in case the WAITRDY instruction is preceding a DATA_IN
+	 * instruction.
+	 */
+	nand_exit_status_op(chip);
+
+	if (ret)
+		return ret;
+
+	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
+};
+EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page devices
+ * (512 Bytes per page).
+ */
+static void nand_command(struct mtd_info *mtd, unsigned int command,
+			 int column, int page_addr)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
+
+	/* Write out the command to the device */
+	if (command == NAND_CMD_SEQIN) {
+		int readcmd;
+
+		if (column >= mtd->writesize) {
+			/* OOB area */
+			column -= mtd->writesize;
+			readcmd = NAND_CMD_READOOB;
+		} else if (column < 256) {
+			/* First 256 bytes --> READ0 */
+			readcmd = NAND_CMD_READ0;
+		} else {
+			column -= 256;
+			readcmd = NAND_CMD_READ1;
+		}
+		chip->cmd_ctrl(mtd, readcmd, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+	}
+	if (command != NAND_CMD_NONE)
+		chip->cmd_ctrl(mtd, command, ctrl);
+
+	/* Address cycle, when necessary */
+	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
+	/* Serially input address */
+	if (column != -1) {
+		/* Adjust columns for 16 bit buswidth */
+		if (chip->options & NAND_BUSWIDTH_16 &&
+				!nand_opcode_8bits(command))
+			column >>= 1;
+		chip->cmd_ctrl(mtd, column, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+	}
+	if (page_addr != -1) {
+		chip->cmd_ctrl(mtd, page_addr, ctrl);
+		ctrl &= ~NAND_CTRL_CHANGE;
+		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
+		if (chip->options & NAND_ROW_ADDR_3)
+			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
+	}
+	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Program and erase have their own busy handlers status and sequential
+	 * in needs no delay
+	 */
+	switch (command) {
+
+	case NAND_CMD_NONE:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_READID:
+	case NAND_CMD_SET_FEATURES:
+		return;
+
+	case NAND_CMD_RESET:
+		if (chip->dev_ready)
+			break;
+		udelay(chip->chip_delay);
+		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd,
+			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+		nand_wait_status_ready(mtd, 250);
+		return;
+
+		/* This applies to read commands */
+	case NAND_CMD_READ0:
+		/*
+		 * READ0 is sometimes used to exit GET STATUS mode. When this
+		 * is the case no address cycles are requested, and we can use
+		 * this information to detect that we should not wait for the
+		 * device to be ready.
+		 */
+		if (column == -1 && page_addr == -1)
+			return;
+
+	default:
+		/*
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay
+		 */
+		if (!chip->dev_ready) {
+			udelay(chip->chip_delay);
+			return;
+		}
+	}
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine.
+	 */
+	ndelay(100);
+
+	nand_wait_ready(mtd);
+}
+
+static void nand_ccs_delay(struct nand_chip *chip)
+{
+	/*
+	 * The controller already takes care of waiting for tCCS when the RNDIN
+	 * or RNDOUT command is sent, return directly.
+	 */
+	if (!(chip->options & NAND_WAIT_TCCS))
+		return;
+
+	/*
+	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
+	 * (which should be safe for all NANDs).
+	 */
+	if (chip->setup_data_interface)
+		ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000);
+	else
+		ndelay(500);
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page
+ * devices. We don't have the separate regions as we have in the small page
+ * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
+ */
+static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
+			    int column, int page_addr)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+
+	/* Emulate NAND_CMD_READOOB */
+	if (command == NAND_CMD_READOOB) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	/* Command latch cycle */
+	if (command != NAND_CMD_NONE)
+		chip->cmd_ctrl(mtd, command,
+			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+
+	if (column != -1 || page_addr != -1) {
+		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
+
+		/* Serially input address */
+		if (column != -1) {
+			/* Adjust columns for 16 bit buswidth */
+			if (chip->options & NAND_BUSWIDTH_16 &&
+					!nand_opcode_8bits(command))
+				column >>= 1;
+			chip->cmd_ctrl(mtd, column, ctrl);
+			ctrl &= ~NAND_CTRL_CHANGE;
+
+			/* Only output a single addr cycle for 8bits opcodes. */
+			if (!nand_opcode_8bits(command))
+				chip->cmd_ctrl(mtd, column >> 8, ctrl);
+		}
+		if (page_addr != -1) {
+			chip->cmd_ctrl(mtd, page_addr, ctrl);
+			chip->cmd_ctrl(mtd, page_addr >> 8,
+				       NAND_NCE | NAND_ALE);
+			if (chip->options & NAND_ROW_ADDR_3)
+				chip->cmd_ctrl(mtd, page_addr >> 16,
+					       NAND_NCE | NAND_ALE);
+		}
+	}
+	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
+
+	/*
+	 * Program and erase have their own busy handlers status, sequential
+	 * in and status need no delay.
+	 */
+	switch (command) {
+
+	case NAND_CMD_NONE:
+	case NAND_CMD_CACHEDPROG:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_READID:
+	case NAND_CMD_SET_FEATURES:
+		return;
+
+	case NAND_CMD_RNDIN:
+		nand_ccs_delay(chip);
+		return;
+
+	case NAND_CMD_RESET:
+		if (chip->dev_ready)
+			break;
+		udelay(chip->chip_delay);
+		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
+			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+			       NAND_NCE | NAND_CTRL_CHANGE);
+		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
+		nand_wait_status_ready(mtd, 250);
+		return;
+
+	case NAND_CMD_RNDOUT:
+		/* No ready / busy check necessary */
+		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
+			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+			       NAND_NCE | NAND_CTRL_CHANGE);
+
+		nand_ccs_delay(chip);
+		return;
+
+	case NAND_CMD_READ0:
+		/*
+		 * READ0 is sometimes used to exit GET STATUS mode. When this
+		 * is the case no address cycles are requested, and we can use
+		 * this information to detect that READSTART should not be
+		 * issued.
+		 */
+		if (column == -1 && page_addr == -1)
+			return;
+
+		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
+			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
+		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
+			       NAND_NCE | NAND_CTRL_CHANGE);
+
+		/* This applies to read commands */
+	default:
+		/*
+		 * If we don't have access to the busy pin, we apply the given
+		 * command delay.
+		 */
+		if (!chip->dev_ready) {
+			udelay(chip->chip_delay);
+			return;
+		}
+	}
+
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine.
+	 */
+	ndelay(100);
+
+	nand_wait_ready(mtd);
+}
+
+/**
+ * panic_nand_get_device - [GENERIC] Get chip for selected access
+ * @chip: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Used when in panic, no locks are taken.
+ */
+static void panic_nand_get_device(struct nand_chip *chip,
+		      struct mtd_info *mtd, int new_state)
+{
+	/* Hardware controller shared among independent devices */
+	chip->controller->active = chip;
+	chip->state = new_state;
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static int
+nand_get_device(struct mtd_info *mtd, int new_state)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	spinlock_t *lock = &chip->controller->lock;
+	wait_queue_head_t *wq = &chip->controller->wq;
+	DECLARE_WAITQUEUE(wait, current);
+retry:
+	spin_lock(lock);
+
+	/* Hardware controller shared among independent devices */
+	if (!chip->controller->active)
+		chip->controller->active = chip;
+
+	if (chip->controller->active == chip && chip->state == FL_READY) {
+		chip->state = new_state;
+		spin_unlock(lock);
+		return 0;
+	}
+	if (new_state == FL_PM_SUSPENDED) {
+		if (chip->controller->active->state == FL_PM_SUSPENDED) {
+			chip->state = FL_PM_SUSPENDED;
+			spin_unlock(lock);
+			return 0;
+		}
+	}
+	set_current_state(TASK_UNINTERRUPTIBLE);
+	add_wait_queue(wq, &wait);
+	spin_unlock(lock);
+	schedule();
+	remove_wait_queue(wq, &wait);
+	goto retry;
+}
+
+/**
+ * panic_nand_wait - [GENERIC] wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ * @timeo: timeout
+ *
+ * Wait for command done. This is a helper function for nand_wait used when
+ * we are in interrupt context. May happen when in panic and trying to write
+ * an oops through mtdoops.
+ */
+static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
+			    unsigned long timeo)
+{
+	int i;
+	for (i = 0; i < timeo; i++) {
+		if (chip->dev_ready) {
+			if (chip->dev_ready(mtd))
+				break;
+		} else {
+			int ret;
+			u8 status;
+
+			ret = nand_read_data_op(chip, &status, sizeof(status),
+						true);
+			if (ret)
+				return;
+
+			if (status & NAND_STATUS_READY)
+				break;
+		}
+		mdelay(1);
+	}
+}
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND chip structure
+ *
+ * Wait for command done. This applies to erase and program only.
+ */
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+
+	unsigned long timeo = 400;
+	u8 status;
+	int ret;
+
+	/*
+	 * Apply this short delay always to ensure that we do wait tWB in any
+	 * case on any machine.
+	 */
+	ndelay(100);
+
+	ret = nand_status_op(chip, NULL);
+	if (ret)
+		return ret;
+
+	if (in_interrupt() || oops_in_progress)
+		panic_nand_wait(mtd, chip, timeo);
+	else {
+		timeo = jiffies + msecs_to_jiffies(timeo);
+		do {
+			if (chip->dev_ready) {
+				if (chip->dev_ready(mtd))
+					break;
+			} else {
+				ret = nand_read_data_op(chip, &status,
+							sizeof(status), true);
+				if (ret)
+					return ret;
+
+				if (status & NAND_STATUS_READY)
+					break;
+			}
+			cond_resched();
+		} while (time_before(jiffies, timeo));
+	}
+
+	ret = nand_read_data_op(chip, &status, sizeof(status), true);
+	if (ret)
+		return ret;
+
+	/* This can happen if in case of timeout or buggy dev_ready */
+	WARN_ON(!(status & NAND_STATUS_READY));
+	return status;
+}
+
+static bool nand_supports_get_features(struct nand_chip *chip, int addr)
+{
+	return (chip->parameters.supports_set_get_features &&
+		test_bit(addr, chip->parameters.get_feature_list));
+}
+
+static bool nand_supports_set_features(struct nand_chip *chip, int addr)
+{
+	return (chip->parameters.supports_set_get_features &&
+		test_bit(addr, chip->parameters.set_feature_list));
+}
+
+/**
+ * nand_get_features - wrapper to perform a GET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_get_features(struct nand_chip *chip, int addr,
+		      u8 *subfeature_param)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (!nand_supports_get_features(chip, addr))
+		return -ENOTSUPP;
+
+	return chip->get_features(mtd, chip, addr, subfeature_param);
+}
+EXPORT_SYMBOL_GPL(nand_get_features);
+
+/**
+ * nand_set_features - wrapper to perform a SET_FEATURE
+ * @chip: NAND chip info structure
+ * @addr: feature address
+ * @subfeature_param: the subfeature parameters, a four bytes array
+ *
+ * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
+ * operation cannot be handled.
+ */
+int nand_set_features(struct nand_chip *chip, int addr,
+		      u8 *subfeature_param)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (!nand_supports_set_features(chip, addr))
+		return -ENOTSUPP;
+
+	return chip->set_features(mtd, chip, addr, subfeature_param);
+}
+EXPORT_SYMBOL_GPL(nand_set_features);
+
+/**
+ * nand_reset_data_interface - Reset data interface and timings
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Reset the Data interface and timings to ONFI mode 0.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	if (!chip->setup_data_interface)
+		return 0;
+
+	/*
+	 * The ONFI specification says:
+	 * "
+	 * To transition from NV-DDR or NV-DDR2 to the SDR data
+	 * interface, the host shall use the Reset (FFh) command
+	 * using SDR timing mode 0. A device in any timing mode is
+	 * required to recognize Reset (FFh) command issued in SDR
+	 * timing mode 0.
+	 * "
+	 *
+	 * Configure the data interface in SDR mode and set the
+	 * timings to timing mode 0.
+	 */
+
+	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
+	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
+	if (ret)
+		pr_err("Failed to configure data interface to SDR timing mode 0\n");
+
+	return ret;
+}
+
+/**
+ * nand_setup_data_interface - Setup the best data interface and timings
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Find and configure the best data interface and NAND timings supported by
+ * the chip and the driver.
+ * First tries to retrieve supported timing modes from ONFI information,
+ * and if the NAND chip does not support ONFI, relies on the
+ * ->onfi_timing_mode_default specified in the nand_ids table.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
+		chip->onfi_timing_mode_default,
+	};
+	int ret;
+
+	if (!chip->setup_data_interface)
+		return 0;
+
+	/* Change the mode on the chip side (if supported by the NAND chip) */
+	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
+		chip->select_chip(mtd, chipnr);
+		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
+					tmode_param);
+		chip->select_chip(mtd, -1);
+		if (ret)
+			return ret;
+	}
+
+	/* Change the mode on the controller side */
+	ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface);
+	if (ret)
+		return ret;
+
+	/* Check the mode has been accepted by the chip, if supported */
+	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
+		return 0;
+
+	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
+	chip->select_chip(mtd, chipnr);
+	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
+				tmode_param);
+	chip->select_chip(mtd, -1);
+	if (ret)
+		goto err_reset_chip;
+
+	if (tmode_param[0] != chip->onfi_timing_mode_default) {
+		pr_warn("timing mode %d not acknowledged by the NAND chip\n",
+			chip->onfi_timing_mode_default);
+		goto err_reset_chip;
+	}
+
+	return 0;
+
+err_reset_chip:
+	/*
+	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
+	 * timing mode.
+	 */
+	nand_reset_data_interface(chip, chipnr);
+	chip->select_chip(mtd, chipnr);
+	nand_reset_op(chip);
+	chip->select_chip(mtd, -1);
+
+	return ret;
+}
+
+/**
+ * nand_init_data_interface - find the best data interface and timings
+ * @chip: The NAND chip
+ *
+ * Find the best data interface and NAND timings supported by the chip
+ * and the driver.
+ * First tries to retrieve supported timing modes from ONFI information,
+ * and if the NAND chip does not support ONFI, relies on the
+ * ->onfi_timing_mode_default specified in the nand_ids table. After this
+ * function nand_chip->data_interface is initialized with the best timing mode
+ * available.
+ *
+ * Returns 0 for success or negative error code otherwise.
+ */
+static int nand_init_data_interface(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int modes, mode, ret;
+
+	if (!chip->setup_data_interface)
+		return 0;
+
+	/*
+	 * First try to identify the best timings from ONFI parameters and
+	 * if the NAND does not support ONFI, fallback to the default ONFI
+	 * timing mode.
+	 */
+	modes = onfi_get_async_timing_mode(chip);
+	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
+		if (!chip->onfi_timing_mode_default)
+			return 0;
+
+		modes = GENMASK(chip->onfi_timing_mode_default, 0);
+	}
+
+
+	for (mode = fls(modes) - 1; mode >= 0; mode--) {
+		ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode);
+		if (ret)
+			continue;
+
+		/*
+		 * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the
+		 * controller supports the requested timings.
+		 */
+		ret = chip->setup_data_interface(mtd,
+						 NAND_DATA_IFACE_CHECK_ONLY,
+						 &chip->data_interface);
+		if (!ret) {
+			chip->onfi_timing_mode_default = mode;
+			break;
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * nand_fill_column_cycles - fill the column cycles of an address
+ * @chip: The NAND chip
+ * @addrs: Array of address cycles to fill
+ * @offset_in_page: The offset in the page
+ *
+ * Fills the first or the first two bytes of the @addrs field depending
+ * on the NAND bus width and the page size.
+ *
+ * Returns the number of cycles needed to encode the column, or a negative
+ * error code in case one of the arguments is invalid.
+ */
+static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
+				   unsigned int offset_in_page)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/* Make sure the offset is less than the actual page size. */
+	if (offset_in_page > mtd->writesize + mtd->oobsize)
+		return -EINVAL;
+
+	/*
+	 * On small page NANDs, there's a dedicated command to access the OOB
+	 * area, and the column address is relative to the start of the OOB
+	 * area, not the start of the page. Asjust the address accordingly.
+	 */
+	if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
+		offset_in_page -= mtd->writesize;
+
+	/*
+	 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
+	 * wide, then it must be divided by 2.
+	 */
+	if (chip->options & NAND_BUSWIDTH_16) {
+		if (WARN_ON(offset_in_page % 2))
+			return -EINVAL;
+
+		offset_in_page /= 2;
+	}
+
+	addrs[0] = offset_in_page;
+
+	/*
+	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
+	 * need 2
+	 */
+	if (mtd->writesize <= 512)
+		return 1;
+
+	addrs[1] = offset_in_page >> 8;
+
+	return 2;
+}
+
+static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
+				     unsigned int offset_in_page, void *buf,
+				     unsigned int len)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(&chip->data_interface);
+	u8 addrs[4];
+	struct nand_op_instr instrs[] = {
+		NAND_OP_CMD(NAND_CMD_READ0, 0),
+		NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
+		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
+				 PSEC_TO_NSEC(sdr->tRR_min)),
+		NAND_OP_DATA_IN(len, buf, 0),
+	};
+	struct nand_operation op = NAND_OPERATION(instrs);
+	int ret;
+
+	/* Drop the DATA_IN instruction if len is set to 0. */
+	if (!len)
+		op.ninstrs--;
+
+	if (offset_in_page >= mtd->writesize)
+		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
+	else if (offset_in_page >= 256 &&
+		 !(chip->options & NAND_BUSWIDTH_16))
+		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
+
+	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
+	if (ret < 0)
+		return ret;
+
+	addrs[1] = page;
+	addrs[2] = page >> 8;
+
+	if (chip->options & NAND_ROW_ADDR_3) {
+		addrs[3] = page >> 16;
+		instrs[1].ctx.addr.naddrs++;
+	}
+
+	return nand_exec_op(chip, &op);
+}
+
+static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
+				     unsigned int offset_in_page, void *buf,
+				     unsigned int len)
+{
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(&chip->data_interface);
+	u8 addrs[5];
+	struct nand_op_instr instrs[] = {
+		NAND_OP_CMD(NAND_CMD_READ0, 0),
+		NAND_OP_ADDR(4, addrs, 0),
+		NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
+		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
+				 PSEC_TO_NSEC(sdr->tRR_min)),
+		NAND_OP_DATA_IN(len, buf, 0),
+	};
+	struct nand_operation op = NAND_OPERATION(instrs);
+	int ret;
+
+	/* Drop the DATA_IN instruction if len is set to 0. */
+	if (!len)
+		op.ninstrs--;
+
+	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
+	if (ret < 0)
+		return ret;
+
+	addrs[2] = page;
+	addrs[3] = page >> 8;
+
+	if (chip->options & NAND_ROW_ADDR_3) {
+		addrs[4] = page >> 16;
+		instrs[1].ctx.addr.naddrs++;
+	}
+
+	return nand_exec_op(chip, &op);
+}
+
+/**
+ * nand_read_page_op - Do a READ PAGE operation
+ * @chip: The NAND chip
+ * @page: page to read
+ * @offset_in_page: offset within the page
+ * @buf: buffer used to store the data
+ * @len: length of the buffer
+ *
+ * This function issues a READ PAGE operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_read_page_op(struct nand_chip *chip, unsigned int page,
+		      unsigned int offset_in_page, void *buf, unsigned int len)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (len && !buf)
+		return -EINVAL;
+
+	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
+		return -EINVAL;
+
+	if (chip->exec_op) {
+		if (mtd->writesize > 512)
+			return nand_lp_exec_read_page_op(chip, page,
+							 offset_in_page, buf,
+							 len);
+
+		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
+						 buf, len);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page);
+	if (len)
+		chip->read_buf(mtd, buf, len);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_read_page_op);
+
+/**
+ * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
+ * @chip: The NAND chip
+ * @page: parameter page to read
+ * @buf: buffer used to store the data
+ * @len: length of the buffer
+ *
+ * This function issues a READ PARAMETER PAGE operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
+				   unsigned int len)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int i;
+	u8 *p = buf;
+
+	if (len && !buf)
+		return -EINVAL;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_PARAM, 0),
+			NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
+			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
+					 PSEC_TO_NSEC(sdr->tRR_min)),
+			NAND_OP_8BIT_DATA_IN(len, buf, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		/* Drop the DATA_IN instruction if len is set to 0. */
+		if (!len)
+			op.ninstrs--;
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1);
+	for (i = 0; i < len; i++)
+		p[i] = chip->read_byte(mtd);
+
+	return 0;
+}
+
+/**
+ * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
+ * @chip: The NAND chip
+ * @offset_in_page: offset within the page
+ * @buf: buffer used to store the data
+ * @len: length of the buffer
+ * @force_8bit: force 8-bit bus access
+ *
+ * This function issues a CHANGE READ COLUMN operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_change_read_column_op(struct nand_chip *chip,
+			       unsigned int offset_in_page, void *buf,
+			       unsigned int len, bool force_8bit)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (len && !buf)
+		return -EINVAL;
+
+	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
+		return -EINVAL;
+
+	/* Small page NANDs do not support column change. */
+	if (mtd->writesize <= 512)
+		return -ENOTSUPP;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		u8 addrs[2] = {};
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
+			NAND_OP_ADDR(2, addrs, 0),
+			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
+				    PSEC_TO_NSEC(sdr->tCCS_min)),
+			NAND_OP_DATA_IN(len, buf, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+		int ret;
+
+		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
+		if (ret < 0)
+			return ret;
+
+		/* Drop the DATA_IN instruction if len is set to 0. */
+		if (!len)
+			op.ninstrs--;
+
+		instrs[3].ctx.data.force_8bit = force_8bit;
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1);
+	if (len)
+		chip->read_buf(mtd, buf, len);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_change_read_column_op);
+
+/**
+ * nand_read_oob_op - Do a READ OOB operation
+ * @chip: The NAND chip
+ * @page: page to read
+ * @offset_in_oob: offset within the OOB area
+ * @buf: buffer used to store the data
+ * @len: length of the buffer
+ *
+ * This function issues a READ OOB operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
+		     unsigned int offset_in_oob, void *buf, unsigned int len)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (len && !buf)
+		return -EINVAL;
+
+	if (offset_in_oob + len > mtd->oobsize)
+		return -EINVAL;
+
+	if (chip->exec_op)
+		return nand_read_page_op(chip, page,
+					 mtd->writesize + offset_in_oob,
+					 buf, len);
+
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page);
+	if (len)
+		chip->read_buf(mtd, buf, len);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_read_oob_op);
+
+static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
+				  unsigned int offset_in_page, const void *buf,
+				  unsigned int len, bool prog)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_sdr_timings *sdr =
+		nand_get_sdr_timings(&chip->data_interface);
+	u8 addrs[5] = {};
+	struct nand_op_instr instrs[] = {
+		/*
+		 * The first instruction will be dropped if we're dealing
+		 * with a large page NAND and adjusted if we're dealing
+		 * with a small page NAND and the page offset is > 255.
+		 */
+		NAND_OP_CMD(NAND_CMD_READ0, 0),
+		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
+		NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
+		NAND_OP_DATA_OUT(len, buf, 0),
+		NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
+		NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
+	};
+	struct nand_operation op = NAND_OPERATION(instrs);
+	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
+	int ret;
+	u8 status;
+
+	if (naddrs < 0)
+		return naddrs;
+
+	addrs[naddrs++] = page;
+	addrs[naddrs++] = page >> 8;
+	if (chip->options & NAND_ROW_ADDR_3)
+		addrs[naddrs++] = page >> 16;
+
+	instrs[2].ctx.addr.naddrs = naddrs;
+
+	/* Drop the last two instructions if we're not programming the page. */
+	if (!prog) {
+		op.ninstrs -= 2;
+		/* Also drop the DATA_OUT instruction if empty. */
+		if (!len)
+			op.ninstrs--;
+	}
+
+	if (mtd->writesize <= 512) {
+		/*
+		 * Small pages need some more tweaking: we have to adjust the
+		 * first instruction depending on the page offset we're trying
+		 * to access.
+		 */
+		if (offset_in_page >= mtd->writesize)
+			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
+		else if (offset_in_page >= 256 &&
+			 !(chip->options & NAND_BUSWIDTH_16))
+			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
+	} else {
+		/*
+		 * Drop the first command if we're dealing with a large page
+		 * NAND.
+		 */
+		op.instrs++;
+		op.ninstrs--;
+	}
+
+	ret = nand_exec_op(chip, &op);
+	if (!prog || ret)
+		return ret;
+
+	ret = nand_status_op(chip, &status);
+	if (ret)
+		return ret;
+
+	return status;
+}
+
+/**
+ * nand_prog_page_begin_op - starts a PROG PAGE operation
+ * @chip: The NAND chip
+ * @page: page to write
+ * @offset_in_page: offset within the page
+ * @buf: buffer containing the data to write to the page
+ * @len: length of the buffer
+ *
+ * This function issues the first half of a PROG PAGE operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
+			    unsigned int offset_in_page, const void *buf,
+			    unsigned int len)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (len && !buf)
+		return -EINVAL;
+
+	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
+		return -EINVAL;
+
+	if (chip->exec_op)
+		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
+					      len, false);
+
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
+
+	if (buf)
+		chip->write_buf(mtd, buf, len);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
+
+/**
+ * nand_prog_page_end_op - ends a PROG PAGE operation
+ * @chip: The NAND chip
+ *
+ * This function issues the second half of a PROG PAGE operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_prog_page_end_op(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+	u8 status;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_PAGEPROG,
+				    PSEC_TO_NSEC(sdr->tWB_max)),
+			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		ret = nand_exec_op(chip, &op);
+		if (ret)
+			return ret;
+
+		ret = nand_status_op(chip, &status);
+		if (ret)
+			return ret;
+	} else {
+		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+		ret = chip->waitfunc(mtd, chip);
+		if (ret < 0)
+			return ret;
+
+		status = ret;
+	}
+
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
+
+/**
+ * nand_prog_page_op - Do a full PROG PAGE operation
+ * @chip: The NAND chip
+ * @page: page to write
+ * @offset_in_page: offset within the page
+ * @buf: buffer containing the data to write to the page
+ * @len: length of the buffer
+ *
+ * This function issues a full PROG PAGE operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
+		      unsigned int offset_in_page, const void *buf,
+		      unsigned int len)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int status;
+
+	if (!len || !buf)
+		return -EINVAL;
+
+	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
+		return -EINVAL;
+
+	if (chip->exec_op) {
+		status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
+						len, true);
+	} else {
+		chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page);
+		chip->write_buf(mtd, buf, len);
+		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+		status = chip->waitfunc(mtd, chip);
+	}
+
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_prog_page_op);
+
+/**
+ * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
+ * @chip: The NAND chip
+ * @offset_in_page: offset within the page
+ * @buf: buffer containing the data to send to the NAND
+ * @len: length of the buffer
+ * @force_8bit: force 8-bit bus access
+ *
+ * This function issues a CHANGE WRITE COLUMN operation.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_change_write_column_op(struct nand_chip *chip,
+				unsigned int offset_in_page,
+				const void *buf, unsigned int len,
+				bool force_8bit)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (len && !buf)
+		return -EINVAL;
+
+	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
+		return -EINVAL;
+
+	/* Small page NANDs do not support column change. */
+	if (mtd->writesize <= 512)
+		return -ENOTSUPP;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		u8 addrs[2];
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
+			NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
+			NAND_OP_DATA_OUT(len, buf, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+		int ret;
+
+		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
+		if (ret < 0)
+			return ret;
+
+		instrs[2].ctx.data.force_8bit = force_8bit;
+
+		/* Drop the DATA_OUT instruction if len is set to 0. */
+		if (!len)
+			op.ninstrs--;
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1);
+	if (len)
+		chip->write_buf(mtd, buf, len);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_change_write_column_op);
+
+/**
+ * nand_readid_op - Do a READID operation
+ * @chip: The NAND chip
+ * @addr: address cycle to pass after the READID command
+ * @buf: buffer used to store the ID
+ * @len: length of the buffer
+ *
+ * This function sends a READID command and reads back the ID returned by the
+ * NAND.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
+		   unsigned int len)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int i;
+	u8 *id = buf;
+
+	if (len && !buf)
+		return -EINVAL;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_READID, 0),
+			NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
+			NAND_OP_8BIT_DATA_IN(len, buf, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		/* Drop the DATA_IN instruction if len is set to 0. */
+		if (!len)
+			op.ninstrs--;
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1);
+
+	for (i = 0; i < len; i++)
+		id[i] = chip->read_byte(mtd);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_readid_op);
+
+/**
+ * nand_status_op - Do a STATUS operation
+ * @chip: The NAND chip
+ * @status: out variable to store the NAND status
+ *
+ * This function sends a STATUS command and reads back the status returned by
+ * the NAND.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_status_op(struct nand_chip *chip, u8 *status)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_STATUS,
+				    PSEC_TO_NSEC(sdr->tADL_min)),
+			NAND_OP_8BIT_DATA_IN(1, status, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		if (!status)
+			op.ninstrs--;
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+	if (status)
+		*status = chip->read_byte(mtd);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_status_op);
+
+/**
+ * nand_exit_status_op - Exit a STATUS operation
+ * @chip: The NAND chip
+ *
+ * This function sends a READ0 command to cancel the effect of the STATUS
+ * command to avoid reading only the status until a new read command is sent.
+ *
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_exit_status_op(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (chip->exec_op) {
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_READ0, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_exit_status_op);
+
+/**
+ * nand_erase_op - Do an erase operation
+ * @chip: The NAND chip
+ * @eraseblock: block to erase
+ *
+ * This function sends an ERASE command and waits for the NAND to be ready
+ * before returning.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int page = eraseblock <<
+			    (chip->phys_erase_shift - chip->page_shift);
+	int ret;
+	u8 status;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		u8 addrs[3] = {	page, page >> 8, page >> 16 };
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
+			NAND_OP_ADDR(2, addrs, 0),
+			NAND_OP_CMD(NAND_CMD_ERASE2,
+				    PSEC_TO_MSEC(sdr->tWB_max)),
+			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		if (chip->options & NAND_ROW_ADDR_3)
+			instrs[1].ctx.addr.naddrs++;
+
+		ret = nand_exec_op(chip, &op);
+		if (ret)
+			return ret;
+
+		ret = nand_status_op(chip, &status);
+		if (ret)
+			return ret;
+	} else {
+		chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+		chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+
+		ret = chip->waitfunc(mtd, chip);
+		if (ret < 0)
+			return ret;
+
+		status = ret;
+	}
+
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_erase_op);
+
+/**
+ * nand_set_features_op - Do a SET FEATURES operation
+ * @chip: The NAND chip
+ * @feature: feature id
+ * @data: 4 bytes of data
+ *
+ * This function sends a SET FEATURES command and waits for the NAND to be
+ * ready before returning.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+static int nand_set_features_op(struct nand_chip *chip, u8 feature,
+				const void *data)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const u8 *params = data;
+	int i, ret;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
+			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
+			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
+					      PSEC_TO_NSEC(sdr->tWB_max)),
+			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1);
+	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+		chip->write_byte(mtd, params[i]);
+
+	ret = chip->waitfunc(mtd, chip);
+	if (ret < 0)
+		return ret;
+
+	if (ret & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+
+/**
+ * nand_get_features_op - Do a GET FEATURES operation
+ * @chip: The NAND chip
+ * @feature: feature id
+ * @data: 4 bytes of data
+ *
+ * This function sends a GET FEATURES command and waits for the NAND to be
+ * ready before returning.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+static int nand_get_features_op(struct nand_chip *chip, u8 feature,
+				void *data)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *params = data;
+	int i;
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
+			NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
+			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
+					 PSEC_TO_NSEC(sdr->tRR_min)),
+			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
+					     data, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1);
+	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
+		params[i] = chip->read_byte(mtd);
+
+	return 0;
+}
+
+/**
+ * nand_reset_op - Do a reset operation
+ * @chip: The NAND chip
+ *
+ * This function sends a RESET command and waits for the NAND to be ready
+ * before returning.
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_reset_op(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (chip->exec_op) {
+		const struct nand_sdr_timings *sdr =
+			nand_get_sdr_timings(&chip->data_interface);
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
+			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_reset_op);
+
+/**
+ * nand_read_data_op - Read data from the NAND
+ * @chip: The NAND chip
+ * @buf: buffer used to store the data
+ * @len: length of the buffer
+ * @force_8bit: force 8-bit bus access
+ *
+ * This function does a raw data read on the bus. Usually used after launching
+ * another NAND operation like nand_read_page_op().
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
+		      bool force_8bit)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (!len || !buf)
+		return -EINVAL;
+
+	if (chip->exec_op) {
+		struct nand_op_instr instrs[] = {
+			NAND_OP_DATA_IN(len, buf, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		instrs[0].ctx.data.force_8bit = force_8bit;
+
+		return nand_exec_op(chip, &op);
+	}
+
+	if (force_8bit) {
+		u8 *p = buf;
+		unsigned int i;
+
+		for (i = 0; i < len; i++)
+			p[i] = chip->read_byte(mtd);
+	} else {
+		chip->read_buf(mtd, buf, len);
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_read_data_op);
+
+/**
+ * nand_write_data_op - Write data from the NAND
+ * @chip: The NAND chip
+ * @buf: buffer containing the data to send on the bus
+ * @len: length of the buffer
+ * @force_8bit: force 8-bit bus access
+ *
+ * This function does a raw data write on the bus. Usually used after launching
+ * another NAND operation like nand_write_page_begin_op().
+ * This function does not select/unselect the CS line.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_write_data_op(struct nand_chip *chip, const void *buf,
+		       unsigned int len, bool force_8bit)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (!len || !buf)
+		return -EINVAL;
+
+	if (chip->exec_op) {
+		struct nand_op_instr instrs[] = {
+			NAND_OP_DATA_OUT(len, buf, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		instrs[0].ctx.data.force_8bit = force_8bit;
+
+		return nand_exec_op(chip, &op);
+	}
+
+	if (force_8bit) {
+		const u8 *p = buf;
+		unsigned int i;
+
+		for (i = 0; i < len; i++)
+			chip->write_byte(mtd, p[i]);
+	} else {
+		chip->write_buf(mtd, buf, len);
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_write_data_op);
+
+/**
+ * struct nand_op_parser_ctx - Context used by the parser
+ * @instrs: array of all the instructions that must be addressed
+ * @ninstrs: length of the @instrs array
+ * @subop: Sub-operation to be passed to the NAND controller
+ *
+ * This structure is used by the core to split NAND operations into
+ * sub-operations that can be handled by the NAND controller.
+ */
+struct nand_op_parser_ctx {
+	const struct nand_op_instr *instrs;
+	unsigned int ninstrs;
+	struct nand_subop subop;
+};
+
+/**
+ * nand_op_parser_must_split_instr - Checks if an instruction must be split
+ * @pat: the parser pattern element that matches @instr
+ * @instr: pointer to the instruction to check
+ * @start_offset: this is an in/out parameter. If @instr has already been
+ *		  split, then @start_offset is the offset from which to start
+ *		  (either an address cycle or an offset in the data buffer).
+ *		  Conversely, if the function returns true (ie. instr must be
+ *		  split), this parameter is updated to point to the first
+ *		  data/address cycle that has not been taken care of.
+ *
+ * Some NAND controllers are limited and cannot send X address cycles with a
+ * unique operation, or cannot read/write more than Y bytes at the same time.
+ * In this case, split the instruction that does not fit in a single
+ * controller-operation into two or more chunks.
+ *
+ * Returns true if the instruction must be split, false otherwise.
+ * The @start_offset parameter is also updated to the offset at which the next
+ * bundle of instruction must start (if an address or a data instruction).
+ */
+static bool
+nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
+				const struct nand_op_instr *instr,
+				unsigned int *start_offset)
+{
+	switch (pat->type) {
+	case NAND_OP_ADDR_INSTR:
+		if (!pat->ctx.addr.maxcycles)
+			break;
+
+		if (instr->ctx.addr.naddrs - *start_offset >
+		    pat->ctx.addr.maxcycles) {
+			*start_offset += pat->ctx.addr.maxcycles;
+			return true;
+		}
+		break;
+
+	case NAND_OP_DATA_IN_INSTR:
+	case NAND_OP_DATA_OUT_INSTR:
+		if (!pat->ctx.data.maxlen)
+			break;
+
+		if (instr->ctx.data.len - *start_offset >
+		    pat->ctx.data.maxlen) {
+			*start_offset += pat->ctx.data.maxlen;
+			return true;
+		}
+		break;
+
+	default:
+		break;
+	}
+
+	return false;
+}
+
+/**
+ * nand_op_parser_match_pat - Checks if a pattern matches the instructions
+ *			      remaining in the parser context
+ * @pat: the pattern to test
+ * @ctx: the parser context structure to match with the pattern @pat
+ *
+ * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
+ * Returns true if this is the case, false ortherwise. When true is returned,
+ * @ctx->subop is updated with the set of instructions to be passed to the
+ * controller driver.
+ */
+static bool
+nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
+			 struct nand_op_parser_ctx *ctx)
+{
+	unsigned int instr_offset = ctx->subop.first_instr_start_off;
+	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
+	const struct nand_op_instr *instr = ctx->subop.instrs;
+	unsigned int i, ninstrs;
+
+	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
+		/*
+		 * The pattern instruction does not match the operation
+		 * instruction. If the instruction is marked optional in the
+		 * pattern definition, we skip the pattern element and continue
+		 * to the next one. If the element is mandatory, there's no
+		 * match and we can return false directly.
+		 */
+		if (instr->type != pat->elems[i].type) {
+			if (!pat->elems[i].optional)
+				return false;
+
+			continue;
+		}
+
+		/*
+		 * Now check the pattern element constraints. If the pattern is
+		 * not able to handle the whole instruction in a single step,
+		 * we have to split it.
+		 * The last_instr_end_off value comes back updated to point to
+		 * the position where we have to split the instruction (the
+		 * start of the next subop chunk).
+		 */
+		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
+						    &instr_offset)) {
+			ninstrs++;
+			i++;
+			break;
+		}
+
+		instr++;
+		ninstrs++;
+		instr_offset = 0;
+	}
+
+	/*
+	 * This can happen if all instructions of a pattern are optional.
+	 * Still, if there's not at least one instruction handled by this
+	 * pattern, this is not a match, and we should try the next one (if
+	 * any).
+	 */
+	if (!ninstrs)
+		return false;
+
+	/*
+	 * We had a match on the pattern head, but the pattern may be longer
+	 * than the instructions we're asked to execute. We need to make sure
+	 * there's no mandatory elements in the pattern tail.
+	 */
+	for (; i < pat->nelems; i++) {
+		if (!pat->elems[i].optional)
+			return false;
+	}
+
+	/*
+	 * We have a match: update the subop structure accordingly and return
+	 * true.
+	 */
+	ctx->subop.ninstrs = ninstrs;
+	ctx->subop.last_instr_end_off = instr_offset;
+
+	return true;
+}
+
+#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
+static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
+{
+	const struct nand_op_instr *instr;
+	char *prefix = "      ";
+	unsigned int i;
+
+	pr_debug("executing subop:\n");
+
+	for (i = 0; i < ctx->ninstrs; i++) {
+		instr = &ctx->instrs[i];
+
+		if (instr == &ctx->subop.instrs[0])
+			prefix = "    ->";
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			pr_debug("%sCMD      [0x%02x]\n", prefix,
+				 instr->ctx.cmd.opcode);
+			break;
+		case NAND_OP_ADDR_INSTR:
+			pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
+				 instr->ctx.addr.naddrs,
+				 instr->ctx.addr.naddrs < 64 ?
+				 instr->ctx.addr.naddrs : 64,
+				 instr->ctx.addr.addrs);
+			break;
+		case NAND_OP_DATA_IN_INSTR:
+			pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
+				 instr->ctx.data.len,
+				 instr->ctx.data.force_8bit ?
+				 ", force 8-bit" : "");
+			break;
+		case NAND_OP_DATA_OUT_INSTR:
+			pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
+				 instr->ctx.data.len,
+				 instr->ctx.data.force_8bit ?
+				 ", force 8-bit" : "");
+			break;
+		case NAND_OP_WAITRDY_INSTR:
+			pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
+				 instr->ctx.waitrdy.timeout_ms);
+			break;
+		}
+
+		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
+			prefix = "      ";
+	}
+}
+#else
+static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
+{
+	/* NOP */
+}
+#endif
+
+/**
+ * nand_op_parser_exec_op - exec_op parser
+ * @chip: the NAND chip
+ * @parser: patterns description provided by the controller driver
+ * @op: the NAND operation to address
+ * @check_only: when true, the function only checks if @op can be handled but
+ *		does not execute the operation
+ *
+ * Helper function designed to ease integration of NAND controller drivers that
+ * only support a limited set of instruction sequences. The supported sequences
+ * are described in @parser, and the framework takes care of splitting @op into
+ * multiple sub-operations (if required) and pass them back to the ->exec()
+ * callback of the matching pattern if @check_only is set to false.
+ *
+ * NAND controller drivers should call this function from their own ->exec_op()
+ * implementation.
+ *
+ * Returns 0 on success, a negative error code otherwise. A failure can be
+ * caused by an unsupported operation (none of the supported patterns is able
+ * to handle the requested operation), or an error returned by one of the
+ * matching pattern->exec() hook.
+ */
+int nand_op_parser_exec_op(struct nand_chip *chip,
+			   const struct nand_op_parser *parser,
+			   const struct nand_operation *op, bool check_only)
+{
+	struct nand_op_parser_ctx ctx = {
+		.subop.instrs = op->instrs,
+		.instrs = op->instrs,
+		.ninstrs = op->ninstrs,
+	};
+	unsigned int i;
+
+	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
+		int ret;
+
+		for (i = 0; i < parser->npatterns; i++) {
+			const struct nand_op_parser_pattern *pattern;
+
+			pattern = &parser->patterns[i];
+			if (!nand_op_parser_match_pat(pattern, &ctx))
+				continue;
+
+			nand_op_parser_trace(&ctx);
+
+			if (check_only)
+				break;
+
+			ret = pattern->exec(chip, &ctx.subop);
+			if (ret)
+				return ret;
+
+			break;
+		}
+
+		if (i == parser->npatterns) {
+			pr_debug("->exec_op() parser: pattern not found!\n");
+			return -ENOTSUPP;
+		}
+
+		/*
+		 * Update the context structure by pointing to the start of the
+		 * next subop.
+		 */
+		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
+		if (ctx.subop.last_instr_end_off)
+			ctx.subop.instrs -= 1;
+
+		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
+
+static bool nand_instr_is_data(const struct nand_op_instr *instr)
+{
+	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
+			 instr->type == NAND_OP_DATA_OUT_INSTR);
+}
+
+static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
+				      unsigned int instr_idx)
+{
+	return subop && instr_idx < subop->ninstrs;
+}
+
+static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
+					     unsigned int instr_idx)
+{
+	if (instr_idx)
+		return 0;
+
+	return subop->first_instr_start_off;
+}
+
+/**
+ * nand_subop_get_addr_start_off - Get the start offset in an address array
+ * @subop: The entire sub-operation
+ * @instr_idx: Index of the instruction inside the sub-operation
+ *
+ * During driver development, one could be tempted to directly use the
+ * ->addr.addrs field of address instructions. This is wrong as address
+ * instructions might be split.
+ *
+ * Given an address instruction, returns the offset of the first cycle to issue.
+ */
+unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
+					   unsigned int instr_idx)
+{
+	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
+		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
+		return 0;
+
+	return nand_subop_get_start_off(subop, instr_idx);
+}
+EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
+
+/**
+ * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
+ * @subop: The entire sub-operation
+ * @instr_idx: Index of the instruction inside the sub-operation
+ *
+ * During driver development, one could be tempted to directly use the
+ * ->addr->naddrs field of a data instruction. This is wrong as instructions
+ * might be split.
+ *
+ * Given an address instruction, returns the number of address cycle to issue.
+ */
+unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
+					 unsigned int instr_idx)
+{
+	int start_off, end_off;
+
+	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
+		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
+		return 0;
+
+	start_off = nand_subop_get_addr_start_off(subop, instr_idx);
+
+	if (instr_idx == subop->ninstrs - 1 &&
+	    subop->last_instr_end_off)
+		end_off = subop->last_instr_end_off;
+	else
+		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
+
+	return end_off - start_off;
+}
+EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
+
+/**
+ * nand_subop_get_data_start_off - Get the start offset in a data array
+ * @subop: The entire sub-operation
+ * @instr_idx: Index of the instruction inside the sub-operation
+ *
+ * During driver development, one could be tempted to directly use the
+ * ->data->buf.{in,out} field of data instructions. This is wrong as data
+ * instructions might be split.
+ *
+ * Given a data instruction, returns the offset to start from.
+ */
+unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
+					   unsigned int instr_idx)
+{
+	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
+		    !nand_instr_is_data(&subop->instrs[instr_idx])))
+		return 0;
+
+	return nand_subop_get_start_off(subop, instr_idx);
+}
+EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
+
+/**
+ * nand_subop_get_data_len - Get the number of bytes to retrieve
+ * @subop: The entire sub-operation
+ * @instr_idx: Index of the instruction inside the sub-operation
+ *
+ * During driver development, one could be tempted to directly use the
+ * ->data->len field of a data instruction. This is wrong as data instructions
+ * might be split.
+ *
+ * Returns the length of the chunk of data to send/receive.
+ */
+unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
+				     unsigned int instr_idx)
+{
+	int start_off = 0, end_off;
+
+	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
+		    !nand_instr_is_data(&subop->instrs[instr_idx])))
+		return 0;
+
+	start_off = nand_subop_get_data_start_off(subop, instr_idx);
+
+	if (instr_idx == subop->ninstrs - 1 &&
+	    subop->last_instr_end_off)
+		end_off = subop->last_instr_end_off;
+	else
+		end_off = subop->instrs[instr_idx].ctx.data.len;
+
+	return end_off - start_off;
+}
+EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
+
+/**
+ * nand_reset - Reset and initialize a NAND device
+ * @chip: The NAND chip
+ * @chipnr: Internal die id
+ *
+ * Save the timings data structure, then apply SDR timings mode 0 (see
+ * nand_reset_data_interface for details), do the reset operation, and
+ * apply back the previous timings.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+int nand_reset(struct nand_chip *chip, int chipnr)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_data_interface saved_data_intf = chip->data_interface;
+	int ret;
+
+	ret = nand_reset_data_interface(chip, chipnr);
+	if (ret)
+		return ret;
+
+	/*
+	 * The CS line has to be released before we can apply the new NAND
+	 * interface settings, hence this weird ->select_chip() dance.
+	 */
+	chip->select_chip(mtd, chipnr);
+	ret = nand_reset_op(chip);
+	chip->select_chip(mtd, -1);
+	if (ret)
+		return ret;
+
+	/*
+	 * A nand_reset_data_interface() put both the NAND chip and the NAND
+	 * controller in timings mode 0. If the default mode for this chip is
+	 * also 0, no need to proceed to the change again. Plus, at probe time,
+	 * nand_setup_data_interface() uses ->set/get_features() which would
+	 * fail anyway as the parameter page is not available yet.
+	 */
+	if (!chip->onfi_timing_mode_default)
+		return 0;
+
+	chip->data_interface = saved_data_intf;
+	ret = nand_setup_data_interface(chip, chipnr);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(nand_reset);
+
+/**
+ * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
+ * @buf: buffer to test
+ * @len: buffer length
+ * @bitflips_threshold: maximum number of bitflips
+ *
+ * Check if a buffer contains only 0xff, which means the underlying region
+ * has been erased and is ready to be programmed.
+ * The bitflips_threshold specify the maximum number of bitflips before
+ * considering the region is not erased.
+ * Note: The logic of this function has been extracted from the memweight
+ * implementation, except that nand_check_erased_buf function exit before
+ * testing the whole buffer if the number of bitflips exceed the
+ * bitflips_threshold value.
+ *
+ * Returns a positive number of bitflips less than or equal to
+ * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
+ * threshold.
+ */
+static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
+{
+	const unsigned char *bitmap = buf;
+	int bitflips = 0;
+	int weight;
+
+	for (; len && ((uintptr_t)bitmap) % sizeof(long);
+	     len--, bitmap++) {
+		weight = hweight8(*bitmap);
+		bitflips += BITS_PER_BYTE - weight;
+		if (unlikely(bitflips > bitflips_threshold))
+			return -EBADMSG;
+	}
+
+	for (; len >= sizeof(long);
+	     len -= sizeof(long), bitmap += sizeof(long)) {
+		unsigned long d = *((unsigned long *)bitmap);
+		if (d == ~0UL)
+			continue;
+		weight = hweight_long(d);
+		bitflips += BITS_PER_LONG - weight;
+		if (unlikely(bitflips > bitflips_threshold))
+			return -EBADMSG;
+	}
+
+	for (; len > 0; len--, bitmap++) {
+		weight = hweight8(*bitmap);
+		bitflips += BITS_PER_BYTE - weight;
+		if (unlikely(bitflips > bitflips_threshold))
+			return -EBADMSG;
+	}
+
+	return bitflips;
+}
+
+/**
+ * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
+ *				 0xff data
+ * @data: data buffer to test
+ * @datalen: data length
+ * @ecc: ECC buffer
+ * @ecclen: ECC length
+ * @extraoob: extra OOB buffer
+ * @extraooblen: extra OOB length
+ * @bitflips_threshold: maximum number of bitflips
+ *
+ * Check if a data buffer and its associated ECC and OOB data contains only
+ * 0xff pattern, which means the underlying region has been erased and is
+ * ready to be programmed.
+ * The bitflips_threshold specify the maximum number of bitflips before
+ * considering the region as not erased.
+ *
+ * Note:
+ * 1/ ECC algorithms are working on pre-defined block sizes which are usually
+ *    different from the NAND page size. When fixing bitflips, ECC engines will
+ *    report the number of errors per chunk, and the NAND core infrastructure
+ *    expect you to return the maximum number of bitflips for the whole page.
+ *    This is why you should always use this function on a single chunk and
+ *    not on the whole page. After checking each chunk you should update your
+ *    max_bitflips value accordingly.
+ * 2/ When checking for bitflips in erased pages you should not only check
+ *    the payload data but also their associated ECC data, because a user might
+ *    have programmed almost all bits to 1 but a few. In this case, we
+ *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
+ *    this case.
+ * 3/ The extraoob argument is optional, and should be used if some of your OOB
+ *    data are protected by the ECC engine.
+ *    It could also be used if you support subpages and want to attach some
+ *    extra OOB data to an ECC chunk.
+ *
+ * Returns a positive number of bitflips less than or equal to
+ * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
+ * threshold. In case of success, the passed buffers are filled with 0xff.
+ */
+int nand_check_erased_ecc_chunk(void *data, int datalen,
+				void *ecc, int ecclen,
+				void *extraoob, int extraooblen,
+				int bitflips_threshold)
+{
+	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
+
+	data_bitflips = nand_check_erased_buf(data, datalen,
+					      bitflips_threshold);
+	if (data_bitflips < 0)
+		return data_bitflips;
+
+	bitflips_threshold -= data_bitflips;
+
+	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
+	if (ecc_bitflips < 0)
+		return ecc_bitflips;
+
+	bitflips_threshold -= ecc_bitflips;
+
+	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
+						  bitflips_threshold);
+	if (extraoob_bitflips < 0)
+		return extraoob_bitflips;
+
+	if (data_bitflips)
+		memset(data, 0xff, datalen);
+
+	if (ecc_bitflips)
+		memset(ecc, 0xff, ecclen);
+
+	if (extraoob_bitflips)
+		memset(extraoob, 0xff, extraooblen);
+
+	return data_bitflips + ecc_bitflips + extraoob_bitflips;
+}
+EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
+
+/**
+ * nand_read_page_raw_notsupp - dummy read raw page function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Returns -ENOTSUPP unconditionally.
+ */
+int nand_read_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
+			       u8 *buf, int oob_required, int page)
+{
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL(nand_read_page_raw_notsupp);
+
+/**
+ * nand_read_page_raw - [INTERN] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+		       uint8_t *buf, int oob_required, int page)
+{
+	int ret;
+
+	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+	if (ret)
+		return ret;
+
+	if (oob_required) {
+		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
+					false);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(nand_read_page_raw);
+
+/**
+ * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * We need a special oob layout and handling even when OOB isn't used.
+ */
+static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
+				       struct nand_chip *chip, uint8_t *buf,
+				       int oob_required, int page)
+{
+	int eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	uint8_t *oob = chip->oob_poi;
+	int steps, size, ret;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (steps = chip->ecc.steps; steps > 0; steps--) {
+		ret = nand_read_data_op(chip, buf, eccsize, false);
+		if (ret)
+			return ret;
+
+		buf += eccsize;
+
+		if (chip->ecc.prepad) {
+			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
+						false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.prepad;
+		}
+
+		ret = nand_read_data_op(chip, oob, eccbytes, false);
+		if (ret)
+			return ret;
+
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
+						false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	size = mtd->oobsize - (oob - chip->oob_poi);
+	if (size) {
+		ret = nand_read_data_op(chip, oob, size, false);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+/**
+ * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ */
+static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size, ret;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	uint8_t *ecc_code = chip->ecc.code_buf;
+	unsigned int max_bitflips = 0;
+
+	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @data_offs: offset of requested data within the page
+ * @readlen: data length
+ * @bufpoi: buffer to store read data
+ * @page: page number to read
+ */
+static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
+			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
+			int page)
+{
+	int start_step, end_step, num_steps, ret;
+	uint8_t *p;
+	int data_col_addr, i, gaps = 0;
+	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
+	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
+	int index, section = 0;
+	unsigned int max_bitflips = 0;
+	struct mtd_oob_region oobregion = { };
+
+	/* Column address within the page aligned to ECC size (256bytes) */
+	start_step = data_offs / chip->ecc.size;
+	end_step = (data_offs + readlen - 1) / chip->ecc.size;
+	num_steps = end_step - start_step + 1;
+	index = start_step * chip->ecc.bytes;
+
+	/* Data size aligned to ECC ecc.size */
+	datafrag_len = num_steps * chip->ecc.size;
+	eccfrag_len = num_steps * chip->ecc.bytes;
+
+	data_col_addr = start_step * chip->ecc.size;
+	/* If we read not a page aligned data */
+	p = bufpoi + data_col_addr;
+	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
+	if (ret)
+		return ret;
+
+	/* Calculate ECC */
+	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
+		chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]);
+
+	/*
+	 * The performance is faster if we position offsets according to
+	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
+	 */
+	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
+	if (ret)
+		return ret;
+
+	if (oobregion.length < eccfrag_len)
+		gaps = 1;
+
+	if (gaps) {
+		ret = nand_change_read_column_op(chip, mtd->writesize,
+						 chip->oob_poi, mtd->oobsize,
+						 false);
+		if (ret)
+			return ret;
+	} else {
+		/*
+		 * Send the command to read the particular ECC bytes take care
+		 * about buswidth alignment in read_buf.
+		 */
+		aligned_pos = oobregion.offset & ~(busw - 1);
+		aligned_len = eccfrag_len;
+		if (oobregion.offset & (busw - 1))
+			aligned_len++;
+		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
+		    (busw - 1))
+			aligned_len++;
+
+		ret = nand_change_read_column_op(chip,
+						 mtd->writesize + aligned_pos,
+						 &chip->oob_poi[aligned_pos],
+						 aligned_len, false);
+		if (ret)
+			return ret;
+	}
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
+					 chip->oob_poi, index, eccfrag_len);
+	if (ret)
+		return ret;
+
+	p = bufpoi + data_col_addr;
+	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i],
+					 &chip->ecc.calc_buf[i]);
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
+						&chip->ecc.code_buf[i],
+						chip->ecc.bytes,
+						NULL, 0,
+						chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Not for syndrome calculating ECC controllers which need a special oob layout.
+ */
+static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size, ret;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	uint8_t *ecc_code = chip->ecc.code_buf;
+	unsigned int max_bitflips = 0;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+
+		ret = nand_read_data_op(chip, p, eccsize, false);
+		if (ret)
+			return ret;
+
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+	}
+
+	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false);
+	if (ret)
+		return ret;
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	eccsteps = chip->ecc.steps;
+	p = buf;
+
+	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, eccsize,
+						&ecc_code[i], eccbytes,
+						NULL, 0,
+						chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * Hardware ECC for large page chips, require OOB to be read first. For this
+ * ECC mode, the write_page method is re-used from ECC_HW. These methods
+ * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
+ * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
+ * the data area, by overwriting the NAND manufacturer bad block markings.
+ */
+static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
+	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
+{
+	int i, eccsize = chip->ecc.size, ret;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *p = buf;
+	uint8_t *ecc_code = chip->ecc.code_buf;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	unsigned int max_bitflips = 0;
+
+	/* Read the OOB area first */
+	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+	if (ret)
+		return ret;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+
+		ret = nand_read_data_op(chip, p, eccsize, false);
+		if (ret)
+			return ret;
+
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, eccsize,
+						&ecc_code[i], eccbytes,
+						NULL, 0,
+						chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+	return max_bitflips;
+}
+
+/**
+ * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: buffer to store read data
+ * @oob_required: caller requires OOB data read to chip->oob_poi
+ * @page: page number to read
+ *
+ * The hw generator calculates the error syndrome automatically. Therefore we
+ * need a special oob layout and handling.
+ */
+static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+				   uint8_t *buf, int oob_required, int page)
+{
+	int ret, i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
+	uint8_t *p = buf;
+	uint8_t *oob = chip->oob_poi;
+	unsigned int max_bitflips = 0;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		int stat;
+
+		chip->ecc.hwctl(mtd, NAND_ECC_READ);
+
+		ret = nand_read_data_op(chip, p, eccsize, false);
+		if (ret)
+			return ret;
+
+		if (chip->ecc.prepad) {
+			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
+						false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.prepad;
+		}
+
+		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
+
+		ret = nand_read_data_op(chip, oob, eccbytes, false);
+		if (ret)
+			return ret;
+
+		stat = chip->ecc.correct(mtd, p, oob, NULL);
+
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
+						false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.postpad;
+		}
+
+		if (stat == -EBADMSG &&
+		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
+			/* check for empty pages with bitflips */
+			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
+							   oob - eccpadbytes,
+							   eccpadbytes,
+							   NULL, 0,
+							   chip->ecc.strength);
+		}
+
+		if (stat < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max_t(unsigned int, max_bitflips, stat);
+		}
+	}
+
+	/* Calculate remaining oob bytes */
+	i = mtd->oobsize - (oob - chip->oob_poi);
+	if (i) {
+		ret = nand_read_data_op(chip, oob, i, false);
+		if (ret)
+			return ret;
+	}
+
+	return max_bitflips;
+}
+
+/**
+ * nand_transfer_oob - [INTERN] Transfer oob to client buffer
+ * @mtd: mtd info structure
+ * @oob: oob destination address
+ * @ops: oob ops structure
+ * @len: size of oob to transfer
+ */
+static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
+				  struct mtd_oob_ops *ops, size_t len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret;
+
+	switch (ops->mode) {
+
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_RAW:
+		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
+		return oob + len;
+
+	case MTD_OPS_AUTO_OOB:
+		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
+						  ops->ooboffs, len);
+		BUG_ON(ret);
+		return oob + len;
+
+	default:
+		BUG();
+	}
+	return NULL;
+}
+
+/**
+ * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
+ * @mtd: MTD device structure
+ * @retry_mode: the retry mode to use
+ *
+ * Some vendors supply a special command to shift the Vt threshold, to be used
+ * when there are too many bitflips in a page (i.e., ECC error). After setting
+ * a new threshold, the host should retry reading the page.
+ */
+static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	pr_debug("setting READ RETRY mode %d\n", retry_mode);
+
+	if (retry_mode >= chip->read_retries)
+		return -EINVAL;
+
+	if (!chip->setup_read_retry)
+		return -EOPNOTSUPP;
+
+	return chip->setup_read_retry(mtd, retry_mode);
+}
+
+/**
+ * nand_do_read_ops - [INTERN] Read data with ECC
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob ops structure
+ *
+ * Internal function. Called with chip held.
+ */
+static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
+			    struct mtd_oob_ops *ops)
+{
+	int chipnr, page, realpage, col, bytes, aligned, oob_required;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret = 0;
+	uint32_t readlen = ops->len;
+	uint32_t oobreadlen = ops->ooblen;
+	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
+
+	uint8_t *bufpoi, *oob, *buf;
+	int use_bufpoi;
+	unsigned int max_bitflips = 0;
+	int retry_mode = 0;
+	bool ecc_fail = false;
+
+	chipnr = (int)(from >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	realpage = (int)(from >> chip->page_shift);
+	page = realpage & chip->pagemask;
+
+	col = (int)(from & (mtd->writesize - 1));
+
+	buf = ops->datbuf;
+	oob = ops->oobbuf;
+	oob_required = oob ? 1 : 0;
+
+	while (1) {
+		unsigned int ecc_failures = mtd->ecc_stats.failed;
+
+		bytes = min(mtd->writesize - col, readlen);
+		aligned = (bytes == mtd->writesize);
+
+		if (!aligned)
+			use_bufpoi = 1;
+		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+			use_bufpoi = !virt_addr_valid(buf) ||
+				     !IS_ALIGNED((unsigned long)buf,
+						 chip->buf_align);
+		else
+			use_bufpoi = 0;
+
+		/* Is the current page in the buffer? */
+		if (realpage != chip->pagebuf || oob) {
+			bufpoi = use_bufpoi ? chip->data_buf : buf;
+
+			if (use_bufpoi && aligned)
+				pr_debug("%s: using read bounce buffer for buf@%p\n",
+						 __func__, buf);
+
+read_retry:
+			/*
+			 * Now read the page into the buffer.  Absent an error,
+			 * the read methods return max bitflips per ecc step.
+			 */
+			if (unlikely(ops->mode == MTD_OPS_RAW))
+				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
+							      oob_required,
+							      page);
+			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
+				 !oob)
+				ret = chip->ecc.read_subpage(mtd, chip,
+							col, bytes, bufpoi,
+							page);
+			else
+				ret = chip->ecc.read_page(mtd, chip, bufpoi,
+							  oob_required, page);
+			if (ret < 0) {
+				if (use_bufpoi)
+					/* Invalidate page cache */
+					chip->pagebuf = -1;
+				break;
+			}
+
+			/* Transfer not aligned data */
+			if (use_bufpoi) {
+				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
+				    !(mtd->ecc_stats.failed - ecc_failures) &&
+				    (ops->mode != MTD_OPS_RAW)) {
+					chip->pagebuf = realpage;
+					chip->pagebuf_bitflips = ret;
+				} else {
+					/* Invalidate page cache */
+					chip->pagebuf = -1;
+				}
+				memcpy(buf, chip->data_buf + col, bytes);
+			}
+
+			if (unlikely(oob)) {
+				int toread = min(oobreadlen, max_oobsize);
+
+				if (toread) {
+					oob = nand_transfer_oob(mtd,
+						oob, ops, toread);
+					oobreadlen -= toread;
+				}
+			}
+
+			if (chip->options & NAND_NEED_READRDY) {
+				/* Apply delay or wait for ready/busy pin */
+				if (!chip->dev_ready)
+					udelay(chip->chip_delay);
+				else
+					nand_wait_ready(mtd);
+			}
+
+			if (mtd->ecc_stats.failed - ecc_failures) {
+				if (retry_mode + 1 < chip->read_retries) {
+					retry_mode++;
+					ret = nand_setup_read_retry(mtd,
+							retry_mode);
+					if (ret < 0)
+						break;
+
+					/* Reset failures; retry */
+					mtd->ecc_stats.failed = ecc_failures;
+					goto read_retry;
+				} else {
+					/* No more retry modes; real failure */
+					ecc_fail = true;
+				}
+			}
+
+			buf += bytes;
+			max_bitflips = max_t(unsigned int, max_bitflips, ret);
+		} else {
+			memcpy(buf, chip->data_buf + col, bytes);
+			buf += bytes;
+			max_bitflips = max_t(unsigned int, max_bitflips,
+					     chip->pagebuf_bitflips);
+		}
+
+		readlen -= bytes;
+
+		/* Reset to retry mode 0 */
+		if (retry_mode) {
+			ret = nand_setup_read_retry(mtd, 0);
+			if (ret < 0)
+				break;
+			retry_mode = 0;
+		}
+
+		if (!readlen)
+			break;
+
+		/* For subsequent reads align to page boundary */
+		col = 0;
+		/* Increment page address */
+		realpage++;
+
+		page = realpage & chip->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!page) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+	chip->select_chip(mtd, -1);
+
+	ops->retlen = ops->len - (size_t) readlen;
+	if (oob)
+		ops->oobretlen = ops->ooblen - oobreadlen;
+
+	if (ret < 0)
+		return ret;
+
+	if (ecc_fail)
+		return -EBADMSG;
+
+	return max_bitflips;
+}
+
+/**
+ * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ */
+int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
+{
+	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+}
+EXPORT_SYMBOL(nand_read_oob_std);
+
+/**
+ * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
+ *			    with syndromes
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to read
+ */
+int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page)
+{
+	int length = mtd->oobsize;
+	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+	int eccsize = chip->ecc.size;
+	uint8_t *bufpoi = chip->oob_poi;
+	int i, toread, sndrnd = 0, pos, ret;
+
+	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = 0; i < chip->ecc.steps; i++) {
+		if (sndrnd) {
+			int ret;
+
+			pos = eccsize + i * (eccsize + chunk);
+			if (mtd->writesize > 512)
+				ret = nand_change_read_column_op(chip, pos,
+								 NULL, 0,
+								 false);
+			else
+				ret = nand_read_page_op(chip, page, pos, NULL,
+							0);
+
+			if (ret)
+				return ret;
+		} else
+			sndrnd = 1;
+		toread = min_t(int, length, chunk);
+
+		ret = nand_read_data_op(chip, bufpoi, toread, false);
+		if (ret)
+			return ret;
+
+		bufpoi += toread;
+		length -= toread;
+	}
+	if (length > 0) {
+		ret = nand_read_data_op(chip, bufpoi, length, false);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(nand_read_oob_syndrome);
+
+/**
+ * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
+{
+	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
+				 mtd->oobsize);
+}
+EXPORT_SYMBOL(nand_write_oob_std);
+
+/**
+ * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
+ *			     with syndrome - only for large page flash
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @page: page number to write
+ */
+int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
+{
+	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
+	int eccsize = chip->ecc.size, length = mtd->oobsize;
+	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
+	const uint8_t *bufpoi = chip->oob_poi;
+
+	/*
+	 * data-ecc-data-ecc ... ecc-oob
+	 * or
+	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
+	 */
+	if (!chip->ecc.prepad && !chip->ecc.postpad) {
+		pos = steps * (eccsize + chunk);
+		steps = 0;
+	} else
+		pos = eccsize;
+
+	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = 0; i < steps; i++) {
+		if (sndcmd) {
+			if (mtd->writesize <= 512) {
+				uint32_t fill = 0xFFFFFFFF;
+
+				len = eccsize;
+				while (len > 0) {
+					int num = min_t(int, len, 4);
+
+					ret = nand_write_data_op(chip, &fill,
+								 num, false);
+					if (ret)
+						return ret;
+
+					len -= num;
+				}
+			} else {
+				pos = eccsize + i * (eccsize + chunk);
+				ret = nand_change_write_column_op(chip, pos,
+								  NULL, 0,
+								  false);
+				if (ret)
+					return ret;
+			}
+		} else
+			sndcmd = 1;
+		len = min_t(int, length, chunk);
+
+		ret = nand_write_data_op(chip, bufpoi, len, false);
+		if (ret)
+			return ret;
+
+		bufpoi += len;
+		length -= len;
+	}
+	if (length > 0) {
+		ret = nand_write_data_op(chip, bufpoi, length, false);
+		if (ret)
+			return ret;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+EXPORT_SYMBOL(nand_write_oob_syndrome);
+
+/**
+ * nand_do_read_oob - [INTERN] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operations description structure
+ *
+ * NAND read out-of-band data from the spare area.
+ */
+static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
+			    struct mtd_oob_ops *ops)
+{
+	unsigned int max_bitflips = 0;
+	int page, realpage, chipnr;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct mtd_ecc_stats stats;
+	int readlen = ops->ooblen;
+	int len;
+	uint8_t *buf = ops->oobbuf;
+	int ret = 0;
+
+	pr_debug("%s: from = 0x%08Lx, len = %i\n",
+			__func__, (unsigned long long)from, readlen);
+
+	stats = mtd->ecc_stats;
+
+	len = mtd_oobavail(mtd, ops);
+
+	chipnr = (int)(from >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	/* Shift to get page */
+	realpage = (int)(from >> chip->page_shift);
+	page = realpage & chip->pagemask;
+
+	while (1) {
+		if (ops->mode == MTD_OPS_RAW)
+			ret = chip->ecc.read_oob_raw(mtd, chip, page);
+		else
+			ret = chip->ecc.read_oob(mtd, chip, page);
+
+		if (ret < 0)
+			break;
+
+		len = min(len, readlen);
+		buf = nand_transfer_oob(mtd, buf, ops, len);
+
+		if (chip->options & NAND_NEED_READRDY) {
+			/* Apply delay or wait for ready/busy pin */
+			if (!chip->dev_ready)
+				udelay(chip->chip_delay);
+			else
+				nand_wait_ready(mtd);
+		}
+
+		max_bitflips = max_t(unsigned int, max_bitflips, ret);
+
+		readlen -= len;
+		if (!readlen)
+			break;
+
+		/* Increment page address */
+		realpage++;
+
+		page = realpage & chip->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!page) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+	chip->select_chip(mtd, -1);
+
+	ops->oobretlen = ops->ooblen - readlen;
+
+	if (ret < 0)
+		return ret;
+
+	if (mtd->ecc_stats.failed - stats.failed)
+		return -EBADMSG;
+
+	return max_bitflips;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @ops: oob operation description structure
+ *
+ * NAND read data and/or out-of-band data.
+ */
+static int nand_read_oob(struct mtd_info *mtd, loff_t from,
+			 struct mtd_oob_ops *ops)
+{
+	int ret;
+
+	ops->retlen = 0;
+
+	if (ops->mode != MTD_OPS_PLACE_OOB &&
+	    ops->mode != MTD_OPS_AUTO_OOB &&
+	    ops->mode != MTD_OPS_RAW)
+		return -ENOTSUPP;
+
+	nand_get_device(mtd, FL_READING);
+
+	if (!ops->datbuf)
+		ret = nand_do_read_oob(mtd, from, ops);
+	else
+		ret = nand_do_read_ops(mtd, from, ops);
+
+	nand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * nand_write_page_raw_notsupp - dummy raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * Returns -ENOTSUPP unconditionally.
+ */
+int nand_write_page_raw_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
+				const u8 *buf, int oob_required, int page)
+{
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL(nand_write_page_raw_notsupp);
+
+/**
+ * nand_write_page_raw - [INTERN] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * Not for syndrome calculating ECC controllers, which use a special oob layout.
+ */
+int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf, int oob_required, int page)
+{
+	int ret;
+
+	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	if (ret)
+		return ret;
+
+	if (oob_required) {
+		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
+					 false);
+		if (ret)
+			return ret;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+EXPORT_SYMBOL(nand_write_page_raw);
+
+/**
+ * nand_write_page_raw_syndrome - [INTERN] raw page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * We need a special oob layout and handling even when ECC isn't checked.
+ */
+static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
+					struct nand_chip *chip,
+					const uint8_t *buf, int oob_required,
+					int page)
+{
+	int eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	uint8_t *oob = chip->oob_poi;
+	int steps, size, ret;
+
+	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (steps = chip->ecc.steps; steps > 0; steps--) {
+		ret = nand_write_data_op(chip, buf, eccsize, false);
+		if (ret)
+			return ret;
+
+		buf += eccsize;
+
+		if (chip->ecc.prepad) {
+			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
+						 false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.prepad;
+		}
+
+		ret = nand_write_data_op(chip, oob, eccbytes, false);
+		if (ret)
+			return ret;
+
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
+						 false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	size = mtd->oobsize - (oob - chip->oob_poi);
+	if (size) {
+		ret = nand_write_data_op(chip, oob, size, false);
+		if (ret)
+			return ret;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+/**
+ * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ */
+static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required,
+				 int page)
+{
+	int i, eccsize = chip->ecc.size, ret;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	const uint8_t *p = buf;
+
+	/* Software ECC calculation */
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+}
+
+/**
+ * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ */
+static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				  const uint8_t *buf, int oob_required,
+				  int page)
+{
+	int i, eccsize = chip->ecc.size, ret;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	const uint8_t *p = buf;
+
+	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+		ret = nand_write_data_op(chip, p, eccsize, false);
+		if (ret)
+			return ret;
+
+		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+	}
+
+	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
+	if (ret)
+		return ret;
+
+	return nand_prog_page_end_op(chip);
+}
+
+
+/**
+ * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @offset:	column address of subpage within the page
+ * @data_len:	data length
+ * @buf:	data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ */
+static int nand_write_subpage_hwecc(struct mtd_info *mtd,
+				struct nand_chip *chip, uint32_t offset,
+				uint32_t data_len, const uint8_t *buf,
+				int oob_required, int page)
+{
+	uint8_t *oob_buf  = chip->oob_poi;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	int ecc_size      = chip->ecc.size;
+	int ecc_bytes     = chip->ecc.bytes;
+	int ecc_steps     = chip->ecc.steps;
+	uint32_t start_step = offset / ecc_size;
+	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
+	int oob_bytes       = mtd->oobsize / ecc_steps;
+	int step, ret;
+
+	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (step = 0; step < ecc_steps; step++) {
+		/* configure controller for WRITE access */
+		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+		/* write data (untouched subpages already masked by 0xFF) */
+		ret = nand_write_data_op(chip, buf, ecc_size, false);
+		if (ret)
+			return ret;
+
+		/* mask ECC of un-touched subpages by padding 0xFF */
+		if ((step < start_step) || (step > end_step))
+			memset(ecc_calc, 0xff, ecc_bytes);
+		else
+			chip->ecc.calculate(mtd, buf, ecc_calc);
+
+		/* mask OOB of un-touched subpages by padding 0xFF */
+		/* if oob_required, preserve OOB metadata of written subpage */
+		if (!oob_required || (step < start_step) || (step > end_step))
+			memset(oob_buf, 0xff, oob_bytes);
+
+		buf += ecc_size;
+		ecc_calc += ecc_bytes;
+		oob_buf  += oob_bytes;
+	}
+
+	/* copy calculated ECC for whole page to chip->buffer->oob */
+	/* this include masked-value(0xFF) for unwritten subpages */
+	ecc_calc = chip->ecc.calc_buf;
+	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	/* write OOB buffer to NAND device */
+	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
+	if (ret)
+		return ret;
+
+	return nand_prog_page_end_op(chip);
+}
+
+
+/**
+ * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
+ * @mtd: mtd info structure
+ * @chip: nand chip info structure
+ * @buf: data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * The hw generator calculates the error syndrome automatically. Therefore we
+ * need a special oob layout and handling.
+ */
+static int nand_write_page_syndrome(struct mtd_info *mtd,
+				    struct nand_chip *chip,
+				    const uint8_t *buf, int oob_required,
+				    int page)
+{
+	int i, eccsize = chip->ecc.size;
+	int eccbytes = chip->ecc.bytes;
+	int eccsteps = chip->ecc.steps;
+	const uint8_t *p = buf;
+	uint8_t *oob = chip->oob_poi;
+	int ret;
+
+	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	if (ret)
+		return ret;
+
+	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+		ret = nand_write_data_op(chip, p, eccsize, false);
+		if (ret)
+			return ret;
+
+		if (chip->ecc.prepad) {
+			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
+						 false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.prepad;
+		}
+
+		chip->ecc.calculate(mtd, p, oob);
+
+		ret = nand_write_data_op(chip, oob, eccbytes, false);
+		if (ret)
+			return ret;
+
+		oob += eccbytes;
+
+		if (chip->ecc.postpad) {
+			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
+						 false);
+			if (ret)
+				return ret;
+
+			oob += chip->ecc.postpad;
+		}
+	}
+
+	/* Calculate remaining oob bytes */
+	i = mtd->oobsize - (oob - chip->oob_poi);
+	if (i) {
+		ret = nand_write_data_op(chip, oob, i, false);
+		if (ret)
+			return ret;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+/**
+ * nand_write_page - write one page
+ * @mtd: MTD device structure
+ * @chip: NAND chip descriptor
+ * @offset: address offset within the page
+ * @data_len: length of actual data to be written
+ * @buf: the data to write
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ * @raw: use _raw version of write_page
+ */
+static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+		uint32_t offset, int data_len, const uint8_t *buf,
+		int oob_required, int page, int raw)
+{
+	int status, subpage;
+
+	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
+		chip->ecc.write_subpage)
+		subpage = offset || (data_len < mtd->writesize);
+	else
+		subpage = 0;
+
+	if (unlikely(raw))
+		status = chip->ecc.write_page_raw(mtd, chip, buf,
+						  oob_required, page);
+	else if (subpage)
+		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
+						 buf, oob_required, page);
+	else
+		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
+					      page);
+
+	if (status < 0)
+		return status;
+
+	return 0;
+}
+
+/**
+ * nand_fill_oob - [INTERN] Transfer client buffer to oob
+ * @mtd: MTD device structure
+ * @oob: oob data buffer
+ * @len: oob data write length
+ * @ops: oob ops structure
+ */
+static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
+			      struct mtd_oob_ops *ops)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret;
+
+	/*
+	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
+	 * data from a previous OOB read.
+	 */
+	memset(chip->oob_poi, 0xff, mtd->oobsize);
+
+	switch (ops->mode) {
+
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_RAW:
+		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
+		return oob + len;
+
+	case MTD_OPS_AUTO_OOB:
+		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
+						  ops->ooboffs, len);
+		BUG_ON(ret);
+		return oob + len;
+
+	default:
+		BUG();
+	}
+	return NULL;
+}
+
+#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
+
+/**
+ * nand_do_write_ops - [INTERN] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operations description structure
+ *
+ * NAND write with ECC.
+ */
+static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	int chipnr, realpage, page, column;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	uint32_t writelen = ops->len;
+
+	uint32_t oobwritelen = ops->ooblen;
+	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
+
+	uint8_t *oob = ops->oobbuf;
+	uint8_t *buf = ops->datbuf;
+	int ret;
+	int oob_required = oob ? 1 : 0;
+
+	ops->retlen = 0;
+	if (!writelen)
+		return 0;
+
+	/* Reject writes, which are not page aligned */
+	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
+		pr_notice("%s: attempt to write non page aligned data\n",
+			   __func__);
+		return -EINVAL;
+	}
+
+	column = to & (mtd->writesize - 1);
+
+	chipnr = (int)(to >> chip->chip_shift);
+	chip->select_chip(mtd, chipnr);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd)) {
+		ret = -EIO;
+		goto err_out;
+	}
+
+	realpage = (int)(to >> chip->page_shift);
+	page = realpage & chip->pagemask;
+
+	/* Invalidate the page cache, when we write to the cached page */
+	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
+	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
+		chip->pagebuf = -1;
+
+	/* Don't allow multipage oob writes with offset */
+	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
+		ret = -EINVAL;
+		goto err_out;
+	}
+
+	while (1) {
+		int bytes = mtd->writesize;
+		uint8_t *wbuf = buf;
+		int use_bufpoi;
+		int part_pagewr = (column || writelen < mtd->writesize);
+
+		if (part_pagewr)
+			use_bufpoi = 1;
+		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
+			use_bufpoi = !virt_addr_valid(buf) ||
+				     !IS_ALIGNED((unsigned long)buf,
+						 chip->buf_align);
+		else
+			use_bufpoi = 0;
+
+		/* Partial page write?, or need to use bounce buffer */
+		if (use_bufpoi) {
+			pr_debug("%s: using write bounce buffer for buf@%p\n",
+					 __func__, buf);
+			if (part_pagewr)
+				bytes = min_t(int, bytes - column, writelen);
+			chip->pagebuf = -1;
+			memset(chip->data_buf, 0xff, mtd->writesize);
+			memcpy(&chip->data_buf[column], buf, bytes);
+			wbuf = chip->data_buf;
+		}
+
+		if (unlikely(oob)) {
+			size_t len = min(oobwritelen, oobmaxlen);
+			oob = nand_fill_oob(mtd, oob, len, ops);
+			oobwritelen -= len;
+		} else {
+			/* We still need to erase leftover OOB data */
+			memset(chip->oob_poi, 0xff, mtd->oobsize);
+		}
+
+		ret = nand_write_page(mtd, chip, column, bytes, wbuf,
+				      oob_required, page,
+				      (ops->mode == MTD_OPS_RAW));
+		if (ret)
+			break;
+
+		writelen -= bytes;
+		if (!writelen)
+			break;
+
+		column = 0;
+		buf += bytes;
+		realpage++;
+
+		page = realpage & chip->pagemask;
+		/* Check, if we cross a chip boundary */
+		if (!page) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+
+	ops->retlen = ops->len - writelen;
+	if (unlikely(oob))
+		ops->oobretlen = ops->ooblen;
+
+err_out:
+	chip->select_chip(mtd, -1);
+	return ret;
+}
+
+/**
+ * panic_nand_write - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write with ECC. Used when performing writes in interrupt context, this
+ * may for example be called by mtdoops when writing an oops while in panic.
+ */
+static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
+			    size_t *retlen, const uint8_t *buf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int chipnr = (int)(to >> chip->chip_shift);
+	struct mtd_oob_ops ops;
+	int ret;
+
+	/* Grab the device */
+	panic_nand_get_device(chip, mtd, FL_WRITING);
+
+	chip->select_chip(mtd, chipnr);
+
+	/* Wait for the device to get ready */
+	panic_nand_wait(mtd, chip, 400);
+
+	memset(&ops, 0, sizeof(ops));
+	ops.len = len;
+	ops.datbuf = (uint8_t *)buf;
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	ret = nand_do_write_ops(mtd, to, &ops);
+
+	*retlen = ops.retlen;
+	return ret;
+}
+
+/**
+ * nand_do_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ *
+ * NAND write out-of-band.
+ */
+static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	int chipnr, page, status, len;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	pr_debug("%s: to = 0x%08x, len = %i\n",
+			 __func__, (unsigned int)to, (int)ops->ooblen);
+
+	len = mtd_oobavail(mtd, ops);
+
+	/* Do not allow write past end of page */
+	if ((ops->ooboffs + ops->ooblen) > len) {
+		pr_debug("%s: attempt to write past end of page\n",
+				__func__);
+		return -EINVAL;
+	}
+
+	chipnr = (int)(to >> chip->chip_shift);
+
+	/*
+	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
+	 * of my DiskOnChip 2000 test units) will clear the whole data page too
+	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
+	 * it in the doc2000 driver in August 1999.  dwmw2.
+	 */
+	nand_reset(chip, chipnr);
+
+	chip->select_chip(mtd, chipnr);
+
+	/* Shift to get page */
+	page = (int)(to >> chip->page_shift);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd)) {
+		chip->select_chip(mtd, -1);
+		return -EROFS;
+	}
+
+	/* Invalidate the page cache, if we write to the cached page */
+	if (page == chip->pagebuf)
+		chip->pagebuf = -1;
+
+	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
+
+	if (ops->mode == MTD_OPS_RAW)
+		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
+	else
+		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
+
+	chip->select_chip(mtd, -1);
+
+	if (status)
+		return status;
+
+	ops->oobretlen = ops->ooblen;
+
+	return 0;
+}
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @ops: oob operation description structure
+ */
+static int nand_write_oob(struct mtd_info *mtd, loff_t to,
+			  struct mtd_oob_ops *ops)
+{
+	int ret = -ENOTSUPP;
+
+	ops->retlen = 0;
+
+	nand_get_device(mtd, FL_WRITING);
+
+	switch (ops->mode) {
+	case MTD_OPS_PLACE_OOB:
+	case MTD_OPS_AUTO_OOB:
+	case MTD_OPS_RAW:
+		break;
+
+	default:
+		goto out;
+	}
+
+	if (!ops->datbuf)
+		ret = nand_do_write_oob(mtd, to, ops);
+	else
+		ret = nand_do_write_ops(mtd, to, ops);
+
+out:
+	nand_release_device(mtd);
+	return ret;
+}
+
+/**
+ * single_erase - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips. Returns NAND status.
+ */
+static int single_erase(struct mtd_info *mtd, int page)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	unsigned int eraseblock;
+
+	/* Send commands to erase a block */
+	eraseblock = page >> (chip->phys_erase_shift - chip->page_shift);
+
+	return nand_erase_op(chip, eraseblock);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks.
+ */
+static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
+{
+	return nand_erase_nand(mtd, instr, 0);
+}
+
+/**
+ * nand_erase_nand - [INTERN] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks.
+ */
+int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
+		    int allowbbt)
+{
+	int page, status, pages_per_block, ret, chipnr;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	loff_t len;
+
+	pr_debug("%s: start = 0x%012llx, len = %llu\n",
+			__func__, (unsigned long long)instr->addr,
+			(unsigned long long)instr->len);
+
+	if (check_offs_len(mtd, instr->addr, instr->len))
+		return -EINVAL;
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device(mtd, FL_ERASING);
+
+	/* Shift to get first page */
+	page = (int)(instr->addr >> chip->page_shift);
+	chipnr = (int)(instr->addr >> chip->chip_shift);
+
+	/* Calculate pages in each block */
+	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
+
+	/* Select the NAND device */
+	chip->select_chip(mtd, chipnr);
+
+	/* Check, if it is write protected */
+	if (nand_check_wp(mtd)) {
+		pr_debug("%s: device is write protected!\n",
+				__func__);
+		ret = -EIO;
+		goto erase_exit;
+	}
+
+	/* Loop through the pages */
+	len = instr->len;
+
+	while (len) {
+		/* Check if we have a bad block, we do not erase bad blocks! */
+		if (nand_block_checkbad(mtd, ((loff_t) page) <<
+					chip->page_shift, allowbbt)) {
+			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
+				    __func__, page);
+			ret = -EIO;
+			goto erase_exit;
+		}
+
+		/*
+		 * Invalidate the page cache, if we erase the block which
+		 * contains the current cached page.
+		 */
+		if (page <= chip->pagebuf && chip->pagebuf <
+		    (page + pages_per_block))
+			chip->pagebuf = -1;
+
+		status = chip->erase(mtd, page & chip->pagemask);
+
+		/* See if block erase succeeded */
+		if (status) {
+			pr_debug("%s: failed erase, page 0x%08x\n",
+					__func__, page);
+			ret = -EIO;
+			instr->fail_addr =
+				((loff_t)page << chip->page_shift);
+			goto erase_exit;
+		}
+
+		/* Increment page address and decrement length */
+		len -= (1ULL << chip->phys_erase_shift);
+		page += pages_per_block;
+
+		/* Check, if we cross a chip boundary */
+		if (len && !(page & chip->pagemask)) {
+			chipnr++;
+			chip->select_chip(mtd, -1);
+			chip->select_chip(mtd, chipnr);
+		}
+	}
+
+	ret = 0;
+erase_exit:
+
+	/* Deselect and wake up anyone waiting on the device */
+	chip->select_chip(mtd, -1);
+	nand_release_device(mtd);
+
+	/* Return more or less happy */
+	return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function.
+ */
+static void nand_sync(struct mtd_info *mtd)
+{
+	pr_debug("%s: called\n", __func__);
+
+	/* Grab the lock and see if the device is available */
+	nand_get_device(mtd, FL_SYNCING);
+	/* Release it and go back */
+	nand_release_device(mtd);
+}
+
+/**
+ * nand_block_isbad - [MTD Interface] Check if block at offset is bad
+ * @mtd: MTD device structure
+ * @offs: offset relative to mtd start
+ */
+static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int chipnr = (int)(offs >> chip->chip_shift);
+	int ret;
+
+	/* Select the NAND device */
+	nand_get_device(mtd, FL_READING);
+	chip->select_chip(mtd, chipnr);
+
+	ret = nand_block_checkbad(mtd, offs, 0);
+
+	chip->select_chip(mtd, -1);
+	nand_release_device(mtd);
+
+	return ret;
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	int ret;
+
+	ret = nand_block_isbad(mtd, ofs);
+	if (ret) {
+		/* If it was bad already, return success and do nothing */
+		if (ret > 0)
+			return 0;
+		return ret;
+	}
+
+	return nand_block_markbad_lowlevel(mtd, ofs);
+}
+
+/**
+ * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ * @len: length of mtd
+ */
+static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 part_start_block;
+	u32 part_end_block;
+	u32 part_start_die;
+	u32 part_end_die;
+
+	/*
+	 * max_bb_per_die and blocks_per_die used to determine
+	 * the maximum bad block count.
+	 */
+	if (!chip->max_bb_per_die || !chip->blocks_per_die)
+		return -ENOTSUPP;
+
+	/* Get the start and end of the partition in erase blocks. */
+	part_start_block = mtd_div_by_eb(ofs, mtd);
+	part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1;
+
+	/* Get the start and end LUNs of the partition. */
+	part_start_die = part_start_block / chip->blocks_per_die;
+	part_end_die = part_end_block / chip->blocks_per_die;
+
+	/*
+	 * Look up the bad blocks per unit and multiply by the number of units
+	 * that the partition spans.
+	 */
+	return chip->max_bb_per_die * (part_end_die - part_start_die + 1);
+}
+
+/**
+ * nand_default_set_features- [REPLACEABLE] set NAND chip features
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ */
+static int nand_default_set_features(struct mtd_info *mtd,
+				     struct nand_chip *chip, int addr,
+				     uint8_t *subfeature_param)
+{
+	return nand_set_features_op(chip, addr, subfeature_param);
+}
+
+/**
+ * nand_default_get_features- [REPLACEABLE] get NAND chip features
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ */
+static int nand_default_get_features(struct mtd_info *mtd,
+				     struct nand_chip *chip, int addr,
+				     uint8_t *subfeature_param)
+{
+	return nand_get_features_op(chip, addr, subfeature_param);
+}
+
+/**
+ * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP
+ * @mtd: MTD device structure
+ * @chip: nand chip info structure
+ * @addr: feature address.
+ * @subfeature_param: the subfeature parameters, a four bytes array.
+ *
+ * Should be used by NAND controller drivers that do not support the SET/GET
+ * FEATURES operations.
+ */
+int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip,
+				  int addr, u8 *subfeature_param)
+{
+	return -ENOTSUPP;
+}
+EXPORT_SYMBOL(nand_get_set_features_notsupp);
+
+/**
+ * nand_suspend - [MTD Interface] Suspend the NAND flash
+ * @mtd: MTD device structure
+ */
+static int nand_suspend(struct mtd_info *mtd)
+{
+	return nand_get_device(mtd, FL_PM_SUSPENDED);
+}
+
+/**
+ * nand_resume - [MTD Interface] Resume the NAND flash
+ * @mtd: MTD device structure
+ */
+static void nand_resume(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (chip->state == FL_PM_SUSPENDED)
+		nand_release_device(mtd);
+	else
+		pr_err("%s called for a chip which is not in suspended state\n",
+			__func__);
+}
+
+/**
+ * nand_shutdown - [MTD Interface] Finish the current NAND operation and
+ *                 prevent further operations
+ * @mtd: MTD device structure
+ */
+static void nand_shutdown(struct mtd_info *mtd)
+{
+	nand_get_device(mtd, FL_PM_SUSPENDED);
+}
+
+/* Set default functions */
+static void nand_set_defaults(struct nand_chip *chip)
+{
+	unsigned int busw = chip->options & NAND_BUSWIDTH_16;
+
+	/* check for proper chip_delay setup, set 20us if not */
+	if (!chip->chip_delay)
+		chip->chip_delay = 20;
+
+	/* check, if a user supplied command function given */
+	if (!chip->cmdfunc && !chip->exec_op)
+		chip->cmdfunc = nand_command;
+
+	/* check, if a user supplied wait function given */
+	if (chip->waitfunc == NULL)
+		chip->waitfunc = nand_wait;
+
+	if (!chip->select_chip)
+		chip->select_chip = nand_select_chip;
+
+	/* set for ONFI nand */
+	if (!chip->set_features)
+		chip->set_features = nand_default_set_features;
+	if (!chip->get_features)
+		chip->get_features = nand_default_get_features;
+
+	/* If called twice, pointers that depend on busw may need to be reset */
+	if (!chip->read_byte || chip->read_byte == nand_read_byte)
+		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+	if (!chip->read_word)
+		chip->read_word = nand_read_word;
+	if (!chip->block_bad)
+		chip->block_bad = nand_block_bad;
+	if (!chip->block_markbad)
+		chip->block_markbad = nand_default_block_markbad;
+	if (!chip->write_buf || chip->write_buf == nand_write_buf)
+		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+	if (!chip->write_byte || chip->write_byte == nand_write_byte)
+		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+	if (!chip->read_buf || chip->read_buf == nand_read_buf)
+		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+
+	if (!chip->controller) {
+		chip->controller = &chip->dummy_controller;
+		nand_controller_init(chip->controller);
+	}
+
+	if (!chip->buf_align)
+		chip->buf_align = 1;
+}
+
+/* Sanitize ONFI strings so we can safely print them */
+static void sanitize_string(uint8_t *s, size_t len)
+{
+	ssize_t i;
+
+	/* Null terminate */
+	s[len - 1] = 0;
+
+	/* Remove non printable chars */
+	for (i = 0; i < len - 1; i++) {
+		if (s[i] < ' ' || s[i] > 127)
+			s[i] = '?';
+	}
+
+	/* Remove trailing spaces */
+	strim(s);
+}
+
+static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
+{
+	int i;
+	while (len--) {
+		crc ^= *p++ << 8;
+		for (i = 0; i < 8; i++)
+			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
+	}
+
+	return crc;
+}
+
+/* Parse the Extended Parameter Page. */
+static int nand_flash_detect_ext_param_page(struct nand_chip *chip,
+					    struct nand_onfi_params *p)
+{
+	struct onfi_ext_param_page *ep;
+	struct onfi_ext_section *s;
+	struct onfi_ext_ecc_info *ecc;
+	uint8_t *cursor;
+	int ret;
+	int len;
+	int i;
+
+	len = le16_to_cpu(p->ext_param_page_length) * 16;
+	ep = kmalloc(len, GFP_KERNEL);
+	if (!ep)
+		return -ENOMEM;
+
+	/* Send our own NAND_CMD_PARAM. */
+	ret = nand_read_param_page_op(chip, 0, NULL, 0);
+	if (ret)
+		goto ext_out;
+
+	/* Use the Change Read Column command to skip the ONFI param pages. */
+	ret = nand_change_read_column_op(chip,
+					 sizeof(*p) * p->num_of_param_pages,
+					 ep, len, true);
+	if (ret)
+		goto ext_out;
+
+	ret = -EINVAL;
+	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
+		!= le16_to_cpu(ep->crc))) {
+		pr_debug("fail in the CRC.\n");
+		goto ext_out;
+	}
+
+	/*
+	 * Check the signature.
+	 * Do not strictly follow the ONFI spec, maybe changed in future.
+	 */
+	if (strncmp(ep->sig, "EPPS", 4)) {
+		pr_debug("The signature is invalid.\n");
+		goto ext_out;
+	}
+
+	/* find the ECC section. */
+	cursor = (uint8_t *)(ep + 1);
+	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
+		s = ep->sections + i;
+		if (s->type == ONFI_SECTION_TYPE_2)
+			break;
+		cursor += s->length * 16;
+	}
+	if (i == ONFI_EXT_SECTION_MAX) {
+		pr_debug("We can not find the ECC section.\n");
+		goto ext_out;
+	}
+
+	/* get the info we want. */
+	ecc = (struct onfi_ext_ecc_info *)cursor;
+
+	if (!ecc->codeword_size) {
+		pr_debug("Invalid codeword size\n");
+		goto ext_out;
+	}
+
+	chip->ecc_strength_ds = ecc->ecc_bits;
+	chip->ecc_step_ds = 1 << ecc->codeword_size;
+	ret = 0;
+
+ext_out:
+	kfree(ep);
+	return ret;
+}
+
+/*
+ * Recover data with bit-wise majority
+ */
+static void nand_bit_wise_majority(const void **srcbufs,
+				   unsigned int nsrcbufs,
+				   void *dstbuf,
+				   unsigned int bufsize)
+{
+	int i, j, k;
+
+	for (i = 0; i < bufsize; i++) {
+		u8 val = 0;
+
+		for (j = 0; j < 8; j++) {
+			unsigned int cnt = 0;
+
+			for (k = 0; k < nsrcbufs; k++) {
+				const u8 *srcbuf = srcbufs[k];
+
+				if (srcbuf[i] & BIT(j))
+					cnt++;
+			}
+
+			if (cnt > nsrcbufs / 2)
+				val |= BIT(j);
+		}
+
+		((u8 *)dstbuf)[i] = val;
+	}
+}
+
+/*
+ * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
+ */
+static int nand_flash_detect_onfi(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_onfi_params *p;
+	struct onfi_params *onfi;
+	int onfi_version = 0;
+	char id[4];
+	int i, ret, val;
+
+	/* Try ONFI for unknown chip or LP */
+	ret = nand_readid_op(chip, 0x20, id, sizeof(id));
+	if (ret || strncmp(id, "ONFI", 4))
+		return 0;
+
+	/* ONFI chip: allocate a buffer to hold its parameter page */
+	p = kzalloc((sizeof(*p) * 3), GFP_KERNEL);
+	if (!p)
+		return -ENOMEM;
+
+	ret = nand_read_param_page_op(chip, 0, NULL, 0);
+	if (ret) {
+		ret = 0;
+		goto free_onfi_param_page;
+	}
+
+	for (i = 0; i < 3; i++) {
+		ret = nand_read_data_op(chip, &p[i], sizeof(*p), true);
+		if (ret) {
+			ret = 0;
+			goto free_onfi_param_page;
+		}
+
+		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)&p[i], 254) ==
+				le16_to_cpu(p->crc)) {
+			if (i)
+				memcpy(p, &p[i], sizeof(*p));
+			break;
+		}
+	}
+
+	if (i == 3) {
+		const void *srcbufs[3] = {p, p + 1, p + 2};
+
+		pr_warn("Could not find a valid ONFI parameter page, trying bit-wise majority to recover it\n");
+		nand_bit_wise_majority(srcbufs, ARRAY_SIZE(srcbufs), p,
+				       sizeof(*p));
+
+		if (onfi_crc16(ONFI_CRC_BASE, (u8 *)p, 254) !=
+				le16_to_cpu(p->crc)) {
+			pr_err("ONFI parameter recovery failed, aborting\n");
+			goto free_onfi_param_page;
+		}
+	}
+
+	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
+	    chip->manufacturer.desc->ops->fixup_onfi_param_page)
+		chip->manufacturer.desc->ops->fixup_onfi_param_page(chip, p);
+
+	/* Check version */
+	val = le16_to_cpu(p->revision);
+	if (val & ONFI_VERSION_2_3)
+		onfi_version = 23;
+	else if (val & ONFI_VERSION_2_2)
+		onfi_version = 22;
+	else if (val & ONFI_VERSION_2_1)
+		onfi_version = 21;
+	else if (val & ONFI_VERSION_2_0)
+		onfi_version = 20;
+	else if (val & ONFI_VERSION_1_0)
+		onfi_version = 10;
+
+	if (!onfi_version) {
+		pr_info("unsupported ONFI version: %d\n", val);
+		goto free_onfi_param_page;
+	}
+
+	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+	sanitize_string(p->model, sizeof(p->model));
+	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
+	if (!chip->parameters.model) {
+		ret = -ENOMEM;
+		goto free_onfi_param_page;
+	}
+
+	mtd->writesize = le32_to_cpu(p->byte_per_page);
+
+	/*
+	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
+	 * (don't ask me who thought of this...). MTD assumes that these
+	 * dimensions will be power-of-2, so just truncate the remaining area.
+	 */
+	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+	mtd->erasesize *= mtd->writesize;
+
+	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+
+	/* See erasesize comment */
+	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
+	chip->bits_per_cell = p->bits_per_cell;
+
+	chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun);
+	chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun);
+
+	if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	if (p->ecc_bits != 0xff) {
+		chip->ecc_strength_ds = p->ecc_bits;
+		chip->ecc_step_ds = 512;
+	} else if (onfi_version >= 21 &&
+		(le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
+
+		/*
+		 * The nand_flash_detect_ext_param_page() uses the
+		 * Change Read Column command which maybe not supported
+		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
+		 * now. We do not replace user supplied command function.
+		 */
+		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
+			chip->cmdfunc = nand_command_lp;
+
+		/* The Extended Parameter Page is supported since ONFI 2.1. */
+		if (nand_flash_detect_ext_param_page(chip, p))
+			pr_warn("Failed to detect ONFI extended param page\n");
+	} else {
+		pr_warn("Could not retrieve ONFI ECC requirements\n");
+	}
+
+	/* Save some parameters from the parameter page for future use */
+	if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) {
+		chip->parameters.supports_set_get_features = true;
+		bitmap_set(chip->parameters.get_feature_list,
+			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+		bitmap_set(chip->parameters.set_feature_list,
+			   ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+	}
+
+	onfi = kzalloc(sizeof(*onfi), GFP_KERNEL);
+	if (!onfi) {
+		ret = -ENOMEM;
+		goto free_model;
+	}
+
+	onfi->version = onfi_version;
+	onfi->tPROG = le16_to_cpu(p->t_prog);
+	onfi->tBERS = le16_to_cpu(p->t_bers);
+	onfi->tR = le16_to_cpu(p->t_r);
+	onfi->tCCS = le16_to_cpu(p->t_ccs);
+	onfi->async_timing_mode = le16_to_cpu(p->async_timing_mode);
+	onfi->vendor_revision = le16_to_cpu(p->vendor_revision);
+	memcpy(onfi->vendor, p->vendor, sizeof(p->vendor));
+	chip->parameters.onfi = onfi;
+
+	/* Identification done, free the full ONFI parameter page and exit */
+	kfree(p);
+
+	return 1;
+
+free_model:
+	kfree(chip->parameters.model);
+free_onfi_param_page:
+	kfree(p);
+
+	return ret;
+}
+
+/*
+ * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
+ */
+static int nand_flash_detect_jedec(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_jedec_params *p;
+	struct jedec_ecc_info *ecc;
+	int jedec_version = 0;
+	char id[5];
+	int i, val, ret;
+
+	/* Try JEDEC for unknown chip or LP */
+	ret = nand_readid_op(chip, 0x40, id, sizeof(id));
+	if (ret || strncmp(id, "JEDEC", sizeof(id)))
+		return 0;
+
+	/* JEDEC chip: allocate a buffer to hold its parameter page */
+	p = kzalloc(sizeof(*p), GFP_KERNEL);
+	if (!p)
+		return -ENOMEM;
+
+	ret = nand_read_param_page_op(chip, 0x40, NULL, 0);
+	if (ret) {
+		ret = 0;
+		goto free_jedec_param_page;
+	}
+
+	for (i = 0; i < 3; i++) {
+		ret = nand_read_data_op(chip, p, sizeof(*p), true);
+		if (ret) {
+			ret = 0;
+			goto free_jedec_param_page;
+		}
+
+		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
+				le16_to_cpu(p->crc))
+			break;
+	}
+
+	if (i == 3) {
+		pr_err("Could not find valid JEDEC parameter page; aborting\n");
+		goto free_jedec_param_page;
+	}
+
+	/* Check version */
+	val = le16_to_cpu(p->revision);
+	if (val & (1 << 2))
+		jedec_version = 10;
+	else if (val & (1 << 1))
+		jedec_version = 1; /* vendor specific version */
+
+	if (!jedec_version) {
+		pr_info("unsupported JEDEC version: %d\n", val);
+		goto free_jedec_param_page;
+	}
+
+	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
+	sanitize_string(p->model, sizeof(p->model));
+	chip->parameters.model = kstrdup(p->model, GFP_KERNEL);
+	if (!chip->parameters.model) {
+		ret = -ENOMEM;
+		goto free_jedec_param_page;
+	}
+
+	mtd->writesize = le32_to_cpu(p->byte_per_page);
+
+	/* Please reference to the comment for nand_flash_detect_onfi. */
+	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
+	mtd->erasesize *= mtd->writesize;
+
+	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
+
+	/* Please reference to the comment for nand_flash_detect_onfi. */
+	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
+	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
+	chip->bits_per_cell = p->bits_per_cell;
+
+	if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	/* ECC info */
+	ecc = &p->ecc_info[0];
+
+	if (ecc->codeword_size >= 9) {
+		chip->ecc_strength_ds = ecc->ecc_bits;
+		chip->ecc_step_ds = 1 << ecc->codeword_size;
+	} else {
+		pr_warn("Invalid codeword size\n");
+	}
+
+free_jedec_param_page:
+	kfree(p);
+	return ret;
+}
+
+/*
+ * nand_id_has_period - Check if an ID string has a given wraparound period
+ * @id_data: the ID string
+ * @arrlen: the length of the @id_data array
+ * @period: the period of repitition
+ *
+ * Check if an ID string is repeated within a given sequence of bytes at
+ * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
+ * period of 3). This is a helper function for nand_id_len(). Returns non-zero
+ * if the repetition has a period of @period; otherwise, returns zero.
+ */
+static int nand_id_has_period(u8 *id_data, int arrlen, int period)
+{
+	int i, j;
+	for (i = 0; i < period; i++)
+		for (j = i + period; j < arrlen; j += period)
+			if (id_data[i] != id_data[j])
+				return 0;
+	return 1;
+}
+
+/*
+ * nand_id_len - Get the length of an ID string returned by CMD_READID
+ * @id_data: the ID string
+ * @arrlen: the length of the @id_data array
+
+ * Returns the length of the ID string, according to known wraparound/trailing
+ * zero patterns. If no pattern exists, returns the length of the array.
+ */
+static int nand_id_len(u8 *id_data, int arrlen)
+{
+	int last_nonzero, period;
+
+	/* Find last non-zero byte */
+	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
+		if (id_data[last_nonzero])
+			break;
+
+	/* All zeros */
+	if (last_nonzero < 0)
+		return 0;
+
+	/* Calculate wraparound period */
+	for (period = 1; period < arrlen; period++)
+		if (nand_id_has_period(id_data, arrlen, period))
+			break;
+
+	/* There's a repeated pattern */
+	if (period < arrlen)
+		return period;
+
+	/* There are trailing zeros */
+	if (last_nonzero < arrlen - 1)
+		return last_nonzero + 1;
+
+	/* No pattern detected */
+	return arrlen;
+}
+
+/* Extract the bits of per cell from the 3rd byte of the extended ID */
+static int nand_get_bits_per_cell(u8 cellinfo)
+{
+	int bits;
+
+	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
+	bits >>= NAND_CI_CELLTYPE_SHIFT;
+	return bits + 1;
+}
+
+/*
+ * Many new NAND share similar device ID codes, which represent the size of the
+ * chip. The rest of the parameters must be decoded according to generic or
+ * manufacturer-specific "extended ID" decoding patterns.
+ */
+void nand_decode_ext_id(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int extid;
+	u8 *id_data = chip->id.data;
+	/* The 3rd id byte holds MLC / multichip data */
+	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+	/* The 4th id byte is the important one */
+	extid = id_data[3];
+
+	/* Calc pagesize */
+	mtd->writesize = 1024 << (extid & 0x03);
+	extid >>= 2;
+	/* Calc oobsize */
+	mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
+	extid >>= 2;
+	/* Calc blocksize. Blocksize is multiples of 64KiB */
+	mtd->erasesize = (64 * 1024) << (extid & 0x03);
+	extid >>= 2;
+	/* Get buswidth information */
+	if (extid & 0x1)
+		chip->options |= NAND_BUSWIDTH_16;
+}
+EXPORT_SYMBOL_GPL(nand_decode_ext_id);
+
+/*
+ * Old devices have chip data hardcoded in the device ID table. nand_decode_id
+ * decodes a matching ID table entry and assigns the MTD size parameters for
+ * the chip.
+ */
+static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	mtd->erasesize = type->erasesize;
+	mtd->writesize = type->pagesize;
+	mtd->oobsize = mtd->writesize / 32;
+
+	/* All legacy ID NAND are small-page, SLC */
+	chip->bits_per_cell = 1;
+}
+
+/*
+ * Set the bad block marker/indicator (BBM/BBI) patterns according to some
+ * heuristic patterns using various detected parameters (e.g., manufacturer,
+ * page size, cell-type information).
+ */
+static void nand_decode_bbm_options(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/* Set the bad block position */
+	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
+		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
+	else
+		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
+}
+
+static inline bool is_full_id_nand(struct nand_flash_dev *type)
+{
+	return type->id_len;
+}
+
+static bool find_full_id_nand(struct nand_chip *chip,
+			      struct nand_flash_dev *type)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *id_data = chip->id.data;
+
+	if (!strncmp(type->id, id_data, type->id_len)) {
+		mtd->writesize = type->pagesize;
+		mtd->erasesize = type->erasesize;
+		mtd->oobsize = type->oobsize;
+
+		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
+		chip->chipsize = (uint64_t)type->chipsize << 20;
+		chip->options |= type->options;
+		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
+		chip->ecc_step_ds = NAND_ECC_STEP(type);
+		chip->onfi_timing_mode_default =
+					type->onfi_timing_mode_default;
+
+		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
+		if (!chip->parameters.model)
+			return false;
+
+		return true;
+	}
+	return false;
+}
+
+/*
+ * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
+ * compliant and does not have a full-id or legacy-id entry in the nand_ids
+ * table.
+ */
+static void nand_manufacturer_detect(struct nand_chip *chip)
+{
+	/*
+	 * Try manufacturer detection if available and use
+	 * nand_decode_ext_id() otherwise.
+	 */
+	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
+	    chip->manufacturer.desc->ops->detect) {
+		/* The 3rd id byte holds MLC / multichip data */
+		chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
+		chip->manufacturer.desc->ops->detect(chip);
+	} else {
+		nand_decode_ext_id(chip);
+	}
+}
+
+/*
+ * Manufacturer initialization. This function is called for all NANDs including
+ * ONFI and JEDEC compliant ones.
+ * Manufacturer drivers should put all their specific initialization code in
+ * their ->init() hook.
+ */
+static int nand_manufacturer_init(struct nand_chip *chip)
+{
+	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
+	    !chip->manufacturer.desc->ops->init)
+		return 0;
+
+	return chip->manufacturer.desc->ops->init(chip);
+}
+
+/*
+ * Manufacturer cleanup. This function is called for all NANDs including
+ * ONFI and JEDEC compliant ones.
+ * Manufacturer drivers should put all their specific cleanup code in their
+ * ->cleanup() hook.
+ */
+static void nand_manufacturer_cleanup(struct nand_chip *chip)
+{
+	/* Release manufacturer private data */
+	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
+	    chip->manufacturer.desc->ops->cleanup)
+		chip->manufacturer.desc->ops->cleanup(chip);
+}
+
+/*
+ * Get the flash and manufacturer id and lookup if the type is supported.
+ */
+static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
+{
+	const struct nand_manufacturer *manufacturer;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int busw, ret;
+	u8 *id_data = chip->id.data;
+	u8 maf_id, dev_id;
+
+	/*
+	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
+	 * after power-up.
+	 */
+	ret = nand_reset(chip, 0);
+	if (ret)
+		return ret;
+
+	/* Select the device */
+	chip->select_chip(mtd, 0);
+
+	/* Send the command for reading device ID */
+	ret = nand_readid_op(chip, 0, id_data, 2);
+	if (ret)
+		return ret;
+
+	/* Read manufacturer and device IDs */
+	maf_id = id_data[0];
+	dev_id = id_data[1];
+
+	/*
+	 * Try again to make sure, as some systems the bus-hold or other
+	 * interface concerns can cause random data which looks like a
+	 * possibly credible NAND flash to appear. If the two results do
+	 * not match, ignore the device completely.
+	 */
+
+	/* Read entire ID string */
+	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
+	if (ret)
+		return ret;
+
+	if (id_data[0] != maf_id || id_data[1] != dev_id) {
+		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
+			maf_id, dev_id, id_data[0], id_data[1]);
+		return -ENODEV;
+	}
+
+	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
+
+	/* Try to identify manufacturer */
+	manufacturer = nand_get_manufacturer(maf_id);
+	chip->manufacturer.desc = manufacturer;
+
+	if (!type)
+		type = nand_flash_ids;
+
+	/*
+	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
+	 * override it.
+	 * This is required to make sure initial NAND bus width set by the
+	 * NAND controller driver is coherent with the real NAND bus width
+	 * (extracted by auto-detection code).
+	 */
+	busw = chip->options & NAND_BUSWIDTH_16;
+
+	/*
+	 * The flag is only set (never cleared), reset it to its default value
+	 * before starting auto-detection.
+	 */
+	chip->options &= ~NAND_BUSWIDTH_16;
+
+	for (; type->name != NULL; type++) {
+		if (is_full_id_nand(type)) {
+			if (find_full_id_nand(chip, type))
+				goto ident_done;
+		} else if (dev_id == type->dev_id) {
+			break;
+		}
+	}
+
+	if (!type->name || !type->pagesize) {
+		/* Check if the chip is ONFI compliant */
+		ret = nand_flash_detect_onfi(chip);
+		if (ret < 0)
+			return ret;
+		else if (ret)
+			goto ident_done;
+
+		/* Check if the chip is JEDEC compliant */
+		ret = nand_flash_detect_jedec(chip);
+		if (ret < 0)
+			return ret;
+		else if (ret)
+			goto ident_done;
+	}
+
+	if (!type->name)
+		return -ENODEV;
+
+	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
+	if (!chip->parameters.model)
+		return -ENOMEM;
+
+	chip->chipsize = (uint64_t)type->chipsize << 20;
+
+	if (!type->pagesize)
+		nand_manufacturer_detect(chip);
+	else
+		nand_decode_id(chip, type);
+
+	/* Get chip options */
+	chip->options |= type->options;
+
+ident_done:
+	if (!mtd->name)
+		mtd->name = chip->parameters.model;
+
+	if (chip->options & NAND_BUSWIDTH_AUTO) {
+		WARN_ON(busw & NAND_BUSWIDTH_16);
+		nand_set_defaults(chip);
+	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
+		/*
+		 * Check, if buswidth is correct. Hardware drivers should set
+		 * chip correct!
+		 */
+		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
+			maf_id, dev_id);
+		pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+			mtd->name);
+		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
+			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
+		ret = -EINVAL;
+
+		goto free_detect_allocation;
+	}
+
+	nand_decode_bbm_options(chip);
+
+	/* Calculate the address shift from the page size */
+	chip->page_shift = ffs(mtd->writesize) - 1;
+	/* Convert chipsize to number of pages per chip -1 */
+	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+
+	chip->bbt_erase_shift = chip->phys_erase_shift =
+		ffs(mtd->erasesize) - 1;
+	if (chip->chipsize & 0xffffffff)
+		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
+	else {
+		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
+		chip->chip_shift += 32 - 1;
+	}
+
+	if (chip->chip_shift - chip->page_shift > 16)
+		chip->options |= NAND_ROW_ADDR_3;
+
+	chip->badblockbits = 8;
+	chip->erase = single_erase;
+
+	/* Do not replace user supplied command function! */
+	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
+		chip->cmdfunc = nand_command_lp;
+
+	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
+		maf_id, dev_id);
+	pr_info("%s %s\n", nand_manufacturer_name(manufacturer),
+		chip->parameters.model);
+	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
+		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
+		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
+	return 0;
+
+free_detect_allocation:
+	kfree(chip->parameters.model);
+
+	return ret;
+}
+
+static const char * const nand_ecc_modes[] = {
+	[NAND_ECC_NONE]		= "none",
+	[NAND_ECC_SOFT]		= "soft",
+	[NAND_ECC_HW]		= "hw",
+	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
+	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
+	[NAND_ECC_ON_DIE]	= "on-die",
+};
+
+static int of_get_nand_ecc_mode(struct device_node *np)
+{
+	const char *pm;
+	int err, i;
+
+	err = of_property_read_string(np, "nand-ecc-mode", &pm);
+	if (err < 0)
+		return err;
+
+	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
+		if (!strcasecmp(pm, nand_ecc_modes[i]))
+			return i;
+
+	/*
+	 * For backward compatibility we support few obsoleted values that don't
+	 * have their mappings into nand_ecc_modes_t anymore (they were merged
+	 * with other enums).
+	 */
+	if (!strcasecmp(pm, "soft_bch"))
+		return NAND_ECC_SOFT;
+
+	return -ENODEV;
+}
+
+static const char * const nand_ecc_algos[] = {
+	[NAND_ECC_HAMMING]	= "hamming",
+	[NAND_ECC_BCH]		= "bch",
+	[NAND_ECC_RS]		= "rs",
+};
+
+static int of_get_nand_ecc_algo(struct device_node *np)
+{
+	const char *pm;
+	int err, i;
+
+	err = of_property_read_string(np, "nand-ecc-algo", &pm);
+	if (!err) {
+		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
+			if (!strcasecmp(pm, nand_ecc_algos[i]))
+				return i;
+		return -ENODEV;
+	}
+
+	/*
+	 * For backward compatibility we also read "nand-ecc-mode" checking
+	 * for some obsoleted values that were specifying ECC algorithm.
+	 */
+	err = of_property_read_string(np, "nand-ecc-mode", &pm);
+	if (err < 0)
+		return err;
+
+	if (!strcasecmp(pm, "soft"))
+		return NAND_ECC_HAMMING;
+	else if (!strcasecmp(pm, "soft_bch"))
+		return NAND_ECC_BCH;
+
+	return -ENODEV;
+}
+
+static int of_get_nand_ecc_step_size(struct device_node *np)
+{
+	int ret;
+	u32 val;
+
+	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
+	return ret ? ret : val;
+}
+
+static int of_get_nand_ecc_strength(struct device_node *np)
+{
+	int ret;
+	u32 val;
+
+	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
+	return ret ? ret : val;
+}
+
+static int of_get_nand_bus_width(struct device_node *np)
+{
+	u32 val;
+
+	if (of_property_read_u32(np, "nand-bus-width", &val))
+		return 8;
+
+	switch (val) {
+	case 8:
+	case 16:
+		return val;
+	default:
+		return -EIO;
+	}
+}
+
+static bool of_get_nand_on_flash_bbt(struct device_node *np)
+{
+	return of_property_read_bool(np, "nand-on-flash-bbt");
+}
+
+static int nand_dt_init(struct nand_chip *chip)
+{
+	struct device_node *dn = nand_get_flash_node(chip);
+	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
+
+	if (!dn)
+		return 0;
+
+	if (of_get_nand_bus_width(dn) == 16)
+		chip->options |= NAND_BUSWIDTH_16;
+
+	if (of_property_read_bool(dn, "nand-is-boot-medium"))
+		chip->options |= NAND_IS_BOOT_MEDIUM;
+
+	if (of_get_nand_on_flash_bbt(dn))
+		chip->bbt_options |= NAND_BBT_USE_FLASH;
+
+	ecc_mode = of_get_nand_ecc_mode(dn);
+	ecc_algo = of_get_nand_ecc_algo(dn);
+	ecc_strength = of_get_nand_ecc_strength(dn);
+	ecc_step = of_get_nand_ecc_step_size(dn);
+
+	if (ecc_mode >= 0)
+		chip->ecc.mode = ecc_mode;
+
+	if (ecc_algo >= 0)
+		chip->ecc.algo = ecc_algo;
+
+	if (ecc_strength >= 0)
+		chip->ecc.strength = ecc_strength;
+
+	if (ecc_step > 0)
+		chip->ecc.size = ecc_step;
+
+	if (of_property_read_bool(dn, "nand-ecc-maximize"))
+		chip->ecc.options |= NAND_ECC_MAXIMIZE;
+
+	return 0;
+}
+
+/**
+ * nand_scan_ident - Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: number of chips to scan for
+ * @table: alternative NAND ID table
+ *
+ * This is the first phase of the normal nand_scan() function. It reads the
+ * flash ID and sets up MTD fields accordingly.
+ *
+ * This helper used to be called directly from controller drivers that needed
+ * to tweak some ECC-related parameters before nand_scan_tail(). This separation
+ * prevented dynamic allocations during this phase which was unconvenient and
+ * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
+ */
+static int nand_scan_ident(struct mtd_info *mtd, int maxchips,
+			   struct nand_flash_dev *table)
+{
+	int i, nand_maf_id, nand_dev_id;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret;
+
+	/* Enforce the right timings for reset/detection */
+	onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0);
+
+	ret = nand_dt_init(chip);
+	if (ret)
+		return ret;
+
+	if (!mtd->name && mtd->dev.parent)
+		mtd->name = dev_name(mtd->dev.parent);
+
+	/*
+	 * ->cmdfunc() is legacy and will only be used if ->exec_op() is not
+	 * populated.
+	 */
+	if (!chip->exec_op) {
+		/*
+		 * Default functions assigned for ->cmdfunc() and
+		 * ->select_chip() both expect ->cmd_ctrl() to be populated.
+		 */
+		if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
+			pr_err("->cmd_ctrl() should be provided\n");
+			return -EINVAL;
+		}
+	}
+
+	/* Set the default functions */
+	nand_set_defaults(chip);
+
+	/* Read the flash type */
+	ret = nand_detect(chip, table);
+	if (ret) {
+		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
+			pr_warn("No NAND device found\n");
+		chip->select_chip(mtd, -1);
+		return ret;
+	}
+
+	nand_maf_id = chip->id.data[0];
+	nand_dev_id = chip->id.data[1];
+
+	chip->select_chip(mtd, -1);
+
+	/* Check for a chip array */
+	for (i = 1; i < maxchips; i++) {
+		u8 id[2];
+
+		/* See comment in nand_get_flash_type for reset */
+		nand_reset(chip, i);
+
+		chip->select_chip(mtd, i);
+		/* Send the command for reading device ID */
+		nand_readid_op(chip, 0, id, sizeof(id));
+		/* Read manufacturer and device IDs */
+		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
+			chip->select_chip(mtd, -1);
+			break;
+		}
+		chip->select_chip(mtd, -1);
+	}
+	if (i > 1)
+		pr_info("%d chips detected\n", i);
+
+	/* Store the number of chips and calc total size for mtd */
+	chip->numchips = i;
+	mtd->size = i * chip->chipsize;
+
+	return 0;
+}
+
+static void nand_scan_ident_cleanup(struct nand_chip *chip)
+{
+	kfree(chip->parameters.model);
+	kfree(chip->parameters.onfi);
+}
+
+static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
+		return -EINVAL;
+
+	switch (ecc->algo) {
+	case NAND_ECC_HAMMING:
+		ecc->calculate = nand_calculate_ecc;
+		ecc->correct = nand_correct_data;
+		ecc->read_page = nand_read_page_swecc;
+		ecc->read_subpage = nand_read_subpage;
+		ecc->write_page = nand_write_page_swecc;
+		ecc->read_page_raw = nand_read_page_raw;
+		ecc->write_page_raw = nand_write_page_raw;
+		ecc->read_oob = nand_read_oob_std;
+		ecc->write_oob = nand_write_oob_std;
+		if (!ecc->size)
+			ecc->size = 256;
+		ecc->bytes = 3;
+		ecc->strength = 1;
+		return 0;
+	case NAND_ECC_BCH:
+		if (!mtd_nand_has_bch()) {
+			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
+			return -EINVAL;
+		}
+		ecc->calculate = nand_bch_calculate_ecc;
+		ecc->correct = nand_bch_correct_data;
+		ecc->read_page = nand_read_page_swecc;
+		ecc->read_subpage = nand_read_subpage;
+		ecc->write_page = nand_write_page_swecc;
+		ecc->read_page_raw = nand_read_page_raw;
+		ecc->write_page_raw = nand_write_page_raw;
+		ecc->read_oob = nand_read_oob_std;
+		ecc->write_oob = nand_write_oob_std;
+
+		/*
+		* Board driver should supply ecc.size and ecc.strength
+		* values to select how many bits are correctable.
+		* Otherwise, default to 4 bits for large page devices.
+		*/
+		if (!ecc->size && (mtd->oobsize >= 64)) {
+			ecc->size = 512;
+			ecc->strength = 4;
+		}
+
+		/*
+		 * if no ecc placement scheme was provided pickup the default
+		 * large page one.
+		 */
+		if (!mtd->ooblayout) {
+			/* handle large page devices only */
+			if (mtd->oobsize < 64) {
+				WARN(1, "OOB layout is required when using software BCH on small pages\n");
+				return -EINVAL;
+			}
+
+			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+
+		}
+
+		/*
+		 * We can only maximize ECC config when the default layout is
+		 * used, otherwise we don't know how many bytes can really be
+		 * used.
+		 */
+		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
+		    ecc->options & NAND_ECC_MAXIMIZE) {
+			int steps, bytes;
+
+			/* Always prefer 1k blocks over 512bytes ones */
+			ecc->size = 1024;
+			steps = mtd->writesize / ecc->size;
+
+			/* Reserve 2 bytes for the BBM */
+			bytes = (mtd->oobsize - 2) / steps;
+			ecc->strength = bytes * 8 / fls(8 * ecc->size);
+		}
+
+		/* See nand_bch_init() for details. */
+		ecc->bytes = 0;
+		ecc->priv = nand_bch_init(mtd);
+		if (!ecc->priv) {
+			WARN(1, "BCH ECC initialization failed!\n");
+			return -EINVAL;
+		}
+		return 0;
+	default:
+		WARN(1, "Unsupported ECC algorithm!\n");
+		return -EINVAL;
+	}
+}
+
+/**
+ * nand_check_ecc_caps - check the sanity of preset ECC settings
+ * @chip: nand chip info structure
+ * @caps: ECC caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * When ECC step size and strength are already set, check if they are supported
+ * by the controller and the calculated ECC bytes fit within the chip's OOB.
+ * On success, the calculated ECC bytes is set.
+ */
+static int
+nand_check_ecc_caps(struct nand_chip *chip,
+		    const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int preset_step = chip->ecc.size;
+	int preset_strength = chip->ecc.strength;
+	int ecc_bytes, nsteps = mtd->writesize / preset_step;
+	int i, j;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+
+		if (stepinfo->stepsize != preset_step)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			if (stepinfo->strengths[j] != preset_strength)
+				continue;
+
+			ecc_bytes = caps->calc_ecc_bytes(preset_step,
+							 preset_strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				return ecc_bytes;
+
+			if (ecc_bytes * nsteps > oobavail) {
+				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
+				       preset_step, preset_strength);
+				return -ENOSPC;
+			}
+
+			chip->ecc.bytes = ecc_bytes;
+
+			return 0;
+		}
+	}
+
+	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
+	       preset_step, preset_strength);
+
+	return -ENOTSUPP;
+}
+
+/**
+ * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * If a chip's ECC requirement is provided, try to meet it with the least
+ * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
+ * On success, the chosen ECC settings are set.
+ */
+static int
+nand_match_ecc_req(struct nand_chip *chip,
+		   const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int req_step = chip->ecc_step_ds;
+	int req_strength = chip->ecc_strength_ds;
+	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
+	int best_step, best_strength, best_ecc_bytes;
+	int best_ecc_bytes_total = INT_MAX;
+	int i, j;
+
+	/* No information provided by the NAND chip */
+	if (!req_step || !req_strength)
+		return -ENOTSUPP;
+
+	/* number of correctable bits the chip requires in a page */
+	req_corr = mtd->writesize / req_step * req_strength;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			/*
+			 * If both step size and strength are smaller than the
+			 * chip's requirement, it is not easy to compare the
+			 * resulted reliability.
+			 */
+			if (step_size < req_step && strength < req_strength)
+				continue;
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+			ecc_bytes_total = ecc_bytes * nsteps;
+
+			if (ecc_bytes_total > oobavail ||
+			    strength * nsteps < req_corr)
+				continue;
+
+			/*
+			 * We assume the best is to meet the chip's requrement
+			 * with the least number of ECC bytes.
+			 */
+			if (ecc_bytes_total < best_ecc_bytes_total) {
+				best_ecc_bytes_total = ecc_bytes_total;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (best_ecc_bytes_total == INT_MAX)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+
+/**
+ * nand_maximize_ecc - choose the max ECC strength available
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * Choose the max ECC strength that is supported on the controller, and can fit
+ * within the chip's OOB.  On success, the chosen ECC settings are set.
+ */
+static int
+nand_maximize_ecc(struct nand_chip *chip,
+		  const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const struct nand_ecc_step_info *stepinfo;
+	int step_size, strength, nsteps, ecc_bytes, corr;
+	int best_corr = 0;
+	int best_step = 0;
+	int best_strength, best_ecc_bytes;
+	int i, j;
+
+	for (i = 0; i < caps->nstepinfos; i++) {
+		stepinfo = &caps->stepinfos[i];
+		step_size = stepinfo->stepsize;
+
+		/* If chip->ecc.size is already set, respect it */
+		if (chip->ecc.size && step_size != chip->ecc.size)
+			continue;
+
+		for (j = 0; j < stepinfo->nstrengths; j++) {
+			strength = stepinfo->strengths[j];
+
+			if (mtd->writesize % step_size)
+				continue;
+
+			nsteps = mtd->writesize / step_size;
+
+			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
+			if (WARN_ON_ONCE(ecc_bytes < 0))
+				continue;
+
+			if (ecc_bytes * nsteps > oobavail)
+				continue;
+
+			corr = strength * nsteps;
+
+			/*
+			 * If the number of correctable bits is the same,
+			 * bigger step_size has more reliability.
+			 */
+			if (corr > best_corr ||
+			    (corr == best_corr && step_size > best_step)) {
+				best_corr = corr;
+				best_step = step_size;
+				best_strength = strength;
+				best_ecc_bytes = ecc_bytes;
+			}
+		}
+	}
+
+	if (!best_corr)
+		return -ENOTSUPP;
+
+	chip->ecc.size = best_step;
+	chip->ecc.strength = best_strength;
+	chip->ecc.bytes = best_ecc_bytes;
+
+	return 0;
+}
+
+/**
+ * nand_ecc_choose_conf - Set the ECC strength and ECC step size
+ * @chip: nand chip info structure
+ * @caps: ECC engine caps info structure
+ * @oobavail: OOB size that the ECC engine can use
+ *
+ * Choose the ECC configuration according to following logic
+ *
+ * 1. If both ECC step size and ECC strength are already set (usually by DT)
+ *    then check if it is supported by this controller.
+ * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
+ * 3. Otherwise, try to match the ECC step size and ECC strength closest
+ *    to the chip's requirement. If available OOB size can't fit the chip
+ *    requirement then fallback to the maximum ECC step size and ECC strength.
+ *
+ * On success, the chosen ECC settings are set.
+ */
+int nand_ecc_choose_conf(struct nand_chip *chip,
+			 const struct nand_ecc_caps *caps, int oobavail)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
+		return -EINVAL;
+
+	if (chip->ecc.size && chip->ecc.strength)
+		return nand_check_ecc_caps(chip, caps, oobavail);
+
+	if (chip->ecc.options & NAND_ECC_MAXIMIZE)
+		return nand_maximize_ecc(chip, caps, oobavail);
+
+	if (!nand_match_ecc_req(chip, caps, oobavail))
+		return 0;
+
+	return nand_maximize_ecc(chip, caps, oobavail);
+}
+EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
+
+/*
+ * Check if the chip configuration meet the datasheet requirements.
+
+ * If our configuration corrects A bits per B bytes and the minimum
+ * required correction level is X bits per Y bytes, then we must ensure
+ * both of the following are true:
+ *
+ * (1) A / B >= X / Y
+ * (2) A >= X
+ *
+ * Requirement (1) ensures we can correct for the required bitflip density.
+ * Requirement (2) ensures we can correct even when all bitflips are clumped
+ * in the same sector.
+ */
+static bool nand_ecc_strength_good(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int corr, ds_corr;
+
+	if (ecc->size == 0 || chip->ecc_step_ds == 0)
+		/* Not enough information */
+		return true;
+
+	/*
+	 * We get the number of corrected bits per page to compare
+	 * the correction density.
+	 */
+	corr = (mtd->writesize * ecc->strength) / ecc->size;
+	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
+
+	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
+}
+
+/**
+ * nand_scan_tail - Scan for the NAND device
+ * @mtd: MTD device structure
+ *
+ * This is the second phase of the normal nand_scan() function. It fills out
+ * all the uninitialized function pointers with the defaults and scans for a
+ * bad block table if appropriate.
+ */
+static int nand_scan_tail(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i;
+
+	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
+	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
+		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
+		return -EINVAL;
+	}
+
+	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+	if (!chip->data_buf)
+		return -ENOMEM;
+
+	/*
+	 * FIXME: some NAND manufacturer drivers expect the first die to be
+	 * selected when manufacturer->init() is called. They should be fixed
+	 * to explictly select the relevant die when interacting with the NAND
+	 * chip.
+	 */
+	chip->select_chip(mtd, 0);
+	ret = nand_manufacturer_init(chip);
+	chip->select_chip(mtd, -1);
+	if (ret)
+		goto err_free_buf;
+
+	/* Set the internal oob buffer location, just after the page data */
+	chip->oob_poi = chip->data_buf + mtd->writesize;
+
+	/*
+	 * If no default placement scheme is given, select an appropriate one.
+	 */
+	if (!mtd->ooblayout &&
+	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
+		switch (mtd->oobsize) {
+		case 8:
+		case 16:
+			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
+			break;
+		case 64:
+		case 128:
+			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
+			break;
+		default:
+			/*
+			 * Expose the whole OOB area to users if ECC_NONE
+			 * is passed. We could do that for all kind of
+			 * ->oobsize, but we must keep the old large/small
+			 * page with ECC layout when ->oobsize <= 128 for
+			 * compatibility reasons.
+			 */
+			if (ecc->mode == NAND_ECC_NONE) {
+				mtd_set_ooblayout(mtd,
+						&nand_ooblayout_lp_ops);
+				break;
+			}
+
+			WARN(1, "No oob scheme defined for oobsize %d\n",
+				mtd->oobsize);
+			ret = -EINVAL;
+			goto err_nand_manuf_cleanup;
+		}
+	}
+
+	/*
+	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
+	 * selected and we have 256 byte pagesize fallback to software ECC
+	 */
+
+	switch (ecc->mode) {
+	case NAND_ECC_HW_OOB_FIRST:
+		/* Similar to NAND_ECC_HW, but a separate read_page handle */
+		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
+			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
+			ret = -EINVAL;
+			goto err_nand_manuf_cleanup;
+		}
+		if (!ecc->read_page)
+			ecc->read_page = nand_read_page_hwecc_oob_first;
+
+	case NAND_ECC_HW:
+		/* Use standard hwecc read page function? */
+		if (!ecc->read_page)
+			ecc->read_page = nand_read_page_hwecc;
+		if (!ecc->write_page)
+			ecc->write_page = nand_write_page_hwecc;
+		if (!ecc->read_page_raw)
+			ecc->read_page_raw = nand_read_page_raw;
+		if (!ecc->write_page_raw)
+			ecc->write_page_raw = nand_write_page_raw;
+		if (!ecc->read_oob)
+			ecc->read_oob = nand_read_oob_std;
+		if (!ecc->write_oob)
+			ecc->write_oob = nand_write_oob_std;
+		if (!ecc->read_subpage)
+			ecc->read_subpage = nand_read_subpage;
+		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
+			ecc->write_subpage = nand_write_subpage_hwecc;
+
+	case NAND_ECC_HW_SYNDROME:
+		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
+		    (!ecc->read_page ||
+		     ecc->read_page == nand_read_page_hwecc ||
+		     !ecc->write_page ||
+		     ecc->write_page == nand_write_page_hwecc)) {
+			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
+			ret = -EINVAL;
+			goto err_nand_manuf_cleanup;
+		}
+		/* Use standard syndrome read/write page function? */
+		if (!ecc->read_page)
+			ecc->read_page = nand_read_page_syndrome;
+		if (!ecc->write_page)
+			ecc->write_page = nand_write_page_syndrome;
+		if (!ecc->read_page_raw)
+			ecc->read_page_raw = nand_read_page_raw_syndrome;
+		if (!ecc->write_page_raw)
+			ecc->write_page_raw = nand_write_page_raw_syndrome;
+		if (!ecc->read_oob)
+			ecc->read_oob = nand_read_oob_syndrome;
+		if (!ecc->write_oob)
+			ecc->write_oob = nand_write_oob_syndrome;
+
+		if (mtd->writesize >= ecc->size) {
+			if (!ecc->strength) {
+				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
+				ret = -EINVAL;
+				goto err_nand_manuf_cleanup;
+			}
+			break;
+		}
+		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+			ecc->size, mtd->writesize);
+		ecc->mode = NAND_ECC_SOFT;
+		ecc->algo = NAND_ECC_HAMMING;
+
+	case NAND_ECC_SOFT:
+		ret = nand_set_ecc_soft_ops(mtd);
+		if (ret) {
+			ret = -EINVAL;
+			goto err_nand_manuf_cleanup;
+		}
+		break;
+
+	case NAND_ECC_ON_DIE:
+		if (!ecc->read_page || !ecc->write_page) {
+			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
+			ret = -EINVAL;
+			goto err_nand_manuf_cleanup;
+		}
+		if (!ecc->read_oob)
+			ecc->read_oob = nand_read_oob_std;
+		if (!ecc->write_oob)
+			ecc->write_oob = nand_write_oob_std;
+		break;
+
+	case NAND_ECC_NONE:
+		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
+		ecc->read_page = nand_read_page_raw;
+		ecc->write_page = nand_write_page_raw;
+		ecc->read_oob = nand_read_oob_std;
+		ecc->read_page_raw = nand_read_page_raw;
+		ecc->write_page_raw = nand_write_page_raw;
+		ecc->write_oob = nand_write_oob_std;
+		ecc->size = mtd->writesize;
+		ecc->bytes = 0;
+		ecc->strength = 0;
+		break;
+
+	default:
+		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
+		ret = -EINVAL;
+		goto err_nand_manuf_cleanup;
+	}
+
+	if (ecc->correct || ecc->calculate) {
+		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
+		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
+		if (!ecc->calc_buf || !ecc->code_buf) {
+			ret = -ENOMEM;
+			goto err_nand_manuf_cleanup;
+		}
+	}
+
+	/* For many systems, the standard OOB write also works for raw */
+	if (!ecc->read_oob_raw)
+		ecc->read_oob_raw = ecc->read_oob;
+	if (!ecc->write_oob_raw)
+		ecc->write_oob_raw = ecc->write_oob;
+
+	/* propagate ecc info to mtd_info */
+	mtd->ecc_strength = ecc->strength;
+	mtd->ecc_step_size = ecc->size;
+
+	/*
+	 * Set the number of read / write steps for one page depending on ECC
+	 * mode.
+	 */
+	ecc->steps = mtd->writesize / ecc->size;
+	if (ecc->steps * ecc->size != mtd->writesize) {
+		WARN(1, "Invalid ECC parameters\n");
+		ret = -EINVAL;
+		goto err_nand_manuf_cleanup;
+	}
+	ecc->total = ecc->steps * ecc->bytes;
+	if (ecc->total > mtd->oobsize) {
+		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
+		ret = -EINVAL;
+		goto err_nand_manuf_cleanup;
+	}
+
+	/*
+	 * The number of bytes available for a client to place data into
+	 * the out of band area.
+	 */
+	ret = mtd_ooblayout_count_freebytes(mtd);
+	if (ret < 0)
+		ret = 0;
+
+	mtd->oobavail = ret;
+
+	/* ECC sanity check: warn if it's too weak */
+	if (!nand_ecc_strength_good(mtd))
+		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
+			mtd->name);
+
+	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
+	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
+		switch (ecc->steps) {
+		case 2:
+			mtd->subpage_sft = 1;
+			break;
+		case 4:
+		case 8:
+		case 16:
+			mtd->subpage_sft = 2;
+			break;
+		}
+	}
+	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
+
+	/* Initialize state */
+	chip->state = FL_READY;
+
+	/* Invalidate the pagebuffer reference */
+	chip->pagebuf = -1;
+
+	/* Large page NAND with SOFT_ECC should support subpage reads */
+	switch (ecc->mode) {
+	case NAND_ECC_SOFT:
+		if (chip->page_shift > 9)
+			chip->options |= NAND_SUBPAGE_READ;
+		break;
+
+	default:
+		break;
+	}
+
+	/* Fill in remaining MTD driver data */
+	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
+	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
+						MTD_CAP_NANDFLASH;
+	mtd->_erase = nand_erase;
+	mtd->_point = NULL;
+	mtd->_unpoint = NULL;
+	mtd->_panic_write = panic_nand_write;
+	mtd->_read_oob = nand_read_oob;
+	mtd->_write_oob = nand_write_oob;
+	mtd->_sync = nand_sync;
+	mtd->_lock = NULL;
+	mtd->_unlock = NULL;
+	mtd->_suspend = nand_suspend;
+	mtd->_resume = nand_resume;
+	mtd->_reboot = nand_shutdown;
+	mtd->_block_isreserved = nand_block_isreserved;
+	mtd->_block_isbad = nand_block_isbad;
+	mtd->_block_markbad = nand_block_markbad;
+	mtd->_max_bad_blocks = nand_max_bad_blocks;
+	mtd->writebufsize = mtd->writesize;
+
+	/*
+	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
+	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
+	 * properly set.
+	 */
+	if (!mtd->bitflip_threshold)
+		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
+
+	/* Initialize the ->data_interface field. */
+	ret = nand_init_data_interface(chip);
+	if (ret)
+		goto err_nand_manuf_cleanup;
+
+	/* Enter fastest possible mode on all dies. */
+	for (i = 0; i < chip->numchips; i++) {
+		ret = nand_setup_data_interface(chip, i);
+		if (ret)
+			goto err_nand_manuf_cleanup;
+	}
+
+	/* Check, if we should skip the bad block table scan */
+	if (chip->options & NAND_SKIP_BBTSCAN)
+		return 0;
+
+	/* Build bad block table */
+	ret = nand_create_bbt(chip);
+	if (ret)
+		goto err_nand_manuf_cleanup;
+
+	return 0;
+
+
+err_nand_manuf_cleanup:
+	nand_manufacturer_cleanup(chip);
+
+err_free_buf:
+	kfree(chip->data_buf);
+	kfree(ecc->code_buf);
+	kfree(ecc->calc_buf);
+
+	return ret;
+}
+
+static int nand_attach(struct nand_chip *chip)
+{
+	if (chip->controller->ops && chip->controller->ops->attach_chip)
+		return chip->controller->ops->attach_chip(chip);
+
+	return 0;
+}
+
+static void nand_detach(struct nand_chip *chip)
+{
+	if (chip->controller->ops && chip->controller->ops->detach_chip)
+		chip->controller->ops->detach_chip(chip);
+}
+
+/**
+ * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: number of chips to scan for. @nand_scan_ident() will not be run if
+ *	      this parameter is zero (useful for specific drivers that must
+ *	      handle this part of the process themselves, e.g docg4).
+ * @ids: optional flash IDs table
+ *
+ * This fills out all the uninitialized function pointers with the defaults.
+ * The flash ID is read and the mtd/chip structures are filled with the
+ * appropriate values.
+ */
+int nand_scan_with_ids(struct mtd_info *mtd, int maxchips,
+		       struct nand_flash_dev *ids)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int ret;
+
+	if (maxchips) {
+		ret = nand_scan_ident(mtd, maxchips, ids);
+		if (ret)
+			return ret;
+	}
+
+	ret = nand_attach(chip);
+	if (ret)
+		goto cleanup_ident;
+
+	ret = nand_scan_tail(mtd);
+	if (ret)
+		goto detach_chip;
+
+	return 0;
+
+detach_chip:
+	nand_detach(chip);
+cleanup_ident:
+	nand_scan_ident_cleanup(chip);
+
+	return ret;
+}
+EXPORT_SYMBOL(nand_scan_with_ids);
+
+/**
+ * nand_cleanup - [NAND Interface] Free resources held by the NAND device
+ * @chip: NAND chip object
+ */
+void nand_cleanup(struct nand_chip *chip)
+{
+	if (chip->ecc.mode == NAND_ECC_SOFT &&
+	    chip->ecc.algo == NAND_ECC_BCH)
+		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
+
+	/* Free bad block table memory */
+	kfree(chip->bbt);
+	kfree(chip->data_buf);
+	kfree(chip->ecc.code_buf);
+	kfree(chip->ecc.calc_buf);
+
+	/* Free bad block descriptor memory */
+	if (chip->badblock_pattern && chip->badblock_pattern->options
+			& NAND_BBT_DYNAMICSTRUCT)
+		kfree(chip->badblock_pattern);
+
+	/* Free manufacturer priv data. */
+	nand_manufacturer_cleanup(chip);
+
+	/* Free controller specific allocations after chip identification */
+	nand_detach(chip);
+
+	/* Free identification phase allocations */
+	nand_scan_ident_cleanup(chip);
+}
+
+EXPORT_SYMBOL_GPL(nand_cleanup);
+
+/**
+ * nand_release - [NAND Interface] Unregister the MTD device and free resources
+ *		  held by the NAND device
+ * @mtd: MTD device structure
+ */
+void nand_release(struct mtd_info *mtd)
+{
+	mtd_device_unregister(mtd);
+	nand_cleanup(mtd_to_nand(mtd));
+}
+EXPORT_SYMBOL_GPL(nand_release);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("Generic NAND flash driver code");
diff --git a/drivers/mtd/nand/raw/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c
new file mode 100644
index 0000000..39db352
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_bbt.c
@@ -0,0 +1,1451 @@
+/*
+ *  Overview:
+ *   Bad block table support for the NAND driver
+ *
+ *  Copyright © 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table
+ * depending on the options in the BBT descriptor(s). If no flash based BBT
+ * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory
+ * marked good / bad blocks. This information is used to create a memory BBT.
+ * Once a new bad block is discovered then the "factory" information is updated
+ * on the device.
+ * If a flash based BBT is specified then the function first tries to find the
+ * BBT on flash. If a BBT is found then the contents are read and the memory
+ * based BBT is created. If a mirrored BBT is selected then the mirror is
+ * searched too and the versions are compared. If the mirror has a greater
+ * version number, then the mirror BBT is used to build the memory based BBT.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the BBTs is out of date or does not exist it is (re)created.
+ * If no BBT exists at all then the device is scanned for factory marked
+ * good / bad blocks and the bad block tables are created.
+ *
+ * For manufacturer created BBTs like the one found on M-SYS DOC devices
+ * the BBT is searched and read but never created
+ *
+ * The auto generated bad block table is located in the last good blocks
+ * of the device. The table is mirrored, so it can be updated eventually.
+ * The table is marked in the OOB area with an ident pattern and a version
+ * number which indicates which of both tables is more up to date. If the NAND
+ * controller needs the complete OOB area for the ECC information then the
+ * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of
+ * course): it moves the ident pattern and the version byte into the data area
+ * and the OOB area will remain untouched.
+ *
+ * The table uses 2 bits per block
+ * 11b:		block is good
+ * 00b:		block is factory marked bad
+ * 01b, 10b:	block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b:		block is good
+ * 01b:		block is marked bad due to wear
+ * 10b:		block is reserved (to protect the bbt area)
+ * 11b:		block is factory marked bad
+ *
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space necessary for a bbt in FLASH does not exceed a block boundary
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/bbm.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/bitops.h>
+#include <linux/delay.h>
+#include <linux/vmalloc.h>
+#include <linux/export.h>
+#include <linux/string.h>
+
+#define BBT_BLOCK_GOOD		0x00
+#define BBT_BLOCK_WORN		0x01
+#define BBT_BLOCK_RESERVED	0x02
+#define BBT_BLOCK_FACTORY_BAD	0x03
+
+#define BBT_ENTRY_MASK		0x03
+#define BBT_ENTRY_SHIFT		2
+
+static int nand_update_bbt(struct mtd_info *mtd, loff_t offs);
+
+static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block)
+{
+	uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT];
+	entry >>= (block & BBT_ENTRY_MASK) * 2;
+	return entry & BBT_ENTRY_MASK;
+}
+
+static inline void bbt_mark_entry(struct nand_chip *chip, int block,
+		uint8_t mark)
+{
+	uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2);
+	chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk;
+}
+
+static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td)
+{
+	if (memcmp(buf, td->pattern, td->len))
+		return -1;
+	return 0;
+}
+
+/**
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @len: the length of buffer to search
+ * @paglen: the pagelength
+ * @td: search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block tables and
+ * good / bad block identifiers.
+ */
+static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+	if (td->options & NAND_BBT_NO_OOB)
+		return check_pattern_no_oob(buf, td);
+
+	/* Compare the pattern */
+	if (memcmp(buf + paglen + td->offs, td->pattern, td->len))
+		return -1;
+
+	return 0;
+}
+
+/**
+ * check_short_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @td:	search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block tables and
+ * good / bad block identifiers. Same as check_pattern, but no optional empty
+ * check.
+ */
+static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td)
+{
+	/* Compare the pattern */
+	if (memcmp(buf + td->offs, td->pattern, td->len))
+		return -1;
+	return 0;
+}
+
+/**
+ * add_marker_len - compute the length of the marker in data area
+ * @td: BBT descriptor used for computation
+ *
+ * The length will be 0 if the marker is located in OOB area.
+ */
+static u32 add_marker_len(struct nand_bbt_descr *td)
+{
+	u32 len;
+
+	if (!(td->options & NAND_BBT_NO_OOB))
+		return 0;
+
+	len = td->len;
+	if (td->options & NAND_BBT_VERSION)
+		len++;
+	return len;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @page: the starting page
+ * @num: the number of bbt descriptors to read
+ * @td: the bbt describtion table
+ * @offs: block number offset in the table
+ *
+ * Read the bad block table starting from page.
+ */
+static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
+		struct nand_bbt_descr *td, int offs)
+{
+	int res, ret = 0, i, j, act = 0;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	size_t retlen, len, totlen;
+	loff_t from;
+	int bits = td->options & NAND_BBT_NRBITS_MSK;
+	uint8_t msk = (uint8_t)((1 << bits) - 1);
+	u32 marker_len;
+	int reserved_block_code = td->reserved_block_code;
+
+	totlen = (num * bits) >> 3;
+	marker_len = add_marker_len(td);
+	from = ((loff_t)page) << this->page_shift;
+
+	while (totlen) {
+		len = min(totlen, (size_t)(1 << this->bbt_erase_shift));
+		if (marker_len) {
+			/*
+			 * In case the BBT marker is not in the OOB area it
+			 * will be just in the first page.
+			 */
+			len -= marker_len;
+			from += marker_len;
+			marker_len = 0;
+		}
+		res = mtd_read(mtd, from, len, &retlen, buf);
+		if (res < 0) {
+			if (mtd_is_eccerr(res)) {
+				pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n",
+					from & ~mtd->writesize);
+				return res;
+			} else if (mtd_is_bitflip(res)) {
+				pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n",
+					from & ~mtd->writesize);
+				ret = res;
+			} else {
+				pr_info("nand_bbt: error reading BBT\n");
+				return res;
+			}
+		}
+
+		/* Analyse data */
+		for (i = 0; i < len; i++) {
+			uint8_t dat = buf[i];
+			for (j = 0; j < 8; j += bits, act++) {
+				uint8_t tmp = (dat >> j) & msk;
+				if (tmp == msk)
+					continue;
+				if (reserved_block_code && (tmp == reserved_block_code)) {
+					pr_info("nand_read_bbt: reserved block at 0x%012llx\n",
+						 (loff_t)(offs + act) <<
+						 this->bbt_erase_shift);
+					bbt_mark_entry(this, offs + act,
+							BBT_BLOCK_RESERVED);
+					mtd->ecc_stats.bbtblocks++;
+					continue;
+				}
+				/*
+				 * Leave it for now, if it's matured we can
+				 * move this message to pr_debug.
+				 */
+				pr_info("nand_read_bbt: bad block at 0x%012llx\n",
+					 (loff_t)(offs + act) <<
+					 this->bbt_erase_shift);
+				/* Factory marked bad or worn out? */
+				if (tmp == 0)
+					bbt_mark_entry(this, offs + act,
+							BBT_BLOCK_FACTORY_BAD);
+				else
+					bbt_mark_entry(this, offs + act,
+							BBT_BLOCK_WORN);
+				mtd->ecc_stats.badblocks++;
+			}
+		}
+		totlen -= len;
+		from += len;
+	}
+	return ret;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @chip: read the table for a specific chip, -1 read all chips; applies only if
+ *        NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page. We assume
+ * that the bbt bits are in consecutive order.
+ */
+static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int res = 0, i;
+
+	if (td->options & NAND_BBT_PERCHIP) {
+		int offs = 0;
+		for (i = 0; i < this->numchips; i++) {
+			if (chip == -1 || chip == i)
+				res = read_bbt(mtd, buf, td->pages[i],
+					this->chipsize >> this->bbt_erase_shift,
+					td, offs);
+			if (res)
+				return res;
+			offs += this->chipsize >> this->bbt_erase_shift;
+		}
+	} else {
+		res = read_bbt(mtd, buf, td->pages[0],
+				mtd->size >> this->bbt_erase_shift, td, 0);
+		if (res)
+			return res;
+	}
+	return 0;
+}
+
+/* BBT marker is in the first page, no OOB */
+static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+			 struct nand_bbt_descr *td)
+{
+	size_t retlen;
+	size_t len;
+
+	len = td->len;
+	if (td->options & NAND_BBT_VERSION)
+		len++;
+
+	return mtd_read(mtd, offs, len, &retlen, buf);
+}
+
+/**
+ * scan_read_oob - [GENERIC] Scan data+OOB region to buffer
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @offs: offset at which to scan
+ * @len: length of data region to read
+ *
+ * Scan read data from data+OOB. May traverse multiple pages, interleaving
+ * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest"
+ * ECC condition (error or bitflip). May quit on the first (non-ECC) error.
+ */
+static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+			 size_t len)
+{
+	struct mtd_oob_ops ops;
+	int res, ret = 0;
+
+	ops.mode = MTD_OPS_PLACE_OOB;
+	ops.ooboffs = 0;
+	ops.ooblen = mtd->oobsize;
+
+	while (len > 0) {
+		ops.datbuf = buf;
+		ops.len = min(len, (size_t)mtd->writesize);
+		ops.oobbuf = buf + ops.len;
+
+		res = mtd_read_oob(mtd, offs, &ops);
+		if (res) {
+			if (!mtd_is_bitflip_or_eccerr(res))
+				return res;
+			else if (mtd_is_eccerr(res) || !ret)
+				ret = res;
+		}
+
+		buf += mtd->oobsize + mtd->writesize;
+		len -= mtd->writesize;
+		offs += mtd->writesize;
+	}
+	return ret;
+}
+
+static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs,
+			 size_t len, struct nand_bbt_descr *td)
+{
+	if (td->options & NAND_BBT_NO_OOB)
+		return scan_read_data(mtd, buf, offs, td);
+	else
+		return scan_read_oob(mtd, buf, offs, len);
+}
+
+/* Scan write data with oob to flash */
+static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len,
+			  uint8_t *buf, uint8_t *oob)
+{
+	struct mtd_oob_ops ops;
+
+	ops.mode = MTD_OPS_PLACE_OOB;
+	ops.ooboffs = 0;
+	ops.ooblen = mtd->oobsize;
+	ops.datbuf = buf;
+	ops.oobbuf = oob;
+	ops.len = len;
+
+	return mtd_write_oob(mtd, offs, &ops);
+}
+
+static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+	u32 ver_offs = td->veroffs;
+
+	if (!(td->options & NAND_BBT_NO_OOB))
+		ver_offs += mtd->writesize;
+	return ver_offs;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md:	descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page. We
+ * assume that the bbt bits are in consecutive order.
+ */
+static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf,
+			  struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	/* Read the primary version, if available */
+	if (td->options & NAND_BBT_VERSION) {
+		scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift,
+			      mtd->writesize, td);
+		td->version[0] = buf[bbt_get_ver_offs(mtd, td)];
+		pr_info("Bad block table at page %d, version 0x%02X\n",
+			 td->pages[0], td->version[0]);
+	}
+
+	/* Read the mirror version, if available */
+	if (md && (md->options & NAND_BBT_VERSION)) {
+		scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift,
+			      mtd->writesize, md);
+		md->version[0] = buf[bbt_get_ver_offs(mtd, md)];
+		pr_info("Bad block table at page %d, version 0x%02X\n",
+			 md->pages[0], md->version[0]);
+	}
+}
+
+/* Scan a given block partially */
+static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd,
+			   loff_t offs, uint8_t *buf, int numpages)
+{
+	struct mtd_oob_ops ops;
+	int j, ret;
+
+	ops.ooblen = mtd->oobsize;
+	ops.oobbuf = buf;
+	ops.ooboffs = 0;
+	ops.datbuf = NULL;
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	for (j = 0; j < numpages; j++) {
+		/*
+		 * Read the full oob until read_oob is fixed to handle single
+		 * byte reads for 16 bit buswidth.
+		 */
+		ret = mtd_read_oob(mtd, offs, &ops);
+		/* Ignore ECC errors when checking for BBM */
+		if (ret && !mtd_is_bitflip_or_eccerr(ret))
+			return ret;
+
+		if (check_short_pattern(buf, bd))
+			return 1;
+
+		offs += mtd->writesize;
+	}
+	return 0;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ * @chip: create the table for a specific chip, -1 read all chips; applies only
+ *        if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device for the given good/bad block
+ * identify pattern.
+ */
+static int create_bbt(struct mtd_info *mtd, uint8_t *buf,
+	struct nand_bbt_descr *bd, int chip)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int i, numblocks, numpages;
+	int startblock;
+	loff_t from;
+
+	pr_info("Scanning device for bad blocks\n");
+
+	if (bd->options & NAND_BBT_SCAN2NDPAGE)
+		numpages = 2;
+	else
+		numpages = 1;
+
+	if (chip == -1) {
+		numblocks = mtd->size >> this->bbt_erase_shift;
+		startblock = 0;
+		from = 0;
+	} else {
+		if (chip >= this->numchips) {
+			pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n",
+			       chip + 1, this->numchips);
+			return -EINVAL;
+		}
+		numblocks = this->chipsize >> this->bbt_erase_shift;
+		startblock = chip * numblocks;
+		numblocks += startblock;
+		from = (loff_t)startblock << this->bbt_erase_shift;
+	}
+
+	if (this->bbt_options & NAND_BBT_SCANLASTPAGE)
+		from += mtd->erasesize - (mtd->writesize * numpages);
+
+	for (i = startblock; i < numblocks; i++) {
+		int ret;
+
+		BUG_ON(bd->options & NAND_BBT_NO_OOB);
+
+		ret = scan_block_fast(mtd, bd, from, buf, numpages);
+		if (ret < 0)
+			return ret;
+
+		if (ret) {
+			bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD);
+			pr_warn("Bad eraseblock %d at 0x%012llx\n",
+				i, (unsigned long long)from);
+			mtd->ecc_stats.badblocks++;
+		}
+
+		from += (1 << this->bbt_erase_shift);
+	}
+	return 0;
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern. Search is
+ * preformed either from the beginning up or from the end of the device
+ * downwards. The search starts always at the start of a block. If the option
+ * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains
+ * the bad block information of this chip. This is necessary to provide support
+ * for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page in a block.
+ */
+static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int i, chips;
+	int startblock, block, dir;
+	int scanlen = mtd->writesize + mtd->oobsize;
+	int bbtblocks;
+	int blocktopage = this->bbt_erase_shift - this->page_shift;
+
+	/* Search direction top -> down? */
+	if (td->options & NAND_BBT_LASTBLOCK) {
+		startblock = (mtd->size >> this->bbt_erase_shift) - 1;
+		dir = -1;
+	} else {
+		startblock = 0;
+		dir = 1;
+	}
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chips = this->numchips;
+		bbtblocks = this->chipsize >> this->bbt_erase_shift;
+		startblock &= bbtblocks - 1;
+	} else {
+		chips = 1;
+		bbtblocks = mtd->size >> this->bbt_erase_shift;
+	}
+
+	for (i = 0; i < chips; i++) {
+		/* Reset version information */
+		td->version[i] = 0;
+		td->pages[i] = -1;
+		/* Scan the maximum number of blocks */
+		for (block = 0; block < td->maxblocks; block++) {
+
+			int actblock = startblock + dir * block;
+			loff_t offs = (loff_t)actblock << this->bbt_erase_shift;
+
+			/* Read first page */
+			scan_read(mtd, buf, offs, mtd->writesize, td);
+			if (!check_pattern(buf, scanlen, mtd->writesize, td)) {
+				td->pages[i] = actblock << blocktopage;
+				if (td->options & NAND_BBT_VERSION) {
+					offs = bbt_get_ver_offs(mtd, td);
+					td->version[i] = buf[offs];
+				}
+				break;
+			}
+		}
+		startblock += this->chipsize >> this->bbt_erase_shift;
+	}
+	/* Check, if we found a bbt for each requested chip */
+	for (i = 0; i < chips; i++) {
+		if (td->pages[i] == -1)
+			pr_warn("Bad block table not found for chip %d\n", i);
+		else
+			pr_info("Bad block table found at page %d, version 0x%02X\n",
+				td->pages[i], td->version[i]);
+	}
+	return 0;
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s).
+ */
+static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf,
+			     struct nand_bbt_descr *td,
+			     struct nand_bbt_descr *md)
+{
+	/* Search the primary table */
+	search_bbt(mtd, buf, td);
+
+	/* Search the mirror table */
+	if (md)
+		search_bbt(mtd, buf, md);
+}
+
+/**
+ * get_bbt_block - Get the first valid eraseblock suitable to store a BBT
+ * @this: the NAND device
+ * @td: the BBT description
+ * @md: the mirror BBT descriptor
+ * @chip: the CHIP selector
+ *
+ * This functions returns a positive block number pointing a valid eraseblock
+ * suitable to store a BBT (i.e. in the range reserved for BBT), or -ENOSPC if
+ * all blocks are already used of marked bad. If td->pages[chip] was already
+ * pointing to a valid block we re-use it, otherwise we search for the next
+ * valid one.
+ */
+static int get_bbt_block(struct nand_chip *this, struct nand_bbt_descr *td,
+			 struct nand_bbt_descr *md, int chip)
+{
+	int startblock, dir, page, numblocks, i;
+
+	/*
+	 * There was already a version of the table, reuse the page. This
+	 * applies for absolute placement too, as we have the page number in
+	 * td->pages.
+	 */
+	if (td->pages[chip] != -1)
+		return td->pages[chip] >>
+				(this->bbt_erase_shift - this->page_shift);
+
+	numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+	if (!(td->options & NAND_BBT_PERCHIP))
+		numblocks *= this->numchips;
+
+	/*
+	 * Automatic placement of the bad block table. Search direction
+	 * top -> down?
+	 */
+	if (td->options & NAND_BBT_LASTBLOCK) {
+		startblock = numblocks * (chip + 1) - 1;
+		dir = -1;
+	} else {
+		startblock = chip * numblocks;
+		dir = 1;
+	}
+
+	for (i = 0; i < td->maxblocks; i++) {
+		int block = startblock + dir * i;
+
+		/* Check, if the block is bad */
+		switch (bbt_get_entry(this, block)) {
+		case BBT_BLOCK_WORN:
+		case BBT_BLOCK_FACTORY_BAD:
+			continue;
+		}
+
+		page = block << (this->bbt_erase_shift - this->page_shift);
+
+		/* Check, if the block is used by the mirror table */
+		if (!md || md->pages[chip] != page)
+			return block;
+	}
+
+	return -ENOSPC;
+}
+
+/**
+ * mark_bbt_block_bad - Mark one of the block reserved for BBT bad
+ * @this: the NAND device
+ * @td: the BBT description
+ * @chip: the CHIP selector
+ * @block: the BBT block to mark
+ *
+ * Blocks reserved for BBT can become bad. This functions is an helper to mark
+ * such blocks as bad. It takes care of updating the in-memory BBT, marking the
+ * block as bad using a bad block marker and invalidating the associated
+ * td->pages[] entry.
+ */
+static void mark_bbt_block_bad(struct nand_chip *this,
+			       struct nand_bbt_descr *td,
+			       int chip, int block)
+{
+	struct mtd_info *mtd = nand_to_mtd(this);
+	loff_t to;
+	int res;
+
+	bbt_mark_entry(this, block, BBT_BLOCK_WORN);
+
+	to = (loff_t)block << this->bbt_erase_shift;
+	res = this->block_markbad(mtd, to);
+	if (res)
+		pr_warn("nand_bbt: error %d while marking block %d bad\n",
+			res, block);
+
+	td->pages[chip] = -1;
+}
+
+/**
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ * @chipsel: selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table.
+ */
+static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
+		     struct nand_bbt_descr *td, struct nand_bbt_descr *md,
+		     int chipsel)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct erase_info einfo;
+	int i, res, chip = 0;
+	int bits, page, offs, numblocks, sft, sftmsk;
+	int nrchips, pageoffs, ooboffs;
+	uint8_t msk[4];
+	uint8_t rcode = td->reserved_block_code;
+	size_t retlen, len = 0;
+	loff_t to;
+	struct mtd_oob_ops ops;
+
+	ops.ooblen = mtd->oobsize;
+	ops.ooboffs = 0;
+	ops.datbuf = NULL;
+	ops.mode = MTD_OPS_PLACE_OOB;
+
+	if (!rcode)
+		rcode = 0xff;
+	/* Write bad block table per chip rather than per device? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		numblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+		/* Full device write or specific chip? */
+		if (chipsel == -1) {
+			nrchips = this->numchips;
+		} else {
+			nrchips = chipsel + 1;
+			chip = chipsel;
+		}
+	} else {
+		numblocks = (int)(mtd->size >> this->bbt_erase_shift);
+		nrchips = 1;
+	}
+
+	/* Loop through the chips */
+	while (chip < nrchips) {
+		int block;
+
+		block = get_bbt_block(this, td, md, chip);
+		if (block < 0) {
+			pr_err("No space left to write bad block table\n");
+			res = block;
+			goto outerr;
+		}
+
+		/*
+		 * get_bbt_block() returns a block number, shift the value to
+		 * get a page number.
+		 */
+		page = block << (this->bbt_erase_shift - this->page_shift);
+
+		/* Set up shift count and masks for the flash table */
+		bits = td->options & NAND_BBT_NRBITS_MSK;
+		msk[2] = ~rcode;
+		switch (bits) {
+		case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01;
+			msk[3] = 0x01;
+			break;
+		case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01;
+			msk[3] = 0x03;
+			break;
+		case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C;
+			msk[3] = 0x0f;
+			break;
+		case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F;
+			msk[3] = 0xff;
+			break;
+		default: return -EINVAL;
+		}
+
+		to = ((loff_t)page) << this->page_shift;
+
+		/* Must we save the block contents? */
+		if (td->options & NAND_BBT_SAVECONTENT) {
+			/* Make it block aligned */
+			to &= ~(((loff_t)1 << this->bbt_erase_shift) - 1);
+			len = 1 << this->bbt_erase_shift;
+			res = mtd_read(mtd, to, len, &retlen, buf);
+			if (res < 0) {
+				if (retlen != len) {
+					pr_info("nand_bbt: error reading block for writing the bad block table\n");
+					return res;
+				}
+				pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n");
+			}
+			/* Read oob data */
+			ops.ooblen = (len >> this->page_shift) * mtd->oobsize;
+			ops.oobbuf = &buf[len];
+			res = mtd_read_oob(mtd, to + mtd->writesize, &ops);
+			if (res < 0 || ops.oobretlen != ops.ooblen)
+				goto outerr;
+
+			/* Calc the byte offset in the buffer */
+			pageoffs = page - (int)(to >> this->page_shift);
+			offs = pageoffs << this->page_shift;
+			/* Preset the bbt area with 0xff */
+			memset(&buf[offs], 0xff, (size_t)(numblocks >> sft));
+			ooboffs = len + (pageoffs * mtd->oobsize);
+
+		} else if (td->options & NAND_BBT_NO_OOB) {
+			ooboffs = 0;
+			offs = td->len;
+			/* The version byte */
+			if (td->options & NAND_BBT_VERSION)
+				offs++;
+			/* Calc length */
+			len = (size_t)(numblocks >> sft);
+			len += offs;
+			/* Make it page aligned! */
+			len = ALIGN(len, mtd->writesize);
+			/* Preset the buffer with 0xff */
+			memset(buf, 0xff, len);
+			/* Pattern is located at the begin of first page */
+			memcpy(buf, td->pattern, td->len);
+		} else {
+			/* Calc length */
+			len = (size_t)(numblocks >> sft);
+			/* Make it page aligned! */
+			len = ALIGN(len, mtd->writesize);
+			/* Preset the buffer with 0xff */
+			memset(buf, 0xff, len +
+			       (len >> this->page_shift)* mtd->oobsize);
+			offs = 0;
+			ooboffs = len;
+			/* Pattern is located in oob area of first page */
+			memcpy(&buf[ooboffs + td->offs], td->pattern, td->len);
+		}
+
+		if (td->options & NAND_BBT_VERSION)
+			buf[ooboffs + td->veroffs] = td->version[chip];
+
+		/* Walk through the memory table */
+		for (i = 0; i < numblocks; i++) {
+			uint8_t dat;
+			int sftcnt = (i << (3 - sft)) & sftmsk;
+			dat = bbt_get_entry(this, chip * numblocks + i);
+			/* Do not store the reserved bbt blocks! */
+			buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt);
+		}
+
+		memset(&einfo, 0, sizeof(einfo));
+		einfo.addr = to;
+		einfo.len = 1 << this->bbt_erase_shift;
+		res = nand_erase_nand(mtd, &einfo, 1);
+		if (res < 0) {
+			pr_warn("nand_bbt: error while erasing BBT block %d\n",
+				res);
+			mark_bbt_block_bad(this, td, chip, block);
+			continue;
+		}
+
+		res = scan_write_bbt(mtd, to, len, buf,
+				td->options & NAND_BBT_NO_OOB ? NULL :
+				&buf[len]);
+		if (res < 0) {
+			pr_warn("nand_bbt: error while writing BBT block %d\n",
+				res);
+			mark_bbt_block_bad(this, td, chip, block);
+			continue;
+		}
+
+		pr_info("Bad block table written to 0x%012llx, version 0x%02X\n",
+			 (unsigned long long)to, td->version[chip]);
+
+		/* Mark it as used */
+		td->pages[chip++] = page;
+	}
+	return 0;
+
+ outerr:
+	pr_warn("nand_bbt: error while writing bad block table %d\n", res);
+	return res;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device for
+ * manufacturer / software marked good / bad blocks.
+ */
+static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+
+	return create_bbt(mtd, this->data_buf, bd, -1);
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if necessary
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt and creates
+ * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found
+ * for the chip/device. Update is necessary if one of the tables is missing or
+ * the version nr. of one table is less than the other.
+ */
+static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+	int i, chips, writeops, create, chipsel, res, res2;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+	struct nand_bbt_descr *rd, *rd2;
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP)
+		chips = this->numchips;
+	else
+		chips = 1;
+
+	for (i = 0; i < chips; i++) {
+		writeops = 0;
+		create = 0;
+		rd = NULL;
+		rd2 = NULL;
+		res = res2 = 0;
+		/* Per chip or per device? */
+		chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+		/* Mirrored table available? */
+		if (md) {
+			if (td->pages[i] == -1 && md->pages[i] == -1) {
+				create = 1;
+				writeops = 0x03;
+			} else if (td->pages[i] == -1) {
+				rd = md;
+				writeops = 0x01;
+			} else if (md->pages[i] == -1) {
+				rd = td;
+				writeops = 0x02;
+			} else if (td->version[i] == md->version[i]) {
+				rd = td;
+				if (!(td->options & NAND_BBT_VERSION))
+					rd2 = md;
+			} else if (((int8_t)(td->version[i] - md->version[i])) > 0) {
+				rd = td;
+				writeops = 0x02;
+			} else {
+				rd = md;
+				writeops = 0x01;
+			}
+		} else {
+			if (td->pages[i] == -1) {
+				create = 1;
+				writeops = 0x01;
+			} else {
+				rd = td;
+			}
+		}
+
+		if (create) {
+			/* Create the bad block table by scanning the device? */
+			if (!(td->options & NAND_BBT_CREATE))
+				continue;
+
+			/* Create the table in memory by scanning the chip(s) */
+			if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY))
+				create_bbt(mtd, buf, bd, chipsel);
+
+			td->version[i] = 1;
+			if (md)
+				md->version[i] = 1;
+		}
+
+		/* Read back first? */
+		if (rd) {
+			res = read_abs_bbt(mtd, buf, rd, chipsel);
+			if (mtd_is_eccerr(res)) {
+				/* Mark table as invalid */
+				rd->pages[i] = -1;
+				rd->version[i] = 0;
+				i--;
+				continue;
+			}
+		}
+		/* If they weren't versioned, read both */
+		if (rd2) {
+			res2 = read_abs_bbt(mtd, buf, rd2, chipsel);
+			if (mtd_is_eccerr(res2)) {
+				/* Mark table as invalid */
+				rd2->pages[i] = -1;
+				rd2->version[i] = 0;
+				i--;
+				continue;
+			}
+		}
+
+		/* Scrub the flash table(s)? */
+		if (mtd_is_bitflip(res) || mtd_is_bitflip(res2))
+			writeops = 0x03;
+
+		/* Update version numbers before writing */
+		if (md) {
+			td->version[i] = max(td->version[i], md->version[i]);
+			md->version[i] = td->version[i];
+		}
+
+		/* Write the bad block table to the device? */
+		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+			res = write_bbt(mtd, buf, td, md, chipsel);
+			if (res < 0)
+				return res;
+		}
+
+		/* Write the mirror bad block table to the device? */
+		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+			res = write_bbt(mtd, buf, md, td, chipsel);
+			if (res < 0)
+				return res;
+		}
+	}
+	return 0;
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * @mtd: MTD device structure
+ * @td: bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent accidental
+ * erasures / writes. The regions are identified by the mark 0x02.
+ */
+static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int i, j, chips, block, nrblocks, update;
+	uint8_t oldval;
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chips = this->numchips;
+		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+	} else {
+		chips = 1;
+		nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+	}
+
+	for (i = 0; i < chips; i++) {
+		if ((td->options & NAND_BBT_ABSPAGE) ||
+		    !(td->options & NAND_BBT_WRITE)) {
+			if (td->pages[i] == -1)
+				continue;
+			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+			oldval = bbt_get_entry(this, block);
+			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
+			if ((oldval != BBT_BLOCK_RESERVED) &&
+					td->reserved_block_code)
+				nand_update_bbt(mtd, (loff_t)block <<
+						this->bbt_erase_shift);
+			continue;
+		}
+		update = 0;
+		if (td->options & NAND_BBT_LASTBLOCK)
+			block = ((i + 1) * nrblocks) - td->maxblocks;
+		else
+			block = i * nrblocks;
+		for (j = 0; j < td->maxblocks; j++) {
+			oldval = bbt_get_entry(this, block);
+			bbt_mark_entry(this, block, BBT_BLOCK_RESERVED);
+			if (oldval != BBT_BLOCK_RESERVED)
+				update = 1;
+			block++;
+		}
+		/*
+		 * If we want reserved blocks to be recorded to flash, and some
+		 * new ones have been marked, then we need to update the stored
+		 * bbts.  This should only happen once.
+		 */
+		if (update && td->reserved_block_code)
+			nand_update_bbt(mtd, (loff_t)(block - 1) <<
+					this->bbt_erase_shift);
+	}
+}
+
+/**
+ * verify_bbt_descr - verify the bad block description
+ * @mtd: MTD device structure
+ * @bd: the table to verify
+ *
+ * This functions performs a few sanity checks on the bad block description
+ * table.
+ */
+static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	u32 pattern_len;
+	u32 bits;
+	u32 table_size;
+
+	if (!bd)
+		return;
+
+	pattern_len = bd->len;
+	bits = bd->options & NAND_BBT_NRBITS_MSK;
+
+	BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) &&
+			!(this->bbt_options & NAND_BBT_USE_FLASH));
+	BUG_ON(!bits);
+
+	if (bd->options & NAND_BBT_VERSION)
+		pattern_len++;
+
+	if (bd->options & NAND_BBT_NO_OOB) {
+		BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH));
+		BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB));
+		BUG_ON(bd->offs);
+		if (bd->options & NAND_BBT_VERSION)
+			BUG_ON(bd->veroffs != bd->len);
+		BUG_ON(bd->options & NAND_BBT_SAVECONTENT);
+	}
+
+	if (bd->options & NAND_BBT_PERCHIP)
+		table_size = this->chipsize >> this->bbt_erase_shift;
+	else
+		table_size = mtd->size >> this->bbt_erase_shift;
+	table_size >>= 3;
+	table_size *= bits;
+	if (bd->options & NAND_BBT_NO_OOB)
+		table_size += pattern_len;
+	BUG_ON(table_size > (1 << this->bbt_erase_shift));
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already available. If
+ * not it scans the device for manufacturer marked good / bad blocks and writes
+ * the bad block table(s) to the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed by calling
+ * the nand_free_bbt function.
+ */
+static int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int len, res;
+	uint8_t *buf;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+
+	len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1;
+	/*
+	 * Allocate memory (2bit per block) and clear the memory bad block
+	 * table.
+	 */
+	this->bbt = kzalloc(len, GFP_KERNEL);
+	if (!this->bbt)
+		return -ENOMEM;
+
+	/*
+	 * If no primary table decriptor is given, scan the device to build a
+	 * memory based bad block table.
+	 */
+	if (!td) {
+		if ((res = nand_memory_bbt(mtd, bd))) {
+			pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n");
+			goto err;
+		}
+		return 0;
+	}
+	verify_bbt_descr(mtd, td);
+	verify_bbt_descr(mtd, md);
+
+	/* Allocate a temporary buffer for one eraseblock incl. oob */
+	len = (1 << this->bbt_erase_shift);
+	len += (len >> this->page_shift) * mtd->oobsize;
+	buf = vmalloc(len);
+	if (!buf) {
+		res = -ENOMEM;
+		goto err;
+	}
+
+	/* Is the bbt at a given page? */
+	if (td->options & NAND_BBT_ABSPAGE) {
+		read_abs_bbts(mtd, buf, td, md);
+	} else {
+		/* Search the bad block table using a pattern in oob */
+		search_read_bbts(mtd, buf, td, md);
+	}
+
+	res = check_create(mtd, buf, bd);
+	if (res)
+		goto err;
+
+	/* Prevent the bbt regions from erasing / writing */
+	mark_bbt_region(mtd, td);
+	if (md)
+		mark_bbt_region(mtd, md);
+
+	vfree(buf);
+	return 0;
+
+err:
+	kfree(this->bbt);
+	this->bbt = NULL;
+	return res;
+}
+
+/**
+ * nand_update_bbt - update bad block table(s)
+ * @mtd: MTD device structure
+ * @offs: the offset of the newly marked block
+ *
+ * The function updates the bad block table(s).
+ */
+static int nand_update_bbt(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int len, res = 0;
+	int chip, chipsel;
+	uint8_t *buf;
+	struct nand_bbt_descr *td = this->bbt_td;
+	struct nand_bbt_descr *md = this->bbt_md;
+
+	if (!this->bbt || !td)
+		return -EINVAL;
+
+	/* Allocate a temporary buffer for one eraseblock incl. oob */
+	len = (1 << this->bbt_erase_shift);
+	len += (len >> this->page_shift) * mtd->oobsize;
+	buf = kmalloc(len, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	/* Do we have a bbt per chip? */
+	if (td->options & NAND_BBT_PERCHIP) {
+		chip = (int)(offs >> this->chip_shift);
+		chipsel = chip;
+	} else {
+		chip = 0;
+		chipsel = -1;
+	}
+
+	td->version[chip]++;
+	if (md)
+		md->version[chip]++;
+
+	/* Write the bad block table to the device? */
+	if (td->options & NAND_BBT_WRITE) {
+		res = write_bbt(mtd, buf, td, md, chipsel);
+		if (res < 0)
+			goto out;
+	}
+	/* Write the mirror bad block table to the device? */
+	if (md && (md->options & NAND_BBT_WRITE)) {
+		res = write_bbt(mtd, buf, md, td, chipsel);
+	}
+
+ out:
+	kfree(buf);
+	return res;
+}
+
+/*
+ * Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks.
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+/* Generic flash bbt descriptors */
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = mirror_pattern
+};
+
+static struct nand_bbt_descr bbt_main_no_oob_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP
+		| NAND_BBT_NO_OOB,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_no_oob_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP
+		| NAND_BBT_NO_OOB,
+	.len = 4,
+	.veroffs = 4,
+	.maxblocks = NAND_BBT_SCAN_MAXBLOCKS,
+	.pattern = mirror_pattern
+};
+
+#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB)
+/**
+ * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure
+ * @this: NAND chip to create descriptor for
+ *
+ * This function allocates and initializes a nand_bbt_descr for BBM detection
+ * based on the properties of @this. The new descriptor is stored in
+ * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when
+ * passed to this function.
+ */
+static int nand_create_badblock_pattern(struct nand_chip *this)
+{
+	struct nand_bbt_descr *bd;
+	if (this->badblock_pattern) {
+		pr_warn("Bad block pattern already allocated; not replacing\n");
+		return -EINVAL;
+	}
+	bd = kzalloc(sizeof(*bd), GFP_KERNEL);
+	if (!bd)
+		return -ENOMEM;
+	bd->options = this->bbt_options & BADBLOCK_SCAN_MASK;
+	bd->offs = this->badblockpos;
+	bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1;
+	bd->pattern = scan_ff_pattern;
+	bd->options |= NAND_BBT_DYNAMICSTRUCT;
+	this->badblock_pattern = bd;
+	return 0;
+}
+
+/**
+ * nand_create_bbt - [NAND Interface] Select a default bad block table for the device
+ * @this: NAND chip object
+ *
+ * This function selects the default bad block table support for the device and
+ * calls the nand_scan_bbt function.
+ */
+int nand_create_bbt(struct nand_chip *this)
+{
+	int ret;
+
+	/* Is a flash based bad block table requested? */
+	if (this->bbt_options & NAND_BBT_USE_FLASH) {
+		/* Use the default pattern descriptors */
+		if (!this->bbt_td) {
+			if (this->bbt_options & NAND_BBT_NO_OOB) {
+				this->bbt_td = &bbt_main_no_oob_descr;
+				this->bbt_md = &bbt_mirror_no_oob_descr;
+			} else {
+				this->bbt_td = &bbt_main_descr;
+				this->bbt_md = &bbt_mirror_descr;
+			}
+		}
+	} else {
+		this->bbt_td = NULL;
+		this->bbt_md = NULL;
+	}
+
+	if (!this->badblock_pattern) {
+		ret = nand_create_badblock_pattern(this);
+		if (ret)
+			return ret;
+	}
+
+	return nand_scan_bbt(nand_to_mtd(this), this->badblock_pattern);
+}
+EXPORT_SYMBOL(nand_create_bbt);
+
+/**
+ * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ */
+int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int block;
+
+	block = (int)(offs >> this->bbt_erase_shift);
+	return bbt_get_entry(this, block) == BBT_BLOCK_RESERVED;
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ * @allowbbt: allow access to bad block table region
+ */
+int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int block, res;
+
+	block = (int)(offs >> this->bbt_erase_shift);
+	res = bbt_get_entry(this, block);
+
+	pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+		 (unsigned int)offs, block, res);
+
+	switch (res) {
+	case BBT_BLOCK_GOOD:
+		return 0;
+	case BBT_BLOCK_WORN:
+		return 1;
+	case BBT_BLOCK_RESERVED:
+		return allowbbt ? 0 : 1;
+	}
+	return 1;
+}
+
+/**
+ * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT
+ * @mtd: MTD device structure
+ * @offs: offset of the bad block
+ */
+int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	int block, ret = 0;
+
+	block = (int)(offs >> this->bbt_erase_shift);
+
+	/* Mark bad block in memory */
+	bbt_mark_entry(this, block, BBT_BLOCK_WORN);
+
+	/* Update flash-based bad block table */
+	if (this->bbt_options & NAND_BBT_USE_FLASH)
+		ret = nand_update_bbt(mtd, offs);
+
+	return ret;
+}
diff --git a/drivers/mtd/nand/raw/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c
new file mode 100644
index 0000000..b7387ac
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_bch.c
@@ -0,0 +1,234 @@
+/*
+ * This file provides ECC correction for more than 1 bit per block of data,
+ * using binary BCH codes. It relies on the generic BCH library lib/bch.c.
+ *
+ * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com>
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ */
+
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/bitops.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_bch.h>
+#include <linux/bch.h>
+
+/**
+ * struct nand_bch_control - private NAND BCH control structure
+ * @bch:       BCH control structure
+ * @errloc:    error location array
+ * @eccmask:   XOR ecc mask, allows erased pages to be decoded as valid
+ */
+struct nand_bch_control {
+	struct bch_control   *bch;
+	unsigned int         *errloc;
+	unsigned char        *eccmask;
+};
+
+/**
+ * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block
+ * @mtd:	MTD block structure
+ * @buf:	input buffer with raw data
+ * @code:	output buffer with ECC
+ */
+int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
+			   unsigned char *code)
+{
+	const struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_bch_control *nbc = chip->ecc.priv;
+	unsigned int i;
+
+	memset(code, 0, chip->ecc.bytes);
+	encode_bch(nbc->bch, buf, chip->ecc.size, code);
+
+	/* apply mask so that an erased page is a valid codeword */
+	for (i = 0; i < chip->ecc.bytes; i++)
+		code[i] ^= nbc->eccmask[i];
+
+	return 0;
+}
+EXPORT_SYMBOL(nand_bch_calculate_ecc);
+
+/**
+ * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd:	MTD block structure
+ * @buf:	raw data read from the chip
+ * @read_ecc:	ECC from the chip
+ * @calc_ecc:	the ECC calculated from raw data
+ *
+ * Detect and correct bit errors for a data byte block
+ */
+int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf,
+			  unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+	const struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_bch_control *nbc = chip->ecc.priv;
+	unsigned int *errloc = nbc->errloc;
+	int i, count;
+
+	count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,
+			   NULL, errloc);
+	if (count > 0) {
+		for (i = 0; i < count; i++) {
+			if (errloc[i] < (chip->ecc.size*8))
+				/* error is located in data, correct it */
+				buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
+			/* else error in ecc, no action needed */
+
+			pr_debug("%s: corrected bitflip %u\n", __func__,
+					errloc[i]);
+		}
+	} else if (count < 0) {
+		pr_err("ecc unrecoverable error\n");
+		count = -EBADMSG;
+	}
+	return count;
+}
+EXPORT_SYMBOL(nand_bch_correct_data);
+
+/**
+ * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction
+ * @mtd:	MTD block structure
+ *
+ * Returns:
+ *  a pointer to a new NAND BCH control structure, or NULL upon failure
+ *
+ * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes
+ * are used to compute BCH parameters m (Galois field order) and t (error
+ * correction capability). @eccbytes should be equal to the number of bytes
+ * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8.
+ *
+ * Example: to configure 4 bit correction per 512 bytes, you should pass
+ * @eccsize = 512  (thus, m=13 is the smallest integer such that 2^m-1 > 512*8)
+ * @eccbytes = 7   (7 bytes are required to store m*t = 13*4 = 52 bits)
+ */
+struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	unsigned int m, t, eccsteps, i;
+	struct nand_bch_control *nbc = NULL;
+	unsigned char *erased_page;
+	unsigned int eccsize = nand->ecc.size;
+	unsigned int eccbytes = nand->ecc.bytes;
+	unsigned int eccstrength = nand->ecc.strength;
+
+	if (!eccbytes && eccstrength) {
+		eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);
+		nand->ecc.bytes = eccbytes;
+	}
+
+	if (!eccsize || !eccbytes) {
+		pr_warn("ecc parameters not supplied\n");
+		goto fail;
+	}
+
+	m = fls(1+8*eccsize);
+	t = (eccbytes*8)/m;
+
+	nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);
+	if (!nbc)
+		goto fail;
+
+	nbc->bch = init_bch(m, t, 0);
+	if (!nbc->bch)
+		goto fail;
+
+	/* verify that eccbytes has the expected value */
+	if (nbc->bch->ecc_bytes != eccbytes) {
+		pr_warn("invalid eccbytes %u, should be %u\n",
+			eccbytes, nbc->bch->ecc_bytes);
+		goto fail;
+	}
+
+	eccsteps = mtd->writesize/eccsize;
+
+	/* Check that we have an oob layout description. */
+	if (!mtd->ooblayout) {
+		pr_warn("missing oob scheme");
+		goto fail;
+	}
+
+	/* sanity checks */
+	if (8*(eccsize+eccbytes) >= (1 << m)) {
+		pr_warn("eccsize %u is too large\n", eccsize);
+		goto fail;
+	}
+
+	/*
+	 * ecc->steps and ecc->total might be used by mtd->ooblayout->ecc(),
+	 * which is called by mtd_ooblayout_count_eccbytes().
+	 * Make sure they are properly initialized before calling
+	 * mtd_ooblayout_count_eccbytes().
+	 * FIXME: we should probably rework the sequencing in nand_scan_tail()
+	 * to avoid setting those fields twice.
+	 */
+	nand->ecc.steps = eccsteps;
+	nand->ecc.total = eccsteps * eccbytes;
+	if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) {
+		pr_warn("invalid ecc layout\n");
+		goto fail;
+	}
+
+	nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL);
+	nbc->errloc = kmalloc_array(t, sizeof(*nbc->errloc), GFP_KERNEL);
+	if (!nbc->eccmask || !nbc->errloc)
+		goto fail;
+	/*
+	 * compute and store the inverted ecc of an erased ecc block
+	 */
+	erased_page = kmalloc(eccsize, GFP_KERNEL);
+	if (!erased_page)
+		goto fail;
+
+	memset(erased_page, 0xff, eccsize);
+	memset(nbc->eccmask, 0, eccbytes);
+	encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask);
+	kfree(erased_page);
+
+	for (i = 0; i < eccbytes; i++)
+		nbc->eccmask[i] ^= 0xff;
+
+	if (!eccstrength)
+		nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);
+
+	return nbc;
+fail:
+	nand_bch_free(nbc);
+	return NULL;
+}
+EXPORT_SYMBOL(nand_bch_init);
+
+/**
+ * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources
+ * @nbc:	NAND BCH control structure
+ */
+void nand_bch_free(struct nand_bch_control *nbc)
+{
+	if (nbc) {
+		free_bch(nbc->bch);
+		kfree(nbc->errloc);
+		kfree(nbc->eccmask);
+		kfree(nbc);
+	}
+}
+EXPORT_SYMBOL(nand_bch_free);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
+MODULE_DESCRIPTION("NAND software BCH ECC support");
diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
new file mode 100644
index 0000000..8e132ed
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_ecc.c
@@ -0,0 +1,511 @@
+/*
+ * This file contains an ECC algorithm that detects and corrects 1 bit
+ * errors in a 256 byte block of data.
+ *
+ * Copyright © 2008 Koninklijke Philips Electronics NV.
+ *                  Author: Frans Meulenbroeks
+ *
+ * Completely replaces the previous ECC implementation which was written by:
+ *   Steven J. Hill (sjhill@realitydiluted.com)
+ *   Thomas Gleixner (tglx@linutronix.de)
+ *
+ * Information on how this algorithm works and how it was developed
+ * can be found in Documentation/mtd/nand_ecc.txt
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ *
+ */
+
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <asm/byteorder.h>
+
+/*
+ * invparity is a 256 byte table that contains the odd parity
+ * for each byte. So if the number of bits in a byte is even,
+ * the array element is 1, and when the number of bits is odd
+ * the array eleemnt is 0.
+ */
+static const char invparity[256] = {
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
+};
+
+/*
+ * bitsperbyte contains the number of bits per byte
+ * this is only used for testing and repairing parity
+ * (a precalculated value slightly improves performance)
+ */
+static const char bitsperbyte[256] = {
+	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
+	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+	4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
+};
+
+/*
+ * addressbits is a lookup table to filter out the bits from the xor-ed
+ * ECC data that identify the faulty location.
+ * this is only used for repairing parity
+ * see the comments in nand_correct_data for more details
+ */
+static const char addressbits[256] = {
+	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
+	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
+	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
+	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
+	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
+	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
+	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
+	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
+	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
+	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
+	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
+};
+
+/**
+ * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
+ *			 block
+ * @buf:	input buffer with raw data
+ * @eccsize:	data bytes per ECC step (256 or 512)
+ * @code:	output buffer with ECC
+ */
+void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
+		       unsigned char *code)
+{
+	int i;
+	const uint32_t *bp = (uint32_t *)buf;
+	/* 256 or 512 bytes/ecc  */
+	const uint32_t eccsize_mult = eccsize >> 8;
+	uint32_t cur;		/* current value in buffer */
+	/* rp0..rp15..rp17 are the various accumulated parities (per byte) */
+	uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
+	uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
+	uint32_t uninitialized_var(rp17);	/* to make compiler happy */
+	uint32_t par;		/* the cumulative parity for all data */
+	uint32_t tmppar;	/* the cumulative parity for this iteration;
+				   for rp12, rp14 and rp16 at the end of the
+				   loop */
+
+	par = 0;
+	rp4 = 0;
+	rp6 = 0;
+	rp8 = 0;
+	rp10 = 0;
+	rp12 = 0;
+	rp14 = 0;
+	rp16 = 0;
+
+	/*
+	 * The loop is unrolled a number of times;
+	 * This avoids if statements to decide on which rp value to update
+	 * Also we process the data by longwords.
+	 * Note: passing unaligned data might give a performance penalty.
+	 * It is assumed that the buffers are aligned.
+	 * tmppar is the cumulative sum of this iteration.
+	 * needed for calculating rp12, rp14, rp16 and par
+	 * also used as a performance improvement for rp6, rp8 and rp10
+	 */
+	for (i = 0; i < eccsize_mult << 2; i++) {
+		cur = *bp++;
+		tmppar = cur;
+		rp4 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp6 ^= tmppar;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp4 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp8 ^= tmppar;
+
+		cur = *bp++;
+		tmppar ^= cur;
+		rp4 ^= cur;
+		rp6 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp6 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp4 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp10 ^= tmppar;
+
+		cur = *bp++;
+		tmppar ^= cur;
+		rp4 ^= cur;
+		rp6 ^= cur;
+		rp8 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp6 ^= cur;
+		rp8 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp4 ^= cur;
+		rp8 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp8 ^= cur;
+
+		cur = *bp++;
+		tmppar ^= cur;
+		rp4 ^= cur;
+		rp6 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp6 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+		rp4 ^= cur;
+		cur = *bp++;
+		tmppar ^= cur;
+
+		par ^= tmppar;
+		if ((i & 0x1) == 0)
+			rp12 ^= tmppar;
+		if ((i & 0x2) == 0)
+			rp14 ^= tmppar;
+		if (eccsize_mult == 2 && (i & 0x4) == 0)
+			rp16 ^= tmppar;
+	}
+
+	/*
+	 * handle the fact that we use longword operations
+	 * we'll bring rp4..rp14..rp16 back to single byte entities by
+	 * shifting and xoring first fold the upper and lower 16 bits,
+	 * then the upper and lower 8 bits.
+	 */
+	rp4 ^= (rp4 >> 16);
+	rp4 ^= (rp4 >> 8);
+	rp4 &= 0xff;
+	rp6 ^= (rp6 >> 16);
+	rp6 ^= (rp6 >> 8);
+	rp6 &= 0xff;
+	rp8 ^= (rp8 >> 16);
+	rp8 ^= (rp8 >> 8);
+	rp8 &= 0xff;
+	rp10 ^= (rp10 >> 16);
+	rp10 ^= (rp10 >> 8);
+	rp10 &= 0xff;
+	rp12 ^= (rp12 >> 16);
+	rp12 ^= (rp12 >> 8);
+	rp12 &= 0xff;
+	rp14 ^= (rp14 >> 16);
+	rp14 ^= (rp14 >> 8);
+	rp14 &= 0xff;
+	if (eccsize_mult == 2) {
+		rp16 ^= (rp16 >> 16);
+		rp16 ^= (rp16 >> 8);
+		rp16 &= 0xff;
+	}
+
+	/*
+	 * we also need to calculate the row parity for rp0..rp3
+	 * This is present in par, because par is now
+	 * rp3 rp3 rp2 rp2 in little endian and
+	 * rp2 rp2 rp3 rp3 in big endian
+	 * as well as
+	 * rp1 rp0 rp1 rp0 in little endian and
+	 * rp0 rp1 rp0 rp1 in big endian
+	 * First calculate rp2 and rp3
+	 */
+#ifdef __BIG_ENDIAN
+	rp2 = (par >> 16);
+	rp2 ^= (rp2 >> 8);
+	rp2 &= 0xff;
+	rp3 = par & 0xffff;
+	rp3 ^= (rp3 >> 8);
+	rp3 &= 0xff;
+#else
+	rp3 = (par >> 16);
+	rp3 ^= (rp3 >> 8);
+	rp3 &= 0xff;
+	rp2 = par & 0xffff;
+	rp2 ^= (rp2 >> 8);
+	rp2 &= 0xff;
+#endif
+
+	/* reduce par to 16 bits then calculate rp1 and rp0 */
+	par ^= (par >> 16);
+#ifdef __BIG_ENDIAN
+	rp0 = (par >> 8) & 0xff;
+	rp1 = (par & 0xff);
+#else
+	rp1 = (par >> 8) & 0xff;
+	rp0 = (par & 0xff);
+#endif
+
+	/* finally reduce par to 8 bits */
+	par ^= (par >> 8);
+	par &= 0xff;
+
+	/*
+	 * and calculate rp5..rp15..rp17
+	 * note that par = rp4 ^ rp5 and due to the commutative property
+	 * of the ^ operator we can say:
+	 * rp5 = (par ^ rp4);
+	 * The & 0xff seems superfluous, but benchmarking learned that
+	 * leaving it out gives slightly worse results. No idea why, probably
+	 * it has to do with the way the pipeline in pentium is organized.
+	 */
+	rp5 = (par ^ rp4) & 0xff;
+	rp7 = (par ^ rp6) & 0xff;
+	rp9 = (par ^ rp8) & 0xff;
+	rp11 = (par ^ rp10) & 0xff;
+	rp13 = (par ^ rp12) & 0xff;
+	rp15 = (par ^ rp14) & 0xff;
+	if (eccsize_mult == 2)
+		rp17 = (par ^ rp16) & 0xff;
+
+	/*
+	 * Finally calculate the ECC bits.
+	 * Again here it might seem that there are performance optimisations
+	 * possible, but benchmarks showed that on the system this is developed
+	 * the code below is the fastest
+	 */
+#ifdef CONFIG_MTD_NAND_ECC_SMC
+	code[0] =
+	    (invparity[rp7] << 7) |
+	    (invparity[rp6] << 6) |
+	    (invparity[rp5] << 5) |
+	    (invparity[rp4] << 4) |
+	    (invparity[rp3] << 3) |
+	    (invparity[rp2] << 2) |
+	    (invparity[rp1] << 1) |
+	    (invparity[rp0]);
+	code[1] =
+	    (invparity[rp15] << 7) |
+	    (invparity[rp14] << 6) |
+	    (invparity[rp13] << 5) |
+	    (invparity[rp12] << 4) |
+	    (invparity[rp11] << 3) |
+	    (invparity[rp10] << 2) |
+	    (invparity[rp9] << 1)  |
+	    (invparity[rp8]);
+#else
+	code[1] =
+	    (invparity[rp7] << 7) |
+	    (invparity[rp6] << 6) |
+	    (invparity[rp5] << 5) |
+	    (invparity[rp4] << 4) |
+	    (invparity[rp3] << 3) |
+	    (invparity[rp2] << 2) |
+	    (invparity[rp1] << 1) |
+	    (invparity[rp0]);
+	code[0] =
+	    (invparity[rp15] << 7) |
+	    (invparity[rp14] << 6) |
+	    (invparity[rp13] << 5) |
+	    (invparity[rp12] << 4) |
+	    (invparity[rp11] << 3) |
+	    (invparity[rp10] << 2) |
+	    (invparity[rp9] << 1)  |
+	    (invparity[rp8]);
+#endif
+	if (eccsize_mult == 1)
+		code[2] =
+		    (invparity[par & 0xf0] << 7) |
+		    (invparity[par & 0x0f] << 6) |
+		    (invparity[par & 0xcc] << 5) |
+		    (invparity[par & 0x33] << 4) |
+		    (invparity[par & 0xaa] << 3) |
+		    (invparity[par & 0x55] << 2) |
+		    3;
+	else
+		code[2] =
+		    (invparity[par & 0xf0] << 7) |
+		    (invparity[par & 0x0f] << 6) |
+		    (invparity[par & 0xcc] << 5) |
+		    (invparity[par & 0x33] << 4) |
+		    (invparity[par & 0xaa] << 3) |
+		    (invparity[par & 0x55] << 2) |
+		    (invparity[rp17] << 1) |
+		    (invparity[rp16] << 0);
+}
+EXPORT_SYMBOL(__nand_calculate_ecc);
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
+ *			 block
+ * @mtd:	MTD block structure
+ * @buf:	input buffer with raw data
+ * @code:	output buffer with ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
+		       unsigned char *code)
+{
+	__nand_calculate_ecc(buf,
+			mtd_to_nand(mtd)->ecc.size, code);
+
+	return 0;
+}
+EXPORT_SYMBOL(nand_calculate_ecc);
+
+/**
+ * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @buf:	raw data read from the chip
+ * @read_ecc:	ECC from the chip
+ * @calc_ecc:	the ECC calculated from raw data
+ * @eccsize:	data bytes per ECC step (256 or 512)
+ *
+ * Detect and correct a 1 bit error for eccsize byte block
+ */
+int __nand_correct_data(unsigned char *buf,
+			unsigned char *read_ecc, unsigned char *calc_ecc,
+			unsigned int eccsize)
+{
+	unsigned char b0, b1, b2, bit_addr;
+	unsigned int byte_addr;
+	/* 256 or 512 bytes/ecc  */
+	const uint32_t eccsize_mult = eccsize >> 8;
+
+	/*
+	 * b0 to b2 indicate which bit is faulty (if any)
+	 * we might need the xor result  more than once,
+	 * so keep them in a local var
+	*/
+#ifdef CONFIG_MTD_NAND_ECC_SMC
+	b0 = read_ecc[0] ^ calc_ecc[0];
+	b1 = read_ecc[1] ^ calc_ecc[1];
+#else
+	b0 = read_ecc[1] ^ calc_ecc[1];
+	b1 = read_ecc[0] ^ calc_ecc[0];
+#endif
+	b2 = read_ecc[2] ^ calc_ecc[2];
+
+	/* check if there are any bitfaults */
+
+	/* repeated if statements are slightly more efficient than switch ... */
+	/* ordered in order of likelihood */
+
+	if ((b0 | b1 | b2) == 0)
+		return 0;	/* no error */
+
+	if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
+	    (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
+	    ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
+	     (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
+	/* single bit error */
+		/*
+		 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
+		 * byte, cp 5/3/1 indicate the faulty bit.
+		 * A lookup table (called addressbits) is used to filter
+		 * the bits from the byte they are in.
+		 * A marginal optimisation is possible by having three
+		 * different lookup tables.
+		 * One as we have now (for b0), one for b2
+		 * (that would avoid the >> 1), and one for b1 (with all values
+		 * << 4). However it was felt that introducing two more tables
+		 * hardly justify the gain.
+		 *
+		 * The b2 shift is there to get rid of the lowest two bits.
+		 * We could also do addressbits[b2] >> 1 but for the
+		 * performance it does not make any difference
+		 */
+		if (eccsize_mult == 1)
+			byte_addr = (addressbits[b1] << 4) + addressbits[b0];
+		else
+			byte_addr = (addressbits[b2 & 0x3] << 8) +
+				    (addressbits[b1] << 4) + addressbits[b0];
+		bit_addr = addressbits[b2 >> 2];
+		/* flip the bit */
+		buf[byte_addr] ^= (1 << bit_addr);
+		return 1;
+
+	}
+	/* count nr of bits; use table lookup, faster than calculating it */
+	if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
+		return 1;	/* error in ECC data; no action needed */
+
+	pr_err("%s: uncorrectable ECC error\n", __func__);
+	return -EBADMSG;
+}
+EXPORT_SYMBOL(__nand_correct_data);
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd:	MTD block structure
+ * @buf:	raw data read from the chip
+ * @read_ecc:	ECC from the chip
+ * @calc_ecc:	the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256/512 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+		      unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+	return __nand_correct_data(buf, read_ecc, calc_ecc,
+				   mtd_to_nand(mtd)->ecc.size);
+}
+EXPORT_SYMBOL(nand_correct_data);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
+MODULE_DESCRIPTION("Generic NAND ECC support");
diff --git a/drivers/mtd/nand/raw/nand_hynix.c b/drivers/mtd/nand/raw/nand_hynix.c
new file mode 100644
index 0000000..4ffbb26
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_hynix.c
@@ -0,0 +1,699 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/rawnand.h>
+#include <linux/sizes.h>
+#include <linux/slab.h>
+
+#define NAND_HYNIX_CMD_SET_PARAMS	0x36
+#define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
+
+#define NAND_HYNIX_1XNM_RR_REPEAT	8
+
+/**
+ * struct hynix_read_retry - read-retry data
+ * @nregs: number of register to set when applying a new read-retry mode
+ * @regs: register offsets (NAND chip dependent)
+ * @values: array of values to set in registers. The array size is equal to
+ *	    (nregs * nmodes)
+ */
+struct hynix_read_retry {
+	int nregs;
+	const u8 *regs;
+	u8 values[0];
+};
+
+/**
+ * struct hynix_nand - private Hynix NAND struct
+ * @nand_technology: manufacturing process expressed in picometer
+ * @read_retry: read-retry information
+ */
+struct hynix_nand {
+	const struct hynix_read_retry *read_retry;
+};
+
+/**
+ * struct hynix_read_retry_otp - structure describing how the read-retry OTP
+ *				 area
+ * @nregs: number of hynix private registers to set before reading the reading
+ *	   the OTP area
+ * @regs: registers that should be configured
+ * @values: values that should be set in regs
+ * @page: the address to pass to the READ_PAGE command. Depends on the NAND
+ *	  chip
+ * @size: size of the read-retry OTP section
+ */
+struct hynix_read_retry_otp {
+	int nregs;
+	const u8 *regs;
+	const u8 *values;
+	int page;
+	int size;
+};
+
+static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
+{
+	u8 jedecid[5] = { };
+	int ret;
+
+	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
+	if (ret)
+		return false;
+
+	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
+}
+
+static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (chip->exec_op) {
+		struct nand_op_instr instrs[] = {
+			NAND_OP_CMD(cmd, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, cmd, -1, -1);
+
+	return 0;
+}
+
+static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u16 column = ((u16)addr << 8) | addr;
+
+	if (chip->exec_op) {
+		struct nand_op_instr instrs[] = {
+			NAND_OP_ADDR(1, &addr, 0),
+			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
+		};
+		struct nand_operation op = NAND_OPERATION(instrs);
+
+		return nand_exec_op(chip, &op);
+	}
+
+	chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
+	chip->write_byte(mtd, val);
+
+	return 0;
+}
+
+static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
+	const u8 *values;
+	int i, ret;
+
+	values = hynix->read_retry->values +
+		 (retry_mode * hynix->read_retry->nregs);
+
+	/* Enter 'Set Hynix Parameters' mode */
+	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
+	if (ret)
+		return ret;
+
+	/*
+	 * Configure the NAND in the requested read-retry mode.
+	 * This is done by setting pre-defined values in internal NAND
+	 * registers.
+	 *
+	 * The set of registers is NAND specific, and the values are either
+	 * predefined or extracted from an OTP area on the NAND (values are
+	 * probably tweaked at production in this case).
+	 */
+	for (i = 0; i < hynix->read_retry->nregs; i++) {
+		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
+					      values[i]);
+		if (ret)
+			return ret;
+	}
+
+	/* Apply the new settings. */
+	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
+}
+
+/**
+ * hynix_get_majority - get the value that is occurring the most in a given
+ *			set of values
+ * @in: the array of values to test
+ * @repeat: the size of the in array
+ * @out: pointer used to store the output value
+ *
+ * This function implements the 'majority check' logic that is supposed to
+ * overcome the unreliability of MLC NANDs when reading the OTP area storing
+ * the read-retry parameters.
+ *
+ * It's based on a pretty simple assumption: if we repeat the same value
+ * several times and then take the one that is occurring the most, we should
+ * find the correct value.
+ * Let's hope this dummy algorithm prevents us from losing the read-retry
+ * parameters.
+ */
+static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
+{
+	int i, j, half = repeat / 2;
+
+	/*
+	 * We only test the first half of the in array because we must ensure
+	 * that the value is at least occurring repeat / 2 times.
+	 *
+	 * This loop is suboptimal since we may count the occurrences of the
+	 * same value several time, but we are doing that on small sets, which
+	 * makes it acceptable.
+	 */
+	for (i = 0; i < half; i++) {
+		int cnt = 0;
+		u8 val = in[i];
+
+		/* Count all values that are matching the one at index i. */
+		for (j = i + 1; j < repeat; j++) {
+			if (in[j] == val)
+				cnt++;
+		}
+
+		/* We found a value occurring more than repeat / 2. */
+		if (cnt > half) {
+			*out = val;
+			return 0;
+		}
+	}
+
+	return -EIO;
+}
+
+static int hynix_read_rr_otp(struct nand_chip *chip,
+			     const struct hynix_read_retry_otp *info,
+			     void *buf)
+{
+	int i, ret;
+
+	ret = nand_reset_op(chip);
+	if (ret)
+		return ret;
+
+	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
+	if (ret)
+		return ret;
+
+	for (i = 0; i < info->nregs; i++) {
+		ret = hynix_nand_reg_write_op(chip, info->regs[i],
+					      info->values[i]);
+		if (ret)
+			return ret;
+	}
+
+	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
+	if (ret)
+		return ret;
+
+	/* Sequence to enter OTP mode? */
+	ret = hynix_nand_cmd_op(chip, 0x17);
+	if (ret)
+		return ret;
+
+	ret = hynix_nand_cmd_op(chip, 0x4);
+	if (ret)
+		return ret;
+
+	ret = hynix_nand_cmd_op(chip, 0x19);
+	if (ret)
+		return ret;
+
+	/* Now read the page */
+	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
+	if (ret)
+		return ret;
+
+	/* Put everything back to normal */
+	ret = nand_reset_op(chip);
+	if (ret)
+		return ret;
+
+	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
+	if (ret)
+		return ret;
+
+	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
+	if (ret)
+		return ret;
+
+	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
+	if (ret)
+		return ret;
+
+	return nand_read_page_op(chip, 0, 0, NULL, 0);
+}
+
+#define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
+#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
+#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
+	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
+
+static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
+				   int mode, int reg, bool inv, u8 *val)
+{
+	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
+	int val_offs = (mode * nregs) + reg;
+	int set_size = nmodes * nregs;
+	int i, ret;
+
+	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
+		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
+
+		tmp[i] = buf[val_offs + set_offs];
+	}
+
+	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
+	if (ret)
+		return ret;
+
+	if (inv)
+		*val = ~*val;
+
+	return 0;
+}
+
+static u8 hynix_1xnm_mlc_read_retry_regs[] = {
+	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
+};
+
+static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
+				  const struct hynix_read_retry_otp *info)
+{
+	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
+	struct hynix_read_retry *rr = NULL;
+	int ret, i, j;
+	u8 nregs, nmodes;
+	u8 *buf;
+
+	buf = kmalloc(info->size, GFP_KERNEL);
+	if (!buf)
+		return -ENOMEM;
+
+	ret = hynix_read_rr_otp(chip, info, buf);
+	if (ret)
+		goto out;
+
+	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
+				 &nmodes);
+	if (ret)
+		goto out;
+
+	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
+				 NAND_HYNIX_1XNM_RR_REPEAT,
+				 &nregs);
+	if (ret)
+		goto out;
+
+	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
+	if (!rr) {
+		ret = -ENOMEM;
+		goto out;
+	}
+
+	for (i = 0; i < nmodes; i++) {
+		for (j = 0; j < nregs; j++) {
+			u8 *val = rr->values + (i * nregs);
+
+			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
+						      false, val);
+			if (!ret)
+				continue;
+
+			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
+						      true, val);
+			if (ret)
+				goto out;
+		}
+	}
+
+	rr->nregs = nregs;
+	rr->regs = hynix_1xnm_mlc_read_retry_regs;
+	hynix->read_retry = rr;
+	chip->setup_read_retry = hynix_nand_setup_read_retry;
+	chip->read_retries = nmodes;
+
+out:
+	kfree(buf);
+
+	if (ret)
+		kfree(rr);
+
+	return ret;
+}
+
+static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
+static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
+
+static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
+	{
+		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
+		.regs = hynix_mlc_1xnm_rr_otp_regs,
+		.values = hynix_mlc_1xnm_rr_otp_values,
+		.page = 0x21f,
+		.size = 784
+	},
+	{
+		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
+		.regs = hynix_mlc_1xnm_rr_otp_regs,
+		.values = hynix_mlc_1xnm_rr_otp_values,
+		.page = 0x200,
+		.size = 528,
+	},
+};
+
+static int hynix_nand_rr_init(struct nand_chip *chip)
+{
+	int i, ret = 0;
+	bool valid_jedecid;
+
+	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
+
+	/*
+	 * We only support read-retry for 1xnm NANDs, and those NANDs all
+	 * expose a valid JEDEC ID.
+	 */
+	if (valid_jedecid) {
+		u8 nand_tech = chip->id.data[5] >> 4;
+
+		/* 1xnm technology */
+		if (nand_tech == 4) {
+			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
+			     i++) {
+				/*
+				 * FIXME: Hynix recommend to copy the
+				 * read-retry OTP area into a normal page.
+				 */
+				ret = hynix_mlc_1xnm_rr_init(chip,
+						hynix_mlc_1xnm_rr_otps);
+				if (!ret)
+					break;
+			}
+		}
+	}
+
+	if (ret)
+		pr_warn("failed to initialize read-retry infrastructure");
+
+	return 0;
+}
+
+static void hynix_nand_extract_oobsize(struct nand_chip *chip,
+				       bool valid_jedecid)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 oobsize;
+
+	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
+		  ((chip->id.data[3] >> 4) & 0x4);
+
+	if (valid_jedecid) {
+		switch (oobsize) {
+		case 0:
+			mtd->oobsize = 2048;
+			break;
+		case 1:
+			mtd->oobsize = 1664;
+			break;
+		case 2:
+			mtd->oobsize = 1024;
+			break;
+		case 3:
+			mtd->oobsize = 640;
+			break;
+		default:
+			/*
+			 * We should never reach this case, but if that
+			 * happens, this probably means Hynix decided to use
+			 * a different extended ID format, and we should find
+			 * a way to support it.
+			 */
+			WARN(1, "Invalid OOB size");
+			break;
+		}
+	} else {
+		switch (oobsize) {
+		case 0:
+			mtd->oobsize = 128;
+			break;
+		case 1:
+			mtd->oobsize = 224;
+			break;
+		case 2:
+			mtd->oobsize = 448;
+			break;
+		case 3:
+			mtd->oobsize = 64;
+			break;
+		case 4:
+			mtd->oobsize = 32;
+			break;
+		case 5:
+			mtd->oobsize = 16;
+			break;
+		case 6:
+			mtd->oobsize = 640;
+			break;
+		default:
+			/*
+			 * We should never reach this case, but if that
+			 * happens, this probably means Hynix decided to use
+			 * a different extended ID format, and we should find
+			 * a way to support it.
+			 */
+			WARN(1, "Invalid OOB size");
+			break;
+		}
+
+		/*
+		 * The datasheet of H27UCG8T2BTR mentions that the "Redundant
+		 * Area Size" is encoded "per 8KB" (page size). This chip uses
+		 * a page size of 16KiB. The datasheet mentions an OOB size of
+		 * 1.280 bytes, but the OOB size encoded in the ID bytes (using
+		 * the existing logic above) is 640 bytes.
+		 * Update the OOB size for this chip by taking the value
+		 * determined above and scaling it to the actual page size (so
+		 * the actual OOB size for this chip is: 640 * 16k / 8k).
+		 */
+		if (chip->id.data[1] == 0xde)
+			mtd->oobsize *= mtd->writesize / SZ_8K;
+	}
+}
+
+static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
+						bool valid_jedecid)
+{
+	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
+
+	if (valid_jedecid) {
+		/* Reference: H27UCG8T2E datasheet */
+		chip->ecc_step_ds = 1024;
+
+		switch (ecc_level) {
+		case 0:
+			chip->ecc_step_ds = 0;
+			chip->ecc_strength_ds = 0;
+			break;
+		case 1:
+			chip->ecc_strength_ds = 4;
+			break;
+		case 2:
+			chip->ecc_strength_ds = 24;
+			break;
+		case 3:
+			chip->ecc_strength_ds = 32;
+			break;
+		case 4:
+			chip->ecc_strength_ds = 40;
+			break;
+		case 5:
+			chip->ecc_strength_ds = 50;
+			break;
+		case 6:
+			chip->ecc_strength_ds = 60;
+			break;
+		default:
+			/*
+			 * We should never reach this case, but if that
+			 * happens, this probably means Hynix decided to use
+			 * a different extended ID format, and we should find
+			 * a way to support it.
+			 */
+			WARN(1, "Invalid ECC requirements");
+		}
+	} else {
+		/*
+		 * The ECC requirements field meaning depends on the
+		 * NAND technology.
+		 */
+		u8 nand_tech = chip->id.data[5] & 0x7;
+
+		if (nand_tech < 3) {
+			/* > 26nm, reference: H27UBG8T2A datasheet */
+			if (ecc_level < 5) {
+				chip->ecc_step_ds = 512;
+				chip->ecc_strength_ds = 1 << ecc_level;
+			} else if (ecc_level < 7) {
+				if (ecc_level == 5)
+					chip->ecc_step_ds = 2048;
+				else
+					chip->ecc_step_ds = 1024;
+				chip->ecc_strength_ds = 24;
+			} else {
+				/*
+				 * We should never reach this case, but if that
+				 * happens, this probably means Hynix decided
+				 * to use a different extended ID format, and
+				 * we should find a way to support it.
+				 */
+				WARN(1, "Invalid ECC requirements");
+			}
+		} else {
+			/* <= 26nm, reference: H27UBG8T2B datasheet */
+			if (!ecc_level) {
+				chip->ecc_step_ds = 0;
+				chip->ecc_strength_ds = 0;
+			} else if (ecc_level < 5) {
+				chip->ecc_step_ds = 512;
+				chip->ecc_strength_ds = 1 << (ecc_level - 1);
+			} else {
+				chip->ecc_step_ds = 1024;
+				chip->ecc_strength_ds = 24 +
+							(8 * (ecc_level - 5));
+			}
+		}
+	}
+}
+
+static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
+						       bool valid_jedecid)
+{
+	u8 nand_tech;
+
+	/* We need scrambling on all TLC NANDs*/
+	if (chip->bits_per_cell > 2)
+		chip->options |= NAND_NEED_SCRAMBLING;
+
+	/* And on MLC NANDs with sub-3xnm process */
+	if (valid_jedecid) {
+		nand_tech = chip->id.data[5] >> 4;
+
+		/* < 3xnm */
+		if (nand_tech > 0)
+			chip->options |= NAND_NEED_SCRAMBLING;
+	} else {
+		nand_tech = chip->id.data[5] & 0x7;
+
+		/* < 32nm */
+		if (nand_tech > 2)
+			chip->options |= NAND_NEED_SCRAMBLING;
+	}
+}
+
+static void hynix_nand_decode_id(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	bool valid_jedecid;
+	u8 tmp;
+
+	/*
+	 * Exclude all SLC NANDs from this advanced detection scheme.
+	 * According to the ranges defined in several datasheets, it might
+	 * appear that even SLC NANDs could fall in this extended ID scheme.
+	 * If that the case rework the test to let SLC NANDs go through the
+	 * detection process.
+	 */
+	if (chip->id.len < 6 || nand_is_slc(chip)) {
+		nand_decode_ext_id(chip);
+		return;
+	}
+
+	/* Extract pagesize */
+	mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
+
+	tmp = (chip->id.data[3] >> 4) & 0x3;
+	/*
+	 * When bit7 is set that means we start counting at 1MiB, otherwise
+	 * we start counting at 128KiB and shift this value the content of
+	 * ID[3][4:5].
+	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
+	 * this case the erasesize is set to 768KiB.
+	 */
+	if (chip->id.data[3] & 0x80)
+		mtd->erasesize = SZ_1M << tmp;
+	else if (tmp == 3)
+		mtd->erasesize = SZ_512K + SZ_256K;
+	else
+		mtd->erasesize = SZ_128K << tmp;
+
+	/*
+	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
+	 * not exposing a valid JEDEC parameter table.
+	 * These NANDs use a different NAND ID scheme.
+	 */
+	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
+
+	hynix_nand_extract_oobsize(chip, valid_jedecid);
+	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
+	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
+}
+
+static void hynix_nand_cleanup(struct nand_chip *chip)
+{
+	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
+
+	if (!hynix)
+		return;
+
+	kfree(hynix->read_retry);
+	kfree(hynix);
+	nand_set_manufacturer_data(chip, NULL);
+}
+
+static int hynix_nand_init(struct nand_chip *chip)
+{
+	struct hynix_nand *hynix;
+	int ret;
+
+	if (!nand_is_slc(chip))
+		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+	else
+		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
+	if (!hynix)
+		return -ENOMEM;
+
+	nand_set_manufacturer_data(chip, hynix);
+
+	ret = hynix_nand_rr_init(chip);
+	if (ret)
+		hynix_nand_cleanup(chip);
+
+	return ret;
+}
+
+const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
+	.detect = hynix_nand_decode_id,
+	.init = hynix_nand_init,
+	.cleanup = hynix_nand_cleanup,
+};
diff --git a/drivers/mtd/nand/raw/nand_ids.c b/drivers/mtd/nand/raw/nand_ids.c
new file mode 100644
index 0000000..5423c3b
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_ids.c
@@ -0,0 +1,207 @@
+/*
+ *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <linux/mtd/rawnand.h>
+#include <linux/sizes.h>
+
+#define LP_OPTIONS 0
+#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
+
+#define SP_OPTIONS NAND_NEED_READRDY
+#define SP_OPTIONS16 (SP_OPTIONS | NAND_BUSWIDTH_16)
+
+/*
+ * The chip ID list:
+ *    name, device ID, page size, chip size in MiB, eraseblock size, options
+ *
+ * If page size and eraseblock size are 0, the sizes are taken from the
+ * extended chip ID.
+ */
+struct nand_flash_dev nand_flash_ids[] = {
+	/*
+	 * Some incompatible NAND chips share device ID's and so must be
+	 * listed by full ID. We list them first so that we can easily identify
+	 * the most specific match.
+	 */
+	{"TC58NVG0S3E 1G 3.3V 8-bit",
+		{ .id = {0x98, 0xd1, 0x90, 0x15, 0x76, 0x14, 0x01, 0x00} },
+		  SZ_2K, SZ_128, SZ_128K, 0, 8, 64, NAND_ECC_INFO(1, SZ_512),
+		  2 },
+	{"TC58NVG2S0F 4G 3.3V 8-bit",
+		{ .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} },
+		  SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) },
+	{"TC58NVG2S0H 4G 3.3V 8-bit",
+		{ .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x16, 0x08, 0x00} },
+		  SZ_4K, SZ_512, SZ_256K, 0, 8, 256, NAND_ECC_INFO(8, SZ_512) },
+	{"TC58NVG3S0F 8G 3.3V 8-bit",
+		{ .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} },
+		  SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) },
+	{"TC58NVG5D2 32G 3.3V 8-bit",
+		{ .id = {0x98, 0xd7, 0x94, 0x32, 0x76, 0x56, 0x09, 0x00} },
+		  SZ_8K, SZ_4K, SZ_1M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) },
+	{"TC58NVG6D2 64G 3.3V 8-bit",
+		{ .id = {0x98, 0xde, 0x94, 0x82, 0x76, 0x56, 0x04, 0x20} },
+		  SZ_8K, SZ_8K, SZ_2M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) },
+	{"SDTNRGAMA 64G 3.3V 8-bit",
+		{ .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} },
+		  SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) },
+	{"H27UCG8T2ATR-BC 64G 3.3V 8-bit",
+		{ .id = {0xad, 0xde, 0x94, 0xda, 0x74, 0xc4} },
+		  SZ_8K, SZ_8K, SZ_2M, NAND_NEED_SCRAMBLING, 6, 640,
+		  NAND_ECC_INFO(40, SZ_1K), 4 },
+
+	LEGACY_ID_NAND("NAND 4MiB 5V 8-bit",   0x6B, 4, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE5, 4, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xD6, 8, SZ_8K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xE6, 8, SZ_8K, SP_OPTIONS),
+
+	LEGACY_ID_NAND("NAND 16MiB 1,8V 8-bit",  0x33, 16, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 16MiB 3,3V 8-bit",  0x73, 16, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 16MiB 1,8V 16-bit", 0x43, 16, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 16MiB 3,3V 16-bit", 0x53, 16, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 32MiB 1,8V 8-bit",  0x35, 32, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 32MiB 3,3V 8-bit",  0x75, 32, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 32MiB 1,8V 16-bit", 0x45, 32, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 32MiB 3,3V 16-bit", 0x55, 32, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 64MiB 1,8V 8-bit",  0x36, 64, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 64MiB 3,3V 8-bit",  0x76, 64, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 64MiB 1,8V 16-bit", 0x46, 64, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 64MiB 3,3V 16-bit", 0x56, 64, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit",  0x78, 128, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit",  0x39, 128, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 128MiB 3,3V 8-bit",  0x79, 128, SZ_16K, SP_OPTIONS),
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x72, 128, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x49, 128, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x74, 128, SZ_16K, SP_OPTIONS16),
+	LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x59, 128, SZ_16K, SP_OPTIONS16),
+
+	LEGACY_ID_NAND("NAND 256MiB 3,3V 8-bit", 0x71, 256, SZ_16K, SP_OPTIONS),
+
+	/*
+	 * These are the new chips with large page size. Their page size and
+	 * eraseblock size are determined from the extended ID bytes.
+	 */
+
+	/* 512 Megabit */
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit",  0xA2,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit",  0xA0,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit",  0xF2,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit",  0xD0,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit",  0xF0,  64, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB2,  64, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB0,  64, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC2,  64, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC0,  64, LP_OPTIONS16),
+
+	/* 1 Gigabit */
+	EXTENDED_ID_NAND("NAND 128MiB 1,8V 8-bit",  0xA1, 128, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit",  0xF1, 128, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit",  0xD1, 128, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xB1, 128, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 128MiB 3,3V 16-bit", 0xC1, 128, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xAD, 128, LP_OPTIONS16),
+
+	/* 2 Gigabit */
+	EXTENDED_ID_NAND("NAND 256MiB 1,8V 8-bit",  0xAA, 256, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 256MiB 3,3V 8-bit",  0xDA, 256, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 256MiB 1,8V 16-bit", 0xBA, 256, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 256MiB 3,3V 16-bit", 0xCA, 256, LP_OPTIONS16),
+
+	/* 4 Gigabit */
+	EXTENDED_ID_NAND("NAND 512MiB 1,8V 8-bit",  0xAC, 512, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 512MiB 3,3V 8-bit",  0xDC, 512, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 512MiB 1,8V 16-bit", 0xBC, 512, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 512MiB 3,3V 16-bit", 0xCC, 512, LP_OPTIONS16),
+
+	/* 8 Gigabit */
+	EXTENDED_ID_NAND("NAND 1GiB 1,8V 8-bit",  0xA3, 1024, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 1GiB 3,3V 8-bit",  0xD3, 1024, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 1GiB 1,8V 16-bit", 0xB3, 1024, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 1GiB 3,3V 16-bit", 0xC3, 1024, LP_OPTIONS16),
+
+	/* 16 Gigabit */
+	EXTENDED_ID_NAND("NAND 2GiB 1,8V 8-bit",  0xA5, 2048, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 2GiB 3,3V 8-bit",  0xD5, 2048, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 2GiB 1,8V 16-bit", 0xB5, 2048, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 2GiB 3,3V 16-bit", 0xC5, 2048, LP_OPTIONS16),
+
+	/* 32 Gigabit */
+	EXTENDED_ID_NAND("NAND 4GiB 1,8V 8-bit",  0xA7, 4096, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 4GiB 3,3V 8-bit",  0xD7, 4096, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 4GiB 1,8V 16-bit", 0xB7, 4096, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 4GiB 3,3V 16-bit", 0xC7, 4096, LP_OPTIONS16),
+
+	/* 64 Gigabit */
+	EXTENDED_ID_NAND("NAND 8GiB 1,8V 8-bit",  0xAE, 8192, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 8GiB 3,3V 8-bit",  0xDE, 8192, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 8GiB 1,8V 16-bit", 0xBE, 8192, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 8GiB 3,3V 16-bit", 0xCE, 8192, LP_OPTIONS16),
+
+	/* 128 Gigabit */
+	EXTENDED_ID_NAND("NAND 16GiB 1,8V 8-bit",  0x1A, 16384, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 16GiB 3,3V 8-bit",  0x3A, 16384, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 16GiB 1,8V 16-bit", 0x2A, 16384, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 16GiB 3,3V 16-bit", 0x4A, 16384, LP_OPTIONS16),
+
+	/* 256 Gigabit */
+	EXTENDED_ID_NAND("NAND 32GiB 1,8V 8-bit",  0x1C, 32768, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 32GiB 3,3V 8-bit",  0x3C, 32768, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 32GiB 1,8V 16-bit", 0x2C, 32768, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 32GiB 3,3V 16-bit", 0x4C, 32768, LP_OPTIONS16),
+
+	/* 512 Gigabit */
+	EXTENDED_ID_NAND("NAND 64GiB 1,8V 8-bit",  0x1E, 65536, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64GiB 3,3V 8-bit",  0x3E, 65536, LP_OPTIONS),
+	EXTENDED_ID_NAND("NAND 64GiB 1,8V 16-bit", 0x2E, 65536, LP_OPTIONS16),
+	EXTENDED_ID_NAND("NAND 64GiB 3,3V 16-bit", 0x4E, 65536, LP_OPTIONS16),
+
+	{NULL}
+};
+
+/* Manufacturer IDs */
+static const struct nand_manufacturer nand_manufacturers[] = {
+	{NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops},
+	{NAND_MFR_ESMT, "ESMT"},
+	{NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops},
+	{NAND_MFR_FUJITSU, "Fujitsu"},
+	{NAND_MFR_NATIONAL, "National"},
+	{NAND_MFR_RENESAS, "Renesas"},
+	{NAND_MFR_STMICRO, "ST Micro"},
+	{NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops},
+	{NAND_MFR_MICRON, "Micron", &micron_nand_manuf_ops},
+	{NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops},
+	{NAND_MFR_MACRONIX, "Macronix", &macronix_nand_manuf_ops},
+	{NAND_MFR_EON, "Eon"},
+	{NAND_MFR_SANDISK, "SanDisk"},
+	{NAND_MFR_INTEL, "Intel"},
+	{NAND_MFR_ATO, "ATO"},
+	{NAND_MFR_WINBOND, "Winbond"},
+};
+
+/**
+ * nand_get_manufacturer - Get manufacturer information from the manufacturer
+ *			   ID
+ * @id: manufacturer ID
+ *
+ * Returns a pointer a nand_manufacturer object if the manufacturer is defined
+ * in the NAND manufacturers database, NULL otherwise.
+ */
+const struct nand_manufacturer *nand_get_manufacturer(u8 id)
+{
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(nand_manufacturers); i++)
+		if (nand_manufacturers[i].id == id)
+			return &nand_manufacturers[i];
+
+	return NULL;
+}
diff --git a/drivers/mtd/nand/raw/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c
new file mode 100644
index 0000000..49c546c
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_macronix.c
@@ -0,0 +1,67 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/rawnand.h>
+
+/*
+ * Macronix AC series does not support using SET/GET_FEATURES to change
+ * the timings unlike what is declared in the parameter page. Unflag
+ * this feature to avoid unnecessary downturns.
+ */
+static void macronix_nand_fix_broken_get_timings(struct nand_chip *chip)
+{
+	unsigned int i;
+	static const char * const broken_get_timings[] = {
+		"MX30LF1G18AC",
+		"MX30LF1G28AC",
+		"MX30LF2G18AC",
+		"MX30LF2G28AC",
+		"MX30LF4G18AC",
+		"MX30LF4G28AC",
+		"MX60LF8G18AC",
+	};
+
+	if (!chip->parameters.supports_set_get_features)
+		return;
+
+	for (i = 0; i < ARRAY_SIZE(broken_get_timings); i++) {
+		if (!strcmp(broken_get_timings[i], chip->parameters.model))
+			break;
+	}
+
+	if (i == ARRAY_SIZE(broken_get_timings))
+		return;
+
+	bitmap_clear(chip->parameters.get_feature_list,
+		     ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+	bitmap_clear(chip->parameters.set_feature_list,
+		     ONFI_FEATURE_ADDR_TIMING_MODE, 1);
+}
+
+static int macronix_nand_init(struct nand_chip *chip)
+{
+	if (nand_is_slc(chip))
+		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+	macronix_nand_fix_broken_get_timings(chip);
+
+	return 0;
+}
+
+const struct nand_manufacturer_ops macronix_nand_manuf_ops = {
+	.init = macronix_nand_init,
+};
diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c
new file mode 100644
index 0000000..f5dc0a7
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_micron.c
@@ -0,0 +1,549 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/rawnand.h>
+#include <linux/slab.h>
+
+/*
+ * Special Micron status bit 3 indicates that the block has been
+ * corrected by on-die ECC and should be rewritten.
+ */
+#define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)
+
+/*
+ * On chips with 8-bit ECC and additional bit can be used to distinguish
+ * cases where a errors were corrected without needing a rewrite
+ *
+ * Bit 4 Bit 3 Bit 0 Description
+ * ----- ----- ----- -----------
+ * 0     0     0     No Errors
+ * 0     0     1     Multiple uncorrected errors
+ * 0     1     0     4 - 6 errors corrected, recommend rewrite
+ * 0     1     1     Reserved
+ * 1     0     0     1 - 3 errors corrected
+ * 1     0     1     Reserved
+ * 1     1     0     7 - 8 errors corrected, recommend rewrite
+ */
+#define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
+#define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
+#define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
+#define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
+#define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))
+
+struct nand_onfi_vendor_micron {
+	u8 two_plane_read;
+	u8 read_cache;
+	u8 read_unique_id;
+	u8 dq_imped;
+	u8 dq_imped_num_settings;
+	u8 dq_imped_feat_addr;
+	u8 rb_pulldown_strength;
+	u8 rb_pulldown_strength_feat_addr;
+	u8 rb_pulldown_strength_num_settings;
+	u8 otp_mode;
+	u8 otp_page_start;
+	u8 otp_data_prot_addr;
+	u8 otp_num_pages;
+	u8 otp_feat_addr;
+	u8 read_retry_options;
+	u8 reserved[72];
+	u8 param_revision;
+} __packed;
+
+struct micron_on_die_ecc {
+	bool forced;
+	bool enabled;
+	void *rawbuf;
+};
+
+struct micron_nand {
+	struct micron_on_die_ecc ecc;
+};
+
+static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
+
+	return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
+}
+
+/*
+ * Configure chip properties from Micron vendor-specific ONFI table
+ */
+static int micron_nand_onfi_init(struct nand_chip *chip)
+{
+	struct nand_parameters *p = &chip->parameters;
+
+	if (p->onfi) {
+		struct nand_onfi_vendor_micron *micron = (void *)p->onfi->vendor;
+
+		chip->read_retries = micron->read_retry_options;
+		chip->setup_read_retry = micron_nand_setup_read_retry;
+	}
+
+	if (p->supports_set_get_features) {
+		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list);
+		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->set_feature_list);
+		set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list);
+		set_bit(ONFI_FEATURE_ON_DIE_ECC, p->get_feature_list);
+	}
+
+	return 0;
+}
+
+static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
+					      int section,
+					      struct mtd_oob_region *oobregion)
+{
+	if (section >= 4)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 8;
+	oobregion->length = 8;
+
+	return 0;
+}
+
+static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
+					       int section,
+					       struct mtd_oob_region *oobregion)
+{
+	if (section >= 4)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 2;
+	oobregion->length = 6;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
+	.ecc = micron_nand_on_die_4_ooblayout_ecc,
+	.free = micron_nand_on_die_4_ooblayout_free,
+};
+
+static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
+					      int section,
+					      struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = mtd->oobsize - chip->ecc.total;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
+					       int section,
+					       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 2;
+	oobregion->length = mtd->oobsize - chip->ecc.total - 2;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
+	.ecc = micron_nand_on_die_8_ooblayout_ecc,
+	.free = micron_nand_on_die_8_ooblayout_free,
+};
+
+static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
+{
+	struct micron_nand *micron = nand_get_manufacturer_data(chip);
+	u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, };
+	int ret;
+
+	if (micron->ecc.forced)
+		return 0;
+
+	if (micron->ecc.enabled == enable)
+		return 0;
+
+	if (enable)
+		feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN;
+
+	ret = nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
+	if (!ret)
+		micron->ecc.enabled = enable;
+
+	return ret;
+}
+
+static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status,
+					   void *buf, int page,
+					   int oob_required)
+{
+	struct micron_nand *micron = nand_get_manufacturer_data(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	unsigned int step, max_bitflips = 0;
+	int ret;
+
+	if (!(status & NAND_ECC_STATUS_WRITE_RECOMMENDED)) {
+		if (status & NAND_STATUS_FAIL)
+			mtd->ecc_stats.failed++;
+
+		return 0;
+	}
+
+	/*
+	 * The internal ECC doesn't tell us the number of bitflips that have
+	 * been corrected, but tells us if it recommends to rewrite the block.
+	 * If it's the case, we need to read the page in raw mode and compare
+	 * its content to the corrected version to extract the actual number of
+	 * bitflips.
+	 * But before we do that, we must make sure we have all OOB bytes read
+	 * in non-raw mode, even if the user did not request those bytes.
+	 */
+	if (!oob_required) {
+		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
+					false);
+		if (ret)
+			return ret;
+	}
+
+	micron_nand_on_die_ecc_setup(chip, false);
+
+	ret = nand_read_page_op(chip, page, 0, micron->ecc.rawbuf,
+				mtd->writesize + mtd->oobsize);
+	if (ret)
+		return ret;
+
+	for (step = 0; step < chip->ecc.steps; step++) {
+		unsigned int offs, i, nbitflips = 0;
+		u8 *rawbuf, *corrbuf;
+
+		offs = step * chip->ecc.size;
+		rawbuf = micron->ecc.rawbuf + offs;
+		corrbuf = buf + offs;
+
+		for (i = 0; i < chip->ecc.size; i++)
+			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
+
+		offs = (step * 16) + 4;
+		rawbuf = micron->ecc.rawbuf + mtd->writesize + offs;
+		corrbuf = chip->oob_poi + offs;
+
+		for (i = 0; i < chip->ecc.bytes + 4; i++)
+			nbitflips += hweight8(corrbuf[i] ^ rawbuf[i]);
+
+		if (WARN_ON(nbitflips > chip->ecc.strength))
+			return -EINVAL;
+
+		max_bitflips = max(nbitflips, max_bitflips);
+		mtd->ecc_stats.corrected += nbitflips;
+	}
+
+	return max_bitflips;
+}
+
+static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/*
+	 * With 8/512 we have more information but still don't know precisely
+	 * how many bit-flips were seen.
+	 */
+	switch (status & NAND_ECC_STATUS_MASK) {
+	case NAND_ECC_STATUS_UNCORRECTABLE:
+		mtd->ecc_stats.failed++;
+		return 0;
+	case NAND_ECC_STATUS_1_3_CORRECTED:
+		mtd->ecc_stats.corrected += 3;
+		return 3;
+	case NAND_ECC_STATUS_4_6_CORRECTED:
+		mtd->ecc_stats.corrected += 6;
+		/* rewrite recommended */
+		return 6;
+	case NAND_ECC_STATUS_7_8_CORRECTED:
+		mtd->ecc_stats.corrected += 8;
+		/* rewrite recommended */
+		return 8;
+	default:
+		return 0;
+	}
+}
+
+static int
+micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+				 uint8_t *buf, int oob_required,
+				 int page)
+{
+	u8 status;
+	int ret, max_bitflips = 0;
+
+	ret = micron_nand_on_die_ecc_setup(chip, true);
+	if (ret)
+		return ret;
+
+	ret = nand_read_page_op(chip, page, 0, NULL, 0);
+	if (ret)
+		goto out;
+
+	ret = nand_status_op(chip, &status);
+	if (ret)
+		goto out;
+
+	ret = nand_exit_status_op(chip);
+	if (ret)
+		goto out;
+
+	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
+	if (!ret && oob_required)
+		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
+					false);
+
+	if (chip->ecc.strength == 4)
+		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status,
+							       buf, page,
+							       oob_required);
+	else
+		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);
+
+out:
+	micron_nand_on_die_ecc_setup(chip, false);
+
+	return ret ? ret : max_bitflips;
+}
+
+static int
+micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
+				  const uint8_t *buf, int oob_required,
+				  int page)
+{
+	int ret;
+
+	ret = micron_nand_on_die_ecc_setup(chip, true);
+	if (ret)
+		return ret;
+
+	ret = nand_write_page_raw(mtd, chip, buf, oob_required, page);
+	micron_nand_on_die_ecc_setup(chip, false);
+
+	return ret;
+}
+
+enum {
+	/* The NAND flash doesn't support on-die ECC */
+	MICRON_ON_DIE_UNSUPPORTED,
+
+	/*
+	 * The NAND flash supports on-die ECC and it can be
+	 * enabled/disabled by a set features command.
+	 */
+	MICRON_ON_DIE_SUPPORTED,
+
+	/*
+	 * The NAND flash supports on-die ECC, and it cannot be
+	 * disabled.
+	 */
+	MICRON_ON_DIE_MANDATORY,
+};
+
+#define MICRON_ID_INTERNAL_ECC_MASK	GENMASK(1, 0)
+#define MICRON_ID_ECC_ENABLED		BIT(7)
+
+/*
+ * Try to detect if the NAND support on-die ECC. To do this, we enable
+ * the feature, and read back if it has been enabled as expected. We
+ * also check if it can be disabled, because some Micron NANDs do not
+ * allow disabling the on-die ECC and we don't support such NANDs for
+ * now.
+ *
+ * This function also has the side effect of disabling on-die ECC if
+ * it had been left enabled by the firmware/bootloader.
+ */
+static int micron_supports_on_die_ecc(struct nand_chip *chip)
+{
+	u8 id[5];
+	int ret;
+
+	if (!chip->parameters.onfi)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	if (chip->bits_per_cell != 1)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	/*
+	 * We only support on-die ECC of 4/512 or 8/512
+	 */
+	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	/* 0x2 means on-die ECC is available. */
+	if (chip->id.len != 5 ||
+	    (chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	ret = micron_nand_on_die_ecc_setup(chip, true);
+	if (ret)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	ret = nand_readid_op(chip, 0, id, sizeof(id));
+	if (ret)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	if (!(id[4] & MICRON_ID_ECC_ENABLED))
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	ret = micron_nand_on_die_ecc_setup(chip, false);
+	if (ret)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	ret = nand_readid_op(chip, 0, id, sizeof(id));
+	if (ret)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	if (id[4] & MICRON_ID_ECC_ENABLED)
+		return MICRON_ON_DIE_MANDATORY;
+
+	/*
+	 * We only support on-die ECC of 4/512 or 8/512
+	 */
+	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
+		return MICRON_ON_DIE_UNSUPPORTED;
+
+	return MICRON_ON_DIE_SUPPORTED;
+}
+
+static int micron_nand_init(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct micron_nand *micron;
+	int ondie;
+	int ret;
+
+	micron = kzalloc(sizeof(*micron), GFP_KERNEL);
+	if (!micron)
+		return -ENOMEM;
+
+	nand_set_manufacturer_data(chip, micron);
+
+	ret = micron_nand_onfi_init(chip);
+	if (ret)
+		goto err_free_manuf_data;
+
+	if (mtd->writesize == 2048)
+		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+	ondie = micron_supports_on_die_ecc(chip);
+
+	if (ondie == MICRON_ON_DIE_MANDATORY &&
+	    chip->ecc.mode != NAND_ECC_ON_DIE) {
+		pr_err("On-die ECC forcefully enabled, not supported\n");
+		ret = -EINVAL;
+		goto err_free_manuf_data;
+	}
+
+	if (chip->ecc.mode == NAND_ECC_ON_DIE) {
+		if (ondie == MICRON_ON_DIE_UNSUPPORTED) {
+			pr_err("On-die ECC selected but not supported\n");
+			ret = -EINVAL;
+			goto err_free_manuf_data;
+		}
+
+		if (ondie == MICRON_ON_DIE_MANDATORY) {
+			micron->ecc.forced = true;
+			micron->ecc.enabled = true;
+		}
+
+		/*
+		 * In case of 4bit on-die ECC, we need a buffer to store a
+		 * page dumped in raw mode so that we can compare its content
+		 * to the same page after ECC correction happened and extract
+		 * the real number of bitflips from this comparison.
+		 * That's not needed for 8-bit ECC, because the status expose
+		 * a better approximation of the number of bitflips in a page.
+		 */
+		if (chip->ecc_strength_ds == 4) {
+			micron->ecc.rawbuf = kmalloc(mtd->writesize +
+						     mtd->oobsize,
+						     GFP_KERNEL);
+			if (!micron->ecc.rawbuf) {
+				ret = -ENOMEM;
+				goto err_free_manuf_data;
+			}
+		}
+
+		if (chip->ecc_strength_ds == 4)
+			mtd_set_ooblayout(mtd,
+					  &micron_nand_on_die_4_ooblayout_ops);
+		else
+			mtd_set_ooblayout(mtd,
+					  &micron_nand_on_die_8_ooblayout_ops);
+
+		chip->ecc.bytes = chip->ecc_strength_ds * 2;
+		chip->ecc.size = 512;
+		chip->ecc.strength = chip->ecc_strength_ds;
+		chip->ecc.algo = NAND_ECC_BCH;
+		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
+		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
+
+		if (ondie == MICRON_ON_DIE_MANDATORY) {
+			chip->ecc.read_page_raw = nand_read_page_raw_notsupp;
+			chip->ecc.write_page_raw = nand_write_page_raw_notsupp;
+		} else {
+			chip->ecc.read_page_raw = nand_read_page_raw;
+			chip->ecc.write_page_raw = nand_write_page_raw;
+		}
+	}
+
+	return 0;
+
+err_free_manuf_data:
+	kfree(micron->ecc.rawbuf);
+	kfree(micron);
+
+	return ret;
+}
+
+static void micron_nand_cleanup(struct nand_chip *chip)
+{
+	struct micron_nand *micron = nand_get_manufacturer_data(chip);
+
+	kfree(micron->ecc.rawbuf);
+	kfree(micron);
+}
+
+static void micron_fixup_onfi_param_page(struct nand_chip *chip,
+					 struct nand_onfi_params *p)
+{
+	/*
+	 * MT29F1G08ABAFAWP-ITE:F and possibly others report 00 00 for the
+	 * revision number field of the ONFI parameter page. Assume ONFI
+	 * version 1.0 if the revision number is 00 00.
+	 */
+	if (le16_to_cpu(p->revision) == 0)
+		p->revision = cpu_to_le16(ONFI_VERSION_1_0);
+}
+
+const struct nand_manufacturer_ops micron_nand_manuf_ops = {
+	.init = micron_nand_init,
+	.cleanup = micron_nand_cleanup,
+	.fixup_onfi_param_page = micron_fixup_onfi_param_page,
+};
diff --git a/drivers/mtd/nand/raw/nand_samsung.c b/drivers/mtd/nand/raw/nand_samsung.c
new file mode 100644
index 0000000..ef022f6
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_samsung.c
@@ -0,0 +1,134 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/rawnand.h>
+
+static void samsung_nand_decode_id(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) */
+	if (chip->id.len == 6 && !nand_is_slc(chip) &&
+	    chip->id.data[5] != 0x00) {
+		u8 extid = chip->id.data[3];
+
+		/* Get pagesize */
+		mtd->writesize = 2048 << (extid & 0x03);
+
+		extid >>= 2;
+
+		/* Get oobsize */
+		switch (((extid >> 2) & 0x4) | (extid & 0x3)) {
+		case 1:
+			mtd->oobsize = 128;
+			break;
+		case 2:
+			mtd->oobsize = 218;
+			break;
+		case 3:
+			mtd->oobsize = 400;
+			break;
+		case 4:
+			mtd->oobsize = 436;
+			break;
+		case 5:
+			mtd->oobsize = 512;
+			break;
+		case 6:
+			mtd->oobsize = 640;
+			break;
+		default:
+			/*
+			 * We should never reach this case, but if that
+			 * happens, this probably means Samsung decided to use
+			 * a different extended ID format, and we should find
+			 * a way to support it.
+			 */
+			WARN(1, "Invalid OOB size value");
+			break;
+		}
+
+		/* Get blocksize */
+		extid >>= 2;
+		mtd->erasesize = (128 * 1024) <<
+				 (((extid >> 1) & 0x04) | (extid & 0x03));
+
+		/* Extract ECC requirements from 5th id byte*/
+		extid = (chip->id.data[4] >> 4) & 0x07;
+		if (extid < 5) {
+			chip->ecc_step_ds = 512;
+			chip->ecc_strength_ds = 1 << extid;
+		} else {
+			chip->ecc_step_ds = 1024;
+			switch (extid) {
+			case 5:
+				chip->ecc_strength_ds = 24;
+				break;
+			case 6:
+				chip->ecc_strength_ds = 40;
+				break;
+			case 7:
+				chip->ecc_strength_ds = 60;
+				break;
+			default:
+				WARN(1, "Could not decode ECC info");
+				chip->ecc_step_ds = 0;
+			}
+		}
+	} else {
+		nand_decode_ext_id(chip);
+
+		if (nand_is_slc(chip)) {
+			switch (chip->id.data[1]) {
+			/* K9F4G08U0D-S[I|C]B0(T00) */
+			case 0xDC:
+				chip->ecc_step_ds = 512;
+				chip->ecc_strength_ds = 1;
+				break;
+
+			/* K9F1G08U0E 21nm chips do not support subpage write */
+			case 0xF1:
+				if (chip->id.len > 4 &&
+				    (chip->id.data[4] & GENMASK(1, 0)) == 0x1)
+					chip->options |= NAND_NO_SUBPAGE_WRITE;
+				break;
+			default:
+				break;
+			}
+		}
+	}
+}
+
+static int samsung_nand_init(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (mtd->writesize > 512)
+		chip->options |= NAND_SAMSUNG_LP_OPTIONS;
+
+	if (!nand_is_slc(chip))
+		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
+	else
+		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+	return 0;
+}
+
+const struct nand_manufacturer_ops samsung_nand_manuf_ops = {
+	.detect = samsung_nand_decode_id,
+	.init = samsung_nand_init,
+};
diff --git a/drivers/mtd/nand/raw/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c
new file mode 100644
index 0000000..ebc7b5f
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_timings.c
@@ -0,0 +1,342 @@
+/*
+ *  Copyright (C) 2014 Free Electrons
+ *
+ *  Author: Boris BREZILLON <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/err.h>
+#include <linux/export.h>
+#include <linux/mtd/rawnand.h>
+
+#define ONFI_DYN_TIMING_MAX U16_MAX
+
+static const struct nand_data_interface onfi_sdr_timings[] = {
+	/* Mode 0 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 20000,
+			.tALS_min = 50000,
+			.tAR_min = 25000,
+			.tCEA_max = 100000,
+			.tCEH_min = 20000,
+			.tCH_min = 20000,
+			.tCHZ_max = 100000,
+			.tCLH_min = 20000,
+			.tCLR_min = 20000,
+			.tCLS_min = 50000,
+			.tCOH_min = 0,
+			.tCS_min = 70000,
+			.tDH_min = 20000,
+			.tDS_min = 40000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 10000,
+			.tITC_max = 1000000,
+			.tRC_min = 100000,
+			.tREA_max = 40000,
+			.tREH_min = 30000,
+			.tRHOH_min = 0,
+			.tRHW_min = 200000,
+			.tRHZ_max = 200000,
+			.tRLOH_min = 0,
+			.tRP_min = 50000,
+			.tRR_min = 40000,
+			.tRST_max = 250000000000ULL,
+			.tWB_max = 200000,
+			.tWC_min = 100000,
+			.tWH_min = 30000,
+			.tWHR_min = 120000,
+			.tWP_min = 50000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 1 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 10000,
+			.tALS_min = 25000,
+			.tAR_min = 10000,
+			.tCEA_max = 45000,
+			.tCEH_min = 20000,
+			.tCH_min = 10000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 10000,
+			.tCLR_min = 10000,
+			.tCLS_min = 25000,
+			.tCOH_min = 15000,
+			.tCS_min = 35000,
+			.tDH_min = 10000,
+			.tDS_min = 20000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 50000,
+			.tREA_max = 30000,
+			.tREH_min = 15000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRP_min = 25000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 45000,
+			.tWH_min = 15000,
+			.tWHR_min = 80000,
+			.tWP_min = 25000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 2 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 10000,
+			.tALS_min = 15000,
+			.tAR_min = 10000,
+			.tCEA_max = 30000,
+			.tCEH_min = 20000,
+			.tCH_min = 10000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 10000,
+			.tCLR_min = 10000,
+			.tCLS_min = 15000,
+			.tCOH_min = 15000,
+			.tCS_min = 25000,
+			.tDH_min = 5000,
+			.tDS_min = 15000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 35000,
+			.tREA_max = 25000,
+			.tREH_min = 15000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tRP_min = 17000,
+			.tWC_min = 35000,
+			.tWH_min = 15000,
+			.tWHR_min = 80000,
+			.tWP_min = 17000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 3 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 50000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 25000,
+			.tDH_min = 5000,
+			.tDS_min = 10000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 30000,
+			.tREA_max = 20000,
+			.tREH_min = 10000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 0,
+			.tRP_min = 15000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 30000,
+			.tWH_min = 10000,
+			.tWHR_min = 80000,
+			.tWP_min = 15000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 4 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 30000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 20000,
+			.tDH_min = 5000,
+			.tDS_min = 10000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 25000,
+			.tREA_max = 20000,
+			.tREH_min = 10000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 5000,
+			.tRP_min = 12000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 25000,
+			.tWH_min = 10000,
+			.tWHR_min = 80000,
+			.tWP_min = 12000,
+			.tWW_min = 100000,
+		},
+	},
+	/* Mode 5 */
+	{
+		.type = NAND_SDR_IFACE,
+		.timings.sdr = {
+			.tCCS_min = 500000,
+			.tR_max = 200000000,
+			.tADL_min = 400000,
+			.tALH_min = 5000,
+			.tALS_min = 10000,
+			.tAR_min = 10000,
+			.tCEA_max = 25000,
+			.tCEH_min = 20000,
+			.tCH_min = 5000,
+			.tCHZ_max = 30000,
+			.tCLH_min = 5000,
+			.tCLR_min = 10000,
+			.tCLS_min = 10000,
+			.tCOH_min = 15000,
+			.tCS_min = 15000,
+			.tDH_min = 5000,
+			.tDS_min = 7000,
+			.tFEAT_max = 1000000,
+			.tIR_min = 0,
+			.tITC_max = 1000000,
+			.tRC_min = 20000,
+			.tREA_max = 16000,
+			.tREH_min = 7000,
+			.tRHOH_min = 15000,
+			.tRHW_min = 100000,
+			.tRHZ_max = 100000,
+			.tRLOH_min = 5000,
+			.tRP_min = 10000,
+			.tRR_min = 20000,
+			.tRST_max = 500000000,
+			.tWB_max = 100000,
+			.tWC_min = 20000,
+			.tWH_min = 7000,
+			.tWHR_min = 80000,
+			.tWP_min = 10000,
+			.tWW_min = 100000,
+		},
+	},
+};
+
+/**
+ * onfi_async_timing_mode_to_sdr_timings - [NAND Interface] Retrieve NAND
+ * timings according to the given ONFI timing mode
+ * @mode: ONFI timing mode
+ */
+const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode)
+{
+	if (mode < 0 || mode >= ARRAY_SIZE(onfi_sdr_timings))
+		return ERR_PTR(-EINVAL);
+
+	return &onfi_sdr_timings[mode].timings.sdr;
+}
+EXPORT_SYMBOL(onfi_async_timing_mode_to_sdr_timings);
+
+/**
+ * onfi_fill_data_interface - [NAND Interface] Initialize a data interface from
+ * given ONFI mode
+ * @mode: The ONFI timing mode
+ */
+int onfi_fill_data_interface(struct nand_chip *chip,
+			     enum nand_data_interface_type type,
+			     int timing_mode)
+{
+	struct nand_data_interface *iface = &chip->data_interface;
+	struct onfi_params *onfi = chip->parameters.onfi;
+
+	if (type != NAND_SDR_IFACE)
+		return -EINVAL;
+
+	if (timing_mode < 0 || timing_mode >= ARRAY_SIZE(onfi_sdr_timings))
+		return -EINVAL;
+
+	*iface = onfi_sdr_timings[timing_mode];
+
+	/*
+	 * Initialize timings that cannot be deduced from timing mode:
+	 * tPROG, tBERS, tR and tCCS.
+	 * These information are part of the ONFI parameter page.
+	 */
+	if (onfi) {
+		struct nand_sdr_timings *timings = &iface->timings.sdr;
+
+		/* microseconds -> picoseconds */
+		timings->tPROG_max = 1000000ULL * onfi->tPROG;
+		timings->tBERS_max = 1000000ULL * onfi->tBERS;
+		timings->tR_max = 1000000ULL * onfi->tR;
+
+		/* nanoseconds -> picoseconds */
+		timings->tCCS_min = 1000UL * onfi->tCCS;
+	} else {
+		struct nand_sdr_timings *timings = &iface->timings.sdr;
+		/*
+		 * For non-ONFI chips we use the highest possible value for
+		 * tPROG and tBERS. tR and tCCS will take the default values
+		 * precised in the ONFI specification for timing mode 0,
+		 * respectively 200us and 500ns.
+		 */
+
+		/* microseconds -> picoseconds */
+		timings->tPROG_max = 1000000ULL * ONFI_DYN_TIMING_MAX;
+		timings->tBERS_max = 1000000ULL * ONFI_DYN_TIMING_MAX;
+		timings->tR_max = 1000000ULL * 200000000ULL;
+
+		/* nanoseconds -> picoseconds */
+		timings->tCCS_min = 1000UL * 500000;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(onfi_fill_data_interface);
diff --git a/drivers/mtd/nand/raw/nand_toshiba.c b/drivers/mtd/nand/raw/nand_toshiba.c
new file mode 100644
index 0000000..ab43f02
--- /dev/null
+++ b/drivers/mtd/nand/raw/nand_toshiba.c
@@ -0,0 +1,77 @@
+/*
+ * Copyright (C) 2017 Free Electrons
+ * Copyright (C) 2017 NextThing Co
+ *
+ * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/mtd/rawnand.h>
+
+static void toshiba_nand_decode_id(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	nand_decode_ext_id(chip);
+
+	/*
+	 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
+	 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
+	 * follows:
+	 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
+	 *                         110b -> 24nm
+	 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
+	 */
+	if (chip->id.len >= 6 && nand_is_slc(chip) &&
+	    (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ &&
+	    !(chip->id.data[4] & 0x80) /* !BENAND */)
+		mtd->oobsize = 32 * mtd->writesize >> 9;
+
+	/*
+	 * Extract ECC requirements from 6th id byte.
+	 * For Toshiba SLC, ecc requrements are as follows:
+	 *  - 43nm: 1 bit ECC for each 512Byte is required.
+	 *  - 32nm: 4 bit ECC for each 512Byte is required.
+	 *  - 24nm: 8 bit ECC for each 512Byte is required.
+	 */
+	if (chip->id.len >= 6 && nand_is_slc(chip)) {
+		chip->ecc_step_ds = 512;
+		switch (chip->id.data[5] & 0x7) {
+		case 0x4:
+			chip->ecc_strength_ds = 1;
+			break;
+		case 0x5:
+			chip->ecc_strength_ds = 4;
+			break;
+		case 0x6:
+			chip->ecc_strength_ds = 8;
+			break;
+		default:
+			WARN(1, "Could not get ECC info");
+			chip->ecc_step_ds = 0;
+			break;
+		}
+	}
+}
+
+static int toshiba_nand_init(struct nand_chip *chip)
+{
+	if (nand_is_slc(chip))
+		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
+
+	return 0;
+}
+
+const struct nand_manufacturer_ops toshiba_nand_manuf_ops = {
+	.detect = toshiba_nand_decode_id,
+	.init = toshiba_nand_init,
+};
diff --git a/drivers/mtd/nand/raw/nandsim.c b/drivers/mtd/nand/raw/nandsim.c
new file mode 100644
index 0000000..71ac034
--- /dev/null
+++ b/drivers/mtd/nand/raw/nandsim.c
@@ -0,0 +1,2400 @@
+/*
+ * NAND flash simulator.
+ *
+ * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
+ *
+ * Copyright (C) 2004 Nokia Corporation
+ *
+ * Note: NS means "NAND Simulator".
+ * Note: Input means input TO flash chip, output means output FROM chip.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2, or (at your option) any later
+ * version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
+ * Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
+ */
+
+#define pr_fmt(fmt)  "[nandsim]" fmt
+
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/vmalloc.h>
+#include <linux/math64.h>
+#include <linux/slab.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_bch.h>
+#include <linux/mtd/partitions.h>
+#include <linux/delay.h>
+#include <linux/list.h>
+#include <linux/random.h>
+#include <linux/sched.h>
+#include <linux/sched/mm.h>
+#include <linux/fs.h>
+#include <linux/pagemap.h>
+#include <linux/seq_file.h>
+#include <linux/debugfs.h>
+
+/* Default simulator parameters values */
+#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
+    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
+    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
+    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
+#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
+#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
+#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
+#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
+#endif
+
+#ifndef CONFIG_NANDSIM_ACCESS_DELAY
+#define CONFIG_NANDSIM_ACCESS_DELAY 25
+#endif
+#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
+#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
+#endif
+#ifndef CONFIG_NANDSIM_ERASE_DELAY
+#define CONFIG_NANDSIM_ERASE_DELAY 2
+#endif
+#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
+#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
+#endif
+#ifndef CONFIG_NANDSIM_INPUT_CYCLE
+#define CONFIG_NANDSIM_INPUT_CYCLE  50
+#endif
+#ifndef CONFIG_NANDSIM_BUS_WIDTH
+#define CONFIG_NANDSIM_BUS_WIDTH  8
+#endif
+#ifndef CONFIG_NANDSIM_DO_DELAYS
+#define CONFIG_NANDSIM_DO_DELAYS  0
+#endif
+#ifndef CONFIG_NANDSIM_LOG
+#define CONFIG_NANDSIM_LOG        0
+#endif
+#ifndef CONFIG_NANDSIM_DBG
+#define CONFIG_NANDSIM_DBG        0
+#endif
+#ifndef CONFIG_NANDSIM_MAX_PARTS
+#define CONFIG_NANDSIM_MAX_PARTS  32
+#endif
+
+static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
+static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
+static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
+static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
+static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
+static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
+static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
+static uint log            = CONFIG_NANDSIM_LOG;
+static uint dbg            = CONFIG_NANDSIM_DBG;
+static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
+static unsigned int parts_num;
+static char *badblocks = NULL;
+static char *weakblocks = NULL;
+static char *weakpages = NULL;
+static unsigned int bitflips = 0;
+static char *gravepages = NULL;
+static unsigned int overridesize = 0;
+static char *cache_file = NULL;
+static unsigned int bbt;
+static unsigned int bch;
+static u_char id_bytes[8] = {
+	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
+	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
+	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
+	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
+	[4 ... 7] = 0xFF,
+};
+
+module_param_array(id_bytes, byte, NULL, 0400);
+module_param_named(first_id_byte, id_bytes[0], byte, 0400);
+module_param_named(second_id_byte, id_bytes[1], byte, 0400);
+module_param_named(third_id_byte, id_bytes[2], byte, 0400);
+module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
+module_param(access_delay,   uint, 0400);
+module_param(programm_delay, uint, 0400);
+module_param(erase_delay,    uint, 0400);
+module_param(output_cycle,   uint, 0400);
+module_param(input_cycle,    uint, 0400);
+module_param(bus_width,      uint, 0400);
+module_param(do_delays,      uint, 0400);
+module_param(log,            uint, 0400);
+module_param(dbg,            uint, 0400);
+module_param_array(parts, ulong, &parts_num, 0400);
+module_param(badblocks,      charp, 0400);
+module_param(weakblocks,     charp, 0400);
+module_param(weakpages,      charp, 0400);
+module_param(bitflips,       uint, 0400);
+module_param(gravepages,     charp, 0400);
+module_param(overridesize,   uint, 0400);
+module_param(cache_file,     charp, 0400);
+module_param(bbt,	     uint, 0400);
+module_param(bch,	     uint, 0400);
+
+MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
+MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
+MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
+MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
+MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
+MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
+MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
+MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
+MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
+MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
+MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
+MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
+MODULE_PARM_DESC(log,            "Perform logging if not zero");
+MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
+MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
+/* Page and erase block positions for the following parameters are independent of any partitions */
+MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
+MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
+				 " separated by commas e.g. 113:2 means eb 113"
+				 " can be erased only twice before failing");
+MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
+				 " separated by commas e.g. 1401:2 means page 1401"
+				 " can be written only twice before failing");
+MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
+MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
+				 " separated by commas e.g. 1401:2 means page 1401"
+				 " can be read only twice before failing");
+MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
+				 "The size is specified in erase blocks and as the exponent of a power of two"
+				 " e.g. 5 means a size of 32 erase blocks");
+MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
+MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
+MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
+				 "be correctable in 512-byte blocks");
+
+/* The largest possible page size */
+#define NS_LARGEST_PAGE_SIZE	4096
+
+/* Simulator's output macros (logging, debugging, warning, error) */
+#define NS_LOG(args...) \
+	do { if (log) pr_debug(" log: " args); } while(0)
+#define NS_DBG(args...) \
+	do { if (dbg) pr_debug(" debug: " args); } while(0)
+#define NS_WARN(args...) \
+	do { pr_warn(" warning: " args); } while(0)
+#define NS_ERR(args...) \
+	do { pr_err(" error: " args); } while(0)
+#define NS_INFO(args...) \
+	do { pr_info(" " args); } while(0)
+
+/* Busy-wait delay macros (microseconds, milliseconds) */
+#define NS_UDELAY(us) \
+        do { if (do_delays) udelay(us); } while(0)
+#define NS_MDELAY(us) \
+        do { if (do_delays) mdelay(us); } while(0)
+
+/* Is the nandsim structure initialized ? */
+#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
+
+/* Good operation completion status */
+#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
+
+/* Operation failed completion status */
+#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
+
+/* Calculate the page offset in flash RAM image by (row, column) address */
+#define NS_RAW_OFFSET(ns) \
+	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
+
+/* Calculate the OOB offset in flash RAM image by (row, column) address */
+#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
+
+/* After a command is input, the simulator goes to one of the following states */
+#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
+#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
+#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
+#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
+#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
+#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
+#define STATE_CMD_STATUS       0x00000007 /* read status */
+#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
+#define STATE_CMD_READID       0x0000000A /* read ID */
+#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
+#define STATE_CMD_RESET        0x0000000C /* reset */
+#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
+#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
+#define STATE_CMD_MASK         0x0000000F /* command states mask */
+
+/* After an address is input, the simulator goes to one of these states */
+#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
+#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
+#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
+#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
+#define STATE_ADDR_MASK        0x00000070 /* address states mask */
+
+/* During data input/output the simulator is in these states */
+#define STATE_DATAIN           0x00000100 /* waiting for data input */
+#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
+
+#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
+#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
+#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
+#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
+
+/* Previous operation is done, ready to accept new requests */
+#define STATE_READY            0x00000000
+
+/* This state is used to mark that the next state isn't known yet */
+#define STATE_UNKNOWN          0x10000000
+
+/* Simulator's actions bit masks */
+#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
+#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
+#define ACTION_SECERASE  0x00300000 /* erase sector */
+#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
+#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
+#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
+#define ACTION_MASK      0x00700000 /* action mask */
+
+#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
+#define NS_OPER_STATES   6  /* Maximum number of states in operation */
+
+#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
+#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
+#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
+#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
+#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
+#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
+#define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
+
+/* Remove action bits from state */
+#define NS_STATE(x) ((x) & ~ACTION_MASK)
+
+/*
+ * Maximum previous states which need to be saved. Currently saving is
+ * only needed for page program operation with preceded read command
+ * (which is only valid for 512-byte pages).
+ */
+#define NS_MAX_PREVSTATES 1
+
+/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
+#define NS_MAX_HELD_PAGES 16
+
+/*
+ * A union to represent flash memory contents and flash buffer.
+ */
+union ns_mem {
+	u_char *byte;    /* for byte access */
+	uint16_t *word;  /* for 16-bit word access */
+};
+
+/*
+ * The structure which describes all the internal simulator data.
+ */
+struct nandsim {
+	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
+	unsigned int nbparts;
+
+	uint busw;              /* flash chip bus width (8 or 16) */
+	u_char ids[8];          /* chip's ID bytes */
+	uint32_t options;       /* chip's characteristic bits */
+	uint32_t state;         /* current chip state */
+	uint32_t nxstate;       /* next expected state */
+
+	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
+	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
+	uint16_t npstates;      /* number of previous states saved */
+	uint16_t stateidx;      /* current state index */
+
+	/* The simulated NAND flash pages array */
+	union ns_mem *pages;
+
+	/* Slab allocator for nand pages */
+	struct kmem_cache *nand_pages_slab;
+
+	/* Internal buffer of page + OOB size bytes */
+	union ns_mem buf;
+
+	/* NAND flash "geometry" */
+	struct {
+		uint64_t totsz;     /* total flash size, bytes */
+		uint32_t secsz;     /* flash sector (erase block) size, bytes */
+		uint pgsz;          /* NAND flash page size, bytes */
+		uint oobsz;         /* page OOB area size, bytes */
+		uint64_t totszoob;  /* total flash size including OOB, bytes */
+		uint pgszoob;       /* page size including OOB , bytes*/
+		uint secszoob;      /* sector size including OOB, bytes */
+		uint pgnum;         /* total number of pages */
+		uint pgsec;         /* number of pages per sector */
+		uint secshift;      /* bits number in sector size */
+		uint pgshift;       /* bits number in page size */
+		uint pgaddrbytes;   /* bytes per page address */
+		uint secaddrbytes;  /* bytes per sector address */
+		uint idbytes;       /* the number ID bytes that this chip outputs */
+	} geom;
+
+	/* NAND flash internal registers */
+	struct {
+		unsigned command; /* the command register */
+		u_char   status;  /* the status register */
+		uint     row;     /* the page number */
+		uint     column;  /* the offset within page */
+		uint     count;   /* internal counter */
+		uint     num;     /* number of bytes which must be processed */
+		uint     off;     /* fixed page offset */
+	} regs;
+
+	/* NAND flash lines state */
+        struct {
+                int ce;  /* chip Enable */
+                int cle; /* command Latch Enable */
+                int ale; /* address Latch Enable */
+                int wp;  /* write Protect */
+        } lines;
+
+	/* Fields needed when using a cache file */
+	struct file *cfile; /* Open file */
+	unsigned long *pages_written; /* Which pages have been written */
+	void *file_buf;
+	struct page *held_pages[NS_MAX_HELD_PAGES];
+	int held_cnt;
+};
+
+/*
+ * Operations array. To perform any operation the simulator must pass
+ * through the correspondent states chain.
+ */
+static struct nandsim_operations {
+	uint32_t reqopts;  /* options which are required to perform the operation */
+	uint32_t states[NS_OPER_STATES]; /* operation's states */
+} ops[NS_OPER_NUM] = {
+	/* Read page + OOB from the beginning */
+	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
+			STATE_DATAOUT, STATE_READY}},
+	/* Read page + OOB from the second half */
+	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
+			STATE_DATAOUT, STATE_READY}},
+	/* Read OOB */
+	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
+			STATE_DATAOUT, STATE_READY}},
+	/* Program page starting from the beginning */
+	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
+			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Program page starting from the beginning */
+	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
+			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Program page starting from the second half */
+	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
+			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Program OOB */
+	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
+			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+	/* Erase sector */
+	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
+	/* Read status */
+	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
+	/* Read ID */
+	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
+	/* Large page devices read page */
+	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
+			       STATE_DATAOUT, STATE_READY}},
+	/* Large page devices random page read */
+	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
+			       STATE_DATAOUT, STATE_READY}},
+};
+
+struct weak_block {
+	struct list_head list;
+	unsigned int erase_block_no;
+	unsigned int max_erases;
+	unsigned int erases_done;
+};
+
+static LIST_HEAD(weak_blocks);
+
+struct weak_page {
+	struct list_head list;
+	unsigned int page_no;
+	unsigned int max_writes;
+	unsigned int writes_done;
+};
+
+static LIST_HEAD(weak_pages);
+
+struct grave_page {
+	struct list_head list;
+	unsigned int page_no;
+	unsigned int max_reads;
+	unsigned int reads_done;
+};
+
+static LIST_HEAD(grave_pages);
+
+static unsigned long *erase_block_wear = NULL;
+static unsigned int wear_eb_count = 0;
+static unsigned long total_wear = 0;
+
+/* MTD structure for NAND controller */
+static struct mtd_info *nsmtd;
+
+static int nandsim_debugfs_show(struct seq_file *m, void *private)
+{
+	unsigned long wmin = -1, wmax = 0, avg;
+	unsigned long deciles[10], decile_max[10], tot = 0;
+	unsigned int i;
+
+	/* Calc wear stats */
+	for (i = 0; i < wear_eb_count; ++i) {
+		unsigned long wear = erase_block_wear[i];
+		if (wear < wmin)
+			wmin = wear;
+		if (wear > wmax)
+			wmax = wear;
+		tot += wear;
+	}
+
+	for (i = 0; i < 9; ++i) {
+		deciles[i] = 0;
+		decile_max[i] = (wmax * (i + 1) + 5) / 10;
+	}
+	deciles[9] = 0;
+	decile_max[9] = wmax;
+	for (i = 0; i < wear_eb_count; ++i) {
+		int d;
+		unsigned long wear = erase_block_wear[i];
+		for (d = 0; d < 10; ++d)
+			if (wear <= decile_max[d]) {
+				deciles[d] += 1;
+				break;
+			}
+	}
+	avg = tot / wear_eb_count;
+
+	/* Output wear report */
+	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
+	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
+	seq_printf(m, "Average number of erases: %lu\n", avg);
+	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
+	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
+	for (i = 0; i < 10; ++i) {
+		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
+		if (from > decile_max[i])
+			continue;
+		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
+			from,
+			decile_max[i],
+			deciles[i]);
+	}
+
+	return 0;
+}
+
+static int nandsim_debugfs_open(struct inode *inode, struct file *file)
+{
+	return single_open(file, nandsim_debugfs_show, inode->i_private);
+}
+
+static const struct file_operations dfs_fops = {
+	.open		= nandsim_debugfs_open,
+	.read		= seq_read,
+	.llseek		= seq_lseek,
+	.release	= single_release,
+};
+
+/**
+ * nandsim_debugfs_create - initialize debugfs
+ * @dev: nandsim device description object
+ *
+ * This function creates all debugfs files for UBI device @ubi. Returns zero in
+ * case of success and a negative error code in case of failure.
+ */
+static int nandsim_debugfs_create(struct nandsim *dev)
+{
+	struct dentry *root = nsmtd->dbg.dfs_dir;
+	struct dentry *dent;
+
+	/*
+	 * Just skip debugfs initialization when the debugfs directory is
+	 * missing.
+	 */
+	if (IS_ERR_OR_NULL(root)) {
+		if (IS_ENABLED(CONFIG_DEBUG_FS) &&
+		    !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
+			NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
+		return 0;
+	}
+
+	dent = debugfs_create_file("nandsim_wear_report", S_IRUSR,
+				   root, dev, &dfs_fops);
+	if (IS_ERR_OR_NULL(dent)) {
+		NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n");
+		return -1;
+	}
+
+	return 0;
+}
+
+/*
+ * Allocate array of page pointers, create slab allocation for an array
+ * and initialize the array by NULL pointers.
+ *
+ * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
+ */
+static int __init alloc_device(struct nandsim *ns)
+{
+	struct file *cfile;
+	int i, err;
+
+	if (cache_file) {
+		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
+		if (IS_ERR(cfile))
+			return PTR_ERR(cfile);
+		if (!(cfile->f_mode & FMODE_CAN_READ)) {
+			NS_ERR("alloc_device: cache file not readable\n");
+			err = -EINVAL;
+			goto err_close;
+		}
+		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
+			NS_ERR("alloc_device: cache file not writeable\n");
+			err = -EINVAL;
+			goto err_close;
+		}
+		ns->pages_written =
+			vzalloc(array_size(sizeof(unsigned long),
+					   BITS_TO_LONGS(ns->geom.pgnum)));
+		if (!ns->pages_written) {
+			NS_ERR("alloc_device: unable to allocate pages written array\n");
+			err = -ENOMEM;
+			goto err_close;
+		}
+		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
+		if (!ns->file_buf) {
+			NS_ERR("alloc_device: unable to allocate file buf\n");
+			err = -ENOMEM;
+			goto err_free;
+		}
+		ns->cfile = cfile;
+		return 0;
+	}
+
+	ns->pages = vmalloc(array_size(sizeof(union ns_mem), ns->geom.pgnum));
+	if (!ns->pages) {
+		NS_ERR("alloc_device: unable to allocate page array\n");
+		return -ENOMEM;
+	}
+	for (i = 0; i < ns->geom.pgnum; i++) {
+		ns->pages[i].byte = NULL;
+	}
+	ns->nand_pages_slab = kmem_cache_create("nandsim",
+						ns->geom.pgszoob, 0, 0, NULL);
+	if (!ns->nand_pages_slab) {
+		NS_ERR("cache_create: unable to create kmem_cache\n");
+		return -ENOMEM;
+	}
+
+	return 0;
+
+err_free:
+	vfree(ns->pages_written);
+err_close:
+	filp_close(cfile, NULL);
+	return err;
+}
+
+/*
+ * Free any allocated pages, and free the array of page pointers.
+ */
+static void free_device(struct nandsim *ns)
+{
+	int i;
+
+	if (ns->cfile) {
+		kfree(ns->file_buf);
+		vfree(ns->pages_written);
+		filp_close(ns->cfile, NULL);
+		return;
+	}
+
+	if (ns->pages) {
+		for (i = 0; i < ns->geom.pgnum; i++) {
+			if (ns->pages[i].byte)
+				kmem_cache_free(ns->nand_pages_slab,
+						ns->pages[i].byte);
+		}
+		kmem_cache_destroy(ns->nand_pages_slab);
+		vfree(ns->pages);
+	}
+}
+
+static char __init *get_partition_name(int i)
+{
+	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
+}
+
+/*
+ * Initialize the nandsim structure.
+ *
+ * RETURNS: 0 if success, -ERRNO if failure.
+ */
+static int __init init_nandsim(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nandsim   *ns   = nand_get_controller_data(chip);
+	int i, ret = 0;
+	uint64_t remains;
+	uint64_t next_offset;
+
+	if (NS_IS_INITIALIZED(ns)) {
+		NS_ERR("init_nandsim: nandsim is already initialized\n");
+		return -EIO;
+	}
+
+	/* Force mtd to not do delays */
+	chip->chip_delay = 0;
+
+	/* Initialize the NAND flash parameters */
+	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
+	ns->geom.totsz    = mtd->size;
+	ns->geom.pgsz     = mtd->writesize;
+	ns->geom.oobsz    = mtd->oobsize;
+	ns->geom.secsz    = mtd->erasesize;
+	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
+	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
+	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
+	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
+	ns->geom.pgshift  = chip->page_shift;
+	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
+	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
+	ns->options = 0;
+
+	if (ns->geom.pgsz == 512) {
+		ns->options |= OPT_PAGE512;
+		if (ns->busw == 8)
+			ns->options |= OPT_PAGE512_8BIT;
+	} else if (ns->geom.pgsz == 2048) {
+		ns->options |= OPT_PAGE2048;
+	} else if (ns->geom.pgsz == 4096) {
+		ns->options |= OPT_PAGE4096;
+	} else {
+		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
+		return -EIO;
+	}
+
+	if (ns->options & OPT_SMALLPAGE) {
+		if (ns->geom.totsz <= (32 << 20)) {
+			ns->geom.pgaddrbytes  = 3;
+			ns->geom.secaddrbytes = 2;
+		} else {
+			ns->geom.pgaddrbytes  = 4;
+			ns->geom.secaddrbytes = 3;
+		}
+	} else {
+		if (ns->geom.totsz <= (128 << 20)) {
+			ns->geom.pgaddrbytes  = 4;
+			ns->geom.secaddrbytes = 2;
+		} else {
+			ns->geom.pgaddrbytes  = 5;
+			ns->geom.secaddrbytes = 3;
+		}
+	}
+
+	/* Fill the partition_info structure */
+	if (parts_num > ARRAY_SIZE(ns->partitions)) {
+		NS_ERR("too many partitions.\n");
+		return -EINVAL;
+	}
+	remains = ns->geom.totsz;
+	next_offset = 0;
+	for (i = 0; i < parts_num; ++i) {
+		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
+
+		if (!part_sz || part_sz > remains) {
+			NS_ERR("bad partition size.\n");
+			return -EINVAL;
+		}
+		ns->partitions[i].name   = get_partition_name(i);
+		if (!ns->partitions[i].name) {
+			NS_ERR("unable to allocate memory.\n");
+			return -ENOMEM;
+		}
+		ns->partitions[i].offset = next_offset;
+		ns->partitions[i].size   = part_sz;
+		next_offset += ns->partitions[i].size;
+		remains -= ns->partitions[i].size;
+	}
+	ns->nbparts = parts_num;
+	if (remains) {
+		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
+			NS_ERR("too many partitions.\n");
+			return -EINVAL;
+		}
+		ns->partitions[i].name   = get_partition_name(i);
+		if (!ns->partitions[i].name) {
+			NS_ERR("unable to allocate memory.\n");
+			return -ENOMEM;
+		}
+		ns->partitions[i].offset = next_offset;
+		ns->partitions[i].size   = remains;
+		ns->nbparts += 1;
+	}
+
+	if (ns->busw == 16)
+		NS_WARN("16-bit flashes support wasn't tested\n");
+
+	printk("flash size: %llu MiB\n",
+			(unsigned long long)ns->geom.totsz >> 20);
+	printk("page size: %u bytes\n",         ns->geom.pgsz);
+	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
+	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
+	printk("pages number: %u\n",            ns->geom.pgnum);
+	printk("pages per sector: %u\n",        ns->geom.pgsec);
+	printk("bus width: %u\n",               ns->busw);
+	printk("bits in sector size: %u\n",     ns->geom.secshift);
+	printk("bits in page size: %u\n",       ns->geom.pgshift);
+	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
+	printk("flash size with OOB: %llu KiB\n",
+			(unsigned long long)ns->geom.totszoob >> 10);
+	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
+	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
+	printk("options: %#x\n",                ns->options);
+
+	if ((ret = alloc_device(ns)) != 0)
+		return ret;
+
+	/* Allocate / initialize the internal buffer */
+	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
+	if (!ns->buf.byte) {
+		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
+			ns->geom.pgszoob);
+		return -ENOMEM;
+	}
+	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
+
+	return 0;
+}
+
+/*
+ * Free the nandsim structure.
+ */
+static void free_nandsim(struct nandsim *ns)
+{
+	kfree(ns->buf.byte);
+	free_device(ns);
+
+	return;
+}
+
+static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
+{
+	char *w;
+	int zero_ok;
+	unsigned int erase_block_no;
+	loff_t offset;
+
+	if (!badblocks)
+		return 0;
+	w = badblocks;
+	do {
+		zero_ok = (*w == '0' ? 1 : 0);
+		erase_block_no = simple_strtoul(w, &w, 0);
+		if (!zero_ok && !erase_block_no) {
+			NS_ERR("invalid badblocks.\n");
+			return -EINVAL;
+		}
+		offset = (loff_t)erase_block_no * ns->geom.secsz;
+		if (mtd_block_markbad(mtd, offset)) {
+			NS_ERR("invalid badblocks.\n");
+			return -EINVAL;
+		}
+		if (*w == ',')
+			w += 1;
+	} while (*w);
+	return 0;
+}
+
+static int parse_weakblocks(void)
+{
+	char *w;
+	int zero_ok;
+	unsigned int erase_block_no;
+	unsigned int max_erases;
+	struct weak_block *wb;
+
+	if (!weakblocks)
+		return 0;
+	w = weakblocks;
+	do {
+		zero_ok = (*w == '0' ? 1 : 0);
+		erase_block_no = simple_strtoul(w, &w, 0);
+		if (!zero_ok && !erase_block_no) {
+			NS_ERR("invalid weakblocks.\n");
+			return -EINVAL;
+		}
+		max_erases = 3;
+		if (*w == ':') {
+			w += 1;
+			max_erases = simple_strtoul(w, &w, 0);
+		}
+		if (*w == ',')
+			w += 1;
+		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
+		if (!wb) {
+			NS_ERR("unable to allocate memory.\n");
+			return -ENOMEM;
+		}
+		wb->erase_block_no = erase_block_no;
+		wb->max_erases = max_erases;
+		list_add(&wb->list, &weak_blocks);
+	} while (*w);
+	return 0;
+}
+
+static int erase_error(unsigned int erase_block_no)
+{
+	struct weak_block *wb;
+
+	list_for_each_entry(wb, &weak_blocks, list)
+		if (wb->erase_block_no == erase_block_no) {
+			if (wb->erases_done >= wb->max_erases)
+				return 1;
+			wb->erases_done += 1;
+			return 0;
+		}
+	return 0;
+}
+
+static int parse_weakpages(void)
+{
+	char *w;
+	int zero_ok;
+	unsigned int page_no;
+	unsigned int max_writes;
+	struct weak_page *wp;
+
+	if (!weakpages)
+		return 0;
+	w = weakpages;
+	do {
+		zero_ok = (*w == '0' ? 1 : 0);
+		page_no = simple_strtoul(w, &w, 0);
+		if (!zero_ok && !page_no) {
+			NS_ERR("invalid weakpages.\n");
+			return -EINVAL;
+		}
+		max_writes = 3;
+		if (*w == ':') {
+			w += 1;
+			max_writes = simple_strtoul(w, &w, 0);
+		}
+		if (*w == ',')
+			w += 1;
+		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
+		if (!wp) {
+			NS_ERR("unable to allocate memory.\n");
+			return -ENOMEM;
+		}
+		wp->page_no = page_no;
+		wp->max_writes = max_writes;
+		list_add(&wp->list, &weak_pages);
+	} while (*w);
+	return 0;
+}
+
+static int write_error(unsigned int page_no)
+{
+	struct weak_page *wp;
+
+	list_for_each_entry(wp, &weak_pages, list)
+		if (wp->page_no == page_no) {
+			if (wp->writes_done >= wp->max_writes)
+				return 1;
+			wp->writes_done += 1;
+			return 0;
+		}
+	return 0;
+}
+
+static int parse_gravepages(void)
+{
+	char *g;
+	int zero_ok;
+	unsigned int page_no;
+	unsigned int max_reads;
+	struct grave_page *gp;
+
+	if (!gravepages)
+		return 0;
+	g = gravepages;
+	do {
+		zero_ok = (*g == '0' ? 1 : 0);
+		page_no = simple_strtoul(g, &g, 0);
+		if (!zero_ok && !page_no) {
+			NS_ERR("invalid gravepagess.\n");
+			return -EINVAL;
+		}
+		max_reads = 3;
+		if (*g == ':') {
+			g += 1;
+			max_reads = simple_strtoul(g, &g, 0);
+		}
+		if (*g == ',')
+			g += 1;
+		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
+		if (!gp) {
+			NS_ERR("unable to allocate memory.\n");
+			return -ENOMEM;
+		}
+		gp->page_no = page_no;
+		gp->max_reads = max_reads;
+		list_add(&gp->list, &grave_pages);
+	} while (*g);
+	return 0;
+}
+
+static int read_error(unsigned int page_no)
+{
+	struct grave_page *gp;
+
+	list_for_each_entry(gp, &grave_pages, list)
+		if (gp->page_no == page_no) {
+			if (gp->reads_done >= gp->max_reads)
+				return 1;
+			gp->reads_done += 1;
+			return 0;
+		}
+	return 0;
+}
+
+static void free_lists(void)
+{
+	struct list_head *pos, *n;
+	list_for_each_safe(pos, n, &weak_blocks) {
+		list_del(pos);
+		kfree(list_entry(pos, struct weak_block, list));
+	}
+	list_for_each_safe(pos, n, &weak_pages) {
+		list_del(pos);
+		kfree(list_entry(pos, struct weak_page, list));
+	}
+	list_for_each_safe(pos, n, &grave_pages) {
+		list_del(pos);
+		kfree(list_entry(pos, struct grave_page, list));
+	}
+	kfree(erase_block_wear);
+}
+
+static int setup_wear_reporting(struct mtd_info *mtd)
+{
+	size_t mem;
+
+	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
+	mem = wear_eb_count * sizeof(unsigned long);
+	if (mem / sizeof(unsigned long) != wear_eb_count) {
+		NS_ERR("Too many erase blocks for wear reporting\n");
+		return -ENOMEM;
+	}
+	erase_block_wear = kzalloc(mem, GFP_KERNEL);
+	if (!erase_block_wear) {
+		NS_ERR("Too many erase blocks for wear reporting\n");
+		return -ENOMEM;
+	}
+	return 0;
+}
+
+static void update_wear(unsigned int erase_block_no)
+{
+	if (!erase_block_wear)
+		return;
+	total_wear += 1;
+	/*
+	 * TODO: Notify this through a debugfs entry,
+	 * instead of showing an error message.
+	 */
+	if (total_wear == 0)
+		NS_ERR("Erase counter total overflow\n");
+	erase_block_wear[erase_block_no] += 1;
+	if (erase_block_wear[erase_block_no] == 0)
+		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
+}
+
+/*
+ * Returns the string representation of 'state' state.
+ */
+static char *get_state_name(uint32_t state)
+{
+	switch (NS_STATE(state)) {
+		case STATE_CMD_READ0:
+			return "STATE_CMD_READ0";
+		case STATE_CMD_READ1:
+			return "STATE_CMD_READ1";
+		case STATE_CMD_PAGEPROG:
+			return "STATE_CMD_PAGEPROG";
+		case STATE_CMD_READOOB:
+			return "STATE_CMD_READOOB";
+		case STATE_CMD_READSTART:
+			return "STATE_CMD_READSTART";
+		case STATE_CMD_ERASE1:
+			return "STATE_CMD_ERASE1";
+		case STATE_CMD_STATUS:
+			return "STATE_CMD_STATUS";
+		case STATE_CMD_SEQIN:
+			return "STATE_CMD_SEQIN";
+		case STATE_CMD_READID:
+			return "STATE_CMD_READID";
+		case STATE_CMD_ERASE2:
+			return "STATE_CMD_ERASE2";
+		case STATE_CMD_RESET:
+			return "STATE_CMD_RESET";
+		case STATE_CMD_RNDOUT:
+			return "STATE_CMD_RNDOUT";
+		case STATE_CMD_RNDOUTSTART:
+			return "STATE_CMD_RNDOUTSTART";
+		case STATE_ADDR_PAGE:
+			return "STATE_ADDR_PAGE";
+		case STATE_ADDR_SEC:
+			return "STATE_ADDR_SEC";
+		case STATE_ADDR_ZERO:
+			return "STATE_ADDR_ZERO";
+		case STATE_ADDR_COLUMN:
+			return "STATE_ADDR_COLUMN";
+		case STATE_DATAIN:
+			return "STATE_DATAIN";
+		case STATE_DATAOUT:
+			return "STATE_DATAOUT";
+		case STATE_DATAOUT_ID:
+			return "STATE_DATAOUT_ID";
+		case STATE_DATAOUT_STATUS:
+			return "STATE_DATAOUT_STATUS";
+		case STATE_READY:
+			return "STATE_READY";
+		case STATE_UNKNOWN:
+			return "STATE_UNKNOWN";
+	}
+
+	NS_ERR("get_state_name: unknown state, BUG\n");
+	return NULL;
+}
+
+/*
+ * Check if command is valid.
+ *
+ * RETURNS: 1 if wrong command, 0 if right.
+ */
+static int check_command(int cmd)
+{
+	switch (cmd) {
+
+	case NAND_CMD_READ0:
+	case NAND_CMD_READ1:
+	case NAND_CMD_READSTART:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_READOOB:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_READID:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_RESET:
+	case NAND_CMD_RNDOUT:
+	case NAND_CMD_RNDOUTSTART:
+		return 0;
+
+	default:
+		return 1;
+	}
+}
+
+/*
+ * Returns state after command is accepted by command number.
+ */
+static uint32_t get_state_by_command(unsigned command)
+{
+	switch (command) {
+		case NAND_CMD_READ0:
+			return STATE_CMD_READ0;
+		case NAND_CMD_READ1:
+			return STATE_CMD_READ1;
+		case NAND_CMD_PAGEPROG:
+			return STATE_CMD_PAGEPROG;
+		case NAND_CMD_READSTART:
+			return STATE_CMD_READSTART;
+		case NAND_CMD_READOOB:
+			return STATE_CMD_READOOB;
+		case NAND_CMD_ERASE1:
+			return STATE_CMD_ERASE1;
+		case NAND_CMD_STATUS:
+			return STATE_CMD_STATUS;
+		case NAND_CMD_SEQIN:
+			return STATE_CMD_SEQIN;
+		case NAND_CMD_READID:
+			return STATE_CMD_READID;
+		case NAND_CMD_ERASE2:
+			return STATE_CMD_ERASE2;
+		case NAND_CMD_RESET:
+			return STATE_CMD_RESET;
+		case NAND_CMD_RNDOUT:
+			return STATE_CMD_RNDOUT;
+		case NAND_CMD_RNDOUTSTART:
+			return STATE_CMD_RNDOUTSTART;
+	}
+
+	NS_ERR("get_state_by_command: unknown command, BUG\n");
+	return 0;
+}
+
+/*
+ * Move an address byte to the correspondent internal register.
+ */
+static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
+{
+	uint byte = (uint)bt;
+
+	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
+		ns->regs.column |= (byte << 8 * ns->regs.count);
+	else {
+		ns->regs.row |= (byte << 8 * (ns->regs.count -
+						ns->geom.pgaddrbytes +
+						ns->geom.secaddrbytes));
+	}
+
+	return;
+}
+
+/*
+ * Switch to STATE_READY state.
+ */
+static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
+{
+	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
+
+	ns->state       = STATE_READY;
+	ns->nxstate     = STATE_UNKNOWN;
+	ns->op          = NULL;
+	ns->npstates    = 0;
+	ns->stateidx    = 0;
+	ns->regs.num    = 0;
+	ns->regs.count  = 0;
+	ns->regs.off    = 0;
+	ns->regs.row    = 0;
+	ns->regs.column = 0;
+	ns->regs.status = status;
+}
+
+/*
+ * If the operation isn't known yet, try to find it in the global array
+ * of supported operations.
+ *
+ * Operation can be unknown because of the following.
+ *   1. New command was accepted and this is the first call to find the
+ *      correspondent states chain. In this case ns->npstates = 0;
+ *   2. There are several operations which begin with the same command(s)
+ *      (for example program from the second half and read from the
+ *      second half operations both begin with the READ1 command). In this
+ *      case the ns->pstates[] array contains previous states.
+ *
+ * Thus, the function tries to find operation containing the following
+ * states (if the 'flag' parameter is 0):
+ *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
+ *
+ * If (one and only one) matching operation is found, it is accepted (
+ * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
+ * zeroed).
+ *
+ * If there are several matches, the current state is pushed to the
+ * ns->pstates.
+ *
+ * The operation can be unknown only while commands are input to the chip.
+ * As soon as address command is accepted, the operation must be known.
+ * In such situation the function is called with 'flag' != 0, and the
+ * operation is searched using the following pattern:
+ *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
+ *
+ * It is supposed that this pattern must either match one operation or
+ * none. There can't be ambiguity in that case.
+ *
+ * If no matches found, the function does the following:
+ *   1. if there are saved states present, try to ignore them and search
+ *      again only using the last command. If nothing was found, switch
+ *      to the STATE_READY state.
+ *   2. if there are no saved states, switch to the STATE_READY state.
+ *
+ * RETURNS: -2 - no matched operations found.
+ *          -1 - several matches.
+ *           0 - operation is found.
+ */
+static int find_operation(struct nandsim *ns, uint32_t flag)
+{
+	int opsfound = 0;
+	int i, j, idx = 0;
+
+	for (i = 0; i < NS_OPER_NUM; i++) {
+
+		int found = 1;
+
+		if (!(ns->options & ops[i].reqopts))
+			/* Ignore operations we can't perform */
+			continue;
+
+		if (flag) {
+			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
+				continue;
+		} else {
+			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
+				continue;
+		}
+
+		for (j = 0; j < ns->npstates; j++)
+			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
+				&& (ns->options & ops[idx].reqopts)) {
+				found = 0;
+				break;
+			}
+
+		if (found) {
+			idx = i;
+			opsfound += 1;
+		}
+	}
+
+	if (opsfound == 1) {
+		/* Exact match */
+		ns->op = &ops[idx].states[0];
+		if (flag) {
+			/*
+			 * In this case the find_operation function was
+			 * called when address has just began input. But it isn't
+			 * yet fully input and the current state must
+			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
+			 * state must be the next state (ns->nxstate).
+			 */
+			ns->stateidx = ns->npstates - 1;
+		} else {
+			ns->stateidx = ns->npstates;
+		}
+		ns->npstates = 0;
+		ns->state = ns->op[ns->stateidx];
+		ns->nxstate = ns->op[ns->stateidx + 1];
+		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
+				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
+		return 0;
+	}
+
+	if (opsfound == 0) {
+		/* Nothing was found. Try to ignore previous commands (if any) and search again */
+		if (ns->npstates != 0) {
+			NS_DBG("find_operation: no operation found, try again with state %s\n",
+					get_state_name(ns->state));
+			ns->npstates = 0;
+			return find_operation(ns, 0);
+
+		}
+		NS_DBG("find_operation: no operations found\n");
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return -2;
+	}
+
+	if (flag) {
+		/* This shouldn't happen */
+		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
+		return -2;
+	}
+
+	NS_DBG("find_operation: there is still ambiguity\n");
+
+	ns->pstates[ns->npstates++] = ns->state;
+
+	return -1;
+}
+
+static void put_pages(struct nandsim *ns)
+{
+	int i;
+
+	for (i = 0; i < ns->held_cnt; i++)
+		put_page(ns->held_pages[i]);
+}
+
+/* Get page cache pages in advance to provide NOFS memory allocation */
+static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
+{
+	pgoff_t index, start_index, end_index;
+	struct page *page;
+	struct address_space *mapping = file->f_mapping;
+
+	start_index = pos >> PAGE_SHIFT;
+	end_index = (pos + count - 1) >> PAGE_SHIFT;
+	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
+		return -EINVAL;
+	ns->held_cnt = 0;
+	for (index = start_index; index <= end_index; index++) {
+		page = find_get_page(mapping, index);
+		if (page == NULL) {
+			page = find_or_create_page(mapping, index, GFP_NOFS);
+			if (page == NULL) {
+				write_inode_now(mapping->host, 1);
+				page = find_or_create_page(mapping, index, GFP_NOFS);
+			}
+			if (page == NULL) {
+				put_pages(ns);
+				return -ENOMEM;
+			}
+			unlock_page(page);
+		}
+		ns->held_pages[ns->held_cnt++] = page;
+	}
+	return 0;
+}
+
+static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
+{
+	ssize_t tx;
+	int err;
+	unsigned int noreclaim_flag;
+
+	err = get_pages(ns, file, count, pos);
+	if (err)
+		return err;
+	noreclaim_flag = memalloc_noreclaim_save();
+	tx = kernel_read(file, buf, count, &pos);
+	memalloc_noreclaim_restore(noreclaim_flag);
+	put_pages(ns);
+	return tx;
+}
+
+static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
+{
+	ssize_t tx;
+	int err;
+	unsigned int noreclaim_flag;
+
+	err = get_pages(ns, file, count, pos);
+	if (err)
+		return err;
+	noreclaim_flag = memalloc_noreclaim_save();
+	tx = kernel_write(file, buf, count, &pos);
+	memalloc_noreclaim_restore(noreclaim_flag);
+	put_pages(ns);
+	return tx;
+}
+
+/*
+ * Returns a pointer to the current page.
+ */
+static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
+{
+	return &(ns->pages[ns->regs.row]);
+}
+
+/*
+ * Retuns a pointer to the current byte, within the current page.
+ */
+static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
+{
+	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
+}
+
+static int do_read_error(struct nandsim *ns, int num)
+{
+	unsigned int page_no = ns->regs.row;
+
+	if (read_error(page_no)) {
+		prandom_bytes(ns->buf.byte, num);
+		NS_WARN("simulating read error in page %u\n", page_no);
+		return 1;
+	}
+	return 0;
+}
+
+static void do_bit_flips(struct nandsim *ns, int num)
+{
+	if (bitflips && prandom_u32() < (1 << 22)) {
+		int flips = 1;
+		if (bitflips > 1)
+			flips = (prandom_u32() % (int) bitflips) + 1;
+		while (flips--) {
+			int pos = prandom_u32() % (num * 8);
+			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
+			NS_WARN("read_page: flipping bit %d in page %d "
+				"reading from %d ecc: corrected=%u failed=%u\n",
+				pos, ns->regs.row, ns->regs.column + ns->regs.off,
+				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
+		}
+	}
+}
+
+/*
+ * Fill the NAND buffer with data read from the specified page.
+ */
+static void read_page(struct nandsim *ns, int num)
+{
+	union ns_mem *mypage;
+
+	if (ns->cfile) {
+		if (!test_bit(ns->regs.row, ns->pages_written)) {
+			NS_DBG("read_page: page %d not written\n", ns->regs.row);
+			memset(ns->buf.byte, 0xFF, num);
+		} else {
+			loff_t pos;
+			ssize_t tx;
+
+			NS_DBG("read_page: page %d written, reading from %d\n",
+				ns->regs.row, ns->regs.column + ns->regs.off);
+			if (do_read_error(ns, num))
+				return;
+			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
+			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
+			if (tx != num) {
+				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
+				return;
+			}
+			do_bit_flips(ns, num);
+		}
+		return;
+	}
+
+	mypage = NS_GET_PAGE(ns);
+	if (mypage->byte == NULL) {
+		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
+		memset(ns->buf.byte, 0xFF, num);
+	} else {
+		NS_DBG("read_page: page %d allocated, reading from %d\n",
+			ns->regs.row, ns->regs.column + ns->regs.off);
+		if (do_read_error(ns, num))
+			return;
+		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
+		do_bit_flips(ns, num);
+	}
+}
+
+/*
+ * Erase all pages in the specified sector.
+ */
+static void erase_sector(struct nandsim *ns)
+{
+	union ns_mem *mypage;
+	int i;
+
+	if (ns->cfile) {
+		for (i = 0; i < ns->geom.pgsec; i++)
+			if (__test_and_clear_bit(ns->regs.row + i,
+						 ns->pages_written)) {
+				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
+			}
+		return;
+	}
+
+	mypage = NS_GET_PAGE(ns);
+	for (i = 0; i < ns->geom.pgsec; i++) {
+		if (mypage->byte != NULL) {
+			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
+			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
+			mypage->byte = NULL;
+		}
+		mypage++;
+	}
+}
+
+/*
+ * Program the specified page with the contents from the NAND buffer.
+ */
+static int prog_page(struct nandsim *ns, int num)
+{
+	int i;
+	union ns_mem *mypage;
+	u_char *pg_off;
+
+	if (ns->cfile) {
+		loff_t off;
+		ssize_t tx;
+		int all;
+
+		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
+		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
+		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
+		if (!test_bit(ns->regs.row, ns->pages_written)) {
+			all = 1;
+			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
+		} else {
+			all = 0;
+			tx = read_file(ns, ns->cfile, pg_off, num, off);
+			if (tx != num) {
+				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
+				return -1;
+			}
+		}
+		for (i = 0; i < num; i++)
+			pg_off[i] &= ns->buf.byte[i];
+		if (all) {
+			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
+			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
+			if (tx != ns->geom.pgszoob) {
+				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
+				return -1;
+			}
+			__set_bit(ns->regs.row, ns->pages_written);
+		} else {
+			tx = write_file(ns, ns->cfile, pg_off, num, off);
+			if (tx != num) {
+				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
+				return -1;
+			}
+		}
+		return 0;
+	}
+
+	mypage = NS_GET_PAGE(ns);
+	if (mypage->byte == NULL) {
+		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
+		/*
+		 * We allocate memory with GFP_NOFS because a flash FS may
+		 * utilize this. If it is holding an FS lock, then gets here,
+		 * then kernel memory alloc runs writeback which goes to the FS
+		 * again and deadlocks. This was seen in practice.
+		 */
+		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
+		if (mypage->byte == NULL) {
+			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
+			return -1;
+		}
+		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
+	}
+
+	pg_off = NS_PAGE_BYTE_OFF(ns);
+	for (i = 0; i < num; i++)
+		pg_off[i] &= ns->buf.byte[i];
+
+	return 0;
+}
+
+/*
+ * If state has any action bit, perform this action.
+ *
+ * RETURNS: 0 if success, -1 if error.
+ */
+static int do_state_action(struct nandsim *ns, uint32_t action)
+{
+	int num;
+	int busdiv = ns->busw == 8 ? 1 : 2;
+	unsigned int erase_block_no, page_no;
+
+	action &= ACTION_MASK;
+
+	/* Check that page address input is correct */
+	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
+		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
+		return -1;
+	}
+
+	switch (action) {
+
+	case ACTION_CPY:
+		/*
+		 * Copy page data to the internal buffer.
+		 */
+
+		/* Column shouldn't be very large */
+		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
+			NS_ERR("do_state_action: column number is too large\n");
+			break;
+		}
+		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+		read_page(ns, num);
+
+		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
+			num, NS_RAW_OFFSET(ns) + ns->regs.off);
+
+		if (ns->regs.off == 0)
+			NS_LOG("read page %d\n", ns->regs.row);
+		else if (ns->regs.off < ns->geom.pgsz)
+			NS_LOG("read page %d (second half)\n", ns->regs.row);
+		else
+			NS_LOG("read OOB of page %d\n", ns->regs.row);
+
+		NS_UDELAY(access_delay);
+		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
+
+		break;
+
+	case ACTION_SECERASE:
+		/*
+		 * Erase sector.
+		 */
+
+		if (ns->lines.wp) {
+			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
+			return -1;
+		}
+
+		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
+			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
+			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
+			return -1;
+		}
+
+		ns->regs.row = (ns->regs.row <<
+				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
+		ns->regs.column = 0;
+
+		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
+
+		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
+				ns->regs.row, NS_RAW_OFFSET(ns));
+		NS_LOG("erase sector %u\n", erase_block_no);
+
+		erase_sector(ns);
+
+		NS_MDELAY(erase_delay);
+
+		if (erase_block_wear)
+			update_wear(erase_block_no);
+
+		if (erase_error(erase_block_no)) {
+			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
+			return -1;
+		}
+
+		break;
+
+	case ACTION_PRGPAGE:
+		/*
+		 * Program page - move internal buffer data to the page.
+		 */
+
+		if (ns->lines.wp) {
+			NS_WARN("do_state_action: device is write-protected, programm\n");
+			return -1;
+		}
+
+		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+		if (num != ns->regs.count) {
+			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
+					ns->regs.count, num);
+			return -1;
+		}
+
+		if (prog_page(ns, num) == -1)
+			return -1;
+
+		page_no = ns->regs.row;
+
+		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
+			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
+		NS_LOG("programm page %d\n", ns->regs.row);
+
+		NS_UDELAY(programm_delay);
+		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
+
+		if (write_error(page_no)) {
+			NS_WARN("simulating write failure in page %u\n", page_no);
+			return -1;
+		}
+
+		break;
+
+	case ACTION_ZEROOFF:
+		NS_DBG("do_state_action: set internal offset to 0\n");
+		ns->regs.off = 0;
+		break;
+
+	case ACTION_HALFOFF:
+		if (!(ns->options & OPT_PAGE512_8BIT)) {
+			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
+				"byte page size 8x chips\n");
+			return -1;
+		}
+		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
+		ns->regs.off = ns->geom.pgsz/2;
+		break;
+
+	case ACTION_OOBOFF:
+		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
+		ns->regs.off = ns->geom.pgsz;
+		break;
+
+	default:
+		NS_DBG("do_state_action: BUG! unknown action\n");
+	}
+
+	return 0;
+}
+
+/*
+ * Switch simulator's state.
+ */
+static void switch_state(struct nandsim *ns)
+{
+	if (ns->op) {
+		/*
+		 * The current operation have already been identified.
+		 * Just follow the states chain.
+		 */
+
+		ns->stateidx += 1;
+		ns->state = ns->nxstate;
+		ns->nxstate = ns->op[ns->stateidx + 1];
+
+		NS_DBG("switch_state: operation is known, switch to the next state, "
+			"state: %s, nxstate: %s\n",
+			get_state_name(ns->state), get_state_name(ns->nxstate));
+
+		/* See, whether we need to do some action */
+		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+
+	} else {
+		/*
+		 * We don't yet know which operation we perform.
+		 * Try to identify it.
+		 */
+
+		/*
+		 *  The only event causing the switch_state function to
+		 *  be called with yet unknown operation is new command.
+		 */
+		ns->state = get_state_by_command(ns->regs.command);
+
+		NS_DBG("switch_state: operation is unknown, try to find it\n");
+
+		if (find_operation(ns, 0) != 0)
+			return;
+
+		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+	}
+
+	/* For 16x devices column means the page offset in words */
+	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
+		NS_DBG("switch_state: double the column number for 16x device\n");
+		ns->regs.column <<= 1;
+	}
+
+	if (NS_STATE(ns->nxstate) == STATE_READY) {
+		/*
+		 * The current state is the last. Return to STATE_READY
+		 */
+
+		u_char status = NS_STATUS_OK(ns);
+
+		/* In case of data states, see if all bytes were input/output */
+		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
+			&& ns->regs.count != ns->regs.num) {
+			NS_WARN("switch_state: not all bytes were processed, %d left\n",
+					ns->regs.num - ns->regs.count);
+			status = NS_STATUS_FAILED(ns);
+		}
+
+		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
+
+		switch_to_ready_state(ns, status);
+
+		return;
+	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
+		/*
+		 * If the next state is data input/output, switch to it now
+		 */
+
+		ns->state      = ns->nxstate;
+		ns->nxstate    = ns->op[++ns->stateidx + 1];
+		ns->regs.num   = ns->regs.count = 0;
+
+		NS_DBG("switch_state: the next state is data I/O, switch, "
+			"state: %s, nxstate: %s\n",
+			get_state_name(ns->state), get_state_name(ns->nxstate));
+
+		/*
+		 * Set the internal register to the count of bytes which
+		 * are expected to be input or output
+		 */
+		switch (NS_STATE(ns->state)) {
+			case STATE_DATAIN:
+			case STATE_DATAOUT:
+				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+				break;
+
+			case STATE_DATAOUT_ID:
+				ns->regs.num = ns->geom.idbytes;
+				break;
+
+			case STATE_DATAOUT_STATUS:
+				ns->regs.count = ns->regs.num = 0;
+				break;
+
+			default:
+				NS_ERR("switch_state: BUG! unknown data state\n");
+		}
+
+	} else if (ns->nxstate & STATE_ADDR_MASK) {
+		/*
+		 * If the next state is address input, set the internal
+		 * register to the number of expected address bytes
+		 */
+
+		ns->regs.count = 0;
+
+		switch (NS_STATE(ns->nxstate)) {
+			case STATE_ADDR_PAGE:
+				ns->regs.num = ns->geom.pgaddrbytes;
+
+				break;
+			case STATE_ADDR_SEC:
+				ns->regs.num = ns->geom.secaddrbytes;
+				break;
+
+			case STATE_ADDR_ZERO:
+				ns->regs.num = 1;
+				break;
+
+			case STATE_ADDR_COLUMN:
+				/* Column address is always 2 bytes */
+				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
+				break;
+
+			default:
+				NS_ERR("switch_state: BUG! unknown address state\n");
+		}
+	} else {
+		/*
+		 * Just reset internal counters.
+		 */
+
+		ns->regs.num = 0;
+		ns->regs.count = 0;
+	}
+}
+
+static u_char ns_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nandsim *ns = nand_get_controller_data(chip);
+	u_char outb = 0x00;
+
+	/* Sanity and correctness checks */
+	if (!ns->lines.ce) {
+		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
+		return outb;
+	}
+	if (ns->lines.ale || ns->lines.cle) {
+		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
+		return outb;
+	}
+	if (!(ns->state & STATE_DATAOUT_MASK)) {
+		NS_WARN("read_byte: unexpected data output cycle, state is %s "
+			"return %#x\n", get_state_name(ns->state), (uint)outb);
+		return outb;
+	}
+
+	/* Status register may be read as many times as it is wanted */
+	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
+		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
+		return ns->regs.status;
+	}
+
+	/* Check if there is any data in the internal buffer which may be read */
+	if (ns->regs.count == ns->regs.num) {
+		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
+		return outb;
+	}
+
+	switch (NS_STATE(ns->state)) {
+		case STATE_DATAOUT:
+			if (ns->busw == 8) {
+				outb = ns->buf.byte[ns->regs.count];
+				ns->regs.count += 1;
+			} else {
+				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
+				ns->regs.count += 2;
+			}
+			break;
+		case STATE_DATAOUT_ID:
+			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
+			outb = ns->ids[ns->regs.count];
+			ns->regs.count += 1;
+			break;
+		default:
+			BUG();
+	}
+
+	if (ns->regs.count == ns->regs.num) {
+		NS_DBG("read_byte: all bytes were read\n");
+
+		if (NS_STATE(ns->nxstate) == STATE_READY)
+			switch_state(ns);
+	}
+
+	return outb;
+}
+
+static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nandsim *ns = nand_get_controller_data(chip);
+
+	/* Sanity and correctness checks */
+	if (!ns->lines.ce) {
+		NS_ERR("write_byte: chip is disabled, ignore write\n");
+		return;
+	}
+	if (ns->lines.ale && ns->lines.cle) {
+		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
+		return;
+	}
+
+	if (ns->lines.cle == 1) {
+		/*
+		 * The byte written is a command.
+		 */
+
+		if (byte == NAND_CMD_RESET) {
+			NS_LOG("reset chip\n");
+			switch_to_ready_state(ns, NS_STATUS_OK(ns));
+			return;
+		}
+
+		/* Check that the command byte is correct */
+		if (check_command(byte)) {
+			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
+			return;
+		}
+
+		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
+			|| NS_STATE(ns->state) == STATE_DATAOUT) {
+			int row = ns->regs.row;
+
+			switch_state(ns);
+			if (byte == NAND_CMD_RNDOUT)
+				ns->regs.row = row;
+		}
+
+		/* Check if chip is expecting command */
+		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
+			/* Do not warn if only 2 id bytes are read */
+			if (!(ns->regs.command == NAND_CMD_READID &&
+			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
+				/*
+				 * We are in situation when something else (not command)
+				 * was expected but command was input. In this case ignore
+				 * previous command(s)/state(s) and accept the last one.
+				 */
+				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
+					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
+			}
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		}
+
+		NS_DBG("command byte corresponding to %s state accepted\n",
+			get_state_name(get_state_by_command(byte)));
+		ns->regs.command = byte;
+		switch_state(ns);
+
+	} else if (ns->lines.ale == 1) {
+		/*
+		 * The byte written is an address.
+		 */
+
+		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
+
+			NS_DBG("write_byte: operation isn't known yet, identify it\n");
+
+			if (find_operation(ns, 1) < 0)
+				return;
+
+			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+				return;
+			}
+
+			ns->regs.count = 0;
+			switch (NS_STATE(ns->nxstate)) {
+				case STATE_ADDR_PAGE:
+					ns->regs.num = ns->geom.pgaddrbytes;
+					break;
+				case STATE_ADDR_SEC:
+					ns->regs.num = ns->geom.secaddrbytes;
+					break;
+				case STATE_ADDR_ZERO:
+					ns->regs.num = 1;
+					break;
+				default:
+					BUG();
+			}
+		}
+
+		/* Check that chip is expecting address */
+		if (!(ns->nxstate & STATE_ADDR_MASK)) {
+			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
+				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+
+		/* Check if this is expected byte */
+		if (ns->regs.count == ns->regs.num) {
+			NS_ERR("write_byte: no more address bytes expected\n");
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+
+		accept_addr_byte(ns, byte);
+
+		ns->regs.count += 1;
+
+		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
+				(uint)byte, ns->regs.count, ns->regs.num);
+
+		if (ns->regs.count == ns->regs.num) {
+			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
+			switch_state(ns);
+		}
+
+	} else {
+		/*
+		 * The byte written is an input data.
+		 */
+
+		/* Check that chip is expecting data input */
+		if (!(ns->state & STATE_DATAIN_MASK)) {
+			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
+				"switch to %s\n", (uint)byte,
+				get_state_name(ns->state), get_state_name(STATE_READY));
+			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+			return;
+		}
+
+		/* Check if this is expected byte */
+		if (ns->regs.count == ns->regs.num) {
+			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
+					ns->regs.num);
+			return;
+		}
+
+		if (ns->busw == 8) {
+			ns->buf.byte[ns->regs.count] = byte;
+			ns->regs.count += 1;
+		} else {
+			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
+			ns->regs.count += 2;
+		}
+	}
+
+	return;
+}
+
+static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nandsim *ns = nand_get_controller_data(chip);
+
+	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
+	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
+	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
+
+	if (cmd != NAND_CMD_NONE)
+		ns_nand_write_byte(mtd, cmd);
+}
+
+static int ns_device_ready(struct mtd_info *mtd)
+{
+	NS_DBG("device_ready\n");
+	return 1;
+}
+
+static uint16_t ns_nand_read_word(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	NS_DBG("read_word\n");
+
+	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
+}
+
+static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nandsim *ns = nand_get_controller_data(chip);
+
+	/* Check that chip is expecting data input */
+	if (!(ns->state & STATE_DATAIN_MASK)) {
+		NS_ERR("write_buf: data input isn't expected, state is %s, "
+			"switch to STATE_READY\n", get_state_name(ns->state));
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return;
+	}
+
+	/* Check if these are expected bytes */
+	if (ns->regs.count + len > ns->regs.num) {
+		NS_ERR("write_buf: too many input bytes\n");
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return;
+	}
+
+	memcpy(ns->buf.byte + ns->regs.count, buf, len);
+	ns->regs.count += len;
+
+	if (ns->regs.count == ns->regs.num) {
+		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
+	}
+}
+
+static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nandsim *ns = nand_get_controller_data(chip);
+
+	/* Sanity and correctness checks */
+	if (!ns->lines.ce) {
+		NS_ERR("read_buf: chip is disabled\n");
+		return;
+	}
+	if (ns->lines.ale || ns->lines.cle) {
+		NS_ERR("read_buf: ALE or CLE pin is high\n");
+		return;
+	}
+	if (!(ns->state & STATE_DATAOUT_MASK)) {
+		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
+			get_state_name(ns->state));
+		return;
+	}
+
+	if (NS_STATE(ns->state) != STATE_DATAOUT) {
+		int i;
+
+		for (i = 0; i < len; i++)
+			buf[i] = mtd_to_nand(mtd)->read_byte(mtd);
+
+		return;
+	}
+
+	/* Check if these are expected bytes */
+	if (ns->regs.count + len > ns->regs.num) {
+		NS_ERR("read_buf: too many bytes to read\n");
+		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+		return;
+	}
+
+	memcpy(buf, ns->buf.byte + ns->regs.count, len);
+	ns->regs.count += len;
+
+	if (ns->regs.count == ns->regs.num) {
+		if (NS_STATE(ns->nxstate) == STATE_READY)
+			switch_state(ns);
+	}
+
+	return;
+}
+
+static int ns_attach_chip(struct nand_chip *chip)
+{
+	unsigned int eccsteps, eccbytes;
+
+	if (!bch)
+		return 0;
+
+	if (!mtd_nand_has_bch()) {
+		NS_ERR("BCH ECC support is disabled\n");
+		return -EINVAL;
+	}
+
+	/* Use 512-byte ecc blocks */
+	eccsteps = nsmtd->writesize / 512;
+	eccbytes = ((bch * 13) + 7) / 8;
+
+	/* Do not bother supporting small page devices */
+	if (nsmtd->oobsize < 64 || !eccsteps) {
+		NS_ERR("BCH not available on small page devices\n");
+		return -EINVAL;
+	}
+
+	if (((eccbytes * eccsteps) + 2) > nsmtd->oobsize) {
+		NS_ERR("Invalid BCH value %u\n", bch);
+		return -EINVAL;
+	}
+
+	chip->ecc.mode = NAND_ECC_SOFT;
+	chip->ecc.algo = NAND_ECC_BCH;
+	chip->ecc.size = 512;
+	chip->ecc.strength = bch;
+	chip->ecc.bytes = eccbytes;
+
+	NS_INFO("Using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
+
+	return 0;
+}
+
+static const struct nand_controller_ops ns_controller_ops = {
+	.attach_chip = ns_attach_chip,
+};
+
+/*
+ * Module initialization function
+ */
+static int __init ns_init_module(void)
+{
+	struct nand_chip *chip;
+	struct nandsim *nand;
+	int retval = -ENOMEM, i;
+
+	if (bus_width != 8 && bus_width != 16) {
+		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
+		return -EINVAL;
+	}
+
+	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
+	chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim),
+		       GFP_KERNEL);
+	if (!chip) {
+		NS_ERR("unable to allocate core structures.\n");
+		return -ENOMEM;
+	}
+	nsmtd       = nand_to_mtd(chip);
+	nand        = (struct nandsim *)(chip + 1);
+	nand_set_controller_data(chip, (void *)nand);
+
+	/*
+	 * Register simulator's callbacks.
+	 */
+	chip->cmd_ctrl	 = ns_hwcontrol;
+	chip->read_byte  = ns_nand_read_byte;
+	chip->dev_ready  = ns_device_ready;
+	chip->write_buf  = ns_nand_write_buf;
+	chip->read_buf   = ns_nand_read_buf;
+	chip->read_word  = ns_nand_read_word;
+	chip->ecc.mode   = NAND_ECC_SOFT;
+	chip->ecc.algo   = NAND_ECC_HAMMING;
+	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
+	/* and 'badblocks' parameters to work */
+	chip->options   |= NAND_SKIP_BBTSCAN;
+
+	switch (bbt) {
+	case 2:
+		 chip->bbt_options |= NAND_BBT_NO_OOB;
+	case 1:
+		 chip->bbt_options |= NAND_BBT_USE_FLASH;
+	case 0:
+		break;
+	default:
+		NS_ERR("bbt has to be 0..2\n");
+		retval = -EINVAL;
+		goto error;
+	}
+	/*
+	 * Perform minimum nandsim structure initialization to handle
+	 * the initial ID read command correctly
+	 */
+	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
+		nand->geom.idbytes = 8;
+	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
+		nand->geom.idbytes = 6;
+	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
+		nand->geom.idbytes = 4;
+	else
+		nand->geom.idbytes = 2;
+	nand->regs.status = NS_STATUS_OK(nand);
+	nand->nxstate = STATE_UNKNOWN;
+	nand->options |= OPT_PAGE512; /* temporary value */
+	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
+	if (bus_width == 16) {
+		nand->busw = 16;
+		chip->options |= NAND_BUSWIDTH_16;
+	}
+
+	nsmtd->owner = THIS_MODULE;
+
+	if ((retval = parse_weakblocks()) != 0)
+		goto error;
+
+	if ((retval = parse_weakpages()) != 0)
+		goto error;
+
+	if ((retval = parse_gravepages()) != 0)
+		goto error;
+
+	chip->dummy_controller.ops = &ns_controller_ops;
+	retval = nand_scan(nsmtd, 1);
+	if (retval) {
+		NS_ERR("Could not scan NAND Simulator device\n");
+		goto error;
+	}
+
+	if (overridesize) {
+		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
+		if (new_size >> overridesize != nsmtd->erasesize) {
+			NS_ERR("overridesize is too big\n");
+			retval = -EINVAL;
+			goto err_exit;
+		}
+		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
+		nsmtd->size = new_size;
+		chip->chipsize = new_size;
+		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
+		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
+	}
+
+	if ((retval = setup_wear_reporting(nsmtd)) != 0)
+		goto err_exit;
+
+	if ((retval = init_nandsim(nsmtd)) != 0)
+		goto err_exit;
+
+	if ((retval = nand_create_bbt(chip)) != 0)
+		goto err_exit;
+
+	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
+		goto err_exit;
+
+	/* Register NAND partitions */
+	retval = mtd_device_register(nsmtd, &nand->partitions[0],
+				     nand->nbparts);
+	if (retval != 0)
+		goto err_exit;
+
+	if ((retval = nandsim_debugfs_create(nand)) != 0)
+		goto err_exit;
+
+        return 0;
+
+err_exit:
+	free_nandsim(nand);
+	nand_release(nsmtd);
+	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
+		kfree(nand->partitions[i].name);
+error:
+	kfree(chip);
+	free_lists();
+
+	return retval;
+}
+
+module_init(ns_init_module);
+
+/*
+ * Module clean-up function
+ */
+static void __exit ns_cleanup_module(void)
+{
+	struct nand_chip *chip = mtd_to_nand(nsmtd);
+	struct nandsim *ns = nand_get_controller_data(chip);
+	int i;
+
+	free_nandsim(ns);    /* Free nandsim private resources */
+	nand_release(nsmtd); /* Unregister driver */
+	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
+		kfree(ns->partitions[i].name);
+	kfree(mtd_to_nand(nsmtd));        /* Free other structures */
+	free_lists();
+}
+
+module_exit(ns_cleanup_module);
+
+MODULE_LICENSE ("GPL");
+MODULE_AUTHOR ("Artem B. Bityuckiy");
+MODULE_DESCRIPTION ("The NAND flash simulator");
diff --git a/drivers/mtd/nand/raw/ndfc.c b/drivers/mtd/nand/raw/ndfc.c
new file mode 100644
index 0000000..540fa1a
--- /dev/null
+++ b/drivers/mtd/nand/raw/ndfc.c
@@ -0,0 +1,286 @@
+/*
+ *  Overview:
+ *   Platform independent driver for NDFC (NanD Flash Controller)
+ *   integrated into EP440 cores
+ *
+ *   Ported to an OF platform driver by Sean MacLennan
+ *
+ *   The NDFC supports multiple chips, but this driver only supports a
+ *   single chip since I do not have access to any boards with
+ *   multiple chips.
+ *
+ *  Author: Thomas Gleixner
+ *
+ *  Copyright 2006 IBM
+ *  Copyright 2008 PIKA Technologies
+ *    Sean MacLennan <smaclennan@pikatech.com>
+ *
+ *  This program is free software; you can redistribute	 it and/or modify it
+ *  under  the terms of	 the GNU General  Public License as published by the
+ *  Free Software Foundation;  either version 2 of the	License, or (at your
+ *  option) any later version.
+ *
+ */
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/ndfc.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/of_address.h>
+#include <linux/of_platform.h>
+#include <asm/io.h>
+
+#define NDFC_MAX_CS    4
+
+struct ndfc_controller {
+	struct platform_device *ofdev;
+	void __iomem *ndfcbase;
+	struct nand_chip chip;
+	int chip_select;
+	struct nand_controller ndfc_control;
+};
+
+static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS];
+
+static void ndfc_select_chip(struct mtd_info *mtd, int chip)
+{
+	uint32_t ccr;
+	struct nand_chip *nchip = mtd_to_nand(mtd);
+	struct ndfc_controller *ndfc = nand_get_controller_data(nchip);
+
+	ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
+	if (chip >= 0) {
+		ccr &= ~NDFC_CCR_BS_MASK;
+		ccr |= NDFC_CCR_BS(chip + ndfc->chip_select);
+	} else
+		ccr |= NDFC_CCR_RESET_CE;
+	out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
+}
+
+static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD);
+	else
+		writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE);
+}
+
+static int ndfc_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
+
+	return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY;
+}
+
+static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	uint32_t ccr;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
+
+	ccr = in_be32(ndfc->ndfcbase + NDFC_CCR);
+	ccr |= NDFC_CCR_RESET_ECC;
+	out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
+	wmb();
+}
+
+static int ndfc_calculate_ecc(struct mtd_info *mtd,
+			      const u_char *dat, u_char *ecc_code)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
+	uint32_t ecc;
+	uint8_t *p = (uint8_t *)&ecc;
+
+	wmb();
+	ecc = in_be32(ndfc->ndfcbase + NDFC_ECC);
+	/* The NDFC uses Smart Media (SMC) bytes order */
+	ecc_code[0] = p[1];
+	ecc_code[1] = p[2];
+	ecc_code[2] = p[3];
+
+	return 0;
+}
+
+/*
+ * Speedups for buffer read/write/verify
+ *
+ * NDFC allows 32bit read/write of data. So we can speed up the buffer
+ * functions. No further checking, as nand_base will always read/write
+ * page aligned.
+ */
+static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
+	uint32_t *p = (uint32_t *) buf;
+
+	for(;len > 0; len -= 4)
+		*p++ = in_be32(ndfc->ndfcbase + NDFC_DATA);
+}
+
+static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct ndfc_controller *ndfc = nand_get_controller_data(chip);
+	uint32_t *p = (uint32_t *) buf;
+
+	for(;len > 0; len -= 4)
+		out_be32(ndfc->ndfcbase + NDFC_DATA, *p++);
+}
+
+/*
+ * Initialize chip structure
+ */
+static int ndfc_chip_init(struct ndfc_controller *ndfc,
+			  struct device_node *node)
+{
+	struct device_node *flash_np;
+	struct nand_chip *chip = &ndfc->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA;
+	chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA;
+	chip->cmd_ctrl = ndfc_hwcontrol;
+	chip->dev_ready = ndfc_ready;
+	chip->select_chip = ndfc_select_chip;
+	chip->chip_delay = 50;
+	chip->controller = &ndfc->ndfc_control;
+	chip->read_buf = ndfc_read_buf;
+	chip->write_buf = ndfc_write_buf;
+	chip->ecc.correct = nand_correct_data;
+	chip->ecc.hwctl = ndfc_enable_hwecc;
+	chip->ecc.calculate = ndfc_calculate_ecc;
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->ecc.size = 256;
+	chip->ecc.bytes = 3;
+	chip->ecc.strength = 1;
+	nand_set_controller_data(chip, ndfc);
+
+	mtd->dev.parent = &ndfc->ofdev->dev;
+
+	flash_np = of_get_next_child(node, NULL);
+	if (!flash_np)
+		return -ENODEV;
+	nand_set_flash_node(chip, flash_np);
+
+	mtd->name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev),
+			      flash_np->name);
+	if (!mtd->name) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		goto err;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+
+err:
+	of_node_put(flash_np);
+	if (ret)
+		kfree(mtd->name);
+	return ret;
+}
+
+static int ndfc_probe(struct platform_device *ofdev)
+{
+	struct ndfc_controller *ndfc;
+	const __be32 *reg;
+	u32 ccr;
+	u32 cs;
+	int err, len;
+
+	/* Read the reg property to get the chip select */
+	reg = of_get_property(ofdev->dev.of_node, "reg", &len);
+	if (reg == NULL || len != 12) {
+		dev_err(&ofdev->dev, "unable read reg property (%d)\n", len);
+		return -ENOENT;
+	}
+
+	cs = be32_to_cpu(reg[0]);
+	if (cs >= NDFC_MAX_CS) {
+		dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs);
+		return -EINVAL;
+	}
+
+	ndfc = &ndfc_ctrl[cs];
+	ndfc->chip_select = cs;
+
+	nand_controller_init(&ndfc->ndfc_control);
+	ndfc->ofdev = ofdev;
+	dev_set_drvdata(&ofdev->dev, ndfc);
+
+	ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0);
+	if (!ndfc->ndfcbase) {
+		dev_err(&ofdev->dev, "failed to get memory\n");
+		return -EIO;
+	}
+
+	ccr = NDFC_CCR_BS(ndfc->chip_select);
+
+	/* It is ok if ccr does not exist - just default to 0 */
+	reg = of_get_property(ofdev->dev.of_node, "ccr", NULL);
+	if (reg)
+		ccr |= be32_to_cpup(reg);
+
+	out_be32(ndfc->ndfcbase + NDFC_CCR, ccr);
+
+	/* Set the bank settings if given */
+	reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL);
+	if (reg) {
+		int offset = NDFC_BCFG0 + (ndfc->chip_select << 2);
+		out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg));
+	}
+
+	err = ndfc_chip_init(ndfc, ofdev->dev.of_node);
+	if (err) {
+		iounmap(ndfc->ndfcbase);
+		return err;
+	}
+
+	return 0;
+}
+
+static int ndfc_remove(struct platform_device *ofdev)
+{
+	struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev);
+	struct mtd_info *mtd = nand_to_mtd(&ndfc->chip);
+
+	nand_release(mtd);
+	kfree(mtd->name);
+
+	return 0;
+}
+
+static const struct of_device_id ndfc_match[] = {
+	{ .compatible = "ibm,ndfc", },
+	{}
+};
+MODULE_DEVICE_TABLE(of, ndfc_match);
+
+static struct platform_driver ndfc_driver = {
+	.driver = {
+		.name = "ndfc",
+		.of_match_table = ndfc_match,
+	},
+	.probe = ndfc_probe,
+	.remove = ndfc_remove,
+};
+
+module_platform_driver(ndfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("OF Platform driver for NDFC");
diff --git a/drivers/mtd/nand/raw/nuc900_nand.c b/drivers/mtd/nand/raw/nuc900_nand.c
new file mode 100644
index 0000000..af5b32c
--- /dev/null
+++ b/drivers/mtd/nand/raw/nuc900_nand.c
@@ -0,0 +1,306 @@
+/*
+ * Copyright © 2009 Nuvoton technology corporation.
+ *
+ * Wan ZongShun <mcuos.com@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation;version 2 of the License.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/platform_device.h>
+#include <linux/delay.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+
+#define REG_FMICSR   	0x00
+#define REG_SMCSR    	0xa0
+#define REG_SMISR    	0xac
+#define REG_SMCMD    	0xb0
+#define REG_SMADDR   	0xb4
+#define REG_SMDATA   	0xb8
+
+#define RESET_FMI	0x01
+#define NAND_EN		0x08
+#define READYBUSY	(0x01 << 18)
+
+#define SWRST		0x01
+#define PSIZE		(0x01 << 3)
+#define DMARWEN		(0x03 << 1)
+#define BUSWID		(0x01 << 4)
+#define ECC4EN		(0x01 << 5)
+#define WP		(0x01 << 24)
+#define NANDCS		(0x01 << 25)
+#define ENDADDR		(0x01 << 31)
+
+#define read_data_reg(dev)		\
+	__raw_readl((dev)->reg + REG_SMDATA)
+
+#define write_data_reg(dev, val)	\
+	__raw_writel((val), (dev)->reg + REG_SMDATA)
+
+#define write_cmd_reg(dev, val)		\
+	__raw_writel((val), (dev)->reg + REG_SMCMD)
+
+#define write_addr_reg(dev, val)	\
+	__raw_writel((val), (dev)->reg + REG_SMADDR)
+
+struct nuc900_nand {
+	struct nand_chip chip;
+	void __iomem *reg;
+	struct clk *clk;
+	spinlock_t lock;
+};
+
+static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip);
+}
+
+static const struct mtd_partition partitions[] = {
+	{
+	 .name = "NAND FS 0",
+	 .offset = 0,
+	 .size = 8 * 1024 * 1024
+	},
+	{
+	 .name = "NAND FS 1",
+	 .offset = MTDPART_OFS_APPEND,
+	 .size = MTDPART_SIZ_FULL
+	}
+};
+
+static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd)
+{
+	unsigned char ret;
+	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
+
+	ret = (unsigned char)read_data_reg(nand);
+
+	return ret;
+}
+
+static void nuc900_nand_read_buf(struct mtd_info *mtd,
+				 unsigned char *buf, int len)
+{
+	int i;
+	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
+
+	for (i = 0; i < len; i++)
+		buf[i] = (unsigned char)read_data_reg(nand);
+}
+
+static void nuc900_nand_write_buf(struct mtd_info *mtd,
+				  const unsigned char *buf, int len)
+{
+	int i;
+	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
+
+	for (i = 0; i < len; i++)
+		write_data_reg(nand, buf[i]);
+}
+
+static int nuc900_check_rb(struct nuc900_nand *nand)
+{
+	unsigned int val;
+	spin_lock(&nand->lock);
+	val = __raw_readl(nand->reg + REG_SMISR);
+	val &= READYBUSY;
+	spin_unlock(&nand->lock);
+
+	return val;
+}
+
+static int nuc900_nand_devready(struct mtd_info *mtd)
+{
+	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
+	int ready;
+
+	ready = (nuc900_check_rb(nand)) ? 1 : 0;
+	return ready;
+}
+
+static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command,
+				   int column, int page_addr)
+{
+	register struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nuc900_nand *nand = mtd_to_nuc900(mtd);
+
+	if (command == NAND_CMD_READOOB) {
+		column += mtd->writesize;
+		command = NAND_CMD_READ0;
+	}
+
+	write_cmd_reg(nand, command & 0xff);
+
+	if (column != -1 || page_addr != -1) {
+
+		if (column != -1) {
+			if (chip->options & NAND_BUSWIDTH_16 &&
+					!nand_opcode_8bits(command))
+				column >>= 1;
+			write_addr_reg(nand, column);
+			write_addr_reg(nand, column >> 8 | ENDADDR);
+		}
+		if (page_addr != -1) {
+			write_addr_reg(nand, page_addr);
+
+			if (chip->options & NAND_ROW_ADDR_3) {
+				write_addr_reg(nand, page_addr >> 8);
+				write_addr_reg(nand, page_addr >> 16 | ENDADDR);
+			} else {
+				write_addr_reg(nand, page_addr >> 8 | ENDADDR);
+			}
+		}
+	}
+
+	switch (command) {
+	case NAND_CMD_CACHEDPROG:
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+	case NAND_CMD_SEQIN:
+	case NAND_CMD_RNDIN:
+	case NAND_CMD_STATUS:
+		return;
+
+	case NAND_CMD_RESET:
+		if (chip->dev_ready)
+			break;
+		udelay(chip->chip_delay);
+
+		write_cmd_reg(nand, NAND_CMD_STATUS);
+		write_cmd_reg(nand, command);
+
+		while (!nuc900_check_rb(nand))
+			;
+
+		return;
+
+	case NAND_CMD_RNDOUT:
+		write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
+		return;
+
+	case NAND_CMD_READ0:
+
+		write_cmd_reg(nand, NAND_CMD_READSTART);
+	default:
+
+		if (!chip->dev_ready) {
+			udelay(chip->chip_delay);
+			return;
+		}
+	}
+
+	/* Apply this short delay always to ensure that we do wait tWB in
+	 * any case on any machine. */
+	ndelay(100);
+
+	while (!chip->dev_ready(mtd))
+		;
+}
+
+
+static void nuc900_nand_enable(struct nuc900_nand *nand)
+{
+	unsigned int val;
+	spin_lock(&nand->lock);
+	__raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
+
+	val = __raw_readl(nand->reg + REG_FMICSR);
+
+	if (!(val & NAND_EN))
+		__raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
+
+	val = __raw_readl(nand->reg + REG_SMCSR);
+
+	val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
+	val |= WP;
+
+	__raw_writel(val, nand->reg + REG_SMCSR);
+
+	spin_unlock(&nand->lock);
+}
+
+static int nuc900_nand_probe(struct platform_device *pdev)
+{
+	struct nuc900_nand *nuc900_nand;
+	struct nand_chip *chip;
+	struct mtd_info *mtd;
+	struct resource *res;
+
+	nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
+				   GFP_KERNEL);
+	if (!nuc900_nand)
+		return -ENOMEM;
+	chip = &(nuc900_nand->chip);
+	mtd = nand_to_mtd(chip);
+
+	mtd->dev.parent		= &pdev->dev;
+	spin_lock_init(&nuc900_nand->lock);
+
+	nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(nuc900_nand->clk))
+		return -ENOENT;
+	clk_enable(nuc900_nand->clk);
+
+	chip->cmdfunc		= nuc900_nand_command_lp;
+	chip->dev_ready		= nuc900_nand_devready;
+	chip->read_byte		= nuc900_nand_read_byte;
+	chip->write_buf		= nuc900_nand_write_buf;
+	chip->read_buf		= nuc900_nand_read_buf;
+	chip->chip_delay	= 50;
+	chip->options		= 0;
+	chip->ecc.mode		= NAND_ECC_SOFT;
+	chip->ecc.algo		= NAND_ECC_HAMMING;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nuc900_nand->reg))
+		return PTR_ERR(nuc900_nand->reg);
+
+	nuc900_nand_enable(nuc900_nand);
+
+	if (nand_scan(mtd, 1))
+		return -ENXIO;
+
+	mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions));
+
+	platform_set_drvdata(pdev, nuc900_nand);
+
+	return 0;
+}
+
+static int nuc900_nand_remove(struct platform_device *pdev)
+{
+	struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
+
+	nand_release(nand_to_mtd(&nuc900_nand->chip));
+	clk_disable(nuc900_nand->clk);
+
+	return 0;
+}
+
+static struct platform_driver nuc900_nand_driver = {
+	.probe		= nuc900_nand_probe,
+	.remove		= nuc900_nand_remove,
+	.driver		= {
+		.name	= "nuc900-fmi",
+	},
+};
+
+module_platform_driver(nuc900_nand_driver);
+
+MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
+MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:nuc900-fmi");
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
new file mode 100644
index 0000000..4546ac0
--- /dev/null
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -0,0 +1,2316 @@
+/*
+ * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
+ * Copyright © 2004 Micron Technology Inc.
+ * Copyright © 2004 David Brownell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/platform_device.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/delay.h>
+#include <linux/gpio/consumer.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/jiffies.h>
+#include <linux/sched.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/omap-dma.h>
+#include <linux/io.h>
+#include <linux/slab.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+
+#include <linux/mtd/nand_bch.h>
+#include <linux/platform_data/elm.h>
+
+#include <linux/omap-gpmc.h>
+#include <linux/platform_data/mtd-nand-omap2.h>
+
+#define	DRIVER_NAME	"omap2-nand"
+#define	OMAP_NAND_TIMEOUT_MS	5000
+
+#define NAND_Ecc_P1e		(1 << 0)
+#define NAND_Ecc_P2e		(1 << 1)
+#define NAND_Ecc_P4e		(1 << 2)
+#define NAND_Ecc_P8e		(1 << 3)
+#define NAND_Ecc_P16e		(1 << 4)
+#define NAND_Ecc_P32e		(1 << 5)
+#define NAND_Ecc_P64e		(1 << 6)
+#define NAND_Ecc_P128e		(1 << 7)
+#define NAND_Ecc_P256e		(1 << 8)
+#define NAND_Ecc_P512e		(1 << 9)
+#define NAND_Ecc_P1024e		(1 << 10)
+#define NAND_Ecc_P2048e		(1 << 11)
+
+#define NAND_Ecc_P1o		(1 << 16)
+#define NAND_Ecc_P2o		(1 << 17)
+#define NAND_Ecc_P4o		(1 << 18)
+#define NAND_Ecc_P8o		(1 << 19)
+#define NAND_Ecc_P16o		(1 << 20)
+#define NAND_Ecc_P32o		(1 << 21)
+#define NAND_Ecc_P64o		(1 << 22)
+#define NAND_Ecc_P128o		(1 << 23)
+#define NAND_Ecc_P256o		(1 << 24)
+#define NAND_Ecc_P512o		(1 << 25)
+#define NAND_Ecc_P1024o		(1 << 26)
+#define NAND_Ecc_P2048o		(1 << 27)
+
+#define TF(value)	(value ? 1 : 0)
+
+#define P2048e(a)	(TF(a & NAND_Ecc_P2048e)	<< 0)
+#define P2048o(a)	(TF(a & NAND_Ecc_P2048o)	<< 1)
+#define P1e(a)		(TF(a & NAND_Ecc_P1e)		<< 2)
+#define P1o(a)		(TF(a & NAND_Ecc_P1o)		<< 3)
+#define P2e(a)		(TF(a & NAND_Ecc_P2e)		<< 4)
+#define P2o(a)		(TF(a & NAND_Ecc_P2o)		<< 5)
+#define P4e(a)		(TF(a & NAND_Ecc_P4e)		<< 6)
+#define P4o(a)		(TF(a & NAND_Ecc_P4o)		<< 7)
+
+#define P8e(a)		(TF(a & NAND_Ecc_P8e)		<< 0)
+#define P8o(a)		(TF(a & NAND_Ecc_P8o)		<< 1)
+#define P16e(a)		(TF(a & NAND_Ecc_P16e)		<< 2)
+#define P16o(a)		(TF(a & NAND_Ecc_P16o)		<< 3)
+#define P32e(a)		(TF(a & NAND_Ecc_P32e)		<< 4)
+#define P32o(a)		(TF(a & NAND_Ecc_P32o)		<< 5)
+#define P64e(a)		(TF(a & NAND_Ecc_P64e)		<< 6)
+#define P64o(a)		(TF(a & NAND_Ecc_P64o)		<< 7)
+
+#define P128e(a)	(TF(a & NAND_Ecc_P128e)		<< 0)
+#define P128o(a)	(TF(a & NAND_Ecc_P128o)		<< 1)
+#define P256e(a)	(TF(a & NAND_Ecc_P256e)		<< 2)
+#define P256o(a)	(TF(a & NAND_Ecc_P256o)		<< 3)
+#define P512e(a)	(TF(a & NAND_Ecc_P512e)		<< 4)
+#define P512o(a)	(TF(a & NAND_Ecc_P512o)		<< 5)
+#define P1024e(a)	(TF(a & NAND_Ecc_P1024e)	<< 6)
+#define P1024o(a)	(TF(a & NAND_Ecc_P1024o)	<< 7)
+
+#define P8e_s(a)	(TF(a & NAND_Ecc_P8e)		<< 0)
+#define P8o_s(a)	(TF(a & NAND_Ecc_P8o)		<< 1)
+#define P16e_s(a)	(TF(a & NAND_Ecc_P16e)		<< 2)
+#define P16o_s(a)	(TF(a & NAND_Ecc_P16o)		<< 3)
+#define P1e_s(a)	(TF(a & NAND_Ecc_P1e)		<< 4)
+#define P1o_s(a)	(TF(a & NAND_Ecc_P1o)		<< 5)
+#define P2e_s(a)	(TF(a & NAND_Ecc_P2e)		<< 6)
+#define P2o_s(a)	(TF(a & NAND_Ecc_P2o)		<< 7)
+
+#define P4e_s(a)	(TF(a & NAND_Ecc_P4e)		<< 0)
+#define P4o_s(a)	(TF(a & NAND_Ecc_P4o)		<< 1)
+
+#define	PREFETCH_CONFIG1_CS_SHIFT	24
+#define	ECC_CONFIG_CS_SHIFT		1
+#define	CS_MASK				0x7
+#define	ENABLE_PREFETCH			(0x1 << 7)
+#define	DMA_MPU_MODE_SHIFT		2
+#define	ECCSIZE0_SHIFT			12
+#define	ECCSIZE1_SHIFT			22
+#define	ECC1RESULTSIZE			0x1
+#define	ECCCLEAR			0x100
+#define	ECC1				0x1
+#define	PREFETCH_FIFOTHRESHOLD_MAX	0x40
+#define	PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
+#define	PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
+#define	PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
+#define	STATUS_BUFF_EMPTY		0x00000001
+
+#define SECTOR_BYTES		512
+/* 4 bit padding to make byte aligned, 56 = 52 + 4 */
+#define BCH4_BIT_PAD		4
+
+/* GPMC ecc engine settings for read */
+#define BCH_WRAPMODE_1		1	/* BCH wrap mode 1 */
+#define BCH8R_ECC_SIZE0		0x1a	/* ecc_size0 = 26 */
+#define BCH8R_ECC_SIZE1		0x2	/* ecc_size1 = 2 */
+#define BCH4R_ECC_SIZE0		0xd	/* ecc_size0 = 13 */
+#define BCH4R_ECC_SIZE1		0x3	/* ecc_size1 = 3 */
+
+/* GPMC ecc engine settings for write */
+#define BCH_WRAPMODE_6		6	/* BCH wrap mode 6 */
+#define BCH_ECC_SIZE0		0x0	/* ecc_size0 = 0, no oob protection */
+#define BCH_ECC_SIZE1		0x20	/* ecc_size1 = 32 */
+
+#define BADBLOCK_MARKER_LENGTH		2
+
+static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
+				0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
+				0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
+				0x07, 0x0e};
+static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
+	0xac, 0x6b, 0xff, 0x99, 0x7b};
+static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
+
+struct omap_nand_info {
+	struct nand_chip		nand;
+	struct platform_device		*pdev;
+
+	int				gpmc_cs;
+	bool				dev_ready;
+	enum nand_io			xfer_type;
+	int				devsize;
+	enum omap_ecc			ecc_opt;
+	struct device_node		*elm_of_node;
+
+	unsigned long			phys_base;
+	struct completion		comp;
+	struct dma_chan			*dma;
+	int				gpmc_irq_fifo;
+	int				gpmc_irq_count;
+	enum {
+		OMAP_NAND_IO_READ = 0,	/* read */
+		OMAP_NAND_IO_WRITE,	/* write */
+	} iomode;
+	u_char				*buf;
+	int					buf_len;
+	/* Interface to GPMC */
+	struct gpmc_nand_regs		reg;
+	struct gpmc_nand_ops		*ops;
+	bool				flash_bbt;
+	/* fields specific for BCHx_HW ECC scheme */
+	struct device			*elm_dev;
+	/* NAND ready gpio */
+	struct gpio_desc		*ready_gpiod;
+};
+
+static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand);
+}
+
+/**
+ * omap_prefetch_enable - configures and starts prefetch transfer
+ * @cs: cs (chip select) number
+ * @fifo_th: fifo threshold to be used for read/ write
+ * @dma_mode: dma mode enable (1) or disable (0)
+ * @u32_count: number of bytes to be transferred
+ * @is_write: prefetch read(0) or write post(1) mode
+ */
+static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
+	unsigned int u32_count, int is_write, struct omap_nand_info *info)
+{
+	u32 val;
+
+	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
+		return -1;
+
+	if (readl(info->reg.gpmc_prefetch_control))
+		return -EBUSY;
+
+	/* Set the amount of bytes to be prefetched */
+	writel(u32_count, info->reg.gpmc_prefetch_config2);
+
+	/* Set dma/mpu mode, the prefetch read / post write and
+	 * enable the engine. Set which cs is has requested for.
+	 */
+	val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) |
+		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH |
+		(dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1));
+	writel(val, info->reg.gpmc_prefetch_config1);
+
+	/*  Start the prefetch engine */
+	writel(0x1, info->reg.gpmc_prefetch_control);
+
+	return 0;
+}
+
+/**
+ * omap_prefetch_reset - disables and stops the prefetch engine
+ */
+static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
+{
+	u32 config1;
+
+	/* check if the same module/cs is trying to reset */
+	config1 = readl(info->reg.gpmc_prefetch_config1);
+	if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs)
+		return -EINVAL;
+
+	/* Stop the PFPW engine */
+	writel(0x0, info->reg.gpmc_prefetch_control);
+
+	/* Reset/disable the PFPW engine */
+	writel(0x0, info->reg.gpmc_prefetch_config1);
+
+	return 0;
+}
+
+/**
+ * omap_hwcontrol - hardware specific access to control-lines
+ * @mtd: MTD device structure
+ * @cmd: command to device
+ * @ctrl:
+ * NAND_NCE: bit 0 -> don't care
+ * NAND_CLE: bit 1 -> Command Latch
+ * NAND_ALE: bit 2 -> Address Latch
+ *
+ * NOTE: boards may use different bits for these!!
+ */
+static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+
+	if (cmd != NAND_CMD_NONE) {
+		if (ctrl & NAND_CLE)
+			writeb(cmd, info->reg.gpmc_nand_command);
+
+		else if (ctrl & NAND_ALE)
+			writeb(cmd, info->reg.gpmc_nand_address);
+
+		else /* NAND_NCE */
+			writeb(cmd, info->reg.gpmc_nand_data);
+	}
+}
+
+/**
+ * omap_read_buf8 - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+
+	ioread8_rep(nand->IO_ADDR_R, buf, len);
+}
+
+/**
+ * omap_write_buf8 - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	u_char *p = (u_char *)buf;
+	bool status;
+
+	while (len--) {
+		iowrite8(*p++, info->nand.IO_ADDR_W);
+		/* wait until buffer is available for write */
+		do {
+			status = info->ops->nand_writebuffer_empty();
+		} while (!status);
+	}
+}
+
+/**
+ * omap_read_buf16 - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+
+	ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
+}
+
+/**
+ * omap_write_buf16 - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	u16 *p = (u16 *) buf;
+	bool status;
+	/* FIXME try bursts of writesw() or DMA ... */
+	len >>= 1;
+
+	while (len--) {
+		iowrite16(*p++, info->nand.IO_ADDR_W);
+		/* wait until buffer is available for write */
+		do {
+			status = info->ops->nand_writebuffer_empty();
+		} while (!status);
+	}
+}
+
+/**
+ * omap_read_buf_pref - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	uint32_t r_count = 0;
+	int ret = 0;
+	u32 *p = (u32 *)buf;
+
+	/* take care of subpage reads */
+	if (len % 4) {
+		if (info->nand.options & NAND_BUSWIDTH_16)
+			omap_read_buf16(mtd, buf, len % 4);
+		else
+			omap_read_buf8(mtd, buf, len % 4);
+		p = (u32 *) (buf + len % 4);
+		len -= len % 4;
+	}
+
+	/* configure and start prefetch transfer */
+	ret = omap_prefetch_enable(info->gpmc_cs,
+			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info);
+	if (ret) {
+		/* PFPW engine is busy, use cpu copy method */
+		if (info->nand.options & NAND_BUSWIDTH_16)
+			omap_read_buf16(mtd, (u_char *)p, len);
+		else
+			omap_read_buf8(mtd, (u_char *)p, len);
+	} else {
+		do {
+			r_count = readl(info->reg.gpmc_prefetch_status);
+			r_count = PREFETCH_STATUS_FIFO_CNT(r_count);
+			r_count = r_count >> 2;
+			ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
+			p += r_count;
+			len -= r_count << 2;
+		} while (len);
+		/* disable and stop the PFPW engine */
+		omap_prefetch_reset(info->gpmc_cs, info);
+	}
+}
+
+/**
+ * omap_write_buf_pref - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf_pref(struct mtd_info *mtd,
+					const u_char *buf, int len)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	uint32_t w_count = 0;
+	int i = 0, ret = 0;
+	u16 *p = (u16 *)buf;
+	unsigned long tim, limit;
+	u32 val;
+
+	/* take care of subpage writes */
+	if (len % 2 != 0) {
+		writeb(*buf, info->nand.IO_ADDR_W);
+		p = (u16 *)(buf + 1);
+		len--;
+	}
+
+	/*  configure and start prefetch transfer */
+	ret = omap_prefetch_enable(info->gpmc_cs,
+			PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info);
+	if (ret) {
+		/* PFPW engine is busy, use cpu copy method */
+		if (info->nand.options & NAND_BUSWIDTH_16)
+			omap_write_buf16(mtd, (u_char *)p, len);
+		else
+			omap_write_buf8(mtd, (u_char *)p, len);
+	} else {
+		while (len) {
+			w_count = readl(info->reg.gpmc_prefetch_status);
+			w_count = PREFETCH_STATUS_FIFO_CNT(w_count);
+			w_count = w_count >> 1;
+			for (i = 0; (i < w_count) && len; i++, len -= 2)
+				iowrite16(*p++, info->nand.IO_ADDR_W);
+		}
+		/* wait for data to flushed-out before reset the prefetch */
+		tim = 0;
+		limit = (loops_per_jiffy *
+					msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
+		do {
+			cpu_relax();
+			val = readl(info->reg.gpmc_prefetch_status);
+			val = PREFETCH_STATUS_COUNT(val);
+		} while (val && (tim++ < limit));
+
+		/* disable and stop the PFPW engine */
+		omap_prefetch_reset(info->gpmc_cs, info);
+	}
+}
+
+/*
+ * omap_nand_dma_callback: callback on the completion of dma transfer
+ * @data: pointer to completion data structure
+ */
+static void omap_nand_dma_callback(void *data)
+{
+	complete((struct completion *) data);
+}
+
+/*
+ * omap_nand_dma_transfer: configure and start dma transfer
+ * @mtd: MTD device structure
+ * @addr: virtual address in RAM of source/destination
+ * @len: number of data bytes to be transferred
+ * @is_write: flag for read/write operation
+ */
+static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
+					unsigned int len, int is_write)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct dma_async_tx_descriptor *tx;
+	enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
+							DMA_FROM_DEVICE;
+	struct scatterlist sg;
+	unsigned long tim, limit;
+	unsigned n;
+	int ret;
+	u32 val;
+
+	if (!virt_addr_valid(addr))
+		goto out_copy;
+
+	sg_init_one(&sg, addr, len);
+	n = dma_map_sg(info->dma->device->dev, &sg, 1, dir);
+	if (n == 0) {
+		dev_err(&info->pdev->dev,
+			"Couldn't DMA map a %d byte buffer\n", len);
+		goto out_copy;
+	}
+
+	tx = dmaengine_prep_slave_sg(info->dma, &sg, n,
+		is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
+		DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+	if (!tx)
+		goto out_copy_unmap;
+
+	tx->callback = omap_nand_dma_callback;
+	tx->callback_param = &info->comp;
+	dmaengine_submit(tx);
+
+	init_completion(&info->comp);
+
+	/* setup and start DMA using dma_addr */
+	dma_async_issue_pending(info->dma);
+
+	/*  configure and start prefetch transfer */
+	ret = omap_prefetch_enable(info->gpmc_cs,
+		PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info);
+	if (ret)
+		/* PFPW engine is busy, use cpu copy method */
+		goto out_copy_unmap;
+
+	wait_for_completion(&info->comp);
+	tim = 0;
+	limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
+
+	do {
+		cpu_relax();
+		val = readl(info->reg.gpmc_prefetch_status);
+		val = PREFETCH_STATUS_COUNT(val);
+	} while (val && (tim++ < limit));
+
+	/* disable and stop the PFPW engine */
+	omap_prefetch_reset(info->gpmc_cs, info);
+
+	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
+	return 0;
+
+out_copy_unmap:
+	dma_unmap_sg(info->dma->device->dev, &sg, 1, dir);
+out_copy:
+	if (info->nand.options & NAND_BUSWIDTH_16)
+		is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
+			: omap_write_buf16(mtd, (u_char *) addr, len);
+	else
+		is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
+			: omap_write_buf8(mtd, (u_char *) addr, len);
+	return 0;
+}
+
+/**
+ * omap_read_buf_dma_pref - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
+{
+	if (len <= mtd->oobsize)
+		omap_read_buf_pref(mtd, buf, len);
+	else
+		/* start transfer in DMA mode */
+		omap_nand_dma_transfer(mtd, buf, len, 0x0);
+}
+
+/**
+ * omap_write_buf_dma_pref - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf_dma_pref(struct mtd_info *mtd,
+					const u_char *buf, int len)
+{
+	if (len <= mtd->oobsize)
+		omap_write_buf_pref(mtd, buf, len);
+	else
+		/* start transfer in DMA mode */
+		omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
+}
+
+/*
+ * omap_nand_irq - GPMC irq handler
+ * @this_irq: gpmc irq number
+ * @dev: omap_nand_info structure pointer is passed here
+ */
+static irqreturn_t omap_nand_irq(int this_irq, void *dev)
+{
+	struct omap_nand_info *info = (struct omap_nand_info *) dev;
+	u32 bytes;
+
+	bytes = readl(info->reg.gpmc_prefetch_status);
+	bytes = PREFETCH_STATUS_FIFO_CNT(bytes);
+	bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
+	if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
+		if (this_irq == info->gpmc_irq_count)
+			goto done;
+
+		if (info->buf_len && (info->buf_len < bytes))
+			bytes = info->buf_len;
+		else if (!info->buf_len)
+			bytes = 0;
+		iowrite32_rep(info->nand.IO_ADDR_W,
+						(u32 *)info->buf, bytes >> 2);
+		info->buf = info->buf + bytes;
+		info->buf_len -= bytes;
+
+	} else {
+		ioread32_rep(info->nand.IO_ADDR_R,
+						(u32 *)info->buf, bytes >> 2);
+		info->buf = info->buf + bytes;
+
+		if (this_irq == info->gpmc_irq_count)
+			goto done;
+	}
+
+	return IRQ_HANDLED;
+
+done:
+	complete(&info->comp);
+
+	disable_irq_nosync(info->gpmc_irq_fifo);
+	disable_irq_nosync(info->gpmc_irq_count);
+
+	return IRQ_HANDLED;
+}
+
+/*
+ * omap_read_buf_irq_pref - read data from NAND controller into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ */
+static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	int ret = 0;
+
+	if (len <= mtd->oobsize) {
+		omap_read_buf_pref(mtd, buf, len);
+		return;
+	}
+
+	info->iomode = OMAP_NAND_IO_READ;
+	info->buf = buf;
+	init_completion(&info->comp);
+
+	/*  configure and start prefetch transfer */
+	ret = omap_prefetch_enable(info->gpmc_cs,
+			PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info);
+	if (ret)
+		/* PFPW engine is busy, use cpu copy method */
+		goto out_copy;
+
+	info->buf_len = len;
+
+	enable_irq(info->gpmc_irq_count);
+	enable_irq(info->gpmc_irq_fifo);
+
+	/* waiting for read to complete */
+	wait_for_completion(&info->comp);
+
+	/* disable and stop the PFPW engine */
+	omap_prefetch_reset(info->gpmc_cs, info);
+	return;
+
+out_copy:
+	if (info->nand.options & NAND_BUSWIDTH_16)
+		omap_read_buf16(mtd, buf, len);
+	else
+		omap_read_buf8(mtd, buf, len);
+}
+
+/*
+ * omap_write_buf_irq_pref - write buffer to NAND controller
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ */
+static void omap_write_buf_irq_pref(struct mtd_info *mtd,
+					const u_char *buf, int len)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	int ret = 0;
+	unsigned long tim, limit;
+	u32 val;
+
+	if (len <= mtd->oobsize) {
+		omap_write_buf_pref(mtd, buf, len);
+		return;
+	}
+
+	info->iomode = OMAP_NAND_IO_WRITE;
+	info->buf = (u_char *) buf;
+	init_completion(&info->comp);
+
+	/* configure and start prefetch transfer : size=24 */
+	ret = omap_prefetch_enable(info->gpmc_cs,
+		(PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info);
+	if (ret)
+		/* PFPW engine is busy, use cpu copy method */
+		goto out_copy;
+
+	info->buf_len = len;
+
+	enable_irq(info->gpmc_irq_count);
+	enable_irq(info->gpmc_irq_fifo);
+
+	/* waiting for write to complete */
+	wait_for_completion(&info->comp);
+
+	/* wait for data to flushed-out before reset the prefetch */
+	tim = 0;
+	limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
+	do {
+		val = readl(info->reg.gpmc_prefetch_status);
+		val = PREFETCH_STATUS_COUNT(val);
+		cpu_relax();
+	} while (val && (tim++ < limit));
+
+	/* disable and stop the PFPW engine */
+	omap_prefetch_reset(info->gpmc_cs, info);
+	return;
+
+out_copy:
+	if (info->nand.options & NAND_BUSWIDTH_16)
+		omap_write_buf16(mtd, buf, len);
+	else
+		omap_write_buf8(mtd, buf, len);
+}
+
+/**
+ * gen_true_ecc - This function will generate true ECC value
+ * @ecc_buf: buffer to store ecc code
+ *
+ * This generated true ECC value can be used when correcting
+ * data read from NAND flash memory core
+ */
+static void gen_true_ecc(u8 *ecc_buf)
+{
+	u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
+		((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
+
+	ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
+			P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
+	ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
+			P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
+	ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
+			P1e(tmp) | P2048o(tmp) | P2048e(tmp));
+}
+
+/**
+ * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
+ * @ecc_data1:  ecc code from nand spare area
+ * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
+ * @page_data:  page data
+ *
+ * This function compares two ECC's and indicates if there is an error.
+ * If the error can be corrected it will be corrected to the buffer.
+ * If there is no error, %0 is returned. If there is an error but it
+ * was corrected, %1 is returned. Otherwise, %-1 is returned.
+ */
+static int omap_compare_ecc(u8 *ecc_data1,	/* read from NAND memory */
+			    u8 *ecc_data2,	/* read from register */
+			    u8 *page_data)
+{
+	uint	i;
+	u8	tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
+	u8	comp0_bit[8], comp1_bit[8], comp2_bit[8];
+	u8	ecc_bit[24];
+	u8	ecc_sum = 0;
+	u8	find_bit = 0;
+	uint	find_byte = 0;
+	int	isEccFF;
+
+	isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
+
+	gen_true_ecc(ecc_data1);
+	gen_true_ecc(ecc_data2);
+
+	for (i = 0; i <= 2; i++) {
+		*(ecc_data1 + i) = ~(*(ecc_data1 + i));
+		*(ecc_data2 + i) = ~(*(ecc_data2 + i));
+	}
+
+	for (i = 0; i < 8; i++) {
+		tmp0_bit[i]     = *ecc_data1 % 2;
+		*ecc_data1	= *ecc_data1 / 2;
+	}
+
+	for (i = 0; i < 8; i++) {
+		tmp1_bit[i]	 = *(ecc_data1 + 1) % 2;
+		*(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
+	}
+
+	for (i = 0; i < 8; i++) {
+		tmp2_bit[i]	 = *(ecc_data1 + 2) % 2;
+		*(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
+	}
+
+	for (i = 0; i < 8; i++) {
+		comp0_bit[i]     = *ecc_data2 % 2;
+		*ecc_data2       = *ecc_data2 / 2;
+	}
+
+	for (i = 0; i < 8; i++) {
+		comp1_bit[i]     = *(ecc_data2 + 1) % 2;
+		*(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
+	}
+
+	for (i = 0; i < 8; i++) {
+		comp2_bit[i]     = *(ecc_data2 + 2) % 2;
+		*(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
+	}
+
+	for (i = 0; i < 6; i++)
+		ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
+
+	for (i = 0; i < 8; i++)
+		ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
+
+	for (i = 0; i < 8; i++)
+		ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
+
+	ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
+	ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
+
+	for (i = 0; i < 24; i++)
+		ecc_sum += ecc_bit[i];
+
+	switch (ecc_sum) {
+	case 0:
+		/* Not reached because this function is not called if
+		 *  ECC values are equal
+		 */
+		return 0;
+
+	case 1:
+		/* Uncorrectable error */
+		pr_debug("ECC UNCORRECTED_ERROR 1\n");
+		return -EBADMSG;
+
+	case 11:
+		/* UN-Correctable error */
+		pr_debug("ECC UNCORRECTED_ERROR B\n");
+		return -EBADMSG;
+
+	case 12:
+		/* Correctable error */
+		find_byte = (ecc_bit[23] << 8) +
+			    (ecc_bit[21] << 7) +
+			    (ecc_bit[19] << 6) +
+			    (ecc_bit[17] << 5) +
+			    (ecc_bit[15] << 4) +
+			    (ecc_bit[13] << 3) +
+			    (ecc_bit[11] << 2) +
+			    (ecc_bit[9]  << 1) +
+			    ecc_bit[7];
+
+		find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
+
+		pr_debug("Correcting single bit ECC error at offset: "
+				"%d, bit: %d\n", find_byte, find_bit);
+
+		page_data[find_byte] ^= (1 << find_bit);
+
+		return 1;
+	default:
+		if (isEccFF) {
+			if (ecc_data2[0] == 0 &&
+			    ecc_data2[1] == 0 &&
+			    ecc_data2[2] == 0)
+				return 0;
+		}
+		pr_debug("UNCORRECTED_ERROR default\n");
+		return -EBADMSG;
+	}
+}
+
+/**
+ * omap_correct_data - Compares the ECC read with HW generated ECC
+ * @mtd: MTD device structure
+ * @dat: page data
+ * @read_ecc: ecc read from nand flash
+ * @calc_ecc: ecc read from HW ECC registers
+ *
+ * Compares the ecc read from nand spare area with ECC registers values
+ * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
+ * detection and correction. If there are no errors, %0 is returned. If
+ * there were errors and all of the errors were corrected, the number of
+ * corrected errors is returned. If uncorrectable errors exist, %-1 is
+ * returned.
+ */
+static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
+				u_char *read_ecc, u_char *calc_ecc)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	int blockCnt = 0, i = 0, ret = 0;
+	int stat = 0;
+
+	/* Ex NAND_ECC_HW12_2048 */
+	if ((info->nand.ecc.mode == NAND_ECC_HW) &&
+			(info->nand.ecc.size  == 2048))
+		blockCnt = 4;
+	else
+		blockCnt = 1;
+
+	for (i = 0; i < blockCnt; i++) {
+		if (memcmp(read_ecc, calc_ecc, 3) != 0) {
+			ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
+			if (ret < 0)
+				return ret;
+			/* keep track of the number of corrected errors */
+			stat += ret;
+		}
+		read_ecc += 3;
+		calc_ecc += 3;
+		dat      += 512;
+	}
+	return stat;
+}
+
+/**
+ * omap_calcuate_ecc - Generate non-inverted ECC bytes.
+ * @mtd: MTD device structure
+ * @dat: The pointer to data on which ecc is computed
+ * @ecc_code: The ecc_code buffer
+ *
+ * Using noninverted ECC can be considered ugly since writing a blank
+ * page ie. padding will clear the ECC bytes. This is no problem as long
+ * nobody is trying to write data on the seemingly unused page. Reading
+ * an erased page will produce an ECC mismatch between generated and read
+ * ECC bytes that has to be dealt with separately.
+ */
+static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+				u_char *ecc_code)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	u32 val;
+
+	val = readl(info->reg.gpmc_ecc_config);
+	if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs)
+		return -EINVAL;
+
+	/* read ecc result */
+	val = readl(info->reg.gpmc_ecc1_result);
+	*ecc_code++ = val;          /* P128e, ..., P1e */
+	*ecc_code++ = val >> 16;    /* P128o, ..., P1o */
+	/* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
+	*ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0);
+
+	return 0;
+}
+
+/**
+ * omap_enable_hwecc - This function enables the hardware ecc functionality
+ * @mtd: MTD device structure
+ * @mode: Read/Write mode
+ */
+static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
+	u32 val;
+
+	/* clear ecc and enable bits */
+	val = ECCCLEAR | ECC1;
+	writel(val, info->reg.gpmc_ecc_control);
+
+	/* program ecc and result sizes */
+	val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
+			 ECC1RESULTSIZE);
+	writel(val, info->reg.gpmc_ecc_size_config);
+
+	switch (mode) {
+	case NAND_ECC_READ:
+	case NAND_ECC_WRITE:
+		writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
+		break;
+	case NAND_ECC_READSYN:
+		writel(ECCCLEAR, info->reg.gpmc_ecc_control);
+		break;
+	default:
+		dev_info(&info->pdev->dev,
+			"error: unrecognized Mode[%d]!\n", mode);
+		break;
+	}
+
+	/* (ECC 16 or 8 bit col) | ( CS  )  | ECC Enable */
+	val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1);
+	writel(val, info->reg.gpmc_ecc_config);
+}
+
+/**
+ * omap_wait - wait until the command is done
+ * @mtd: MTD device structure
+ * @chip: NAND Chip structure
+ *
+ * Wait function is called during Program and erase operations and
+ * the way it is called from MTD layer, we should wait till the NAND
+ * chip is ready after the programming/erase operation has completed.
+ *
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ */
+static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	unsigned long timeo = jiffies;
+	int status, state = this->state;
+
+	if (state == FL_ERASING)
+		timeo += msecs_to_jiffies(400);
+	else
+		timeo += msecs_to_jiffies(20);
+
+	writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command);
+	while (time_before(jiffies, timeo)) {
+		status = readb(info->reg.gpmc_nand_data);
+		if (status & NAND_STATUS_READY)
+			break;
+		cond_resched();
+	}
+
+	status = readb(info->reg.gpmc_nand_data);
+	return status;
+}
+
+/**
+ * omap_dev_ready - checks the NAND Ready GPIO line
+ * @mtd: MTD device structure
+ *
+ * Returns true if ready and false if busy.
+ */
+static int omap_dev_ready(struct mtd_info *mtd)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+
+	return gpiod_get_value(info->ready_gpiod);
+}
+
+/**
+ * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
+ * @mtd: MTD device structure
+ * @mode: Read/Write mode
+ *
+ * When using BCH with SW correction (i.e. no ELM), sector size is set
+ * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
+ * for both reading and writing with:
+ * eccsize0 = 0  (no additional protected byte in spare area)
+ * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
+ */
+static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode)
+{
+	unsigned int bch_type;
+	unsigned int dev_width, nsectors;
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	enum omap_ecc ecc_opt = info->ecc_opt;
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	u32 val, wr_mode;
+	unsigned int ecc_size1, ecc_size0;
+
+	/* GPMC configurations for calculating ECC */
+	switch (ecc_opt) {
+	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+		bch_type = 0;
+		nsectors = 1;
+		wr_mode	  = BCH_WRAPMODE_6;
+		ecc_size0 = BCH_ECC_SIZE0;
+		ecc_size1 = BCH_ECC_SIZE1;
+		break;
+	case OMAP_ECC_BCH4_CODE_HW:
+		bch_type = 0;
+		nsectors = chip->ecc.steps;
+		if (mode == NAND_ECC_READ) {
+			wr_mode	  = BCH_WRAPMODE_1;
+			ecc_size0 = BCH4R_ECC_SIZE0;
+			ecc_size1 = BCH4R_ECC_SIZE1;
+		} else {
+			wr_mode   = BCH_WRAPMODE_6;
+			ecc_size0 = BCH_ECC_SIZE0;
+			ecc_size1 = BCH_ECC_SIZE1;
+		}
+		break;
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+		bch_type = 1;
+		nsectors = 1;
+		wr_mode	  = BCH_WRAPMODE_6;
+		ecc_size0 = BCH_ECC_SIZE0;
+		ecc_size1 = BCH_ECC_SIZE1;
+		break;
+	case OMAP_ECC_BCH8_CODE_HW:
+		bch_type = 1;
+		nsectors = chip->ecc.steps;
+		if (mode == NAND_ECC_READ) {
+			wr_mode	  = BCH_WRAPMODE_1;
+			ecc_size0 = BCH8R_ECC_SIZE0;
+			ecc_size1 = BCH8R_ECC_SIZE1;
+		} else {
+			wr_mode   = BCH_WRAPMODE_6;
+			ecc_size0 = BCH_ECC_SIZE0;
+			ecc_size1 = BCH_ECC_SIZE1;
+		}
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		bch_type = 0x2;
+		nsectors = chip->ecc.steps;
+		if (mode == NAND_ECC_READ) {
+			wr_mode	  = 0x01;
+			ecc_size0 = 52; /* ECC bits in nibbles per sector */
+			ecc_size1 = 0;  /* non-ECC bits in nibbles per sector */
+		} else {
+			wr_mode	  = 0x01;
+			ecc_size0 = 0;  /* extra bits in nibbles per sector */
+			ecc_size1 = 52; /* OOB bits in nibbles per sector */
+		}
+		break;
+	default:
+		return;
+	}
+
+	writel(ECC1, info->reg.gpmc_ecc_control);
+
+	/* Configure ecc size for BCH */
+	val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
+	writel(val, info->reg.gpmc_ecc_size_config);
+
+	dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
+
+	/* BCH configuration */
+	val = ((1                        << 16) | /* enable BCH */
+	       (bch_type		 << 12) | /* BCH4/BCH8/BCH16 */
+	       (wr_mode                  <<  8) | /* wrap mode */
+	       (dev_width                <<  7) | /* bus width */
+	       (((nsectors-1) & 0x7)     <<  4) | /* number of sectors */
+	       (info->gpmc_cs            <<  1) | /* ECC CS */
+	       (0x1));                            /* enable ECC */
+
+	writel(val, info->reg.gpmc_ecc_config);
+
+	/* Clear ecc and enable bits */
+	writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control);
+}
+
+static u8  bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
+static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
+				0x97, 0x79, 0xe5, 0x24, 0xb5};
+
+/**
+ * _omap_calculate_ecc_bch - Generate ECC bytes for one sector
+ * @mtd:	MTD device structure
+ * @dat:	The pointer to data on which ecc is computed
+ * @ecc_code:	The ecc_code buffer
+ * @i:		The sector number (for a multi sector page)
+ *
+ * Support calculating of BCH4/8/16 ECC vectors for one sector
+ * within a page. Sector number is in @i.
+ */
+static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
+				   const u_char *dat, u_char *ecc_calc, int i)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	int eccbytes	= info->nand.ecc.bytes;
+	struct gpmc_nand_regs	*gpmc_regs = &info->reg;
+	u8 *ecc_code;
+	unsigned long bch_val1, bch_val2, bch_val3, bch_val4;
+	u32 val;
+	int j;
+
+	ecc_code = ecc_calc;
+	switch (info->ecc_opt) {
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+	case OMAP_ECC_BCH8_CODE_HW:
+		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
+		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
+		bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]);
+		bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]);
+		*ecc_code++ = (bch_val4 & 0xFF);
+		*ecc_code++ = ((bch_val3 >> 24) & 0xFF);
+		*ecc_code++ = ((bch_val3 >> 16) & 0xFF);
+		*ecc_code++ = ((bch_val3 >> 8) & 0xFF);
+		*ecc_code++ = (bch_val3 & 0xFF);
+		*ecc_code++ = ((bch_val2 >> 24) & 0xFF);
+		*ecc_code++ = ((bch_val2 >> 16) & 0xFF);
+		*ecc_code++ = ((bch_val2 >> 8) & 0xFF);
+		*ecc_code++ = (bch_val2 & 0xFF);
+		*ecc_code++ = ((bch_val1 >> 24) & 0xFF);
+		*ecc_code++ = ((bch_val1 >> 16) & 0xFF);
+		*ecc_code++ = ((bch_val1 >> 8) & 0xFF);
+		*ecc_code++ = (bch_val1 & 0xFF);
+		break;
+	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+	case OMAP_ECC_BCH4_CODE_HW:
+		bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]);
+		bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]);
+		*ecc_code++ = ((bch_val2 >> 12) & 0xFF);
+		*ecc_code++ = ((bch_val2 >> 4) & 0xFF);
+		*ecc_code++ = ((bch_val2 & 0xF) << 4) |
+			((bch_val1 >> 28) & 0xF);
+		*ecc_code++ = ((bch_val1 >> 20) & 0xFF);
+		*ecc_code++ = ((bch_val1 >> 12) & 0xFF);
+		*ecc_code++ = ((bch_val1 >> 4) & 0xFF);
+		*ecc_code++ = ((bch_val1 & 0xF) << 4);
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		val = readl(gpmc_regs->gpmc_bch_result6[i]);
+		ecc_code[0]  = ((val >>  8) & 0xFF);
+		ecc_code[1]  = ((val >>  0) & 0xFF);
+		val = readl(gpmc_regs->gpmc_bch_result5[i]);
+		ecc_code[2]  = ((val >> 24) & 0xFF);
+		ecc_code[3]  = ((val >> 16) & 0xFF);
+		ecc_code[4]  = ((val >>  8) & 0xFF);
+		ecc_code[5]  = ((val >>  0) & 0xFF);
+		val = readl(gpmc_regs->gpmc_bch_result4[i]);
+		ecc_code[6]  = ((val >> 24) & 0xFF);
+		ecc_code[7]  = ((val >> 16) & 0xFF);
+		ecc_code[8]  = ((val >>  8) & 0xFF);
+		ecc_code[9]  = ((val >>  0) & 0xFF);
+		val = readl(gpmc_regs->gpmc_bch_result3[i]);
+		ecc_code[10] = ((val >> 24) & 0xFF);
+		ecc_code[11] = ((val >> 16) & 0xFF);
+		ecc_code[12] = ((val >>  8) & 0xFF);
+		ecc_code[13] = ((val >>  0) & 0xFF);
+		val = readl(gpmc_regs->gpmc_bch_result2[i]);
+		ecc_code[14] = ((val >> 24) & 0xFF);
+		ecc_code[15] = ((val >> 16) & 0xFF);
+		ecc_code[16] = ((val >>  8) & 0xFF);
+		ecc_code[17] = ((val >>  0) & 0xFF);
+		val = readl(gpmc_regs->gpmc_bch_result1[i]);
+		ecc_code[18] = ((val >> 24) & 0xFF);
+		ecc_code[19] = ((val >> 16) & 0xFF);
+		ecc_code[20] = ((val >>  8) & 0xFF);
+		ecc_code[21] = ((val >>  0) & 0xFF);
+		val = readl(gpmc_regs->gpmc_bch_result0[i]);
+		ecc_code[22] = ((val >> 24) & 0xFF);
+		ecc_code[23] = ((val >> 16) & 0xFF);
+		ecc_code[24] = ((val >>  8) & 0xFF);
+		ecc_code[25] = ((val >>  0) & 0xFF);
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	/* ECC scheme specific syndrome customizations */
+	switch (info->ecc_opt) {
+	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+		/* Add constant polynomial to remainder, so that
+		 * ECC of blank pages results in 0x0 on reading back
+		 */
+		for (j = 0; j < eccbytes; j++)
+			ecc_calc[j] ^= bch4_polynomial[j];
+		break;
+	case OMAP_ECC_BCH4_CODE_HW:
+		/* Set  8th ECC byte as 0x0 for ROM compatibility */
+		ecc_calc[eccbytes - 1] = 0x0;
+		break;
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+		/* Add constant polynomial to remainder, so that
+		 * ECC of blank pages results in 0x0 on reading back
+		 */
+		for (j = 0; j < eccbytes; j++)
+			ecc_calc[j] ^= bch8_polynomial[j];
+		break;
+	case OMAP_ECC_BCH8_CODE_HW:
+		/* Set 14th ECC byte as 0x0 for ROM compatibility */
+		ecc_calc[eccbytes - 1] = 0x0;
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/**
+ * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
+ * @mtd:	MTD device structure
+ * @dat:	The pointer to data on which ecc is computed
+ * @ecc_code:	The ecc_code buffer
+ *
+ * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
+ * when SW based correction is required as ECC is required for one sector
+ * at a time.
+ */
+static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd,
+				     const u_char *dat, u_char *ecc_calc)
+{
+	return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
+}
+
+/**
+ * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
+ * @mtd:	MTD device structure
+ * @dat:	The pointer to data on which ecc is computed
+ * @ecc_code:	The ecc_code buffer
+ *
+ * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
+ */
+static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
+					const u_char *dat, u_char *ecc_calc)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	int eccbytes = info->nand.ecc.bytes;
+	unsigned long nsectors;
+	int i, ret;
+
+	nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1;
+	for (i = 0; i < nsectors; i++) {
+		ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
+		if (ret)
+			return ret;
+
+		ecc_calc += eccbytes;
+	}
+
+	return 0;
+}
+
+/**
+ * erased_sector_bitflips - count bit flips
+ * @data:	data sector buffer
+ * @oob:	oob buffer
+ * @info:	omap_nand_info
+ *
+ * Check the bit flips in erased page falls below correctable level.
+ * If falls below, report the page as erased with correctable bit
+ * flip, else report as uncorrectable page.
+ */
+static int erased_sector_bitflips(u_char *data, u_char *oob,
+		struct omap_nand_info *info)
+{
+	int flip_bits = 0, i;
+
+	for (i = 0; i < info->nand.ecc.size; i++) {
+		flip_bits += hweight8(~data[i]);
+		if (flip_bits > info->nand.ecc.strength)
+			return 0;
+	}
+
+	for (i = 0; i < info->nand.ecc.bytes - 1; i++) {
+		flip_bits += hweight8(~oob[i]);
+		if (flip_bits > info->nand.ecc.strength)
+			return 0;
+	}
+
+	/*
+	 * Bit flips falls in correctable level.
+	 * Fill data area with 0xFF
+	 */
+	if (flip_bits) {
+		memset(data, 0xFF, info->nand.ecc.size);
+		memset(oob, 0xFF, info->nand.ecc.bytes);
+	}
+
+	return flip_bits;
+}
+
+/**
+ * omap_elm_correct_data - corrects page data area in case error reported
+ * @mtd:	MTD device structure
+ * @data:	page data
+ * @read_ecc:	ecc read from nand flash
+ * @calc_ecc:	ecc read from HW ECC registers
+ *
+ * Calculated ecc vector reported as zero in case of non-error pages.
+ * In case of non-zero ecc vector, first filter out erased-pages, and
+ * then process data via ELM to detect bit-flips.
+ */
+static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
+				u_char *read_ecc, u_char *calc_ecc)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct nand_ecc_ctrl *ecc = &info->nand.ecc;
+	int eccsteps = info->nand.ecc.steps;
+	int i , j, stat = 0;
+	int eccflag, actual_eccbytes;
+	struct elm_errorvec err_vec[ERROR_VECTOR_MAX];
+	u_char *ecc_vec = calc_ecc;
+	u_char *spare_ecc = read_ecc;
+	u_char *erased_ecc_vec;
+	u_char *buf;
+	int bitflip_count;
+	bool is_error_reported = false;
+	u32 bit_pos, byte_pos, error_max, pos;
+	int err;
+
+	switch (info->ecc_opt) {
+	case OMAP_ECC_BCH4_CODE_HW:
+		/* omit  7th ECC byte reserved for ROM code compatibility */
+		actual_eccbytes = ecc->bytes - 1;
+		erased_ecc_vec = bch4_vector;
+		break;
+	case OMAP_ECC_BCH8_CODE_HW:
+		/* omit 14th ECC byte reserved for ROM code compatibility */
+		actual_eccbytes = ecc->bytes - 1;
+		erased_ecc_vec = bch8_vector;
+		break;
+	case OMAP_ECC_BCH16_CODE_HW:
+		actual_eccbytes = ecc->bytes;
+		erased_ecc_vec = bch16_vector;
+		break;
+	default:
+		dev_err(&info->pdev->dev, "invalid driver configuration\n");
+		return -EINVAL;
+	}
+
+	/* Initialize elm error vector to zero */
+	memset(err_vec, 0, sizeof(err_vec));
+
+	for (i = 0; i < eccsteps ; i++) {
+		eccflag = 0;	/* initialize eccflag */
+
+		/*
+		 * Check any error reported,
+		 * In case of error, non zero ecc reported.
+		 */
+		for (j = 0; j < actual_eccbytes; j++) {
+			if (calc_ecc[j] != 0) {
+				eccflag = 1; /* non zero ecc, error present */
+				break;
+			}
+		}
+
+		if (eccflag == 1) {
+			if (memcmp(calc_ecc, erased_ecc_vec,
+						actual_eccbytes) == 0) {
+				/*
+				 * calc_ecc[] matches pattern for ECC(all 0xff)
+				 * so this is definitely an erased-page
+				 */
+			} else {
+				buf = &data[info->nand.ecc.size * i];
+				/*
+				 * count number of 0-bits in read_buf.
+				 * This check can be removed once a similar
+				 * check is introduced in generic NAND driver
+				 */
+				bitflip_count = erased_sector_bitflips(
+						buf, read_ecc, info);
+				if (bitflip_count) {
+					/*
+					 * number of 0-bits within ECC limits
+					 * So this may be an erased-page
+					 */
+					stat += bitflip_count;
+				} else {
+					/*
+					 * Too many 0-bits. It may be a
+					 * - programmed-page, OR
+					 * - erased-page with many bit-flips
+					 * So this page requires check by ELM
+					 */
+					err_vec[i].error_reported = true;
+					is_error_reported = true;
+				}
+			}
+		}
+
+		/* Update the ecc vector */
+		calc_ecc += ecc->bytes;
+		read_ecc += ecc->bytes;
+	}
+
+	/* Check if any error reported */
+	if (!is_error_reported)
+		return stat;
+
+	/* Decode BCH error using ELM module */
+	elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec);
+
+	err = 0;
+	for (i = 0; i < eccsteps; i++) {
+		if (err_vec[i].error_uncorrectable) {
+			dev_err(&info->pdev->dev,
+				"uncorrectable bit-flips found\n");
+			err = -EBADMSG;
+		} else if (err_vec[i].error_reported) {
+			for (j = 0; j < err_vec[i].error_count; j++) {
+				switch (info->ecc_opt) {
+				case OMAP_ECC_BCH4_CODE_HW:
+					/* Add 4 bits to take care of padding */
+					pos = err_vec[i].error_loc[j] +
+						BCH4_BIT_PAD;
+					break;
+				case OMAP_ECC_BCH8_CODE_HW:
+				case OMAP_ECC_BCH16_CODE_HW:
+					pos = err_vec[i].error_loc[j];
+					break;
+				default:
+					return -EINVAL;
+				}
+				error_max = (ecc->size + actual_eccbytes) * 8;
+				/* Calculate bit position of error */
+				bit_pos = pos % 8;
+
+				/* Calculate byte position of error */
+				byte_pos = (error_max - pos - 1) / 8;
+
+				if (pos < error_max) {
+					if (byte_pos < 512) {
+						pr_debug("bitflip@dat[%d]=%x\n",
+						     byte_pos, data[byte_pos]);
+						data[byte_pos] ^= 1 << bit_pos;
+					} else {
+						pr_debug("bitflip@oob[%d]=%x\n",
+							(byte_pos - 512),
+						     spare_ecc[byte_pos - 512]);
+						spare_ecc[byte_pos - 512] ^=
+							1 << bit_pos;
+					}
+				} else {
+					dev_err(&info->pdev->dev,
+						"invalid bit-flip @ %d:%d\n",
+						byte_pos, bit_pos);
+					err = -EBADMSG;
+				}
+			}
+		}
+
+		/* Update number of correctable errors */
+		stat += err_vec[i].error_count;
+
+		/* Update page data with sector size */
+		data += ecc->size;
+		spare_ecc += ecc->bytes;
+	}
+
+	return (err) ? err : stat;
+}
+
+/**
+ * omap_write_page_bch - BCH ecc based write page function for entire page
+ * @mtd:		mtd info structure
+ * @chip:		nand chip info structure
+ * @buf:		data buffer
+ * @oob_required:	must write chip->oob_poi to OOB
+ * @page:		page
+ *
+ * Custom write page method evolved to support multi sector writing in one shot
+ */
+static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
+			       const uint8_t *buf, int oob_required, int page)
+{
+	int ret;
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	/* Enable GPMC ecc engine */
+	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+	/* Write data */
+	chip->write_buf(mtd, buf, mtd->writesize);
+
+	/* Update ecc vector from GPMC result registers */
+	omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]);
+
+	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	/* Write ecc vector to OOB area */
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+/**
+ * omap_write_subpage_bch - BCH hardware ECC based subpage write
+ * @mtd:	mtd info structure
+ * @chip:	nand chip info structure
+ * @offset:	column address of subpage within the page
+ * @data_len:	data length
+ * @buf:	data buffer
+ * @oob_required: must write chip->oob_poi to OOB
+ * @page: page number to write
+ *
+ * OMAP optimized subpage write method.
+ */
+static int omap_write_subpage_bch(struct mtd_info *mtd,
+				  struct nand_chip *chip, u32 offset,
+				  u32 data_len, const u8 *buf,
+				  int oob_required, int page)
+{
+	u8 *ecc_calc = chip->ecc.calc_buf;
+	int ecc_size      = chip->ecc.size;
+	int ecc_bytes     = chip->ecc.bytes;
+	int ecc_steps     = chip->ecc.steps;
+	u32 start_step = offset / ecc_size;
+	u32 end_step   = (offset + data_len - 1) / ecc_size;
+	int step, ret = 0;
+
+	/*
+	 * Write entire page at one go as it would be optimal
+	 * as ECC is calculated by hardware.
+	 * ECC is calculated for all subpages but we choose
+	 * only what we want.
+	 */
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	/* Enable GPMC ECC engine */
+	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
+
+	/* Write data */
+	chip->write_buf(mtd, buf, mtd->writesize);
+
+	for (step = 0; step < ecc_steps; step++) {
+		/* mask ECC of un-touched subpages by padding 0xFF */
+		if (step < start_step || step > end_step)
+			memset(ecc_calc, 0xff, ecc_bytes);
+		else
+			ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step);
+
+		if (ret)
+			return ret;
+
+		buf += ecc_size;
+		ecc_calc += ecc_bytes;
+	}
+
+	/* copy calculated ECC for whole page to chip->buffer->oob */
+	/* this include masked-value(0xFF) for unwritten subpages */
+	ecc_calc = chip->ecc.calc_buf;
+	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	/* write OOB buffer to NAND device */
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return nand_prog_page_end_op(chip);
+}
+
+/**
+ * omap_read_page_bch - BCH ecc based page read function for entire page
+ * @mtd:		mtd info structure
+ * @chip:		nand chip info structure
+ * @buf:		buffer to store read data
+ * @oob_required:	caller requires OOB data read to chip->oob_poi
+ * @page:		page number to read
+ *
+ * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
+ * used for error correction.
+ * Custom method evolved to support ELM error correction & multi sector
+ * reading. On reading page data area is read along with OOB data with
+ * ecc engine enabled. ecc vector updated after read of OOB data.
+ * For non error pages ecc vector reported as zero.
+ */
+static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	uint8_t *ecc_calc = chip->ecc.calc_buf;
+	uint8_t *ecc_code = chip->ecc.code_buf;
+	int stat, ret;
+	unsigned int max_bitflips = 0;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	/* Enable GPMC ecc engine */
+	chip->ecc.hwctl(mtd, NAND_ECC_READ);
+
+	/* Read data */
+	chip->read_buf(mtd, buf, mtd->writesize);
+
+	/* Read oob bytes */
+	nand_change_read_column_op(chip,
+				   mtd->writesize + BADBLOCK_MARKER_LENGTH,
+				   chip->oob_poi + BADBLOCK_MARKER_LENGTH,
+				   chip->ecc.total, false);
+
+	/* Calculate ecc bytes */
+	omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
+
+	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+					 chip->ecc.total);
+	if (ret)
+		return ret;
+
+	stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc);
+
+	if (stat < 0) {
+		mtd->ecc_stats.failed++;
+	} else {
+		mtd->ecc_stats.corrected += stat;
+		max_bitflips = max_t(unsigned int, max_bitflips, stat);
+	}
+
+	return max_bitflips;
+}
+
+/**
+ * is_elm_present - checks for presence of ELM module by scanning DT nodes
+ * @omap_nand_info: NAND device structure containing platform data
+ */
+static bool is_elm_present(struct omap_nand_info *info,
+			   struct device_node *elm_node)
+{
+	struct platform_device *pdev;
+
+	/* check whether elm-id is passed via DT */
+	if (!elm_node) {
+		dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
+		return false;
+	}
+	pdev = of_find_device_by_node(elm_node);
+	/* check whether ELM device is registered */
+	if (!pdev) {
+		dev_err(&info->pdev->dev, "ELM device not found\n");
+		return false;
+	}
+	/* ELM module available, now configure it */
+	info->elm_dev = &pdev->dev;
+	return true;
+}
+
+static bool omap2_nand_ecc_check(struct omap_nand_info *info)
+{
+	bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
+
+	switch (info->ecc_opt) {
+	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+		ecc_needs_omap_bch = false;
+		ecc_needs_bch = true;
+		ecc_needs_elm = false;
+		break;
+	case OMAP_ECC_BCH4_CODE_HW:
+	case OMAP_ECC_BCH8_CODE_HW:
+	case OMAP_ECC_BCH16_CODE_HW:
+		ecc_needs_omap_bch = true;
+		ecc_needs_bch = false;
+		ecc_needs_elm = true;
+		break;
+	default:
+		ecc_needs_omap_bch = false;
+		ecc_needs_bch = false;
+		ecc_needs_elm = false;
+		break;
+	}
+
+	if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
+		dev_err(&info->pdev->dev,
+			"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
+		return false;
+	}
+	if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
+		dev_err(&info->pdev->dev,
+			"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
+		return false;
+	}
+	if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) {
+		dev_err(&info->pdev->dev, "ELM not available\n");
+		return false;
+	}
+
+	return true;
+}
+
+static const char * const nand_xfer_types[] = {
+	[NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled",
+	[NAND_OMAP_POLLED] = "polled",
+	[NAND_OMAP_PREFETCH_DMA] = "prefetch-dma",
+	[NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq",
+};
+
+static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info)
+{
+	struct device_node *child = dev->of_node;
+	int i;
+	const char *s;
+	u32 cs;
+
+	if (of_property_read_u32(child, "reg", &cs) < 0) {
+		dev_err(dev, "reg not found in DT\n");
+		return -EINVAL;
+	}
+
+	info->gpmc_cs = cs;
+
+	/* detect availability of ELM module. Won't be present pre-OMAP4 */
+	info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0);
+	if (!info->elm_of_node) {
+		info->elm_of_node = of_parse_phandle(child, "elm_id", 0);
+		if (!info->elm_of_node)
+			dev_dbg(dev, "ti,elm-id not in DT\n");
+	}
+
+	/* select ecc-scheme for NAND */
+	if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) {
+		dev_err(dev, "ti,nand-ecc-opt not found\n");
+		return -EINVAL;
+	}
+
+	if (!strcmp(s, "sw")) {
+		info->ecc_opt = OMAP_ECC_HAM1_CODE_SW;
+	} else if (!strcmp(s, "ham1") ||
+		   !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) {
+		info->ecc_opt =	OMAP_ECC_HAM1_CODE_HW;
+	} else if (!strcmp(s, "bch4")) {
+		if (info->elm_of_node)
+			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW;
+		else
+			info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW;
+	} else if (!strcmp(s, "bch8")) {
+		if (info->elm_of_node)
+			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW;
+		else
+			info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW;
+	} else if (!strcmp(s, "bch16")) {
+		info->ecc_opt =	OMAP_ECC_BCH16_CODE_HW;
+	} else {
+		dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n");
+		return -EINVAL;
+	}
+
+	/* select data transfer mode */
+	if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) {
+		for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) {
+			if (!strcasecmp(s, nand_xfer_types[i])) {
+				info->xfer_type = i;
+				return 0;
+			}
+		}
+
+		dev_err(dev, "unrecognized value for ti,nand-xfer-type\n");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int omap_ooblayout_ecc(struct mtd_info *mtd, int section,
+			      struct mtd_oob_region *oobregion)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct nand_chip *chip = &info->nand;
+	int off = BADBLOCK_MARKER_LENGTH;
+
+	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
+	    !(chip->options & NAND_BUSWIDTH_16))
+		off = 1;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = off;
+	oobregion->length = chip->ecc.total;
+
+	return 0;
+}
+
+static int omap_ooblayout_free(struct mtd_info *mtd, int section,
+			       struct mtd_oob_region *oobregion)
+{
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct nand_chip *chip = &info->nand;
+	int off = BADBLOCK_MARKER_LENGTH;
+
+	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW &&
+	    !(chip->options & NAND_BUSWIDTH_16))
+		off = 1;
+
+	if (section)
+		return -ERANGE;
+
+	off += chip->ecc.total;
+	if (off >= mtd->oobsize)
+		return -ERANGE;
+
+	oobregion->offset = off;
+	oobregion->length = mtd->oobsize - off;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops omap_ooblayout_ops = {
+	.ecc = omap_ooblayout_ecc,
+	.free = omap_ooblayout_free,
+};
+
+static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int off = BADBLOCK_MARKER_LENGTH;
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	/*
+	 * When SW correction is employed, one OMAP specific marker byte is
+	 * reserved after each ECC step.
+	 */
+	oobregion->offset = off + (section * (chip->ecc.bytes + 1));
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int off = BADBLOCK_MARKER_LENGTH;
+
+	if (section)
+		return -ERANGE;
+
+	/*
+	 * When SW correction is employed, one OMAP specific marker byte is
+	 * reserved after each ECC step.
+	 */
+	off += ((chip->ecc.bytes + 1) * chip->ecc.steps);
+	if (off >= mtd->oobsize)
+		return -ERANGE;
+
+	oobregion->offset = off;
+	oobregion->length = mtd->oobsize - off;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = {
+	.ecc = omap_sw_ooblayout_ecc,
+	.free = omap_sw_ooblayout_free,
+};
+
+static int omap_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	struct device *dev = &info->pdev->dev;
+	int min_oobbytes = BADBLOCK_MARKER_LENGTH;
+	int oobbytes_per_step;
+	dma_cap_mask_t mask;
+	int err;
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+	else
+		chip->options |= NAND_SKIP_BBTSCAN;
+
+	/* Re-populate low-level callbacks based on xfer modes */
+	switch (info->xfer_type) {
+	case NAND_OMAP_PREFETCH_POLLED:
+		chip->read_buf = omap_read_buf_pref;
+		chip->write_buf = omap_write_buf_pref;
+		break;
+
+	case NAND_OMAP_POLLED:
+		/* Use nand_base defaults for {read,write}_buf */
+		break;
+
+	case NAND_OMAP_PREFETCH_DMA:
+		dma_cap_zero(mask);
+		dma_cap_set(DMA_SLAVE, mask);
+		info->dma = dma_request_chan(dev, "rxtx");
+
+		if (IS_ERR(info->dma)) {
+			dev_err(dev, "DMA engine request failed\n");
+			return PTR_ERR(info->dma);
+		} else {
+			struct dma_slave_config cfg;
+
+			memset(&cfg, 0, sizeof(cfg));
+			cfg.src_addr = info->phys_base;
+			cfg.dst_addr = info->phys_base;
+			cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+			cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+			cfg.src_maxburst = 16;
+			cfg.dst_maxburst = 16;
+			err = dmaengine_slave_config(info->dma, &cfg);
+			if (err) {
+				dev_err(dev,
+					"DMA engine slave config failed: %d\n",
+					err);
+				return err;
+			}
+			chip->read_buf = omap_read_buf_dma_pref;
+			chip->write_buf = omap_write_buf_dma_pref;
+		}
+		break;
+
+	case NAND_OMAP_PREFETCH_IRQ:
+		info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
+		if (info->gpmc_irq_fifo <= 0) {
+			dev_err(dev, "Error getting fifo IRQ\n");
+			return -ENODEV;
+		}
+		err = devm_request_irq(dev, info->gpmc_irq_fifo,
+				       omap_nand_irq, IRQF_SHARED,
+				       "gpmc-nand-fifo", info);
+		if (err) {
+			dev_err(dev, "Requesting IRQ %d, error %d\n",
+				info->gpmc_irq_fifo, err);
+			info->gpmc_irq_fifo = 0;
+			return err;
+		}
+
+		info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
+		if (info->gpmc_irq_count <= 0) {
+			dev_err(dev, "Error getting IRQ count\n");
+			return -ENODEV;
+		}
+		err = devm_request_irq(dev, info->gpmc_irq_count,
+				       omap_nand_irq, IRQF_SHARED,
+				       "gpmc-nand-count", info);
+		if (err) {
+			dev_err(dev, "Requesting IRQ %d, error %d\n",
+				info->gpmc_irq_count, err);
+			info->gpmc_irq_count = 0;
+			return err;
+		}
+
+		chip->read_buf = omap_read_buf_irq_pref;
+		chip->write_buf = omap_write_buf_irq_pref;
+
+		break;
+
+	default:
+		dev_err(dev, "xfer_type %d not supported!\n", info->xfer_type);
+		return -EINVAL;
+	}
+
+	if (!omap2_nand_ecc_check(info))
+		return -EINVAL;
+
+	/*
+	 * Bail out earlier to let NAND_ECC_SOFT code create its own
+	 * ooblayout instead of using ours.
+	 */
+	if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) {
+		chip->ecc.mode = NAND_ECC_SOFT;
+		chip->ecc.algo = NAND_ECC_HAMMING;
+		return 0;
+	}
+
+	/* Populate MTD interface based on ECC scheme */
+	switch (info->ecc_opt) {
+	case OMAP_ECC_HAM1_CODE_HW:
+		dev_info(dev, "nand: using OMAP_ECC_HAM1_CODE_HW\n");
+		chip->ecc.mode		= NAND_ECC_HW;
+		chip->ecc.bytes		= 3;
+		chip->ecc.size		= 512;
+		chip->ecc.strength	= 1;
+		chip->ecc.calculate	= omap_calculate_ecc;
+		chip->ecc.hwctl		= omap_enable_hwecc;
+		chip->ecc.correct	= omap_correct_data;
+		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+		oobbytes_per_step	= chip->ecc.bytes;
+
+		if (!(chip->options & NAND_BUSWIDTH_16))
+			min_oobbytes	= 1;
+
+		break;
+
+	case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
+		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
+		chip->ecc.mode		= NAND_ECC_HW;
+		chip->ecc.size		= 512;
+		chip->ecc.bytes		= 7;
+		chip->ecc.strength	= 4;
+		chip->ecc.hwctl		= omap_enable_hwecc_bch;
+		chip->ecc.correct	= nand_bch_correct_data;
+		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
+		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
+		/* Reserve one byte for the OMAP marker */
+		oobbytes_per_step	= chip->ecc.bytes + 1;
+		/* Software BCH library is used for locating errors */
+		chip->ecc.priv		= nand_bch_init(mtd);
+		if (!chip->ecc.priv) {
+			dev_err(dev, "Unable to use BCH library\n");
+			return -EINVAL;
+		}
+		break;
+
+	case OMAP_ECC_BCH4_CODE_HW:
+		pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
+		chip->ecc.mode		= NAND_ECC_HW;
+		chip->ecc.size		= 512;
+		/* 14th bit is kept reserved for ROM-code compatibility */
+		chip->ecc.bytes		= 7 + 1;
+		chip->ecc.strength	= 4;
+		chip->ecc.hwctl		= omap_enable_hwecc_bch;
+		chip->ecc.correct	= omap_elm_correct_data;
+		chip->ecc.read_page	= omap_read_page_bch;
+		chip->ecc.write_page	= omap_write_page_bch;
+		chip->ecc.write_subpage	= omap_write_subpage_bch;
+		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+		oobbytes_per_step	= chip->ecc.bytes;
+
+		err = elm_config(info->elm_dev, BCH4_ECC,
+				 mtd->writesize / chip->ecc.size,
+				 chip->ecc.size, chip->ecc.bytes);
+		if (err < 0)
+			return err;
+		break;
+
+	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
+		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
+		chip->ecc.mode		= NAND_ECC_HW;
+		chip->ecc.size		= 512;
+		chip->ecc.bytes		= 13;
+		chip->ecc.strength	= 8;
+		chip->ecc.hwctl		= omap_enable_hwecc_bch;
+		chip->ecc.correct	= nand_bch_correct_data;
+		chip->ecc.calculate	= omap_calculate_ecc_bch_sw;
+		mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
+		/* Reserve one byte for the OMAP marker */
+		oobbytes_per_step	= chip->ecc.bytes + 1;
+		/* Software BCH library is used for locating errors */
+		chip->ecc.priv		= nand_bch_init(mtd);
+		if (!chip->ecc.priv) {
+			dev_err(dev, "unable to use BCH library\n");
+			return -EINVAL;
+		}
+		break;
+
+	case OMAP_ECC_BCH8_CODE_HW:
+		pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
+		chip->ecc.mode		= NAND_ECC_HW;
+		chip->ecc.size		= 512;
+		/* 14th bit is kept reserved for ROM-code compatibility */
+		chip->ecc.bytes		= 13 + 1;
+		chip->ecc.strength	= 8;
+		chip->ecc.hwctl		= omap_enable_hwecc_bch;
+		chip->ecc.correct	= omap_elm_correct_data;
+		chip->ecc.read_page	= omap_read_page_bch;
+		chip->ecc.write_page	= omap_write_page_bch;
+		chip->ecc.write_subpage	= omap_write_subpage_bch;
+		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+		oobbytes_per_step	= chip->ecc.bytes;
+
+		err = elm_config(info->elm_dev, BCH8_ECC,
+				 mtd->writesize / chip->ecc.size,
+				 chip->ecc.size, chip->ecc.bytes);
+		if (err < 0)
+			return err;
+
+		break;
+
+	case OMAP_ECC_BCH16_CODE_HW:
+		pr_info("Using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
+		chip->ecc.mode		= NAND_ECC_HW;
+		chip->ecc.size		= 512;
+		chip->ecc.bytes		= 26;
+		chip->ecc.strength	= 16;
+		chip->ecc.hwctl		= omap_enable_hwecc_bch;
+		chip->ecc.correct	= omap_elm_correct_data;
+		chip->ecc.read_page	= omap_read_page_bch;
+		chip->ecc.write_page	= omap_write_page_bch;
+		chip->ecc.write_subpage	= omap_write_subpage_bch;
+		mtd_set_ooblayout(mtd, &omap_ooblayout_ops);
+		oobbytes_per_step	= chip->ecc.bytes;
+
+		err = elm_config(info->elm_dev, BCH16_ECC,
+				 mtd->writesize / chip->ecc.size,
+				 chip->ecc.size, chip->ecc.bytes);
+		if (err < 0)
+			return err;
+
+		break;
+	default:
+		dev_err(dev, "Invalid or unsupported ECC scheme\n");
+		return -EINVAL;
+	}
+
+	/* Check if NAND device's OOB is enough to store ECC signatures */
+	min_oobbytes += (oobbytes_per_step *
+			 (mtd->writesize / chip->ecc.size));
+	if (mtd->oobsize < min_oobbytes) {
+		dev_err(dev,
+			"Not enough OOB bytes: required = %d, available=%d\n",
+			min_oobbytes, mtd->oobsize);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops omap_nand_controller_ops = {
+	.attach_chip = omap_nand_attach_chip,
+};
+
+/* Shared among all NAND instances to synchronize access to the ECC Engine */
+static struct nand_controller omap_gpmc_controller = {
+	.lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock),
+	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq),
+	.ops = &omap_nand_controller_ops,
+};
+
+static int omap_nand_probe(struct platform_device *pdev)
+{
+	struct omap_nand_info		*info;
+	struct mtd_info			*mtd;
+	struct nand_chip		*nand_chip;
+	int				err;
+	struct resource			*res;
+	struct device			*dev = &pdev->dev;
+
+	info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info),
+				GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	info->pdev = pdev;
+
+	err = omap_get_dt_info(dev, info);
+	if (err)
+		return err;
+
+	info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs);
+	if (!info->ops) {
+		dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n");
+		return -ENODEV;
+	}
+
+	nand_chip		= &info->nand;
+	mtd			= nand_to_mtd(nand_chip);
+	mtd->dev.parent		= &pdev->dev;
+	nand_chip->ecc.priv	= NULL;
+	nand_set_flash_node(nand_chip, dev->of_node);
+
+	if (!mtd->name) {
+		mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
+					   "omap2-nand.%d", info->gpmc_cs);
+		if (!mtd->name) {
+			dev_err(&pdev->dev, "Failed to set MTD name\n");
+			return -ENOMEM;
+		}
+	}
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nand_chip->IO_ADDR_R))
+		return PTR_ERR(nand_chip->IO_ADDR_R);
+
+	info->phys_base = res->start;
+
+	nand_chip->controller = &omap_gpmc_controller;
+
+	nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R;
+	nand_chip->cmd_ctrl  = omap_hwcontrol;
+
+	info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb",
+						    GPIOD_IN);
+	if (IS_ERR(info->ready_gpiod)) {
+		dev_err(dev, "failed to get ready gpio\n");
+		return PTR_ERR(info->ready_gpiod);
+	}
+
+	/*
+	 * If RDY/BSY line is connected to OMAP then use the omap ready
+	 * function and the generic nand_wait function which reads the status
+	 * register after monitoring the RDY/BSY line. Otherwise use a standard
+	 * chip delay which is slightly more than tR (AC Timing) of the NAND
+	 * device and read status register until you get a failure or success
+	 */
+	if (info->ready_gpiod) {
+		nand_chip->dev_ready = omap_dev_ready;
+		nand_chip->chip_delay = 0;
+	} else {
+		nand_chip->waitfunc = omap_wait;
+		nand_chip->chip_delay = 50;
+	}
+
+	if (info->flash_bbt)
+		nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
+
+	/* scan NAND device connected to chip controller */
+	nand_chip->options |= info->devsize & NAND_BUSWIDTH_16;
+
+	err = nand_scan(mtd, 1);
+	if (err)
+		goto return_error;
+
+	err = mtd_device_register(mtd, NULL, 0);
+	if (err)
+		goto cleanup_nand;
+
+	platform_set_drvdata(pdev, mtd);
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(nand_chip);
+
+return_error:
+	if (!IS_ERR_OR_NULL(info->dma))
+		dma_release_channel(info->dma);
+	if (nand_chip->ecc.priv) {
+		nand_bch_free(nand_chip->ecc.priv);
+		nand_chip->ecc.priv = NULL;
+	}
+	return err;
+}
+
+static int omap_nand_remove(struct platform_device *pdev)
+{
+	struct mtd_info *mtd = platform_get_drvdata(pdev);
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct omap_nand_info *info = mtd_to_omap(mtd);
+	if (nand_chip->ecc.priv) {
+		nand_bch_free(nand_chip->ecc.priv);
+		nand_chip->ecc.priv = NULL;
+	}
+	if (info->dma)
+		dma_release_channel(info->dma);
+	nand_release(mtd);
+	return 0;
+}
+
+static const struct of_device_id omap_nand_ids[] = {
+	{ .compatible = "ti,omap2-nand", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, omap_nand_ids);
+
+static struct platform_driver omap_nand_driver = {
+	.probe		= omap_nand_probe,
+	.remove		= omap_nand_remove,
+	.driver		= {
+		.name	= DRIVER_NAME,
+		.of_match_table = of_match_ptr(omap_nand_ids),
+	},
+};
+
+module_platform_driver(omap_nand_driver);
+
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c
new file mode 100644
index 0000000..a3f32f9
--- /dev/null
+++ b/drivers/mtd/nand/raw/omap_elm.c
@@ -0,0 +1,578 @@
+/*
+ * Error Location Module
+ *
+ * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ */
+
+#define DRIVER_NAME	"omap-elm"
+
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/of.h>
+#include <linux/sched.h>
+#include <linux/pm_runtime.h>
+#include <linux/platform_data/elm.h>
+
+#define ELM_SYSCONFIG			0x010
+#define ELM_IRQSTATUS			0x018
+#define ELM_IRQENABLE			0x01c
+#define ELM_LOCATION_CONFIG		0x020
+#define ELM_PAGE_CTRL			0x080
+#define ELM_SYNDROME_FRAGMENT_0		0x400
+#define ELM_SYNDROME_FRAGMENT_1		0x404
+#define ELM_SYNDROME_FRAGMENT_2		0x408
+#define ELM_SYNDROME_FRAGMENT_3		0x40c
+#define ELM_SYNDROME_FRAGMENT_4		0x410
+#define ELM_SYNDROME_FRAGMENT_5		0x414
+#define ELM_SYNDROME_FRAGMENT_6		0x418
+#define ELM_LOCATION_STATUS		0x800
+#define ELM_ERROR_LOCATION_0		0x880
+
+/* ELM Interrupt Status Register */
+#define INTR_STATUS_PAGE_VALID		BIT(8)
+
+/* ELM Interrupt Enable Register */
+#define INTR_EN_PAGE_MASK		BIT(8)
+
+/* ELM Location Configuration Register */
+#define ECC_BCH_LEVEL_MASK		0x3
+
+/* ELM syndrome */
+#define ELM_SYNDROME_VALID		BIT(16)
+
+/* ELM_LOCATION_STATUS Register */
+#define ECC_CORRECTABLE_MASK		BIT(8)
+#define ECC_NB_ERRORS_MASK		0x1f
+
+/* ELM_ERROR_LOCATION_0-15 Registers */
+#define ECC_ERROR_LOCATION_MASK		0x1fff
+
+#define ELM_ECC_SIZE			0x7ff
+
+#define SYNDROME_FRAGMENT_REG_SIZE	0x40
+#define ERROR_LOCATION_SIZE		0x100
+
+struct elm_registers {
+	u32 elm_irqenable;
+	u32 elm_sysconfig;
+	u32 elm_location_config;
+	u32 elm_page_ctrl;
+	u32 elm_syndrome_fragment_6[ERROR_VECTOR_MAX];
+	u32 elm_syndrome_fragment_5[ERROR_VECTOR_MAX];
+	u32 elm_syndrome_fragment_4[ERROR_VECTOR_MAX];
+	u32 elm_syndrome_fragment_3[ERROR_VECTOR_MAX];
+	u32 elm_syndrome_fragment_2[ERROR_VECTOR_MAX];
+	u32 elm_syndrome_fragment_1[ERROR_VECTOR_MAX];
+	u32 elm_syndrome_fragment_0[ERROR_VECTOR_MAX];
+};
+
+struct elm_info {
+	struct device *dev;
+	void __iomem *elm_base;
+	struct completion elm_completion;
+	struct list_head list;
+	enum bch_ecc bch_type;
+	struct elm_registers elm_regs;
+	int ecc_steps;
+	int ecc_syndrome_size;
+};
+
+static LIST_HEAD(elm_devices);
+
+static void elm_write_reg(struct elm_info *info, int offset, u32 val)
+{
+	writel(val, info->elm_base + offset);
+}
+
+static u32 elm_read_reg(struct elm_info *info, int offset)
+{
+	return readl(info->elm_base + offset);
+}
+
+/**
+ * elm_config - Configure ELM module
+ * @dev:	ELM device
+ * @bch_type:	Type of BCH ecc
+ */
+int elm_config(struct device *dev, enum bch_ecc bch_type,
+	int ecc_steps, int ecc_step_size, int ecc_syndrome_size)
+{
+	u32 reg_val;
+	struct elm_info *info = dev_get_drvdata(dev);
+
+	if (!info) {
+		dev_err(dev, "Unable to configure elm - device not probed?\n");
+		return -EPROBE_DEFER;
+	}
+	/* ELM cannot detect ECC errors for chunks > 1KB */
+	if (ecc_step_size > ((ELM_ECC_SIZE + 1) / 2)) {
+		dev_err(dev, "unsupported config ecc-size=%d\n", ecc_step_size);
+		return -EINVAL;
+	}
+	/* ELM support 8 error syndrome process */
+	if (ecc_steps > ERROR_VECTOR_MAX) {
+		dev_err(dev, "unsupported config ecc-step=%d\n", ecc_steps);
+		return -EINVAL;
+	}
+
+	reg_val = (bch_type & ECC_BCH_LEVEL_MASK) | (ELM_ECC_SIZE << 16);
+	elm_write_reg(info, ELM_LOCATION_CONFIG, reg_val);
+	info->bch_type		= bch_type;
+	info->ecc_steps		= ecc_steps;
+	info->ecc_syndrome_size	= ecc_syndrome_size;
+
+	return 0;
+}
+EXPORT_SYMBOL(elm_config);
+
+/**
+ * elm_configure_page_mode - Enable/Disable page mode
+ * @info:	elm info
+ * @index:	index number of syndrome fragment vector
+ * @enable:	enable/disable flag for page mode
+ *
+ * Enable page mode for syndrome fragment index
+ */
+static void elm_configure_page_mode(struct elm_info *info, int index,
+		bool enable)
+{
+	u32 reg_val;
+
+	reg_val = elm_read_reg(info, ELM_PAGE_CTRL);
+	if (enable)
+		reg_val |= BIT(index);	/* enable page mode */
+	else
+		reg_val &= ~BIT(index);	/* disable page mode */
+
+	elm_write_reg(info, ELM_PAGE_CTRL, reg_val);
+}
+
+/**
+ * elm_load_syndrome - Load ELM syndrome reg
+ * @info:	elm info
+ * @err_vec:	elm error vectors
+ * @ecc:	buffer with calculated ecc
+ *
+ * Load syndrome fragment registers with calculated ecc in reverse order.
+ */
+static void elm_load_syndrome(struct elm_info *info,
+		struct elm_errorvec *err_vec, u8 *ecc)
+{
+	int i, offset;
+	u32 val;
+
+	for (i = 0; i < info->ecc_steps; i++) {
+
+		/* Check error reported */
+		if (err_vec[i].error_reported) {
+			elm_configure_page_mode(info, i, true);
+			offset = ELM_SYNDROME_FRAGMENT_0 +
+				SYNDROME_FRAGMENT_REG_SIZE * i;
+			switch (info->bch_type) {
+			case BCH8_ECC:
+				/* syndrome fragment 0 = ecc[9-12B] */
+				val = cpu_to_be32(*(u32 *) &ecc[9]);
+				elm_write_reg(info, offset, val);
+
+				/* syndrome fragment 1 = ecc[5-8B] */
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[5]);
+				elm_write_reg(info, offset, val);
+
+				/* syndrome fragment 2 = ecc[1-4B] */
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[1]);
+				elm_write_reg(info, offset, val);
+
+				/* syndrome fragment 3 = ecc[0B] */
+				offset += 4;
+				val = ecc[0];
+				elm_write_reg(info, offset, val);
+				break;
+			case BCH4_ECC:
+				/* syndrome fragment 0 = ecc[20-52b] bits */
+				val = (cpu_to_be32(*(u32 *) &ecc[3]) >> 4) |
+					((ecc[2] & 0xf) << 28);
+				elm_write_reg(info, offset, val);
+
+				/* syndrome fragment 1 = ecc[0-20b] bits */
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12;
+				elm_write_reg(info, offset, val);
+				break;
+			case BCH16_ECC:
+				val = cpu_to_be32(*(u32 *) &ecc[22]);
+				elm_write_reg(info, offset, val);
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[18]);
+				elm_write_reg(info, offset, val);
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[14]);
+				elm_write_reg(info, offset, val);
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[10]);
+				elm_write_reg(info, offset, val);
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[6]);
+				elm_write_reg(info, offset, val);
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[2]);
+				elm_write_reg(info, offset, val);
+				offset += 4;
+				val = cpu_to_be32(*(u32 *) &ecc[0]) >> 16;
+				elm_write_reg(info, offset, val);
+				break;
+			default:
+				pr_err("invalid config bch_type\n");
+			}
+		}
+
+		/* Update ecc pointer with ecc byte size */
+		ecc += info->ecc_syndrome_size;
+	}
+}
+
+/**
+ * elm_start_processing - start elm syndrome processing
+ * @info:	elm info
+ * @err_vec:	elm error vectors
+ *
+ * Set syndrome valid bit for syndrome fragment registers for which
+ * elm syndrome fragment registers are loaded. This enables elm module
+ * to start processing syndrome vectors.
+ */
+static void elm_start_processing(struct elm_info *info,
+		struct elm_errorvec *err_vec)
+{
+	int i, offset;
+	u32 reg_val;
+
+	/*
+	 * Set syndrome vector valid, so that ELM module
+	 * will process it for vectors error is reported
+	 */
+	for (i = 0; i < info->ecc_steps; i++) {
+		if (err_vec[i].error_reported) {
+			offset = ELM_SYNDROME_FRAGMENT_6 +
+				SYNDROME_FRAGMENT_REG_SIZE * i;
+			reg_val = elm_read_reg(info, offset);
+			reg_val |= ELM_SYNDROME_VALID;
+			elm_write_reg(info, offset, reg_val);
+		}
+	}
+}
+
+/**
+ * elm_error_correction - locate correctable error position
+ * @info:	elm info
+ * @err_vec:	elm error vectors
+ *
+ * On completion of processing by elm module, error location status
+ * register updated with correctable/uncorrectable error information.
+ * In case of correctable errors, number of errors located from
+ * elm location status register & read the positions from
+ * elm error location register.
+ */
+static void elm_error_correction(struct elm_info *info,
+		struct elm_errorvec *err_vec)
+{
+	int i, j, errors = 0;
+	int offset;
+	u32 reg_val;
+
+	for (i = 0; i < info->ecc_steps; i++) {
+
+		/* Check error reported */
+		if (err_vec[i].error_reported) {
+			offset = ELM_LOCATION_STATUS + ERROR_LOCATION_SIZE * i;
+			reg_val = elm_read_reg(info, offset);
+
+			/* Check correctable error or not */
+			if (reg_val & ECC_CORRECTABLE_MASK) {
+				offset = ELM_ERROR_LOCATION_0 +
+					ERROR_LOCATION_SIZE * i;
+
+				/* Read count of correctable errors */
+				err_vec[i].error_count = reg_val &
+					ECC_NB_ERRORS_MASK;
+
+				/* Update the error locations in error vector */
+				for (j = 0; j < err_vec[i].error_count; j++) {
+
+					reg_val = elm_read_reg(info, offset);
+					err_vec[i].error_loc[j] = reg_val &
+						ECC_ERROR_LOCATION_MASK;
+
+					/* Update error location register */
+					offset += 4;
+				}
+
+				errors += err_vec[i].error_count;
+			} else {
+				err_vec[i].error_uncorrectable = true;
+			}
+
+			/* Clearing interrupts for processed error vectors */
+			elm_write_reg(info, ELM_IRQSTATUS, BIT(i));
+
+			/* Disable page mode */
+			elm_configure_page_mode(info, i, false);
+		}
+	}
+}
+
+/**
+ * elm_decode_bch_error_page - Locate error position
+ * @dev:	device pointer
+ * @ecc_calc:	calculated ECC bytes from GPMC
+ * @err_vec:	elm error vectors
+ *
+ * Called with one or more error reported vectors & vectors with
+ * error reported is updated in err_vec[].error_reported
+ */
+void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc,
+		struct elm_errorvec *err_vec)
+{
+	struct elm_info *info = dev_get_drvdata(dev);
+	u32 reg_val;
+
+	/* Enable page mode interrupt */
+	reg_val = elm_read_reg(info, ELM_IRQSTATUS);
+	elm_write_reg(info, ELM_IRQSTATUS, reg_val & INTR_STATUS_PAGE_VALID);
+	elm_write_reg(info, ELM_IRQENABLE, INTR_EN_PAGE_MASK);
+
+	/* Load valid ecc byte to syndrome fragment register */
+	elm_load_syndrome(info, err_vec, ecc_calc);
+
+	/* Enable syndrome processing for which syndrome fragment is updated */
+	elm_start_processing(info, err_vec);
+
+	/* Wait for ELM module to finish locating error correction */
+	wait_for_completion(&info->elm_completion);
+
+	/* Disable page mode interrupt */
+	reg_val = elm_read_reg(info, ELM_IRQENABLE);
+	elm_write_reg(info, ELM_IRQENABLE, reg_val & ~INTR_EN_PAGE_MASK);
+	elm_error_correction(info, err_vec);
+}
+EXPORT_SYMBOL(elm_decode_bch_error_page);
+
+static irqreturn_t elm_isr(int this_irq, void *dev_id)
+{
+	u32 reg_val;
+	struct elm_info *info = dev_id;
+
+	reg_val = elm_read_reg(info, ELM_IRQSTATUS);
+
+	/* All error vectors processed */
+	if (reg_val & INTR_STATUS_PAGE_VALID) {
+		elm_write_reg(info, ELM_IRQSTATUS,
+				reg_val & INTR_STATUS_PAGE_VALID);
+		complete(&info->elm_completion);
+		return IRQ_HANDLED;
+	}
+
+	return IRQ_NONE;
+}
+
+static int elm_probe(struct platform_device *pdev)
+{
+	int ret = 0;
+	struct resource *res, *irq;
+	struct elm_info *info;
+
+	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+
+	info->dev = &pdev->dev;
+
+	irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
+	if (!irq) {
+		dev_err(&pdev->dev, "no irq resource defined\n");
+		return -ENODEV;
+	}
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	info->elm_base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(info->elm_base))
+		return PTR_ERR(info->elm_base);
+
+	ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0,
+			pdev->name, info);
+	if (ret) {
+		dev_err(&pdev->dev, "failure requesting %pr\n", irq);
+		return ret;
+	}
+
+	pm_runtime_enable(&pdev->dev);
+	if (pm_runtime_get_sync(&pdev->dev) < 0) {
+		ret = -EINVAL;
+		pm_runtime_disable(&pdev->dev);
+		dev_err(&pdev->dev, "can't enable clock\n");
+		return ret;
+	}
+
+	init_completion(&info->elm_completion);
+	INIT_LIST_HEAD(&info->list);
+	list_add(&info->list, &elm_devices);
+	platform_set_drvdata(pdev, info);
+	return ret;
+}
+
+static int elm_remove(struct platform_device *pdev)
+{
+	pm_runtime_put_sync(&pdev->dev);
+	pm_runtime_disable(&pdev->dev);
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+/**
+ * elm_context_save
+ * saves ELM configurations to preserve them across Hardware powered-down
+ */
+static int elm_context_save(struct elm_info *info)
+{
+	struct elm_registers *regs = &info->elm_regs;
+	enum bch_ecc bch_type = info->bch_type;
+	u32 offset = 0, i;
+
+	regs->elm_irqenable       = elm_read_reg(info, ELM_IRQENABLE);
+	regs->elm_sysconfig       = elm_read_reg(info, ELM_SYSCONFIG);
+	regs->elm_location_config = elm_read_reg(info, ELM_LOCATION_CONFIG);
+	regs->elm_page_ctrl       = elm_read_reg(info, ELM_PAGE_CTRL);
+	for (i = 0; i < ERROR_VECTOR_MAX; i++) {
+		offset = i * SYNDROME_FRAGMENT_REG_SIZE;
+		switch (bch_type) {
+		case BCH16_ECC:
+			regs->elm_syndrome_fragment_6[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_6 + offset);
+			regs->elm_syndrome_fragment_5[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_5 + offset);
+			regs->elm_syndrome_fragment_4[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_4 + offset);
+		case BCH8_ECC:
+			regs->elm_syndrome_fragment_3[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_3 + offset);
+			regs->elm_syndrome_fragment_2[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_2 + offset);
+		case BCH4_ECC:
+			regs->elm_syndrome_fragment_1[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_1 + offset);
+			regs->elm_syndrome_fragment_0[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_0 + offset);
+			break;
+		default:
+			return -EINVAL;
+		}
+		/* ELM SYNDROME_VALID bit in SYNDROME_FRAGMENT_6[] needs
+		 * to be saved for all BCH schemes*/
+		regs->elm_syndrome_fragment_6[i] = elm_read_reg(info,
+					ELM_SYNDROME_FRAGMENT_6 + offset);
+	}
+	return 0;
+}
+
+/**
+ * elm_context_restore
+ * writes configurations saved duing power-down back into ELM registers
+ */
+static int elm_context_restore(struct elm_info *info)
+{
+	struct elm_registers *regs = &info->elm_regs;
+	enum bch_ecc bch_type = info->bch_type;
+	u32 offset = 0, i;
+
+	elm_write_reg(info, ELM_IRQENABLE,	 regs->elm_irqenable);
+	elm_write_reg(info, ELM_SYSCONFIG,	 regs->elm_sysconfig);
+	elm_write_reg(info, ELM_LOCATION_CONFIG, regs->elm_location_config);
+	elm_write_reg(info, ELM_PAGE_CTRL,	 regs->elm_page_ctrl);
+	for (i = 0; i < ERROR_VECTOR_MAX; i++) {
+		offset = i * SYNDROME_FRAGMENT_REG_SIZE;
+		switch (bch_type) {
+		case BCH16_ECC:
+			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset,
+					regs->elm_syndrome_fragment_6[i]);
+			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset,
+					regs->elm_syndrome_fragment_5[i]);
+			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset,
+					regs->elm_syndrome_fragment_4[i]);
+		case BCH8_ECC:
+			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset,
+					regs->elm_syndrome_fragment_3[i]);
+			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset,
+					regs->elm_syndrome_fragment_2[i]);
+		case BCH4_ECC:
+			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset,
+					regs->elm_syndrome_fragment_1[i]);
+			elm_write_reg(info, ELM_SYNDROME_FRAGMENT_0 + offset,
+					regs->elm_syndrome_fragment_0[i]);
+			break;
+		default:
+			return -EINVAL;
+		}
+		/* ELM_SYNDROME_VALID bit to be set in last to trigger FSM */
+		elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset,
+					regs->elm_syndrome_fragment_6[i] &
+							 ELM_SYNDROME_VALID);
+	}
+	return 0;
+}
+
+static int elm_suspend(struct device *dev)
+{
+	struct elm_info *info = dev_get_drvdata(dev);
+	elm_context_save(info);
+	pm_runtime_put_sync(dev);
+	return 0;
+}
+
+static int elm_resume(struct device *dev)
+{
+	struct elm_info *info = dev_get_drvdata(dev);
+	pm_runtime_get_sync(dev);
+	elm_context_restore(info);
+	return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume);
+
+#ifdef CONFIG_OF
+static const struct of_device_id elm_of_match[] = {
+	{ .compatible = "ti,am3352-elm" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, elm_of_match);
+#endif
+
+static struct platform_driver elm_driver = {
+	.driver	= {
+		.name	= DRIVER_NAME,
+		.of_match_table = of_match_ptr(elm_of_match),
+		.pm	= &elm_pm_ops,
+	},
+	.probe	= elm_probe,
+	.remove	= elm_remove,
+};
+
+module_platform_driver(elm_driver);
+
+MODULE_DESCRIPTION("ELM driver for BCH error correction");
+MODULE_AUTHOR("Texas Instruments");
+MODULE_ALIAS("platform:" DRIVER_NAME);
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/orion_nand.c b/drivers/mtd/nand/raw/orion_nand.c
new file mode 100644
index 0000000..52d4352
--- /dev/null
+++ b/drivers/mtd/nand/raw/orion_nand.c
@@ -0,0 +1,229 @@
+/*
+ * NAND support for Marvell Orion SoC platforms
+ *
+ * Tzachi Perelstein <tzachi@marvell.com>
+ *
+ * This file is licensed under  the terms of the GNU General Public
+ * License version 2. This program is licensed "as is" without any
+ * warranty of any kind, whether express or implied.
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/sizes.h>
+#include <linux/platform_data/mtd-orion_nand.h>
+
+struct orion_nand_info {
+	struct nand_chip chip;
+	struct clk *clk;
+};
+
+static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	struct nand_chip *nc = mtd_to_nand(mtd);
+	struct orion_nand_data *board = nand_get_controller_data(nc);
+	u32 offs;
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		offs = (1 << board->cle);
+	else if (ctrl & NAND_ALE)
+		offs = (1 << board->ale);
+	else
+		return;
+
+	if (nc->options & NAND_BUSWIDTH_16)
+		offs <<= 1;
+
+	writeb(cmd, nc->IO_ADDR_W + offs);
+}
+
+static void orion_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	void __iomem *io_base = chip->IO_ADDR_R;
+#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ >= 5
+	uint64_t *buf64;
+#endif
+	int i = 0;
+
+	while (len && (unsigned long)buf & 7) {
+		*buf++ = readb(io_base);
+		len--;
+	}
+#if defined(__LINUX_ARM_ARCH__) && __LINUX_ARM_ARCH__ >= 5
+	buf64 = (uint64_t *)buf;
+	while (i < len/8) {
+		/*
+		 * Since GCC has no proper constraint (PR 43518)
+		 * force x variable to r2/r3 registers as ldrd instruction
+		 * requires first register to be even.
+		 */
+		register uint64_t x asm ("r2");
+
+		asm volatile ("ldrd\t%0, [%1]" : "=&r" (x) : "r" (io_base));
+		buf64[i++] = x;
+	}
+	i *= 8;
+#else
+	readsl(io_base, buf, len/4);
+	i = len / 4 * 4;
+#endif
+	while (i < len)
+		buf[i++] = readb(io_base);
+}
+
+static int __init orion_nand_probe(struct platform_device *pdev)
+{
+	struct orion_nand_info *info;
+	struct mtd_info *mtd;
+	struct nand_chip *nc;
+	struct orion_nand_data *board;
+	struct resource *res;
+	void __iomem *io_base;
+	int ret = 0;
+	u32 val = 0;
+
+	info = devm_kzalloc(&pdev->dev,
+			sizeof(struct orion_nand_info),
+			GFP_KERNEL);
+	if (!info)
+		return -ENOMEM;
+	nc = &info->chip;
+	mtd = nand_to_mtd(nc);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	io_base = devm_ioremap_resource(&pdev->dev, res);
+
+	if (IS_ERR(io_base))
+		return PTR_ERR(io_base);
+
+	if (pdev->dev.of_node) {
+		board = devm_kzalloc(&pdev->dev, sizeof(struct orion_nand_data),
+					GFP_KERNEL);
+		if (!board)
+			return -ENOMEM;
+		if (!of_property_read_u32(pdev->dev.of_node, "cle", &val))
+			board->cle = (u8)val;
+		else
+			board->cle = 0;
+		if (!of_property_read_u32(pdev->dev.of_node, "ale", &val))
+			board->ale = (u8)val;
+		else
+			board->ale = 1;
+		if (!of_property_read_u32(pdev->dev.of_node,
+						"bank-width", &val))
+			board->width = (u8)val * 8;
+		else
+			board->width = 8;
+		if (!of_property_read_u32(pdev->dev.of_node,
+						"chip-delay", &val))
+			board->chip_delay = (u8)val;
+	} else {
+		board = dev_get_platdata(&pdev->dev);
+	}
+
+	mtd->dev.parent = &pdev->dev;
+
+	nand_set_controller_data(nc, board);
+	nand_set_flash_node(nc, pdev->dev.of_node);
+	nc->IO_ADDR_R = nc->IO_ADDR_W = io_base;
+	nc->cmd_ctrl = orion_nand_cmd_ctrl;
+	nc->read_buf = orion_nand_read_buf;
+	nc->ecc.mode = NAND_ECC_SOFT;
+	nc->ecc.algo = NAND_ECC_HAMMING;
+
+	if (board->chip_delay)
+		nc->chip_delay = board->chip_delay;
+
+	WARN(board->width > 16,
+		"%d bit bus width out of range",
+		board->width);
+
+	if (board->width == 16)
+		nc->options |= NAND_BUSWIDTH_16;
+
+	platform_set_drvdata(pdev, info);
+
+	/* Not all platforms can gate the clock, so it is not
+	   an error if the clock does not exists. */
+	info->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(info->clk)) {
+		ret = PTR_ERR(info->clk);
+		if (ret == -ENOENT) {
+			info->clk = NULL;
+		} else {
+			dev_err(&pdev->dev, "failed to get clock!\n");
+			return ret;
+		}
+	}
+
+	ret = clk_prepare_enable(info->clk);
+	if (ret) {
+		dev_err(&pdev->dev, "failed to prepare clock!\n");
+		return ret;
+	}
+
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		goto no_dev;
+
+	mtd->name = "orion_nand";
+	ret = mtd_device_register(mtd, board->parts, board->nr_parts);
+	if (ret) {
+		nand_release(mtd);
+		goto no_dev;
+	}
+
+	return 0;
+
+no_dev:
+	clk_disable_unprepare(info->clk);
+	return ret;
+}
+
+static int orion_nand_remove(struct platform_device *pdev)
+{
+	struct orion_nand_info *info = platform_get_drvdata(pdev);
+	struct nand_chip *chip = &info->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	nand_release(mtd);
+
+	clk_disable_unprepare(info->clk);
+
+	return 0;
+}
+
+#ifdef CONFIG_OF
+static const struct of_device_id orion_nand_of_match_table[] = {
+	{ .compatible = "marvell,orion-nand", },
+	{},
+};
+MODULE_DEVICE_TABLE(of, orion_nand_of_match_table);
+#endif
+
+static struct platform_driver orion_nand_driver = {
+	.remove		= orion_nand_remove,
+	.driver		= {
+		.name	= "orion_nand",
+		.of_match_table = of_match_ptr(orion_nand_of_match_table),
+	},
+};
+
+module_platform_driver_probe(orion_nand_driver, orion_nand_probe);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Tzachi Perelstein");
+MODULE_DESCRIPTION("NAND glue for Orion platforms");
+MODULE_ALIAS("platform:orion_nand");
diff --git a/drivers/mtd/nand/raw/oxnas_nand.c b/drivers/mtd/nand/raw/oxnas_nand.c
new file mode 100644
index 0000000..01b00bb
--- /dev/null
+++ b/drivers/mtd/nand/raw/oxnas_nand.c
@@ -0,0 +1,206 @@
+/*
+ * Oxford Semiconductor OXNAS NAND driver
+
+ * Copyright (C) 2016 Neil Armstrong <narmstrong@baylibre.com>
+ * Heavily based on plat_nand.c :
+ * Author: Vitaly Wool <vitalywool@gmail.com>
+ * Copyright (C) 2013 Ma Haijun <mahaijuns@gmail.com>
+ * Copyright (C) 2012 John Crispin <blogic@openwrt.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/clk.h>
+#include <linux/reset.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+
+/* Nand commands */
+#define OXNAS_NAND_CMD_ALE		BIT(18)
+#define OXNAS_NAND_CMD_CLE		BIT(19)
+
+#define OXNAS_NAND_MAX_CHIPS	1
+
+struct oxnas_nand_ctrl {
+	struct nand_controller base;
+	void __iomem *io_base;
+	struct clk *clk;
+	struct nand_chip *chips[OXNAS_NAND_MAX_CHIPS];
+};
+
+static uint8_t oxnas_nand_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
+
+	return readb(oxnas->io_base);
+}
+
+static void oxnas_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
+
+	ioread8_rep(oxnas->io_base, buf, len);
+}
+
+static void oxnas_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
+
+	iowrite8_rep(oxnas->io_base, buf, len);
+}
+
+/* Single CS command control */
+static void oxnas_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+				unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip);
+
+	if (ctrl & NAND_CLE)
+		writeb(cmd, oxnas->io_base + OXNAS_NAND_CMD_CLE);
+	else if (ctrl & NAND_ALE)
+		writeb(cmd, oxnas->io_base + OXNAS_NAND_CMD_ALE);
+}
+
+/*
+ * Probe for the NAND device.
+ */
+static int oxnas_nand_probe(struct platform_device *pdev)
+{
+	struct device_node *np = pdev->dev.of_node;
+	struct device_node *nand_np;
+	struct oxnas_nand_ctrl *oxnas;
+	struct nand_chip *chip;
+	struct mtd_info *mtd;
+	struct resource *res;
+	int nchips = 0;
+	int count = 0;
+	int err = 0;
+
+	/* Allocate memory for the device structure (and zero it) */
+	oxnas = devm_kzalloc(&pdev->dev, sizeof(*oxnas),
+			     GFP_KERNEL);
+	if (!oxnas)
+		return -ENOMEM;
+
+	nand_controller_init(&oxnas->base);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	oxnas->io_base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(oxnas->io_base))
+		return PTR_ERR(oxnas->io_base);
+
+	oxnas->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(oxnas->clk))
+		oxnas->clk = NULL;
+
+	/* Only a single chip node is supported */
+	count = of_get_child_count(np);
+	if (count > 1)
+		return -EINVAL;
+
+	err = clk_prepare_enable(oxnas->clk);
+	if (err)
+		return err;
+
+	device_reset_optional(&pdev->dev);
+
+	for_each_child_of_node(np, nand_np) {
+		chip = devm_kzalloc(&pdev->dev, sizeof(struct nand_chip),
+				    GFP_KERNEL);
+		if (!chip) {
+			err = -ENOMEM;
+			goto err_clk_unprepare;
+		}
+
+		chip->controller = &oxnas->base;
+
+		nand_set_flash_node(chip, nand_np);
+		nand_set_controller_data(chip, oxnas);
+
+		mtd = nand_to_mtd(chip);
+		mtd->dev.parent = &pdev->dev;
+		mtd->priv = chip;
+
+		chip->cmd_ctrl = oxnas_nand_cmd_ctrl;
+		chip->read_buf = oxnas_nand_read_buf;
+		chip->read_byte = oxnas_nand_read_byte;
+		chip->write_buf = oxnas_nand_write_buf;
+		chip->chip_delay = 30;
+
+		/* Scan to find existence of the device */
+		err = nand_scan(mtd, 1);
+		if (err)
+			goto err_clk_unprepare;
+
+		err = mtd_device_register(mtd, NULL, 0);
+		if (err) {
+			nand_release(mtd);
+			goto err_clk_unprepare;
+		}
+
+		oxnas->chips[nchips] = chip;
+		++nchips;
+	}
+
+	/* Exit if no chips found */
+	if (!nchips) {
+		err = -ENODEV;
+		goto err_clk_unprepare;
+	}
+
+	platform_set_drvdata(pdev, oxnas);
+
+	return 0;
+
+err_clk_unprepare:
+	clk_disable_unprepare(oxnas->clk);
+	return err;
+}
+
+static int oxnas_nand_remove(struct platform_device *pdev)
+{
+	struct oxnas_nand_ctrl *oxnas = platform_get_drvdata(pdev);
+
+	if (oxnas->chips[0])
+		nand_release(nand_to_mtd(oxnas->chips[0]));
+
+	clk_disable_unprepare(oxnas->clk);
+
+	return 0;
+}
+
+static const struct of_device_id oxnas_nand_match[] = {
+	{ .compatible = "oxsemi,ox820-nand" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, oxnas_nand_match);
+
+static struct platform_driver oxnas_nand_driver = {
+	.probe	= oxnas_nand_probe,
+	.remove	= oxnas_nand_remove,
+	.driver	= {
+		.name		= "oxnas_nand",
+		.of_match_table = oxnas_nand_match,
+	},
+};
+
+module_platform_driver(oxnas_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>");
+MODULE_DESCRIPTION("Oxnas NAND driver");
+MODULE_ALIAS("platform:oxnas_nand");
diff --git a/drivers/mtd/nand/raw/pasemi_nand.c b/drivers/mtd/nand/raw/pasemi_nand.c
new file mode 100644
index 0000000..a47a7e4
--- /dev/null
+++ b/drivers/mtd/nand/raw/pasemi_nand.c
@@ -0,0 +1,232 @@
+/*
+ * Copyright (C) 2006-2007 PA Semi, Inc
+ *
+ * Author: Egor Martovetsky <egor@pasemi.com>
+ * Maintained by: Olof Johansson <olof@lixom.net>
+ *
+ * Driver for the PWRficient onchip NAND flash interface
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+ */
+
+#undef DEBUG
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/pci.h>
+
+#include <asm/io.h>
+
+#define LBICTRL_LPCCTL_NR		0x00004000
+#define CLE_PIN_CTL			15
+#define ALE_PIN_CTL			14
+
+static unsigned int lpcctl;
+static struct mtd_info *pasemi_nand_mtd;
+static const char driver_name[] = "pasemi-nand";
+
+static void pasemi_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	while (len > 0x800) {
+		memcpy_fromio(buf, chip->IO_ADDR_R, 0x800);
+		buf += 0x800;
+		len -= 0x800;
+	}
+	memcpy_fromio(buf, chip->IO_ADDR_R, len);
+}
+
+static void pasemi_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	while (len > 0x800) {
+		memcpy_toio(chip->IO_ADDR_R, buf, 0x800);
+		buf += 0x800;
+		len -= 0x800;
+	}
+	memcpy_toio(chip->IO_ADDR_R, buf, len);
+}
+
+static void pasemi_hwcontrol(struct mtd_info *mtd, int cmd,
+			     unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		out_8(chip->IO_ADDR_W + (1 << CLE_PIN_CTL), cmd);
+	else
+		out_8(chip->IO_ADDR_W + (1 << ALE_PIN_CTL), cmd);
+
+	/* Push out posted writes */
+	eieio();
+	inl(lpcctl);
+}
+
+int pasemi_device_ready(struct mtd_info *mtd)
+{
+	return !!(inl(lpcctl) & LBICTRL_LPCCTL_NR);
+}
+
+static int pasemi_nand_probe(struct platform_device *ofdev)
+{
+	struct device *dev = &ofdev->dev;
+	struct pci_dev *pdev;
+	struct device_node *np = dev->of_node;
+	struct resource res;
+	struct nand_chip *chip;
+	int err = 0;
+
+	err = of_address_to_resource(np, 0, &res);
+
+	if (err)
+		return -EINVAL;
+
+	/* We only support one device at the moment */
+	if (pasemi_nand_mtd)
+		return -ENODEV;
+
+	dev_dbg(dev, "pasemi_nand at %pR\n", &res);
+
+	/* Allocate memory for MTD device structure and private data */
+	chip = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
+	if (!chip) {
+		err = -ENOMEM;
+		goto out;
+	}
+
+	pasemi_nand_mtd = nand_to_mtd(chip);
+
+	/* Link the private data with the MTD structure */
+	pasemi_nand_mtd->dev.parent = dev;
+
+	chip->IO_ADDR_R = of_iomap(np, 0);
+	chip->IO_ADDR_W = chip->IO_ADDR_R;
+
+	if (!chip->IO_ADDR_R) {
+		err = -EIO;
+		goto out_mtd;
+	}
+
+	pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa008, NULL);
+	if (!pdev) {
+		err = -ENODEV;
+		goto out_ior;
+	}
+
+	lpcctl = pci_resource_start(pdev, 0);
+	pci_dev_put(pdev);
+
+	if (!request_region(lpcctl, 4, driver_name)) {
+		err = -EBUSY;
+		goto out_ior;
+	}
+
+	chip->cmd_ctrl = pasemi_hwcontrol;
+	chip->dev_ready = pasemi_device_ready;
+	chip->read_buf = pasemi_read_buf;
+	chip->write_buf = pasemi_write_buf;
+	chip->chip_delay = 0;
+	chip->ecc.mode = NAND_ECC_SOFT;
+	chip->ecc.algo = NAND_ECC_HAMMING;
+
+	/* Enable the following for a flash based bad block table */
+	chip->bbt_options = NAND_BBT_USE_FLASH;
+
+	/* Scan to find existence of the device */
+	err = nand_scan(pasemi_nand_mtd, 1);
+	if (err)
+		goto out_lpc;
+
+	if (mtd_device_register(pasemi_nand_mtd, NULL, 0)) {
+		dev_err(dev, "Unable to register MTD device\n");
+		err = -ENODEV;
+		goto out_lpc;
+	}
+
+	dev_info(dev, "PA Semi NAND flash at %pR, control at I/O %x\n", &res,
+		 lpcctl);
+
+	return 0;
+
+ out_lpc:
+	release_region(lpcctl, 4);
+ out_ior:
+	iounmap(chip->IO_ADDR_R);
+ out_mtd:
+	kfree(chip);
+ out:
+	return err;
+}
+
+static int pasemi_nand_remove(struct platform_device *ofdev)
+{
+	struct nand_chip *chip;
+
+	if (!pasemi_nand_mtd)
+		return 0;
+
+	chip = mtd_to_nand(pasemi_nand_mtd);
+
+	/* Release resources, unregister device */
+	nand_release(pasemi_nand_mtd);
+
+	release_region(lpcctl, 4);
+
+	iounmap(chip->IO_ADDR_R);
+
+	/* Free the MTD device structure */
+	kfree(chip);
+
+	pasemi_nand_mtd = NULL;
+
+	return 0;
+}
+
+static const struct of_device_id pasemi_nand_match[] =
+{
+	{
+		.compatible   = "pasemi,localbus-nand",
+	},
+	{},
+};
+
+MODULE_DEVICE_TABLE(of, pasemi_nand_match);
+
+static struct platform_driver pasemi_nand_driver =
+{
+	.driver = {
+		.name = driver_name,
+		.of_match_table = pasemi_nand_match,
+	},
+	.probe		= pasemi_nand_probe,
+	.remove		= pasemi_nand_remove,
+};
+
+module_platform_driver(pasemi_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Egor Martovetsky <egor@pasemi.com>");
+MODULE_DESCRIPTION("NAND flash interface driver for PA Semi PWRficient");
diff --git a/drivers/mtd/nand/raw/plat_nand.c b/drivers/mtd/nand/raw/plat_nand.c
new file mode 100644
index 0000000..222626d
--- /dev/null
+++ b/drivers/mtd/nand/raw/plat_nand.c
@@ -0,0 +1,142 @@
+/*
+ * Generic NAND driver
+ *
+ * Author: Vitaly Wool <vitalywool@gmail.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+
+struct plat_nand_data {
+	struct nand_chip	chip;
+	void __iomem		*io_base;
+};
+
+/*
+ * Probe for the NAND device.
+ */
+static int plat_nand_probe(struct platform_device *pdev)
+{
+	struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev);
+	struct plat_nand_data *data;
+	struct mtd_info *mtd;
+	struct resource *res;
+	const char **part_types;
+	int err = 0;
+
+	if (!pdata) {
+		dev_err(&pdev->dev, "platform_nand_data is missing\n");
+		return -EINVAL;
+	}
+
+	if (pdata->chip.nr_chips < 1) {
+		dev_err(&pdev->dev, "invalid number of chips specified\n");
+		return -EINVAL;
+	}
+
+	/* Allocate memory for the device structure (and zero it) */
+	data = devm_kzalloc(&pdev->dev, sizeof(struct plat_nand_data),
+			    GFP_KERNEL);
+	if (!data)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	data->io_base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(data->io_base))
+		return PTR_ERR(data->io_base);
+
+	nand_set_flash_node(&data->chip, pdev->dev.of_node);
+	mtd = nand_to_mtd(&data->chip);
+	mtd->dev.parent = &pdev->dev;
+
+	data->chip.IO_ADDR_R = data->io_base;
+	data->chip.IO_ADDR_W = data->io_base;
+	data->chip.cmd_ctrl = pdata->ctrl.cmd_ctrl;
+	data->chip.dev_ready = pdata->ctrl.dev_ready;
+	data->chip.select_chip = pdata->ctrl.select_chip;
+	data->chip.write_buf = pdata->ctrl.write_buf;
+	data->chip.read_buf = pdata->ctrl.read_buf;
+	data->chip.chip_delay = pdata->chip.chip_delay;
+	data->chip.options |= pdata->chip.options;
+	data->chip.bbt_options |= pdata->chip.bbt_options;
+
+	data->chip.ecc.mode = NAND_ECC_SOFT;
+	data->chip.ecc.algo = NAND_ECC_HAMMING;
+
+	platform_set_drvdata(pdev, data);
+
+	/* Handle any platform specific setup */
+	if (pdata->ctrl.probe) {
+		err = pdata->ctrl.probe(pdev);
+		if (err)
+			goto out;
+	}
+
+	/* Scan to find existence of the device */
+	err = nand_scan(mtd, pdata->chip.nr_chips);
+	if (err)
+		goto out;
+
+	part_types = pdata->chip.part_probe_types;
+
+	err = mtd_device_parse_register(mtd, part_types, NULL,
+					pdata->chip.partitions,
+					pdata->chip.nr_partitions);
+
+	if (!err)
+		return err;
+
+	nand_release(mtd);
+out:
+	if (pdata->ctrl.remove)
+		pdata->ctrl.remove(pdev);
+	return err;
+}
+
+/*
+ * Remove a NAND device.
+ */
+static int plat_nand_remove(struct platform_device *pdev)
+{
+	struct plat_nand_data *data = platform_get_drvdata(pdev);
+	struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev);
+
+	nand_release(nand_to_mtd(&data->chip));
+	if (pdata->ctrl.remove)
+		pdata->ctrl.remove(pdev);
+
+	return 0;
+}
+
+static const struct of_device_id plat_nand_match[] = {
+	{ .compatible = "gen_nand" },
+	{},
+};
+MODULE_DEVICE_TABLE(of, plat_nand_match);
+
+static struct platform_driver plat_nand_driver = {
+	.probe	= plat_nand_probe,
+	.remove	= plat_nand_remove,
+	.driver	= {
+		.name		= "gen_nand",
+		.of_match_table = plat_nand_match,
+	},
+};
+
+module_platform_driver(plat_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Vitaly Wool");
+MODULE_DESCRIPTION("Simple generic NAND driver");
+MODULE_ALIAS("platform:gen_nand");
diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
new file mode 100644
index 0000000..8815f3e
--- /dev/null
+++ b/drivers/mtd/nand/raw/qcom_nandc.c
@@ -0,0 +1,3068 @@
+/*
+ * Copyright (c) 2016, The Linux Foundation. All rights reserved.
+ *
+ * This software is licensed under the terms of the GNU General Public
+ * License version 2, as published by the Free Software Foundation, and
+ * may be copied, distributed, and modified under those terms.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/clk.h>
+#include <linux/slab.h>
+#include <linux/bitops.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/delay.h>
+#include <linux/dma/qcom_bam_dma.h>
+#include <linux/dma-direct.h> /* XXX: drivers shall never use this directly! */
+
+/* NANDc reg offsets */
+#define	NAND_FLASH_CMD			0x00
+#define	NAND_ADDR0			0x04
+#define	NAND_ADDR1			0x08
+#define	NAND_FLASH_CHIP_SELECT		0x0c
+#define	NAND_EXEC_CMD			0x10
+#define	NAND_FLASH_STATUS		0x14
+#define	NAND_BUFFER_STATUS		0x18
+#define	NAND_DEV0_CFG0			0x20
+#define	NAND_DEV0_CFG1			0x24
+#define	NAND_DEV0_ECC_CFG		0x28
+#define	NAND_DEV1_ECC_CFG		0x2c
+#define	NAND_DEV1_CFG0			0x30
+#define	NAND_DEV1_CFG1			0x34
+#define	NAND_READ_ID			0x40
+#define	NAND_READ_STATUS		0x44
+#define	NAND_DEV_CMD0			0xa0
+#define	NAND_DEV_CMD1			0xa4
+#define	NAND_DEV_CMD2			0xa8
+#define	NAND_DEV_CMD_VLD		0xac
+#define	SFLASHC_BURST_CFG		0xe0
+#define	NAND_ERASED_CW_DETECT_CFG	0xe8
+#define	NAND_ERASED_CW_DETECT_STATUS	0xec
+#define	NAND_EBI2_ECC_BUF_CFG		0xf0
+#define	FLASH_BUF_ACC			0x100
+
+#define	NAND_CTRL			0xf00
+#define	NAND_VERSION			0xf08
+#define	NAND_READ_LOCATION_0		0xf20
+#define	NAND_READ_LOCATION_1		0xf24
+#define	NAND_READ_LOCATION_2		0xf28
+#define	NAND_READ_LOCATION_3		0xf2c
+
+/* dummy register offsets, used by write_reg_dma */
+#define	NAND_DEV_CMD1_RESTORE		0xdead
+#define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
+
+/* NAND_FLASH_CMD bits */
+#define	PAGE_ACC			BIT(4)
+#define	LAST_PAGE			BIT(5)
+
+/* NAND_FLASH_CHIP_SELECT bits */
+#define	NAND_DEV_SEL			0
+#define	DM_EN				BIT(2)
+
+/* NAND_FLASH_STATUS bits */
+#define	FS_OP_ERR			BIT(4)
+#define	FS_READY_BSY_N			BIT(5)
+#define	FS_MPU_ERR			BIT(8)
+#define	FS_DEVICE_STS_ERR		BIT(16)
+#define	FS_DEVICE_WP			BIT(23)
+
+/* NAND_BUFFER_STATUS bits */
+#define	BS_UNCORRECTABLE_BIT		BIT(8)
+#define	BS_CORRECTABLE_ERR_MSK		0x1f
+
+/* NAND_DEVn_CFG0 bits */
+#define	DISABLE_STATUS_AFTER_WRITE	4
+#define	CW_PER_PAGE			6
+#define	UD_SIZE_BYTES			9
+#define	ECC_PARITY_SIZE_BYTES_RS	19
+#define	SPARE_SIZE_BYTES		23
+#define	NUM_ADDR_CYCLES			27
+#define	STATUS_BFR_READ			30
+#define	SET_RD_MODE_AFTER_STATUS	31
+
+/* NAND_DEVn_CFG0 bits */
+#define	DEV0_CFG1_ECC_DISABLE		0
+#define	WIDE_FLASH			1
+#define	NAND_RECOVERY_CYCLES		2
+#define	CS_ACTIVE_BSY			5
+#define	BAD_BLOCK_BYTE_NUM		6
+#define	BAD_BLOCK_IN_SPARE_AREA		16
+#define	WR_RD_BSY_GAP			17
+#define	ENABLE_BCH_ECC			27
+
+/* NAND_DEV0_ECC_CFG bits */
+#define	ECC_CFG_ECC_DISABLE		0
+#define	ECC_SW_RESET			1
+#define	ECC_MODE			4
+#define	ECC_PARITY_SIZE_BYTES_BCH	8
+#define	ECC_NUM_DATA_BYTES		16
+#define	ECC_FORCE_CLK_OPEN		30
+
+/* NAND_DEV_CMD1 bits */
+#define	READ_ADDR			0
+
+/* NAND_DEV_CMD_VLD bits */
+#define	READ_START_VLD			BIT(0)
+#define	READ_STOP_VLD			BIT(1)
+#define	WRITE_START_VLD			BIT(2)
+#define	ERASE_START_VLD			BIT(3)
+#define	SEQ_READ_START_VLD		BIT(4)
+
+/* NAND_EBI2_ECC_BUF_CFG bits */
+#define	NUM_STEPS			0
+
+/* NAND_ERASED_CW_DETECT_CFG bits */
+#define	ERASED_CW_ECC_MASK		1
+#define	AUTO_DETECT_RES			0
+#define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
+#define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
+#define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
+#define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
+#define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
+
+/* NAND_ERASED_CW_DETECT_STATUS bits */
+#define	PAGE_ALL_ERASED			BIT(7)
+#define	CODEWORD_ALL_ERASED		BIT(6)
+#define	PAGE_ERASED			BIT(5)
+#define	CODEWORD_ERASED			BIT(4)
+#define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
+#define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
+
+/* NAND_READ_LOCATION_n bits */
+#define READ_LOCATION_OFFSET		0
+#define READ_LOCATION_SIZE		16
+#define READ_LOCATION_LAST		31
+
+/* Version Mask */
+#define	NAND_VERSION_MAJOR_MASK		0xf0000000
+#define	NAND_VERSION_MAJOR_SHIFT	28
+#define	NAND_VERSION_MINOR_MASK		0x0fff0000
+#define	NAND_VERSION_MINOR_SHIFT	16
+
+/* NAND OP_CMDs */
+#define	OP_PAGE_READ			0x2
+#define	OP_PAGE_READ_WITH_ECC		0x3
+#define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
+#define	OP_PROGRAM_PAGE			0x6
+#define	OP_PAGE_PROGRAM_WITH_ECC	0x7
+#define	OP_PROGRAM_PAGE_SPARE		0x9
+#define	OP_BLOCK_ERASE			0xa
+#define	OP_FETCH_ID			0xb
+#define	OP_RESET_DEVICE			0xd
+
+/* Default Value for NAND_DEV_CMD_VLD */
+#define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
+					 ERASE_START_VLD | SEQ_READ_START_VLD)
+
+/* NAND_CTRL bits */
+#define	BAM_MODE_EN			BIT(0)
+
+/*
+ * the NAND controller performs reads/writes with ECC in 516 byte chunks.
+ * the driver calls the chunks 'step' or 'codeword' interchangeably
+ */
+#define	NANDC_STEP_SIZE			512
+
+/*
+ * the largest page size we support is 8K, this will have 16 steps/codewords
+ * of 512 bytes each
+ */
+#define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
+
+/* we read at most 3 registers per codeword scan */
+#define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
+
+/* ECC modes supported by the controller */
+#define	ECC_NONE	BIT(0)
+#define	ECC_RS_4BIT	BIT(1)
+#define	ECC_BCH_4BIT	BIT(2)
+#define	ECC_BCH_8BIT	BIT(3)
+
+#define nandc_set_read_loc(nandc, reg, offset, size, is_last)	\
+nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,			\
+	      ((offset) << READ_LOCATION_OFFSET) |		\
+	      ((size) << READ_LOCATION_SIZE) |			\
+	      ((is_last) << READ_LOCATION_LAST))
+
+/*
+ * Returns the actual register address for all NAND_DEV_ registers
+ * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
+ */
+#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
+
+/* Returns the NAND register physical address */
+#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
+
+/* Returns the dma address for reg read buffer */
+#define reg_buf_dma_addr(chip, vaddr) \
+	((chip)->reg_read_dma + \
+	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
+
+#define QPIC_PER_CW_CMD_ELEMENTS	32
+#define QPIC_PER_CW_CMD_SGL		32
+#define QPIC_PER_CW_DATA_SGL		8
+
+#define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
+
+/*
+ * Flags used in DMA descriptor preparation helper functions
+ * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
+ */
+/* Don't set the EOT in current tx BAM sgl */
+#define NAND_BAM_NO_EOT			BIT(0)
+/* Set the NWD flag in current BAM sgl */
+#define NAND_BAM_NWD			BIT(1)
+/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
+#define NAND_BAM_NEXT_SGL		BIT(2)
+/*
+ * Erased codeword status is being used two times in single transfer so this
+ * flag will determine the current value of erased codeword status register
+ */
+#define NAND_ERASED_CW_SET		BIT(4)
+
+/*
+ * This data type corresponds to the BAM transaction which will be used for all
+ * NAND transfers.
+ * @bam_ce - the array of BAM command elements
+ * @cmd_sgl - sgl for NAND BAM command pipe
+ * @data_sgl - sgl for NAND BAM consumer/producer pipe
+ * @bam_ce_pos - the index in bam_ce which is available for next sgl
+ * @bam_ce_start - the index in bam_ce which marks the start position ce
+ *		   for current sgl. It will be used for size calculation
+ *		   for current sgl
+ * @cmd_sgl_pos - current index in command sgl.
+ * @cmd_sgl_start - start index in command sgl.
+ * @tx_sgl_pos - current index in data sgl for tx.
+ * @tx_sgl_start - start index in data sgl for tx.
+ * @rx_sgl_pos - current index in data sgl for rx.
+ * @rx_sgl_start - start index in data sgl for rx.
+ * @wait_second_completion - wait for second DMA desc completion before making
+ *			     the NAND transfer completion.
+ * @txn_done - completion for NAND transfer.
+ * @last_data_desc - last DMA desc in data channel (tx/rx).
+ * @last_cmd_desc - last DMA desc in command channel.
+ */
+struct bam_transaction {
+	struct bam_cmd_element *bam_ce;
+	struct scatterlist *cmd_sgl;
+	struct scatterlist *data_sgl;
+	u32 bam_ce_pos;
+	u32 bam_ce_start;
+	u32 cmd_sgl_pos;
+	u32 cmd_sgl_start;
+	u32 tx_sgl_pos;
+	u32 tx_sgl_start;
+	u32 rx_sgl_pos;
+	u32 rx_sgl_start;
+	bool wait_second_completion;
+	struct completion txn_done;
+	struct dma_async_tx_descriptor *last_data_desc;
+	struct dma_async_tx_descriptor *last_cmd_desc;
+};
+
+/*
+ * This data type corresponds to the nand dma descriptor
+ * @list - list for desc_info
+ * @dir - DMA transfer direction
+ * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
+ *	      ADM
+ * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
+ * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
+ * @dma_desc - low level DMA engine descriptor
+ */
+struct desc_info {
+	struct list_head node;
+
+	enum dma_data_direction dir;
+	union {
+		struct scatterlist adm_sgl;
+		struct {
+			struct scatterlist *bam_sgl;
+			int sgl_cnt;
+		};
+	};
+	struct dma_async_tx_descriptor *dma_desc;
+};
+
+/*
+ * holds the current register values that we want to write. acts as a contiguous
+ * chunk of memory which we use to write the controller registers through DMA.
+ */
+struct nandc_regs {
+	__le32 cmd;
+	__le32 addr0;
+	__le32 addr1;
+	__le32 chip_sel;
+	__le32 exec;
+
+	__le32 cfg0;
+	__le32 cfg1;
+	__le32 ecc_bch_cfg;
+
+	__le32 clrflashstatus;
+	__le32 clrreadstatus;
+
+	__le32 cmd1;
+	__le32 vld;
+
+	__le32 orig_cmd1;
+	__le32 orig_vld;
+
+	__le32 ecc_buf_cfg;
+	__le32 read_location0;
+	__le32 read_location1;
+	__le32 read_location2;
+	__le32 read_location3;
+
+	__le32 erased_cw_detect_cfg_clr;
+	__le32 erased_cw_detect_cfg_set;
+};
+
+/*
+ * NAND controller data struct
+ *
+ * @controller:			base controller structure
+ * @host_list:			list containing all the chips attached to the
+ *				controller
+ * @dev:			parent device
+ * @base:			MMIO base
+ * @base_phys:			physical base address of controller registers
+ * @base_dma:			dma base address of controller registers
+ * @core_clk:			controller clock
+ * @aon_clk:			another controller clock
+ *
+ * @chan:			dma channel
+ * @cmd_crci:			ADM DMA CRCI for command flow control
+ * @data_crci:			ADM DMA CRCI for data flow control
+ * @desc_list:			DMA descriptor list (list of desc_infos)
+ *
+ * @data_buffer:		our local DMA buffer for page read/writes,
+ *				used when we can't use the buffer provided
+ *				by upper layers directly
+ * @buf_size/count/start:	markers for chip->read_buf/write_buf functions
+ * @reg_read_buf:		local buffer for reading back registers via DMA
+ * @reg_read_dma:		contains dma address for register read buffer
+ * @reg_read_pos:		marker for data read in reg_read_buf
+ *
+ * @regs:			a contiguous chunk of memory for DMA register
+ *				writes. contains the register values to be
+ *				written to controller
+ * @cmd1/vld:			some fixed controller register values
+ * @props:			properties of current NAND controller,
+ *				initialized via DT match data
+ * @max_cwperpage:		maximum QPIC codewords required. calculated
+ *				from all connected NAND devices pagesize
+ */
+struct qcom_nand_controller {
+	struct nand_controller controller;
+	struct list_head host_list;
+
+	struct device *dev;
+
+	void __iomem *base;
+	phys_addr_t base_phys;
+	dma_addr_t base_dma;
+
+	struct clk *core_clk;
+	struct clk *aon_clk;
+
+	union {
+		/* will be used only by QPIC for BAM DMA */
+		struct {
+			struct dma_chan *tx_chan;
+			struct dma_chan *rx_chan;
+			struct dma_chan *cmd_chan;
+		};
+
+		/* will be used only by EBI2 for ADM DMA */
+		struct {
+			struct dma_chan *chan;
+			unsigned int cmd_crci;
+			unsigned int data_crci;
+		};
+	};
+
+	struct list_head desc_list;
+	struct bam_transaction *bam_txn;
+
+	u8		*data_buffer;
+	int		buf_size;
+	int		buf_count;
+	int		buf_start;
+	unsigned int	max_cwperpage;
+
+	__le32 *reg_read_buf;
+	dma_addr_t reg_read_dma;
+	int reg_read_pos;
+
+	struct nandc_regs *regs;
+
+	u32 cmd1, vld;
+	const struct qcom_nandc_props *props;
+};
+
+/*
+ * NAND chip structure
+ *
+ * @chip:			base NAND chip structure
+ * @node:			list node to add itself to host_list in
+ *				qcom_nand_controller
+ *
+ * @cs:				chip select value for this chip
+ * @cw_size:			the number of bytes in a single step/codeword
+ *				of a page, consisting of all data, ecc, spare
+ *				and reserved bytes
+ * @cw_data:			the number of bytes within a codeword protected
+ *				by ECC
+ * @use_ecc:			request the controller to use ECC for the
+ *				upcoming read/write
+ * @bch_enabled:		flag to tell whether BCH ECC mode is used
+ * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
+ *				chip
+ * @status:			value to be returned if NAND_CMD_STATUS command
+ *				is executed
+ * @last_command:		keeps track of last command on this chip. used
+ *				for reading correct status
+ *
+ * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
+ *				ecc/non-ecc mode for the current nand flash
+ *				device
+ */
+struct qcom_nand_host {
+	struct nand_chip chip;
+	struct list_head node;
+
+	int cs;
+	int cw_size;
+	int cw_data;
+	bool use_ecc;
+	bool bch_enabled;
+	int ecc_bytes_hw;
+	int spare_bytes;
+	int bbm_size;
+	u8 status;
+	int last_command;
+
+	u32 cfg0, cfg1;
+	u32 cfg0_raw, cfg1_raw;
+	u32 ecc_buf_cfg;
+	u32 ecc_bch_cfg;
+	u32 clrflashstatus;
+	u32 clrreadstatus;
+};
+
+/*
+ * This data type corresponds to the NAND controller properties which varies
+ * among different NAND controllers.
+ * @ecc_modes - ecc mode for NAND
+ * @is_bam - whether NAND controller is using BAM
+ * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
+ */
+struct qcom_nandc_props {
+	u32 ecc_modes;
+	bool is_bam;
+	u32 dev_cmd_reg_start;
+};
+
+/* Frees the BAM transaction memory */
+static void free_bam_transaction(struct qcom_nand_controller *nandc)
+{
+	struct bam_transaction *bam_txn = nandc->bam_txn;
+
+	devm_kfree(nandc->dev, bam_txn);
+}
+
+/* Allocates and Initializes the BAM transaction */
+static struct bam_transaction *
+alloc_bam_transaction(struct qcom_nand_controller *nandc)
+{
+	struct bam_transaction *bam_txn;
+	size_t bam_txn_size;
+	unsigned int num_cw = nandc->max_cwperpage;
+	void *bam_txn_buf;
+
+	bam_txn_size =
+		sizeof(*bam_txn) + num_cw *
+		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
+		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
+		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
+
+	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
+	if (!bam_txn_buf)
+		return NULL;
+
+	bam_txn = bam_txn_buf;
+	bam_txn_buf += sizeof(*bam_txn);
+
+	bam_txn->bam_ce = bam_txn_buf;
+	bam_txn_buf +=
+		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
+
+	bam_txn->cmd_sgl = bam_txn_buf;
+	bam_txn_buf +=
+		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
+
+	bam_txn->data_sgl = bam_txn_buf;
+
+	init_completion(&bam_txn->txn_done);
+
+	return bam_txn;
+}
+
+/* Clears the BAM transaction indexes */
+static void clear_bam_transaction(struct qcom_nand_controller *nandc)
+{
+	struct bam_transaction *bam_txn = nandc->bam_txn;
+
+	if (!nandc->props->is_bam)
+		return;
+
+	bam_txn->bam_ce_pos = 0;
+	bam_txn->bam_ce_start = 0;
+	bam_txn->cmd_sgl_pos = 0;
+	bam_txn->cmd_sgl_start = 0;
+	bam_txn->tx_sgl_pos = 0;
+	bam_txn->tx_sgl_start = 0;
+	bam_txn->rx_sgl_pos = 0;
+	bam_txn->rx_sgl_start = 0;
+	bam_txn->last_data_desc = NULL;
+	bam_txn->wait_second_completion = false;
+
+	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
+		      QPIC_PER_CW_CMD_SGL);
+	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
+		      QPIC_PER_CW_DATA_SGL);
+
+	reinit_completion(&bam_txn->txn_done);
+}
+
+/* Callback for DMA descriptor completion */
+static void qpic_bam_dma_done(void *data)
+{
+	struct bam_transaction *bam_txn = data;
+
+	/*
+	 * In case of data transfer with NAND, 2 callbacks will be generated.
+	 * One for command channel and another one for data channel.
+	 * If current transaction has data descriptors
+	 * (i.e. wait_second_completion is true), then set this to false
+	 * and wait for second DMA descriptor completion.
+	 */
+	if (bam_txn->wait_second_completion)
+		bam_txn->wait_second_completion = false;
+	else
+		complete(&bam_txn->txn_done);
+}
+
+static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
+{
+	return container_of(chip, struct qcom_nand_host, chip);
+}
+
+static inline struct qcom_nand_controller *
+get_qcom_nand_controller(struct nand_chip *chip)
+{
+	return container_of(chip->controller, struct qcom_nand_controller,
+			    controller);
+}
+
+static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
+{
+	return ioread32(nandc->base + offset);
+}
+
+static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
+			       u32 val)
+{
+	iowrite32(val, nandc->base + offset);
+}
+
+static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
+					  bool is_cpu)
+{
+	if (!nandc->props->is_bam)
+		return;
+
+	if (is_cpu)
+		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
+					MAX_REG_RD *
+					sizeof(*nandc->reg_read_buf),
+					DMA_FROM_DEVICE);
+	else
+		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
+					   MAX_REG_RD *
+					   sizeof(*nandc->reg_read_buf),
+					   DMA_FROM_DEVICE);
+}
+
+static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
+{
+	switch (offset) {
+	case NAND_FLASH_CMD:
+		return &regs->cmd;
+	case NAND_ADDR0:
+		return &regs->addr0;
+	case NAND_ADDR1:
+		return &regs->addr1;
+	case NAND_FLASH_CHIP_SELECT:
+		return &regs->chip_sel;
+	case NAND_EXEC_CMD:
+		return &regs->exec;
+	case NAND_FLASH_STATUS:
+		return &regs->clrflashstatus;
+	case NAND_DEV0_CFG0:
+		return &regs->cfg0;
+	case NAND_DEV0_CFG1:
+		return &regs->cfg1;
+	case NAND_DEV0_ECC_CFG:
+		return &regs->ecc_bch_cfg;
+	case NAND_READ_STATUS:
+		return &regs->clrreadstatus;
+	case NAND_DEV_CMD1:
+		return &regs->cmd1;
+	case NAND_DEV_CMD1_RESTORE:
+		return &regs->orig_cmd1;
+	case NAND_DEV_CMD_VLD:
+		return &regs->vld;
+	case NAND_DEV_CMD_VLD_RESTORE:
+		return &regs->orig_vld;
+	case NAND_EBI2_ECC_BUF_CFG:
+		return &regs->ecc_buf_cfg;
+	case NAND_READ_LOCATION_0:
+		return &regs->read_location0;
+	case NAND_READ_LOCATION_1:
+		return &regs->read_location1;
+	case NAND_READ_LOCATION_2:
+		return &regs->read_location2;
+	case NAND_READ_LOCATION_3:
+		return &regs->read_location3;
+	default:
+		return NULL;
+	}
+}
+
+static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
+			  u32 val)
+{
+	struct nandc_regs *regs = nandc->regs;
+	__le32 *reg;
+
+	reg = offset_to_nandc_reg(regs, offset);
+
+	if (reg)
+		*reg = cpu_to_le32(val);
+}
+
+/* helper to configure address register values */
+static void set_address(struct qcom_nand_host *host, u16 column, int page)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		column >>= 1;
+
+	nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
+	nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
+}
+
+/*
+ * update_rw_regs:	set up read/write register values, these will be
+ *			written to the NAND controller registers via DMA
+ *
+ * @num_cw:		number of steps for the read/write operation
+ * @read:		read or write operation
+ */
+static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
+
+	if (read) {
+		if (host->use_ecc)
+			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
+		else
+			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
+	} else {
+		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
+	}
+
+	if (host->use_ecc) {
+		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
+				(num_cw - 1) << CW_PER_PAGE;
+
+		cfg1 = host->cfg1;
+		ecc_bch_cfg = host->ecc_bch_cfg;
+	} else {
+		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
+				(num_cw - 1) << CW_PER_PAGE;
+
+		cfg1 = host->cfg1_raw;
+		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
+	}
+
+	nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
+	nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
+	nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
+	nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
+	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
+	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
+	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
+	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
+
+	if (read)
+		nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
+				   host->cw_data : host->cw_size, 1);
+}
+
+/*
+ * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
+ * for BAM. This descriptor will be added in the NAND DMA descriptor queue
+ * which will be submitted to DMA engine.
+ */
+static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
+				  struct dma_chan *chan,
+				  unsigned long flags)
+{
+	struct desc_info *desc;
+	struct scatterlist *sgl;
+	unsigned int sgl_cnt;
+	int ret;
+	struct bam_transaction *bam_txn = nandc->bam_txn;
+	enum dma_transfer_direction dir_eng;
+	struct dma_async_tx_descriptor *dma_desc;
+
+	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+	if (!desc)
+		return -ENOMEM;
+
+	if (chan == nandc->cmd_chan) {
+		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
+		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
+		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
+		dir_eng = DMA_MEM_TO_DEV;
+		desc->dir = DMA_TO_DEVICE;
+	} else if (chan == nandc->tx_chan) {
+		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
+		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
+		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
+		dir_eng = DMA_MEM_TO_DEV;
+		desc->dir = DMA_TO_DEVICE;
+	} else {
+		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
+		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
+		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
+		dir_eng = DMA_DEV_TO_MEM;
+		desc->dir = DMA_FROM_DEVICE;
+	}
+
+	sg_mark_end(sgl + sgl_cnt - 1);
+	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
+	if (ret == 0) {
+		dev_err(nandc->dev, "failure in mapping desc\n");
+		kfree(desc);
+		return -ENOMEM;
+	}
+
+	desc->sgl_cnt = sgl_cnt;
+	desc->bam_sgl = sgl;
+
+	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
+					   flags);
+
+	if (!dma_desc) {
+		dev_err(nandc->dev, "failure in prep desc\n");
+		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
+		kfree(desc);
+		return -EINVAL;
+	}
+
+	desc->dma_desc = dma_desc;
+
+	/* update last data/command descriptor */
+	if (chan == nandc->cmd_chan)
+		bam_txn->last_cmd_desc = dma_desc;
+	else
+		bam_txn->last_data_desc = dma_desc;
+
+	list_add_tail(&desc->node, &nandc->desc_list);
+
+	return 0;
+}
+
+/*
+ * Prepares the command descriptor for BAM DMA which will be used for NAND
+ * register reads and writes. The command descriptor requires the command
+ * to be formed in command element type so this function uses the command
+ * element from bam transaction ce array and fills the same with required
+ * data. A single SGL can contain multiple command elements so
+ * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
+ * after the current command element.
+ */
+static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
+				 int reg_off, const void *vaddr,
+				 int size, unsigned int flags)
+{
+	int bam_ce_size;
+	int i, ret;
+	struct bam_cmd_element *bam_ce_buffer;
+	struct bam_transaction *bam_txn = nandc->bam_txn;
+
+	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
+
+	/* fill the command desc */
+	for (i = 0; i < size; i++) {
+		if (read)
+			bam_prep_ce(&bam_ce_buffer[i],
+				    nandc_reg_phys(nandc, reg_off + 4 * i),
+				    BAM_READ_COMMAND,
+				    reg_buf_dma_addr(nandc,
+						     (__le32 *)vaddr + i));
+		else
+			bam_prep_ce_le32(&bam_ce_buffer[i],
+					 nandc_reg_phys(nandc, reg_off + 4 * i),
+					 BAM_WRITE_COMMAND,
+					 *((__le32 *)vaddr + i));
+	}
+
+	bam_txn->bam_ce_pos += size;
+
+	/* use the separate sgl after this command */
+	if (flags & NAND_BAM_NEXT_SGL) {
+		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
+		bam_ce_size = (bam_txn->bam_ce_pos -
+				bam_txn->bam_ce_start) *
+				sizeof(struct bam_cmd_element);
+		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
+			   bam_ce_buffer, bam_ce_size);
+		bam_txn->cmd_sgl_pos++;
+		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
+
+		if (flags & NAND_BAM_NWD) {
+			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
+						     DMA_PREP_FENCE |
+						     DMA_PREP_CMD);
+			if (ret)
+				return ret;
+		}
+	}
+
+	return 0;
+}
+
+/*
+ * Prepares the data descriptor for BAM DMA which will be used for NAND
+ * data reads and writes.
+ */
+static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
+				  const void *vaddr,
+				  int size, unsigned int flags)
+{
+	int ret;
+	struct bam_transaction *bam_txn = nandc->bam_txn;
+
+	if (read) {
+		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
+			   vaddr, size);
+		bam_txn->rx_sgl_pos++;
+	} else {
+		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
+			   vaddr, size);
+		bam_txn->tx_sgl_pos++;
+
+		/*
+		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
+		 * is not set, form the DMA descriptor
+		 */
+		if (!(flags & NAND_BAM_NO_EOT)) {
+			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
+						     DMA_PREP_INTERRUPT);
+			if (ret)
+				return ret;
+		}
+	}
+
+	return 0;
+}
+
+static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
+			     int reg_off, const void *vaddr, int size,
+			     bool flow_control)
+{
+	struct desc_info *desc;
+	struct dma_async_tx_descriptor *dma_desc;
+	struct scatterlist *sgl;
+	struct dma_slave_config slave_conf;
+	enum dma_transfer_direction dir_eng;
+	int ret;
+
+	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+	if (!desc)
+		return -ENOMEM;
+
+	sgl = &desc->adm_sgl;
+
+	sg_init_one(sgl, vaddr, size);
+
+	if (read) {
+		dir_eng = DMA_DEV_TO_MEM;
+		desc->dir = DMA_FROM_DEVICE;
+	} else {
+		dir_eng = DMA_MEM_TO_DEV;
+		desc->dir = DMA_TO_DEVICE;
+	}
+
+	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
+	if (ret == 0) {
+		ret = -ENOMEM;
+		goto err;
+	}
+
+	memset(&slave_conf, 0x00, sizeof(slave_conf));
+
+	slave_conf.device_fc = flow_control;
+	if (read) {
+		slave_conf.src_maxburst = 16;
+		slave_conf.src_addr = nandc->base_dma + reg_off;
+		slave_conf.slave_id = nandc->data_crci;
+	} else {
+		slave_conf.dst_maxburst = 16;
+		slave_conf.dst_addr = nandc->base_dma + reg_off;
+		slave_conf.slave_id = nandc->cmd_crci;
+	}
+
+	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
+	if (ret) {
+		dev_err(nandc->dev, "failed to configure dma channel\n");
+		goto err;
+	}
+
+	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
+	if (!dma_desc) {
+		dev_err(nandc->dev, "failed to prepare desc\n");
+		ret = -EINVAL;
+		goto err;
+	}
+
+	desc->dma_desc = dma_desc;
+
+	list_add_tail(&desc->node, &nandc->desc_list);
+
+	return 0;
+err:
+	kfree(desc);
+
+	return ret;
+}
+
+/*
+ * read_reg_dma:	prepares a descriptor to read a given number of
+ *			contiguous registers to the reg_read_buf pointer
+ *
+ * @first:		offset of the first register in the contiguous block
+ * @num_regs:		number of registers to read
+ * @flags:		flags to control DMA descriptor preparation
+ */
+static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
+			int num_regs, unsigned int flags)
+{
+	bool flow_control = false;
+	void *vaddr;
+
+	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
+	nandc->reg_read_pos += num_regs;
+
+	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
+		first = dev_cmd_reg_addr(nandc, first);
+
+	if (nandc->props->is_bam)
+		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
+					     num_regs, flags);
+
+	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
+		flow_control = true;
+
+	return prep_adm_dma_desc(nandc, true, first, vaddr,
+				 num_regs * sizeof(u32), flow_control);
+}
+
+/*
+ * write_reg_dma:	prepares a descriptor to write a given number of
+ *			contiguous registers
+ *
+ * @first:		offset of the first register in the contiguous block
+ * @num_regs:		number of registers to write
+ * @flags:		flags to control DMA descriptor preparation
+ */
+static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
+			 int num_regs, unsigned int flags)
+{
+	bool flow_control = false;
+	struct nandc_regs *regs = nandc->regs;
+	void *vaddr;
+
+	vaddr = offset_to_nandc_reg(regs, first);
+
+	if (first == NAND_ERASED_CW_DETECT_CFG) {
+		if (flags & NAND_ERASED_CW_SET)
+			vaddr = &regs->erased_cw_detect_cfg_set;
+		else
+			vaddr = &regs->erased_cw_detect_cfg_clr;
+	}
+
+	if (first == NAND_EXEC_CMD)
+		flags |= NAND_BAM_NWD;
+
+	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
+		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
+
+	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
+		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
+
+	if (nandc->props->is_bam)
+		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
+					     num_regs, flags);
+
+	if (first == NAND_FLASH_CMD)
+		flow_control = true;
+
+	return prep_adm_dma_desc(nandc, false, first, vaddr,
+				 num_regs * sizeof(u32), flow_control);
+}
+
+/*
+ * read_data_dma:	prepares a DMA descriptor to transfer data from the
+ *			controller's internal buffer to the buffer 'vaddr'
+ *
+ * @reg_off:		offset within the controller's data buffer
+ * @vaddr:		virtual address of the buffer we want to write to
+ * @size:		DMA transaction size in bytes
+ * @flags:		flags to control DMA descriptor preparation
+ */
+static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+			 const u8 *vaddr, int size, unsigned int flags)
+{
+	if (nandc->props->is_bam)
+		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
+
+	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
+}
+
+/*
+ * write_data_dma:	prepares a DMA descriptor to transfer data from
+ *			'vaddr' to the controller's internal buffer
+ *
+ * @reg_off:		offset within the controller's data buffer
+ * @vaddr:		virtual address of the buffer we want to read from
+ * @size:		DMA transaction size in bytes
+ * @flags:		flags to control DMA descriptor preparation
+ */
+static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+			  const u8 *vaddr, int size, unsigned int flags)
+{
+	if (nandc->props->is_bam)
+		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
+
+	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
+}
+
+/*
+ * Helper to prepare DMA descriptors for configuring registers
+ * before reading a NAND page.
+ */
+static void config_nand_page_read(struct qcom_nand_controller *nandc)
+{
+	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
+	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
+	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
+	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
+	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
+		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
+}
+
+/*
+ * Helper to prepare DMA descriptors for configuring registers
+ * before reading each codeword in NAND page.
+ */
+static void
+config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
+{
+	if (nandc->props->is_bam)
+		write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
+			      NAND_BAM_NEXT_SGL);
+
+	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
+	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+
+	if (use_ecc) {
+		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
+		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
+			     NAND_BAM_NEXT_SGL);
+	} else {
+		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+	}
+}
+
+/*
+ * Helper to prepare dma descriptors to configure registers needed for reading a
+ * single codeword in page
+ */
+static void
+config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
+				bool use_ecc)
+{
+	config_nand_page_read(nandc);
+	config_nand_cw_read(nandc, use_ecc);
+}
+
+/*
+ * Helper to prepare DMA descriptors used to configure registers needed for
+ * before writing a NAND page.
+ */
+static void config_nand_page_write(struct qcom_nand_controller *nandc)
+{
+	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
+	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
+	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
+		      NAND_BAM_NEXT_SGL);
+}
+
+/*
+ * Helper to prepare DMA descriptors for configuring registers
+ * before writing each codeword in NAND page.
+ */
+static void config_nand_cw_write(struct qcom_nand_controller *nandc)
+{
+	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
+	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+
+	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+
+	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
+	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
+}
+
+/*
+ * the following functions are used within chip->cmdfunc() to perform different
+ * NAND_CMD_* commands
+ */
+
+/* sets up descriptors for NAND_CMD_PARAM */
+static int nandc_param(struct qcom_nand_host *host)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	/*
+	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
+	 * in use. we configure the controller to perform a raw read of 512
+	 * bytes to read onfi params
+	 */
+	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
+	nandc_set_reg(nandc, NAND_ADDR0, 0);
+	nandc_set_reg(nandc, NAND_ADDR1, 0);
+	nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
+					| 512 << UD_SIZE_BYTES
+					| 5 << NUM_ADDR_CYCLES
+					| 0 << SPARE_SIZE_BYTES);
+	nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
+					| 0 << CS_ACTIVE_BSY
+					| 17 << BAD_BLOCK_BYTE_NUM
+					| 1 << BAD_BLOCK_IN_SPARE_AREA
+					| 2 << WR_RD_BSY_GAP
+					| 0 << WIDE_FLASH
+					| 1 << DEV0_CFG1_ECC_DISABLE);
+	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
+
+	/* configure CMD1 and VLD for ONFI param probing */
+	nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
+		      (nandc->vld & ~READ_START_VLD));
+	nandc_set_reg(nandc, NAND_DEV_CMD1,
+		      (nandc->cmd1 & ~(0xFF << READ_ADDR))
+		      | NAND_CMD_PARAM << READ_ADDR);
+
+	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
+
+	nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
+	nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
+	nandc_set_read_loc(nandc, 0, 0, 512, 1);
+
+	write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
+	write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
+
+	nandc->buf_count = 512;
+	memset(nandc->data_buffer, 0xff, nandc->buf_count);
+
+	config_nand_single_cw_page_read(nandc, false);
+
+	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
+		      nandc->buf_count, 0);
+
+	/* restore CMD1 and VLD regs */
+	write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
+	write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
+
+	return 0;
+}
+
+/* sets up descriptors for NAND_CMD_ERASE1 */
+static int erase_block(struct qcom_nand_host *host, int page_addr)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	nandc_set_reg(nandc, NAND_FLASH_CMD,
+		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
+	nandc_set_reg(nandc, NAND_ADDR0, page_addr);
+	nandc_set_reg(nandc, NAND_ADDR1, 0);
+	nandc_set_reg(nandc, NAND_DEV0_CFG0,
+		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
+	nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
+	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
+	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
+	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
+
+	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
+	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
+	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+
+	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+
+	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
+	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
+
+	return 0;
+}
+
+/* sets up descriptors for NAND_CMD_READID */
+static int read_id(struct qcom_nand_host *host, int column)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	if (column == -1)
+		return 0;
+
+	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
+	nandc_set_reg(nandc, NAND_ADDR0, column);
+	nandc_set_reg(nandc, NAND_ADDR1, 0);
+	nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
+		      nandc->props->is_bam ? 0 : DM_EN);
+	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
+
+	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
+	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+
+	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
+
+	return 0;
+}
+
+/* sets up descriptors for NAND_CMD_RESET */
+static int reset(struct qcom_nand_host *host)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
+	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
+
+	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
+	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
+
+	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
+
+	return 0;
+}
+
+/* helpers to submit/free our list of dma descriptors */
+static int submit_descs(struct qcom_nand_controller *nandc)
+{
+	struct desc_info *desc;
+	dma_cookie_t cookie = 0;
+	struct bam_transaction *bam_txn = nandc->bam_txn;
+	int r;
+
+	if (nandc->props->is_bam) {
+		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
+			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
+			if (r)
+				return r;
+		}
+
+		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
+			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
+						   DMA_PREP_INTERRUPT);
+			if (r)
+				return r;
+		}
+
+		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
+			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
+						   DMA_PREP_CMD);
+			if (r)
+				return r;
+		}
+	}
+
+	list_for_each_entry(desc, &nandc->desc_list, node)
+		cookie = dmaengine_submit(desc->dma_desc);
+
+	if (nandc->props->is_bam) {
+		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
+		bam_txn->last_cmd_desc->callback_param = bam_txn;
+		if (bam_txn->last_data_desc) {
+			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
+			bam_txn->last_data_desc->callback_param = bam_txn;
+			bam_txn->wait_second_completion = true;
+		}
+
+		dma_async_issue_pending(nandc->tx_chan);
+		dma_async_issue_pending(nandc->rx_chan);
+		dma_async_issue_pending(nandc->cmd_chan);
+
+		if (!wait_for_completion_timeout(&bam_txn->txn_done,
+						 QPIC_NAND_COMPLETION_TIMEOUT))
+			return -ETIMEDOUT;
+	} else {
+		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
+			return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+static void free_descs(struct qcom_nand_controller *nandc)
+{
+	struct desc_info *desc, *n;
+
+	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
+		list_del(&desc->node);
+
+		if (nandc->props->is_bam)
+			dma_unmap_sg(nandc->dev, desc->bam_sgl,
+				     desc->sgl_cnt, desc->dir);
+		else
+			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
+				     desc->dir);
+
+		kfree(desc);
+	}
+}
+
+/* reset the register read buffer for next NAND operation */
+static void clear_read_regs(struct qcom_nand_controller *nandc)
+{
+	nandc->reg_read_pos = 0;
+	nandc_read_buffer_sync(nandc, false);
+}
+
+static void pre_command(struct qcom_nand_host *host, int command)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	nandc->buf_count = 0;
+	nandc->buf_start = 0;
+	host->use_ecc = false;
+	host->last_command = command;
+
+	clear_read_regs(nandc);
+
+	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
+	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
+		clear_bam_transaction(nandc);
+}
+
+/*
+ * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
+ * privately maintained status byte, this status byte can be read after
+ * NAND_CMD_STATUS is called
+ */
+static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int num_cw;
+	int i;
+
+	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
+	nandc_read_buffer_sync(nandc, true);
+
+	for (i = 0; i < num_cw; i++) {
+		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
+
+		if (flash_status & FS_MPU_ERR)
+			host->status &= ~NAND_STATUS_WP;
+
+		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
+						 (flash_status &
+						  FS_DEVICE_STS_ERR)))
+			host->status |= NAND_STATUS_FAIL;
+	}
+}
+
+static void post_command(struct qcom_nand_host *host, int command)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	switch (command) {
+	case NAND_CMD_READID:
+		nandc_read_buffer_sync(nandc, true);
+		memcpy(nandc->data_buffer, nandc->reg_read_buf,
+		       nandc->buf_count);
+		break;
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_ERASE1:
+		parse_erase_write_errors(host, command);
+		break;
+	default:
+		break;
+	}
+}
+
+/*
+ * Implements chip->cmdfunc. It's  only used for a limited set of commands.
+ * The rest of the commands wouldn't be called by upper layers. For example,
+ * NAND_CMD_READOOB would never be called because we have our own versions
+ * of read_oob ops for nand_ecc_ctrl.
+ */
+static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
+			       int column, int page_addr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	bool wait = false;
+	int ret = 0;
+
+	pre_command(host, command);
+
+	switch (command) {
+	case NAND_CMD_RESET:
+		ret = reset(host);
+		wait = true;
+		break;
+
+	case NAND_CMD_READID:
+		nandc->buf_count = 4;
+		ret = read_id(host, column);
+		wait = true;
+		break;
+
+	case NAND_CMD_PARAM:
+		ret = nandc_param(host);
+		wait = true;
+		break;
+
+	case NAND_CMD_ERASE1:
+		ret = erase_block(host, page_addr);
+		wait = true;
+		break;
+
+	case NAND_CMD_READ0:
+		/* we read the entire page for now */
+		WARN_ON(column != 0);
+
+		host->use_ecc = true;
+		set_address(host, 0, page_addr);
+		update_rw_regs(host, ecc->steps, true);
+		break;
+
+	case NAND_CMD_SEQIN:
+		WARN_ON(column != 0);
+		set_address(host, 0, page_addr);
+		break;
+
+	case NAND_CMD_PAGEPROG:
+	case NAND_CMD_STATUS:
+	case NAND_CMD_NONE:
+	default:
+		break;
+	}
+
+	if (ret) {
+		dev_err(nandc->dev, "failure executing command %d\n",
+			command);
+		free_descs(nandc);
+		return;
+	}
+
+	if (wait) {
+		ret = submit_descs(nandc);
+		if (ret)
+			dev_err(nandc->dev,
+				"failure submitting descs for command %d\n",
+				command);
+	}
+
+	free_descs(nandc);
+
+	post_command(host, command);
+}
+
+/*
+ * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
+ * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
+ *
+ * when using RS ECC, the HW reports the same erros when reading an erased CW,
+ * but it notifies that it is an erased CW by placing special characters at
+ * certain offsets in the buffer.
+ *
+ * verify if the page is erased or not, and fix up the page for RS ECC by
+ * replacing the special characters with 0xff.
+ */
+static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
+{
+	u8 empty1, empty2;
+
+	/*
+	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
+	 * is erased by looking for 0x54s at offsets 3 and 175 from the
+	 * beginning of each codeword
+	 */
+
+	empty1 = data_buf[3];
+	empty2 = data_buf[175];
+
+	/*
+	 * if the erased codework markers, if they exist override them with
+	 * 0xffs
+	 */
+	if ((empty1 == 0x54 && empty2 == 0xff) ||
+	    (empty1 == 0xff && empty2 == 0x54)) {
+		data_buf[3] = 0xff;
+		data_buf[175] = 0xff;
+	}
+
+	/*
+	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
+	 * restore the original values at the special offsets
+	 */
+	if (memchr_inv(data_buf, 0xff, data_len)) {
+		data_buf[3] = empty1;
+		data_buf[175] = empty2;
+
+		return false;
+	}
+
+	return true;
+}
+
+struct read_stats {
+	__le32 flash;
+	__le32 buffer;
+	__le32 erased_cw;
+};
+
+/* reads back FLASH_STATUS register set by the controller */
+static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	int i;
+
+	for (i = 0; i < cw_cnt; i++) {
+		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
+
+		if (flash & (FS_OP_ERR | FS_MPU_ERR))
+			return -EIO;
+	}
+
+	return 0;
+}
+
+/* performs raw read for one codeword */
+static int
+qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
+		       u8 *data_buf, u8 *oob_buf, int page, int cw)
+{
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int data_size1, data_size2, oob_size1, oob_size2;
+	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+	host->use_ecc = false;
+
+	clear_bam_transaction(nandc);
+	set_address(host, host->cw_size * cw, page);
+	update_rw_regs(host, 1, true);
+	config_nand_page_read(nandc);
+
+	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
+	oob_size1 = host->bbm_size;
+
+	if (cw == (ecc->steps - 1)) {
+		data_size2 = ecc->size - data_size1 -
+			     ((ecc->steps - 1) * 4);
+		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
+			    host->spare_bytes;
+	} else {
+		data_size2 = host->cw_data - data_size1;
+		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
+	}
+
+	if (nandc->props->is_bam) {
+		nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
+		read_loc += data_size1;
+
+		nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
+		read_loc += oob_size1;
+
+		nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
+		read_loc += data_size2;
+
+		nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
+	}
+
+	config_nand_cw_read(nandc, false);
+
+	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
+	reg_off += data_size1;
+
+	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
+	reg_off += oob_size1;
+
+	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
+	reg_off += data_size2;
+
+	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
+
+	ret = submit_descs(nandc);
+	free_descs(nandc);
+	if (ret) {
+		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
+		return ret;
+	}
+
+	return check_flash_errors(host, 1);
+}
+
+/*
+ * Bitflips can happen in erased codewords also so this function counts the
+ * number of 0 in each CW for which ECC engine returns the uncorrectable
+ * error. The page will be assumed as erased if this count is less than or
+ * equal to the ecc->strength for each CW.
+ *
+ * 1. Both DATA and OOB need to be checked for number of 0. The
+ *    top-level API can be called with only data buf or OOB buf so use
+ *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
+ *    is null for copying the raw bytes.
+ * 2. Perform raw read for all the CW which has uncorrectable errors.
+ * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
+ *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
+ *    the number of bitflips in this area.
+ */
+static int
+check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
+		      u8 *oob_buf, unsigned long uncorrectable_cws,
+		      int page, unsigned int max_bitflips)
+{
+	struct nand_chip *chip = &host->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	u8 *cw_data_buf, *cw_oob_buf;
+	int cw, data_size, oob_size, ret = 0;
+
+	if (!data_buf) {
+		data_buf = chip->data_buf;
+		chip->pagebuf = -1;
+	}
+
+	if (!oob_buf) {
+		oob_buf = chip->oob_poi;
+		chip->pagebuf = -1;
+	}
+
+	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
+		if (cw == (ecc->steps - 1)) {
+			data_size = ecc->size - ((ecc->steps - 1) * 4);
+			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
+		} else {
+			data_size = host->cw_data;
+			oob_size = host->ecc_bytes_hw;
+		}
+
+		/* determine starting buffer address for current CW */
+		cw_data_buf = data_buf + (cw * host->cw_data);
+		cw_oob_buf = oob_buf + (cw * ecc->bytes);
+
+		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
+					     cw_oob_buf, page, cw);
+		if (ret)
+			return ret;
+
+		/*
+		 * make sure it isn't an erased page reported
+		 * as not-erased by HW because of a few bitflips
+		 */
+		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
+						  cw_oob_buf + host->bbm_size,
+						  oob_size, NULL,
+						  0, ecc->strength);
+		if (ret < 0) {
+			mtd->ecc_stats.failed++;
+		} else {
+			mtd->ecc_stats.corrected += ret;
+			max_bitflips = max_t(unsigned int, max_bitflips, ret);
+		}
+	}
+
+	return max_bitflips;
+}
+
+/*
+ * reads back status registers set by the controller to notify page read
+ * errors. this is equivalent to what 'ecc->correct()' would do.
+ */
+static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
+			     u8 *oob_buf, int page)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
+	struct read_stats *buf;
+	bool flash_op_err = false, erased;
+	int i;
+	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
+
+	buf = (struct read_stats *)nandc->reg_read_buf;
+	nandc_read_buffer_sync(nandc, true);
+
+	for (i = 0; i < ecc->steps; i++, buf++) {
+		u32 flash, buffer, erased_cw;
+		int data_len, oob_len;
+
+		if (i == (ecc->steps - 1)) {
+			data_len = ecc->size - ((ecc->steps - 1) << 2);
+			oob_len = ecc->steps << 2;
+		} else {
+			data_len = host->cw_data;
+			oob_len = 0;
+		}
+
+		flash = le32_to_cpu(buf->flash);
+		buffer = le32_to_cpu(buf->buffer);
+		erased_cw = le32_to_cpu(buf->erased_cw);
+
+		/*
+		 * Check ECC failure for each codeword. ECC failure can
+		 * happen in either of the following conditions
+		 * 1. If number of bitflips are greater than ECC engine
+		 *    capability.
+		 * 2. If this codeword contains all 0xff for which erased
+		 *    codeword detection check will be done.
+		 */
+		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
+			/*
+			 * For BCH ECC, ignore erased codeword errors, if
+			 * ERASED_CW bits are set.
+			 */
+			if (host->bch_enabled) {
+				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
+					 true : false;
+			/*
+			 * For RS ECC, HW reports the erased CW by placing
+			 * special characters at certain offsets in the buffer.
+			 * These special characters will be valid only if
+			 * complete page is read i.e. data_buf is not NULL.
+			 */
+			} else if (data_buf) {
+				erased = erased_chunk_check_and_fixup(data_buf,
+								      data_len);
+			} else {
+				erased = false;
+			}
+
+			if (!erased)
+				uncorrectable_cws |= BIT(i);
+		/*
+		 * Check if MPU or any other operational error (timeout,
+		 * device failure, etc.) happened for this codeword and
+		 * make flash_op_err true. If flash_op_err is set, then
+		 * EIO will be returned for page read.
+		 */
+		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
+			flash_op_err = true;
+		/*
+		 * No ECC or operational errors happened. Check the number of
+		 * bits corrected and update the ecc_stats.corrected.
+		 */
+		} else {
+			unsigned int stat;
+
+			stat = buffer & BS_CORRECTABLE_ERR_MSK;
+			mtd->ecc_stats.corrected += stat;
+			max_bitflips = max(max_bitflips, stat);
+		}
+
+		if (data_buf)
+			data_buf += data_len;
+		if (oob_buf)
+			oob_buf += oob_len + ecc->bytes;
+	}
+
+	if (flash_op_err)
+		return -EIO;
+
+	if (!uncorrectable_cws)
+		return max_bitflips;
+
+	return check_for_erased_page(host, data_buf_start, oob_buf_start,
+				     uncorrectable_cws, page,
+				     max_bitflips);
+}
+
+/*
+ * helper to perform the actual page read operation, used by ecc->read_page(),
+ * ecc->read_oob()
+ */
+static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
+			 u8 *oob_buf, int page)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
+	int i, ret;
+
+	config_nand_page_read(nandc);
+
+	/* queue cmd descs for each codeword */
+	for (i = 0; i < ecc->steps; i++) {
+		int data_size, oob_size;
+
+		if (i == (ecc->steps - 1)) {
+			data_size = ecc->size - ((ecc->steps - 1) << 2);
+			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
+				   host->spare_bytes;
+		} else {
+			data_size = host->cw_data;
+			oob_size = host->ecc_bytes_hw + host->spare_bytes;
+		}
+
+		if (nandc->props->is_bam) {
+			if (data_buf && oob_buf) {
+				nandc_set_read_loc(nandc, 0, 0, data_size, 0);
+				nandc_set_read_loc(nandc, 1, data_size,
+						   oob_size, 1);
+			} else if (data_buf) {
+				nandc_set_read_loc(nandc, 0, 0, data_size, 1);
+			} else {
+				nandc_set_read_loc(nandc, 0, data_size,
+						   oob_size, 1);
+			}
+		}
+
+		config_nand_cw_read(nandc, true);
+
+		if (data_buf)
+			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
+				      data_size, 0);
+
+		/*
+		 * when ecc is enabled, the controller doesn't read the real
+		 * or dummy bad block markers in each chunk. To maintain a
+		 * consistent layout across RAW and ECC reads, we just
+		 * leave the real/dummy BBM offsets empty (i.e, filled with
+		 * 0xffs)
+		 */
+		if (oob_buf) {
+			int j;
+
+			for (j = 0; j < host->bbm_size; j++)
+				*oob_buf++ = 0xff;
+
+			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
+				      oob_buf, oob_size, 0);
+		}
+
+		if (data_buf)
+			data_buf += data_size;
+		if (oob_buf)
+			oob_buf += oob_size;
+	}
+
+	ret = submit_descs(nandc);
+	free_descs(nandc);
+
+	if (ret) {
+		dev_err(nandc->dev, "failure to read page/oob\n");
+		return ret;
+	}
+
+	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
+}
+
+/*
+ * a helper that copies the last step/codeword of a page (containing free oob)
+ * into our local buffer
+ */
+static int copy_last_cw(struct qcom_nand_host *host, int page)
+{
+	struct nand_chip *chip = &host->chip;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int size;
+	int ret;
+
+	clear_read_regs(nandc);
+
+	size = host->use_ecc ? host->cw_data : host->cw_size;
+
+	/* prepare a clean read buffer */
+	memset(nandc->data_buffer, 0xff, size);
+
+	set_address(host, host->cw_size * (ecc->steps - 1), page);
+	update_rw_regs(host, 1, true);
+
+	config_nand_single_cw_page_read(nandc, host->use_ecc);
+
+	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
+
+	ret = submit_descs(nandc);
+	if (ret)
+		dev_err(nandc->dev, "failed to copy last codeword\n");
+
+	free_descs(nandc);
+
+	return ret;
+}
+
+/* implements ecc->read_page() */
+static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	u8 *data_buf, *oob_buf = NULL;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+	data_buf = buf;
+	oob_buf = oob_required ? chip->oob_poi : NULL;
+
+	clear_bam_transaction(nandc);
+
+	return read_page_ecc(host, data_buf, oob_buf, page);
+}
+
+/* implements ecc->read_page_raw() */
+static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
+				    struct nand_chip *chip, uint8_t *buf,
+				    int oob_required, int page)
+{
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int cw, ret;
+	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
+
+	for (cw = 0; cw < ecc->steps; cw++) {
+		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
+					     page, cw);
+		if (ret)
+			return ret;
+
+		data_buf += host->cw_data;
+		oob_buf += ecc->bytes;
+	}
+
+	return 0;
+}
+
+/* implements ecc->read_oob() */
+static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			       int page)
+{
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	clear_read_regs(nandc);
+	clear_bam_transaction(nandc);
+
+	host->use_ecc = true;
+	set_address(host, 0, page);
+	update_rw_regs(host, ecc->steps, true);
+
+	return read_page_ecc(host, NULL, chip->oob_poi, page);
+}
+
+/* implements ecc->write_page() */
+static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				 const uint8_t *buf, int oob_required, int page)
+{
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	u8 *data_buf, *oob_buf;
+	int i, ret;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	clear_read_regs(nandc);
+	clear_bam_transaction(nandc);
+
+	data_buf = (u8 *)buf;
+	oob_buf = chip->oob_poi;
+
+	host->use_ecc = true;
+	update_rw_regs(host, ecc->steps, false);
+	config_nand_page_write(nandc);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_size, oob_size;
+
+		if (i == (ecc->steps - 1)) {
+			data_size = ecc->size - ((ecc->steps - 1) << 2);
+			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
+				   host->spare_bytes;
+		} else {
+			data_size = host->cw_data;
+			oob_size = ecc->bytes;
+		}
+
+
+		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
+			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
+
+		/*
+		 * when ECC is enabled, we don't really need to write anything
+		 * to oob for the first n - 1 codewords since these oob regions
+		 * just contain ECC bytes that's written by the controller
+		 * itself. For the last codeword, we skip the bbm positions and
+		 * write to the free oob area.
+		 */
+		if (i == (ecc->steps - 1)) {
+			oob_buf += host->bbm_size;
+
+			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
+				       oob_buf, oob_size, 0);
+		}
+
+		config_nand_cw_write(nandc);
+
+		data_buf += data_size;
+		oob_buf += oob_size;
+	}
+
+	ret = submit_descs(nandc);
+	if (ret)
+		dev_err(nandc->dev, "failure to write page\n");
+
+	free_descs(nandc);
+
+	if (!ret)
+		ret = nand_prog_page_end_op(chip);
+
+	return ret;
+}
+
+/* implements ecc->write_page_raw() */
+static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
+				     struct nand_chip *chip, const uint8_t *buf,
+				     int oob_required, int page)
+{
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	u8 *data_buf, *oob_buf;
+	int i, ret;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	clear_read_regs(nandc);
+	clear_bam_transaction(nandc);
+
+	data_buf = (u8 *)buf;
+	oob_buf = chip->oob_poi;
+
+	host->use_ecc = false;
+	update_rw_regs(host, ecc->steps, false);
+	config_nand_page_write(nandc);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_size1, data_size2, oob_size1, oob_size2;
+		int reg_off = FLASH_BUF_ACC;
+
+		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
+		oob_size1 = host->bbm_size;
+
+		if (i == (ecc->steps - 1)) {
+			data_size2 = ecc->size - data_size1 -
+				     ((ecc->steps - 1) << 2);
+			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
+				    host->spare_bytes;
+		} else {
+			data_size2 = host->cw_data - data_size1;
+			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
+		}
+
+		write_data_dma(nandc, reg_off, data_buf, data_size1,
+			       NAND_BAM_NO_EOT);
+		reg_off += data_size1;
+		data_buf += data_size1;
+
+		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
+			       NAND_BAM_NO_EOT);
+		reg_off += oob_size1;
+		oob_buf += oob_size1;
+
+		write_data_dma(nandc, reg_off, data_buf, data_size2,
+			       NAND_BAM_NO_EOT);
+		reg_off += data_size2;
+		data_buf += data_size2;
+
+		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
+		oob_buf += oob_size2;
+
+		config_nand_cw_write(nandc);
+	}
+
+	ret = submit_descs(nandc);
+	if (ret)
+		dev_err(nandc->dev, "failure to write raw page\n");
+
+	free_descs(nandc);
+
+	if (!ret)
+		ret = nand_prog_page_end_op(chip);
+
+	return ret;
+}
+
+/*
+ * implements ecc->write_oob()
+ *
+ * the NAND controller cannot write only data or only OOB within a codeword
+ * since ECC is calculated for the combined codeword. So update the OOB from
+ * chip->oob_poi, and pad the data area with OxFF before writing.
+ */
+static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	u8 *oob = chip->oob_poi;
+	int data_size, oob_size;
+	int ret;
+
+	host->use_ecc = true;
+	clear_bam_transaction(nandc);
+
+	/* calculate the data and oob size for the last codeword/step */
+	data_size = ecc->size - ((ecc->steps - 1) << 2);
+	oob_size = mtd->oobavail;
+
+	memset(nandc->data_buffer, 0xff, host->cw_data);
+	/* override new oob content to last codeword */
+	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
+				    0, mtd->oobavail);
+
+	set_address(host, host->cw_size * (ecc->steps - 1), page);
+	update_rw_regs(host, 1, false);
+
+	config_nand_page_write(nandc);
+	write_data_dma(nandc, FLASH_BUF_ACC,
+		       nandc->data_buffer, data_size + oob_size, 0);
+	config_nand_cw_write(nandc);
+
+	ret = submit_descs(nandc);
+
+	free_descs(nandc);
+
+	if (ret) {
+		dev_err(nandc->dev, "failure to write oob\n");
+		return -EIO;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int page, ret, bbpos, bad = 0;
+
+	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+
+	/*
+	 * configure registers for a raw sub page read, the address is set to
+	 * the beginning of the last codeword, we don't care about reading ecc
+	 * portion of oob. we just want the first few bytes from this codeword
+	 * that contains the BBM
+	 */
+	host->use_ecc = false;
+
+	clear_bam_transaction(nandc);
+	ret = copy_last_cw(host, page);
+	if (ret)
+		goto err;
+
+	if (check_flash_errors(host, 1)) {
+		dev_warn(nandc->dev, "error when trying to read BBM\n");
+		goto err;
+	}
+
+	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
+
+	bad = nandc->data_buffer[bbpos] != 0xff;
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
+err:
+	return bad;
+}
+
+static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int page, ret;
+
+	clear_read_regs(nandc);
+	clear_bam_transaction(nandc);
+
+	/*
+	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
+	 * we don't care about the rest of the content in the codeword since
+	 * we aren't going to use this block again
+	 */
+	memset(nandc->data_buffer, 0x00, host->cw_size);
+
+	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
+
+	/* prepare write */
+	host->use_ecc = false;
+	set_address(host, host->cw_size * (ecc->steps - 1), page);
+	update_rw_regs(host, 1, false);
+
+	config_nand_page_write(nandc);
+	write_data_dma(nandc, FLASH_BUF_ACC,
+		       nandc->data_buffer, host->cw_size, 0);
+	config_nand_cw_write(nandc);
+
+	ret = submit_descs(nandc);
+
+	free_descs(nandc);
+
+	if (ret) {
+		dev_err(nandc->dev, "failure to update BBM\n");
+		return -EIO;
+	}
+
+	return nand_prog_page_end_op(chip);
+}
+
+/*
+ * the three functions below implement chip->read_byte(), chip->read_buf()
+ * and chip->write_buf() respectively. these aren't used for
+ * reading/writing page data, they are used for smaller data like reading
+ * id, status etc
+ */
+static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	u8 *buf = nandc->data_buffer;
+	u8 ret = 0x0;
+
+	if (host->last_command == NAND_CMD_STATUS) {
+		ret = host->status;
+
+		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
+
+		return ret;
+	}
+
+	if (nandc->buf_start < nandc->buf_count)
+		ret = buf[nandc->buf_start++];
+
+	return ret;
+}
+
+static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
+
+	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
+	nandc->buf_start += real_len;
+}
+
+static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				 int len)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
+
+	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
+
+	nandc->buf_start += real_len;
+}
+
+/* we support only one external chip for now */
+static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+	if (chipnr <= 0)
+		return;
+
+	dev_warn(nandc->dev, "invalid chip select\n");
+}
+
+/*
+ * NAND controller page layout info
+ *
+ * Layout with ECC enabled:
+ *
+ * |----------------------|  |---------------------------------|
+ * |           xx.......yy|  |             *********xx.......yy|
+ * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
+ * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
+ * |           xx.......yy|  |             *********xx.......yy|
+ * |----------------------|  |---------------------------------|
+ *     codeword 1,2..n-1                  codeword n
+ *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
+ *
+ * n = Number of codewords in the page
+ * . = ECC bytes
+ * * = Spare/free bytes
+ * x = Unused byte(s)
+ * y = Reserved byte(s)
+ *
+ * 2K page: n = 4, spare = 16 bytes
+ * 4K page: n = 8, spare = 32 bytes
+ * 8K page: n = 16, spare = 64 bytes
+ *
+ * the qcom nand controller operates at a sub page/codeword level. each
+ * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
+ * the number of ECC bytes vary based on the ECC strength and the bus width.
+ *
+ * the first n - 1 codewords contains 516 bytes of user data, the remaining
+ * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
+ * both user data and spare(oobavail) bytes that sum up to 516 bytes.
+ *
+ * When we access a page with ECC enabled, the reserved bytes(s) are not
+ * accessible at all. When reading, we fill up these unreadable positions
+ * with 0xffs. When writing, the controller skips writing the inaccessible
+ * bytes.
+ *
+ * Layout with ECC disabled:
+ *
+ * |------------------------------|  |---------------------------------------|
+ * |         yy          xx.......|  |         bb          *********xx.......|
+ * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
+ * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
+ * |         yy          xx.......|  |         bb          *********xx.......|
+ * |------------------------------|  |---------------------------------------|
+ *         codeword 1,2..n-1                        codeword n
+ *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
+ *
+ * n = Number of codewords in the page
+ * . = ECC bytes
+ * * = Spare/free bytes
+ * x = Unused byte(s)
+ * y = Dummy Bad Bock byte(s)
+ * b = Real Bad Block byte(s)
+ * size1/size2 = function of codeword size and 'n'
+ *
+ * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
+ * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
+ * Block Markers. In the last codeword, this position contains the real BBM
+ *
+ * In order to have a consistent layout between RAW and ECC modes, we assume
+ * the following OOB layout arrangement:
+ *
+ * |-----------|  |--------------------|
+ * |yyxx.......|  |bb*********xx.......|
+ * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
+ * |yyxx.......|  |bb*********xx.......|
+ * |yyxx.......|  |bb*********xx.......|
+ * |-----------|  |--------------------|
+ *  first n - 1       nth OOB region
+ *  OOB regions
+ *
+ * n = Number of codewords in the page
+ * . = ECC bytes
+ * * = FREE OOB bytes
+ * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
+ * x = Unused byte(s)
+ * b = Real bad block byte(s) (inaccessible when ECC enabled)
+ *
+ * This layout is read as is when ECC is disabled. When ECC is enabled, the
+ * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
+ * and assumed as 0xffs when we read a page/oob. The ECC, unused and
+ * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
+ * the sum of the three).
+ */
+static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section > 1)
+		return -ERANGE;
+
+	if (!section) {
+		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
+				    host->bbm_size;
+		oobregion->offset = 0;
+	} else {
+		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
+		oobregion->offset = mtd->oobsize - oobregion->length;
+	}
+
+	return 0;
+}
+
+static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = ecc->steps * 4;
+	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
+	.ecc = qcom_nand_ooblayout_ecc,
+	.free = qcom_nand_ooblayout_free,
+};
+
+static int
+qcom_nandc_calc_ecc_bytes(int step_size, int strength)
+{
+	return strength == 4 ? 12 : 16;
+}
+NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
+		     NANDC_STEP_SIZE, 4, 8);
+
+static int qcom_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct qcom_nand_host *host = to_qcom_nand_host(chip);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+	int cwperpage, bad_block_byte, ret;
+	bool wide_bus;
+	int ecc_mode = 1;
+
+	/* controller only supports 512 bytes data steps */
+	ecc->size = NANDC_STEP_SIZE;
+	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
+	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
+
+	/*
+	 * Each CW has 4 available OOB bytes which will be protected with ECC
+	 * so remaining bytes can be used for ECC.
+	 */
+	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
+				   mtd->oobsize - (cwperpage * 4));
+	if (ret) {
+		dev_err(nandc->dev, "No valid ECC settings possible\n");
+		return ret;
+	}
+
+	if (ecc->strength >= 8) {
+		/* 8 bit ECC defaults to BCH ECC on all platforms */
+		host->bch_enabled = true;
+		ecc_mode = 1;
+
+		if (wide_bus) {
+			host->ecc_bytes_hw = 14;
+			host->spare_bytes = 0;
+			host->bbm_size = 2;
+		} else {
+			host->ecc_bytes_hw = 13;
+			host->spare_bytes = 2;
+			host->bbm_size = 1;
+		}
+	} else {
+		/*
+		 * if the controller supports BCH for 4 bit ECC, the controller
+		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
+		 * always 10 bytes
+		 */
+		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
+			/* BCH */
+			host->bch_enabled = true;
+			ecc_mode = 0;
+
+			if (wide_bus) {
+				host->ecc_bytes_hw = 8;
+				host->spare_bytes = 2;
+				host->bbm_size = 2;
+			} else {
+				host->ecc_bytes_hw = 7;
+				host->spare_bytes = 4;
+				host->bbm_size = 1;
+			}
+		} else {
+			/* RS */
+			host->ecc_bytes_hw = 10;
+
+			if (wide_bus) {
+				host->spare_bytes = 0;
+				host->bbm_size = 2;
+			} else {
+				host->spare_bytes = 1;
+				host->bbm_size = 1;
+			}
+		}
+	}
+
+	/*
+	 * we consider ecc->bytes as the sum of all the non-data content in a
+	 * step. It gives us a clean representation of the oob area (even if
+	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
+	 * ECC and 12 bytes for 4 bit ECC
+	 */
+	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
+
+	ecc->read_page		= qcom_nandc_read_page;
+	ecc->read_page_raw	= qcom_nandc_read_page_raw;
+	ecc->read_oob		= qcom_nandc_read_oob;
+	ecc->write_page		= qcom_nandc_write_page;
+	ecc->write_page_raw	= qcom_nandc_write_page_raw;
+	ecc->write_oob		= qcom_nandc_write_oob;
+
+	ecc->mode = NAND_ECC_HW;
+
+	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
+
+	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
+				     cwperpage);
+
+	/*
+	 * DATA_UD_BYTES varies based on whether the read/write command protects
+	 * spare data with ECC too. We protect spare data by default, so we set
+	 * it to main + spare data, which are 512 and 4 bytes respectively.
+	 */
+	host->cw_data = 516;
+
+	/*
+	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
+	 * for 8 bit ECC
+	 */
+	host->cw_size = host->cw_data + ecc->bytes;
+	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
+
+	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
+				| host->cw_data << UD_SIZE_BYTES
+				| 0 << DISABLE_STATUS_AFTER_WRITE
+				| 5 << NUM_ADDR_CYCLES
+				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
+				| 0 << STATUS_BFR_READ
+				| 1 << SET_RD_MODE_AFTER_STATUS
+				| host->spare_bytes << SPARE_SIZE_BYTES;
+
+	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
+				| 0 <<  CS_ACTIVE_BSY
+				| bad_block_byte << BAD_BLOCK_BYTE_NUM
+				| 0 << BAD_BLOCK_IN_SPARE_AREA
+				| 2 << WR_RD_BSY_GAP
+				| wide_bus << WIDE_FLASH
+				| host->bch_enabled << ENABLE_BCH_ECC;
+
+	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
+				| host->cw_size << UD_SIZE_BYTES
+				| 5 << NUM_ADDR_CYCLES
+				| 0 << SPARE_SIZE_BYTES;
+
+	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
+				| 0 << CS_ACTIVE_BSY
+				| 17 << BAD_BLOCK_BYTE_NUM
+				| 1 << BAD_BLOCK_IN_SPARE_AREA
+				| 2 << WR_RD_BSY_GAP
+				| wide_bus << WIDE_FLASH
+				| 1 << DEV0_CFG1_ECC_DISABLE;
+
+	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
+				| 0 << ECC_SW_RESET
+				| host->cw_data << ECC_NUM_DATA_BYTES
+				| 1 << ECC_FORCE_CLK_OPEN
+				| ecc_mode << ECC_MODE
+				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
+
+	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
+
+	host->clrflashstatus = FS_READY_BSY_N;
+	host->clrreadstatus = 0xc0;
+	nandc->regs->erased_cw_detect_cfg_clr =
+		cpu_to_le32(CLR_ERASED_PAGE_DET);
+	nandc->regs->erased_cw_detect_cfg_set =
+		cpu_to_le32(SET_ERASED_PAGE_DET);
+
+	dev_dbg(nandc->dev,
+		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
+		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
+		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
+		cwperpage);
+
+	return 0;
+}
+
+static const struct nand_controller_ops qcom_nandc_ops = {
+	.attach_chip = qcom_nand_attach_chip,
+};
+
+static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
+{
+	int ret;
+
+	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
+	if (ret) {
+		dev_err(nandc->dev, "failed to set DMA mask\n");
+		return ret;
+	}
+
+	/*
+	 * we use the internal buffer for reading ONFI params, reading small
+	 * data like ID and status, and preforming read-copy-write operations
+	 * when writing to a codeword partially. 532 is the maximum possible
+	 * size of a codeword for our nand controller
+	 */
+	nandc->buf_size = 532;
+
+	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
+					GFP_KERNEL);
+	if (!nandc->data_buffer)
+		return -ENOMEM;
+
+	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
+					GFP_KERNEL);
+	if (!nandc->regs)
+		return -ENOMEM;
+
+	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
+				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
+				GFP_KERNEL);
+	if (!nandc->reg_read_buf)
+		return -ENOMEM;
+
+	if (nandc->props->is_bam) {
+		nandc->reg_read_dma =
+			dma_map_single(nandc->dev, nandc->reg_read_buf,
+				       MAX_REG_RD *
+				       sizeof(*nandc->reg_read_buf),
+				       DMA_FROM_DEVICE);
+		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
+			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
+			return -EIO;
+		}
+
+		nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
+		if (!nandc->tx_chan) {
+			dev_err(nandc->dev, "failed to request tx channel\n");
+			return -ENODEV;
+		}
+
+		nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
+		if (!nandc->rx_chan) {
+			dev_err(nandc->dev, "failed to request rx channel\n");
+			return -ENODEV;
+		}
+
+		nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
+		if (!nandc->cmd_chan) {
+			dev_err(nandc->dev, "failed to request cmd channel\n");
+			return -ENODEV;
+		}
+
+		/*
+		 * Initially allocate BAM transaction to read ONFI param page.
+		 * After detecting all the devices, this BAM transaction will
+		 * be freed and the next BAM tranasction will be allocated with
+		 * maximum codeword size
+		 */
+		nandc->max_cwperpage = 1;
+		nandc->bam_txn = alloc_bam_transaction(nandc);
+		if (!nandc->bam_txn) {
+			dev_err(nandc->dev,
+				"failed to allocate bam transaction\n");
+			return -ENOMEM;
+		}
+	} else {
+		nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
+		if (!nandc->chan) {
+			dev_err(nandc->dev,
+				"failed to request slave channel\n");
+			return -ENODEV;
+		}
+	}
+
+	INIT_LIST_HEAD(&nandc->desc_list);
+	INIT_LIST_HEAD(&nandc->host_list);
+
+	nand_controller_init(&nandc->controller);
+	nandc->controller.ops = &qcom_nandc_ops;
+
+	return 0;
+}
+
+static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
+{
+	if (nandc->props->is_bam) {
+		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
+			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
+					 MAX_REG_RD *
+					 sizeof(*nandc->reg_read_buf),
+					 DMA_FROM_DEVICE);
+
+		if (nandc->tx_chan)
+			dma_release_channel(nandc->tx_chan);
+
+		if (nandc->rx_chan)
+			dma_release_channel(nandc->rx_chan);
+
+		if (nandc->cmd_chan)
+			dma_release_channel(nandc->cmd_chan);
+	} else {
+		if (nandc->chan)
+			dma_release_channel(nandc->chan);
+	}
+}
+
+/* one time setup of a few nand controller registers */
+static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
+{
+	u32 nand_ctrl;
+
+	/* kill onenand */
+	nandc_write(nandc, SFLASHC_BURST_CFG, 0);
+	nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
+		    NAND_DEV_CMD_VLD_VAL);
+
+	/* enable ADM or BAM DMA */
+	if (nandc->props->is_bam) {
+		nand_ctrl = nandc_read(nandc, NAND_CTRL);
+		nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
+	} else {
+		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
+	}
+
+	/* save the original values of these registers */
+	nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
+	nandc->vld = NAND_DEV_CMD_VLD_VAL;
+
+	return 0;
+}
+
+static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
+					    struct qcom_nand_host *host,
+					    struct device_node *dn)
+{
+	struct nand_chip *chip = &host->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct device *dev = nandc->dev;
+	int ret;
+
+	ret = of_property_read_u32(dn, "reg", &host->cs);
+	if (ret) {
+		dev_err(dev, "can't get chip-select\n");
+		return -ENXIO;
+	}
+
+	nand_set_flash_node(chip, dn);
+	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
+	if (!mtd->name)
+		return -ENOMEM;
+
+	mtd->owner = THIS_MODULE;
+	mtd->dev.parent = dev;
+
+	chip->cmdfunc		= qcom_nandc_command;
+	chip->select_chip	= qcom_nandc_select_chip;
+	chip->read_byte		= qcom_nandc_read_byte;
+	chip->read_buf		= qcom_nandc_read_buf;
+	chip->write_buf		= qcom_nandc_write_buf;
+	chip->set_features	= nand_get_set_features_notsupp;
+	chip->get_features	= nand_get_set_features_notsupp;
+
+	/*
+	 * the bad block marker is readable only when we read the last codeword
+	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
+	 * helpers don't allow us to read BB from a nand chip with ECC
+	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
+	 * and block_markbad helpers until we permanently switch to using
+	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
+	 */
+	chip->block_bad		= qcom_nandc_block_bad;
+	chip->block_markbad	= qcom_nandc_block_markbad;
+
+	chip->controller = &nandc->controller;
+	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
+			 NAND_SKIP_BBTSCAN;
+
+	/* set up initial status value */
+	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
+
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		nand_cleanup(chip);
+
+	return ret;
+}
+
+static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
+{
+	struct device *dev = nandc->dev;
+	struct device_node *dn = dev->of_node, *child;
+	struct qcom_nand_host *host;
+	int ret;
+
+	if (nandc->props->is_bam) {
+		free_bam_transaction(nandc);
+		nandc->bam_txn = alloc_bam_transaction(nandc);
+		if (!nandc->bam_txn) {
+			dev_err(nandc->dev,
+				"failed to allocate bam transaction\n");
+			return -ENOMEM;
+		}
+	}
+
+	for_each_available_child_of_node(dn, child) {
+		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
+		if (!host) {
+			of_node_put(child);
+			return -ENOMEM;
+		}
+
+		ret = qcom_nand_host_init_and_register(nandc, host, child);
+		if (ret) {
+			devm_kfree(dev, host);
+			continue;
+		}
+
+		list_add_tail(&host->node, &nandc->host_list);
+	}
+
+	if (list_empty(&nandc->host_list))
+		return -ENODEV;
+
+	return 0;
+}
+
+/* parse custom DT properties here */
+static int qcom_nandc_parse_dt(struct platform_device *pdev)
+{
+	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
+	struct device_node *np = nandc->dev->of_node;
+	int ret;
+
+	if (!nandc->props->is_bam) {
+		ret = of_property_read_u32(np, "qcom,cmd-crci",
+					   &nandc->cmd_crci);
+		if (ret) {
+			dev_err(nandc->dev, "command CRCI unspecified\n");
+			return ret;
+		}
+
+		ret = of_property_read_u32(np, "qcom,data-crci",
+					   &nandc->data_crci);
+		if (ret) {
+			dev_err(nandc->dev, "data CRCI unspecified\n");
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static int qcom_nandc_probe(struct platform_device *pdev)
+{
+	struct qcom_nand_controller *nandc;
+	const void *dev_data;
+	struct device *dev = &pdev->dev;
+	struct resource *res;
+	int ret;
+
+	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
+	if (!nandc)
+		return -ENOMEM;
+
+	platform_set_drvdata(pdev, nandc);
+	nandc->dev = dev;
+
+	dev_data = of_device_get_match_data(dev);
+	if (!dev_data) {
+		dev_err(&pdev->dev, "failed to get device data\n");
+		return -ENODEV;
+	}
+
+	nandc->props = dev_data;
+
+	nandc->core_clk = devm_clk_get(dev, "core");
+	if (IS_ERR(nandc->core_clk))
+		return PTR_ERR(nandc->core_clk);
+
+	nandc->aon_clk = devm_clk_get(dev, "aon");
+	if (IS_ERR(nandc->aon_clk))
+		return PTR_ERR(nandc->aon_clk);
+
+	ret = qcom_nandc_parse_dt(pdev);
+	if (ret)
+		return ret;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nandc->base = devm_ioremap_resource(dev, res);
+	if (IS_ERR(nandc->base))
+		return PTR_ERR(nandc->base);
+
+	nandc->base_phys = res->start;
+	nandc->base_dma = dma_map_resource(dev, res->start,
+					   resource_size(res),
+					   DMA_BIDIRECTIONAL, 0);
+	if (!nandc->base_dma)
+		return -ENXIO;
+
+	ret = qcom_nandc_alloc(nandc);
+	if (ret)
+		goto err_nandc_alloc;
+
+	ret = clk_prepare_enable(nandc->core_clk);
+	if (ret)
+		goto err_core_clk;
+
+	ret = clk_prepare_enable(nandc->aon_clk);
+	if (ret)
+		goto err_aon_clk;
+
+	ret = qcom_nandc_setup(nandc);
+	if (ret)
+		goto err_setup;
+
+	ret = qcom_probe_nand_devices(nandc);
+	if (ret)
+		goto err_setup;
+
+	return 0;
+
+err_setup:
+	clk_disable_unprepare(nandc->aon_clk);
+err_aon_clk:
+	clk_disable_unprepare(nandc->core_clk);
+err_core_clk:
+	qcom_nandc_unalloc(nandc);
+err_nandc_alloc:
+	dma_unmap_resource(dev, res->start, resource_size(res),
+			   DMA_BIDIRECTIONAL, 0);
+
+	return ret;
+}
+
+static int qcom_nandc_remove(struct platform_device *pdev)
+{
+	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
+	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	struct qcom_nand_host *host;
+
+	list_for_each_entry(host, &nandc->host_list, node)
+		nand_release(nand_to_mtd(&host->chip));
+
+
+	qcom_nandc_unalloc(nandc);
+
+	clk_disable_unprepare(nandc->aon_clk);
+	clk_disable_unprepare(nandc->core_clk);
+
+	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
+			   DMA_BIDIRECTIONAL, 0);
+
+	return 0;
+}
+
+static const struct qcom_nandc_props ipq806x_nandc_props = {
+	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
+	.is_bam = false,
+	.dev_cmd_reg_start = 0x0,
+};
+
+static const struct qcom_nandc_props ipq4019_nandc_props = {
+	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
+	.is_bam = true,
+	.dev_cmd_reg_start = 0x0,
+};
+
+static const struct qcom_nandc_props ipq8074_nandc_props = {
+	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
+	.is_bam = true,
+	.dev_cmd_reg_start = 0x7000,
+};
+
+/*
+ * data will hold a struct pointer containing more differences once we support
+ * more controller variants
+ */
+static const struct of_device_id qcom_nandc_of_match[] = {
+	{
+		.compatible = "qcom,ipq806x-nand",
+		.data = &ipq806x_nandc_props,
+	},
+	{
+		.compatible = "qcom,ipq4019-nand",
+		.data = &ipq4019_nandc_props,
+	},
+	{
+		.compatible = "qcom,ipq8074-nand",
+		.data = &ipq8074_nandc_props,
+	},
+	{}
+};
+MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
+
+static struct platform_driver qcom_nandc_driver = {
+	.driver = {
+		.name = "qcom-nandc",
+		.of_match_table = qcom_nandc_of_match,
+	},
+	.probe   = qcom_nandc_probe,
+	.remove  = qcom_nandc_remove,
+};
+module_platform_driver(qcom_nandc_driver);
+
+MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
+MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/r852.c b/drivers/mtd/nand/raw/r852.c
new file mode 100644
index 0000000..dcdeb06
--- /dev/null
+++ b/drivers/mtd/nand/raw/r852.c
@@ -0,0 +1,1082 @@
+/*
+ * Copyright © 2009 - Maxim Levitsky
+ * driver for Ricoh xD readers
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#define DRV_NAME "r852"
+#define pr_fmt(fmt)  DRV_NAME ": " fmt
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/jiffies.h>
+#include <linux/workqueue.h>
+#include <linux/interrupt.h>
+#include <linux/pci.h>
+#include <linux/pci_ids.h>
+#include <linux/delay.h>
+#include <linux/slab.h>
+#include <asm/byteorder.h>
+#include <linux/sched.h>
+#include "sm_common.h"
+#include "r852.h"
+
+
+static bool r852_enable_dma = 1;
+module_param(r852_enable_dma, bool, S_IRUGO);
+MODULE_PARM_DESC(r852_enable_dma, "Enable usage of the DMA (default)");
+
+static int debug;
+module_param(debug, int, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(debug, "Debug level (0-2)");
+
+/* read register */
+static inline uint8_t r852_read_reg(struct r852_device *dev, int address)
+{
+	uint8_t reg = readb(dev->mmio + address);
+	return reg;
+}
+
+/* write register */
+static inline void r852_write_reg(struct r852_device *dev,
+						int address, uint8_t value)
+{
+	writeb(value, dev->mmio + address);
+	mmiowb();
+}
+
+
+/* read dword sized register */
+static inline uint32_t r852_read_reg_dword(struct r852_device *dev, int address)
+{
+	uint32_t reg = le32_to_cpu(readl(dev->mmio + address));
+	return reg;
+}
+
+/* write dword sized register */
+static inline void r852_write_reg_dword(struct r852_device *dev,
+							int address, uint32_t value)
+{
+	writel(cpu_to_le32(value), dev->mmio + address);
+	mmiowb();
+}
+
+/* returns pointer to our private structure */
+static inline struct r852_device *r852_get_dev(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	return nand_get_controller_data(chip);
+}
+
+
+/* check if controller supports dma */
+static void r852_dma_test(struct r852_device *dev)
+{
+	dev->dma_usable = (r852_read_reg(dev, R852_DMA_CAP) &
+		(R852_DMA1 | R852_DMA2)) == (R852_DMA1 | R852_DMA2);
+
+	if (!dev->dma_usable)
+		message("Non dma capable device detected, dma disabled");
+
+	if (!r852_enable_dma) {
+		message("disabling dma on user request");
+		dev->dma_usable = 0;
+	}
+}
+
+/*
+ * Enable dma. Enables ether first or second stage of the DMA,
+ * Expects dev->dma_dir and dev->dma_state be set
+ */
+static void r852_dma_enable(struct r852_device *dev)
+{
+	uint8_t dma_reg, dma_irq_reg;
+
+	/* Set up dma settings */
+	dma_reg = r852_read_reg_dword(dev, R852_DMA_SETTINGS);
+	dma_reg &= ~(R852_DMA_READ | R852_DMA_INTERNAL | R852_DMA_MEMORY);
+
+	if (dev->dma_dir)
+		dma_reg |= R852_DMA_READ;
+
+	if (dev->dma_state == DMA_INTERNAL) {
+		dma_reg |= R852_DMA_INTERNAL;
+		/* Precaution to make sure HW doesn't write */
+			/* to random kernel memory */
+		r852_write_reg_dword(dev, R852_DMA_ADDR,
+			cpu_to_le32(dev->phys_bounce_buffer));
+	} else {
+		dma_reg |= R852_DMA_MEMORY;
+		r852_write_reg_dword(dev, R852_DMA_ADDR,
+			cpu_to_le32(dev->phys_dma_addr));
+	}
+
+	/* Precaution: make sure write reached the device */
+	r852_read_reg_dword(dev, R852_DMA_ADDR);
+
+	r852_write_reg_dword(dev, R852_DMA_SETTINGS, dma_reg);
+
+	/* Set dma irq */
+	dma_irq_reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE);
+	r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE,
+		dma_irq_reg |
+		R852_DMA_IRQ_INTERNAL |
+		R852_DMA_IRQ_ERROR |
+		R852_DMA_IRQ_MEMORY);
+}
+
+/*
+ * Disable dma, called from the interrupt handler, which specifies
+ * success of the operation via 'error' argument
+ */
+static void r852_dma_done(struct r852_device *dev, int error)
+{
+	WARN_ON(dev->dma_stage == 0);
+
+	r852_write_reg_dword(dev, R852_DMA_IRQ_STA,
+			r852_read_reg_dword(dev, R852_DMA_IRQ_STA));
+
+	r852_write_reg_dword(dev, R852_DMA_SETTINGS, 0);
+	r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, 0);
+
+	/* Precaution to make sure HW doesn't write to random kernel memory */
+	r852_write_reg_dword(dev, R852_DMA_ADDR,
+		cpu_to_le32(dev->phys_bounce_buffer));
+	r852_read_reg_dword(dev, R852_DMA_ADDR);
+
+	dev->dma_error = error;
+	dev->dma_stage = 0;
+
+	if (dev->phys_dma_addr && dev->phys_dma_addr != dev->phys_bounce_buffer)
+		pci_unmap_single(dev->pci_dev, dev->phys_dma_addr, R852_DMA_LEN,
+			dev->dma_dir ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
+}
+
+/*
+ * Wait, till dma is done, which includes both phases of it
+ */
+static int r852_dma_wait(struct r852_device *dev)
+{
+	long timeout = wait_for_completion_timeout(&dev->dma_done,
+				msecs_to_jiffies(1000));
+	if (!timeout) {
+		dbg("timeout waiting for DMA interrupt");
+		return -ETIMEDOUT;
+	}
+
+	return 0;
+}
+
+/*
+ * Read/Write one page using dma. Only pages can be read (512 bytes)
+*/
+static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read)
+{
+	int bounce = 0;
+	unsigned long flags;
+	int error;
+
+	dev->dma_error = 0;
+
+	/* Set dma direction */
+	dev->dma_dir = do_read;
+	dev->dma_stage = 1;
+	reinit_completion(&dev->dma_done);
+
+	dbg_verbose("doing dma %s ", do_read ? "read" : "write");
+
+	/* Set initial dma state: for reading first fill on board buffer,
+	  from device, for writes first fill the buffer  from memory*/
+	dev->dma_state = do_read ? DMA_INTERNAL : DMA_MEMORY;
+
+	/* if incoming buffer is not page aligned, we should do bounce */
+	if ((unsigned long)buf & (R852_DMA_LEN-1))
+		bounce = 1;
+
+	if (!bounce) {
+		dev->phys_dma_addr = pci_map_single(dev->pci_dev, (void *)buf,
+			R852_DMA_LEN,
+			(do_read ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE));
+
+		if (pci_dma_mapping_error(dev->pci_dev, dev->phys_dma_addr))
+			bounce = 1;
+	}
+
+	if (bounce) {
+		dbg_verbose("dma: using bounce buffer");
+		dev->phys_dma_addr = dev->phys_bounce_buffer;
+		if (!do_read)
+			memcpy(dev->bounce_buffer, buf, R852_DMA_LEN);
+	}
+
+	/* Enable DMA */
+	spin_lock_irqsave(&dev->irqlock, flags);
+	r852_dma_enable(dev);
+	spin_unlock_irqrestore(&dev->irqlock, flags);
+
+	/* Wait till complete */
+	error = r852_dma_wait(dev);
+
+	if (error) {
+		r852_dma_done(dev, error);
+		return;
+	}
+
+	if (do_read && bounce)
+		memcpy((void *)buf, dev->bounce_buffer, R852_DMA_LEN);
+}
+
+/*
+ * Program data lines of the nand chip to send data to it
+ */
+static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct r852_device *dev = r852_get_dev(mtd);
+	uint32_t reg;
+
+	/* Don't allow any access to hardware if we suspect card removal */
+	if (dev->card_unstable)
+		return;
+
+	/* Special case for whole sector read */
+	if (len == R852_DMA_LEN && dev->dma_usable) {
+		r852_do_dma(dev, (uint8_t *)buf, 0);
+		return;
+	}
+
+	/* write DWORD chinks - faster */
+	while (len >= 4) {
+		reg = buf[0] | buf[1] << 8 | buf[2] << 16 | buf[3] << 24;
+		r852_write_reg_dword(dev, R852_DATALINE, reg);
+		buf += 4;
+		len -= 4;
+
+	}
+
+	/* write rest */
+	while (len > 0) {
+		r852_write_reg(dev, R852_DATALINE, *buf++);
+		len--;
+	}
+}
+
+/*
+ * Read data lines of the nand chip to retrieve data
+ */
+static void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct r852_device *dev = r852_get_dev(mtd);
+	uint32_t reg;
+
+	if (dev->card_unstable) {
+		/* since we can't signal error here, at least, return
+			predictable buffer */
+		memset(buf, 0, len);
+		return;
+	}
+
+	/* special case for whole sector read */
+	if (len == R852_DMA_LEN && dev->dma_usable) {
+		r852_do_dma(dev, buf, 1);
+		return;
+	}
+
+	/* read in dword sized chunks */
+	while (len >= 4) {
+
+		reg = r852_read_reg_dword(dev, R852_DATALINE);
+		*buf++ = reg & 0xFF;
+		*buf++ = (reg >> 8) & 0xFF;
+		*buf++ = (reg >> 16) & 0xFF;
+		*buf++ = (reg >> 24) & 0xFF;
+		len -= 4;
+	}
+
+	/* read the reset by bytes */
+	while (len--)
+		*buf++ = r852_read_reg(dev, R852_DATALINE);
+}
+
+/*
+ * Read one byte from nand chip
+ */
+static uint8_t r852_read_byte(struct mtd_info *mtd)
+{
+	struct r852_device *dev = r852_get_dev(mtd);
+
+	/* Same problem as in r852_read_buf.... */
+	if (dev->card_unstable)
+		return 0;
+
+	return r852_read_reg(dev, R852_DATALINE);
+}
+
+/*
+ * Control several chip lines & send commands
+ */
+static void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+	struct r852_device *dev = r852_get_dev(mtd);
+
+	if (dev->card_unstable)
+		return;
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+
+		dev->ctlreg &= ~(R852_CTL_DATA | R852_CTL_COMMAND |
+				 R852_CTL_ON | R852_CTL_CARDENABLE);
+
+		if (ctrl & NAND_ALE)
+			dev->ctlreg |= R852_CTL_DATA;
+
+		if (ctrl & NAND_CLE)
+			dev->ctlreg |= R852_CTL_COMMAND;
+
+		if (ctrl & NAND_NCE)
+			dev->ctlreg |= (R852_CTL_CARDENABLE | R852_CTL_ON);
+		else
+			dev->ctlreg &= ~R852_CTL_WRITE;
+
+		/* when write is stareted, enable write access */
+		if (dat == NAND_CMD_ERASE1)
+			dev->ctlreg |= R852_CTL_WRITE;
+
+		r852_write_reg(dev, R852_CTL, dev->ctlreg);
+	}
+
+	 /* HACK: NAND_CMD_SEQIN is called without NAND_CTRL_CHANGE, but we need
+		to set write mode */
+	if (dat == NAND_CMD_SEQIN && (dev->ctlreg & R852_CTL_COMMAND)) {
+		dev->ctlreg |= R852_CTL_WRITE;
+		r852_write_reg(dev, R852_CTL, dev->ctlreg);
+	}
+
+	if (dat != NAND_CMD_NONE)
+		r852_write_reg(dev, R852_DATALINE, dat);
+}
+
+/*
+ * Wait till card is ready.
+ * based on nand_wait, but returns errors on DMA error
+ */
+static int r852_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct r852_device *dev = nand_get_controller_data(chip);
+
+	unsigned long timeout;
+	u8 status;
+
+	timeout = jiffies + (chip->state == FL_ERASING ?
+		msecs_to_jiffies(400) : msecs_to_jiffies(20));
+
+	while (time_before(jiffies, timeout))
+		if (chip->dev_ready(mtd))
+			break;
+
+	nand_status_op(chip, &status);
+
+	/* Unfortunelly, no way to send detailed error status... */
+	if (dev->dma_error) {
+		status |= NAND_STATUS_FAIL;
+		dev->dma_error = 0;
+	}
+	return status;
+}
+
+/*
+ * Check if card is ready
+ */
+
+static int r852_ready(struct mtd_info *mtd)
+{
+	struct r852_device *dev = r852_get_dev(mtd);
+	return !(r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_BUSY);
+}
+
+
+/*
+ * Set ECC engine mode
+*/
+
+static void r852_ecc_hwctl(struct mtd_info *mtd, int mode)
+{
+	struct r852_device *dev = r852_get_dev(mtd);
+
+	if (dev->card_unstable)
+		return;
+
+	switch (mode) {
+	case NAND_ECC_READ:
+	case NAND_ECC_WRITE:
+		/* enable ecc generation/check*/
+		dev->ctlreg |= R852_CTL_ECC_ENABLE;
+
+		/* flush ecc buffer */
+		r852_write_reg(dev, R852_CTL,
+			dev->ctlreg | R852_CTL_ECC_ACCESS);
+
+		r852_read_reg_dword(dev, R852_DATALINE);
+		r852_write_reg(dev, R852_CTL, dev->ctlreg);
+		return;
+
+	case NAND_ECC_READSYN:
+		/* disable ecc generation */
+		dev->ctlreg &= ~R852_CTL_ECC_ENABLE;
+		r852_write_reg(dev, R852_CTL, dev->ctlreg);
+	}
+}
+
+/*
+ * Calculate ECC, only used for writes
+ */
+
+static int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat,
+							uint8_t *ecc_code)
+{
+	struct r852_device *dev = r852_get_dev(mtd);
+	struct sm_oob *oob = (struct sm_oob *)ecc_code;
+	uint32_t ecc1, ecc2;
+
+	if (dev->card_unstable)
+		return 0;
+
+	dev->ctlreg &= ~R852_CTL_ECC_ENABLE;
+	r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS);
+
+	ecc1 = r852_read_reg_dword(dev, R852_DATALINE);
+	ecc2 = r852_read_reg_dword(dev, R852_DATALINE);
+
+	oob->ecc1[0] = (ecc1) & 0xFF;
+	oob->ecc1[1] = (ecc1 >> 8) & 0xFF;
+	oob->ecc1[2] = (ecc1 >> 16) & 0xFF;
+
+	oob->ecc2[0] = (ecc2) & 0xFF;
+	oob->ecc2[1] = (ecc2 >> 8) & 0xFF;
+	oob->ecc2[2] = (ecc2 >> 16) & 0xFF;
+
+	r852_write_reg(dev, R852_CTL, dev->ctlreg);
+	return 0;
+}
+
+/*
+ * Correct the data using ECC, hw did almost everything for us
+ */
+
+static int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat,
+				uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	uint32_t ecc_reg;
+	uint8_t ecc_status, err_byte;
+	int i, error = 0;
+
+	struct r852_device *dev = r852_get_dev(mtd);
+
+	if (dev->card_unstable)
+		return 0;
+
+	if (dev->dma_error) {
+		dev->dma_error = 0;
+		return -EIO;
+	}
+
+	r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS);
+	ecc_reg = r852_read_reg_dword(dev, R852_DATALINE);
+	r852_write_reg(dev, R852_CTL, dev->ctlreg);
+
+	for (i = 0 ; i <= 1 ; i++) {
+
+		ecc_status = (ecc_reg >> 8) & 0xFF;
+
+		/* ecc uncorrectable error */
+		if (ecc_status & R852_ECC_FAIL) {
+			dbg("ecc: unrecoverable error, in half %d", i);
+			error = -EBADMSG;
+			goto exit;
+		}
+
+		/* correctable error */
+		if (ecc_status & R852_ECC_CORRECTABLE) {
+
+			err_byte = ecc_reg & 0xFF;
+			dbg("ecc: recoverable error, "
+				"in half %d, byte %d, bit %d", i,
+				err_byte, ecc_status & R852_ECC_ERR_BIT_MSK);
+
+			dat[err_byte] ^=
+				1 << (ecc_status & R852_ECC_ERR_BIT_MSK);
+			error++;
+		}
+
+		dat += 256;
+		ecc_reg >>= 16;
+	}
+exit:
+	return error;
+}
+
+/*
+ * This is copy of nand_read_oob_std
+ * nand_read_oob_syndrome assumes we can send column address - we can't
+ */
+static int r852_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			     int page)
+{
+	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
+}
+
+/*
+ * Start the nand engine
+ */
+
+static void r852_engine_enable(struct r852_device *dev)
+{
+	if (r852_read_reg_dword(dev, R852_HW) & R852_HW_UNKNOWN) {
+		r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON);
+		r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED);
+	} else {
+		r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED);
+		r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON);
+	}
+	msleep(300);
+	r852_write_reg(dev, R852_CTL, 0);
+}
+
+
+/*
+ * Stop the nand engine
+ */
+
+static void r852_engine_disable(struct r852_device *dev)
+{
+	r852_write_reg_dword(dev, R852_HW, 0);
+	r852_write_reg(dev, R852_CTL, R852_CTL_RESET);
+}
+
+/*
+ * Test if card is present
+ */
+
+static void r852_card_update_present(struct r852_device *dev)
+{
+	unsigned long flags;
+	uint8_t reg;
+
+	spin_lock_irqsave(&dev->irqlock, flags);
+	reg = r852_read_reg(dev, R852_CARD_STA);
+	dev->card_detected = !!(reg & R852_CARD_STA_PRESENT);
+	spin_unlock_irqrestore(&dev->irqlock, flags);
+}
+
+/*
+ * Update card detection IRQ state according to current card state
+ * which is read in r852_card_update_present
+ */
+static void r852_update_card_detect(struct r852_device *dev)
+{
+	int card_detect_reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE);
+	dev->card_unstable = 0;
+
+	card_detect_reg &= ~(R852_CARD_IRQ_REMOVE | R852_CARD_IRQ_INSERT);
+	card_detect_reg |= R852_CARD_IRQ_GENABLE;
+
+	card_detect_reg |= dev->card_detected ?
+		R852_CARD_IRQ_REMOVE : R852_CARD_IRQ_INSERT;
+
+	r852_write_reg(dev, R852_CARD_IRQ_ENABLE, card_detect_reg);
+}
+
+static ssize_t r852_media_type_show(struct device *sys_dev,
+			struct device_attribute *attr, char *buf)
+{
+	struct mtd_info *mtd = container_of(sys_dev, struct mtd_info, dev);
+	struct r852_device *dev = r852_get_dev(mtd);
+	char *data = dev->sm ? "smartmedia" : "xd";
+
+	strcpy(buf, data);
+	return strlen(data);
+}
+
+static DEVICE_ATTR(media_type, S_IRUGO, r852_media_type_show, NULL);
+
+
+/* Detect properties of card in slot */
+static void r852_update_media_status(struct r852_device *dev)
+{
+	uint8_t reg;
+	unsigned long flags;
+	int readonly;
+
+	spin_lock_irqsave(&dev->irqlock, flags);
+	if (!dev->card_detected) {
+		message("card removed");
+		spin_unlock_irqrestore(&dev->irqlock, flags);
+		return ;
+	}
+
+	readonly  = r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_RO;
+	reg = r852_read_reg(dev, R852_DMA_CAP);
+	dev->sm = (reg & (R852_DMA1 | R852_DMA2)) && (reg & R852_SMBIT);
+
+	message("detected %s %s card in slot",
+		dev->sm ? "SmartMedia" : "xD",
+		readonly ? "readonly" : "writeable");
+
+	dev->readonly = readonly;
+	spin_unlock_irqrestore(&dev->irqlock, flags);
+}
+
+/*
+ * Register the nand device
+ * Called when the card is detected
+ */
+static int r852_register_nand_device(struct r852_device *dev)
+{
+	struct mtd_info *mtd = nand_to_mtd(dev->chip);
+
+	WARN_ON(dev->card_registred);
+
+	mtd->dev.parent = &dev->pci_dev->dev;
+
+	if (dev->readonly)
+		dev->chip->options |= NAND_ROM;
+
+	r852_engine_enable(dev);
+
+	if (sm_register_device(mtd, dev->sm))
+		goto error1;
+
+	if (device_create_file(&mtd->dev, &dev_attr_media_type)) {
+		message("can't create media type sysfs attribute");
+		goto error3;
+	}
+
+	dev->card_registred = 1;
+	return 0;
+error3:
+	nand_release(mtd);
+error1:
+	/* Force card redetect */
+	dev->card_detected = 0;
+	return -1;
+}
+
+/*
+ * Unregister the card
+ */
+
+static void r852_unregister_nand_device(struct r852_device *dev)
+{
+	struct mtd_info *mtd = nand_to_mtd(dev->chip);
+
+	if (!dev->card_registred)
+		return;
+
+	device_remove_file(&mtd->dev, &dev_attr_media_type);
+	nand_release(mtd);
+	r852_engine_disable(dev);
+	dev->card_registred = 0;
+}
+
+/* Card state updater */
+static void r852_card_detect_work(struct work_struct *work)
+{
+	struct r852_device *dev =
+		container_of(work, struct r852_device, card_detect_work.work);
+
+	r852_card_update_present(dev);
+	r852_update_card_detect(dev);
+	dev->card_unstable = 0;
+
+	/* False alarm */
+	if (dev->card_detected == dev->card_registred)
+		goto exit;
+
+	/* Read media properties */
+	r852_update_media_status(dev);
+
+	/* Register the card */
+	if (dev->card_detected)
+		r852_register_nand_device(dev);
+	else
+		r852_unregister_nand_device(dev);
+exit:
+	r852_update_card_detect(dev);
+}
+
+/* Ack + disable IRQ generation */
+static void r852_disable_irqs(struct r852_device *dev)
+{
+	uint8_t reg;
+	reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE);
+	r852_write_reg(dev, R852_CARD_IRQ_ENABLE, reg & ~R852_CARD_IRQ_MASK);
+
+	reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE);
+	r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE,
+					reg & ~R852_DMA_IRQ_MASK);
+
+	r852_write_reg(dev, R852_CARD_IRQ_STA, R852_CARD_IRQ_MASK);
+	r852_write_reg_dword(dev, R852_DMA_IRQ_STA, R852_DMA_IRQ_MASK);
+}
+
+/* Interrupt handler */
+static irqreturn_t r852_irq(int irq, void *data)
+{
+	struct r852_device *dev = (struct r852_device *)data;
+
+	uint8_t card_status, dma_status;
+	unsigned long flags;
+	irqreturn_t ret = IRQ_NONE;
+
+	spin_lock_irqsave(&dev->irqlock, flags);
+
+	/* handle card detection interrupts first */
+	card_status = r852_read_reg(dev, R852_CARD_IRQ_STA);
+	r852_write_reg(dev, R852_CARD_IRQ_STA, card_status);
+
+	if (card_status & (R852_CARD_IRQ_INSERT|R852_CARD_IRQ_REMOVE)) {
+
+		ret = IRQ_HANDLED;
+		dev->card_detected = !!(card_status & R852_CARD_IRQ_INSERT);
+
+		/* we shouldn't receive any interrupts if we wait for card
+			to settle */
+		WARN_ON(dev->card_unstable);
+
+		/* disable irqs while card is unstable */
+		/* this will timeout DMA if active, but better that garbage */
+		r852_disable_irqs(dev);
+
+		if (dev->card_unstable)
+			goto out;
+
+		/* let, card state to settle a bit, and then do the work */
+		dev->card_unstable = 1;
+		queue_delayed_work(dev->card_workqueue,
+			&dev->card_detect_work, msecs_to_jiffies(100));
+		goto out;
+	}
+
+
+	/* Handle dma interrupts */
+	dma_status = r852_read_reg_dword(dev, R852_DMA_IRQ_STA);
+	r852_write_reg_dword(dev, R852_DMA_IRQ_STA, dma_status);
+
+	if (dma_status & R852_DMA_IRQ_MASK) {
+
+		ret = IRQ_HANDLED;
+
+		if (dma_status & R852_DMA_IRQ_ERROR) {
+			dbg("received dma error IRQ");
+			r852_dma_done(dev, -EIO);
+			complete(&dev->dma_done);
+			goto out;
+		}
+
+		/* received DMA interrupt out of nowhere? */
+		WARN_ON_ONCE(dev->dma_stage == 0);
+
+		if (dev->dma_stage == 0)
+			goto out;
+
+		/* done device access */
+		if (dev->dma_state == DMA_INTERNAL &&
+				(dma_status & R852_DMA_IRQ_INTERNAL)) {
+
+			dev->dma_state = DMA_MEMORY;
+			dev->dma_stage++;
+		}
+
+		/* done memory DMA */
+		if (dev->dma_state == DMA_MEMORY &&
+				(dma_status & R852_DMA_IRQ_MEMORY)) {
+			dev->dma_state = DMA_INTERNAL;
+			dev->dma_stage++;
+		}
+
+		/* Enable 2nd half of dma dance */
+		if (dev->dma_stage == 2)
+			r852_dma_enable(dev);
+
+		/* Operation done */
+		if (dev->dma_stage == 3) {
+			r852_dma_done(dev, 0);
+			complete(&dev->dma_done);
+		}
+		goto out;
+	}
+
+	/* Handle unknown interrupts */
+	if (dma_status)
+		dbg("bad dma IRQ status = %x", dma_status);
+
+	if (card_status & ~R852_CARD_STA_CD)
+		dbg("strange card status = %x", card_status);
+
+out:
+	spin_unlock_irqrestore(&dev->irqlock, flags);
+	return ret;
+}
+
+static int  r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
+{
+	int error;
+	struct nand_chip *chip;
+	struct r852_device *dev;
+
+	/* pci initialization */
+	error = pci_enable_device(pci_dev);
+
+	if (error)
+		goto error1;
+
+	pci_set_master(pci_dev);
+
+	error = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
+	if (error)
+		goto error2;
+
+	error = pci_request_regions(pci_dev, DRV_NAME);
+
+	if (error)
+		goto error3;
+
+	error = -ENOMEM;
+
+	/* init nand chip, but register it only on card insert */
+	chip = kzalloc(sizeof(struct nand_chip), GFP_KERNEL);
+
+	if (!chip)
+		goto error4;
+
+	/* commands */
+	chip->cmd_ctrl = r852_cmdctl;
+	chip->waitfunc = r852_wait;
+	chip->dev_ready = r852_ready;
+
+	/* I/O */
+	chip->read_byte = r852_read_byte;
+	chip->read_buf = r852_read_buf;
+	chip->write_buf = r852_write_buf;
+
+	/* ecc */
+	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
+	chip->ecc.size = R852_DMA_LEN;
+	chip->ecc.bytes = SM_OOB_SIZE;
+	chip->ecc.strength = 2;
+	chip->ecc.hwctl = r852_ecc_hwctl;
+	chip->ecc.calculate = r852_ecc_calculate;
+	chip->ecc.correct = r852_ecc_correct;
+
+	/* TODO: hack */
+	chip->ecc.read_oob = r852_read_oob;
+
+	/* init our device structure */
+	dev = kzalloc(sizeof(struct r852_device), GFP_KERNEL);
+
+	if (!dev)
+		goto error5;
+
+	nand_set_controller_data(chip, dev);
+	dev->chip = chip;
+	dev->pci_dev = pci_dev;
+	pci_set_drvdata(pci_dev, dev);
+
+	dev->bounce_buffer = pci_alloc_consistent(pci_dev, R852_DMA_LEN,
+		&dev->phys_bounce_buffer);
+
+	if (!dev->bounce_buffer)
+		goto error6;
+
+
+	error = -ENODEV;
+	dev->mmio = pci_ioremap_bar(pci_dev, 0);
+
+	if (!dev->mmio)
+		goto error7;
+
+	error = -ENOMEM;
+	dev->tmp_buffer = kzalloc(SM_SECTOR_SIZE, GFP_KERNEL);
+
+	if (!dev->tmp_buffer)
+		goto error8;
+
+	init_completion(&dev->dma_done);
+
+	dev->card_workqueue = create_freezable_workqueue(DRV_NAME);
+
+	if (!dev->card_workqueue)
+		goto error9;
+
+	INIT_DELAYED_WORK(&dev->card_detect_work, r852_card_detect_work);
+
+	/* shutdown everything - precation */
+	r852_engine_disable(dev);
+	r852_disable_irqs(dev);
+
+	r852_dma_test(dev);
+
+	dev->irq = pci_dev->irq;
+	spin_lock_init(&dev->irqlock);
+
+	dev->card_detected = 0;
+	r852_card_update_present(dev);
+
+	/*register irq handler*/
+	error = -ENODEV;
+	if (request_irq(pci_dev->irq, &r852_irq, IRQF_SHARED,
+			  DRV_NAME, dev))
+		goto error10;
+
+	/* kick initial present test */
+	queue_delayed_work(dev->card_workqueue,
+		&dev->card_detect_work, 0);
+
+
+	pr_notice("driver loaded successfully\n");
+	return 0;
+
+error10:
+	destroy_workqueue(dev->card_workqueue);
+error9:
+	kfree(dev->tmp_buffer);
+error8:
+	pci_iounmap(pci_dev, dev->mmio);
+error7:
+	pci_free_consistent(pci_dev, R852_DMA_LEN,
+		dev->bounce_buffer, dev->phys_bounce_buffer);
+error6:
+	kfree(dev);
+error5:
+	kfree(chip);
+error4:
+	pci_release_regions(pci_dev);
+error3:
+error2:
+	pci_disable_device(pci_dev);
+error1:
+	return error;
+}
+
+static void r852_remove(struct pci_dev *pci_dev)
+{
+	struct r852_device *dev = pci_get_drvdata(pci_dev);
+
+	/* Stop detect workqueue -
+		we are going to unregister the device anyway*/
+	cancel_delayed_work_sync(&dev->card_detect_work);
+	destroy_workqueue(dev->card_workqueue);
+
+	/* Unregister the device, this might make more IO */
+	r852_unregister_nand_device(dev);
+
+	/* Stop interrupts */
+	r852_disable_irqs(dev);
+	free_irq(dev->irq, dev);
+
+	/* Cleanup */
+	kfree(dev->tmp_buffer);
+	pci_iounmap(pci_dev, dev->mmio);
+	pci_free_consistent(pci_dev, R852_DMA_LEN,
+		dev->bounce_buffer, dev->phys_bounce_buffer);
+
+	kfree(dev->chip);
+	kfree(dev);
+
+	/* Shutdown the PCI device */
+	pci_release_regions(pci_dev);
+	pci_disable_device(pci_dev);
+}
+
+static void r852_shutdown(struct pci_dev *pci_dev)
+{
+	struct r852_device *dev = pci_get_drvdata(pci_dev);
+
+	cancel_delayed_work_sync(&dev->card_detect_work);
+	r852_disable_irqs(dev);
+	synchronize_irq(dev->irq);
+	pci_disable_device(pci_dev);
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int r852_suspend(struct device *device)
+{
+	struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
+
+	if (dev->ctlreg & R852_CTL_CARDENABLE)
+		return -EBUSY;
+
+	/* First make sure the detect work is gone */
+	cancel_delayed_work_sync(&dev->card_detect_work);
+
+	/* Turn off the interrupts and stop the device */
+	r852_disable_irqs(dev);
+	r852_engine_disable(dev);
+
+	/* If card was pulled off just during the suspend, which is very
+		unlikely, we will remove it on resume, it too late now
+		anyway... */
+	dev->card_unstable = 0;
+	return 0;
+}
+
+static int r852_resume(struct device *device)
+{
+	struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
+	struct mtd_info *mtd = nand_to_mtd(dev->chip);
+
+	r852_disable_irqs(dev);
+	r852_card_update_present(dev);
+	r852_engine_disable(dev);
+
+
+	/* If card status changed, just do the work */
+	if (dev->card_detected != dev->card_registred) {
+		dbg("card was %s during low power state",
+			dev->card_detected ? "added" : "removed");
+
+		queue_delayed_work(dev->card_workqueue,
+		&dev->card_detect_work, msecs_to_jiffies(1000));
+		return 0;
+	}
+
+	/* Otherwise, initialize the card */
+	if (dev->card_registred) {
+		r852_engine_enable(dev);
+		dev->chip->select_chip(mtd, 0);
+		nand_reset_op(dev->chip);
+		dev->chip->select_chip(mtd, -1);
+	}
+
+	/* Program card detection IRQ */
+	r852_update_card_detect(dev);
+	return 0;
+}
+#endif
+
+static const struct pci_device_id r852_pci_id_tbl[] = {
+
+	{ PCI_VDEVICE(RICOH, 0x0852), },
+	{ },
+};
+
+MODULE_DEVICE_TABLE(pci, r852_pci_id_tbl);
+
+static SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume);
+
+static struct pci_driver r852_pci_driver = {
+	.name		= DRV_NAME,
+	.id_table	= r852_pci_id_tbl,
+	.probe		= r852_probe,
+	.remove		= r852_remove,
+	.shutdown	= r852_shutdown,
+	.driver.pm	= &r852_pm_ops,
+};
+
+module_pci_driver(r852_pci_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Maxim Levitsky <maximlevitsky@gmail.com>");
+MODULE_DESCRIPTION("Ricoh 85xx xD/smartmedia card reader driver");
diff --git a/drivers/mtd/nand/raw/r852.h b/drivers/mtd/nand/raw/r852.h
new file mode 100644
index 0000000..1eed2fc
--- /dev/null
+++ b/drivers/mtd/nand/raw/r852.h
@@ -0,0 +1,157 @@
+/*
+ * Copyright © 2009 - Maxim Levitsky
+ * driver for Ricoh xD readers
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <linux/pci.h>
+#include <linux/completion.h>
+#include <linux/workqueue.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/spinlock.h>
+
+
+/* nand interface + ecc
+   byte write/read does one cycle on nand data lines.
+   dword write/read does 4 cycles
+   if R852_CTL_ECC_ACCESS is set in R852_CTL, then dword read reads
+   results of ecc correction, if DMA read was done before.
+   If write was done two dword reads read generated ecc checksums
+*/
+#define	R852_DATALINE		0x00
+
+/* control register */
+#define R852_CTL		0x04
+#define R852_CTL_COMMAND 	0x01	/* send command (#CLE)*/
+#define R852_CTL_DATA		0x02	/* read/write data (#ALE)*/
+#define R852_CTL_ON		0x04	/* only seem to controls the hd led, */
+					/* but has to be set on start...*/
+#define R852_CTL_RESET		0x08	/* unknown, set only on start once*/
+#define R852_CTL_CARDENABLE	0x10	/* probably (#CE) - always set*/
+#define R852_CTL_ECC_ENABLE	0x20	/* enable ecc engine */
+#define R852_CTL_ECC_ACCESS	0x40	/* read/write ecc via reg #0*/
+#define R852_CTL_WRITE		0x80	/* set when performing writes (#WP) */
+
+/* card detection status */
+#define R852_CARD_STA		0x05
+
+#define R852_CARD_STA_CD	0x01	/* state of #CD line, same as 0x04 */
+#define R852_CARD_STA_RO	0x02	/* card is readonly */
+#define R852_CARD_STA_PRESENT	0x04	/* card is present (#CD) */
+#define R852_CARD_STA_ABSENT	0x08	/* card is absent */
+#define R852_CARD_STA_BUSY	0x80	/* card is busy - (#R/B) */
+
+/* card detection irq status & enable*/
+#define R852_CARD_IRQ_STA	0x06	/* IRQ status */
+#define R852_CARD_IRQ_ENABLE	0x07	/* IRQ enable */
+
+#define R852_CARD_IRQ_CD	0x01	/* fire when #CD lights, same as 0x04*/
+#define R852_CARD_IRQ_REMOVE	0x04	/* detect card removal */
+#define R852_CARD_IRQ_INSERT	0x08	/* detect card insert */
+#define R852_CARD_IRQ_UNK1	0x10	/* unknown */
+#define R852_CARD_IRQ_GENABLE	0x80	/* general enable */
+#define R852_CARD_IRQ_MASK	0x1D
+
+
+
+/* hardware enable */
+#define R852_HW			0x08
+#define R852_HW_ENABLED		0x01	/* hw enabled */
+#define R852_HW_UNKNOWN		0x80
+
+
+/* dma capabilities */
+#define R852_DMA_CAP		0x09
+#define R852_SMBIT		0x20	/* if set with bit #6 or bit #7, then */
+					/* hw is smartmedia */
+#define R852_DMA1		0x40	/* if set w/bit #7, dma is supported */
+#define R852_DMA2		0x80	/* if set w/bit #6, dma is supported */
+
+
+/* physical DMA address - 32 bit value*/
+#define R852_DMA_ADDR		0x0C
+
+
+/* dma settings */
+#define R852_DMA_SETTINGS	0x10
+#define R852_DMA_MEMORY		0x01	/* (memory <-> internal hw buffer) */
+#define R852_DMA_READ		0x02	/* 0 = write, 1 = read */
+#define R852_DMA_INTERNAL	0x04	/* (internal hw buffer <-> card) */
+
+/* dma IRQ status */
+#define R852_DMA_IRQ_STA		0x14
+
+/* dma IRQ enable */
+#define R852_DMA_IRQ_ENABLE	0x18
+
+#define R852_DMA_IRQ_MEMORY	0x01	/* (memory <-> internal hw buffer) */
+#define R852_DMA_IRQ_ERROR	0x02	/* error did happen */
+#define R852_DMA_IRQ_INTERNAL	0x04	/* (internal hw buffer <-> card) */
+#define R852_DMA_IRQ_MASK	0x07	/* mask of all IRQ bits */
+
+
+/* ECC syndrome format - read from reg #0 will return two copies of these for
+   each half of the page.
+   first byte is error byte location, and second, bit location + flags */
+#define R852_ECC_ERR_BIT_MSK	0x07	/* error bit location */
+#define R852_ECC_CORRECT		0x10	/* no errors - (guessed) */
+#define R852_ECC_CORRECTABLE	0x20	/* correctable error exist */
+#define R852_ECC_FAIL		0x40	/* non correctable error detected */
+
+#define R852_DMA_LEN		512
+
+#define DMA_INTERNAL	0
+#define DMA_MEMORY	1
+
+struct r852_device {
+	void __iomem *mmio;		/* mmio */
+	struct nand_chip *chip;		/* nand chip backpointer */
+	struct pci_dev *pci_dev;	/* pci backpointer */
+
+	/* dma area */
+	dma_addr_t phys_dma_addr;	/* bus address of buffer*/
+	struct completion dma_done;	/* data transfer done */
+
+	dma_addr_t phys_bounce_buffer;	/* bus address of bounce buffer */
+	uint8_t *bounce_buffer;		/* virtual address of bounce buffer */
+
+	int dma_dir;			/* 1 = read, 0 = write */
+	int dma_stage;			/* 0 - idle, 1 - first step,
+					   2 - second step */
+
+	int dma_state;			/* 0 = internal, 1 = memory */
+	int dma_error;			/* dma errors */
+	int dma_usable;			/* is it possible to use dma */
+
+	/* card status area */
+	struct delayed_work card_detect_work;
+	struct workqueue_struct *card_workqueue;
+	int card_registred;		/* card registered with mtd */
+	int card_detected;		/* card detected in slot */
+	int card_unstable;		/* whenever the card is inserted,
+					   is not known yet */
+	int readonly;			/* card is readonly */
+	int sm;				/* Is card smartmedia */
+
+	/* interrupt handling */
+	spinlock_t irqlock;		/* IRQ protecting lock */
+	int irq;			/* irq num */
+	/* misc */
+	void *tmp_buffer;		/* temporary buffer */
+	uint8_t ctlreg;			/* cached contents of control reg */
+};
+
+#define dbg(format, ...) \
+	if (debug) \
+		pr_debug(format "\n", ## __VA_ARGS__)
+
+#define dbg_verbose(format, ...) \
+	if (debug > 1) \
+		pr_debug(format "\n", ## __VA_ARGS__)
+
+
+#define message(format, ...) \
+	pr_info(format "\n", ## __VA_ARGS__)
diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c
new file mode 100644
index 0000000..c21e889
--- /dev/null
+++ b/drivers/mtd/nand/raw/s3c2410.c
@@ -0,0 +1,1293 @@
+/*
+ * Copyright © 2004-2008 Simtec Electronics
+ *	http://armlinux.simtec.co.uk/
+ *	Ben Dooks <ben@simtec.co.uk>
+ *
+ * Samsung S3C2410/S3C2440/S3C2412 NAND driver
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+*/
+
+#define pr_fmt(fmt) "nand-s3c2410: " fmt
+
+#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
+#define DEBUG
+#endif
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/platform_device.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/clk.h>
+#include <linux/cpufreq.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <linux/platform_data/mtd-nand-s3c2410.h>
+
+#define S3C2410_NFREG(x) (x)
+
+#define S3C2410_NFCONF		S3C2410_NFREG(0x00)
+#define S3C2410_NFCMD		S3C2410_NFREG(0x04)
+#define S3C2410_NFADDR		S3C2410_NFREG(0x08)
+#define S3C2410_NFDATA		S3C2410_NFREG(0x0C)
+#define S3C2410_NFSTAT		S3C2410_NFREG(0x10)
+#define S3C2410_NFECC		S3C2410_NFREG(0x14)
+#define S3C2440_NFCONT		S3C2410_NFREG(0x04)
+#define S3C2440_NFCMD		S3C2410_NFREG(0x08)
+#define S3C2440_NFADDR		S3C2410_NFREG(0x0C)
+#define S3C2440_NFDATA		S3C2410_NFREG(0x10)
+#define S3C2440_NFSTAT		S3C2410_NFREG(0x20)
+#define S3C2440_NFMECC0		S3C2410_NFREG(0x2C)
+#define S3C2412_NFSTAT		S3C2410_NFREG(0x28)
+#define S3C2412_NFMECC0		S3C2410_NFREG(0x34)
+#define S3C2410_NFCONF_EN		(1<<15)
+#define S3C2410_NFCONF_INITECC		(1<<12)
+#define S3C2410_NFCONF_nFCE		(1<<11)
+#define S3C2410_NFCONF_TACLS(x)		((x)<<8)
+#define S3C2410_NFCONF_TWRPH0(x)	((x)<<4)
+#define S3C2410_NFCONF_TWRPH1(x)	((x)<<0)
+#define S3C2410_NFSTAT_BUSY		(1<<0)
+#define S3C2440_NFCONF_TACLS(x)		((x)<<12)
+#define S3C2440_NFCONF_TWRPH0(x)	((x)<<8)
+#define S3C2440_NFCONF_TWRPH1(x)	((x)<<4)
+#define S3C2440_NFCONT_INITECC		(1<<4)
+#define S3C2440_NFCONT_nFCE		(1<<1)
+#define S3C2440_NFCONT_ENABLE		(1<<0)
+#define S3C2440_NFSTAT_READY		(1<<0)
+#define S3C2412_NFCONF_NANDBOOT		(1<<31)
+#define S3C2412_NFCONT_INIT_MAIN_ECC	(1<<5)
+#define S3C2412_NFCONT_nFCE0		(1<<1)
+#define S3C2412_NFSTAT_READY		(1<<0)
+
+/* new oob placement block for use with hardware ecc generation
+ */
+static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 0;
+	oobregion->length = 3;
+
+	return 0;
+}
+
+static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 8;
+	oobregion->length = 8;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = {
+	.ecc = s3c2410_ooblayout_ecc,
+	.free = s3c2410_ooblayout_free,
+};
+
+/* controller and mtd information */
+
+struct s3c2410_nand_info;
+
+/**
+ * struct s3c2410_nand_mtd - driver MTD structure
+ * @mtd: The MTD instance to pass to the MTD layer.
+ * @chip: The NAND chip information.
+ * @set: The platform information supplied for this set of NAND chips.
+ * @info: Link back to the hardware information.
+*/
+struct s3c2410_nand_mtd {
+	struct nand_chip		chip;
+	struct s3c2410_nand_set		*set;
+	struct s3c2410_nand_info	*info;
+};
+
+enum s3c_cpu_type {
+	TYPE_S3C2410,
+	TYPE_S3C2412,
+	TYPE_S3C2440,
+};
+
+enum s3c_nand_clk_state {
+	CLOCK_DISABLE	= 0,
+	CLOCK_ENABLE,
+	CLOCK_SUSPEND,
+};
+
+/* overview of the s3c2410 nand state */
+
+/**
+ * struct s3c2410_nand_info - NAND controller state.
+ * @mtds: An array of MTD instances on this controoler.
+ * @platform: The platform data for this board.
+ * @device: The platform device we bound to.
+ * @clk: The clock resource for this controller.
+ * @regs: The area mapped for the hardware registers.
+ * @sel_reg: Pointer to the register controlling the NAND selection.
+ * @sel_bit: The bit in @sel_reg to select the NAND chip.
+ * @mtd_count: The number of MTDs created from this controller.
+ * @save_sel: The contents of @sel_reg to be saved over suspend.
+ * @clk_rate: The clock rate from @clk.
+ * @clk_state: The current clock state.
+ * @cpu_type: The exact type of this controller.
+ */
+struct s3c2410_nand_info {
+	/* mtd info */
+	struct nand_controller		controller;
+	struct s3c2410_nand_mtd		*mtds;
+	struct s3c2410_platform_nand	*platform;
+
+	/* device info */
+	struct device			*device;
+	struct clk			*clk;
+	void __iomem			*regs;
+	void __iomem			*sel_reg;
+	int				sel_bit;
+	int				mtd_count;
+	unsigned long			save_sel;
+	unsigned long			clk_rate;
+	enum s3c_nand_clk_state		clk_state;
+
+	enum s3c_cpu_type		cpu_type;
+
+#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
+	struct notifier_block	freq_transition;
+#endif
+};
+
+struct s3c24XX_nand_devtype_data {
+	enum s3c_cpu_type type;
+};
+
+static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = {
+	.type = TYPE_S3C2410,
+};
+
+static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = {
+	.type = TYPE_S3C2412,
+};
+
+static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = {
+	.type = TYPE_S3C2440,
+};
+
+/* conversion functions */
+
+static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
+			    chip);
+}
+
+static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
+{
+	return s3c2410_nand_mtd_toours(mtd)->info;
+}
+
+static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
+{
+	return platform_get_drvdata(dev);
+}
+
+static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
+{
+	return dev_get_platdata(&dev->dev);
+}
+
+static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
+{
+#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
+	return 1;
+#else
+	return 0;
+#endif
+}
+
+/**
+ * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
+ * @info: The controller instance.
+ * @new_state: State to which clock should be set.
+ */
+static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
+		enum s3c_nand_clk_state new_state)
+{
+	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
+		return;
+
+	if (info->clk_state == CLOCK_ENABLE) {
+		if (new_state != CLOCK_ENABLE)
+			clk_disable_unprepare(info->clk);
+	} else {
+		if (new_state == CLOCK_ENABLE)
+			clk_prepare_enable(info->clk);
+	}
+
+	info->clk_state = new_state;
+}
+
+/* timing calculations */
+
+#define NS_IN_KHZ 1000000
+
+/**
+ * s3c_nand_calc_rate - calculate timing data.
+ * @wanted: The cycle time in nanoseconds.
+ * @clk: The clock rate in kHz.
+ * @max: The maximum divider value.
+ *
+ * Calculate the timing value from the given parameters.
+ */
+static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
+{
+	int result;
+
+	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
+
+	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
+
+	if (result > max) {
+		pr_err("%d ns is too big for current clock rate %ld\n",
+			wanted, clk);
+		return -1;
+	}
+
+	if (result < 1)
+		result = 1;
+
+	return result;
+}
+
+#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
+
+/* controller setup */
+
+/**
+ * s3c2410_nand_setrate - setup controller timing information.
+ * @info: The controller instance.
+ *
+ * Given the information supplied by the platform, calculate and set
+ * the necessary timing registers in the hardware to generate the
+ * necessary timing cycles to the hardware.
+ */
+static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
+{
+	struct s3c2410_platform_nand *plat = info->platform;
+	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
+	int tacls, twrph0, twrph1;
+	unsigned long clkrate = clk_get_rate(info->clk);
+	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
+	unsigned long flags;
+
+	/* calculate the timing information for the controller */
+
+	info->clk_rate = clkrate;
+	clkrate /= 1000;	/* turn clock into kHz for ease of use */
+
+	if (plat != NULL) {
+		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
+		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
+		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
+	} else {
+		/* default timings */
+		tacls = tacls_max;
+		twrph0 = 8;
+		twrph1 = 8;
+	}
+
+	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
+		dev_err(info->device, "cannot get suitable timings\n");
+		return -EINVAL;
+	}
+
+	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
+		tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
+						twrph1, to_ns(twrph1, clkrate));
+
+	switch (info->cpu_type) {
+	case TYPE_S3C2410:
+		mask = (S3C2410_NFCONF_TACLS(3) |
+			S3C2410_NFCONF_TWRPH0(7) |
+			S3C2410_NFCONF_TWRPH1(7));
+		set = S3C2410_NFCONF_EN;
+		set |= S3C2410_NFCONF_TACLS(tacls - 1);
+		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
+		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
+		break;
+
+	case TYPE_S3C2440:
+	case TYPE_S3C2412:
+		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
+			S3C2440_NFCONF_TWRPH0(7) |
+			S3C2440_NFCONF_TWRPH1(7));
+
+		set = S3C2440_NFCONF_TACLS(tacls - 1);
+		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
+		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
+		break;
+
+	default:
+		BUG();
+	}
+
+	local_irq_save(flags);
+
+	cfg = readl(info->regs + S3C2410_NFCONF);
+	cfg &= ~mask;
+	cfg |= set;
+	writel(cfg, info->regs + S3C2410_NFCONF);
+
+	local_irq_restore(flags);
+
+	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
+
+	return 0;
+}
+
+/**
+ * s3c2410_nand_inithw - basic hardware initialisation
+ * @info: The hardware state.
+ *
+ * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
+ * to setup the hardware access speeds and set the controller to be enabled.
+*/
+static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
+{
+	int ret;
+
+	ret = s3c2410_nand_setrate(info);
+	if (ret < 0)
+		return ret;
+
+	switch (info->cpu_type) {
+	case TYPE_S3C2410:
+	default:
+		break;
+
+	case TYPE_S3C2440:
+	case TYPE_S3C2412:
+		/* enable the controller and de-assert nFCE */
+
+		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
+	}
+
+	return 0;
+}
+
+/**
+ * s3c2410_nand_select_chip - select the given nand chip
+ * @mtd: The MTD instance for this chip.
+ * @chip: The chip number.
+ *
+ * This is called by the MTD layer to either select a given chip for the
+ * @mtd instance, or to indicate that the access has finished and the
+ * chip can be de-selected.
+ *
+ * The routine ensures that the nFCE line is correctly setup, and any
+ * platform specific selection code is called to route nFCE to the specific
+ * chip.
+ */
+static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct s3c2410_nand_info *info;
+	struct s3c2410_nand_mtd *nmtd;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	unsigned long cur;
+
+	nmtd = nand_get_controller_data(this);
+	info = nmtd->info;
+
+	if (chip != -1)
+		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+
+	cur = readl(info->sel_reg);
+
+	if (chip == -1) {
+		cur |= info->sel_bit;
+	} else {
+		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
+			dev_err(info->device, "invalid chip %d\n", chip);
+			return;
+		}
+
+		if (info->platform != NULL) {
+			if (info->platform->select_chip != NULL)
+				(info->platform->select_chip) (nmtd->set, chip);
+		}
+
+		cur &= ~info->sel_bit;
+	}
+
+	writel(cur, info->sel_reg);
+
+	if (chip == -1)
+		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+}
+
+/* s3c2410_nand_hwcontrol
+ *
+ * Issue command and address cycles to the chip
+*/
+
+static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		writeb(cmd, info->regs + S3C2410_NFCMD);
+	else
+		writeb(cmd, info->regs + S3C2410_NFADDR);
+}
+
+/* command and control functions */
+
+static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		writeb(cmd, info->regs + S3C2440_NFCMD);
+	else
+		writeb(cmd, info->regs + S3C2440_NFADDR);
+}
+
+/* s3c2410_nand_devready()
+ *
+ * returns 0 if the nand is busy, 1 if it is ready
+*/
+
+static int s3c2410_nand_devready(struct mtd_info *mtd)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
+}
+
+static int s3c2440_nand_devready(struct mtd_info *mtd)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
+}
+
+static int s3c2412_nand_devready(struct mtd_info *mtd)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
+}
+
+/* ECC handling functions */
+
+static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+				     u_char *read_ecc, u_char *calc_ecc)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned int diff0, diff1, diff2;
+	unsigned int bit, byte;
+
+	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
+
+	diff0 = read_ecc[0] ^ calc_ecc[0];
+	diff1 = read_ecc[1] ^ calc_ecc[1];
+	diff2 = read_ecc[2] ^ calc_ecc[2];
+
+	pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
+		 __func__, 3, read_ecc, 3, calc_ecc,
+		 diff0, diff1, diff2);
+
+	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
+		return 0;		/* ECC is ok */
+
+	/* sometimes people do not think about using the ECC, so check
+	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
+	 * the error, on the assumption that this is an un-eccd page.
+	 */
+	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
+	    && info->platform->ignore_unset_ecc)
+		return 0;
+
+	/* Can we correct this ECC (ie, one row and column change).
+	 * Note, this is similar to the 256 error code on smartmedia */
+
+	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
+	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
+	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
+		/* calculate the bit position of the error */
+
+		bit  = ((diff2 >> 3) & 1) |
+		       ((diff2 >> 4) & 2) |
+		       ((diff2 >> 5) & 4);
+
+		/* calculate the byte position of the error */
+
+		byte = ((diff2 << 7) & 0x100) |
+		       ((diff1 << 0) & 0x80)  |
+		       ((diff1 << 1) & 0x40)  |
+		       ((diff1 << 2) & 0x20)  |
+		       ((diff1 << 3) & 0x10)  |
+		       ((diff0 >> 4) & 0x08)  |
+		       ((diff0 >> 3) & 0x04)  |
+		       ((diff0 >> 2) & 0x02)  |
+		       ((diff0 >> 1) & 0x01);
+
+		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
+			bit, byte);
+
+		dat[byte] ^= (1 << bit);
+		return 1;
+	}
+
+	/* if there is only one bit difference in the ECC, then
+	 * one of only a row or column parity has changed, which
+	 * means the error is most probably in the ECC itself */
+
+	diff0 |= (diff1 << 8);
+	diff0 |= (diff2 << 16);
+
+	/* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
+	if ((diff0 & (diff0 - 1)) == 0)
+		return 1;
+
+	return -1;
+}
+
+/* ECC functions
+ *
+ * These allow the s3c2410 and s3c2440 to use the controller's ECC
+ * generator block to ECC the data as it passes through]
+*/
+
+static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ctrl;
+
+	ctrl = readl(info->regs + S3C2410_NFCONF);
+	ctrl |= S3C2410_NFCONF_INITECC;
+	writel(ctrl, info->regs + S3C2410_NFCONF);
+}
+
+static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ctrl;
+
+	ctrl = readl(info->regs + S3C2440_NFCONT);
+	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
+	       info->regs + S3C2440_NFCONT);
+}
+
+static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ctrl;
+
+	ctrl = readl(info->regs + S3C2440_NFCONT);
+	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
+}
+
+static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+				      u_char *ecc_code)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
+	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
+	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
+
+	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
+
+	return 0;
+}
+
+static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+				      u_char *ecc_code)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
+
+	ecc_code[0] = ecc;
+	ecc_code[1] = ecc >> 8;
+	ecc_code[2] = ecc >> 16;
+
+	pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
+
+	return 0;
+}
+
+static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+				      u_char *ecc_code)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
+
+	ecc_code[0] = ecc;
+	ecc_code[1] = ecc >> 8;
+	ecc_code[2] = ecc >> 16;
+
+	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
+
+	return 0;
+}
+
+/* over-ride the standard functions for a little more speed. We can
+ * use read/write block to move the data buffers to/from the controller
+*/
+
+static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	readsb(this->IO_ADDR_R, buf, len);
+}
+
+static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
+
+	/* cleanup if we've got less than a word to do */
+	if (len & 3) {
+		buf += len & ~3;
+
+		for (; len & 3; len--)
+			*buf++ = readb(info->regs + S3C2440_NFDATA);
+	}
+}
+
+static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
+				   int len)
+{
+	struct nand_chip *this = mtd_to_nand(mtd);
+	writesb(this->IO_ADDR_W, buf, len);
+}
+
+static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
+				   int len)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
+
+	/* cleanup any fractional write */
+	if (len & 3) {
+		buf += len & ~3;
+
+		for (; len & 3; len--, buf++)
+			writeb(*buf, info->regs + S3C2440_NFDATA);
+	}
+}
+
+/* cpufreq driver support */
+
+#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
+
+static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
+					  unsigned long val, void *data)
+{
+	struct s3c2410_nand_info *info;
+	unsigned long newclk;
+
+	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
+	newclk = clk_get_rate(info->clk);
+
+	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
+	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
+		s3c2410_nand_setrate(info);
+	}
+
+	return 0;
+}
+
+static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
+{
+	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
+
+	return cpufreq_register_notifier(&info->freq_transition,
+					 CPUFREQ_TRANSITION_NOTIFIER);
+}
+
+static inline void
+s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
+{
+	cpufreq_unregister_notifier(&info->freq_transition,
+				    CPUFREQ_TRANSITION_NOTIFIER);
+}
+
+#else
+static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
+{
+	return 0;
+}
+
+static inline void
+s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
+{
+}
+#endif
+
+/* device management functions */
+
+static int s3c24xx_nand_remove(struct platform_device *pdev)
+{
+	struct s3c2410_nand_info *info = to_nand_info(pdev);
+
+	if (info == NULL)
+		return 0;
+
+	s3c2410_nand_cpufreq_deregister(info);
+
+	/* Release all our mtds  and their partitions, then go through
+	 * freeing the resources used
+	 */
+
+	if (info->mtds != NULL) {
+		struct s3c2410_nand_mtd *ptr = info->mtds;
+		int mtdno;
+
+		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
+			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
+			nand_release(nand_to_mtd(&ptr->chip));
+		}
+	}
+
+	/* free the common resources */
+
+	if (!IS_ERR(info->clk))
+		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
+
+	return 0;
+}
+
+static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
+				      struct s3c2410_nand_mtd *mtd,
+				      struct s3c2410_nand_set *set)
+{
+	if (set) {
+		struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
+
+		mtdinfo->name = set->name;
+
+		return mtd_device_register(mtdinfo, set->partitions,
+					   set->nr_partitions);
+	}
+
+	return -ENODEV;
+}
+
+static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	struct s3c2410_platform_nand *pdata = info->platform;
+	const struct nand_sdr_timings *timings;
+	int tacls;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return -ENOTSUPP;
+
+	tacls = timings->tCLS_min - timings->tWP_min;
+	if (tacls < 0)
+		tacls = 0;
+
+	pdata->tacls  = DIV_ROUND_UP(tacls, 1000);
+	pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000);
+	pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000);
+
+	return s3c2410_nand_setrate(info);
+}
+
+/**
+ * s3c2410_nand_init_chip - initialise a single instance of an chip
+ * @info: The base NAND controller the chip is on.
+ * @nmtd: The new controller MTD instance to fill in.
+ * @set: The information passed from the board specific platform data.
+ *
+ * Initialise the given @nmtd from the information in @info and @set. This
+ * readies the structure for use with the MTD layer functions by ensuring
+ * all pointers are setup and the necessary control routines selected.
+ */
+static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
+				   struct s3c2410_nand_mtd *nmtd,
+				   struct s3c2410_nand_set *set)
+{
+	struct device_node *np = info->device->of_node;
+	struct nand_chip *chip = &nmtd->chip;
+	void __iomem *regs = info->regs;
+
+	nand_set_flash_node(chip, set->of_node);
+
+	chip->write_buf    = s3c2410_nand_write_buf;
+	chip->read_buf     = s3c2410_nand_read_buf;
+	chip->select_chip  = s3c2410_nand_select_chip;
+	chip->chip_delay   = 50;
+	nand_set_controller_data(chip, nmtd);
+	chip->options	   = set->options;
+	chip->controller   = &info->controller;
+
+	/*
+	 * let's keep behavior unchanged for legacy boards booting via pdata and
+	 * auto-detect timings only when booting with a device tree.
+	 */
+	if (np)
+		chip->setup_data_interface = s3c2410_nand_setup_data_interface;
+
+	switch (info->cpu_type) {
+	case TYPE_S3C2410:
+		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
+		info->sel_reg   = regs + S3C2410_NFCONF;
+		info->sel_bit	= S3C2410_NFCONF_nFCE;
+		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
+		chip->dev_ready = s3c2410_nand_devready;
+		break;
+
+	case TYPE_S3C2440:
+		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
+		info->sel_reg   = regs + S3C2440_NFCONT;
+		info->sel_bit	= S3C2440_NFCONT_nFCE;
+		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
+		chip->dev_ready = s3c2440_nand_devready;
+		chip->read_buf  = s3c2440_nand_read_buf;
+		chip->write_buf	= s3c2440_nand_write_buf;
+		break;
+
+	case TYPE_S3C2412:
+		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
+		info->sel_reg   = regs + S3C2440_NFCONT;
+		info->sel_bit	= S3C2412_NFCONT_nFCE0;
+		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
+		chip->dev_ready = s3c2412_nand_devready;
+
+		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
+			dev_info(info->device, "System booted from NAND\n");
+
+		break;
+	}
+
+	chip->IO_ADDR_R = chip->IO_ADDR_W;
+
+	nmtd->info	   = info;
+	nmtd->set	   = set;
+
+	chip->ecc.mode = info->platform->ecc_mode;
+
+	/*
+	 * If you use u-boot BBT creation code, specifying this flag will
+	 * let the kernel fish out the BBT from the NAND.
+	 */
+	if (set->flash_bbt)
+		chip->bbt_options |= NAND_BBT_USE_FLASH;
+}
+
+/**
+ * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan
+ * @chip: The NAND chip
+ *
+ * This hook is called by the core after the identification of the NAND chip,
+ * once the relevant per-chip information is up to date.. This call ensure that
+ * we update the internal state accordingly.
+ *
+ * The internal state is currently limited to the ECC state information.
+*/
+static int s3c2410_nand_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	switch (chip->ecc.mode) {
+
+	case NAND_ECC_NONE:
+		dev_info(info->device, "ECC disabled\n");
+		break;
+
+	case NAND_ECC_SOFT:
+		/*
+		 * This driver expects Hamming based ECC when ecc_mode is set
+		 * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
+		 * avoid adding an extra ecc_algo field to
+		 * s3c2410_platform_nand.
+		 */
+		chip->ecc.algo = NAND_ECC_HAMMING;
+		dev_info(info->device, "soft ECC\n");
+		break;
+
+	case NAND_ECC_HW:
+		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+		chip->ecc.correct   = s3c2410_nand_correct_data;
+		chip->ecc.strength  = 1;
+
+		switch (info->cpu_type) {
+		case TYPE_S3C2410:
+			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
+			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+			break;
+
+		case TYPE_S3C2412:
+			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
+			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
+			break;
+
+		case TYPE_S3C2440:
+			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
+			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
+			break;
+		}
+
+		dev_dbg(info->device, "chip %p => page shift %d\n",
+			chip, chip->page_shift);
+
+		/* change the behaviour depending on whether we are using
+		 * the large or small page nand device */
+		if (chip->page_shift > 10) {
+			chip->ecc.size	    = 256;
+			chip->ecc.bytes	    = 3;
+		} else {
+			chip->ecc.size	    = 512;
+			chip->ecc.bytes	    = 3;
+			mtd_set_ooblayout(nand_to_mtd(chip),
+					  &s3c2410_ooblayout_ops);
+		}
+
+		dev_info(info->device, "hardware ECC\n");
+		break;
+
+	default:
+		dev_err(info->device, "invalid ECC mode!\n");
+		return -EINVAL;
+	}
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->options |= NAND_SKIP_BBTSCAN;
+
+	return 0;
+}
+
+static const struct nand_controller_ops s3c24xx_nand_controller_ops = {
+	.attach_chip = s3c2410_nand_attach_chip,
+};
+
+static const struct of_device_id s3c24xx_nand_dt_ids[] = {
+	{
+		.compatible = "samsung,s3c2410-nand",
+		.data = &s3c2410_nand_devtype_data,
+	}, {
+		/* also compatible with s3c6400 */
+		.compatible = "samsung,s3c2412-nand",
+		.data = &s3c2412_nand_devtype_data,
+	}, {
+		.compatible = "samsung,s3c2440-nand",
+		.data = &s3c2440_nand_devtype_data,
+	},
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids);
+
+static int s3c24xx_nand_probe_dt(struct platform_device *pdev)
+{
+	const struct s3c24XX_nand_devtype_data *devtype_data;
+	struct s3c2410_platform_nand *pdata;
+	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
+	struct device_node *np = pdev->dev.of_node, *child;
+	struct s3c2410_nand_set *sets;
+
+	devtype_data = of_device_get_match_data(&pdev->dev);
+	if (!devtype_data)
+		return -ENODEV;
+
+	info->cpu_type = devtype_data->type;
+
+	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
+	if (!pdata)
+		return -ENOMEM;
+
+	pdev->dev.platform_data = pdata;
+
+	pdata->nr_sets = of_get_child_count(np);
+	if (!pdata->nr_sets)
+		return 0;
+
+	sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets),
+			    GFP_KERNEL);
+	if (!sets)
+		return -ENOMEM;
+
+	pdata->sets = sets;
+
+	for_each_available_child_of_node(np, child) {
+		sets->name = (char *)child->name;
+		sets->of_node = child;
+		sets->nr_chips = 1;
+
+		of_node_get(child);
+
+		sets++;
+	}
+
+	return 0;
+}
+
+static int s3c24xx_nand_probe_pdata(struct platform_device *pdev)
+{
+	struct s3c2410_nand_info *info = platform_get_drvdata(pdev);
+
+	info->cpu_type = platform_get_device_id(pdev)->driver_data;
+
+	return 0;
+}
+
+/* s3c24xx_nand_probe
+ *
+ * called by device layer when it finds a device matching
+ * one our driver can handled. This code checks to see if
+ * it can allocate all necessary resources then calls the
+ * nand layer to look for devices
+*/
+static int s3c24xx_nand_probe(struct platform_device *pdev)
+{
+	struct s3c2410_platform_nand *plat;
+	struct s3c2410_nand_info *info;
+	struct s3c2410_nand_mtd *nmtd;
+	struct s3c2410_nand_set *sets;
+	struct resource *res;
+	int err = 0;
+	int size;
+	int nr_sets;
+	int setno;
+
+	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
+	if (info == NULL) {
+		err = -ENOMEM;
+		goto exit_error;
+	}
+
+	platform_set_drvdata(pdev, info);
+
+	nand_controller_init(&info->controller);
+	info->controller.ops = &s3c24xx_nand_controller_ops;
+
+	/* get the clock source and enable it */
+
+	info->clk = devm_clk_get(&pdev->dev, "nand");
+	if (IS_ERR(info->clk)) {
+		dev_err(&pdev->dev, "failed to get clock\n");
+		err = -ENOENT;
+		goto exit_error;
+	}
+
+	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+
+	if (pdev->dev.of_node)
+		err = s3c24xx_nand_probe_dt(pdev);
+	else
+		err = s3c24xx_nand_probe_pdata(pdev);
+
+	if (err)
+		goto exit_error;
+
+	plat = to_nand_plat(pdev);
+
+	/* allocate and map the resource */
+
+	/* currently we assume we have the one resource */
+	res = pdev->resource;
+	size = resource_size(res);
+
+	info->device	= &pdev->dev;
+	info->platform	= plat;
+
+	info->regs = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(info->regs)) {
+		err = PTR_ERR(info->regs);
+		goto exit_error;
+	}
+
+	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
+
+	if (!plat->sets || plat->nr_sets < 1) {
+		err = -EINVAL;
+		goto exit_error;
+	}
+
+	sets = plat->sets;
+	nr_sets = plat->nr_sets;
+
+	info->mtd_count = nr_sets;
+
+	/* allocate our information */
+
+	size = nr_sets * sizeof(*info->mtds);
+	info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
+	if (info->mtds == NULL) {
+		err = -ENOMEM;
+		goto exit_error;
+	}
+
+	/* initialise all possible chips */
+
+	nmtd = info->mtds;
+
+	for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) {
+		struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
+
+		pr_debug("initialising set %d (%p, info %p)\n",
+			 setno, nmtd, info);
+
+		mtd->dev.parent = &pdev->dev;
+		s3c2410_nand_init_chip(info, nmtd, sets);
+
+		err = nand_scan(mtd, sets ? sets->nr_chips : 1);
+		if (err)
+			goto exit_error;
+
+		s3c2410_nand_add_partition(info, nmtd, sets);
+	}
+
+	/* initialise the hardware */
+	err = s3c2410_nand_inithw(info);
+	if (err != 0)
+		goto exit_error;
+
+	err = s3c2410_nand_cpufreq_register(info);
+	if (err < 0) {
+		dev_err(&pdev->dev, "failed to init cpufreq support\n");
+		goto exit_error;
+	}
+
+	if (allow_clk_suspend(info)) {
+		dev_info(&pdev->dev, "clock idle support enabled\n");
+		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+	}
+
+	return 0;
+
+ exit_error:
+	s3c24xx_nand_remove(pdev);
+
+	if (err == 0)
+		err = -EINVAL;
+	return err;
+}
+
+/* PM Support */
+#ifdef CONFIG_PM
+
+static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
+{
+	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
+
+	if (info) {
+		info->save_sel = readl(info->sel_reg);
+
+		/* For the moment, we must ensure nFCE is high during
+		 * the time we are suspended. This really should be
+		 * handled by suspending the MTDs we are using, but
+		 * that is currently not the case. */
+
+		writel(info->save_sel | info->sel_bit, info->sel_reg);
+
+		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
+	}
+
+	return 0;
+}
+
+static int s3c24xx_nand_resume(struct platform_device *dev)
+{
+	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
+	unsigned long sel;
+
+	if (info) {
+		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+		s3c2410_nand_inithw(info);
+
+		/* Restore the state of the nFCE line. */
+
+		sel = readl(info->sel_reg);
+		sel &= ~info->sel_bit;
+		sel |= info->save_sel & info->sel_bit;
+		writel(sel, info->sel_reg);
+
+		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+	}
+
+	return 0;
+}
+
+#else
+#define s3c24xx_nand_suspend NULL
+#define s3c24xx_nand_resume NULL
+#endif
+
+/* driver device registration */
+
+static const struct platform_device_id s3c24xx_driver_ids[] = {
+	{
+		.name		= "s3c2410-nand",
+		.driver_data	= TYPE_S3C2410,
+	}, {
+		.name		= "s3c2440-nand",
+		.driver_data	= TYPE_S3C2440,
+	}, {
+		.name		= "s3c2412-nand",
+		.driver_data	= TYPE_S3C2412,
+	}, {
+		.name		= "s3c6400-nand",
+		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
+	},
+	{ }
+};
+
+MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
+
+static struct platform_driver s3c24xx_nand_driver = {
+	.probe		= s3c24xx_nand_probe,
+	.remove		= s3c24xx_nand_remove,
+	.suspend	= s3c24xx_nand_suspend,
+	.resume		= s3c24xx_nand_resume,
+	.id_table	= s3c24xx_driver_ids,
+	.driver		= {
+		.name	= "s3c24xx-nand",
+		.of_match_table = s3c24xx_nand_dt_ids,
+	},
+};
+
+module_platform_driver(s3c24xx_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
+MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c
new file mode 100644
index 0000000..bb8866e
--- /dev/null
+++ b/drivers/mtd/nand/raw/sh_flctl.c
@@ -0,0 +1,1248 @@
+/*
+ * SuperH FLCTL nand controller
+ *
+ * Copyright (c) 2008 Renesas Solutions Corp.
+ * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
+ *
+ * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/completion.h>
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/sh_dma.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/sh_flctl.h>
+
+static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 0;
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section,
+					 struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->offset = 12;
+	oobregion->length = 4;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = {
+	.ecc = flctl_4secc_ooblayout_sp_ecc,
+	.free = flctl_4secc_ooblayout_sp_free,
+};
+
+static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = (section * 16) + 6;
+	oobregion->length = chip->ecc.bytes;
+
+	return 0;
+}
+
+static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section,
+					 struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (section >= chip->ecc.steps)
+		return -ERANGE;
+
+	oobregion->offset = section * 16;
+	oobregion->length = 6;
+
+	if (!section) {
+		oobregion->offset += 2;
+		oobregion->length -= 2;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = {
+	.ecc = flctl_4secc_ooblayout_lp_ecc,
+	.free = flctl_4secc_ooblayout_lp_free,
+};
+
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr flctl_4secc_smallpage = {
+	.options = NAND_BBT_SCAN2NDPAGE,
+	.offs = 11,
+	.len = 1,
+	.pattern = scan_ff_pattern,
+};
+
+static struct nand_bbt_descr flctl_4secc_largepage = {
+	.options = NAND_BBT_SCAN2NDPAGE,
+	.offs = 0,
+	.len = 2,
+	.pattern = scan_ff_pattern,
+};
+
+static void empty_fifo(struct sh_flctl *flctl)
+{
+	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
+	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
+}
+
+static void start_translation(struct sh_flctl *flctl)
+{
+	writeb(TRSTRT, FLTRCR(flctl));
+}
+
+static void timeout_error(struct sh_flctl *flctl, const char *str)
+{
+	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
+}
+
+static void wait_completion(struct sh_flctl *flctl)
+{
+	uint32_t timeout = LOOP_TIMEOUT_MAX;
+
+	while (timeout--) {
+		if (readb(FLTRCR(flctl)) & TREND) {
+			writeb(0x0, FLTRCR(flctl));
+			return;
+		}
+		udelay(1);
+	}
+
+	timeout_error(flctl, __func__);
+	writeb(0x0, FLTRCR(flctl));
+}
+
+static void flctl_dma_complete(void *param)
+{
+	struct sh_flctl *flctl = param;
+
+	complete(&flctl->dma_complete);
+}
+
+static void flctl_release_dma(struct sh_flctl *flctl)
+{
+	if (flctl->chan_fifo0_rx) {
+		dma_release_channel(flctl->chan_fifo0_rx);
+		flctl->chan_fifo0_rx = NULL;
+	}
+	if (flctl->chan_fifo0_tx) {
+		dma_release_channel(flctl->chan_fifo0_tx);
+		flctl->chan_fifo0_tx = NULL;
+	}
+}
+
+static void flctl_setup_dma(struct sh_flctl *flctl)
+{
+	dma_cap_mask_t mask;
+	struct dma_slave_config cfg;
+	struct platform_device *pdev = flctl->pdev;
+	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
+	int ret;
+
+	if (!pdata)
+		return;
+
+	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
+		return;
+
+	/* We can only either use DMA for both Tx and Rx or not use it at all */
+	dma_cap_zero(mask);
+	dma_cap_set(DMA_SLAVE, mask);
+
+	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
+				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
+	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
+		flctl->chan_fifo0_tx);
+
+	if (!flctl->chan_fifo0_tx)
+		return;
+
+	memset(&cfg, 0, sizeof(cfg));
+	cfg.direction = DMA_MEM_TO_DEV;
+	cfg.dst_addr = flctl->fifo;
+	cfg.src_addr = 0;
+	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
+	if (ret < 0)
+		goto err;
+
+	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
+				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
+	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
+		flctl->chan_fifo0_rx);
+
+	if (!flctl->chan_fifo0_rx)
+		goto err;
+
+	cfg.direction = DMA_DEV_TO_MEM;
+	cfg.dst_addr = 0;
+	cfg.src_addr = flctl->fifo;
+	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
+	if (ret < 0)
+		goto err;
+
+	init_completion(&flctl->dma_complete);
+
+	return;
+
+err:
+	flctl_release_dma(flctl);
+}
+
+static void set_addr(struct mtd_info *mtd, int column, int page_addr)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	uint32_t addr = 0;
+
+	if (column == -1) {
+		addr = page_addr;	/* ERASE1 */
+	} else if (page_addr != -1) {
+		/* SEQIN, READ0, etc.. */
+		if (flctl->chip.options & NAND_BUSWIDTH_16)
+			column >>= 1;
+		if (flctl->page_size) {
+			addr = column & 0x0FFF;
+			addr |= (page_addr & 0xff) << 16;
+			addr |= ((page_addr >> 8) & 0xff) << 24;
+			/* big than 128MB */
+			if (flctl->rw_ADRCNT == ADRCNT2_E) {
+				uint32_t 	addr2;
+				addr2 = (page_addr >> 16) & 0xff;
+				writel(addr2, FLADR2(flctl));
+			}
+		} else {
+			addr = column;
+			addr |= (page_addr & 0xff) << 8;
+			addr |= ((page_addr >> 8) & 0xff) << 16;
+			addr |= ((page_addr >> 16) & 0xff) << 24;
+		}
+	}
+	writel(addr, FLADR(flctl));
+}
+
+static void wait_rfifo_ready(struct sh_flctl *flctl)
+{
+	uint32_t timeout = LOOP_TIMEOUT_MAX;
+
+	while (timeout--) {
+		uint32_t val;
+		/* check FIFO */
+		val = readl(FLDTCNTR(flctl)) >> 16;
+		if (val & 0xFF)
+			return;
+		udelay(1);
+	}
+	timeout_error(flctl, __func__);
+}
+
+static void wait_wfifo_ready(struct sh_flctl *flctl)
+{
+	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
+
+	while (timeout--) {
+		/* check FIFO */
+		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
+		if (len >= 4)
+			return;
+		udelay(1);
+	}
+	timeout_error(flctl, __func__);
+}
+
+static enum flctl_ecc_res_t wait_recfifo_ready
+		(struct sh_flctl *flctl, int sector_number)
+{
+	uint32_t timeout = LOOP_TIMEOUT_MAX;
+	void __iomem *ecc_reg[4];
+	int i;
+	int state = FL_SUCCESS;
+	uint32_t data, size;
+
+	/*
+	 * First this loops checks in FLDTCNTR if we are ready to read out the
+	 * oob data. This is the case if either all went fine without errors or
+	 * if the bottom part of the loop corrected the errors or marked them as
+	 * uncorrectable and the controller is given time to push the data into
+	 * the FIFO.
+	 */
+	while (timeout--) {
+		/* check if all is ok and we can read out the OOB */
+		size = readl(FLDTCNTR(flctl)) >> 24;
+		if ((size & 0xFF) == 4)
+			return state;
+
+		/* check if a correction code has been calculated */
+		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
+			/*
+			 * either we wait for the fifo to be filled or a
+			 * correction pattern is being generated
+			 */
+			udelay(1);
+			continue;
+		}
+
+		/* check for an uncorrectable error */
+		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
+			/* check if we face a non-empty page */
+			for (i = 0; i < 512; i++) {
+				if (flctl->done_buff[i] != 0xff) {
+					state = FL_ERROR; /* can't correct */
+					break;
+				}
+			}
+
+			if (state == FL_SUCCESS)
+				dev_dbg(&flctl->pdev->dev,
+				"reading empty sector %d, ecc error ignored\n",
+				sector_number);
+
+			writel(0, FL4ECCCR(flctl));
+			continue;
+		}
+
+		/* start error correction */
+		ecc_reg[0] = FL4ECCRESULT0(flctl);
+		ecc_reg[1] = FL4ECCRESULT1(flctl);
+		ecc_reg[2] = FL4ECCRESULT2(flctl);
+		ecc_reg[3] = FL4ECCRESULT3(flctl);
+
+		for (i = 0; i < 3; i++) {
+			uint8_t org;
+			unsigned int index;
+
+			data = readl(ecc_reg[i]);
+
+			if (flctl->page_size)
+				index = (512 * sector_number) +
+					(data >> 16);
+			else
+				index = data >> 16;
+
+			org = flctl->done_buff[index];
+			flctl->done_buff[index] = org ^ (data & 0xFF);
+		}
+		state = FL_REPAIRABLE;
+		writel(0, FL4ECCCR(flctl));
+	}
+
+	timeout_error(flctl, __func__);
+	return FL_TIMEOUT;	/* timeout */
+}
+
+static void wait_wecfifo_ready(struct sh_flctl *flctl)
+{
+	uint32_t timeout = LOOP_TIMEOUT_MAX;
+	uint32_t len;
+
+	while (timeout--) {
+		/* check FLECFIFO */
+		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
+		if (len >= 4)
+			return;
+		udelay(1);
+	}
+	timeout_error(flctl, __func__);
+}
+
+static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
+					int len, enum dma_data_direction dir)
+{
+	struct dma_async_tx_descriptor *desc = NULL;
+	struct dma_chan *chan;
+	enum dma_transfer_direction tr_dir;
+	dma_addr_t dma_addr;
+	dma_cookie_t cookie;
+	uint32_t reg;
+	int ret;
+
+	if (dir == DMA_FROM_DEVICE) {
+		chan = flctl->chan_fifo0_rx;
+		tr_dir = DMA_DEV_TO_MEM;
+	} else {
+		chan = flctl->chan_fifo0_tx;
+		tr_dir = DMA_MEM_TO_DEV;
+	}
+
+	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
+
+	if (!dma_mapping_error(chan->device->dev, dma_addr))
+		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
+			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+
+	if (desc) {
+		reg = readl(FLINTDMACR(flctl));
+		reg |= DREQ0EN;
+		writel(reg, FLINTDMACR(flctl));
+
+		desc->callback = flctl_dma_complete;
+		desc->callback_param = flctl;
+		cookie = dmaengine_submit(desc);
+		if (dma_submit_error(cookie)) {
+			ret = dma_submit_error(cookie);
+			dev_warn(&flctl->pdev->dev,
+				 "DMA submit failed, falling back to PIO\n");
+			goto out;
+		}
+
+		dma_async_issue_pending(chan);
+	} else {
+		/* DMA failed, fall back to PIO */
+		flctl_release_dma(flctl);
+		dev_warn(&flctl->pdev->dev,
+			 "DMA failed, falling back to PIO\n");
+		ret = -EIO;
+		goto out;
+	}
+
+	ret =
+	wait_for_completion_timeout(&flctl->dma_complete,
+				msecs_to_jiffies(3000));
+
+	if (ret <= 0) {
+		dmaengine_terminate_all(chan);
+		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
+	}
+
+out:
+	reg = readl(FLINTDMACR(flctl));
+	reg &= ~DREQ0EN;
+	writel(reg, FLINTDMACR(flctl));
+
+	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
+
+	/* ret > 0 is success */
+	return ret;
+}
+
+static void read_datareg(struct sh_flctl *flctl, int offset)
+{
+	unsigned long data;
+	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+	wait_completion(flctl);
+
+	data = readl(FLDATAR(flctl));
+	*buf = le32_to_cpu(data);
+}
+
+static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
+{
+	int i, len_4align;
+	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+	len_4align = (rlen + 3) / 4;
+
+	/* initiate DMA transfer */
+	if (flctl->chan_fifo0_rx && rlen >= 32 &&
+		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
+			goto convert;	/* DMA success */
+
+	/* do polling transfer */
+	for (i = 0; i < len_4align; i++) {
+		wait_rfifo_ready(flctl);
+		buf[i] = readl(FLDTFIFO(flctl));
+	}
+
+convert:
+	for (i = 0; i < len_4align; i++)
+		buf[i] = be32_to_cpu(buf[i]);
+}
+
+static enum flctl_ecc_res_t read_ecfiforeg
+		(struct sh_flctl *flctl, uint8_t *buff, int sector)
+{
+	int i;
+	enum flctl_ecc_res_t res;
+	unsigned long *ecc_buf = (unsigned long *)buff;
+
+	res = wait_recfifo_ready(flctl , sector);
+
+	if (res != FL_ERROR) {
+		for (i = 0; i < 4; i++) {
+			ecc_buf[i] = readl(FLECFIFO(flctl));
+			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
+		}
+	}
+
+	return res;
+}
+
+static void write_fiforeg(struct sh_flctl *flctl, int rlen,
+						unsigned int offset)
+{
+	int i, len_4align;
+	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+	len_4align = (rlen + 3) / 4;
+	for (i = 0; i < len_4align; i++) {
+		wait_wfifo_ready(flctl);
+		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
+	}
+}
+
+static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
+						unsigned int offset)
+{
+	int i, len_4align;
+	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
+
+	len_4align = (rlen + 3) / 4;
+
+	for (i = 0; i < len_4align; i++)
+		buf[i] = cpu_to_be32(buf[i]);
+
+	/* initiate DMA transfer */
+	if (flctl->chan_fifo0_tx && rlen >= 32 &&
+		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
+			return;	/* DMA success */
+
+	/* do polling transfer */
+	for (i = 0; i < len_4align; i++) {
+		wait_wecfifo_ready(flctl);
+		writel(buf[i], FLECFIFO(flctl));
+	}
+}
+
+static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
+	uint32_t flcmdcr_val, addr_len_bytes = 0;
+
+	/* Set SNAND bit if page size is 2048byte */
+	if (flctl->page_size)
+		flcmncr_val |= SNAND_E;
+	else
+		flcmncr_val &= ~SNAND_E;
+
+	/* default FLCMDCR val */
+	flcmdcr_val = DOCMD1_E | DOADR_E;
+
+	/* Set for FLCMDCR */
+	switch (cmd) {
+	case NAND_CMD_ERASE1:
+		addr_len_bytes = flctl->erase_ADRCNT;
+		flcmdcr_val |= DOCMD2_E;
+		break;
+	case NAND_CMD_READ0:
+	case NAND_CMD_READOOB:
+	case NAND_CMD_RNDOUT:
+		addr_len_bytes = flctl->rw_ADRCNT;
+		flcmdcr_val |= CDSRC_E;
+		if (flctl->chip.options & NAND_BUSWIDTH_16)
+			flcmncr_val |= SEL_16BIT;
+		break;
+	case NAND_CMD_SEQIN:
+		/* This case is that cmd is READ0 or READ1 or READ00 */
+		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
+		break;
+	case NAND_CMD_PAGEPROG:
+		addr_len_bytes = flctl->rw_ADRCNT;
+		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
+		if (flctl->chip.options & NAND_BUSWIDTH_16)
+			flcmncr_val |= SEL_16BIT;
+		break;
+	case NAND_CMD_READID:
+		flcmncr_val &= ~SNAND_E;
+		flcmdcr_val |= CDSRC_E;
+		addr_len_bytes = ADRCNT_1;
+		break;
+	case NAND_CMD_STATUS:
+	case NAND_CMD_RESET:
+		flcmncr_val &= ~SNAND_E;
+		flcmdcr_val &= ~(DOADR_E | DOSR_E);
+		break;
+	default:
+		break;
+	}
+
+	/* Set address bytes parameter */
+	flcmdcr_val |= addr_len_bytes;
+
+	/* Now actually write */
+	writel(flcmncr_val, FLCMNCR(flctl));
+	writel(flcmdcr_val, FLCMDCR(flctl));
+	writel(flcmcdr_val, FLCMCDR(flctl));
+}
+
+static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+	if (oob_required)
+		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+	return 0;
+}
+
+static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
+				  const uint8_t *buf, int oob_required,
+				  int page)
+{
+	nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	return nand_prog_page_end_op(chip);
+}
+
+static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	int sector, page_sectors;
+	enum flctl_ecc_res_t ecc_result;
+
+	page_sectors = flctl->page_size ? 4 : 1;
+
+	set_cmd_regs(mtd, NAND_CMD_READ0,
+		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
+
+	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
+		 FLCMNCR(flctl));
+	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
+	writel(page_addr << 2, FLADR(flctl));
+
+	empty_fifo(flctl);
+	start_translation(flctl);
+
+	for (sector = 0; sector < page_sectors; sector++) {
+		read_fiforeg(flctl, 512, 512 * sector);
+
+		ecc_result = read_ecfiforeg(flctl,
+			&flctl->done_buff[mtd->writesize + 16 * sector],
+			sector);
+
+		switch (ecc_result) {
+		case FL_REPAIRABLE:
+			dev_info(&flctl->pdev->dev,
+				"applied ecc on page 0x%x", page_addr);
+			mtd->ecc_stats.corrected++;
+			break;
+		case FL_ERROR:
+			dev_warn(&flctl->pdev->dev,
+				"page 0x%x contains corrupted data\n",
+				page_addr);
+			mtd->ecc_stats.failed++;
+			break;
+		default:
+			;
+		}
+	}
+
+	wait_completion(flctl);
+
+	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
+			FLCMNCR(flctl));
+}
+
+static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	int page_sectors = flctl->page_size ? 4 : 1;
+	int i;
+
+	set_cmd_regs(mtd, NAND_CMD_READ0,
+		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
+
+	empty_fifo(flctl);
+
+	for (i = 0; i < page_sectors; i++) {
+		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
+		writel(16, FLDTCNTR(flctl));
+
+		start_translation(flctl);
+		read_fiforeg(flctl, 16, 16 * i);
+		wait_completion(flctl);
+	}
+}
+
+static void execmd_write_page_sector(struct mtd_info *mtd)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	int page_addr = flctl->seqin_page_addr;
+	int sector, page_sectors;
+
+	page_sectors = flctl->page_size ? 4 : 1;
+
+	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
+			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
+
+	empty_fifo(flctl);
+	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
+	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
+	writel(page_addr << 2, FLADR(flctl));
+	start_translation(flctl);
+
+	for (sector = 0; sector < page_sectors; sector++) {
+		write_fiforeg(flctl, 512, 512 * sector);
+		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
+	}
+
+	wait_completion(flctl);
+	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
+}
+
+static void execmd_write_oob(struct mtd_info *mtd)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	int page_addr = flctl->seqin_page_addr;
+	int sector, page_sectors;
+
+	page_sectors = flctl->page_size ? 4 : 1;
+
+	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
+			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
+
+	for (sector = 0; sector < page_sectors; sector++) {
+		empty_fifo(flctl);
+		set_addr(mtd, sector * 528 + 512, page_addr);
+		writel(16, FLDTCNTR(flctl));	/* set read size */
+
+		start_translation(flctl);
+		write_fiforeg(flctl, 16, 16 * sector);
+		wait_completion(flctl);
+	}
+}
+
+static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
+			int column, int page_addr)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	uint32_t read_cmd = 0;
+
+	pm_runtime_get_sync(&flctl->pdev->dev);
+
+	flctl->read_bytes = 0;
+	if (command != NAND_CMD_PAGEPROG)
+		flctl->index = 0;
+
+	switch (command) {
+	case NAND_CMD_READ1:
+	case NAND_CMD_READ0:
+		if (flctl->hwecc) {
+			/* read page with hwecc */
+			execmd_read_page_sector(mtd, page_addr);
+			break;
+		}
+		if (flctl->page_size)
+			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
+				| command);
+		else
+			set_cmd_regs(mtd, command, command);
+
+		set_addr(mtd, 0, page_addr);
+
+		flctl->read_bytes = mtd->writesize + mtd->oobsize;
+		if (flctl->chip.options & NAND_BUSWIDTH_16)
+			column >>= 1;
+		flctl->index += column;
+		goto read_normal_exit;
+
+	case NAND_CMD_READOOB:
+		if (flctl->hwecc) {
+			/* read page with hwecc */
+			execmd_read_oob(mtd, page_addr);
+			break;
+		}
+
+		if (flctl->page_size) {
+			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
+				| NAND_CMD_READ0);
+			set_addr(mtd, mtd->writesize, page_addr);
+		} else {
+			set_cmd_regs(mtd, command, command);
+			set_addr(mtd, 0, page_addr);
+		}
+		flctl->read_bytes = mtd->oobsize;
+		goto read_normal_exit;
+
+	case NAND_CMD_RNDOUT:
+		if (flctl->hwecc)
+			break;
+
+		if (flctl->page_size)
+			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
+				| command);
+		else
+			set_cmd_regs(mtd, command, command);
+
+		set_addr(mtd, column, 0);
+
+		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
+		goto read_normal_exit;
+
+	case NAND_CMD_READID:
+		set_cmd_regs(mtd, command, command);
+
+		/* READID is always performed using an 8-bit bus */
+		if (flctl->chip.options & NAND_BUSWIDTH_16)
+			column <<= 1;
+		set_addr(mtd, column, 0);
+
+		flctl->read_bytes = 8;
+		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
+		empty_fifo(flctl);
+		start_translation(flctl);
+		read_fiforeg(flctl, flctl->read_bytes, 0);
+		wait_completion(flctl);
+		break;
+
+	case NAND_CMD_ERASE1:
+		flctl->erase1_page_addr = page_addr;
+		break;
+
+	case NAND_CMD_ERASE2:
+		set_cmd_regs(mtd, NAND_CMD_ERASE1,
+			(command << 8) | NAND_CMD_ERASE1);
+		set_addr(mtd, -1, flctl->erase1_page_addr);
+		start_translation(flctl);
+		wait_completion(flctl);
+		break;
+
+	case NAND_CMD_SEQIN:
+		if (!flctl->page_size) {
+			/* output read command */
+			if (column >= mtd->writesize) {
+				column -= mtd->writesize;
+				read_cmd = NAND_CMD_READOOB;
+			} else if (column < 256) {
+				read_cmd = NAND_CMD_READ0;
+			} else {
+				column -= 256;
+				read_cmd = NAND_CMD_READ1;
+			}
+		}
+		flctl->seqin_column = column;
+		flctl->seqin_page_addr = page_addr;
+		flctl->seqin_read_cmd = read_cmd;
+		break;
+
+	case NAND_CMD_PAGEPROG:
+		empty_fifo(flctl);
+		if (!flctl->page_size) {
+			set_cmd_regs(mtd, NAND_CMD_SEQIN,
+					flctl->seqin_read_cmd);
+			set_addr(mtd, -1, -1);
+			writel(0, FLDTCNTR(flctl));	/* set 0 size */
+			start_translation(flctl);
+			wait_completion(flctl);
+		}
+		if (flctl->hwecc) {
+			/* write page with hwecc */
+			if (flctl->seqin_column == mtd->writesize)
+				execmd_write_oob(mtd);
+			else if (!flctl->seqin_column)
+				execmd_write_page_sector(mtd);
+			else
+				pr_err("Invalid address !?\n");
+			break;
+		}
+		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
+		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
+		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
+		start_translation(flctl);
+		write_fiforeg(flctl, flctl->index, 0);
+		wait_completion(flctl);
+		break;
+
+	case NAND_CMD_STATUS:
+		set_cmd_regs(mtd, command, command);
+		set_addr(mtd, -1, -1);
+
+		flctl->read_bytes = 1;
+		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
+		start_translation(flctl);
+		read_datareg(flctl, 0); /* read and end */
+		break;
+
+	case NAND_CMD_RESET:
+		set_cmd_regs(mtd, command, command);
+		set_addr(mtd, -1, -1);
+
+		writel(0, FLDTCNTR(flctl));	/* set 0 size */
+		start_translation(flctl);
+		wait_completion(flctl);
+		break;
+
+	default:
+		break;
+	}
+	goto runtime_exit;
+
+read_normal_exit:
+	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
+	empty_fifo(flctl);
+	start_translation(flctl);
+	read_fiforeg(flctl, flctl->read_bytes, 0);
+	wait_completion(flctl);
+runtime_exit:
+	pm_runtime_put_sync(&flctl->pdev->dev);
+	return;
+}
+
+static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	int ret;
+
+	switch (chipnr) {
+	case -1:
+		flctl->flcmncr_base &= ~CE0_ENABLE;
+
+		pm_runtime_get_sync(&flctl->pdev->dev);
+		writel(flctl->flcmncr_base, FLCMNCR(flctl));
+
+		if (flctl->qos_request) {
+			dev_pm_qos_remove_request(&flctl->pm_qos);
+			flctl->qos_request = 0;
+		}
+
+		pm_runtime_put_sync(&flctl->pdev->dev);
+		break;
+	case 0:
+		flctl->flcmncr_base |= CE0_ENABLE;
+
+		if (!flctl->qos_request) {
+			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
+							&flctl->pm_qos,
+							DEV_PM_QOS_RESUME_LATENCY,
+							100);
+			if (ret < 0)
+				dev_err(&flctl->pdev->dev,
+					"PM QoS request failed: %d\n", ret);
+			flctl->qos_request = 1;
+		}
+
+		if (flctl->holden) {
+			pm_runtime_get_sync(&flctl->pdev->dev);
+			writel(HOLDEN, FLHOLDCR(flctl));
+			pm_runtime_put_sync(&flctl->pdev->dev);
+		}
+		break;
+	default:
+		BUG();
+	}
+}
+
+static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+
+	memcpy(&flctl->done_buff[flctl->index], buf, len);
+	flctl->index += len;
+}
+
+static uint8_t flctl_read_byte(struct mtd_info *mtd)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	uint8_t data;
+
+	data = flctl->done_buff[flctl->index];
+	flctl->index++;
+	return data;
+}
+
+static uint16_t flctl_read_word(struct mtd_info *mtd)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+	uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
+
+	flctl->index += 2;
+	return *buf;
+}
+
+static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+
+	memcpy(buf, &flctl->done_buff[flctl->index], len);
+	flctl->index += len;
+}
+
+static int flctl_chip_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct sh_flctl *flctl = mtd_to_flctl(mtd);
+
+	/*
+	 * NAND_BUSWIDTH_16 may have been set by nand_scan_ident().
+	 * Add the SEL_16BIT flag in flctl->flcmncr_base.
+	 */
+	if (chip->options & NAND_BUSWIDTH_16)
+		flctl->flcmncr_base |= SEL_16BIT;
+
+	if (mtd->writesize == 512) {
+		flctl->page_size = 0;
+		if (chip->chipsize > (32 << 20)) {
+			/* big than 32MB */
+			flctl->rw_ADRCNT = ADRCNT_4;
+			flctl->erase_ADRCNT = ADRCNT_3;
+		} else if (chip->chipsize > (2 << 16)) {
+			/* big than 128KB */
+			flctl->rw_ADRCNT = ADRCNT_3;
+			flctl->erase_ADRCNT = ADRCNT_2;
+		} else {
+			flctl->rw_ADRCNT = ADRCNT_2;
+			flctl->erase_ADRCNT = ADRCNT_1;
+		}
+	} else {
+		flctl->page_size = 1;
+		if (chip->chipsize > (128 << 20)) {
+			/* big than 128MB */
+			flctl->rw_ADRCNT = ADRCNT2_E;
+			flctl->erase_ADRCNT = ADRCNT_3;
+		} else if (chip->chipsize > (8 << 16)) {
+			/* big than 512KB */
+			flctl->rw_ADRCNT = ADRCNT_4;
+			flctl->erase_ADRCNT = ADRCNT_2;
+		} else {
+			flctl->rw_ADRCNT = ADRCNT_3;
+			flctl->erase_ADRCNT = ADRCNT_1;
+		}
+	}
+
+	if (flctl->hwecc) {
+		if (mtd->writesize == 512) {
+			mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops);
+			chip->badblock_pattern = &flctl_4secc_smallpage;
+		} else {
+			mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops);
+			chip->badblock_pattern = &flctl_4secc_largepage;
+		}
+
+		chip->ecc.size = 512;
+		chip->ecc.bytes = 10;
+		chip->ecc.strength = 4;
+		chip->ecc.read_page = flctl_read_page_hwecc;
+		chip->ecc.write_page = flctl_write_page_hwecc;
+		chip->ecc.mode = NAND_ECC_HW;
+
+		/* 4 symbols ECC enabled */
+		flctl->flcmncr_base |= _4ECCEN;
+	} else {
+		chip->ecc.mode = NAND_ECC_SOFT;
+		chip->ecc.algo = NAND_ECC_HAMMING;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops flctl_nand_controller_ops = {
+	.attach_chip = flctl_chip_attach_chip,
+};
+
+static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
+{
+	struct sh_flctl *flctl = dev_id;
+
+	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
+	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
+
+	return IRQ_HANDLED;
+}
+
+struct flctl_soc_config {
+	unsigned long flcmncr_val;
+	unsigned has_hwecc:1;
+	unsigned use_holden:1;
+};
+
+static struct flctl_soc_config flctl_sh7372_config = {
+	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
+	.has_hwecc = 1,
+	.use_holden = 1,
+};
+
+static const struct of_device_id of_flctl_match[] = {
+	{ .compatible = "renesas,shmobile-flctl-sh7372",
+				.data = &flctl_sh7372_config },
+	{},
+};
+MODULE_DEVICE_TABLE(of, of_flctl_match);
+
+static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
+{
+	const struct flctl_soc_config *config;
+	struct sh_flctl_platform_data *pdata;
+
+	config = of_device_get_match_data(dev);
+	if (!config) {
+		dev_err(dev, "%s: no OF configuration attached\n", __func__);
+		return NULL;
+	}
+
+	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
+								GFP_KERNEL);
+	if (!pdata)
+		return NULL;
+
+	/* set SoC specific options */
+	pdata->flcmncr_val = config->flcmncr_val;
+	pdata->has_hwecc = config->has_hwecc;
+	pdata->use_holden = config->use_holden;
+
+	return pdata;
+}
+
+static int flctl_probe(struct platform_device *pdev)
+{
+	struct resource *res;
+	struct sh_flctl *flctl;
+	struct mtd_info *flctl_mtd;
+	struct nand_chip *nand;
+	struct sh_flctl_platform_data *pdata;
+	int ret;
+	int irq;
+
+	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
+	if (!flctl)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(flctl->reg))
+		return PTR_ERR(flctl->reg);
+	flctl->fifo = res->start + 0x24; /* FLDTFIFO */
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq);
+		return irq;
+	}
+
+	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
+			       "flste", flctl);
+	if (ret) {
+		dev_err(&pdev->dev, "request interrupt failed.\n");
+		return ret;
+	}
+
+	if (pdev->dev.of_node)
+		pdata = flctl_parse_dt(&pdev->dev);
+	else
+		pdata = dev_get_platdata(&pdev->dev);
+
+	if (!pdata) {
+		dev_err(&pdev->dev, "no setup data defined\n");
+		return -EINVAL;
+	}
+
+	platform_set_drvdata(pdev, flctl);
+	nand = &flctl->chip;
+	flctl_mtd = nand_to_mtd(nand);
+	nand_set_flash_node(nand, pdev->dev.of_node);
+	flctl_mtd->dev.parent = &pdev->dev;
+	flctl->pdev = pdev;
+	flctl->hwecc = pdata->has_hwecc;
+	flctl->holden = pdata->use_holden;
+	flctl->flcmncr_base = pdata->flcmncr_val;
+	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
+
+	/* Set address of hardware control function */
+	/* 20 us command delay time */
+	nand->chip_delay = 20;
+
+	nand->read_byte = flctl_read_byte;
+	nand->read_word = flctl_read_word;
+	nand->write_buf = flctl_write_buf;
+	nand->read_buf = flctl_read_buf;
+	nand->select_chip = flctl_select_chip;
+	nand->cmdfunc = flctl_cmdfunc;
+	nand->set_features = nand_get_set_features_notsupp;
+	nand->get_features = nand_get_set_features_notsupp;
+
+	if (pdata->flcmncr_val & SEL_16BIT)
+		nand->options |= NAND_BUSWIDTH_16;
+
+	pm_runtime_enable(&pdev->dev);
+	pm_runtime_resume(&pdev->dev);
+
+	flctl_setup_dma(flctl);
+
+	nand->dummy_controller.ops = &flctl_nand_controller_ops;
+	ret = nand_scan(flctl_mtd, 1);
+	if (ret)
+		goto err_chip;
+
+	ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
+	if (ret)
+		goto cleanup_nand;
+
+	return 0;
+
+cleanup_nand:
+	nand_cleanup(nand);
+err_chip:
+	flctl_release_dma(flctl);
+	pm_runtime_disable(&pdev->dev);
+	return ret;
+}
+
+static int flctl_remove(struct platform_device *pdev)
+{
+	struct sh_flctl *flctl = platform_get_drvdata(pdev);
+
+	flctl_release_dma(flctl);
+	nand_release(nand_to_mtd(&flctl->chip));
+	pm_runtime_disable(&pdev->dev);
+
+	return 0;
+}
+
+static struct platform_driver flctl_driver = {
+	.remove		= flctl_remove,
+	.driver = {
+		.name	= "sh_flctl",
+		.of_match_table = of_match_ptr(of_flctl_match),
+	},
+};
+
+module_platform_driver_probe(flctl_driver, flctl_probe);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Yoshihiro Shimoda");
+MODULE_DESCRIPTION("SuperH FLCTL driver");
+MODULE_ALIAS("platform:sh_flctl");
diff --git a/drivers/mtd/nand/raw/sharpsl.c b/drivers/mtd/nand/raw/sharpsl.c
new file mode 100644
index 0000000..fc171b1
--- /dev/null
+++ b/drivers/mtd/nand/raw/sharpsl.c
@@ -0,0 +1,230 @@
+/*
+ *  Copyright (C) 2004 Richard Purdie
+ *  Copyright (C) 2008 Dmitry Baryshkov
+ *
+ *  Based on Sharp's NAND driver sharp_sl.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/genhd.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/sharpsl.h>
+#include <linux/interrupt.h>
+#include <linux/platform_device.h>
+#include <linux/io.h>
+
+struct sharpsl_nand {
+	struct nand_chip	chip;
+
+	void __iomem		*io;
+};
+
+static inline struct sharpsl_nand *mtd_to_sharpsl(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct sharpsl_nand, chip);
+}
+
+/* register offset */
+#define ECCLPLB		0x00	/* line parity 7 - 0 bit */
+#define ECCLPUB		0x04	/* line parity 15 - 8 bit */
+#define ECCCP		0x08	/* column parity 5 - 0 bit */
+#define ECCCNTR		0x0C	/* ECC byte counter */
+#define ECCCLRR		0x10	/* cleare ECC */
+#define FLASHIO		0x14	/* Flash I/O */
+#define FLASHCTL	0x18	/* Flash Control */
+
+/* Flash control bit */
+#define FLRYBY		(1 << 5)
+#define FLCE1		(1 << 4)
+#define FLWP		(1 << 3)
+#define FLALE		(1 << 2)
+#define FLCLE		(1 << 1)
+#define FLCE0		(1 << 0)
+
+/*
+ *	hardware specific access to control-lines
+ *	ctrl:
+ *	NAND_CNE: bit 0 -> ! bit 0 & 4
+ *	NAND_CLE: bit 1 -> bit 1
+ *	NAND_ALE: bit 2 -> bit 2
+ *
+ */
+static void sharpsl_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		unsigned char bits = ctrl & 0x07;
+
+		bits |= (ctrl & 0x01) << 4;
+
+		bits ^= 0x11;
+
+		writeb((readb(sharpsl->io + FLASHCTL) & ~0x17) | bits, sharpsl->io + FLASHCTL);
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		writeb(cmd, chip->IO_ADDR_W);
+}
+
+static int sharpsl_nand_dev_ready(struct mtd_info *mtd)
+{
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
+	return !((readb(sharpsl->io + FLASHCTL) & FLRYBY) == 0);
+}
+
+static void sharpsl_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
+	writeb(0, sharpsl->io + ECCCLRR);
+}
+
+static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, u_char * ecc_code)
+{
+	struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd);
+	ecc_code[0] = ~readb(sharpsl->io + ECCLPUB);
+	ecc_code[1] = ~readb(sharpsl->io + ECCLPLB);
+	ecc_code[2] = (~readb(sharpsl->io + ECCCP) << 2) | 0x03;
+	return readb(sharpsl->io + ECCCNTR) != 0;
+}
+
+/*
+ * Main initialization routine
+ */
+static int sharpsl_nand_probe(struct platform_device *pdev)
+{
+	struct nand_chip *this;
+	struct mtd_info *mtd;
+	struct resource *r;
+	int err = 0;
+	struct sharpsl_nand *sharpsl;
+	struct sharpsl_nand_platform_data *data = dev_get_platdata(&pdev->dev);
+
+	if (!data) {
+		dev_err(&pdev->dev, "no platform data!\n");
+		return -EINVAL;
+	}
+
+	/* Allocate memory for MTD device structure and private data */
+	sharpsl = kzalloc(sizeof(struct sharpsl_nand), GFP_KERNEL);
+	if (!sharpsl)
+		return -ENOMEM;
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!r) {
+		dev_err(&pdev->dev, "no io memory resource defined!\n");
+		err = -ENODEV;
+		goto err_get_res;
+	}
+
+	/* map physical address */
+	sharpsl->io = ioremap(r->start, resource_size(r));
+	if (!sharpsl->io) {
+		dev_err(&pdev->dev, "ioremap to access Sharp SL NAND chip failed\n");
+		err = -EIO;
+		goto err_ioremap;
+	}
+
+	/* Get pointer to private data */
+	this = (struct nand_chip *)(&sharpsl->chip);
+
+	/* Link the private data with the MTD structure */
+	mtd = nand_to_mtd(this);
+	mtd->dev.parent = &pdev->dev;
+	mtd_set_ooblayout(mtd, data->ecc_layout);
+
+	platform_set_drvdata(pdev, sharpsl);
+
+	/*
+	 * PXA initialize
+	 */
+	writeb(readb(sharpsl->io + FLASHCTL) | FLWP, sharpsl->io + FLASHCTL);
+
+	/* Set address of NAND IO lines */
+	this->IO_ADDR_R = sharpsl->io + FLASHIO;
+	this->IO_ADDR_W = sharpsl->io + FLASHIO;
+	/* Set address of hardware control function */
+	this->cmd_ctrl = sharpsl_nand_hwcontrol;
+	this->dev_ready = sharpsl_nand_dev_ready;
+	/* 15 us command delay time */
+	this->chip_delay = 15;
+	/* set eccmode using hardware ECC */
+	this->ecc.mode = NAND_ECC_HW;
+	this->ecc.size = 256;
+	this->ecc.bytes = 3;
+	this->ecc.strength = 1;
+	this->badblock_pattern = data->badblock_pattern;
+	this->ecc.hwctl = sharpsl_nand_enable_hwecc;
+	this->ecc.calculate = sharpsl_nand_calculate_ecc;
+	this->ecc.correct = nand_correct_data;
+
+	/* Scan to find existence of the device */
+	err = nand_scan(mtd, 1);
+	if (err)
+		goto err_scan;
+
+	/* Register the partitions */
+	mtd->name = "sharpsl-nand";
+
+	err = mtd_device_parse_register(mtd, data->part_parsers, NULL,
+					data->partitions, data->nr_partitions);
+	if (err)
+		goto err_add;
+
+	/* Return happy */
+	return 0;
+
+err_add:
+	nand_release(mtd);
+
+err_scan:
+	iounmap(sharpsl->io);
+err_ioremap:
+err_get_res:
+	kfree(sharpsl);
+	return err;
+}
+
+/*
+ * Clean up routine
+ */
+static int sharpsl_nand_remove(struct platform_device *pdev)
+{
+	struct sharpsl_nand *sharpsl = platform_get_drvdata(pdev);
+
+	/* Release resources, unregister device */
+	nand_release(nand_to_mtd(&sharpsl->chip));
+
+	iounmap(sharpsl->io);
+
+	/* Free the MTD device structure */
+	kfree(sharpsl);
+
+	return 0;
+}
+
+static struct platform_driver sharpsl_nand_driver = {
+	.driver = {
+		.name	= "sharpsl-nand",
+	},
+	.probe		= sharpsl_nand_probe,
+	.remove		= sharpsl_nand_remove,
+};
+
+module_platform_driver(sharpsl_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
+MODULE_DESCRIPTION("Device specific logic for NAND flash on Sharp SL-C7xx Series");
diff --git a/drivers/mtd/nand/raw/sm_common.c b/drivers/mtd/nand/raw/sm_common.c
new file mode 100644
index 0000000..73aafe8
--- /dev/null
+++ b/drivers/mtd/nand/raw/sm_common.c
@@ -0,0 +1,212 @@
+/*
+ * Copyright © 2009 - Maxim Levitsky
+ * Common routines & support for xD format
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/kernel.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/module.h>
+#include <linux/sizes.h>
+#include "sm_common.h"
+
+static int oob_sm_ooblayout_ecc(struct mtd_info *mtd, int section,
+				struct mtd_oob_region *oobregion)
+{
+	if (section > 1)
+		return -ERANGE;
+
+	oobregion->length = 3;
+	oobregion->offset = ((section + 1) * 8) - 3;
+
+	return 0;
+}
+
+static int oob_sm_ooblayout_free(struct mtd_info *mtd, int section,
+				 struct mtd_oob_region *oobregion)
+{
+	switch (section) {
+	case 0:
+		/* reserved */
+		oobregion->offset = 0;
+		oobregion->length = 4;
+		break;
+	case 1:
+		/* LBA1 */
+		oobregion->offset = 6;
+		oobregion->length = 2;
+		break;
+	case 2:
+		/* LBA2 */
+		oobregion->offset = 11;
+		oobregion->length = 2;
+		break;
+	default:
+		return -ERANGE;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops oob_sm_ops = {
+	.ecc = oob_sm_ooblayout_ecc,
+	.free = oob_sm_ooblayout_free,
+};
+
+/* NOTE: This layout is is not compatabable with SmartMedia, */
+/* because the 256 byte devices have page depenent oob layout */
+/* However it does preserve the bad block markers */
+/* If you use smftl, it will bypass this and work correctly */
+/* If you not, then you break SmartMedia compliance anyway */
+
+static int oob_sm_small_ooblayout_ecc(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *oobregion)
+{
+	if (section)
+		return -ERANGE;
+
+	oobregion->length = 3;
+	oobregion->offset = 0;
+
+	return 0;
+}
+
+static int oob_sm_small_ooblayout_free(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *oobregion)
+{
+	switch (section) {
+	case 0:
+		/* reserved */
+		oobregion->offset = 3;
+		oobregion->length = 2;
+		break;
+	case 1:
+		/* LBA1 */
+		oobregion->offset = 6;
+		oobregion->length = 2;
+		break;
+	default:
+		return -ERANGE;
+	}
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops oob_sm_small_ops = {
+	.ecc = oob_sm_small_ooblayout_ecc,
+	.free = oob_sm_small_ooblayout_free,
+};
+
+static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+	struct mtd_oob_ops ops;
+	struct sm_oob oob;
+	int ret;
+
+	memset(&oob, -1, SM_OOB_SIZE);
+	oob.block_status = 0x0F;
+
+	/* As long as this function is called on erase block boundaries
+		it will work correctly for 256 byte nand */
+	ops.mode = MTD_OPS_PLACE_OOB;
+	ops.ooboffs = 0;
+	ops.ooblen = mtd->oobsize;
+	ops.oobbuf = (void *)&oob;
+	ops.datbuf = NULL;
+
+
+	ret = mtd_write_oob(mtd, ofs, &ops);
+	if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) {
+		pr_notice("sm_common: can't mark sector at %i as bad\n",
+			  (int)ofs);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+static struct nand_flash_dev nand_smartmedia_flash_ids[] = {
+	LEGACY_ID_NAND("SmartMedia 2MiB 3,3V ROM",   0x5d, 2,   SZ_8K, NAND_ROM),
+	LEGACY_ID_NAND("SmartMedia 4MiB 3,3V",       0xe3, 4,   SZ_8K, 0),
+	LEGACY_ID_NAND("SmartMedia 4MiB 3,3/5V",     0xe5, 4,   SZ_8K, 0),
+	LEGACY_ID_NAND("SmartMedia 4MiB 5V",         0x6b, 4,   SZ_8K, 0),
+	LEGACY_ID_NAND("SmartMedia 4MiB 3,3V ROM",   0xd5, 4,   SZ_8K, NAND_ROM),
+	LEGACY_ID_NAND("SmartMedia 8MiB 3,3V",       0xe6, 8,   SZ_8K, 0),
+	LEGACY_ID_NAND("SmartMedia 8MiB 3,3V ROM",   0xd6, 8,   SZ_8K, NAND_ROM),
+	LEGACY_ID_NAND("SmartMedia 16MiB 3,3V",      0x73, 16,  SZ_16K, 0),
+	LEGACY_ID_NAND("SmartMedia 16MiB 3,3V ROM",  0x57, 16,  SZ_16K, NAND_ROM),
+	LEGACY_ID_NAND("SmartMedia 32MiB 3,3V",      0x75, 32,  SZ_16K, 0),
+	LEGACY_ID_NAND("SmartMedia 32MiB 3,3V ROM",  0x58, 32,  SZ_16K, NAND_ROM),
+	LEGACY_ID_NAND("SmartMedia 64MiB 3,3V",      0x76, 64,  SZ_16K, 0),
+	LEGACY_ID_NAND("SmartMedia 64MiB 3,3V ROM",  0xd9, 64,  SZ_16K, NAND_ROM),
+	LEGACY_ID_NAND("SmartMedia 128MiB 3,3V",     0x79, 128, SZ_16K, 0),
+	LEGACY_ID_NAND("SmartMedia 128MiB 3,3V ROM", 0xda, 128, SZ_16K, NAND_ROM),
+	LEGACY_ID_NAND("SmartMedia 256MiB 3, 3V",    0x71, 256, SZ_16K, 0),
+	LEGACY_ID_NAND("SmartMedia 256MiB 3,3V ROM", 0x5b, 256, SZ_16K, NAND_ROM),
+	{NULL}
+};
+
+static struct nand_flash_dev nand_xd_flash_ids[] = {
+	LEGACY_ID_NAND("xD 16MiB 3,3V",  0x73, 16,   SZ_16K, 0),
+	LEGACY_ID_NAND("xD 32MiB 3,3V",  0x75, 32,   SZ_16K, 0),
+	LEGACY_ID_NAND("xD 64MiB 3,3V",  0x76, 64,   SZ_16K, 0),
+	LEGACY_ID_NAND("xD 128MiB 3,3V", 0x79, 128,  SZ_16K, 0),
+	LEGACY_ID_NAND("xD 256MiB 3,3V", 0x71, 256,  SZ_16K, NAND_BROKEN_XD),
+	LEGACY_ID_NAND("xD 512MiB 3,3V", 0xdc, 512,  SZ_16K, NAND_BROKEN_XD),
+	LEGACY_ID_NAND("xD 1GiB 3,3V",   0xd3, 1024, SZ_16K, NAND_BROKEN_XD),
+	LEGACY_ID_NAND("xD 2GiB 3,3V",   0xd5, 2048, SZ_16K, NAND_BROKEN_XD),
+	{NULL}
+};
+
+static int sm_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	/* Bad block marker position */
+	chip->badblockpos = 0x05;
+	chip->badblockbits = 7;
+	chip->block_markbad = sm_block_markbad;
+
+	/* ECC layout */
+	if (mtd->writesize == SM_SECTOR_SIZE)
+		mtd_set_ooblayout(mtd, &oob_sm_ops);
+	else if (mtd->writesize == SM_SMALL_PAGE)
+		mtd_set_ooblayout(mtd, &oob_sm_small_ops);
+	else
+		return -ENODEV;
+
+	return 0;
+}
+
+static const struct nand_controller_ops sm_controller_ops = {
+	.attach_chip = sm_attach_chip,
+};
+
+int sm_register_device(struct mtd_info *mtd, int smartmedia)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_flash_dev *flash_ids;
+	int ret;
+
+	chip->options |= NAND_SKIP_BBTSCAN;
+
+	/* Scan for card properties */
+	chip->dummy_controller.ops = &sm_controller_ops;
+	flash_ids = smartmedia ? nand_smartmedia_flash_ids : nand_xd_flash_ids;
+	ret = nand_scan_with_ids(mtd, 1, flash_ids);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		nand_cleanup(chip);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(sm_register_device);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Maxim Levitsky <maximlevitsky@gmail.com>");
+MODULE_DESCRIPTION("Common SmartMedia/xD functions");
diff --git a/drivers/mtd/nand/raw/sm_common.h b/drivers/mtd/nand/raw/sm_common.h
new file mode 100644
index 0000000..1581671
--- /dev/null
+++ b/drivers/mtd/nand/raw/sm_common.h
@@ -0,0 +1,61 @@
+/*
+ * Copyright © 2009 - Maxim Levitsky
+ * Common routines & support for SmartMedia/xD format
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+#include <linux/bitops.h>
+#include <linux/mtd/mtd.h>
+
+/* Full oob structure as written on the flash */
+struct sm_oob {
+	uint32_t reserved;
+	uint8_t data_status;
+	uint8_t block_status;
+	uint8_t lba_copy1[2];
+	uint8_t ecc2[3];
+	uint8_t lba_copy2[2];
+	uint8_t ecc1[3];
+} __packed;
+
+
+/* one sector is always 512 bytes, but it can consist of two nand pages */
+#define SM_SECTOR_SIZE		512
+
+/* oob area is also 16 bytes, but might be from two pages */
+#define SM_OOB_SIZE		16
+
+/* This is maximum zone size, and all devices that have more that one zone
+   have this size */
+#define SM_MAX_ZONE_SIZE 	1024
+
+/* support for small page nand */
+#define SM_SMALL_PAGE 		256
+#define SM_SMALL_OOB_SIZE	8
+
+
+int sm_register_device(struct mtd_info *mtd, int smartmedia);
+
+
+static inline int sm_sector_valid(struct sm_oob *oob)
+{
+	return hweight16(oob->data_status) >= 5;
+}
+
+static inline int sm_block_valid(struct sm_oob *oob)
+{
+	return hweight16(oob->block_status) >= 7;
+}
+
+static inline int sm_block_erased(struct sm_oob *oob)
+{
+	static const uint32_t erased_pattern[4] = {
+		0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
+
+	/* First test for erased block */
+	if (!memcmp(oob, erased_pattern, sizeof(*oob)))
+		return 1;
+	return 0;
+}
diff --git a/drivers/mtd/nand/raw/socrates_nand.c b/drivers/mtd/nand/raw/socrates_nand.c
new file mode 100644
index 0000000..9824a99
--- /dev/null
+++ b/drivers/mtd/nand/raw/socrates_nand.c
@@ -0,0 +1,241 @@
+/*
+ *  Copyright © 2008 Ilya Yanok, Emcraft Systems
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_platform.h>
+#include <linux/io.h>
+
+#define FPGA_NAND_CMD_MASK		(0x7 << 28)
+#define FPGA_NAND_CMD_COMMAND		(0x0 << 28)
+#define FPGA_NAND_CMD_ADDR		(0x1 << 28)
+#define FPGA_NAND_CMD_READ		(0x2 << 28)
+#define FPGA_NAND_CMD_WRITE		(0x3 << 28)
+#define FPGA_NAND_BUSY			(0x1 << 15)
+#define FPGA_NAND_ENABLE		(0x1 << 31)
+#define FPGA_NAND_DATA_SHIFT		16
+
+struct socrates_nand_host {
+	struct nand_chip	nand_chip;
+	void __iomem		*io_base;
+	struct device		*dev;
+};
+
+/**
+ * socrates_nand_write_buf -  write buffer to chip
+ * @mtd:	MTD device structure
+ * @buf:	data buffer
+ * @len:	number of bytes to write
+ */
+static void socrates_nand_write_buf(struct mtd_info *mtd,
+		const uint8_t *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct socrates_nand_host *host = nand_get_controller_data(this);
+
+	for (i = 0; i < len; i++) {
+		out_be32(host->io_base, FPGA_NAND_ENABLE |
+				FPGA_NAND_CMD_WRITE |
+				(buf[i] << FPGA_NAND_DATA_SHIFT));
+	}
+}
+
+/**
+ * socrates_nand_read_buf -  read chip data into buffer
+ * @mtd:	MTD device structure
+ * @buf:	buffer to store date
+ * @len:	number of bytes to read
+ */
+static void socrates_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	int i;
+	struct nand_chip *this = mtd_to_nand(mtd);
+	struct socrates_nand_host *host = nand_get_controller_data(this);
+	uint32_t val;
+
+	val = FPGA_NAND_ENABLE | FPGA_NAND_CMD_READ;
+
+	out_be32(host->io_base, val);
+	for (i = 0; i < len; i++) {
+		buf[i] = (in_be32(host->io_base) >>
+				FPGA_NAND_DATA_SHIFT) & 0xff;
+	}
+}
+
+/**
+ * socrates_nand_read_byte -  read one byte from the chip
+ * @mtd:	MTD device structure
+ */
+static uint8_t socrates_nand_read_byte(struct mtd_info *mtd)
+{
+	uint8_t byte;
+	socrates_nand_read_buf(mtd, &byte, sizeof(byte));
+	return byte;
+}
+
+/**
+ * socrates_nand_read_word -  read one word from the chip
+ * @mtd:	MTD device structure
+ */
+static uint16_t socrates_nand_read_word(struct mtd_info *mtd)
+{
+	uint16_t word;
+	socrates_nand_read_buf(mtd, (uint8_t *)&word, sizeof(word));
+	return word;
+}
+
+/*
+ * Hardware specific access to control-lines
+ */
+static void socrates_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+		unsigned int ctrl)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct socrates_nand_host *host = nand_get_controller_data(nand_chip);
+	uint32_t val;
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		val = FPGA_NAND_CMD_COMMAND;
+	else
+		val = FPGA_NAND_CMD_ADDR;
+
+	if (ctrl & NAND_NCE)
+		val |= FPGA_NAND_ENABLE;
+
+	val |= (cmd & 0xff) << FPGA_NAND_DATA_SHIFT;
+
+	out_be32(host->io_base, val);
+}
+
+/*
+ * Read the Device Ready pin.
+ */
+static int socrates_nand_device_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *nand_chip = mtd_to_nand(mtd);
+	struct socrates_nand_host *host = nand_get_controller_data(nand_chip);
+
+	if (in_be32(host->io_base) & FPGA_NAND_BUSY)
+		return 0; /* busy */
+	return 1;
+}
+
+/*
+ * Probe for the NAND device.
+ */
+static int socrates_nand_probe(struct platform_device *ofdev)
+{
+	struct socrates_nand_host *host;
+	struct mtd_info *mtd;
+	struct nand_chip *nand_chip;
+	int res;
+
+	/* Allocate memory for the device structure (and zero it) */
+	host = devm_kzalloc(&ofdev->dev, sizeof(*host), GFP_KERNEL);
+	if (!host)
+		return -ENOMEM;
+
+	host->io_base = of_iomap(ofdev->dev.of_node, 0);
+	if (host->io_base == NULL) {
+		dev_err(&ofdev->dev, "ioremap failed\n");
+		return -EIO;
+	}
+
+	nand_chip = &host->nand_chip;
+	mtd = nand_to_mtd(nand_chip);
+	host->dev = &ofdev->dev;
+
+	/* link the private data structures */
+	nand_set_controller_data(nand_chip, host);
+	nand_set_flash_node(nand_chip, ofdev->dev.of_node);
+	mtd->name = "socrates_nand";
+	mtd->dev.parent = &ofdev->dev;
+
+	/*should never be accessed directly */
+	nand_chip->IO_ADDR_R = (void *)0xdeadbeef;
+	nand_chip->IO_ADDR_W = (void *)0xdeadbeef;
+
+	nand_chip->cmd_ctrl = socrates_nand_cmd_ctrl;
+	nand_chip->read_byte = socrates_nand_read_byte;
+	nand_chip->read_word = socrates_nand_read_word;
+	nand_chip->write_buf = socrates_nand_write_buf;
+	nand_chip->read_buf = socrates_nand_read_buf;
+	nand_chip->dev_ready = socrates_nand_device_ready;
+
+	nand_chip->ecc.mode = NAND_ECC_SOFT;	/* enable ECC */
+	nand_chip->ecc.algo = NAND_ECC_HAMMING;
+
+	/* TODO: I have no idea what real delay is. */
+	nand_chip->chip_delay = 20;		/* 20us command delay time */
+
+	dev_set_drvdata(&ofdev->dev, host);
+
+	res = nand_scan(mtd, 1);
+	if (res)
+		goto out;
+
+	res = mtd_device_register(mtd, NULL, 0);
+	if (!res)
+		return res;
+
+	nand_release(mtd);
+
+out:
+	iounmap(host->io_base);
+	return res;
+}
+
+/*
+ * Remove a NAND device.
+ */
+static int socrates_nand_remove(struct platform_device *ofdev)
+{
+	struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev);
+	struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
+
+	nand_release(mtd);
+
+	iounmap(host->io_base);
+
+	return 0;
+}
+
+static const struct of_device_id socrates_nand_match[] =
+{
+	{
+		.compatible   = "abb,socrates-nand",
+	},
+	{},
+};
+
+MODULE_DEVICE_TABLE(of, socrates_nand_match);
+
+static struct platform_driver socrates_nand_driver = {
+	.driver = {
+		.name = "socrates_nand",
+		.of_match_table = socrates_nand_match,
+	},
+	.probe		= socrates_nand_probe,
+	.remove		= socrates_nand_remove,
+};
+
+module_platform_driver(socrates_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ilya Yanok");
+MODULE_DESCRIPTION("NAND driver for Socrates board");
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
new file mode 100644
index 0000000..1f0b7ee
--- /dev/null
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -0,0 +1,2138 @@
+/*
+ * Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
+ *
+ * Derived from:
+ *	https://github.com/yuq/sunxi-nfc-mtd
+ *	Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
+ *
+ *	https://github.com/hno/Allwinner-Info
+ *	Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
+ *
+ *	Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
+ *	Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/dma-mapping.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/reset.h>
+
+#define NFC_REG_CTL		0x0000
+#define NFC_REG_ST		0x0004
+#define NFC_REG_INT		0x0008
+#define NFC_REG_TIMING_CTL	0x000C
+#define NFC_REG_TIMING_CFG	0x0010
+#define NFC_REG_ADDR_LOW	0x0014
+#define NFC_REG_ADDR_HIGH	0x0018
+#define NFC_REG_SECTOR_NUM	0x001C
+#define NFC_REG_CNT		0x0020
+#define NFC_REG_CMD		0x0024
+#define NFC_REG_RCMD_SET	0x0028
+#define NFC_REG_WCMD_SET	0x002C
+#define NFC_REG_IO_DATA		0x0030
+#define NFC_REG_ECC_CTL		0x0034
+#define NFC_REG_ECC_ST		0x0038
+#define NFC_REG_DEBUG		0x003C
+#define NFC_REG_ECC_ERR_CNT(x)	((0x0040 + (x)) & ~0x3)
+#define NFC_REG_USER_DATA(x)	(0x0050 + ((x) * 4))
+#define NFC_REG_SPARE_AREA	0x00A0
+#define NFC_REG_PAT_ID		0x00A4
+#define NFC_RAM0_BASE		0x0400
+#define NFC_RAM1_BASE		0x0800
+
+/* define bit use in NFC_CTL */
+#define NFC_EN			BIT(0)
+#define NFC_RESET		BIT(1)
+#define NFC_BUS_WIDTH_MSK	BIT(2)
+#define NFC_BUS_WIDTH_8		(0 << 2)
+#define NFC_BUS_WIDTH_16	(1 << 2)
+#define NFC_RB_SEL_MSK		BIT(3)
+#define NFC_RB_SEL(x)		((x) << 3)
+#define NFC_CE_SEL_MSK		GENMASK(26, 24)
+#define NFC_CE_SEL(x)		((x) << 24)
+#define NFC_CE_CTL		BIT(6)
+#define NFC_PAGE_SHIFT_MSK	GENMASK(11, 8)
+#define NFC_PAGE_SHIFT(x)	(((x) < 10 ? 0 : (x) - 10) << 8)
+#define NFC_SAM			BIT(12)
+#define NFC_RAM_METHOD		BIT(14)
+#define NFC_DEBUG_CTL		BIT(31)
+
+/* define bit use in NFC_ST */
+#define NFC_RB_B2R		BIT(0)
+#define NFC_CMD_INT_FLAG	BIT(1)
+#define NFC_DMA_INT_FLAG	BIT(2)
+#define NFC_CMD_FIFO_STATUS	BIT(3)
+#define NFC_STA			BIT(4)
+#define NFC_NATCH_INT_FLAG	BIT(5)
+#define NFC_RB_STATE(x)		BIT(x + 8)
+
+/* define bit use in NFC_INT */
+#define NFC_B2R_INT_ENABLE	BIT(0)
+#define NFC_CMD_INT_ENABLE	BIT(1)
+#define NFC_DMA_INT_ENABLE	BIT(2)
+#define NFC_INT_MASK		(NFC_B2R_INT_ENABLE | \
+				 NFC_CMD_INT_ENABLE | \
+				 NFC_DMA_INT_ENABLE)
+
+/* define bit use in NFC_TIMING_CTL */
+#define NFC_TIMING_CTL_EDO	BIT(8)
+
+/* define NFC_TIMING_CFG register layout */
+#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD)		\
+	(((tWB) & 0x3) | (((tADL) & 0x3) << 2) |		\
+	(((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) |		\
+	(((tCAD) & 0x7) << 8))
+
+/* define bit use in NFC_CMD */
+#define NFC_CMD_LOW_BYTE_MSK	GENMASK(7, 0)
+#define NFC_CMD_HIGH_BYTE_MSK	GENMASK(15, 8)
+#define NFC_CMD(x)		(x)
+#define NFC_ADR_NUM_MSK		GENMASK(18, 16)
+#define NFC_ADR_NUM(x)		(((x) - 1) << 16)
+#define NFC_SEND_ADR		BIT(19)
+#define NFC_ACCESS_DIR		BIT(20)
+#define NFC_DATA_TRANS		BIT(21)
+#define NFC_SEND_CMD1		BIT(22)
+#define NFC_WAIT_FLAG		BIT(23)
+#define NFC_SEND_CMD2		BIT(24)
+#define NFC_SEQ			BIT(25)
+#define NFC_DATA_SWAP_METHOD	BIT(26)
+#define NFC_ROW_AUTO_INC	BIT(27)
+#define NFC_SEND_CMD3		BIT(28)
+#define NFC_SEND_CMD4		BIT(29)
+#define NFC_CMD_TYPE_MSK	GENMASK(31, 30)
+#define NFC_NORMAL_OP		(0 << 30)
+#define NFC_ECC_OP		(1 << 30)
+#define NFC_PAGE_OP		(2U << 30)
+
+/* define bit use in NFC_RCMD_SET */
+#define NFC_READ_CMD_MSK	GENMASK(7, 0)
+#define NFC_RND_READ_CMD0_MSK	GENMASK(15, 8)
+#define NFC_RND_READ_CMD1_MSK	GENMASK(23, 16)
+
+/* define bit use in NFC_WCMD_SET */
+#define NFC_PROGRAM_CMD_MSK	GENMASK(7, 0)
+#define NFC_RND_WRITE_CMD_MSK	GENMASK(15, 8)
+#define NFC_READ_CMD0_MSK	GENMASK(23, 16)
+#define NFC_READ_CMD1_MSK	GENMASK(31, 24)
+
+/* define bit use in NFC_ECC_CTL */
+#define NFC_ECC_EN		BIT(0)
+#define NFC_ECC_PIPELINE	BIT(3)
+#define NFC_ECC_EXCEPTION	BIT(4)
+#define NFC_ECC_BLOCK_SIZE_MSK	BIT(5)
+#define NFC_ECC_BLOCK_512	BIT(5)
+#define NFC_RANDOM_EN		BIT(9)
+#define NFC_RANDOM_DIRECTION	BIT(10)
+#define NFC_ECC_MODE_MSK	GENMASK(15, 12)
+#define NFC_ECC_MODE(x)		((x) << 12)
+#define NFC_RANDOM_SEED_MSK	GENMASK(30, 16)
+#define NFC_RANDOM_SEED(x)	((x) << 16)
+
+/* define bit use in NFC_ECC_ST */
+#define NFC_ECC_ERR(x)		BIT(x)
+#define NFC_ECC_ERR_MSK		GENMASK(15, 0)
+#define NFC_ECC_PAT_FOUND(x)	BIT(x + 16)
+#define NFC_ECC_ERR_CNT(b, x)	(((x) >> (((b) % 4) * 8)) & 0xff)
+
+#define NFC_DEFAULT_TIMEOUT_MS	1000
+
+#define NFC_SRAM_SIZE		1024
+
+#define NFC_MAX_CS		7
+
+/*
+ * Chip Select structure: stores information related to NAND Chip Select
+ *
+ * @cs:		the NAND CS id used to communicate with a NAND Chip
+ * @rb:		the Ready/Busy pin ID. -1 means no R/B pin connected to the
+ *		NFC
+ */
+struct sunxi_nand_chip_sel {
+	u8 cs;
+	s8 rb;
+};
+
+/*
+ * sunxi HW ECC infos: stores information related to HW ECC support
+ *
+ * @mode:	the sunxi ECC mode field deduced from ECC requirements
+ */
+struct sunxi_nand_hw_ecc {
+	int mode;
+};
+
+/*
+ * NAND chip structure: stores NAND chip device related information
+ *
+ * @node:		used to store NAND chips into a list
+ * @nand:		base NAND chip structure
+ * @mtd:		base MTD structure
+ * @clk_rate:		clk_rate required for this NAND chip
+ * @timing_cfg		TIMING_CFG register value for this NAND chip
+ * @selected:		current active CS
+ * @nsels:		number of CS lines required by the NAND chip
+ * @sels:		array of CS lines descriptions
+ */
+struct sunxi_nand_chip {
+	struct list_head node;
+	struct nand_chip nand;
+	unsigned long clk_rate;
+	u32 timing_cfg;
+	u32 timing_ctl;
+	int selected;
+	int addr_cycles;
+	u32 addr[2];
+	int cmd_cycles;
+	u8 cmd[2];
+	int nsels;
+	struct sunxi_nand_chip_sel sels[0];
+};
+
+static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
+{
+	return container_of(nand, struct sunxi_nand_chip, nand);
+}
+
+/*
+ * NAND Controller structure: stores sunxi NAND controller information
+ *
+ * @controller:		base controller structure
+ * @dev:		parent device (used to print error messages)
+ * @regs:		NAND controller registers
+ * @ahb_clk:		NAND Controller AHB clock
+ * @mod_clk:		NAND Controller mod clock
+ * @assigned_cs:	bitmask describing already assigned CS lines
+ * @clk_rate:		NAND controller current clock rate
+ * @chips:		a list containing all the NAND chips attached to
+ *			this NAND controller
+ * @complete:		a completion object used to wait for NAND
+ *			controller events
+ */
+struct sunxi_nfc {
+	struct nand_controller controller;
+	struct device *dev;
+	void __iomem *regs;
+	struct clk *ahb_clk;
+	struct clk *mod_clk;
+	struct reset_control *reset;
+	unsigned long assigned_cs;
+	unsigned long clk_rate;
+	struct list_head chips;
+	struct completion complete;
+	struct dma_chan *dmac;
+};
+
+static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_controller *ctrl)
+{
+	return container_of(ctrl, struct sunxi_nfc, controller);
+}
+
+static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
+{
+	struct sunxi_nfc *nfc = dev_id;
+	u32 st = readl(nfc->regs + NFC_REG_ST);
+	u32 ien = readl(nfc->regs + NFC_REG_INT);
+
+	if (!(ien & st))
+		return IRQ_NONE;
+
+	if ((ien & st) == ien)
+		complete(&nfc->complete);
+
+	writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
+	writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
+
+	return IRQ_HANDLED;
+}
+
+static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events,
+				 bool use_polling, unsigned int timeout_ms)
+{
+	int ret;
+
+	if (events & ~NFC_INT_MASK)
+		return -EINVAL;
+
+	if (!timeout_ms)
+		timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
+
+	if (!use_polling) {
+		init_completion(&nfc->complete);
+
+		writel(events, nfc->regs + NFC_REG_INT);
+
+		ret = wait_for_completion_timeout(&nfc->complete,
+						msecs_to_jiffies(timeout_ms));
+		if (!ret)
+			ret = -ETIMEDOUT;
+		else
+			ret = 0;
+
+		writel(0, nfc->regs + NFC_REG_INT);
+	} else {
+		u32 status;
+
+		ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
+					 (status & events) == events, 1,
+					 timeout_ms * 1000);
+	}
+
+	writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
+
+	if (ret)
+		dev_err(nfc->dev, "wait interrupt timedout\n");
+
+	return ret;
+}
+
+static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
+{
+	u32 status;
+	int ret;
+
+	ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status,
+				 !(status & NFC_CMD_FIFO_STATUS), 1,
+				 NFC_DEFAULT_TIMEOUT_MS * 1000);
+	if (ret)
+		dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
+
+	return ret;
+}
+
+static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
+{
+	u32 ctl;
+	int ret;
+
+	writel(0, nfc->regs + NFC_REG_ECC_CTL);
+	writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
+
+	ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl,
+				 !(ctl & NFC_RESET), 1,
+				 NFC_DEFAULT_TIMEOUT_MS * 1000);
+	if (ret)
+		dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
+
+	return ret;
+}
+
+static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf,
+				    int chunksize, int nchunks,
+				    enum dma_data_direction ddir,
+				    struct scatterlist *sg)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct dma_async_tx_descriptor *dmad;
+	enum dma_transfer_direction tdir;
+	dma_cookie_t dmat;
+	int ret;
+
+	if (ddir == DMA_FROM_DEVICE)
+		tdir = DMA_DEV_TO_MEM;
+	else
+		tdir = DMA_MEM_TO_DEV;
+
+	sg_init_one(sg, buf, nchunks * chunksize);
+	ret = dma_map_sg(nfc->dev, sg, 1, ddir);
+	if (!ret)
+		return -ENOMEM;
+
+	dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK);
+	if (!dmad) {
+		ret = -EINVAL;
+		goto err_unmap_buf;
+	}
+
+	writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD,
+	       nfc->regs + NFC_REG_CTL);
+	writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM);
+	writel(chunksize, nfc->regs + NFC_REG_CNT);
+	dmat = dmaengine_submit(dmad);
+
+	ret = dma_submit_error(dmat);
+	if (ret)
+		goto err_clr_dma_flag;
+
+	return 0;
+
+err_clr_dma_flag:
+	writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
+	       nfc->regs + NFC_REG_CTL);
+
+err_unmap_buf:
+	dma_unmap_sg(nfc->dev, sg, 1, ddir);
+	return ret;
+}
+
+static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd,
+				     enum dma_data_direction ddir,
+				     struct scatterlist *sg)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	dma_unmap_sg(nfc->dev, sg, 1, ddir);
+	writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD,
+	       nfc->regs + NFC_REG_CTL);
+}
+
+static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	u32 mask;
+
+	if (sunxi_nand->selected < 0)
+		return 0;
+
+	if (sunxi_nand->sels[sunxi_nand->selected].rb < 0) {
+		dev_err(nfc->dev, "cannot check R/B NAND status!\n");
+		return 0;
+	}
+
+	mask = NFC_RB_STATE(sunxi_nand->sels[sunxi_nand->selected].rb);
+
+	return !!(readl(nfc->regs + NFC_REG_ST) & mask);
+}
+
+static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	struct sunxi_nand_chip_sel *sel;
+	u32 ctl;
+
+	if (chip > 0 && chip >= sunxi_nand->nsels)
+		return;
+
+	if (chip == sunxi_nand->selected)
+		return;
+
+	ctl = readl(nfc->regs + NFC_REG_CTL) &
+	      ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN);
+
+	if (chip >= 0) {
+		sel = &sunxi_nand->sels[chip];
+
+		ctl |= NFC_CE_SEL(sel->cs) | NFC_EN |
+		       NFC_PAGE_SHIFT(nand->page_shift);
+		if (sel->rb < 0) {
+			nand->dev_ready = NULL;
+		} else {
+			nand->dev_ready = sunxi_nfc_dev_ready;
+			ctl |= NFC_RB_SEL(sel->rb);
+		}
+
+		writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
+
+		if (nfc->clk_rate != sunxi_nand->clk_rate) {
+			clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
+			nfc->clk_rate = sunxi_nand->clk_rate;
+		}
+	}
+
+	writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL);
+	writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG);
+	writel(ctl, nfc->regs + NFC_REG_CTL);
+
+	sunxi_nand->selected = chip;
+}
+
+static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	int ret;
+	int cnt;
+	int offs = 0;
+	u32 tmp;
+
+	while (len > offs) {
+		bool poll = false;
+
+		cnt = min(len - offs, NFC_SRAM_SIZE);
+
+		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+		if (ret)
+			break;
+
+		writel(cnt, nfc->regs + NFC_REG_CNT);
+		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
+		writel(tmp, nfc->regs + NFC_REG_CMD);
+
+		/* Arbitrary limit for polling mode */
+		if (cnt < 64)
+			poll = true;
+
+		ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0);
+		if (ret)
+			break;
+
+		if (buf)
+			memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
+				      cnt);
+		offs += cnt;
+	}
+}
+
+static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				int len)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	int ret;
+	int cnt;
+	int offs = 0;
+	u32 tmp;
+
+	while (len > offs) {
+		bool poll = false;
+
+		cnt = min(len - offs, NFC_SRAM_SIZE);
+
+		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+		if (ret)
+			break;
+
+		writel(cnt, nfc->regs + NFC_REG_CNT);
+		memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
+		tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
+		      NFC_ACCESS_DIR;
+		writel(tmp, nfc->regs + NFC_REG_CMD);
+
+		/* Arbitrary limit for polling mode */
+		if (cnt < 64)
+			poll = true;
+
+		ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0);
+		if (ret)
+			break;
+
+		offs += cnt;
+	}
+}
+
+static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
+{
+	uint8_t ret = 0;
+
+	sunxi_nfc_read_buf(mtd, &ret, 1);
+
+	return ret;
+}
+
+static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
+			       unsigned int ctrl)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	int ret;
+
+	if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) &&
+	    !(ctrl & (NAND_CLE | NAND_ALE))) {
+		u32 cmd = 0;
+
+		if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles)
+			return;
+
+		if (sunxi_nand->cmd_cycles--)
+			cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0];
+
+		if (sunxi_nand->cmd_cycles--) {
+			cmd |= NFC_SEND_CMD2;
+			writel(sunxi_nand->cmd[1],
+			       nfc->regs + NFC_REG_RCMD_SET);
+		}
+
+		sunxi_nand->cmd_cycles = 0;
+
+		if (sunxi_nand->addr_cycles) {
+			cmd |= NFC_SEND_ADR |
+			       NFC_ADR_NUM(sunxi_nand->addr_cycles);
+			writel(sunxi_nand->addr[0],
+			       nfc->regs + NFC_REG_ADDR_LOW);
+		}
+
+		if (sunxi_nand->addr_cycles > 4)
+			writel(sunxi_nand->addr[1],
+			       nfc->regs + NFC_REG_ADDR_HIGH);
+
+		ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+		if (ret)
+			return;
+
+		writel(cmd, nfc->regs + NFC_REG_CMD);
+		sunxi_nand->addr[0] = 0;
+		sunxi_nand->addr[1] = 0;
+		sunxi_nand->addr_cycles = 0;
+		sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0);
+	}
+
+	if (ctrl & NAND_CLE) {
+		sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat;
+	} else if (ctrl & NAND_ALE) {
+		sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |=
+				dat << ((sunxi_nand->addr_cycles % 4) * 8);
+		sunxi_nand->addr_cycles++;
+	}
+}
+
+/* These seed values have been extracted from Allwinner's BSP */
+static const u16 sunxi_nfc_randomizer_page_seeds[] = {
+	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
+	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
+	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
+	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
+	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
+	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
+	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
+	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
+	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
+	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
+	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
+	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
+	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
+	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
+	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
+	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
+};
+
+/*
+ * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds
+ * have been generated using
+ * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what
+ * the randomizer engine does internally before de/scrambling OOB data.
+ *
+ * Those tables are statically defined to avoid calculating randomizer state
+ * at runtime.
+ */
+static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = {
+	0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64,
+	0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409,
+	0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617,
+	0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d,
+	0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91,
+	0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d,
+	0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab,
+	0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8,
+	0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8,
+	0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b,
+	0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5,
+	0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a,
+	0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891,
+	0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36,
+	0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd,
+	0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0,
+};
+
+static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = {
+	0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6,
+	0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982,
+	0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9,
+	0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07,
+	0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e,
+	0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2,
+	0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c,
+	0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f,
+	0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc,
+	0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e,
+	0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8,
+	0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68,
+	0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d,
+	0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179,
+	0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601,
+	0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd,
+};
+
+static u16 sunxi_nfc_randomizer_step(u16 state, int count)
+{
+	state &= 0x7fff;
+
+	/*
+	 * This loop is just a simple implementation of a Fibonacci LFSR using
+	 * the x16 + x15 + 1 polynomial.
+	 */
+	while (count--)
+		state = ((state >> 1) |
+			 (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff;
+
+	return state;
+}
+
+static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc)
+{
+	const u16 *seeds = sunxi_nfc_randomizer_page_seeds;
+	int mod = mtd_div_by_ws(mtd->erasesize, mtd);
+
+	if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds))
+		mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds);
+
+	if (ecc) {
+		if (mtd->ecc_step_size == 512)
+			seeds = sunxi_nfc_randomizer_ecc512_seeds;
+		else
+			seeds = sunxi_nfc_randomizer_ecc1024_seeds;
+	}
+
+	return seeds[page % mod];
+}
+
+static void sunxi_nfc_randomizer_config(struct mtd_info *mtd,
+					int page, bool ecc)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
+	u16 state;
+
+	if (!(nand->options & NAND_NEED_SCRAMBLING))
+		return;
+
+	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
+	state = sunxi_nfc_randomizer_state(mtd, page, ecc);
+	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK;
+	writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	if (!(nand->options & NAND_NEED_SCRAMBLING))
+		return;
+
+	writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN,
+	       nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	if (!(nand->options & NAND_NEED_SCRAMBLING))
+		return;
+
+	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN,
+	       nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm)
+{
+	u16 state = sunxi_nfc_randomizer_state(mtd, page, true);
+
+	bbm[0] ^= state;
+	bbm[1] ^= sunxi_nfc_randomizer_step(state, 8);
+}
+
+static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd,
+					   const uint8_t *buf, int len,
+					   bool ecc, int page)
+{
+	sunxi_nfc_randomizer_config(mtd, page, ecc);
+	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_write_buf(mtd, buf, len);
+	sunxi_nfc_randomizer_disable(mtd);
+}
+
+static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf,
+					  int len, bool ecc, int page)
+{
+	sunxi_nfc_randomizer_config(mtd, page, ecc);
+	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_read_buf(mtd, buf, len);
+	sunxi_nfc_randomizer_disable(mtd);
+}
+
+static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
+	u32 ecc_ctl;
+
+	ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
+	ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
+		     NFC_ECC_BLOCK_SIZE_MSK);
+	ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION |
+		   NFC_ECC_PIPELINE;
+
+	if (nand->ecc.size == 512)
+		ecc_ctl |= NFC_ECC_BLOCK_512;
+
+	writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
+	       nfc->regs + NFC_REG_ECC_CTL);
+}
+
+static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf)
+{
+	buf[0] = user_data;
+	buf[1] = user_data >> 8;
+	buf[2] = user_data >> 16;
+	buf[3] = user_data >> 24;
+}
+
+static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf)
+{
+	return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
+}
+
+static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob,
+						int step, bool bbm, int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+
+	sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)),
+				   oob);
+
+	/* De-randomize the Bad Block Marker. */
+	if (bbm && (nand->options & NAND_NEED_SCRAMBLING))
+		sunxi_nfc_randomize_bbm(mtd, page, oob);
+}
+
+static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd,
+						const u8 *oob, int step,
+						bool bbm, int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	u8 user_data[4];
+
+	/* Randomize the Bad Block Marker. */
+	if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) {
+		memcpy(user_data, oob, sizeof(user_data));
+		sunxi_nfc_randomize_bbm(mtd, page, user_data);
+		oob = user_data;
+	}
+
+	writel(sunxi_nfc_buf_to_user_data(oob),
+	       nfc->regs + NFC_REG_USER_DATA(step));
+}
+
+static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd,
+					  unsigned int *max_bitflips, int ret)
+{
+	if (ret < 0) {
+		mtd->ecc_stats.failed++;
+	} else {
+		mtd->ecc_stats.corrected += ret;
+		*max_bitflips = max_t(unsigned int, *max_bitflips, ret);
+	}
+}
+
+static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob,
+				    int step, u32 status, bool *erased)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	u32 tmp;
+
+	*erased = false;
+
+	if (status & NFC_ECC_ERR(step))
+		return -EBADMSG;
+
+	if (status & NFC_ECC_PAT_FOUND(step)) {
+		u8 pattern;
+
+		if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) {
+			pattern = 0x0;
+		} else {
+			pattern = 0xff;
+			*erased = true;
+		}
+
+		if (data)
+			memset(data, pattern, ecc->size);
+
+		if (oob)
+			memset(oob, pattern, ecc->bytes + 4);
+
+		return 0;
+	}
+
+	tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step));
+
+	return NFC_ECC_ERR_CNT(step, tmp);
+}
+
+static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd,
+				       u8 *data, int data_off,
+				       u8 *oob, int oob_off,
+				       int *cur_off,
+				       unsigned int *max_bitflips,
+				       bool bbm, bool oob_required, int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int raw_mode = 0;
+	bool erased;
+	int ret;
+
+	if (*cur_off != data_off)
+		nand_change_read_column_op(nand, data_off, NULL, 0, false);
+
+	sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page);
+
+	if (data_off + ecc->size != oob_off)
+		nand_change_read_column_op(nand, oob_off, NULL, 0, false);
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	sunxi_nfc_randomizer_enable(mtd);
+	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP,
+	       nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
+	sunxi_nfc_randomizer_disable(mtd);
+	if (ret)
+		return ret;
+
+	*cur_off = oob_off + ecc->bytes + 4;
+
+	ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0,
+				       readl(nfc->regs + NFC_REG_ECC_ST),
+				       &erased);
+	if (erased)
+		return 1;
+
+	if (ret < 0) {
+		/*
+		 * Re-read the data with the randomizer disabled to identify
+		 * bitflips in erased pages.
+		 */
+		if (nand->options & NAND_NEED_SCRAMBLING)
+			nand_change_read_column_op(nand, data_off, data,
+						   ecc->size, false);
+		else
+			memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE,
+				      ecc->size);
+
+		nand_change_read_column_op(nand, oob_off, oob, ecc->bytes + 4,
+					   false);
+
+		ret = nand_check_erased_ecc_chunk(data,	ecc->size,
+						  oob, ecc->bytes + 4,
+						  NULL, 0, ecc->strength);
+		if (ret >= 0)
+			raw_mode = 1;
+	} else {
+		memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size);
+
+		if (oob_required) {
+			nand_change_read_column_op(nand, oob_off, NULL, 0,
+						   false);
+			sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4,
+						      true, page);
+
+			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0,
+							    bbm, page);
+		}
+	}
+
+	sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret);
+
+	return raw_mode;
+}
+
+static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd,
+					    u8 *oob, int *cur_off,
+					    bool randomize, int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int offset = ((ecc->bytes + 4) * ecc->steps);
+	int len = mtd->oobsize - offset;
+
+	if (len <= 0)
+		return;
+
+	if (!cur_off || *cur_off != offset)
+		nand_change_read_column_op(nand, mtd->writesize, NULL, 0,
+					   false);
+
+	if (!randomize)
+		sunxi_nfc_read_buf(mtd, oob + offset, len);
+	else
+		sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len,
+					      false, page);
+
+	if (cur_off)
+		*cur_off = mtd->oobsize + mtd->writesize;
+}
+
+static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf,
+					    int oob_required, int page,
+					    int nchunks)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	bool randomized = nand->options & NAND_NEED_SCRAMBLING;
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	unsigned int max_bitflips = 0;
+	int ret, i, raw_mode = 0;
+	struct scatterlist sg;
+	u32 status;
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks,
+				       DMA_FROM_DEVICE, &sg);
+	if (ret)
+		return ret;
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+	sunxi_nfc_randomizer_config(mtd, page, false);
+	sunxi_nfc_randomizer_enable(mtd);
+
+	writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
+	       NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET);
+
+	dma_async_issue_pending(nfc->dmac);
+
+	writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS,
+	       nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
+	if (ret)
+		dmaengine_terminate_all(nfc->dmac);
+
+	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg);
+
+	if (ret)
+		return ret;
+
+	status = readl(nfc->regs + NFC_REG_ECC_ST);
+
+	for (i = 0; i < nchunks; i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		u8 *data = buf + data_off;
+		u8 *oob = nand->oob_poi + oob_off;
+		bool erased;
+
+		ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL,
+					       oob_required ? oob : NULL,
+					       i, status, &erased);
+
+		/* ECC errors are handled in the second loop. */
+		if (ret < 0)
+			continue;
+
+		if (oob_required && !erased) {
+			/* TODO: use DMA to retrieve OOB */
+			nand_change_read_column_op(nand,
+						   mtd->writesize + oob_off,
+						   oob, ecc->bytes + 4, false);
+
+			sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i,
+							    !i, page);
+		}
+
+		if (erased)
+			raw_mode = 1;
+
+		sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+	}
+
+	if (status & NFC_ECC_ERR_MSK) {
+		for (i = 0; i < nchunks; i++) {
+			int data_off = i * ecc->size;
+			int oob_off = i * (ecc->bytes + 4);
+			u8 *data = buf + data_off;
+			u8 *oob = nand->oob_poi + oob_off;
+
+			if (!(status & NFC_ECC_ERR(i)))
+				continue;
+
+			/*
+			 * Re-read the data with the randomizer disabled to
+			 * identify bitflips in erased pages.
+			 * TODO: use DMA to read page in raw mode
+			 */
+			if (randomized)
+				nand_change_read_column_op(nand, data_off,
+							   data, ecc->size,
+							   false);
+
+			/* TODO: use DMA to retrieve OOB */
+			nand_change_read_column_op(nand,
+						   mtd->writesize + oob_off,
+						   oob, ecc->bytes + 4, false);
+
+			ret = nand_check_erased_ecc_chunk(data,	ecc->size,
+							  oob, ecc->bytes + 4,
+							  NULL, 0,
+							  ecc->strength);
+			if (ret >= 0)
+				raw_mode = 1;
+
+			sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret);
+		}
+	}
+
+	if (oob_required)
+		sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi,
+						NULL, !raw_mode,
+						page);
+
+	return max_bitflips;
+}
+
+static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd,
+					const u8 *data, int data_off,
+					const u8 *oob, int oob_off,
+					int *cur_off, bool bbm,
+					int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int ret;
+
+	if (data_off != *cur_off)
+		nand_change_write_column_op(nand, data_off, NULL, 0, false);
+
+	sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page);
+
+	if (data_off + ecc->size != oob_off)
+		nand_change_write_column_op(nand, oob_off, NULL, 0, false);
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	sunxi_nfc_randomizer_enable(mtd);
+	sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page);
+
+	writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
+	       NFC_ACCESS_DIR | NFC_ECC_OP,
+	       nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
+	sunxi_nfc_randomizer_disable(mtd);
+	if (ret)
+		return ret;
+
+	*cur_off = oob_off + ecc->bytes + 4;
+
+	return 0;
+}
+
+static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd,
+					     u8 *oob, int *cur_off,
+					     int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	int offset = ((ecc->bytes + 4) * ecc->steps);
+	int len = mtd->oobsize - offset;
+
+	if (len <= 0)
+		return;
+
+	if (!cur_off || *cur_off != offset)
+		nand_change_write_column_op(nand, offset + mtd->writesize,
+					    NULL, 0, false);
+
+	sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page);
+
+	if (cur_off)
+		*cur_off = mtd->oobsize + mtd->writesize;
+}
+
+static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
+				      struct nand_chip *chip, uint8_t *buf,
+				      int oob_required, int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	unsigned int max_bitflips = 0;
+	int ret, i, cur_off = 0;
+	bool raw_mode = false;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		u8 *data = buf + data_off;
+		u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob,
+						  oob_off + mtd->writesize,
+						  &cur_off, &max_bitflips,
+						  !i, oob_required, page);
+		if (ret < 0)
+			return ret;
+		else if (ret)
+			raw_mode = true;
+	}
+
+	if (oob_required)
+		sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off,
+						!raw_mode, page);
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return max_bitflips;
+}
+
+static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd,
+					  struct nand_chip *chip, u8 *buf,
+					  int oob_required, int page)
+{
+	int ret;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page,
+					       chip->ecc.steps);
+	if (ret >= 0)
+		return ret;
+
+	/* Fallback to PIO mode */
+	return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page);
+}
+
+static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd,
+					 struct nand_chip *chip,
+					 u32 data_offs, u32 readlen,
+					 u8 *bufpoi, int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i, cur_off = 0;
+	unsigned int max_bitflips = 0;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = data_offs / ecc->size;
+	     i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		u8 *data = bufpoi + data_off;
+		u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off,
+						  oob,
+						  oob_off + mtd->writesize,
+						  &cur_off, &max_bitflips, !i,
+						  false, page);
+		if (ret < 0)
+			return ret;
+	}
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return max_bitflips;
+}
+
+static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd,
+					     struct nand_chip *chip,
+					     u32 data_offs, u32 readlen,
+					     u8 *buf, int page)
+{
+	int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
+	int ret;
+
+	nand_read_page_op(chip, page, 0, NULL, 0);
+
+	ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks);
+	if (ret >= 0)
+		return ret;
+
+	/* Fallback to PIO mode */
+	return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen,
+					     buf, page);
+}
+
+static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
+				       struct nand_chip *chip,
+				       const uint8_t *buf, int oob_required,
+				       int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i, cur_off = 0;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = 0; i < ecc->steps; i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		const u8 *data = buf + data_off;
+		const u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+						   oob_off + mtd->writesize,
+						   &cur_off, !i, page);
+		if (ret)
+			return ret;
+	}
+
+	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
+		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+						 &cur_off, page);
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd,
+					  struct nand_chip *chip,
+					  u32 data_offs, u32 data_len,
+					  const u8 *buf, int oob_required,
+					  int page)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+	int ret, i, cur_off = 0;
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+
+	for (i = data_offs / ecc->size;
+	     i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) {
+		int data_off = i * ecc->size;
+		int oob_off = i * (ecc->bytes + 4);
+		const u8 *data = buf + data_off;
+		const u8 *oob = chip->oob_poi + oob_off;
+
+		ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob,
+						   oob_off + mtd->writesize,
+						   &cur_off, !i, page);
+		if (ret)
+			return ret;
+	}
+
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd,
+					   struct nand_chip *chip,
+					   const u8 *buf,
+					   int oob_required,
+					   int page)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	struct scatterlist sg;
+	int ret, i;
+
+	ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
+	if (ret)
+		return ret;
+
+	ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps,
+				       DMA_TO_DEVICE, &sg);
+	if (ret)
+		goto pio_fallback;
+
+	for (i = 0; i < ecc->steps; i++) {
+		const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4));
+
+		sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page);
+	}
+
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+	sunxi_nfc_hw_ecc_enable(mtd);
+	sunxi_nfc_randomizer_config(mtd, page, false);
+	sunxi_nfc_randomizer_enable(mtd);
+
+	writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
+	       nfc->regs + NFC_REG_RCMD_SET);
+
+	dma_async_issue_pending(nfc->dmac);
+
+	writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD |
+	       NFC_DATA_TRANS | NFC_ACCESS_DIR,
+	       nfc->regs + NFC_REG_CMD);
+
+	ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
+	if (ret)
+		dmaengine_terminate_all(nfc->dmac);
+
+	sunxi_nfc_randomizer_disable(mtd);
+	sunxi_nfc_hw_ecc_disable(mtd);
+
+	sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg);
+
+	if (ret)
+		return ret;
+
+	if (oob_required || (chip->options & NAND_NEED_SCRAMBLING))
+		/* TODO: use DMA to transfer extra OOB bytes ? */
+		sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi,
+						 NULL, page);
+
+	return nand_prog_page_end_op(chip);
+
+pio_fallback:
+	return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page);
+}
+
+static int sunxi_nfc_hw_ecc_read_oob(struct mtd_info *mtd,
+				     struct nand_chip *chip,
+				     int page)
+{
+	chip->pagebuf = -1;
+
+	return chip->ecc.read_page(mtd, chip, chip->data_buf, 1, page);
+}
+
+static int sunxi_nfc_hw_ecc_write_oob(struct mtd_info *mtd,
+				      struct nand_chip *chip,
+				      int page)
+{
+	int ret;
+
+	chip->pagebuf = -1;
+
+	memset(chip->data_buf, 0xff, mtd->writesize);
+	ret = chip->ecc.write_page(mtd, chip, chip->data_buf, 1, page);
+	if (ret)
+		return ret;
+
+	/* Send command to program the OOB data */
+	return nand_prog_page_end_op(chip);
+}
+
+static const s32 tWB_lut[] = {6, 12, 16, 20};
+static const s32 tRHW_lut[] = {4, 8, 12, 20};
+
+static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration,
+		u32 clk_period)
+{
+	u32 clk_cycles = DIV_ROUND_UP(duration, clk_period);
+	int i;
+
+	for (i = 0; i < lut_size; i++) {
+		if (clk_cycles <= lut[i])
+			return i;
+	}
+
+	/* Doesn't fit */
+	return -EINVAL;
+}
+
+#define sunxi_nand_lookup_timing(l, p, c) \
+			_sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c)
+
+static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *chip = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller);
+	const struct nand_sdr_timings *timings;
+	u32 min_clk_period = 0;
+	s32 tWB, tADL, tWHR, tRHW, tCAD;
+	long real_clk_rate;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return -ENOTSUPP;
+
+	/* T1 <=> tCLS */
+	if (timings->tCLS_min > min_clk_period)
+		min_clk_period = timings->tCLS_min;
+
+	/* T2 <=> tCLH */
+	if (timings->tCLH_min > min_clk_period)
+		min_clk_period = timings->tCLH_min;
+
+	/* T3 <=> tCS */
+	if (timings->tCS_min > min_clk_period)
+		min_clk_period = timings->tCS_min;
+
+	/* T4 <=> tCH */
+	if (timings->tCH_min > min_clk_period)
+		min_clk_period = timings->tCH_min;
+
+	/* T5 <=> tWP */
+	if (timings->tWP_min > min_clk_period)
+		min_clk_period = timings->tWP_min;
+
+	/* T6 <=> tWH */
+	if (timings->tWH_min > min_clk_period)
+		min_clk_period = timings->tWH_min;
+
+	/* T7 <=> tALS */
+	if (timings->tALS_min > min_clk_period)
+		min_clk_period = timings->tALS_min;
+
+	/* T8 <=> tDS */
+	if (timings->tDS_min > min_clk_period)
+		min_clk_period = timings->tDS_min;
+
+	/* T9 <=> tDH */
+	if (timings->tDH_min > min_clk_period)
+		min_clk_period = timings->tDH_min;
+
+	/* T10 <=> tRR */
+	if (timings->tRR_min > (min_clk_period * 3))
+		min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
+
+	/* T11 <=> tALH */
+	if (timings->tALH_min > min_clk_period)
+		min_clk_period = timings->tALH_min;
+
+	/* T12 <=> tRP */
+	if (timings->tRP_min > min_clk_period)
+		min_clk_period = timings->tRP_min;
+
+	/* T13 <=> tREH */
+	if (timings->tREH_min > min_clk_period)
+		min_clk_period = timings->tREH_min;
+
+	/* T14 <=> tRC */
+	if (timings->tRC_min > (min_clk_period * 2))
+		min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
+
+	/* T15 <=> tWC */
+	if (timings->tWC_min > (min_clk_period * 2))
+		min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
+
+	/* T16 - T19 + tCAD */
+	if (timings->tWB_max > (min_clk_period * 20))
+		min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20);
+
+	if (timings->tADL_min > (min_clk_period * 32))
+		min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32);
+
+	if (timings->tWHR_min > (min_clk_period * 32))
+		min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32);
+
+	if (timings->tRHW_min > (min_clk_period * 20))
+		min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20);
+
+	tWB  = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max,
+					min_clk_period);
+	if (tWB < 0) {
+		dev_err(nfc->dev, "unsupported tWB\n");
+		return tWB;
+	}
+
+	tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3;
+	if (tADL > 3) {
+		dev_err(nfc->dev, "unsupported tADL\n");
+		return -EINVAL;
+	}
+
+	tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3;
+	if (tWHR > 3) {
+		dev_err(nfc->dev, "unsupported tWHR\n");
+		return -EINVAL;
+	}
+
+	tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min,
+					min_clk_period);
+	if (tRHW < 0) {
+		dev_err(nfc->dev, "unsupported tRHW\n");
+		return tRHW;
+	}
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	/*
+	 * TODO: according to ONFI specs this value only applies for DDR NAND,
+	 * but Allwinner seems to set this to 0x7. Mimic them for now.
+	 */
+	tCAD = 0x7;
+
+	/* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */
+	chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD);
+
+	/* Convert min_clk_period from picoseconds to nanoseconds */
+	min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
+
+	/*
+	 * Unlike what is stated in Allwinner datasheet, the clk_rate should
+	 * be set to (1 / min_clk_period), and not (2 / min_clk_period).
+	 * This new formula was verified with a scope and validated by
+	 * Allwinner engineers.
+	 */
+	chip->clk_rate = NSEC_PER_SEC / min_clk_period;
+	real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate);
+	if (real_clk_rate <= 0) {
+		dev_err(nfc->dev, "Unable to round clk %lu\n", chip->clk_rate);
+		return -EINVAL;
+	}
+
+	/*
+	 * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data
+	 * output cycle timings shall be used if the host drives tRC less than
+	 * 30 ns.
+	 */
+	min_clk_period = NSEC_PER_SEC / real_clk_rate;
+	chip->timing_ctl = ((min_clk_period * 2) < 30) ?
+			   NFC_TIMING_CTL_EDO : 0;
+
+	return 0;
+}
+
+static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+				    struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+
+	if (section >= ecc->steps)
+		return -ERANGE;
+
+	oobregion->offset = section * (ecc->bytes + 4) + 4;
+	oobregion->length = ecc->bytes;
+
+	return 0;
+}
+
+static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section,
+				     struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+
+	if (section > ecc->steps)
+		return -ERANGE;
+
+	/*
+	 * The first 2 bytes are used for BB markers, hence we
+	 * only have 2 bytes available in the first user data
+	 * section.
+	 */
+	if (!section && ecc->mode == NAND_ECC_HW) {
+		oobregion->offset = 2;
+		oobregion->length = 2;
+
+		return 0;
+	}
+
+	oobregion->offset = section * (ecc->bytes + 4);
+
+	if (section < ecc->steps)
+		oobregion->length = 4;
+	else
+		oobregion->offset = mtd->oobsize - oobregion->offset;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
+	.ecc = sunxi_nand_ooblayout_ecc,
+	.free = sunxi_nand_ooblayout_free,
+};
+
+static void sunxi_nand_hw_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
+{
+	kfree(ecc->priv);
+}
+
+static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
+				       struct nand_ecc_ctrl *ecc,
+				       struct device_node *np)
+{
+	static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
+	struct nand_chip *nand = mtd_to_nand(mtd);
+	struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
+	struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
+	struct sunxi_nand_hw_ecc *data;
+	int nsectors;
+	int ret;
+	int i;
+
+	if (ecc->options & NAND_ECC_MAXIMIZE) {
+		int bytes;
+
+		ecc->size = 1024;
+		nsectors = mtd->writesize / ecc->size;
+
+		/* Reserve 2 bytes for the BBM */
+		bytes = (mtd->oobsize - 2) / nsectors;
+
+		/* 4 non-ECC bytes are added before each ECC bytes section */
+		bytes -= 4;
+
+		/* and bytes has to be even. */
+		if (bytes % 2)
+			bytes--;
+
+		ecc->strength = bytes * 8 / fls(8 * ecc->size);
+
+		for (i = 0; i < ARRAY_SIZE(strengths); i++) {
+			if (strengths[i] > ecc->strength)
+				break;
+		}
+
+		if (!i)
+			ecc->strength = 0;
+		else
+			ecc->strength = strengths[i - 1];
+	}
+
+	if (ecc->size != 512 && ecc->size != 1024)
+		return -EINVAL;
+
+	data = kzalloc(sizeof(*data), GFP_KERNEL);
+	if (!data)
+		return -ENOMEM;
+
+	/* Prefer 1k ECC chunk over 512 ones */
+	if (ecc->size == 512 && mtd->writesize > 512) {
+		ecc->size = 1024;
+		ecc->strength *= 2;
+	}
+
+	/* Add ECC info retrieval from DT */
+	for (i = 0; i < ARRAY_SIZE(strengths); i++) {
+		if (ecc->strength <= strengths[i]) {
+			/*
+			 * Update ecc->strength value with the actual strength
+			 * that will be used by the ECC engine.
+			 */
+			ecc->strength = strengths[i];
+			break;
+		}
+	}
+
+	if (i >= ARRAY_SIZE(strengths)) {
+		dev_err(nfc->dev, "unsupported strength\n");
+		ret = -ENOTSUPP;
+		goto err;
+	}
+
+	data->mode = i;
+
+	/* HW ECC always request ECC bytes for 1024 bytes blocks */
+	ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
+
+	/* HW ECC always work with even numbers of ECC bytes */
+	ecc->bytes = ALIGN(ecc->bytes, 2);
+
+	nsectors = mtd->writesize / ecc->size;
+
+	if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
+		ret = -EINVAL;
+		goto err;
+	}
+
+	ecc->read_oob = sunxi_nfc_hw_ecc_read_oob;
+	ecc->write_oob = sunxi_nfc_hw_ecc_write_oob;
+	mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops);
+	ecc->priv = data;
+
+	if (nfc->dmac) {
+		ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
+		ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
+		ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma;
+		nand->options |= NAND_USE_BOUNCE_BUFFER;
+	} else {
+		ecc->read_page = sunxi_nfc_hw_ecc_read_page;
+		ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage;
+		ecc->write_page = sunxi_nfc_hw_ecc_write_page;
+	}
+
+	/* TODO: support DMA for raw accesses and subpage write */
+	ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage;
+	ecc->read_oob_raw = nand_read_oob_std;
+	ecc->write_oob_raw = nand_write_oob_std;
+
+	return 0;
+
+err:
+	kfree(data);
+
+	return ret;
+}
+
+static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
+{
+	switch (ecc->mode) {
+	case NAND_ECC_HW:
+		sunxi_nand_hw_ecc_ctrl_cleanup(ecc);
+		break;
+	case NAND_ECC_NONE:
+	default:
+		break;
+	}
+}
+
+static int sunxi_nand_attach_chip(struct nand_chip *nand)
+{
+	struct mtd_info *mtd = nand_to_mtd(nand);
+	struct nand_ecc_ctrl *ecc = &nand->ecc;
+	struct device_node *np = nand_get_flash_node(nand);
+	int ret;
+
+	if (nand->bbt_options & NAND_BBT_USE_FLASH)
+		nand->bbt_options |= NAND_BBT_NO_OOB;
+
+	if (nand->options & NAND_NEED_SCRAMBLING)
+		nand->options |= NAND_NO_SUBPAGE_WRITE;
+
+	nand->options |= NAND_SUBPAGE_READ;
+
+	if (!ecc->size) {
+		ecc->size = nand->ecc_step_ds;
+		ecc->strength = nand->ecc_strength_ds;
+	}
+
+	if (!ecc->size || !ecc->strength)
+		return -EINVAL;
+
+	switch (ecc->mode) {
+	case NAND_ECC_HW:
+		ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
+		if (ret)
+			return ret;
+		break;
+	case NAND_ECC_NONE:
+	case NAND_ECC_SOFT:
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops sunxi_nand_controller_ops = {
+	.attach_chip = sunxi_nand_attach_chip,
+};
+
+static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
+				struct device_node *np)
+{
+	struct sunxi_nand_chip *chip;
+	struct mtd_info *mtd;
+	struct nand_chip *nand;
+	int nsels;
+	int ret;
+	int i;
+	u32 tmp;
+
+	if (!of_get_property(np, "reg", &nsels))
+		return -EINVAL;
+
+	nsels /= sizeof(u32);
+	if (!nsels) {
+		dev_err(dev, "invalid reg property size\n");
+		return -EINVAL;
+	}
+
+	chip = devm_kzalloc(dev,
+			    sizeof(*chip) +
+			    (nsels * sizeof(struct sunxi_nand_chip_sel)),
+			    GFP_KERNEL);
+	if (!chip) {
+		dev_err(dev, "could not allocate chip\n");
+		return -ENOMEM;
+	}
+
+	chip->nsels = nsels;
+	chip->selected = -1;
+
+	for (i = 0; i < nsels; i++) {
+		ret = of_property_read_u32_index(np, "reg", i, &tmp);
+		if (ret) {
+			dev_err(dev, "could not retrieve reg property: %d\n",
+				ret);
+			return ret;
+		}
+
+		if (tmp > NFC_MAX_CS) {
+			dev_err(dev,
+				"invalid reg value: %u (max CS = 7)\n",
+				tmp);
+			return -EINVAL;
+		}
+
+		if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+			dev_err(dev, "CS %d already assigned\n", tmp);
+			return -EINVAL;
+		}
+
+		chip->sels[i].cs = tmp;
+
+		if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
+		    tmp < 2)
+			chip->sels[i].rb = tmp;
+		else
+			chip->sels[i].rb = -1;
+	}
+
+	nand = &chip->nand;
+	/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
+	nand->chip_delay = 200;
+	nand->controller = &nfc->controller;
+	nand->controller->ops = &sunxi_nand_controller_ops;
+
+	/*
+	 * Set the ECC mode to the default value in case nothing is specified
+	 * in the DT.
+	 */
+	nand->ecc.mode = NAND_ECC_HW;
+	nand_set_flash_node(nand, np);
+	nand->select_chip = sunxi_nfc_select_chip;
+	nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
+	nand->read_buf = sunxi_nfc_read_buf;
+	nand->write_buf = sunxi_nfc_write_buf;
+	nand->read_byte = sunxi_nfc_read_byte;
+	nand->setup_data_interface = sunxi_nfc_setup_data_interface;
+
+	mtd = nand_to_mtd(nand);
+	mtd->dev.parent = dev;
+
+	ret = nand_scan(mtd, nsels);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(dev, "failed to register mtd device: %d\n", ret);
+		nand_release(mtd);
+		return ret;
+	}
+
+	list_add_tail(&chip->node, &nfc->chips);
+
+	return 0;
+}
+
+static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
+{
+	struct device_node *np = dev->of_node;
+	struct device_node *nand_np;
+	int nchips = of_get_child_count(np);
+	int ret;
+
+	if (nchips > 8) {
+		dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
+		return -EINVAL;
+	}
+
+	for_each_child_of_node(np, nand_np) {
+		ret = sunxi_nand_chip_init(dev, nfc, nand_np);
+		if (ret) {
+			of_node_put(nand_np);
+			return ret;
+		}
+	}
+
+	return 0;
+}
+
+static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
+{
+	struct sunxi_nand_chip *chip;
+
+	while (!list_empty(&nfc->chips)) {
+		chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
+					node);
+		nand_release(nand_to_mtd(&chip->nand));
+		sunxi_nand_ecc_cleanup(&chip->nand.ecc);
+		list_del(&chip->node);
+	}
+}
+
+static int sunxi_nfc_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct resource *r;
+	struct sunxi_nfc *nfc;
+	int irq;
+	int ret;
+
+	nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->dev = dev;
+	nand_controller_init(&nfc->controller);
+	INIT_LIST_HEAD(&nfc->chips);
+
+	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->regs = devm_ioremap_resource(dev, r);
+	if (IS_ERR(nfc->regs))
+		return PTR_ERR(nfc->regs);
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "failed to retrieve irq\n");
+		return irq;
+	}
+
+	nfc->ahb_clk = devm_clk_get(dev, "ahb");
+	if (IS_ERR(nfc->ahb_clk)) {
+		dev_err(dev, "failed to retrieve ahb clk\n");
+		return PTR_ERR(nfc->ahb_clk);
+	}
+
+	ret = clk_prepare_enable(nfc->ahb_clk);
+	if (ret)
+		return ret;
+
+	nfc->mod_clk = devm_clk_get(dev, "mod");
+	if (IS_ERR(nfc->mod_clk)) {
+		dev_err(dev, "failed to retrieve mod clk\n");
+		ret = PTR_ERR(nfc->mod_clk);
+		goto out_ahb_clk_unprepare;
+	}
+
+	ret = clk_prepare_enable(nfc->mod_clk);
+	if (ret)
+		goto out_ahb_clk_unprepare;
+
+	nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb");
+	if (IS_ERR(nfc->reset)) {
+		ret = PTR_ERR(nfc->reset);
+		goto out_mod_clk_unprepare;
+	}
+
+	ret = reset_control_deassert(nfc->reset);
+	if (ret) {
+		dev_err(dev, "reset err %d\n", ret);
+		goto out_mod_clk_unprepare;
+	}
+
+	ret = sunxi_nfc_rst(nfc);
+	if (ret)
+		goto out_ahb_reset_reassert;
+
+	writel(0, nfc->regs + NFC_REG_INT);
+	ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
+			       0, "sunxi-nand", nfc);
+	if (ret)
+		goto out_ahb_reset_reassert;
+
+	nfc->dmac = dma_request_slave_channel(dev, "rxtx");
+	if (nfc->dmac) {
+		struct dma_slave_config dmac_cfg = { };
+
+		dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA;
+		dmac_cfg.dst_addr = dmac_cfg.src_addr;
+		dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+		dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
+		dmac_cfg.src_maxburst = 4;
+		dmac_cfg.dst_maxburst = 4;
+		dmaengine_slave_config(nfc->dmac, &dmac_cfg);
+	} else {
+		dev_warn(dev, "failed to request rxtx DMA channel\n");
+	}
+
+	platform_set_drvdata(pdev, nfc);
+
+	ret = sunxi_nand_chips_init(dev, nfc);
+	if (ret) {
+		dev_err(dev, "failed to init nand chips\n");
+		goto out_release_dmac;
+	}
+
+	return 0;
+
+out_release_dmac:
+	if (nfc->dmac)
+		dma_release_channel(nfc->dmac);
+out_ahb_reset_reassert:
+	reset_control_assert(nfc->reset);
+out_mod_clk_unprepare:
+	clk_disable_unprepare(nfc->mod_clk);
+out_ahb_clk_unprepare:
+	clk_disable_unprepare(nfc->ahb_clk);
+
+	return ret;
+}
+
+static int sunxi_nfc_remove(struct platform_device *pdev)
+{
+	struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
+
+	sunxi_nand_chips_cleanup(nfc);
+
+	reset_control_assert(nfc->reset);
+
+	if (nfc->dmac)
+		dma_release_channel(nfc->dmac);
+	clk_disable_unprepare(nfc->mod_clk);
+	clk_disable_unprepare(nfc->ahb_clk);
+
+	return 0;
+}
+
+static const struct of_device_id sunxi_nfc_ids[] = {
+	{ .compatible = "allwinner,sun4i-a10-nand" },
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
+
+static struct platform_driver sunxi_nfc_driver = {
+	.driver = {
+		.name = "sunxi_nand",
+		.of_match_table = sunxi_nfc_ids,
+	},
+	.probe = sunxi_nfc_probe,
+	.remove = sunxi_nfc_remove,
+};
+module_platform_driver(sunxi_nfc_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Boris BREZILLON");
+MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
+MODULE_ALIAS("platform:sunxi_nand");
diff --git a/drivers/mtd/nand/raw/tango_nand.c b/drivers/mtd/nand/raw/tango_nand.c
new file mode 100644
index 0000000..7269869
--- /dev/null
+++ b/drivers/mtd/nand/raw/tango_nand.c
@@ -0,0 +1,698 @@
+/*
+ * Copyright (C) 2016 Sigma Designs
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * version 2 as published by the Free Software Foundation.
+ */
+
+#include <linux/io.h>
+#include <linux/of.h>
+#include <linux/clk.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/platform_device.h>
+
+/* Offsets relative to chip->base */
+#define PBUS_CMD	0
+#define PBUS_ADDR	4
+#define PBUS_DATA	8
+
+/* Offsets relative to reg_base */
+#define NFC_STATUS	0x00
+#define NFC_FLASH_CMD	0x04
+#define NFC_DEVICE_CFG	0x08
+#define NFC_TIMING1	0x0c
+#define NFC_TIMING2	0x10
+#define NFC_XFER_CFG	0x14
+#define NFC_PKT_0_CFG	0x18
+#define NFC_PKT_N_CFG	0x1c
+#define NFC_BB_CFG	0x20
+#define NFC_ADDR_PAGE	0x24
+#define NFC_ADDR_OFFSET	0x28
+#define NFC_XFER_STATUS	0x2c
+
+/* NFC_STATUS values */
+#define CMD_READY	BIT(31)
+
+/* NFC_FLASH_CMD values */
+#define NFC_READ	1
+#define NFC_WRITE	2
+
+/* NFC_XFER_STATUS values */
+#define PAGE_IS_EMPTY	BIT(16)
+
+/* Offsets relative to mem_base */
+#define METADATA	0x000
+#define ERROR_REPORT	0x1c0
+
+/*
+ * Error reports are split in two bytes:
+ * byte 0 for the first packet in the page (PKT_0)
+ * byte 1 for other packets in the page (PKT_N, for N > 0)
+ * ERR_COUNT_PKT_N is the max error count over all but the first packet.
+ */
+#define ERR_COUNT_PKT_0(v)	(((v) >> 0) & 0x3f)
+#define ERR_COUNT_PKT_N(v)	(((v) >> 8) & 0x3f)
+#define DECODE_FAIL_PKT_0(v)	(((v) & BIT(7)) == 0)
+#define DECODE_FAIL_PKT_N(v)	(((v) & BIT(15)) == 0)
+
+/* Offsets relative to pbus_base */
+#define PBUS_CS_CTRL	0x83c
+#define PBUS_PAD_MODE	0x8f0
+
+/* PBUS_CS_CTRL values */
+#define PBUS_IORDY	BIT(31)
+
+/*
+ * PBUS_PAD_MODE values
+ * In raw mode, the driver communicates directly with the NAND chips.
+ * In NFC mode, the NAND Flash controller manages the communication.
+ * We use NFC mode for read and write; raw mode for everything else.
+ */
+#define MODE_RAW	0
+#define MODE_NFC	BIT(31)
+
+#define METADATA_SIZE	4
+#define BBM_SIZE	6
+#define FIELD_ORDER	15
+
+#define MAX_CS		4
+
+struct tango_nfc {
+	struct nand_controller hw;
+	void __iomem *reg_base;
+	void __iomem *mem_base;
+	void __iomem *pbus_base;
+	struct tango_chip *chips[MAX_CS];
+	struct dma_chan *chan;
+	int freq_kHz;
+};
+
+#define to_tango_nfc(ptr) container_of(ptr, struct tango_nfc, hw)
+
+struct tango_chip {
+	struct nand_chip nand_chip;
+	void __iomem *base;
+	u32 timing1;
+	u32 timing2;
+	u32 xfer_cfg;
+	u32 pkt_0_cfg;
+	u32 pkt_n_cfg;
+	u32 bb_cfg;
+};
+
+#define to_tango_chip(ptr) container_of(ptr, struct tango_chip, nand_chip)
+
+#define XFER_CFG(cs, page_count, steps, metadata_size)	\
+	((cs) << 24 | (page_count) << 16 | (steps) << 8 | (metadata_size))
+
+#define PKT_CFG(size, strength) ((size) << 16 | (strength))
+
+#define BB_CFG(bb_offset, bb_size) ((bb_offset) << 16 | (bb_size))
+
+#define TIMING(t0, t1, t2, t3) ((t0) << 24 | (t1) << 16 | (t2) << 8 | (t3))
+
+static void tango_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
+{
+	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+
+	if (ctrl & NAND_CLE)
+		writeb_relaxed(dat, tchip->base + PBUS_CMD);
+
+	if (ctrl & NAND_ALE)
+		writeb_relaxed(dat, tchip->base + PBUS_ADDR);
+}
+
+static int tango_dev_ready(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
+
+	return readl_relaxed(nfc->pbus_base + PBUS_CS_CTRL) & PBUS_IORDY;
+}
+
+static u8 tango_read_byte(struct mtd_info *mtd)
+{
+	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+
+	return readb_relaxed(tchip->base + PBUS_DATA);
+}
+
+static void tango_read_buf(struct mtd_info *mtd, u8 *buf, int len)
+{
+	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+
+	ioread8_rep(tchip->base + PBUS_DATA, buf, len);
+}
+
+static void tango_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+	struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd));
+
+	iowrite8_rep(tchip->base + PBUS_DATA, buf, len);
+}
+
+static void tango_select_chip(struct mtd_info *mtd, int idx)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
+	struct tango_chip *tchip = to_tango_chip(chip);
+
+	if (idx < 0)
+		return; /* No "chip unselect" function */
+
+	writel_relaxed(tchip->timing1, nfc->reg_base + NFC_TIMING1);
+	writel_relaxed(tchip->timing2, nfc->reg_base + NFC_TIMING2);
+	writel_relaxed(tchip->xfer_cfg, nfc->reg_base + NFC_XFER_CFG);
+	writel_relaxed(tchip->pkt_0_cfg, nfc->reg_base + NFC_PKT_0_CFG);
+	writel_relaxed(tchip->pkt_n_cfg, nfc->reg_base + NFC_PKT_N_CFG);
+	writel_relaxed(tchip->bb_cfg, nfc->reg_base + NFC_BB_CFG);
+}
+
+/*
+ * The controller does not check for bitflips in erased pages,
+ * therefore software must check instead.
+ */
+static int check_erased_page(struct nand_chip *chip, u8 *buf)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *meta = chip->oob_poi + BBM_SIZE;
+	u8 *ecc = chip->oob_poi + BBM_SIZE + METADATA_SIZE;
+	const int ecc_size = chip->ecc.bytes;
+	const int pkt_size = chip->ecc.size;
+	int i, res, meta_len, bitflips = 0;
+
+	for (i = 0; i < chip->ecc.steps; ++i) {
+		meta_len = i ? 0 : METADATA_SIZE;
+		res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
+						  meta, meta_len,
+						  chip->ecc.strength);
+		if (res < 0)
+			mtd->ecc_stats.failed++;
+		else
+			mtd->ecc_stats.corrected += res;
+
+		bitflips = max(res, bitflips);
+		buf += pkt_size;
+		ecc += ecc_size;
+	}
+
+	return bitflips;
+}
+
+static int decode_error_report(struct nand_chip *chip)
+{
+	u32 status, res;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
+
+	status = readl_relaxed(nfc->reg_base + NFC_XFER_STATUS);
+	if (status & PAGE_IS_EMPTY)
+		return 0;
+
+	res = readl_relaxed(nfc->mem_base + ERROR_REPORT);
+
+	if (DECODE_FAIL_PKT_0(res) || DECODE_FAIL_PKT_N(res))
+		return -EBADMSG;
+
+	/* ERR_COUNT_PKT_N is max, not sum, but that's all we have */
+	mtd->ecc_stats.corrected +=
+		ERR_COUNT_PKT_0(res) + ERR_COUNT_PKT_N(res);
+
+	return max(ERR_COUNT_PKT_0(res), ERR_COUNT_PKT_N(res));
+}
+
+static void tango_dma_callback(void *arg)
+{
+	complete(arg);
+}
+
+static int do_dma(struct tango_nfc *nfc, enum dma_data_direction dir, int cmd,
+		  const void *buf, int len, int page)
+{
+	void __iomem *addr = nfc->reg_base + NFC_STATUS;
+	struct dma_chan *chan = nfc->chan;
+	struct dma_async_tx_descriptor *desc;
+	enum dma_transfer_direction tdir;
+	struct scatterlist sg;
+	struct completion tx_done;
+	int err = -EIO;
+	u32 res, val;
+
+	sg_init_one(&sg, buf, len);
+	if (dma_map_sg(chan->device->dev, &sg, 1, dir) != 1)
+		return -EIO;
+
+	tdir = dir == DMA_TO_DEVICE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
+	desc = dmaengine_prep_slave_sg(chan, &sg, 1, tdir, DMA_PREP_INTERRUPT);
+	if (!desc)
+		goto dma_unmap;
+
+	desc->callback = tango_dma_callback;
+	desc->callback_param = &tx_done;
+	init_completion(&tx_done);
+
+	writel_relaxed(MODE_NFC, nfc->pbus_base + PBUS_PAD_MODE);
+
+	writel_relaxed(page, nfc->reg_base + NFC_ADDR_PAGE);
+	writel_relaxed(0, nfc->reg_base + NFC_ADDR_OFFSET);
+	writel_relaxed(cmd, nfc->reg_base + NFC_FLASH_CMD);
+
+	dmaengine_submit(desc);
+	dma_async_issue_pending(chan);
+
+	res = wait_for_completion_timeout(&tx_done, HZ);
+	if (res > 0)
+		err = readl_poll_timeout(addr, val, val & CMD_READY, 0, 1000);
+
+	writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE);
+
+dma_unmap:
+	dma_unmap_sg(chan->device->dev, &sg, 1, dir);
+
+	return err;
+}
+
+static int tango_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			   u8 *buf, int oob_required, int page)
+{
+	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
+	int err, res, len = mtd->writesize;
+
+	if (oob_required)
+		chip->ecc.read_oob(mtd, chip, page);
+
+	err = do_dma(nfc, DMA_FROM_DEVICE, NFC_READ, buf, len, page);
+	if (err)
+		return err;
+
+	res = decode_error_report(chip);
+	if (res < 0) {
+		chip->ecc.read_oob_raw(mtd, chip, page);
+		res = check_erased_page(chip, buf);
+	}
+
+	return res;
+}
+
+static int tango_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    const u8 *buf, int oob_required, int page)
+{
+	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
+	int err, status, len = mtd->writesize;
+
+	/* Calling tango_write_oob() would send PAGEPROG twice */
+	if (oob_required)
+		return -ENOTSUPP;
+
+	writel_relaxed(0xffffffff, nfc->mem_base + METADATA);
+	err = do_dma(nfc, DMA_TO_DEVICE, NFC_WRITE, buf, len, page);
+	if (err)
+		return err;
+
+	status = chip->waitfunc(mtd, chip);
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+
+static void aux_read(struct nand_chip *chip, u8 **buf, int len, int *pos)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	*pos += len;
+
+	if (!*buf) {
+		/* skip over "len" bytes */
+		nand_change_read_column_op(chip, *pos, NULL, 0, false);
+	} else {
+		tango_read_buf(mtd, *buf, len);
+		*buf += len;
+	}
+}
+
+static void aux_write(struct nand_chip *chip, const u8 **buf, int len, int *pos)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	*pos += len;
+
+	if (!*buf) {
+		/* skip over "len" bytes */
+		nand_change_write_column_op(chip, *pos, NULL, 0, false);
+	} else {
+		tango_write_buf(mtd, *buf, len);
+		*buf += len;
+	}
+}
+
+/*
+ * Physical page layout (not drawn to scale)
+ *
+ * NB: Bad Block Marker area splits PKT_N in two (N1, N2).
+ *
+ * +---+-----------------+-------+-----+-----------+-----+----+-------+
+ * | M |      PKT_0      | ECC_0 | ... |     N1    | BBM | N2 | ECC_N |
+ * +---+-----------------+-------+-----+-----------+-----+----+-------+
+ *
+ * Logical page layout:
+ *
+ *       +-----+---+-------+-----+-------+
+ * oob = | BBM | M | ECC_0 | ... | ECC_N |
+ *       +-----+---+-------+-----+-------+
+ *
+ *       +-----------------+-----+-----------------+
+ * buf = |      PKT_0      | ... |      PKT_N      |
+ *       +-----------------+-----+-----------------+
+ */
+static void raw_read(struct nand_chip *chip, u8 *buf, u8 *oob)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	u8 *oob_orig = oob;
+	const int page_size = mtd->writesize;
+	const int ecc_size = chip->ecc.bytes;
+	const int pkt_size = chip->ecc.size;
+	int pos = 0; /* position within physical page */
+	int rem = page_size; /* bytes remaining until BBM area */
+
+	if (oob)
+		oob += BBM_SIZE;
+
+	aux_read(chip, &oob, METADATA_SIZE, &pos);
+
+	while (rem > pkt_size) {
+		aux_read(chip, &buf, pkt_size, &pos);
+		aux_read(chip, &oob, ecc_size, &pos);
+		rem = page_size - pos;
+	}
+
+	aux_read(chip, &buf, rem, &pos);
+	aux_read(chip, &oob_orig, BBM_SIZE, &pos);
+	aux_read(chip, &buf, pkt_size - rem, &pos);
+	aux_read(chip, &oob, ecc_size, &pos);
+}
+
+static void raw_write(struct nand_chip *chip, const u8 *buf, const u8 *oob)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	const u8 *oob_orig = oob;
+	const int page_size = mtd->writesize;
+	const int ecc_size = chip->ecc.bytes;
+	const int pkt_size = chip->ecc.size;
+	int pos = 0; /* position within physical page */
+	int rem = page_size; /* bytes remaining until BBM area */
+
+	if (oob)
+		oob += BBM_SIZE;
+
+	aux_write(chip, &oob, METADATA_SIZE, &pos);
+
+	while (rem > pkt_size) {
+		aux_write(chip, &buf, pkt_size, &pos);
+		aux_write(chip, &oob, ecc_size, &pos);
+		rem = page_size - pos;
+	}
+
+	aux_write(chip, &buf, rem, &pos);
+	aux_write(chip, &oob_orig, BBM_SIZE, &pos);
+	aux_write(chip, &buf, pkt_size - rem, &pos);
+	aux_write(chip, &oob, ecc_size, &pos);
+}
+
+static int tango_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+			       u8 *buf, int oob_required, int page)
+{
+	nand_read_page_op(chip, page, 0, NULL, 0);
+	raw_read(chip, buf, chip->oob_poi);
+	return 0;
+}
+
+static int tango_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				const u8 *buf, int oob_required, int page)
+{
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	raw_write(chip, buf, chip->oob_poi);
+	return nand_prog_page_end_op(chip);
+}
+
+static int tango_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			  int page)
+{
+	nand_read_page_op(chip, page, 0, NULL, 0);
+	raw_read(chip, NULL, chip->oob_poi);
+	return 0;
+}
+
+static int tango_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page)
+{
+	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+	raw_write(chip, NULL, chip->oob_poi);
+	return nand_prog_page_end_op(chip);
+}
+
+static int oob_ecc(struct mtd_info *mtd, int idx, struct mtd_oob_region *res)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	if (idx >= ecc->steps)
+		return -ERANGE;
+
+	res->offset = BBM_SIZE + METADATA_SIZE + ecc->bytes * idx;
+	res->length = ecc->bytes;
+
+	return 0;
+}
+
+static int oob_free(struct mtd_info *mtd, int idx, struct mtd_oob_region *res)
+{
+	return -ERANGE; /* no free space in spare area */
+}
+
+static const struct mtd_ooblayout_ops tango_nand_ooblayout_ops = {
+	.ecc	= oob_ecc,
+	.free	= oob_free,
+};
+
+static u32 to_ticks(int kHz, int ps)
+{
+	return DIV_ROUND_UP_ULL((u64)kHz * ps, NSEC_PER_SEC);
+}
+
+static int tango_set_timings(struct mtd_info *mtd, int csline,
+			     const struct nand_data_interface *conf)
+{
+	const struct nand_sdr_timings *sdr = nand_get_sdr_timings(conf);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct tango_nfc *nfc = to_tango_nfc(chip->controller);
+	struct tango_chip *tchip = to_tango_chip(chip);
+	u32 Trdy, Textw, Twc, Twpw, Tacc, Thold, Trpw, Textr;
+	int kHz = nfc->freq_kHz;
+
+	if (IS_ERR(sdr))
+		return PTR_ERR(sdr);
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	Trdy = to_ticks(kHz, sdr->tCEA_max - sdr->tREA_max);
+	Textw = to_ticks(kHz, sdr->tWB_max);
+	Twc = to_ticks(kHz, sdr->tWC_min);
+	Twpw = to_ticks(kHz, sdr->tWC_min - sdr->tWP_min);
+
+	Tacc = to_ticks(kHz, sdr->tREA_max);
+	Thold = to_ticks(kHz, sdr->tREH_min);
+	Trpw = to_ticks(kHz, sdr->tRC_min - sdr->tREH_min);
+	Textr = to_ticks(kHz, sdr->tRHZ_max);
+
+	tchip->timing1 = TIMING(Trdy, Textw, Twc, Twpw);
+	tchip->timing2 = TIMING(Tacc, Thold, Trpw, Textr);
+
+	return 0;
+}
+
+static int tango_attach_chip(struct nand_chip *chip)
+{
+	struct nand_ecc_ctrl *ecc = &chip->ecc;
+
+	ecc->mode = NAND_ECC_HW;
+	ecc->algo = NAND_ECC_BCH;
+	ecc->bytes = DIV_ROUND_UP(ecc->strength * FIELD_ORDER, BITS_PER_BYTE);
+
+	ecc->read_page_raw = tango_read_page_raw;
+	ecc->write_page_raw = tango_write_page_raw;
+	ecc->read_page = tango_read_page;
+	ecc->write_page = tango_write_page;
+	ecc->read_oob = tango_read_oob;
+	ecc->write_oob = tango_write_oob;
+
+	return 0;
+}
+
+static const struct nand_controller_ops tango_controller_ops = {
+	.attach_chip = tango_attach_chip,
+};
+
+static int chip_init(struct device *dev, struct device_node *np)
+{
+	u32 cs;
+	int err, res;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	struct tango_chip *tchip;
+	struct nand_ecc_ctrl *ecc;
+	struct tango_nfc *nfc = dev_get_drvdata(dev);
+
+	tchip = devm_kzalloc(dev, sizeof(*tchip), GFP_KERNEL);
+	if (!tchip)
+		return -ENOMEM;
+
+	res = of_property_count_u32_elems(np, "reg");
+	if (res < 0)
+		return res;
+
+	if (res != 1)
+		return -ENOTSUPP; /* Multi-CS chips are not supported */
+
+	err = of_property_read_u32_index(np, "reg", 0, &cs);
+	if (err)
+		return err;
+
+	if (cs >= MAX_CS)
+		return -EINVAL;
+
+	chip = &tchip->nand_chip;
+	ecc = &chip->ecc;
+	mtd = nand_to_mtd(chip);
+
+	chip->read_byte = tango_read_byte;
+	chip->write_buf = tango_write_buf;
+	chip->read_buf = tango_read_buf;
+	chip->select_chip = tango_select_chip;
+	chip->cmd_ctrl = tango_cmd_ctrl;
+	chip->dev_ready = tango_dev_ready;
+	chip->setup_data_interface = tango_set_timings;
+	chip->options = NAND_USE_BOUNCE_BUFFER |
+			NAND_NO_SUBPAGE_WRITE |
+			NAND_WAIT_TCCS;
+	chip->controller = &nfc->hw;
+	tchip->base = nfc->pbus_base + (cs * 256);
+
+	nand_set_flash_node(chip, np);
+	mtd_set_ooblayout(mtd, &tango_nand_ooblayout_ops);
+	mtd->dev.parent = dev;
+
+	err = nand_scan(mtd, 1);
+	if (err)
+		return err;
+
+	tchip->xfer_cfg = XFER_CFG(cs, 1, ecc->steps, METADATA_SIZE);
+	tchip->pkt_0_cfg = PKT_CFG(ecc->size + METADATA_SIZE, ecc->strength);
+	tchip->pkt_n_cfg = PKT_CFG(ecc->size, ecc->strength);
+	tchip->bb_cfg = BB_CFG(mtd->writesize, BBM_SIZE);
+
+	err = mtd_device_register(mtd, NULL, 0);
+	if (err) {
+		nand_cleanup(chip);
+		return err;
+	}
+
+	nfc->chips[cs] = tchip;
+
+	return 0;
+}
+
+static int tango_nand_remove(struct platform_device *pdev)
+{
+	int cs;
+	struct tango_nfc *nfc = platform_get_drvdata(pdev);
+
+	dma_release_channel(nfc->chan);
+
+	for (cs = 0; cs < MAX_CS; ++cs) {
+		if (nfc->chips[cs])
+			nand_release(nand_to_mtd(&nfc->chips[cs]->nand_chip));
+	}
+
+	return 0;
+}
+
+static int tango_nand_probe(struct platform_device *pdev)
+{
+	int err;
+	struct clk *clk;
+	struct resource *res;
+	struct tango_nfc *nfc;
+	struct device_node *np;
+
+	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->reg_base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nfc->reg_base))
+		return PTR_ERR(nfc->reg_base);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
+	nfc->mem_base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nfc->mem_base))
+		return PTR_ERR(nfc->mem_base);
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
+	nfc->pbus_base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nfc->pbus_base))
+		return PTR_ERR(nfc->pbus_base);
+
+	writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE);
+
+	clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(clk))
+		return PTR_ERR(clk);
+
+	nfc->chan = dma_request_chan(&pdev->dev, "rxtx");
+	if (IS_ERR(nfc->chan))
+		return PTR_ERR(nfc->chan);
+
+	platform_set_drvdata(pdev, nfc);
+	nand_controller_init(&nfc->hw);
+	nfc->hw.ops = &tango_controller_ops;
+	nfc->freq_kHz = clk_get_rate(clk) / 1000;
+
+	for_each_child_of_node(pdev->dev.of_node, np) {
+		err = chip_init(&pdev->dev, np);
+		if (err) {
+			tango_nand_remove(pdev);
+			return err;
+		}
+	}
+
+	return 0;
+}
+
+static const struct of_device_id tango_nand_ids[] = {
+	{ .compatible = "sigma,smp8758-nand" },
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, tango_nand_ids);
+
+static struct platform_driver tango_nand_driver = {
+	.probe	= tango_nand_probe,
+	.remove	= tango_nand_remove,
+	.driver	= {
+		.name		= "tango-nand",
+		.of_match_table	= tango_nand_ids,
+	},
+};
+
+module_platform_driver(tango_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Sigma Designs");
+MODULE_DESCRIPTION("Tango4 NAND Flash controller driver");
diff --git a/drivers/mtd/nand/raw/tegra_nand.c b/drivers/mtd/nand/raw/tegra_nand.c
new file mode 100644
index 0000000..79da1ef
--- /dev/null
+++ b/drivers/mtd/nand/raw/tegra_nand.c
@@ -0,0 +1,1246 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2018 Stefan Agner <stefan@agner.ch>
+ * Copyright (C) 2014-2015 Lucas Stach <dev@lynxeye.de>
+ * Copyright (C) 2012 Avionic Design GmbH
+ */
+
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/gpio/consumer.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/module.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/reset.h>
+
+#define COMMAND					0x00
+#define   COMMAND_GO				BIT(31)
+#define   COMMAND_CLE				BIT(30)
+#define   COMMAND_ALE				BIT(29)
+#define   COMMAND_PIO				BIT(28)
+#define   COMMAND_TX				BIT(27)
+#define   COMMAND_RX				BIT(26)
+#define   COMMAND_SEC_CMD			BIT(25)
+#define   COMMAND_AFT_DAT			BIT(24)
+#define   COMMAND_TRANS_SIZE(size)		((((size) - 1) & 0xf) << 20)
+#define   COMMAND_A_VALID			BIT(19)
+#define   COMMAND_B_VALID			BIT(18)
+#define   COMMAND_RD_STATUS_CHK			BIT(17)
+#define   COMMAND_RBSY_CHK			BIT(16)
+#define   COMMAND_CE(x)				BIT(8 + ((x) & 0x7))
+#define   COMMAND_CLE_SIZE(size)		((((size) - 1) & 0x3) << 4)
+#define   COMMAND_ALE_SIZE(size)		((((size) - 1) & 0xf) << 0)
+
+#define STATUS					0x04
+
+#define ISR					0x08
+#define   ISR_CORRFAIL_ERR			BIT(24)
+#define   ISR_UND				BIT(7)
+#define   ISR_OVR				BIT(6)
+#define   ISR_CMD_DONE				BIT(5)
+#define   ISR_ECC_ERR				BIT(4)
+
+#define IER					0x0c
+#define   IER_ERR_TRIG_VAL(x)			(((x) & 0xf) << 16)
+#define   IER_UND				BIT(7)
+#define   IER_OVR				BIT(6)
+#define   IER_CMD_DONE				BIT(5)
+#define   IER_ECC_ERR				BIT(4)
+#define   IER_GIE				BIT(0)
+
+#define CONFIG					0x10
+#define   CONFIG_HW_ECC				BIT(31)
+#define   CONFIG_ECC_SEL			BIT(30)
+#define   CONFIG_ERR_COR			BIT(29)
+#define   CONFIG_PIPE_EN			BIT(28)
+#define   CONFIG_TVAL_4				(0 << 24)
+#define   CONFIG_TVAL_6				(1 << 24)
+#define   CONFIG_TVAL_8				(2 << 24)
+#define   CONFIG_SKIP_SPARE			BIT(23)
+#define   CONFIG_BUS_WIDTH_16			BIT(21)
+#define   CONFIG_COM_BSY			BIT(20)
+#define   CONFIG_PS_256				(0 << 16)
+#define   CONFIG_PS_512				(1 << 16)
+#define   CONFIG_PS_1024			(2 << 16)
+#define   CONFIG_PS_2048			(3 << 16)
+#define   CONFIG_PS_4096			(4 << 16)
+#define   CONFIG_SKIP_SPARE_SIZE_4		(0 << 14)
+#define   CONFIG_SKIP_SPARE_SIZE_8		(1 << 14)
+#define   CONFIG_SKIP_SPARE_SIZE_12		(2 << 14)
+#define   CONFIG_SKIP_SPARE_SIZE_16		(3 << 14)
+#define   CONFIG_TAG_BYTE_SIZE(x)			((x) & 0xff)
+
+#define TIMING_1				0x14
+#define   TIMING_TRP_RESP(x)			(((x) & 0xf) << 28)
+#define   TIMING_TWB(x)				(((x) & 0xf) << 24)
+#define   TIMING_TCR_TAR_TRR(x)			(((x) & 0xf) << 20)
+#define   TIMING_TWHR(x)			(((x) & 0xf) << 16)
+#define   TIMING_TCS(x)				(((x) & 0x3) << 14)
+#define   TIMING_TWH(x)				(((x) & 0x3) << 12)
+#define   TIMING_TWP(x)				(((x) & 0xf) <<  8)
+#define   TIMING_TRH(x)				(((x) & 0x3) <<  4)
+#define   TIMING_TRP(x)				(((x) & 0xf) <<  0)
+
+#define RESP					0x18
+
+#define TIMING_2				0x1c
+#define   TIMING_TADL(x)			((x) & 0xf)
+
+#define CMD_REG1				0x20
+#define CMD_REG2				0x24
+#define ADDR_REG1				0x28
+#define ADDR_REG2				0x2c
+
+#define DMA_MST_CTRL				0x30
+#define   DMA_MST_CTRL_GO			BIT(31)
+#define   DMA_MST_CTRL_IN			(0 << 30)
+#define   DMA_MST_CTRL_OUT			BIT(30)
+#define   DMA_MST_CTRL_PERF_EN			BIT(29)
+#define   DMA_MST_CTRL_IE_DONE			BIT(28)
+#define   DMA_MST_CTRL_REUSE			BIT(27)
+#define   DMA_MST_CTRL_BURST_1			(2 << 24)
+#define   DMA_MST_CTRL_BURST_4			(3 << 24)
+#define   DMA_MST_CTRL_BURST_8			(4 << 24)
+#define   DMA_MST_CTRL_BURST_16			(5 << 24)
+#define   DMA_MST_CTRL_IS_DONE			BIT(20)
+#define   DMA_MST_CTRL_EN_A			BIT(2)
+#define   DMA_MST_CTRL_EN_B			BIT(1)
+
+#define DMA_CFG_A				0x34
+#define DMA_CFG_B				0x38
+
+#define FIFO_CTRL				0x3c
+#define   FIFO_CTRL_CLR_ALL			BIT(3)
+
+#define DATA_PTR				0x40
+#define TAG_PTR					0x44
+#define ECC_PTR					0x48
+
+#define DEC_STATUS				0x4c
+#define   DEC_STATUS_A_ECC_FAIL			BIT(1)
+#define   DEC_STATUS_ERR_COUNT_MASK		0x00ff0000
+#define   DEC_STATUS_ERR_COUNT_SHIFT		16
+
+#define HWSTATUS_CMD				0x50
+#define HWSTATUS_MASK				0x54
+#define   HWSTATUS_RDSTATUS_MASK(x)		(((x) & 0xff) << 24)
+#define   HWSTATUS_RDSTATUS_VALUE(x)		(((x) & 0xff) << 16)
+#define   HWSTATUS_RBSY_MASK(x)			(((x) & 0xff) << 8)
+#define   HWSTATUS_RBSY_VALUE(x)		(((x) & 0xff) << 0)
+
+#define BCH_CONFIG				0xcc
+#define   BCH_ENABLE				BIT(0)
+#define   BCH_TVAL_4				(0 << 4)
+#define   BCH_TVAL_8				(1 << 4)
+#define   BCH_TVAL_14				(2 << 4)
+#define   BCH_TVAL_16				(3 << 4)
+
+#define DEC_STAT_RESULT				0xd0
+#define DEC_STAT_BUF				0xd4
+#define   DEC_STAT_BUF_FAIL_SEC_FLAG_MASK	0xff000000
+#define   DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT	24
+#define   DEC_STAT_BUF_CORR_SEC_FLAG_MASK	0x00ff0000
+#define   DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT	16
+#define   DEC_STAT_BUF_MAX_CORR_CNT_MASK	0x00001f00
+#define   DEC_STAT_BUF_MAX_CORR_CNT_SHIFT	8
+
+#define OFFSET(val, off)	((val) < (off) ? 0 : (val) - (off))
+
+#define SKIP_SPARE_BYTES	4
+#define BITS_PER_STEP_RS	18
+#define BITS_PER_STEP_BCH	13
+
+#define INT_MASK		(IER_UND | IER_OVR | IER_CMD_DONE | IER_GIE)
+#define HWSTATUS_CMD_DEFAULT	NAND_STATUS_READY
+#define HWSTATUS_MASK_DEFAULT	(HWSTATUS_RDSTATUS_MASK(1) | \
+				HWSTATUS_RDSTATUS_VALUE(0) | \
+				HWSTATUS_RBSY_MASK(NAND_STATUS_READY) | \
+				HWSTATUS_RBSY_VALUE(NAND_STATUS_READY))
+
+struct tegra_nand_controller {
+	struct nand_controller controller;
+	struct device *dev;
+	void __iomem *regs;
+	int irq;
+	struct clk *clk;
+	struct completion command_complete;
+	struct completion dma_complete;
+	bool last_read_error;
+	int cur_cs;
+	struct nand_chip *chip;
+};
+
+struct tegra_nand_chip {
+	struct nand_chip chip;
+	struct gpio_desc *wp_gpio;
+	struct mtd_oob_region ecc;
+	u32 config;
+	u32 config_ecc;
+	u32 bch_config;
+	int cs[1];
+};
+
+static inline struct tegra_nand_controller *
+			to_tegra_ctrl(struct nand_controller *hw_ctrl)
+{
+	return container_of(hw_ctrl, struct tegra_nand_controller, controller);
+}
+
+static inline struct tegra_nand_chip *to_tegra_chip(struct nand_chip *chip)
+{
+	return container_of(chip, struct tegra_nand_chip, chip);
+}
+
+static int tegra_nand_ooblayout_rs_ecc(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_RS * chip->ecc.strength,
+					  BITS_PER_BYTE);
+
+	if (section > 0)
+		return -ERANGE;
+
+	oobregion->offset = SKIP_SPARE_BYTES;
+	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
+
+	return 0;
+}
+
+static int tegra_nand_ooblayout_no_free(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *oobregion)
+{
+	return -ERANGE;
+}
+
+static const struct mtd_ooblayout_ops tegra_nand_oob_rs_ops = {
+	.ecc = tegra_nand_ooblayout_rs_ecc,
+	.free = tegra_nand_ooblayout_no_free,
+};
+
+static int tegra_nand_ooblayout_bch_ecc(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *oobregion)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int bytes_per_step = DIV_ROUND_UP(BITS_PER_STEP_BCH * chip->ecc.strength,
+					  BITS_PER_BYTE);
+
+	if (section > 0)
+		return -ERANGE;
+
+	oobregion->offset = SKIP_SPARE_BYTES;
+	oobregion->length = round_up(bytes_per_step * chip->ecc.steps, 4);
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops tegra_nand_oob_bch_ops = {
+	.ecc = tegra_nand_ooblayout_bch_ecc,
+	.free = tegra_nand_ooblayout_no_free,
+};
+
+static irqreturn_t tegra_nand_irq(int irq, void *data)
+{
+	struct tegra_nand_controller *ctrl = data;
+	u32 isr, dma;
+
+	isr = readl_relaxed(ctrl->regs + ISR);
+	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
+	dev_dbg(ctrl->dev, "isr %08x\n", isr);
+
+	if (!isr && !(dma & DMA_MST_CTRL_IS_DONE))
+		return IRQ_NONE;
+
+	/*
+	 * The bit name is somewhat missleading: This is also set when
+	 * HW ECC was successful. The data sheet states:
+	 * Correctable OR Un-correctable errors occurred in the DMA transfer...
+	 */
+	if (isr & ISR_CORRFAIL_ERR)
+		ctrl->last_read_error = true;
+
+	if (isr & ISR_CMD_DONE)
+		complete(&ctrl->command_complete);
+
+	if (isr & ISR_UND)
+		dev_err(ctrl->dev, "FIFO underrun\n");
+
+	if (isr & ISR_OVR)
+		dev_err(ctrl->dev, "FIFO overrun\n");
+
+	/* handle DMA interrupts */
+	if (dma & DMA_MST_CTRL_IS_DONE) {
+		writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
+		complete(&ctrl->dma_complete);
+	}
+
+	/* clear interrupts */
+	writel_relaxed(isr, ctrl->regs + ISR);
+
+	return IRQ_HANDLED;
+}
+
+static const char * const tegra_nand_reg_names[] = {
+	"COMMAND",
+	"STATUS",
+	"ISR",
+	"IER",
+	"CONFIG",
+	"TIMING",
+	NULL,
+	"TIMING2",
+	"CMD_REG1",
+	"CMD_REG2",
+	"ADDR_REG1",
+	"ADDR_REG2",
+	"DMA_MST_CTRL",
+	"DMA_CFG_A",
+	"DMA_CFG_B",
+	"FIFO_CTRL",
+};
+
+static void tegra_nand_dump_reg(struct tegra_nand_controller *ctrl)
+{
+	u32 reg;
+	int i;
+
+	dev_err(ctrl->dev, "Tegra NAND controller register dump\n");
+	for (i = 0; i < ARRAY_SIZE(tegra_nand_reg_names); i++) {
+		const char *reg_name = tegra_nand_reg_names[i];
+
+		if (!reg_name)
+			continue;
+
+		reg = readl_relaxed(ctrl->regs + (i * 4));
+		dev_err(ctrl->dev, "%s: 0x%08x\n", reg_name, reg);
+	}
+}
+
+static void tegra_nand_controller_abort(struct tegra_nand_controller *ctrl)
+{
+	u32 isr, dma;
+
+	disable_irq(ctrl->irq);
+
+	/* Abort current command/DMA operation */
+	writel_relaxed(0, ctrl->regs + DMA_MST_CTRL);
+	writel_relaxed(0, ctrl->regs + COMMAND);
+
+	/* clear interrupts */
+	isr = readl_relaxed(ctrl->regs + ISR);
+	writel_relaxed(isr, ctrl->regs + ISR);
+	dma = readl_relaxed(ctrl->regs + DMA_MST_CTRL);
+	writel_relaxed(dma, ctrl->regs + DMA_MST_CTRL);
+
+	reinit_completion(&ctrl->command_complete);
+	reinit_completion(&ctrl->dma_complete);
+
+	enable_irq(ctrl->irq);
+}
+
+static int tegra_nand_cmd(struct nand_chip *chip,
+			  const struct nand_subop *subop)
+{
+	const struct nand_op_instr *instr;
+	const struct nand_op_instr *instr_data_in = NULL;
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+	unsigned int op_id, size = 0, offset = 0;
+	bool first_cmd = true;
+	u32 reg, cmd = 0;
+	int ret;
+
+	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+		unsigned int naddrs, i;
+		const u8 *addrs;
+		u32 addr1 = 0, addr2 = 0;
+
+		instr = &subop->instrs[op_id];
+
+		switch (instr->type) {
+		case NAND_OP_CMD_INSTR:
+			if (first_cmd) {
+				cmd |= COMMAND_CLE;
+				writel_relaxed(instr->ctx.cmd.opcode,
+					       ctrl->regs + CMD_REG1);
+			} else {
+				cmd |= COMMAND_SEC_CMD;
+				writel_relaxed(instr->ctx.cmd.opcode,
+					       ctrl->regs + CMD_REG2);
+			}
+			first_cmd = false;
+			break;
+
+		case NAND_OP_ADDR_INSTR:
+			offset = nand_subop_get_addr_start_off(subop, op_id);
+			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+			addrs = &instr->ctx.addr.addrs[offset];
+
+			cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(naddrs);
+			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+				addr1 |= *addrs++ << (BITS_PER_BYTE * i);
+			naddrs -= i;
+			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+				addr2 |= *addrs++ << (BITS_PER_BYTE * i);
+
+			writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
+			writel_relaxed(addr2, ctrl->regs + ADDR_REG2);
+			break;
+
+		case NAND_OP_DATA_IN_INSTR:
+			size = nand_subop_get_data_len(subop, op_id);
+			offset = nand_subop_get_data_start_off(subop, op_id);
+
+			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
+				COMMAND_RX | COMMAND_A_VALID;
+
+			instr_data_in = instr;
+			break;
+
+		case NAND_OP_DATA_OUT_INSTR:
+			size = nand_subop_get_data_len(subop, op_id);
+			offset = nand_subop_get_data_start_off(subop, op_id);
+
+			cmd |= COMMAND_TRANS_SIZE(size) | COMMAND_PIO |
+				COMMAND_TX | COMMAND_A_VALID;
+			memcpy(&reg, instr->ctx.data.buf.out + offset, size);
+
+			writel_relaxed(reg, ctrl->regs + RESP);
+			break;
+
+		case NAND_OP_WAITRDY_INSTR:
+			cmd |= COMMAND_RBSY_CHK;
+			break;
+		}
+	}
+
+	cmd |= COMMAND_GO | COMMAND_CE(ctrl->cur_cs);
+	writel_relaxed(cmd, ctrl->regs + COMMAND);
+	ret = wait_for_completion_timeout(&ctrl->command_complete,
+					  msecs_to_jiffies(500));
+	if (!ret) {
+		dev_err(ctrl->dev, "COMMAND timeout\n");
+		tegra_nand_dump_reg(ctrl);
+		tegra_nand_controller_abort(ctrl);
+		return -ETIMEDOUT;
+	}
+
+	if (instr_data_in) {
+		reg = readl_relaxed(ctrl->regs + RESP);
+		memcpy(instr_data_in->ctx.data.buf.in + offset, &reg, size);
+	}
+
+	return 0;
+}
+
+static const struct nand_op_parser tegra_nand_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
+		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 4)),
+	NAND_OP_PARSER_PATTERN(tegra_nand_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 8),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 4)),
+	);
+
+static int tegra_nand_exec_op(struct nand_chip *chip,
+			      const struct nand_operation *op,
+			      bool check_only)
+{
+	return nand_op_parser_exec_op(chip, &tegra_nand_op_parser, op,
+				      check_only);
+}
+
+static void tegra_nand_select_chip(struct mtd_info *mtd, int die_nr)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct tegra_nand_chip *nand = to_tegra_chip(chip);
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+
+	WARN_ON(die_nr >= (int)ARRAY_SIZE(nand->cs));
+
+	if (die_nr < 0 || die_nr > 0) {
+		ctrl->cur_cs = -1;
+		return;
+	}
+
+	ctrl->cur_cs = nand->cs[die_nr];
+}
+
+static void tegra_nand_hw_ecc(struct tegra_nand_controller *ctrl,
+			      struct nand_chip *chip, bool enable)
+{
+	struct tegra_nand_chip *nand = to_tegra_chip(chip);
+
+	if (chip->ecc.algo == NAND_ECC_BCH && enable)
+		writel_relaxed(nand->bch_config, ctrl->regs + BCH_CONFIG);
+	else
+		writel_relaxed(0, ctrl->regs + BCH_CONFIG);
+
+	if (enable)
+		writel_relaxed(nand->config_ecc, ctrl->regs + CONFIG);
+	else
+		writel_relaxed(nand->config, ctrl->regs + CONFIG);
+}
+
+static int tegra_nand_page_xfer(struct mtd_info *mtd, struct nand_chip *chip,
+				void *buf, void *oob_buf, int oob_len, int page,
+				bool read)
+{
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+	enum dma_data_direction dir = read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
+	dma_addr_t dma_addr = 0, dma_addr_oob = 0;
+	u32 addr1, cmd, dma_ctrl;
+	int ret;
+
+	if (read) {
+		writel_relaxed(NAND_CMD_READ0, ctrl->regs + CMD_REG1);
+		writel_relaxed(NAND_CMD_READSTART, ctrl->regs + CMD_REG2);
+	} else {
+		writel_relaxed(NAND_CMD_SEQIN, ctrl->regs + CMD_REG1);
+		writel_relaxed(NAND_CMD_PAGEPROG, ctrl->regs + CMD_REG2);
+	}
+	cmd = COMMAND_CLE | COMMAND_SEC_CMD;
+
+	/* Lower 16-bits are column, by default 0 */
+	addr1 = page << 16;
+
+	if (!buf)
+		addr1 |= mtd->writesize;
+	writel_relaxed(addr1, ctrl->regs + ADDR_REG1);
+
+	if (chip->options & NAND_ROW_ADDR_3) {
+		writel_relaxed(page >> 16, ctrl->regs + ADDR_REG2);
+		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(5);
+	} else {
+		cmd |= COMMAND_ALE | COMMAND_ALE_SIZE(4);
+	}
+
+	if (buf) {
+		dma_addr = dma_map_single(ctrl->dev, buf, mtd->writesize, dir);
+		ret = dma_mapping_error(ctrl->dev, dma_addr);
+		if (ret) {
+			dev_err(ctrl->dev, "dma mapping error\n");
+			return -EINVAL;
+		}
+
+		writel_relaxed(mtd->writesize - 1, ctrl->regs + DMA_CFG_A);
+		writel_relaxed(dma_addr, ctrl->regs + DATA_PTR);
+	}
+
+	if (oob_buf) {
+		dma_addr_oob = dma_map_single(ctrl->dev, oob_buf, mtd->oobsize,
+					      dir);
+		ret = dma_mapping_error(ctrl->dev, dma_addr_oob);
+		if (ret) {
+			dev_err(ctrl->dev, "dma mapping error\n");
+			ret = -EINVAL;
+			goto err_unmap_dma_page;
+		}
+
+		writel_relaxed(oob_len - 1, ctrl->regs + DMA_CFG_B);
+		writel_relaxed(dma_addr_oob, ctrl->regs + TAG_PTR);
+	}
+
+	dma_ctrl = DMA_MST_CTRL_GO | DMA_MST_CTRL_PERF_EN |
+		   DMA_MST_CTRL_IE_DONE | DMA_MST_CTRL_IS_DONE |
+		   DMA_MST_CTRL_BURST_16;
+
+	if (buf)
+		dma_ctrl |= DMA_MST_CTRL_EN_A;
+	if (oob_buf)
+		dma_ctrl |= DMA_MST_CTRL_EN_B;
+
+	if (read)
+		dma_ctrl |= DMA_MST_CTRL_IN | DMA_MST_CTRL_REUSE;
+	else
+		dma_ctrl |= DMA_MST_CTRL_OUT;
+
+	writel_relaxed(dma_ctrl, ctrl->regs + DMA_MST_CTRL);
+
+	cmd |= COMMAND_GO | COMMAND_RBSY_CHK | COMMAND_TRANS_SIZE(9) |
+	       COMMAND_CE(ctrl->cur_cs);
+
+	if (buf)
+		cmd |= COMMAND_A_VALID;
+	if (oob_buf)
+		cmd |= COMMAND_B_VALID;
+
+	if (read)
+		cmd |= COMMAND_RX;
+	else
+		cmd |= COMMAND_TX | COMMAND_AFT_DAT;
+
+	writel_relaxed(cmd, ctrl->regs + COMMAND);
+
+	ret = wait_for_completion_timeout(&ctrl->command_complete,
+					  msecs_to_jiffies(500));
+	if (!ret) {
+		dev_err(ctrl->dev, "COMMAND timeout\n");
+		tegra_nand_dump_reg(ctrl);
+		tegra_nand_controller_abort(ctrl);
+		ret = -ETIMEDOUT;
+		goto err_unmap_dma;
+	}
+
+	ret = wait_for_completion_timeout(&ctrl->dma_complete,
+					  msecs_to_jiffies(500));
+	if (!ret) {
+		dev_err(ctrl->dev, "DMA timeout\n");
+		tegra_nand_dump_reg(ctrl);
+		tegra_nand_controller_abort(ctrl);
+		ret = -ETIMEDOUT;
+		goto err_unmap_dma;
+	}
+	ret = 0;
+
+err_unmap_dma:
+	if (oob_buf)
+		dma_unmap_single(ctrl->dev, dma_addr_oob, mtd->oobsize, dir);
+err_unmap_dma_page:
+	if (buf)
+		dma_unmap_single(ctrl->dev, dma_addr, mtd->writesize, dir);
+
+	return ret;
+}
+
+static int tegra_nand_read_page_raw(struct mtd_info *mtd,
+				    struct nand_chip *chip, u8 *buf,
+				    int oob_required, int page)
+{
+	void *oob_buf = oob_required ? chip->oob_poi : NULL;
+
+	return tegra_nand_page_xfer(mtd, chip, buf, oob_buf,
+				    mtd->oobsize, page, true);
+}
+
+static int tegra_nand_write_page_raw(struct mtd_info *mtd,
+				     struct nand_chip *chip, const u8 *buf,
+				     int oob_required, int page)
+{
+	void *oob_buf = oob_required ? chip->oob_poi : NULL;
+
+	return tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
+				     mtd->oobsize, page, false);
+}
+
+static int tegra_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			       int page)
+{
+	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
+				    mtd->oobsize, page, true);
+}
+
+static int tegra_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+				int page)
+{
+	return tegra_nand_page_xfer(mtd, chip, NULL, chip->oob_poi,
+				    mtd->oobsize, page, false);
+}
+
+static int tegra_nand_read_page_hwecc(struct mtd_info *mtd,
+				      struct nand_chip *chip, u8 *buf,
+				      int oob_required, int page)
+{
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+	struct tegra_nand_chip *nand = to_tegra_chip(chip);
+	void *oob_buf = oob_required ? chip->oob_poi : NULL;
+	u32 dec_stat, max_corr_cnt;
+	unsigned long fail_sec_flag;
+	int ret;
+
+	tegra_nand_hw_ecc(ctrl, chip, true);
+	ret = tegra_nand_page_xfer(mtd, chip, buf, oob_buf, 0, page, true);
+	tegra_nand_hw_ecc(ctrl, chip, false);
+	if (ret)
+		return ret;
+
+	/* No correctable or un-correctable errors, page must have 0 bitflips */
+	if (!ctrl->last_read_error)
+		return 0;
+
+	/*
+	 * Correctable or un-correctable errors occurred. Use DEC_STAT_BUF
+	 * which contains information for all ECC selections.
+	 *
+	 * Note that since we do not use Command Queues DEC_RESULT does not
+	 * state the number of pages we can read from the DEC_STAT_BUF. But
+	 * since CORRFAIL_ERR did occur during page read we do have a valid
+	 * result in DEC_STAT_BUF.
+	 */
+	ctrl->last_read_error = false;
+	dec_stat = readl_relaxed(ctrl->regs + DEC_STAT_BUF);
+
+	fail_sec_flag = (dec_stat & DEC_STAT_BUF_FAIL_SEC_FLAG_MASK) >>
+			DEC_STAT_BUF_FAIL_SEC_FLAG_SHIFT;
+
+	max_corr_cnt = (dec_stat & DEC_STAT_BUF_MAX_CORR_CNT_MASK) >>
+		       DEC_STAT_BUF_MAX_CORR_CNT_SHIFT;
+
+	if (fail_sec_flag) {
+		int bit, max_bitflips = 0;
+
+		/*
+		 * Since we do not support subpage writes, a complete page
+		 * is either written or not. We can take a shortcut here by
+		 * checking wheather any of the sector has been successful
+		 * read. If at least one sectors has been read successfully,
+		 * the page must have been a written previously. It cannot
+		 * be an erased page.
+		 *
+		 * E.g. controller might return fail_sec_flag with 0x4, which
+		 * would mean only the third sector failed to correct. The
+		 * page must have been written and the third sector is really
+		 * not correctable anymore.
+		 */
+		if (fail_sec_flag ^ GENMASK(chip->ecc.steps - 1, 0)) {
+			mtd->ecc_stats.failed += hweight8(fail_sec_flag);
+			return max_corr_cnt;
+		}
+
+		/*
+		 * All sectors failed to correct, but the ECC isn't smart
+		 * enough to figure out if a page is really just erased.
+		 * Read OOB data and check whether data/OOB is completely
+		 * erased or if error correction just failed for all sub-
+		 * pages.
+		 */
+		ret = tegra_nand_read_oob(mtd, chip, page);
+		if (ret < 0)
+			return ret;
+
+		for_each_set_bit(bit, &fail_sec_flag, chip->ecc.steps) {
+			u8 *data = buf + (chip->ecc.size * bit);
+			u8 *oob = chip->oob_poi + nand->ecc.offset +
+				  (chip->ecc.bytes * bit);
+
+			ret = nand_check_erased_ecc_chunk(data, chip->ecc.size,
+							  oob, chip->ecc.bytes,
+							  NULL, 0,
+							  chip->ecc.strength);
+			if (ret < 0) {
+				mtd->ecc_stats.failed++;
+			} else {
+				mtd->ecc_stats.corrected += ret;
+				max_bitflips = max(ret, max_bitflips);
+			}
+		}
+
+		return max_t(unsigned int, max_corr_cnt, max_bitflips);
+	} else {
+		int corr_sec_flag;
+
+		corr_sec_flag = (dec_stat & DEC_STAT_BUF_CORR_SEC_FLAG_MASK) >>
+				DEC_STAT_BUF_CORR_SEC_FLAG_SHIFT;
+
+		/*
+		 * The value returned in the register is the maximum of
+		 * bitflips encountered in any of the ECC regions. As there is
+		 * no way to get the number of bitflips in a specific regions
+		 * we are not able to deliver correct stats but instead
+		 * overestimate the number of corrected bitflips by assuming
+		 * that all regions where errors have been corrected
+		 * encountered the maximum number of bitflips.
+		 */
+		mtd->ecc_stats.corrected += max_corr_cnt * hweight8(corr_sec_flag);
+
+		return max_corr_cnt;
+	}
+}
+
+static int tegra_nand_write_page_hwecc(struct mtd_info *mtd,
+				       struct nand_chip *chip, const u8 *buf,
+				       int oob_required, int page)
+{
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+	void *oob_buf = oob_required ? chip->oob_poi : NULL;
+	int ret;
+
+	tegra_nand_hw_ecc(ctrl, chip, true);
+	ret = tegra_nand_page_xfer(mtd, chip, (void *)buf, oob_buf,
+				   0, page, false);
+	tegra_nand_hw_ecc(ctrl, chip, false);
+
+	return ret;
+}
+
+static void tegra_nand_setup_timing(struct tegra_nand_controller *ctrl,
+				    const struct nand_sdr_timings *timings)
+{
+	/*
+	 * The period (and all other timings in this function) is in ps,
+	 * so need to take care here to avoid integer overflows.
+	 */
+	unsigned int rate = clk_get_rate(ctrl->clk) / 1000000;
+	unsigned int period = DIV_ROUND_UP(1000000, rate);
+	u32 val, reg = 0;
+
+	val = DIV_ROUND_UP(max3(timings->tAR_min, timings->tRR_min,
+				timings->tRC_min), period);
+	reg |= TIMING_TCR_TAR_TRR(OFFSET(val, 3));
+
+	val = DIV_ROUND_UP(max(max(timings->tCS_min, timings->tCH_min),
+			       max(timings->tALS_min, timings->tALH_min)),
+			   period);
+	reg |= TIMING_TCS(OFFSET(val, 2));
+
+	val = DIV_ROUND_UP(max(timings->tRP_min, timings->tREA_max) + 6000,
+			   period);
+	reg |= TIMING_TRP(OFFSET(val, 1)) | TIMING_TRP_RESP(OFFSET(val, 1));
+
+	reg |= TIMING_TWB(OFFSET(DIV_ROUND_UP(timings->tWB_max, period), 1));
+	reg |= TIMING_TWHR(OFFSET(DIV_ROUND_UP(timings->tWHR_min, period), 1));
+	reg |= TIMING_TWH(OFFSET(DIV_ROUND_UP(timings->tWH_min, period), 1));
+	reg |= TIMING_TWP(OFFSET(DIV_ROUND_UP(timings->tWP_min, period), 1));
+	reg |= TIMING_TRH(OFFSET(DIV_ROUND_UP(timings->tREH_min, period), 1));
+
+	writel_relaxed(reg, ctrl->regs + TIMING_1);
+
+	val = DIV_ROUND_UP(timings->tADL_min, period);
+	reg = TIMING_TADL(OFFSET(val, 3));
+
+	writel_relaxed(reg, ctrl->regs + TIMING_2);
+}
+
+static int tegra_nand_setup_data_interface(struct mtd_info *mtd, int csline,
+					const struct nand_data_interface *conf)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+	const struct nand_sdr_timings *timings;
+
+	timings = nand_get_sdr_timings(conf);
+	if (IS_ERR(timings))
+		return PTR_ERR(timings);
+
+	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+		return 0;
+
+	tegra_nand_setup_timing(ctrl, timings);
+
+	return 0;
+}
+
+static const int rs_strength_bootable[] = { 4 };
+static const int rs_strength[] = { 4, 6, 8 };
+static const int bch_strength_bootable[] = { 8, 16 };
+static const int bch_strength[] = { 4, 8, 14, 16 };
+
+static int tegra_nand_get_strength(struct nand_chip *chip, const int *strength,
+				   int strength_len, int bits_per_step,
+				   int oobsize)
+{
+	bool maximize = chip->ecc.options & NAND_ECC_MAXIMIZE;
+	int i;
+
+	/*
+	 * Loop through available strengths. Backwards in case we try to
+	 * maximize the BCH strength.
+	 */
+	for (i = 0; i < strength_len; i++) {
+		int strength_sel, bytes_per_step, bytes_per_page;
+
+		if (maximize) {
+			strength_sel = strength[strength_len - i - 1];
+		} else {
+			strength_sel = strength[i];
+
+			if (strength_sel < chip->ecc_strength_ds)
+				continue;
+		}
+
+		bytes_per_step = DIV_ROUND_UP(bits_per_step * strength_sel,
+					      BITS_PER_BYTE);
+		bytes_per_page = round_up(bytes_per_step * chip->ecc.steps, 4);
+
+		/* Check whether strength fits OOB */
+		if (bytes_per_page < (oobsize - SKIP_SPARE_BYTES))
+			return strength_sel;
+	}
+
+	return -EINVAL;
+}
+
+static int tegra_nand_select_strength(struct nand_chip *chip, int oobsize)
+{
+	const int *strength;
+	int strength_len, bits_per_step;
+
+	switch (chip->ecc.algo) {
+	case NAND_ECC_RS:
+		bits_per_step = BITS_PER_STEP_RS;
+		if (chip->options & NAND_IS_BOOT_MEDIUM) {
+			strength = rs_strength_bootable;
+			strength_len = ARRAY_SIZE(rs_strength_bootable);
+		} else {
+			strength = rs_strength;
+			strength_len = ARRAY_SIZE(rs_strength);
+		}
+		break;
+	case NAND_ECC_BCH:
+		bits_per_step = BITS_PER_STEP_BCH;
+		if (chip->options & NAND_IS_BOOT_MEDIUM) {
+			strength = bch_strength_bootable;
+			strength_len = ARRAY_SIZE(bch_strength_bootable);
+		} else {
+			strength = bch_strength;
+			strength_len = ARRAY_SIZE(bch_strength);
+		}
+		break;
+	default:
+		return -EINVAL;
+	}
+
+	return tegra_nand_get_strength(chip, strength, strength_len,
+				       bits_per_step, oobsize);
+}
+
+static int tegra_nand_attach_chip(struct nand_chip *chip)
+{
+	struct tegra_nand_controller *ctrl = to_tegra_ctrl(chip->controller);
+	struct tegra_nand_chip *nand = to_tegra_chip(chip);
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int bits_per_step;
+	int ret;
+
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+	chip->ecc.mode = NAND_ECC_HW;
+	chip->ecc.size = 512;
+	chip->ecc.steps = mtd->writesize / chip->ecc.size;
+	if (chip->ecc_step_ds != 512) {
+		dev_err(ctrl->dev, "Unsupported step size %d\n",
+			chip->ecc_step_ds);
+		return -EINVAL;
+	}
+
+	chip->ecc.read_page = tegra_nand_read_page_hwecc;
+	chip->ecc.write_page = tegra_nand_write_page_hwecc;
+	chip->ecc.read_page_raw = tegra_nand_read_page_raw;
+	chip->ecc.write_page_raw = tegra_nand_write_page_raw;
+	chip->ecc.read_oob = tegra_nand_read_oob;
+	chip->ecc.write_oob = tegra_nand_write_oob;
+
+	if (chip->options & NAND_BUSWIDTH_16)
+		nand->config |= CONFIG_BUS_WIDTH_16;
+
+	if (chip->ecc.algo == NAND_ECC_UNKNOWN) {
+		if (mtd->writesize < 2048)
+			chip->ecc.algo = NAND_ECC_RS;
+		else
+			chip->ecc.algo = NAND_ECC_BCH;
+	}
+
+	if (chip->ecc.algo == NAND_ECC_BCH && mtd->writesize < 2048) {
+		dev_err(ctrl->dev, "BCH supports 2K or 4K page size only\n");
+		return -EINVAL;
+	}
+
+	if (!chip->ecc.strength) {
+		ret = tegra_nand_select_strength(chip, mtd->oobsize);
+		if (ret < 0) {
+			dev_err(ctrl->dev,
+				"No valid strength found, minimum %d\n",
+				chip->ecc_strength_ds);
+			return ret;
+		}
+
+		chip->ecc.strength = ret;
+	}
+
+	nand->config_ecc = CONFIG_PIPE_EN | CONFIG_SKIP_SPARE |
+			   CONFIG_SKIP_SPARE_SIZE_4;
+
+	switch (chip->ecc.algo) {
+	case NAND_ECC_RS:
+		bits_per_step = BITS_PER_STEP_RS * chip->ecc.strength;
+		mtd_set_ooblayout(mtd, &tegra_nand_oob_rs_ops);
+		nand->config_ecc |= CONFIG_HW_ECC | CONFIG_ECC_SEL |
+				    CONFIG_ERR_COR;
+		switch (chip->ecc.strength) {
+		case 4:
+			nand->config_ecc |= CONFIG_TVAL_4;
+			break;
+		case 6:
+			nand->config_ecc |= CONFIG_TVAL_6;
+			break;
+		case 8:
+			nand->config_ecc |= CONFIG_TVAL_8;
+			break;
+		default:
+			dev_err(ctrl->dev, "ECC strength %d not supported\n",
+				chip->ecc.strength);
+			return -EINVAL;
+		}
+		break;
+	case NAND_ECC_BCH:
+		bits_per_step = BITS_PER_STEP_BCH * chip->ecc.strength;
+		mtd_set_ooblayout(mtd, &tegra_nand_oob_bch_ops);
+		nand->bch_config = BCH_ENABLE;
+		switch (chip->ecc.strength) {
+		case 4:
+			nand->bch_config |= BCH_TVAL_4;
+			break;
+		case 8:
+			nand->bch_config |= BCH_TVAL_8;
+			break;
+		case 14:
+			nand->bch_config |= BCH_TVAL_14;
+			break;
+		case 16:
+			nand->bch_config |= BCH_TVAL_16;
+			break;
+		default:
+			dev_err(ctrl->dev, "ECC strength %d not supported\n",
+				chip->ecc.strength);
+			return -EINVAL;
+		}
+		break;
+	default:
+		dev_err(ctrl->dev, "ECC algorithm not supported\n");
+		return -EINVAL;
+	}
+
+	dev_info(ctrl->dev, "Using %s with strength %d per 512 byte step\n",
+		 chip->ecc.algo == NAND_ECC_BCH ? "BCH" : "RS",
+		 chip->ecc.strength);
+
+	chip->ecc.bytes = DIV_ROUND_UP(bits_per_step, BITS_PER_BYTE);
+
+	switch (mtd->writesize) {
+	case 256:
+		nand->config |= CONFIG_PS_256;
+		break;
+	case 512:
+		nand->config |= CONFIG_PS_512;
+		break;
+	case 1024:
+		nand->config |= CONFIG_PS_1024;
+		break;
+	case 2048:
+		nand->config |= CONFIG_PS_2048;
+		break;
+	case 4096:
+		nand->config |= CONFIG_PS_4096;
+		break;
+	default:
+		dev_err(ctrl->dev, "Unsupported writesize %d\n",
+			mtd->writesize);
+		return -ENODEV;
+	}
+
+	/* Store complete configuration for HW ECC in config_ecc */
+	nand->config_ecc |= nand->config;
+
+	/* Non-HW ECC read/writes complete OOB */
+	nand->config |= CONFIG_TAG_BYTE_SIZE(mtd->oobsize - 1);
+	writel_relaxed(nand->config, ctrl->regs + CONFIG);
+
+	return 0;
+}
+
+static const struct nand_controller_ops tegra_nand_controller_ops = {
+	.attach_chip = &tegra_nand_attach_chip,
+};
+
+static int tegra_nand_chips_init(struct device *dev,
+				 struct tegra_nand_controller *ctrl)
+{
+	struct device_node *np = dev->of_node;
+	struct device_node *np_nand;
+	int nsels, nchips = of_get_child_count(np);
+	struct tegra_nand_chip *nand;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	int ret;
+	u32 cs;
+
+	if (nchips != 1) {
+		dev_err(dev, "Currently only one NAND chip supported\n");
+		return -EINVAL;
+	}
+
+	np_nand = of_get_next_child(np, NULL);
+
+	nsels = of_property_count_elems_of_size(np_nand, "reg", sizeof(u32));
+	if (nsels != 1) {
+		dev_err(dev, "Missing/invalid reg property\n");
+		return -EINVAL;
+	}
+
+	/* Retrieve CS id, currently only single die NAND supported */
+	ret = of_property_read_u32(np_nand, "reg", &cs);
+	if (ret) {
+		dev_err(dev, "could not retrieve reg property: %d\n", ret);
+		return ret;
+	}
+
+	nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL);
+	if (!nand)
+		return -ENOMEM;
+
+	nand->cs[0] = cs;
+
+	nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW);
+
+	if (IS_ERR(nand->wp_gpio)) {
+		ret = PTR_ERR(nand->wp_gpio);
+		dev_err(dev, "Failed to request WP GPIO: %d\n", ret);
+		return ret;
+	}
+
+	chip = &nand->chip;
+	chip->controller = &ctrl->controller;
+
+	mtd = nand_to_mtd(chip);
+
+	mtd->dev.parent = dev;
+	mtd->owner = THIS_MODULE;
+
+	nand_set_flash_node(chip, np_nand);
+
+	if (!mtd->name)
+		mtd->name = "tegra_nand";
+
+	chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER;
+	chip->exec_op = tegra_nand_exec_op;
+	chip->select_chip = tegra_nand_select_chip;
+	chip->setup_data_interface = tegra_nand_setup_data_interface;
+
+	ret = nand_scan(mtd, 1);
+	if (ret)
+		return ret;
+
+	mtd_ooblayout_ecc(mtd, 0, &nand->ecc);
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret) {
+		dev_err(dev, "Failed to register mtd device: %d\n", ret);
+		nand_cleanup(chip);
+		return ret;
+	}
+
+	ctrl->chip = chip;
+
+	return 0;
+}
+
+static int tegra_nand_probe(struct platform_device *pdev)
+{
+	struct reset_control *rst;
+	struct tegra_nand_controller *ctrl;
+	struct resource *res;
+	int err = 0;
+
+	ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL);
+	if (!ctrl)
+		return -ENOMEM;
+
+	ctrl->dev = &pdev->dev;
+	nand_controller_init(&ctrl->controller);
+	ctrl->controller.ops = &tegra_nand_controller_ops;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	ctrl->regs = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(ctrl->regs))
+		return PTR_ERR(ctrl->regs);
+
+	rst = devm_reset_control_get(&pdev->dev, "nand");
+	if (IS_ERR(rst))
+		return PTR_ERR(rst);
+
+	ctrl->clk = devm_clk_get(&pdev->dev, "nand");
+	if (IS_ERR(ctrl->clk))
+		return PTR_ERR(ctrl->clk);
+
+	err = clk_prepare_enable(ctrl->clk);
+	if (err)
+		return err;
+
+	err = reset_control_reset(rst);
+	if (err) {
+		dev_err(ctrl->dev, "Failed to reset HW: %d\n", err);
+		goto err_disable_clk;
+	}
+
+	writel_relaxed(HWSTATUS_CMD_DEFAULT, ctrl->regs + HWSTATUS_CMD);
+	writel_relaxed(HWSTATUS_MASK_DEFAULT, ctrl->regs + HWSTATUS_MASK);
+	writel_relaxed(INT_MASK, ctrl->regs + IER);
+
+	init_completion(&ctrl->command_complete);
+	init_completion(&ctrl->dma_complete);
+
+	ctrl->irq = platform_get_irq(pdev, 0);
+	err = devm_request_irq(&pdev->dev, ctrl->irq, tegra_nand_irq, 0,
+			       dev_name(&pdev->dev), ctrl);
+	if (err) {
+		dev_err(ctrl->dev, "Failed to get IRQ: %d\n", err);
+		goto err_disable_clk;
+	}
+
+	writel_relaxed(DMA_MST_CTRL_IS_DONE, ctrl->regs + DMA_MST_CTRL);
+
+	err = tegra_nand_chips_init(ctrl->dev, ctrl);
+	if (err)
+		goto err_disable_clk;
+
+	platform_set_drvdata(pdev, ctrl);
+
+	return 0;
+
+err_disable_clk:
+	clk_disable_unprepare(ctrl->clk);
+	return err;
+}
+
+static int tegra_nand_remove(struct platform_device *pdev)
+{
+	struct tegra_nand_controller *ctrl = platform_get_drvdata(pdev);
+	struct nand_chip *chip = ctrl->chip;
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	int ret;
+
+	ret = mtd_device_unregister(mtd);
+	if (ret)
+		return ret;
+
+	nand_cleanup(chip);
+
+	clk_disable_unprepare(ctrl->clk);
+
+	return 0;
+}
+
+static const struct of_device_id tegra_nand_of_match[] = {
+	{ .compatible = "nvidia,tegra20-nand" },
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, tegra_nand_of_match);
+
+static struct platform_driver tegra_nand_driver = {
+	.driver = {
+		.name = "tegra-nand",
+		.of_match_table = tegra_nand_of_match,
+	},
+	.probe = tegra_nand_probe,
+	.remove = tegra_nand_remove,
+};
+module_platform_driver(tegra_nand_driver);
+
+MODULE_DESCRIPTION("NVIDIA Tegra NAND driver");
+MODULE_AUTHOR("Thierry Reding <thierry.reding@nvidia.com>");
+MODULE_AUTHOR("Lucas Stach <dev@lynxeye.de>");
+MODULE_AUTHOR("Stefan Agner <stefan@agner.ch>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/tmio_nand.c b/drivers/mtd/nand/raw/tmio_nand.c
new file mode 100644
index 0000000..dcaa924
--- /dev/null
+++ b/drivers/mtd/nand/raw/tmio_nand.c
@@ -0,0 +1,513 @@
+/*
+ * Toshiba TMIO NAND flash controller driver
+ *
+ * Slightly murky pre-git history of the driver:
+ *
+ * Copyright (c) Ian Molton 2004, 2005, 2008
+ *    Original work, independent of sharps code. Included hardware ECC support.
+ *    Hard ECC did not work for writes in the early revisions.
+ * Copyright (c) Dirk Opfer 2005.
+ *    Modifications developed from sharps code but
+ *    NOT containing any, ported onto Ians base.
+ * Copyright (c) Chris Humbert 2005
+ * Copyright (c) Dmitry Baryshkov 2008
+ *    Minor fixes
+ *
+ * Parts copyright Sebastian Carlier
+ *
+ * This file is licensed under
+ * the terms of the GNU General Public License version 2. This program
+ * is licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ *
+ */
+
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/mfd/core.h>
+#include <linux/mfd/tmio.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/irq.h>
+#include <linux/interrupt.h>
+#include <linux/ioport.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/slab.h>
+
+/*--------------------------------------------------------------------------*/
+
+/*
+ * NAND Flash Host Controller Configuration Register
+ */
+#define CCR_COMMAND	0x04	/* w Command				*/
+#define CCR_BASE	0x10	/* l NAND Flash Control Reg Base Addr	*/
+#define CCR_INTP	0x3d	/* b Interrupt Pin			*/
+#define CCR_INTE	0x48	/* b Interrupt Enable			*/
+#define CCR_EC		0x4a	/* b Event Control			*/
+#define CCR_ICC		0x4c	/* b Internal Clock Control		*/
+#define CCR_ECCC	0x5b	/* b ECC Control			*/
+#define CCR_NFTC	0x60	/* b NAND Flash Transaction Control	*/
+#define CCR_NFM		0x61	/* b NAND Flash Monitor			*/
+#define CCR_NFPSC	0x62	/* b NAND Flash Power Supply Control	*/
+#define CCR_NFDC	0x63	/* b NAND Flash Detect Control		*/
+
+/*
+ * NAND Flash Control Register
+ */
+#define FCR_DATA	0x00	/* bwl Data Register			*/
+#define FCR_MODE	0x04	/* b Mode Register			*/
+#define FCR_STATUS	0x05	/* b Status Register			*/
+#define FCR_ISR		0x06	/* b Interrupt Status Register		*/
+#define FCR_IMR		0x07	/* b Interrupt Mask Register		*/
+
+/* FCR_MODE Register Command List */
+#define FCR_MODE_DATA	0x94	/* Data Data_Mode */
+#define FCR_MODE_COMMAND 0x95	/* Data Command_Mode */
+#define FCR_MODE_ADDRESS 0x96	/* Data Address_Mode */
+
+#define FCR_MODE_HWECC_CALC	0xB4	/* HW-ECC Data */
+#define FCR_MODE_HWECC_RESULT	0xD4	/* HW-ECC Calc result Read_Mode */
+#define FCR_MODE_HWECC_RESET	0xF4	/* HW-ECC Reset */
+
+#define FCR_MODE_POWER_ON	0x0C	/* Power Supply ON  to SSFDC card */
+#define FCR_MODE_POWER_OFF	0x08	/* Power Supply OFF to SSFDC card */
+
+#define FCR_MODE_LED_OFF	0x00	/* LED OFF */
+#define FCR_MODE_LED_ON		0x04	/* LED ON */
+
+#define FCR_MODE_EJECT_ON	0x68	/* Ejection events active  */
+#define FCR_MODE_EJECT_OFF	0x08	/* Ejection events ignored */
+
+#define FCR_MODE_LOCK		0x6C	/* Lock_Mode. Eject Switch Invalid */
+#define FCR_MODE_UNLOCK		0x0C	/* UnLock_Mode. Eject Switch is valid */
+
+#define FCR_MODE_CONTROLLER_ID	0x40	/* Controller ID Read */
+#define FCR_MODE_STANDBY	0x00	/* SSFDC card Changes Standby State */
+
+#define FCR_MODE_WE		0x80
+#define FCR_MODE_ECC1		0x40
+#define FCR_MODE_ECC0		0x20
+#define FCR_MODE_CE		0x10
+#define FCR_MODE_PCNT1		0x08
+#define FCR_MODE_PCNT0		0x04
+#define FCR_MODE_ALE		0x02
+#define FCR_MODE_CLE		0x01
+
+#define FCR_STATUS_BUSY		0x80
+
+/*--------------------------------------------------------------------------*/
+
+struct tmio_nand {
+	struct nand_chip chip;
+
+	struct platform_device *dev;
+
+	void __iomem *ccr;
+	void __iomem *fcr;
+	unsigned long fcr_base;
+
+	unsigned int irq;
+
+	/* for tmio_nand_read_byte */
+	u8			read;
+	unsigned read_good:1;
+};
+
+static inline struct tmio_nand *mtd_to_tmio(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct tmio_nand, chip);
+}
+
+
+/*--------------------------------------------------------------------------*/
+
+static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		u8 mode;
+
+		if (ctrl & NAND_NCE) {
+			mode = FCR_MODE_DATA;
+
+			if (ctrl & NAND_CLE)
+				mode |=  FCR_MODE_CLE;
+			else
+				mode &= ~FCR_MODE_CLE;
+
+			if (ctrl & NAND_ALE)
+				mode |=  FCR_MODE_ALE;
+			else
+				mode &= ~FCR_MODE_ALE;
+		} else {
+			mode = FCR_MODE_STANDBY;
+		}
+
+		tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
+		tmio->read_good = 0;
+	}
+
+	if (cmd != NAND_CMD_NONE)
+		tmio_iowrite8(cmd, chip->IO_ADDR_W);
+}
+
+static int tmio_nand_dev_ready(struct mtd_info *mtd)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+
+	return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
+}
+
+static irqreturn_t tmio_irq(int irq, void *__tmio)
+{
+	struct tmio_nand *tmio = __tmio;
+	struct nand_chip *nand_chip = &tmio->chip;
+
+	/* disable RDYREQ interrupt */
+	tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
+
+	if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
+		dev_warn(&tmio->dev->dev, "spurious interrupt\n");
+
+	wake_up(&nand_chip->controller->wq);
+	return IRQ_HANDLED;
+}
+
+/*
+  *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
+  *This interrupt is normally disabled, but for long operations like
+  *erase and write, we enable it to wake us up.  The irq handler
+  *disables the interrupt.
+ */
+static int
+tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	long timeout;
+	u8 status;
+
+	/* enable RDYREQ interrupt */
+	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
+	tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
+
+	timeout = wait_event_timeout(nand_chip->controller->wq,
+		tmio_nand_dev_ready(mtd),
+		msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
+
+	if (unlikely(!tmio_nand_dev_ready(mtd))) {
+		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
+		dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
+			nand_chip->state == FL_ERASING ? "erase" : "program",
+			nand_chip->state == FL_ERASING ? 400 : 20);
+
+	} else if (unlikely(!timeout)) {
+		tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
+		dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
+	}
+
+	nand_status_op(nand_chip, &status);
+	return status;
+}
+
+/*
+  *The TMIO controller combines two 8-bit data bytes into one 16-bit
+  *word. This function separates them so nand_base.c works as expected,
+  *especially its NAND_CMD_READID routines.
+ *
+  *To prevent stale data from being read, tmio_nand_hwcontrol() clears
+  *tmio->read_good.
+ */
+static u_char tmio_nand_read_byte(struct mtd_info *mtd)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	unsigned int data;
+
+	if (tmio->read_good--)
+		return tmio->read;
+
+	data = tmio_ioread16(tmio->fcr + FCR_DATA);
+	tmio->read = data >> 8;
+	return data;
+}
+
+/*
+  *The TMIO controller converts an 8-bit NAND interface to a 16-bit
+  *bus interface, so all data reads and writes must be 16-bit wide.
+  *Thus, we implement 16-bit versions of the read, write, and verify
+  *buffer functions.
+ */
+static void
+tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+
+	tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
+}
+
+static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+
+	tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
+}
+
+static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+
+	tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
+	tmio_ioread8(tmio->fcr + FCR_DATA);	/* dummy read */
+	tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
+}
+
+static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+							u_char *ecc_code)
+{
+	struct tmio_nand *tmio = mtd_to_tmio(mtd);
+	unsigned int ecc;
+
+	tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
+
+	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
+	ecc_code[1] = ecc;	/* 000-255 LP7-0 */
+	ecc_code[0] = ecc >> 8;	/* 000-255 LP15-8 */
+	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
+	ecc_code[2] = ecc;	/* 000-255 CP5-0,11b */
+	ecc_code[4] = ecc >> 8;	/* 256-511 LP7-0 */
+	ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
+	ecc_code[3] = ecc;	/* 256-511 LP15-8 */
+	ecc_code[5] = ecc >> 8;	/* 256-511 CP5-0,11b */
+
+	tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
+	return 0;
+}
+
+static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+		unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+	int r0, r1;
+
+	/* assume ecc.size = 512 and ecc.bytes = 6 */
+	r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
+	if (r0 < 0)
+		return r0;
+	r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256);
+	if (r1 < 0)
+		return r1;
+	return r0 + r1;
+}
+
+static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
+{
+	const struct mfd_cell *cell = mfd_get_cell(dev);
+	int ret;
+
+	if (cell->enable) {
+		ret = cell->enable(dev);
+		if (ret)
+			return ret;
+	}
+
+	/* (4Ch) CLKRUN Enable    1st spcrunc */
+	tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
+
+	/* (10h)BaseAddress    0x1000 spba.spba2 */
+	tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
+	tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
+
+	/* (04h)Command Register I/O spcmd */
+	tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
+
+	/* (62h) Power Supply Control ssmpwc */
+	/* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
+	tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
+
+	/* (63h) Detect Control ssmdtc */
+	tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
+
+	/* Interrupt status register clear sintst */
+	tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
+
+	/* After power supply, Media are reset smode */
+	tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
+	tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
+	tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
+
+	/* Standby Mode smode */
+	tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
+
+	mdelay(5);
+
+	return 0;
+}
+
+static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
+{
+	const struct mfd_cell *cell = mfd_get_cell(dev);
+
+	tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
+	if (cell->disable)
+		cell->disable(dev);
+}
+
+static int tmio_probe(struct platform_device *dev)
+{
+	struct tmio_nand_data *data = dev_get_platdata(&dev->dev);
+	struct resource *fcr = platform_get_resource(dev,
+			IORESOURCE_MEM, 0);
+	struct resource *ccr = platform_get_resource(dev,
+			IORESOURCE_MEM, 1);
+	int irq = platform_get_irq(dev, 0);
+	struct tmio_nand *tmio;
+	struct mtd_info *mtd;
+	struct nand_chip *nand_chip;
+	int retval;
+
+	if (data == NULL)
+		dev_warn(&dev->dev, "NULL platform data!\n");
+
+	tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL);
+	if (!tmio)
+		return -ENOMEM;
+
+	tmio->dev = dev;
+
+	platform_set_drvdata(dev, tmio);
+	nand_chip = &tmio->chip;
+	mtd = nand_to_mtd(nand_chip);
+	mtd->name = "tmio-nand";
+	mtd->dev.parent = &dev->dev;
+
+	tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr));
+	if (!tmio->ccr)
+		return -EIO;
+
+	tmio->fcr_base = fcr->start & 0xfffff;
+	tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr));
+	if (!tmio->fcr)
+		return -EIO;
+
+	retval = tmio_hw_init(dev, tmio);
+	if (retval)
+		return retval;
+
+	/* Set address of NAND IO lines */
+	nand_chip->IO_ADDR_R = tmio->fcr;
+	nand_chip->IO_ADDR_W = tmio->fcr;
+
+	/* Set address of hardware control function */
+	nand_chip->cmd_ctrl = tmio_nand_hwcontrol;
+	nand_chip->dev_ready = tmio_nand_dev_ready;
+	nand_chip->read_byte = tmio_nand_read_byte;
+	nand_chip->write_buf = tmio_nand_write_buf;
+	nand_chip->read_buf = tmio_nand_read_buf;
+
+	/* set eccmode using hardware ECC */
+	nand_chip->ecc.mode = NAND_ECC_HW;
+	nand_chip->ecc.size = 512;
+	nand_chip->ecc.bytes = 6;
+	nand_chip->ecc.strength = 2;
+	nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
+	nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
+	nand_chip->ecc.correct = tmio_nand_correct_data;
+
+	if (data)
+		nand_chip->badblock_pattern = data->badblock_pattern;
+
+	/* 15 us command delay time */
+	nand_chip->chip_delay = 15;
+
+	retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0,
+				  dev_name(&dev->dev), tmio);
+	if (retval) {
+		dev_err(&dev->dev, "request_irq error %d\n", retval);
+		goto err_irq;
+	}
+
+	tmio->irq = irq;
+	nand_chip->waitfunc = tmio_nand_wait;
+
+	/* Scan to find existence of the device */
+	retval = nand_scan(mtd, 1);
+	if (retval)
+		goto err_irq;
+
+	/* Register the partitions */
+	retval = mtd_device_parse_register(mtd,
+					   data ? data->part_parsers : NULL,
+					   NULL,
+					   data ? data->partition : NULL,
+					   data ? data->num_partitions : 0);
+	if (!retval)
+		return retval;
+
+	nand_release(mtd);
+
+err_irq:
+	tmio_hw_stop(dev, tmio);
+	return retval;
+}
+
+static int tmio_remove(struct platform_device *dev)
+{
+	struct tmio_nand *tmio = platform_get_drvdata(dev);
+
+	nand_release(nand_to_mtd(&tmio->chip));
+	tmio_hw_stop(dev, tmio);
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int tmio_suspend(struct platform_device *dev, pm_message_t state)
+{
+	const struct mfd_cell *cell = mfd_get_cell(dev);
+
+	if (cell->suspend)
+		cell->suspend(dev);
+
+	tmio_hw_stop(dev, platform_get_drvdata(dev));
+	return 0;
+}
+
+static int tmio_resume(struct platform_device *dev)
+{
+	const struct mfd_cell *cell = mfd_get_cell(dev);
+
+	/* FIXME - is this required or merely another attack of the broken
+	 * SHARP platform? Looks suspicious.
+	 */
+	tmio_hw_init(dev, platform_get_drvdata(dev));
+
+	if (cell->resume)
+		cell->resume(dev);
+
+	return 0;
+}
+#else
+#define tmio_suspend NULL
+#define tmio_resume NULL
+#endif
+
+static struct platform_driver tmio_driver = {
+	.driver.name	= "tmio-nand",
+	.driver.owner	= THIS_MODULE,
+	.probe		= tmio_probe,
+	.remove		= tmio_remove,
+	.suspend	= tmio_suspend,
+	.resume		= tmio_resume,
+};
+
+module_platform_driver(tmio_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
+MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
+MODULE_ALIAS("platform:tmio-nand");
diff --git a/drivers/mtd/nand/raw/txx9ndfmc.c b/drivers/mtd/nand/raw/txx9ndfmc.c
new file mode 100644
index 0000000..4d61a14
--- /dev/null
+++ b/drivers/mtd/nand/raw/txx9ndfmc.c
@@ -0,0 +1,423 @@
+/*
+ * TXx9 NAND flash memory controller driver
+ * Based on RBTX49xx patch from CELF patch archive.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * (C) Copyright TOSHIBA CORPORATION 2004-2007
+ * All Rights Reserved.
+ */
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/io.h>
+#include <linux/platform_data/txx9/ndfmc.h>
+
+/* TXX9 NDFMC Registers */
+#define TXX9_NDFDTR	0x00
+#define TXX9_NDFMCR	0x04
+#define TXX9_NDFSR	0x08
+#define TXX9_NDFISR	0x0c
+#define TXX9_NDFIMR	0x10
+#define TXX9_NDFSPR	0x14
+#define TXX9_NDFRSTR	0x18	/* not TX4939 */
+
+/* NDFMCR : NDFMC Mode Control */
+#define TXX9_NDFMCR_WE	0x80
+#define TXX9_NDFMCR_ECC_ALL	0x60
+#define TXX9_NDFMCR_ECC_RESET	0x60
+#define TXX9_NDFMCR_ECC_READ	0x40
+#define TXX9_NDFMCR_ECC_ON	0x20
+#define TXX9_NDFMCR_ECC_OFF	0x00
+#define TXX9_NDFMCR_CE	0x10
+#define TXX9_NDFMCR_BSPRT	0x04	/* TX4925/TX4926 only */
+#define TXX9_NDFMCR_ALE	0x02
+#define TXX9_NDFMCR_CLE	0x01
+/* TX4939 only */
+#define TXX9_NDFMCR_X16	0x0400
+#define TXX9_NDFMCR_DMAREQ_MASK	0x0300
+#define TXX9_NDFMCR_DMAREQ_NODMA	0x0000
+#define TXX9_NDFMCR_DMAREQ_128	0x0100
+#define TXX9_NDFMCR_DMAREQ_256	0x0200
+#define TXX9_NDFMCR_DMAREQ_512	0x0300
+#define TXX9_NDFMCR_CS_MASK	0x0c
+#define TXX9_NDFMCR_CS(ch)	((ch) << 2)
+
+/* NDFMCR : NDFMC Status */
+#define TXX9_NDFSR_BUSY	0x80
+/* TX4939 only */
+#define TXX9_NDFSR_DMARUN	0x40
+
+/* NDFMCR : NDFMC Reset */
+#define TXX9_NDFRSTR_RST	0x01
+
+struct txx9ndfmc_priv {
+	struct platform_device *dev;
+	struct nand_chip chip;
+	int cs;
+	const char *mtdname;
+};
+
+#define MAX_TXX9NDFMC_DEV	4
+struct txx9ndfmc_drvdata {
+	struct mtd_info *mtds[MAX_TXX9NDFMC_DEV];
+	void __iomem *base;
+	unsigned char hold;	/* in gbusclock */
+	unsigned char spw;	/* in gbusclock */
+	struct nand_controller controller;
+};
+
+static struct platform_device *mtd_to_platdev(struct mtd_info *mtd)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip);
+	return txx9_priv->dev;
+}
+
+static void __iomem *ndregaddr(struct platform_device *dev, unsigned int reg)
+{
+	struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev);
+	struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev);
+
+	return drvdata->base + (reg << plat->shift);
+}
+
+static u32 txx9ndfmc_read(struct platform_device *dev, unsigned int reg)
+{
+	return __raw_readl(ndregaddr(dev, reg));
+}
+
+static void txx9ndfmc_write(struct platform_device *dev,
+			    u32 val, unsigned int reg)
+{
+	__raw_writel(val, ndregaddr(dev, reg));
+}
+
+static uint8_t txx9ndfmc_read_byte(struct mtd_info *mtd)
+{
+	struct platform_device *dev = mtd_to_platdev(mtd);
+
+	return txx9ndfmc_read(dev, TXX9_NDFDTR);
+}
+
+static void txx9ndfmc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+				int len)
+{
+	struct platform_device *dev = mtd_to_platdev(mtd);
+	void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR);
+	u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
+
+	txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_WE, TXX9_NDFMCR);
+	while (len--)
+		__raw_writel(*buf++, ndfdtr);
+	txx9ndfmc_write(dev, mcr, TXX9_NDFMCR);
+}
+
+static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	struct platform_device *dev = mtd_to_platdev(mtd);
+	void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR);
+
+	while (len--)
+		*buf++ = __raw_readl(ndfdtr);
+}
+
+static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd,
+			       unsigned int ctrl)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip);
+	struct platform_device *dev = txx9_priv->dev;
+	struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev);
+
+	if (ctrl & NAND_CTRL_CHANGE) {
+		u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
+
+		mcr &= ~(TXX9_NDFMCR_CLE | TXX9_NDFMCR_ALE | TXX9_NDFMCR_CE);
+		mcr |= ctrl & NAND_CLE ? TXX9_NDFMCR_CLE : 0;
+		mcr |= ctrl & NAND_ALE ? TXX9_NDFMCR_ALE : 0;
+		/* TXX9_NDFMCR_CE bit is 0:high 1:low */
+		mcr |= ctrl & NAND_NCE ? TXX9_NDFMCR_CE : 0;
+		if (txx9_priv->cs >= 0 && (ctrl & NAND_NCE)) {
+			mcr &= ~TXX9_NDFMCR_CS_MASK;
+			mcr |= TXX9_NDFMCR_CS(txx9_priv->cs);
+		}
+		txx9ndfmc_write(dev, mcr, TXX9_NDFMCR);
+	}
+	if (cmd != NAND_CMD_NONE)
+		txx9ndfmc_write(dev, cmd & 0xff, TXX9_NDFDTR);
+	if (plat->flags & NDFMC_PLAT_FLAG_DUMMYWRITE) {
+		/* dummy write to update external latch */
+		if ((ctrl & NAND_CTRL_CHANGE) && cmd == NAND_CMD_NONE)
+			txx9ndfmc_write(dev, 0, TXX9_NDFDTR);
+	}
+	mmiowb();
+}
+
+static int txx9ndfmc_dev_ready(struct mtd_info *mtd)
+{
+	struct platform_device *dev = mtd_to_platdev(mtd);
+
+	return !(txx9ndfmc_read(dev, TXX9_NDFSR) & TXX9_NDFSR_BUSY);
+}
+
+static int txx9ndfmc_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
+				   uint8_t *ecc_code)
+{
+	struct platform_device *dev = mtd_to_platdev(mtd);
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int eccbytes;
+	u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
+
+	mcr &= ~TXX9_NDFMCR_ECC_ALL;
+	txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR);
+	txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_READ, TXX9_NDFMCR);
+	for (eccbytes = chip->ecc.bytes; eccbytes > 0; eccbytes -= 3) {
+		ecc_code[1] = txx9ndfmc_read(dev, TXX9_NDFDTR);
+		ecc_code[0] = txx9ndfmc_read(dev, TXX9_NDFDTR);
+		ecc_code[2] = txx9ndfmc_read(dev, TXX9_NDFDTR);
+		ecc_code += 3;
+	}
+	txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR);
+	return 0;
+}
+
+static int txx9ndfmc_correct_data(struct mtd_info *mtd, unsigned char *buf,
+		unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	int eccsize;
+	int corrected = 0;
+	int stat;
+
+	for (eccsize = chip->ecc.size; eccsize > 0; eccsize -= 256) {
+		stat = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
+		if (stat < 0)
+			return stat;
+		corrected += stat;
+		buf += 256;
+		read_ecc += 3;
+		calc_ecc += 3;
+	}
+	return corrected;
+}
+
+static void txx9ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct platform_device *dev = mtd_to_platdev(mtd);
+	u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR);
+
+	mcr &= ~TXX9_NDFMCR_ECC_ALL;
+	txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_RESET, TXX9_NDFMCR);
+	txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR);
+	txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_ON, TXX9_NDFMCR);
+}
+
+static void txx9ndfmc_initialize(struct platform_device *dev)
+{
+	struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev);
+	struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev);
+	int tmout = 100;
+
+	if (plat->flags & NDFMC_PLAT_FLAG_NO_RSTR)
+		; /* no NDFRSTR.  Write to NDFSPR resets the NDFMC. */
+	else {
+		/* reset NDFMC */
+		txx9ndfmc_write(dev,
+				txx9ndfmc_read(dev, TXX9_NDFRSTR) |
+				TXX9_NDFRSTR_RST,
+				TXX9_NDFRSTR);
+		while (txx9ndfmc_read(dev, TXX9_NDFRSTR) & TXX9_NDFRSTR_RST) {
+			if (--tmout == 0) {
+				dev_err(&dev->dev, "reset failed.\n");
+				break;
+			}
+			udelay(1);
+		}
+	}
+	/* setup Hold Time, Strobe Pulse Width */
+	txx9ndfmc_write(dev, (drvdata->hold << 4) | drvdata->spw, TXX9_NDFSPR);
+	txx9ndfmc_write(dev,
+			(plat->flags & NDFMC_PLAT_FLAG_USE_BSPRT) ?
+			TXX9_NDFMCR_BSPRT : 0, TXX9_NDFMCR);
+}
+
+#define TXX9NDFMC_NS_TO_CYC(gbusclk, ns) \
+	DIV_ROUND_UP((ns) * DIV_ROUND_UP(gbusclk, 1000), 1000000)
+
+static int txx9ndfmc_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+
+	if (mtd->writesize >= 512) {
+		chip->ecc.size = 512;
+		chip->ecc.bytes = 6;
+	} else {
+		chip->ecc.size = 256;
+		chip->ecc.bytes = 3;
+	}
+
+	return 0;
+}
+
+static const struct nand_controller_ops txx9ndfmc_controller_ops = {
+	.attach_chip = txx9ndfmc_attach_chip,
+};
+
+static int __init txx9ndfmc_probe(struct platform_device *dev)
+{
+	struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev);
+	int hold, spw;
+	int i;
+	struct txx9ndfmc_drvdata *drvdata;
+	unsigned long gbusclk = plat->gbus_clock;
+	struct resource *res;
+
+	drvdata = devm_kzalloc(&dev->dev, sizeof(*drvdata), GFP_KERNEL);
+	if (!drvdata)
+		return -ENOMEM;
+	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
+	drvdata->base = devm_ioremap_resource(&dev->dev, res);
+	if (IS_ERR(drvdata->base))
+		return PTR_ERR(drvdata->base);
+
+	hold = plat->hold ?: 20; /* tDH */
+	spw = plat->spw ?: 90; /* max(tREADID, tWP, tRP) */
+
+	hold = TXX9NDFMC_NS_TO_CYC(gbusclk, hold);
+	spw = TXX9NDFMC_NS_TO_CYC(gbusclk, spw);
+	if (plat->flags & NDFMC_PLAT_FLAG_HOLDADD)
+		hold -= 2;	/* actual hold time : (HOLD + 2) BUSCLK */
+	spw -= 1;	/* actual wait time : (SPW + 1) BUSCLK */
+	hold = clamp(hold, 1, 15);
+	drvdata->hold = hold;
+	spw = clamp(spw, 1, 15);
+	drvdata->spw = spw;
+	dev_info(&dev->dev, "CLK:%ldMHz HOLD:%d SPW:%d\n",
+		 (gbusclk + 500000) / 1000000, hold, spw);
+
+	nand_controller_init(&drvdata->controller);
+	drvdata->controller.ops = &txx9ndfmc_controller_ops;
+
+	platform_set_drvdata(dev, drvdata);
+	txx9ndfmc_initialize(dev);
+
+	for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) {
+		struct txx9ndfmc_priv *txx9_priv;
+		struct nand_chip *chip;
+		struct mtd_info *mtd;
+
+		if (!(plat->ch_mask & (1 << i)))
+			continue;
+		txx9_priv = kzalloc(sizeof(struct txx9ndfmc_priv),
+				    GFP_KERNEL);
+		if (!txx9_priv)
+			continue;
+		chip = &txx9_priv->chip;
+		mtd = nand_to_mtd(chip);
+		mtd->dev.parent = &dev->dev;
+
+		chip->read_byte = txx9ndfmc_read_byte;
+		chip->read_buf = txx9ndfmc_read_buf;
+		chip->write_buf = txx9ndfmc_write_buf;
+		chip->cmd_ctrl = txx9ndfmc_cmd_ctrl;
+		chip->dev_ready = txx9ndfmc_dev_ready;
+		chip->ecc.calculate = txx9ndfmc_calculate_ecc;
+		chip->ecc.correct = txx9ndfmc_correct_data;
+		chip->ecc.hwctl = txx9ndfmc_enable_hwecc;
+		chip->ecc.mode = NAND_ECC_HW;
+		chip->ecc.strength = 1;
+		chip->chip_delay = 100;
+		chip->controller = &drvdata->controller;
+
+		nand_set_controller_data(chip, txx9_priv);
+		txx9_priv->dev = dev;
+
+		if (plat->ch_mask != 1) {
+			txx9_priv->cs = i;
+			txx9_priv->mtdname = kasprintf(GFP_KERNEL, "%s.%u",
+						       dev_name(&dev->dev), i);
+		} else {
+			txx9_priv->cs = -1;
+			txx9_priv->mtdname = kstrdup(dev_name(&dev->dev),
+						     GFP_KERNEL);
+		}
+		if (!txx9_priv->mtdname) {
+			kfree(txx9_priv);
+			dev_err(&dev->dev, "Unable to allocate MTD name.\n");
+			continue;
+		}
+		if (plat->wide_mask & (1 << i))
+			chip->options |= NAND_BUSWIDTH_16;
+
+		if (nand_scan(mtd, 1)) {
+			kfree(txx9_priv->mtdname);
+			kfree(txx9_priv);
+			continue;
+		}
+		mtd->name = txx9_priv->mtdname;
+
+		mtd_device_register(mtd, NULL, 0);
+		drvdata->mtds[i] = mtd;
+	}
+
+	return 0;
+}
+
+static int __exit txx9ndfmc_remove(struct platform_device *dev)
+{
+	struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev);
+	int i;
+
+	if (!drvdata)
+		return 0;
+	for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) {
+		struct mtd_info *mtd = drvdata->mtds[i];
+		struct nand_chip *chip;
+		struct txx9ndfmc_priv *txx9_priv;
+
+		if (!mtd)
+			continue;
+		chip = mtd_to_nand(mtd);
+		txx9_priv = nand_get_controller_data(chip);
+
+		nand_release(mtd);
+		kfree(txx9_priv->mtdname);
+		kfree(txx9_priv);
+	}
+	return 0;
+}
+
+#ifdef CONFIG_PM
+static int txx9ndfmc_resume(struct platform_device *dev)
+{
+	if (platform_get_drvdata(dev))
+		txx9ndfmc_initialize(dev);
+	return 0;
+}
+#else
+#define txx9ndfmc_resume NULL
+#endif
+
+static struct platform_driver txx9ndfmc_driver = {
+	.remove		= __exit_p(txx9ndfmc_remove),
+	.resume		= txx9ndfmc_resume,
+	.driver		= {
+		.name	= "txx9ndfmc",
+	},
+};
+
+module_platform_driver_probe(txx9ndfmc_driver, txx9ndfmc_probe);
+
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("TXx9 SoC NAND flash controller driver");
+MODULE_ALIAS("platform:txx9ndfmc");
diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
new file mode 100644
index 0000000..6f6dcbf
--- /dev/null
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -0,0 +1,967 @@
+/*
+ * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
+ *
+ * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
+ * Jason ported to M54418TWR and MVFA5 (VF610).
+ * Authors: Stefan Agner <stefan.agner@toradex.com>
+ *          Bill Pringlemeir <bpringlemeir@nbsps.com>
+ *          Shaohui Xie <b21989@freescale.com>
+ *          Jason Jin <Jason.jin@freescale.com>
+ *
+ * Based on original driver mpc5121_nfc.c.
+ *
+ * This is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * Limitations:
+ * - Untested on MPC5125 and M54418.
+ * - DMA and pipelining not used.
+ * - 2K pages or less.
+ * - HW ECC: Only 2K page with 64+ OOB.
+ * - HW ECC: Only 24 and 32-bit error correction implemented.
+ */
+
+#include <linux/module.h>
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/swab.h>
+
+#define	DRV_NAME		"vf610_nfc"
+
+/* Register Offsets */
+#define NFC_FLASH_CMD1			0x3F00
+#define NFC_FLASH_CMD2			0x3F04
+#define NFC_COL_ADDR			0x3F08
+#define NFC_ROW_ADDR			0x3F0c
+#define NFC_ROW_ADDR_INC		0x3F14
+#define NFC_FLASH_STATUS1		0x3F18
+#define NFC_FLASH_STATUS2		0x3F1c
+#define NFC_CACHE_SWAP			0x3F28
+#define NFC_SECTOR_SIZE			0x3F2c
+#define NFC_FLASH_CONFIG		0x3F30
+#define NFC_IRQ_STATUS			0x3F38
+
+/* Addresses for NFC MAIN RAM BUFFER areas */
+#define NFC_MAIN_AREA(n)		((n) *  0x1000)
+
+#define PAGE_2K				0x0800
+#define OOB_64				0x0040
+#define OOB_MAX				0x0100
+
+/* NFC_CMD2[CODE] controller cycle bit masks */
+#define COMMAND_CMD_BYTE1		BIT(14)
+#define COMMAND_CAR_BYTE1		BIT(13)
+#define COMMAND_CAR_BYTE2		BIT(12)
+#define COMMAND_RAR_BYTE1		BIT(11)
+#define COMMAND_RAR_BYTE2		BIT(10)
+#define COMMAND_RAR_BYTE3		BIT(9)
+#define COMMAND_NADDR_BYTES(x)		GENMASK(13, 13 - (x) + 1)
+#define COMMAND_WRITE_DATA		BIT(8)
+#define COMMAND_CMD_BYTE2		BIT(7)
+#define COMMAND_RB_HANDSHAKE		BIT(6)
+#define COMMAND_READ_DATA		BIT(5)
+#define COMMAND_CMD_BYTE3		BIT(4)
+#define COMMAND_READ_STATUS		BIT(3)
+#define COMMAND_READ_ID			BIT(2)
+
+/* NFC ECC mode define */
+#define ECC_BYPASS			0
+#define ECC_45_BYTE			6
+#define ECC_60_BYTE			7
+
+/*** Register Mask and bit definitions */
+
+/* NFC_FLASH_CMD1 Field */
+#define CMD_BYTE2_MASK				0xFF000000
+#define CMD_BYTE2_SHIFT				24
+
+/* NFC_FLASH_CM2 Field */
+#define CMD_BYTE1_MASK				0xFF000000
+#define CMD_BYTE1_SHIFT				24
+#define CMD_CODE_MASK				0x00FFFF00
+#define CMD_CODE_SHIFT				8
+#define BUFNO_MASK				0x00000006
+#define BUFNO_SHIFT				1
+#define START_BIT				BIT(0)
+
+/* NFC_COL_ADDR Field */
+#define COL_ADDR_MASK				0x0000FFFF
+#define COL_ADDR_SHIFT				0
+#define COL_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
+
+/* NFC_ROW_ADDR Field */
+#define ROW_ADDR_MASK				0x00FFFFFF
+#define ROW_ADDR_SHIFT				0
+#define ROW_ADDR(pos, val)			(((val) & 0xFF) << (8 * (pos)))
+
+#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
+#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
+#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
+#define ROW_ADDR_CHIP_SEL_SHIFT			24
+
+/* NFC_FLASH_STATUS2 Field */
+#define STATUS_BYTE1_MASK			0x000000FF
+
+/* NFC_FLASH_CONFIG Field */
+#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
+#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
+#define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
+#define CONFIG_DMA_REQ_BIT			BIT(20)
+#define CONFIG_ECC_MODE_MASK			0x000E0000
+#define CONFIG_ECC_MODE_SHIFT			17
+#define CONFIG_FAST_FLASH_BIT			BIT(16)
+#define CONFIG_16BIT				BIT(7)
+#define CONFIG_BOOT_MODE_BIT			BIT(6)
+#define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
+#define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
+#define CONFIG_PAGE_CNT_MASK			0xF
+#define CONFIG_PAGE_CNT_SHIFT			0
+
+/* NFC_IRQ_STATUS Field */
+#define IDLE_IRQ_BIT				BIT(29)
+#define IDLE_EN_BIT				BIT(20)
+#define CMD_DONE_CLEAR_BIT			BIT(18)
+#define IDLE_CLEAR_BIT				BIT(17)
+
+/*
+ * ECC status - seems to consume 8 bytes (double word). The documented
+ * status byte is located in the lowest byte of the second word (which is
+ * the 4th or 7th byte depending on endianness).
+ * Calculate an offset to store the ECC status at the end of the buffer.
+ */
+#define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
+
+#define ECC_STATUS		0x4
+#define ECC_STATUS_MASK		0x80
+#define ECC_STATUS_ERR_COUNT	0x3F
+
+enum vf610_nfc_variant {
+	NFC_VFC610 = 1,
+};
+
+struct vf610_nfc {
+	struct nand_chip chip;
+	struct device *dev;
+	void __iomem *regs;
+	struct completion cmd_done;
+	/* Status and ID are in alternate locations. */
+	enum vf610_nfc_variant variant;
+	struct clk *clk;
+	/*
+	 * Indicate that user data is accessed (full page/oob). This is
+	 * useful to indicate the driver whether to swap byte endianness.
+	 * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram.
+	 */
+	bool data_access;
+	u32 ecc_mode;
+};
+
+static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
+{
+	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
+}
+
+static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip)
+{
+	return container_of(chip, struct vf610_nfc, chip);
+}
+
+static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
+{
+	return readl(nfc->regs + reg);
+}
+
+static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
+{
+	writel(val, nfc->regs + reg);
+}
+
+static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
+}
+
+static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
+{
+	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
+}
+
+static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
+				       u32 mask, u32 shift, u32 val)
+{
+	vf610_nfc_write(nfc, reg,
+			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
+}
+
+static inline bool vf610_nfc_kernel_is_little_endian(void)
+{
+#ifdef __LITTLE_ENDIAN
+	return true;
+#else
+	return false;
+#endif
+}
+
+/**
+ * Read accessor for internal SRAM buffer
+ * @dst: destination address in regular memory
+ * @src: source address in SRAM buffer
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src,
+					  size_t len, bool fix_endian)
+{
+	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+		unsigned int i;
+
+		for (i = 0; i < len; i += 4) {
+			u32 val = swab32(__raw_readl(src + i));
+
+			memcpy(dst + i, &val, min(sizeof(val), len - i));
+		}
+	} else {
+		memcpy_fromio(dst, src, len);
+	}
+}
+
+/**
+ * Write accessor for internal SRAM buffer
+ * @dst: destination address in SRAM buffer
+ * @src: source address in regular memory
+ * @len: bytes to copy
+ * @fix_endian: Fix endianness if required
+ *
+ * Use this accessor for the internal SRAM buffers. On the ARM
+ * Freescale Vybrid SoC it's known that the driver can treat
+ * the SRAM buffer as if it's memory. Other platform might need
+ * to treat the buffers differently.
+ *
+ * The controller stores bytes from the NAND chip internally in big
+ * endianness. On little endian platforms such as Vybrid this leads
+ * to reversed byte order.
+ * For performance reason (and earlier probably due to unawareness)
+ * the driver avoids correcting endianness where it has control over
+ * write and read side (e.g. page wise data access).
+ */
+static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src,
+					size_t len, bool fix_endian)
+{
+	if (vf610_nfc_kernel_is_little_endian() && fix_endian) {
+		unsigned int i;
+
+		for (i = 0; i < len; i += 4) {
+			u32 val;
+
+			memcpy(&val, src + i, min(sizeof(val), len - i));
+			__raw_writel(swab32(val), dst + i);
+		}
+	} else {
+		memcpy_toio(dst, src, len);
+	}
+}
+
+/* Clear flags for upcoming command */
+static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
+{
+	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
+
+	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
+	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
+}
+
+static void vf610_nfc_done(struct vf610_nfc *nfc)
+{
+	unsigned long timeout = msecs_to_jiffies(100);
+
+	/*
+	 * Barrier is needed after this write. This write need
+	 * to be done before reading the next register the first
+	 * time.
+	 * vf610_nfc_set implicates such a barrier by using writel
+	 * to write to the register.
+	 */
+	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
+
+	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
+		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
+
+	vf610_nfc_clear_status(nfc);
+}
+
+static irqreturn_t vf610_nfc_irq(int irq, void *data)
+{
+	struct mtd_info *mtd = data;
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
+	complete(&nfc->cmd_done);
+
+	return IRQ_HANDLED;
+}
+
+static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
+{
+	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+			    CONFIG_ECC_MODE_MASK,
+			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
+}
+
+static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
+{
+	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
+}
+
+static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row,
+				 u32 cmd1, u32 cmd2, u32 trfr_sz)
+{
+	vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
+			    COL_ADDR_SHIFT, col);
+
+	vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
+			    ROW_ADDR_SHIFT, row);
+
+	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz);
+	vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1);
+	vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2);
+
+	dev_dbg(nfc->dev,
+		"col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n",
+		col, row, cmd1, cmd2, trfr_sz);
+
+	vf610_nfc_done(nfc);
+}
+
+static inline const struct nand_op_instr *
+vf610_get_next_instr(const struct nand_subop *subop, int *op_id)
+{
+	if (*op_id + 1 >= subop->ninstrs)
+		return NULL;
+
+	(*op_id)++;
+
+	return &subop->instrs[*op_id];
+}
+
+static int vf610_nfc_cmd(struct nand_chip *chip,
+			 const struct nand_subop *subop)
+{
+	const struct nand_op_instr *instr;
+	struct vf610_nfc *nfc = chip_to_nfc(chip);
+	int op_id = -1, trfr_sz = 0, offset;
+	u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+	bool force8bit = false;
+
+	/*
+	 * Some ops are optional, but the hardware requires the operations
+	 * to be in this exact order.
+	 * The op parser enforces the order and makes sure that there isn't
+	 * a read and write element in a single operation.
+	 */
+	instr = vf610_get_next_instr(subop, &op_id);
+	if (!instr)
+		return -EINVAL;
+
+	if (instr && instr->type == NAND_OP_CMD_INSTR) {
+		cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT;
+		code |= COMMAND_CMD_BYTE1;
+
+		instr = vf610_get_next_instr(subop, &op_id);
+	}
+
+	if (instr && instr->type == NAND_OP_ADDR_INSTR) {
+		int naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+		int i = nand_subop_get_addr_start_off(subop, op_id);
+
+		for (; i < naddrs; i++) {
+			u8 val = instr->ctx.addr.addrs[i];
+
+			if (i < 2)
+				col |= COL_ADDR(i, val);
+			else
+				row |= ROW_ADDR(i - 2, val);
+		}
+		code |= COMMAND_NADDR_BYTES(naddrs);
+
+		instr = vf610_get_next_instr(subop, &op_id);
+	}
+
+	if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) {
+		trfr_sz = nand_subop_get_data_len(subop, op_id);
+		offset = nand_subop_get_data_start_off(subop, op_id);
+		force8bit = instr->ctx.data.force_8bit;
+
+		/*
+		 * Don't fix endianness on page access for historical reasons.
+		 * See comment in vf610_nfc_wr_to_sram
+		 */
+		vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset,
+				     instr->ctx.data.buf.out + offset,
+				     trfr_sz, !nfc->data_access);
+		code |= COMMAND_WRITE_DATA;
+
+		instr = vf610_get_next_instr(subop, &op_id);
+	}
+
+	if (instr && instr->type == NAND_OP_CMD_INSTR) {
+		cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT;
+		code |= COMMAND_CMD_BYTE2;
+
+		instr = vf610_get_next_instr(subop, &op_id);
+	}
+
+	if (instr && instr->type == NAND_OP_WAITRDY_INSTR) {
+		code |= COMMAND_RB_HANDSHAKE;
+
+		instr = vf610_get_next_instr(subop, &op_id);
+	}
+
+	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+		trfr_sz = nand_subop_get_data_len(subop, op_id);
+		offset = nand_subop_get_data_start_off(subop, op_id);
+		force8bit = instr->ctx.data.force_8bit;
+
+		code |= COMMAND_READ_DATA;
+	}
+
+	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+	cmd2 |= code << CMD_CODE_SHIFT;
+
+	vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz);
+
+	if (instr && instr->type == NAND_OP_DATA_IN_INSTR) {
+		/*
+		 * Don't fix endianness on page access for historical reasons.
+		 * See comment in vf610_nfc_rd_from_sram
+		 */
+		vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset,
+				       nfc->regs + NFC_MAIN_AREA(0) + offset,
+				       trfr_sz, !nfc->data_access);
+	}
+
+	if (force8bit && (chip->options & NAND_BUSWIDTH_16))
+		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+	return 0;
+}
+
+static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER(
+	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+	NAND_OP_PARSER_PATTERN(vf610_nfc_cmd,
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
+		NAND_OP_PARSER_PAT_CMD_ELEM(true),
+		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+		NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)),
+	);
+
+static int vf610_nfc_exec_op(struct nand_chip *chip,
+			     const struct nand_operation *op,
+			     bool check_only)
+{
+	return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op,
+				      check_only);
+}
+
+/*
+ * This function supports Vybrid only (MPC5125 would have full RB and four CS)
+ */
+static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
+
+	/* Vybrid only (MPC5125 would have full RB and four CS) */
+	if (nfc->variant != NFC_VFC610)
+		return;
+
+	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
+
+	if (chip >= 0) {
+		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
+		tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
+	}
+
+	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
+}
+
+static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
+					 uint8_t *oob, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
+	u8 ecc_status;
+	u8 ecc_count;
+	int flips_threshold = nfc->chip.ecc.strength / 2;
+
+	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
+	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
+
+	if (!(ecc_status & ECC_STATUS_MASK))
+		return ecc_count;
+
+	nfc->data_access = true;
+	nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize);
+	nfc->data_access = false;
+
+	/*
+	 * On an erased page, bit count (including OOB) should be zero or
+	 * at least less then half of the ECC strength.
+	 */
+	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
+					   mtd->oobsize, NULL, 0,
+					   flips_threshold);
+}
+
+static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code,
+			       u32 *row)
+{
+	*row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8);
+	*code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2;
+
+	if (chip->options & NAND_ROW_ADDR_3) {
+		*row |= ROW_ADDR(2, page >> 16);
+		*code |= COMMAND_RAR_BYTE3;
+	}
+}
+
+static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	int trfr_sz = mtd->writesize + mtd->oobsize;
+	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+	int stat;
+
+	cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT;
+	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+	vf610_nfc_fill_row(chip, page, &code, &row);
+
+	cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT;
+	code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA;
+
+	cmd2 |= code << CMD_CODE_SHIFT;
+
+	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+	/*
+	 * Don't fix endianness on page access for historical reasons.
+	 * See comment in vf610_nfc_rd_from_sram
+	 */
+	vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0),
+			       mtd->writesize, false);
+	if (oob_required)
+		vf610_nfc_rd_from_sram(chip->oob_poi,
+				       nfc->regs + NFC_MAIN_AREA(0) +
+						   mtd->writesize,
+				       mtd->oobsize, false);
+
+	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
+
+	if (stat < 0) {
+		mtd->ecc_stats.failed++;
+		return 0;
+	} else {
+		mtd->ecc_stats.corrected += stat;
+		return stat;
+	}
+}
+
+static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, int oob_required, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	int trfr_sz = mtd->writesize + mtd->oobsize;
+	u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0;
+	u8 status;
+	int ret;
+
+	cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT;
+	code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2;
+
+	vf610_nfc_fill_row(chip, page, &code, &row);
+
+	cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT;
+	code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA;
+
+	/*
+	 * Don't fix endianness on page access for historical reasons.
+	 * See comment in vf610_nfc_wr_to_sram
+	 */
+	vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf,
+			     mtd->writesize, false);
+
+	code |= COMMAND_RB_HANDSHAKE;
+	cmd2 |= code << CMD_CODE_SHIFT;
+
+	vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
+	vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz);
+	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+	ret = nand_status_op(chip, &status);
+	if (ret)
+		return ret;
+
+	if (status & NAND_STATUS_FAIL)
+		return -EIO;
+
+	return 0;
+}
+
+static int vf610_nfc_read_page_raw(struct mtd_info *mtd,
+				   struct nand_chip *chip, u8 *buf,
+				   int oob_required, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	int ret;
+
+	nfc->data_access = true;
+	ret = nand_read_page_raw(mtd, chip, buf, oob_required, page);
+	nfc->data_access = false;
+
+	return ret;
+}
+
+static int vf610_nfc_write_page_raw(struct mtd_info *mtd,
+				    struct nand_chip *chip, const u8 *buf,
+				    int oob_required, int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	int ret;
+
+	nfc->data_access = true;
+	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+	if (!ret && oob_required)
+		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
+					 false);
+	nfc->data_access = false;
+
+	if (ret)
+		return ret;
+
+	return nand_prog_page_end_op(chip);
+}
+
+static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			      int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	int ret;
+
+	nfc->data_access = true;
+	ret = nand_read_oob_std(mtd, chip, page);
+	nfc->data_access = false;
+
+	return ret;
+}
+
+static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			       int page)
+{
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+	int ret;
+
+	nfc->data_access = true;
+	ret = nand_prog_page_begin_op(chip, page, mtd->writesize,
+				      chip->oob_poi, mtd->oobsize);
+	nfc->data_access = false;
+
+	if (ret)
+		return ret;
+
+	return nand_prog_page_end_op(chip);
+}
+
+static const struct of_device_id vf610_nfc_dt_ids[] = {
+	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
+	{ /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
+
+static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
+{
+	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
+	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
+	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
+	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
+	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
+	vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
+
+	/* Disable virtual pages, only one elementary transfer unit */
+	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
+			    CONFIG_PAGE_CNT_SHIFT, 1);
+}
+
+static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
+{
+	if (nfc->chip.options & NAND_BUSWIDTH_16)
+		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+	else
+		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
+
+	if (nfc->chip.ecc.mode == NAND_ECC_HW) {
+		/* Set ECC status offset in SRAM */
+		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
+				    CONFIG_ECC_SRAM_ADDR_MASK,
+				    CONFIG_ECC_SRAM_ADDR_SHIFT,
+				    ECC_SRAM_ADDR >> 3);
+
+		/* Enable ECC status in SRAM */
+		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
+	}
+}
+
+static int vf610_nfc_attach_chip(struct nand_chip *chip)
+{
+	struct mtd_info *mtd = nand_to_mtd(chip);
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	vf610_nfc_init_controller(nfc);
+
+	/* Bad block options. */
+	if (chip->bbt_options & NAND_BBT_USE_FLASH)
+		chip->bbt_options |= NAND_BBT_NO_OOB;
+
+	/* Single buffer only, max 256 OOB minus ECC status */
+	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
+		dev_err(nfc->dev, "Unsupported flash page size\n");
+		return -ENXIO;
+	}
+
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return 0;
+
+	if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
+		dev_err(nfc->dev, "Unsupported flash with hwecc\n");
+		return -ENXIO;
+	}
+
+	if (chip->ecc.size != mtd->writesize) {
+		dev_err(nfc->dev, "Step size needs to be page size\n");
+		return -ENXIO;
+	}
+
+	/* Only 64 byte ECC layouts known */
+	if (mtd->oobsize > 64)
+		mtd->oobsize = 64;
+
+	/* Use default large page ECC layout defined in NAND core */
+	mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
+	if (chip->ecc.strength == 32) {
+		nfc->ecc_mode = ECC_60_BYTE;
+		chip->ecc.bytes = 60;
+	} else if (chip->ecc.strength == 24) {
+		nfc->ecc_mode = ECC_45_BYTE;
+		chip->ecc.bytes = 45;
+	} else {
+		dev_err(nfc->dev, "Unsupported ECC strength\n");
+		return -ENXIO;
+	}
+
+	chip->ecc.read_page = vf610_nfc_read_page;
+	chip->ecc.write_page = vf610_nfc_write_page;
+	chip->ecc.read_page_raw = vf610_nfc_read_page_raw;
+	chip->ecc.write_page_raw = vf610_nfc_write_page_raw;
+	chip->ecc.read_oob = vf610_nfc_read_oob;
+	chip->ecc.write_oob = vf610_nfc_write_oob;
+
+	chip->ecc.size = PAGE_2K;
+
+	return 0;
+}
+
+static const struct nand_controller_ops vf610_nfc_controller_ops = {
+	.attach_chip = vf610_nfc_attach_chip,
+};
+
+static int vf610_nfc_probe(struct platform_device *pdev)
+{
+	struct vf610_nfc *nfc;
+	struct resource *res;
+	struct mtd_info *mtd;
+	struct nand_chip *chip;
+	struct device_node *child;
+	const struct of_device_id *of_id;
+	int err;
+	int irq;
+
+	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	nfc->dev = &pdev->dev;
+	chip = &nfc->chip;
+	mtd = nand_to_mtd(chip);
+
+	mtd->owner = THIS_MODULE;
+	mtd->dev.parent = nfc->dev;
+	mtd->name = DRV_NAME;
+
+	irq = platform_get_irq(pdev, 0);
+	if (irq <= 0)
+		return -EINVAL;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->regs = devm_ioremap_resource(nfc->dev, res);
+	if (IS_ERR(nfc->regs))
+		return PTR_ERR(nfc->regs);
+
+	nfc->clk = devm_clk_get(&pdev->dev, NULL);
+	if (IS_ERR(nfc->clk))
+		return PTR_ERR(nfc->clk);
+
+	err = clk_prepare_enable(nfc->clk);
+	if (err) {
+		dev_err(nfc->dev, "Unable to enable clock!\n");
+		return err;
+	}
+
+	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
+	nfc->variant = (enum vf610_nfc_variant)of_id->data;
+
+	for_each_available_child_of_node(nfc->dev->of_node, child) {
+		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
+
+			if (nand_get_flash_node(chip)) {
+				dev_err(nfc->dev,
+					"Only one NAND chip supported!\n");
+				err = -EINVAL;
+				goto err_disable_clk;
+			}
+
+			nand_set_flash_node(chip, child);
+		}
+	}
+
+	if (!nand_get_flash_node(chip)) {
+		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
+		err = -ENODEV;
+		goto err_disable_clk;
+	}
+
+	chip->exec_op = vf610_nfc_exec_op;
+	chip->select_chip = vf610_nfc_select_chip;
+
+	chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+	init_completion(&nfc->cmd_done);
+
+	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
+	if (err) {
+		dev_err(nfc->dev, "Error requesting IRQ!\n");
+		goto err_disable_clk;
+	}
+
+	vf610_nfc_preinit_controller(nfc);
+
+	/* Scan the NAND chip */
+	chip->dummy_controller.ops = &vf610_nfc_controller_ops;
+	err = nand_scan(mtd, 1);
+	if (err)
+		goto err_disable_clk;
+
+	platform_set_drvdata(pdev, mtd);
+
+	/* Register device in MTD */
+	err = mtd_device_register(mtd, NULL, 0);
+	if (err)
+		goto err_cleanup_nand;
+	return 0;
+
+err_cleanup_nand:
+	nand_cleanup(chip);
+err_disable_clk:
+	clk_disable_unprepare(nfc->clk);
+	return err;
+}
+
+static int vf610_nfc_remove(struct platform_device *pdev)
+{
+	struct mtd_info *mtd = platform_get_drvdata(pdev);
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	nand_release(mtd);
+	clk_disable_unprepare(nfc->clk);
+	return 0;
+}
+
+#ifdef CONFIG_PM_SLEEP
+static int vf610_nfc_suspend(struct device *dev)
+{
+	struct mtd_info *mtd = dev_get_drvdata(dev);
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	clk_disable_unprepare(nfc->clk);
+	return 0;
+}
+
+static int vf610_nfc_resume(struct device *dev)
+{
+	int err;
+
+	struct mtd_info *mtd = dev_get_drvdata(dev);
+	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
+
+	err = clk_prepare_enable(nfc->clk);
+	if (err)
+		return err;
+
+	vf610_nfc_preinit_controller(nfc);
+	vf610_nfc_init_controller(nfc);
+	return 0;
+}
+#endif
+
+static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
+
+static struct platform_driver vf610_nfc_driver = {
+	.driver		= {
+		.name	= DRV_NAME,
+		.of_match_table = vf610_nfc_dt_ids,
+		.pm	= &vf610_nfc_pm_ops,
+	},
+	.probe		= vf610_nfc_probe,
+	.remove		= vf610_nfc_remove,
+};
+
+module_platform_driver(vf610_nfc_driver);
+
+MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
+MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/raw/xway_nand.c b/drivers/mtd/nand/raw/xway_nand.c
new file mode 100644
index 0000000..9926b4e
--- /dev/null
+++ b/drivers/mtd/nand/raw/xway_nand.c
@@ -0,0 +1,245 @@
+/*
+ *  This program is free software; you can redistribute it and/or modify it
+ *  under the terms of the GNU General Public License version 2 as published
+ *  by the Free Software Foundation.
+ *
+ *  Copyright © 2012 John Crispin <john@phrozen.org>
+ *  Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
+ */
+
+#include <linux/mtd/rawnand.h>
+#include <linux/of_gpio.h>
+#include <linux/of_platform.h>
+
+#include <lantiq_soc.h>
+
+/* nand registers */
+#define EBU_ADDSEL1		0x24
+#define EBU_NAND_CON		0xB0
+#define EBU_NAND_WAIT		0xB4
+#define  NAND_WAIT_RD		BIT(0) /* NAND flash status output */
+#define  NAND_WAIT_WR_C		BIT(3) /* NAND Write/Read complete */
+#define EBU_NAND_ECC0		0xB8
+#define EBU_NAND_ECC_AC		0xBC
+
+/*
+ * nand commands
+ * The pins of the NAND chip are selected based on the address bits of the
+ * "register" read and write. There are no special registers, but an
+ * address range and the lower address bits are used to activate the
+ * correct line. For example when the bit (1 << 2) is set in the address
+ * the ALE pin will be activated.
+ */
+#define NAND_CMD_ALE		BIT(2) /* address latch enable */
+#define NAND_CMD_CLE		BIT(3) /* command latch enable */
+#define NAND_CMD_CS		BIT(4) /* chip select */
+#define NAND_CMD_SE		BIT(5) /* spare area access latch */
+#define NAND_CMD_WP		BIT(6) /* write protect */
+#define NAND_WRITE_CMD		(NAND_CMD_CS | NAND_CMD_CLE)
+#define NAND_WRITE_ADDR		(NAND_CMD_CS | NAND_CMD_ALE)
+#define NAND_WRITE_DATA		(NAND_CMD_CS)
+#define NAND_READ_DATA		(NAND_CMD_CS)
+
+/* we need to tel the ebu which addr we mapped the nand to */
+#define ADDSEL1_MASK(x)		(x << 4)
+#define ADDSEL1_REGEN		1
+
+/* we need to tell the EBU that we have nand attached and set it up properly */
+#define BUSCON1_SETUP		(1 << 22)
+#define BUSCON1_BCGEN_RES	(0x3 << 12)
+#define BUSCON1_WAITWRC2	(2 << 8)
+#define BUSCON1_WAITRDC2	(2 << 6)
+#define BUSCON1_HOLDC1		(1 << 4)
+#define BUSCON1_RECOVC1		(1 << 2)
+#define BUSCON1_CMULT4		1
+
+#define NAND_CON_CE		(1 << 20)
+#define NAND_CON_OUT_CS1	(1 << 10)
+#define NAND_CON_IN_CS1		(1 << 8)
+#define NAND_CON_PRE_P		(1 << 7)
+#define NAND_CON_WP_P		(1 << 6)
+#define NAND_CON_SE_P		(1 << 5)
+#define NAND_CON_CS_P		(1 << 4)
+#define NAND_CON_CSMUX		(1 << 1)
+#define NAND_CON_NANDM		1
+
+struct xway_nand_data {
+	struct nand_chip	chip;
+	unsigned long		csflags;
+	void __iomem		*nandaddr;
+};
+
+static u8 xway_readb(struct mtd_info *mtd, int op)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct xway_nand_data *data = nand_get_controller_data(chip);
+
+	return readb(data->nandaddr + op);
+}
+
+static void xway_writeb(struct mtd_info *mtd, int op, u8 value)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct xway_nand_data *data = nand_get_controller_data(chip);
+
+	writeb(value, data->nandaddr + op);
+}
+
+static void xway_select_chip(struct mtd_info *mtd, int select)
+{
+	struct nand_chip *chip = mtd_to_nand(mtd);
+	struct xway_nand_data *data = nand_get_controller_data(chip);
+
+	switch (select) {
+	case -1:
+		ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON);
+		ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON);
+		spin_unlock_irqrestore(&ebu_lock, data->csflags);
+		break;
+	case 0:
+		spin_lock_irqsave(&ebu_lock, data->csflags);
+		ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON);
+		ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON);
+		break;
+	default:
+		BUG();
+	}
+}
+
+static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
+{
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		xway_writeb(mtd, NAND_WRITE_CMD, cmd);
+	else if (ctrl & NAND_ALE)
+		xway_writeb(mtd, NAND_WRITE_ADDR, cmd);
+
+	while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
+		;
+}
+
+static int xway_dev_ready(struct mtd_info *mtd)
+{
+	return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD;
+}
+
+static unsigned char xway_read_byte(struct mtd_info *mtd)
+{
+	return xway_readb(mtd, NAND_READ_DATA);
+}
+
+static void xway_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		buf[i] = xway_readb(mtd, NAND_WRITE_DATA);
+}
+
+static void xway_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		xway_writeb(mtd, NAND_WRITE_DATA, buf[i]);
+}
+
+/*
+ * Probe for the NAND device.
+ */
+static int xway_nand_probe(struct platform_device *pdev)
+{
+	struct xway_nand_data *data;
+	struct mtd_info *mtd;
+	struct resource *res;
+	int err;
+	u32 cs;
+	u32 cs_flag = 0;
+
+	/* Allocate memory for the device structure (and zero it) */
+	data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data),
+			    GFP_KERNEL);
+	if (!data)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	data->nandaddr = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(data->nandaddr))
+		return PTR_ERR(data->nandaddr);
+
+	nand_set_flash_node(&data->chip, pdev->dev.of_node);
+	mtd = nand_to_mtd(&data->chip);
+	mtd->dev.parent = &pdev->dev;
+
+	data->chip.cmd_ctrl = xway_cmd_ctrl;
+	data->chip.dev_ready = xway_dev_ready;
+	data->chip.select_chip = xway_select_chip;
+	data->chip.write_buf = xway_write_buf;
+	data->chip.read_buf = xway_read_buf;
+	data->chip.read_byte = xway_read_byte;
+	data->chip.chip_delay = 30;
+
+	data->chip.ecc.mode = NAND_ECC_SOFT;
+	data->chip.ecc.algo = NAND_ECC_HAMMING;
+
+	platform_set_drvdata(pdev, data);
+	nand_set_controller_data(&data->chip, data);
+
+	/* load our CS from the DT. Either we find a valid 1 or default to 0 */
+	err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs);
+	if (!err && cs == 1)
+		cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1;
+
+	/* setup the EBU to run in NAND mode on our base addr */
+	ltq_ebu_w32(CPHYSADDR(data->nandaddr)
+		    | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
+
+	ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2
+		    | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
+		    | BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
+
+	ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P
+		    | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
+		    | cs_flag, EBU_NAND_CON);
+
+	/* Scan to find existence of the device */
+	err = nand_scan(mtd, 1);
+	if (err)
+		return err;
+
+	err = mtd_device_register(mtd, NULL, 0);
+	if (err)
+		nand_release(mtd);
+
+	return err;
+}
+
+/*
+ * Remove a NAND device.
+ */
+static int xway_nand_remove(struct platform_device *pdev)
+{
+	struct xway_nand_data *data = platform_get_drvdata(pdev);
+
+	nand_release(nand_to_mtd(&data->chip));
+
+	return 0;
+}
+
+static const struct of_device_id xway_nand_match[] = {
+	{ .compatible = "lantiq,nand-xway" },
+	{},
+};
+
+static struct platform_driver xway_nand_driver = {
+	.probe	= xway_nand_probe,
+	.remove	= xway_nand_remove,
+	.driver	= {
+		.name		= "lantiq,nand-xway",
+		.of_match_table = xway_nand_match,
+	},
+};
+
+builtin_platform_driver(xway_nand_driver);
diff --git a/drivers/mtd/nand/spi/Kconfig b/drivers/mtd/nand/spi/Kconfig
new file mode 100644
index 0000000..7c37d29
--- /dev/null
+++ b/drivers/mtd/nand/spi/Kconfig
@@ -0,0 +1,7 @@
+menuconfig MTD_SPI_NAND
+	tristate "SPI NAND device Support"
+	select MTD_NAND_CORE
+	depends on SPI_MASTER
+	select SPI_MEM
+	help
+	  This is the framework for the SPI NAND device drivers.
diff --git a/drivers/mtd/nand/spi/Makefile b/drivers/mtd/nand/spi/Makefile
new file mode 100644
index 0000000..b74e074
--- /dev/null
+++ b/drivers/mtd/nand/spi/Makefile
@@ -0,0 +1,3 @@
+# SPDX-License-Identifier: GPL-2.0
+spinand-objs := core.o macronix.o micron.o winbond.o
+obj-$(CONFIG_MTD_SPI_NAND) += spinand.o
diff --git a/drivers/mtd/nand/spi/core.c b/drivers/mtd/nand/spi/core.c
new file mode 100644
index 0000000..30f8364
--- /dev/null
+++ b/drivers/mtd/nand/spi/core.c
@@ -0,0 +1,1155 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2016-2017 Micron Technology, Inc.
+ *
+ * Authors:
+ *	Peter Pan <peterpandong@micron.com>
+ *	Boris Brezillon <boris.brezillon@bootlin.com>
+ */
+
+#define pr_fmt(fmt)	"spi-nand: " fmt
+
+#include <linux/device.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/spinand.h>
+#include <linux/of.h>
+#include <linux/slab.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+
+static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
+					  const struct nand_page_io_req *req,
+					  u16 *column)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	unsigned int shift;
+
+	if (nand->memorg.planes_per_lun < 2)
+		return;
+
+	/* The plane number is passed in MSB just above the column address */
+	shift = fls(nand->memorg.pagesize);
+	*column |= req->pos.plane << shift;
+}
+
+static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
+{
+	struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
+						      spinand->scratchbuf);
+	int ret;
+
+	ret = spi_mem_exec_op(spinand->spimem, &op);
+	if (ret)
+		return ret;
+
+	*val = *spinand->scratchbuf;
+	return 0;
+}
+
+static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
+{
+	struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
+						      spinand->scratchbuf);
+
+	*spinand->scratchbuf = val;
+	return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_read_status(struct spinand_device *spinand, u8 *status)
+{
+	return spinand_read_reg_op(spinand, REG_STATUS, status);
+}
+
+static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+
+	if (WARN_ON(spinand->cur_target < 0 ||
+		    spinand->cur_target >= nand->memorg.ntargets))
+		return -EINVAL;
+
+	*cfg = spinand->cfg_cache[spinand->cur_target];
+	return 0;
+}
+
+static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	int ret;
+
+	if (WARN_ON(spinand->cur_target < 0 ||
+		    spinand->cur_target >= nand->memorg.ntargets))
+		return -EINVAL;
+
+	if (spinand->cfg_cache[spinand->cur_target] == cfg)
+		return 0;
+
+	ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
+	if (ret)
+		return ret;
+
+	spinand->cfg_cache[spinand->cur_target] = cfg;
+	return 0;
+}
+
+/**
+ * spinand_upd_cfg() - Update the configuration register
+ * @spinand: the spinand device
+ * @mask: the mask encoding the bits to update in the config reg
+ * @val: the new value to apply
+ *
+ * Update the configuration register.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
+{
+	int ret;
+	u8 cfg;
+
+	ret = spinand_get_cfg(spinand, &cfg);
+	if (ret)
+		return ret;
+
+	cfg &= ~mask;
+	cfg |= val;
+
+	return spinand_set_cfg(spinand, cfg);
+}
+
+/**
+ * spinand_select_target() - Select a specific NAND target/die
+ * @spinand: the spinand device
+ * @target: the target/die to select
+ *
+ * Select a new target/die. If chip only has one die, this function is a NOOP.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+int spinand_select_target(struct spinand_device *spinand, unsigned int target)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	int ret;
+
+	if (WARN_ON(target >= nand->memorg.ntargets))
+		return -EINVAL;
+
+	if (spinand->cur_target == target)
+		return 0;
+
+	if (nand->memorg.ntargets == 1) {
+		spinand->cur_target = target;
+		return 0;
+	}
+
+	ret = spinand->select_target(spinand, target);
+	if (ret)
+		return ret;
+
+	spinand->cur_target = target;
+	return 0;
+}
+
+static int spinand_init_cfg_cache(struct spinand_device *spinand)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	struct device *dev = &spinand->spimem->spi->dev;
+	unsigned int target;
+	int ret;
+
+	spinand->cfg_cache = devm_kcalloc(dev,
+					  nand->memorg.ntargets,
+					  sizeof(*spinand->cfg_cache),
+					  GFP_KERNEL);
+	if (!spinand->cfg_cache)
+		return -ENOMEM;
+
+	for (target = 0; target < nand->memorg.ntargets; target++) {
+		ret = spinand_select_target(spinand, target);
+		if (ret)
+			return ret;
+
+		/*
+		 * We use spinand_read_reg_op() instead of spinand_get_cfg()
+		 * here to bypass the config cache.
+		 */
+		ret = spinand_read_reg_op(spinand, REG_CFG,
+					  &spinand->cfg_cache[target]);
+		if (ret)
+			return ret;
+	}
+
+	return 0;
+}
+
+static int spinand_init_quad_enable(struct spinand_device *spinand)
+{
+	bool enable = false;
+
+	if (!(spinand->flags & SPINAND_HAS_QE_BIT))
+		return 0;
+
+	if (spinand->op_templates.read_cache->data.buswidth == 4 ||
+	    spinand->op_templates.write_cache->data.buswidth == 4 ||
+	    spinand->op_templates.update_cache->data.buswidth == 4)
+		enable = true;
+
+	return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
+			       enable ? CFG_QUAD_ENABLE : 0);
+}
+
+static int spinand_ecc_enable(struct spinand_device *spinand,
+			      bool enable)
+{
+	return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
+			       enable ? CFG_ECC_ENABLE : 0);
+}
+
+static int spinand_write_enable_op(struct spinand_device *spinand)
+{
+	struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
+
+	return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_load_page_op(struct spinand_device *spinand,
+				const struct nand_page_io_req *req)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
+	struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
+
+	return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_read_from_cache_op(struct spinand_device *spinand,
+				      const struct nand_page_io_req *req)
+{
+	struct spi_mem_op op = *spinand->op_templates.read_cache;
+	struct nand_device *nand = spinand_to_nand(spinand);
+	struct mtd_info *mtd = nanddev_to_mtd(nand);
+	struct nand_page_io_req adjreq = *req;
+	unsigned int nbytes = 0;
+	void *buf = NULL;
+	u16 column = 0;
+	int ret;
+
+	if (req->datalen) {
+		adjreq.datalen = nanddev_page_size(nand);
+		adjreq.dataoffs = 0;
+		adjreq.databuf.in = spinand->databuf;
+		buf = spinand->databuf;
+		nbytes = adjreq.datalen;
+	}
+
+	if (req->ooblen) {
+		adjreq.ooblen = nanddev_per_page_oobsize(nand);
+		adjreq.ooboffs = 0;
+		adjreq.oobbuf.in = spinand->oobbuf;
+		nbytes += nanddev_per_page_oobsize(nand);
+		if (!buf) {
+			buf = spinand->oobbuf;
+			column = nanddev_page_size(nand);
+		}
+	}
+
+	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
+	op.addr.val = column;
+
+	/*
+	 * Some controllers are limited in term of max RX data size. In this
+	 * case, just repeat the READ_CACHE operation after updating the
+	 * column.
+	 */
+	while (nbytes) {
+		op.data.buf.in = buf;
+		op.data.nbytes = nbytes;
+		ret = spi_mem_adjust_op_size(spinand->spimem, &op);
+		if (ret)
+			return ret;
+
+		ret = spi_mem_exec_op(spinand->spimem, &op);
+		if (ret)
+			return ret;
+
+		buf += op.data.nbytes;
+		nbytes -= op.data.nbytes;
+		op.addr.val += op.data.nbytes;
+	}
+
+	if (req->datalen)
+		memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
+		       req->datalen);
+
+	if (req->ooblen) {
+		if (req->mode == MTD_OPS_AUTO_OOB)
+			mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
+						    spinand->oobbuf,
+						    req->ooboffs,
+						    req->ooblen);
+		else
+			memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
+			       req->ooblen);
+	}
+
+	return 0;
+}
+
+static int spinand_write_to_cache_op(struct spinand_device *spinand,
+				     const struct nand_page_io_req *req)
+{
+	struct spi_mem_op op = *spinand->op_templates.write_cache;
+	struct nand_device *nand = spinand_to_nand(spinand);
+	struct mtd_info *mtd = nanddev_to_mtd(nand);
+	struct nand_page_io_req adjreq = *req;
+	unsigned int nbytes = 0;
+	void *buf = NULL;
+	u16 column = 0;
+	int ret;
+
+	memset(spinand->databuf, 0xff,
+	       nanddev_page_size(nand) +
+	       nanddev_per_page_oobsize(nand));
+
+	if (req->datalen) {
+		memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
+		       req->datalen);
+		adjreq.dataoffs = 0;
+		adjreq.datalen = nanddev_page_size(nand);
+		adjreq.databuf.out = spinand->databuf;
+		nbytes = adjreq.datalen;
+		buf = spinand->databuf;
+	}
+
+	if (req->ooblen) {
+		if (req->mode == MTD_OPS_AUTO_OOB)
+			mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
+						    spinand->oobbuf,
+						    req->ooboffs,
+						    req->ooblen);
+		else
+			memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
+			       req->ooblen);
+
+		adjreq.ooblen = nanddev_per_page_oobsize(nand);
+		adjreq.ooboffs = 0;
+		nbytes += nanddev_per_page_oobsize(nand);
+		if (!buf) {
+			buf = spinand->oobbuf;
+			column = nanddev_page_size(nand);
+		}
+	}
+
+	spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
+
+	op = *spinand->op_templates.write_cache;
+	op.addr.val = column;
+
+	/*
+	 * Some controllers are limited in term of max TX data size. In this
+	 * case, split the operation into one LOAD CACHE and one or more
+	 * LOAD RANDOM CACHE.
+	 */
+	while (nbytes) {
+		op.data.buf.out = buf;
+		op.data.nbytes = nbytes;
+
+		ret = spi_mem_adjust_op_size(spinand->spimem, &op);
+		if (ret)
+			return ret;
+
+		ret = spi_mem_exec_op(spinand->spimem, &op);
+		if (ret)
+			return ret;
+
+		buf += op.data.nbytes;
+		nbytes -= op.data.nbytes;
+		op.addr.val += op.data.nbytes;
+
+		/*
+		 * We need to use the RANDOM LOAD CACHE operation if there's
+		 * more than one iteration, because the LOAD operation resets
+		 * the cache to 0xff.
+		 */
+		if (nbytes) {
+			column = op.addr.val;
+			op = *spinand->op_templates.update_cache;
+			op.addr.val = column;
+		}
+	}
+
+	return 0;
+}
+
+static int spinand_program_op(struct spinand_device *spinand,
+			      const struct nand_page_io_req *req)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	unsigned int row = nanddev_pos_to_row(nand, &req->pos);
+	struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
+
+	return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_erase_op(struct spinand_device *spinand,
+			    const struct nand_pos *pos)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	unsigned int row = nanddev_pos_to_row(nand, pos);
+	struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
+
+	return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int spinand_wait(struct spinand_device *spinand, u8 *s)
+{
+	unsigned long timeo =  jiffies + msecs_to_jiffies(400);
+	u8 status;
+	int ret;
+
+	do {
+		ret = spinand_read_status(spinand, &status);
+		if (ret)
+			return ret;
+
+		if (!(status & STATUS_BUSY))
+			goto out;
+	} while (time_before(jiffies, timeo));
+
+	/*
+	 * Extra read, just in case the STATUS_READY bit has changed
+	 * since our last check
+	 */
+	ret = spinand_read_status(spinand, &status);
+	if (ret)
+		return ret;
+
+out:
+	if (s)
+		*s = status;
+
+	return status & STATUS_BUSY ? -ETIMEDOUT : 0;
+}
+
+static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
+{
+	struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
+						 SPINAND_MAX_ID_LEN);
+	int ret;
+
+	ret = spi_mem_exec_op(spinand->spimem, &op);
+	if (!ret)
+		memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
+
+	return ret;
+}
+
+static int spinand_reset_op(struct spinand_device *spinand)
+{
+	struct spi_mem_op op = SPINAND_RESET_OP;
+	int ret;
+
+	ret = spi_mem_exec_op(spinand->spimem, &op);
+	if (ret)
+		return ret;
+
+	return spinand_wait(spinand, NULL);
+}
+
+static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
+{
+	return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
+}
+
+static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+
+	if (spinand->eccinfo.get_status)
+		return spinand->eccinfo.get_status(spinand, status);
+
+	switch (status & STATUS_ECC_MASK) {
+	case STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case STATUS_ECC_HAS_BITFLIPS:
+		/*
+		 * We have no way to know exactly how many bitflips have been
+		 * fixed, so let's return the maximum possible value so that
+		 * wear-leveling layers move the data immediately.
+		 */
+		return nand->eccreq.strength;
+
+	case STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
+static int spinand_read_page(struct spinand_device *spinand,
+			     const struct nand_page_io_req *req,
+			     bool ecc_enabled)
+{
+	u8 status;
+	int ret;
+
+	ret = spinand_load_page_op(spinand, req);
+	if (ret)
+		return ret;
+
+	ret = spinand_wait(spinand, &status);
+	if (ret < 0)
+		return ret;
+
+	ret = spinand_read_from_cache_op(spinand, req);
+	if (ret)
+		return ret;
+
+	if (!ecc_enabled)
+		return 0;
+
+	return spinand_check_ecc_status(spinand, status);
+}
+
+static int spinand_write_page(struct spinand_device *spinand,
+			      const struct nand_page_io_req *req)
+{
+	u8 status;
+	int ret;
+
+	ret = spinand_write_enable_op(spinand);
+	if (ret)
+		return ret;
+
+	ret = spinand_write_to_cache_op(spinand, req);
+	if (ret)
+		return ret;
+
+	ret = spinand_program_op(spinand, req);
+	if (ret)
+		return ret;
+
+	ret = spinand_wait(spinand, &status);
+	if (!ret && (status & STATUS_PROG_FAILED))
+		ret = -EIO;
+
+	return ret;
+}
+
+static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
+			    struct mtd_oob_ops *ops)
+{
+	struct spinand_device *spinand = mtd_to_spinand(mtd);
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	unsigned int max_bitflips = 0;
+	struct nand_io_iter iter;
+	bool enable_ecc = false;
+	bool ecc_failed = false;
+	int ret = 0;
+
+	if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
+		enable_ecc = true;
+
+	mutex_lock(&spinand->lock);
+
+	nanddev_io_for_each_page(nand, from, ops, &iter) {
+		ret = spinand_select_target(spinand, iter.req.pos.target);
+		if (ret)
+			break;
+
+		ret = spinand_ecc_enable(spinand, enable_ecc);
+		if (ret)
+			break;
+
+		ret = spinand_read_page(spinand, &iter.req, enable_ecc);
+		if (ret < 0 && ret != -EBADMSG)
+			break;
+
+		if (ret == -EBADMSG) {
+			ecc_failed = true;
+			mtd->ecc_stats.failed++;
+			ret = 0;
+		} else {
+			mtd->ecc_stats.corrected += ret;
+			max_bitflips = max_t(unsigned int, max_bitflips, ret);
+		}
+
+		ops->retlen += iter.req.datalen;
+		ops->oobretlen += iter.req.ooblen;
+	}
+
+	mutex_unlock(&spinand->lock);
+
+	if (ecc_failed && !ret)
+		ret = -EBADMSG;
+
+	return ret ? ret : max_bitflips;
+}
+
+static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
+			     struct mtd_oob_ops *ops)
+{
+	struct spinand_device *spinand = mtd_to_spinand(mtd);
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct nand_io_iter iter;
+	bool enable_ecc = false;
+	int ret = 0;
+
+	if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
+		enable_ecc = true;
+
+	mutex_lock(&spinand->lock);
+
+	nanddev_io_for_each_page(nand, to, ops, &iter) {
+		ret = spinand_select_target(spinand, iter.req.pos.target);
+		if (ret)
+			break;
+
+		ret = spinand_ecc_enable(spinand, enable_ecc);
+		if (ret)
+			break;
+
+		ret = spinand_write_page(spinand, &iter.req);
+		if (ret)
+			break;
+
+		ops->retlen += iter.req.datalen;
+		ops->oobretlen += iter.req.ooblen;
+	}
+
+	mutex_unlock(&spinand->lock);
+
+	return ret;
+}
+
+static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+	struct spinand_device *spinand = nand_to_spinand(nand);
+	struct nand_page_io_req req = {
+		.pos = *pos,
+		.ooblen = 2,
+		.ooboffs = 0,
+		.oobbuf.in = spinand->oobbuf,
+		.mode = MTD_OPS_RAW,
+	};
+
+	memset(spinand->oobbuf, 0, 2);
+	spinand_select_target(spinand, pos->target);
+	spinand_read_page(spinand, &req, false);
+	if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
+		return true;
+
+	return false;
+}
+
+static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct spinand_device *spinand = nand_to_spinand(nand);
+	struct nand_pos pos;
+	int ret;
+
+	nanddev_offs_to_pos(nand, offs, &pos);
+	mutex_lock(&spinand->lock);
+	ret = nanddev_isbad(nand, &pos);
+	mutex_unlock(&spinand->lock);
+
+	return ret;
+}
+
+static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
+{
+	struct spinand_device *spinand = nand_to_spinand(nand);
+	struct nand_page_io_req req = {
+		.pos = *pos,
+		.ooboffs = 0,
+		.ooblen = 2,
+		.oobbuf.out = spinand->oobbuf,
+	};
+	int ret;
+
+	/* Erase block before marking it bad. */
+	ret = spinand_select_target(spinand, pos->target);
+	if (ret)
+		return ret;
+
+	ret = spinand_write_enable_op(spinand);
+	if (ret)
+		return ret;
+
+	spinand_erase_op(spinand, pos);
+
+	memset(spinand->oobbuf, 0, 2);
+	return spinand_write_page(spinand, &req);
+}
+
+static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
+{
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct spinand_device *spinand = nand_to_spinand(nand);
+	struct nand_pos pos;
+	int ret;
+
+	nanddev_offs_to_pos(nand, offs, &pos);
+	mutex_lock(&spinand->lock);
+	ret = nanddev_markbad(nand, &pos);
+	mutex_unlock(&spinand->lock);
+
+	return ret;
+}
+
+static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
+{
+	struct spinand_device *spinand = nand_to_spinand(nand);
+	u8 status;
+	int ret;
+
+	ret = spinand_select_target(spinand, pos->target);
+	if (ret)
+		return ret;
+
+	ret = spinand_write_enable_op(spinand);
+	if (ret)
+		return ret;
+
+	ret = spinand_erase_op(spinand, pos);
+	if (ret)
+		return ret;
+
+	ret = spinand_wait(spinand, &status);
+	if (!ret && (status & STATUS_ERASE_FAILED))
+		ret = -EIO;
+
+	return ret;
+}
+
+static int spinand_mtd_erase(struct mtd_info *mtd,
+			     struct erase_info *einfo)
+{
+	struct spinand_device *spinand = mtd_to_spinand(mtd);
+	int ret;
+
+	mutex_lock(&spinand->lock);
+	ret = nanddev_mtd_erase(mtd, einfo);
+	mutex_unlock(&spinand->lock);
+
+	return ret;
+}
+
+static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
+{
+	struct spinand_device *spinand = mtd_to_spinand(mtd);
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct nand_pos pos;
+	int ret;
+
+	nanddev_offs_to_pos(nand, offs, &pos);
+	mutex_lock(&spinand->lock);
+	ret = nanddev_isreserved(nand, &pos);
+	mutex_unlock(&spinand->lock);
+
+	return ret;
+}
+
+static const struct nand_ops spinand_ops = {
+	.erase = spinand_erase,
+	.markbad = spinand_markbad,
+	.isbad = spinand_isbad,
+};
+
+static const struct spinand_manufacturer *spinand_manufacturers[] = {
+	&macronix_spinand_manufacturer,
+	&micron_spinand_manufacturer,
+	&winbond_spinand_manufacturer,
+};
+
+static int spinand_manufacturer_detect(struct spinand_device *spinand)
+{
+	unsigned int i;
+	int ret;
+
+	for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
+		ret = spinand_manufacturers[i]->ops->detect(spinand);
+		if (ret > 0) {
+			spinand->manufacturer = spinand_manufacturers[i];
+			return 0;
+		} else if (ret < 0) {
+			return ret;
+		}
+	}
+
+	return -ENOTSUPP;
+}
+
+static int spinand_manufacturer_init(struct spinand_device *spinand)
+{
+	if (spinand->manufacturer->ops->init)
+		return spinand->manufacturer->ops->init(spinand);
+
+	return 0;
+}
+
+static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
+{
+	/* Release manufacturer private data */
+	if (spinand->manufacturer->ops->cleanup)
+		return spinand->manufacturer->ops->cleanup(spinand);
+}
+
+static const struct spi_mem_op *
+spinand_select_op_variant(struct spinand_device *spinand,
+			  const struct spinand_op_variants *variants)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	unsigned int i;
+
+	for (i = 0; i < variants->nops; i++) {
+		struct spi_mem_op op = variants->ops[i];
+		unsigned int nbytes;
+		int ret;
+
+		nbytes = nanddev_per_page_oobsize(nand) +
+			 nanddev_page_size(nand);
+
+		while (nbytes) {
+			op.data.nbytes = nbytes;
+			ret = spi_mem_adjust_op_size(spinand->spimem, &op);
+			if (ret)
+				break;
+
+			if (!spi_mem_supports_op(spinand->spimem, &op))
+				break;
+
+			nbytes -= op.data.nbytes;
+		}
+
+		if (!nbytes)
+			return &variants->ops[i];
+	}
+
+	return NULL;
+}
+
+/**
+ * spinand_match_and_init() - Try to find a match between a device ID and an
+ *			      entry in a spinand_info table
+ * @spinand: SPI NAND object
+ * @table: SPI NAND device description table
+ * @table_size: size of the device description table
+ *
+ * Should be used by SPI NAND manufacturer drivers when they want to find a
+ * match between a device ID retrieved through the READ_ID command and an
+ * entry in the SPI NAND description table. If a match is found, the spinand
+ * object will be initialized with information provided by the matching
+ * spinand_info entry.
+ *
+ * Return: 0 on success, a negative error code otherwise.
+ */
+int spinand_match_and_init(struct spinand_device *spinand,
+			   const struct spinand_info *table,
+			   unsigned int table_size, u8 devid)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	unsigned int i;
+
+	for (i = 0; i < table_size; i++) {
+		const struct spinand_info *info = &table[i];
+		const struct spi_mem_op *op;
+
+		if (devid != info->devid)
+			continue;
+
+		nand->memorg = table[i].memorg;
+		nand->eccreq = table[i].eccreq;
+		spinand->eccinfo = table[i].eccinfo;
+		spinand->flags = table[i].flags;
+		spinand->select_target = table[i].select_target;
+
+		op = spinand_select_op_variant(spinand,
+					       info->op_variants.read_cache);
+		if (!op)
+			return -ENOTSUPP;
+
+		spinand->op_templates.read_cache = op;
+
+		op = spinand_select_op_variant(spinand,
+					       info->op_variants.write_cache);
+		if (!op)
+			return -ENOTSUPP;
+
+		spinand->op_templates.write_cache = op;
+
+		op = spinand_select_op_variant(spinand,
+					       info->op_variants.update_cache);
+		spinand->op_templates.update_cache = op;
+
+		return 0;
+	}
+
+	return -ENOTSUPP;
+}
+
+static int spinand_detect(struct spinand_device *spinand)
+{
+	struct device *dev = &spinand->spimem->spi->dev;
+	struct nand_device *nand = spinand_to_nand(spinand);
+	int ret;
+
+	ret = spinand_reset_op(spinand);
+	if (ret)
+		return ret;
+
+	ret = spinand_read_id_op(spinand, spinand->id.data);
+	if (ret)
+		return ret;
+
+	spinand->id.len = SPINAND_MAX_ID_LEN;
+
+	ret = spinand_manufacturer_detect(spinand);
+	if (ret) {
+		dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
+			spinand->id.data);
+		return ret;
+	}
+
+	if (nand->memorg.ntargets > 1 && !spinand->select_target) {
+		dev_err(dev,
+			"SPI NANDs with more than one die must implement ->select_target()\n");
+		return -EINVAL;
+	}
+
+	dev_info(&spinand->spimem->spi->dev,
+		 "%s SPI NAND was found.\n", spinand->manufacturer->name);
+	dev_info(&spinand->spimem->spi->dev,
+		 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
+		 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
+		 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
+
+	return 0;
+}
+
+static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *region)
+{
+	return -ERANGE;
+}
+
+static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	/* Reserve 2 bytes for the BBM. */
+	region->offset = 2;
+	region->length = 62;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
+	.ecc = spinand_noecc_ooblayout_ecc,
+	.free = spinand_noecc_ooblayout_free,
+};
+
+static int spinand_init(struct spinand_device *spinand)
+{
+	struct device *dev = &spinand->spimem->spi->dev;
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	int ret, i;
+
+	/*
+	 * We need a scratch buffer because the spi_mem interface requires that
+	 * buf passed in spi_mem_op->data.buf be DMA-able.
+	 */
+	spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
+	if (!spinand->scratchbuf)
+		return -ENOMEM;
+
+	ret = spinand_detect(spinand);
+	if (ret)
+		goto err_free_bufs;
+
+	/*
+	 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
+	 * may use this buffer for DMA access.
+	 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
+	 */
+	spinand->databuf = kzalloc(nanddev_page_size(nand) +
+			       nanddev_per_page_oobsize(nand),
+			       GFP_KERNEL);
+	if (!spinand->databuf) {
+		ret = -ENOMEM;
+		goto err_free_bufs;
+	}
+
+	spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
+
+	ret = spinand_init_cfg_cache(spinand);
+	if (ret)
+		goto err_free_bufs;
+
+	ret = spinand_init_quad_enable(spinand);
+	if (ret)
+		goto err_free_bufs;
+
+	ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
+	if (ret)
+		goto err_free_bufs;
+
+	ret = spinand_manufacturer_init(spinand);
+	if (ret) {
+		dev_err(dev,
+			"Failed to initialize the SPI NAND chip (err = %d)\n",
+			ret);
+		goto err_free_bufs;
+	}
+
+	/* After power up, all blocks are locked, so unlock them here. */
+	for (i = 0; i < nand->memorg.ntargets; i++) {
+		ret = spinand_select_target(spinand, i);
+		if (ret)
+			goto err_free_bufs;
+
+		ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
+		if (ret)
+			goto err_free_bufs;
+	}
+
+	ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
+	if (ret)
+		goto err_manuf_cleanup;
+
+	/*
+	 * Right now, we don't support ECC, so let the whole oob
+	 * area is available for user.
+	 */
+	mtd->_read_oob = spinand_mtd_read;
+	mtd->_write_oob = spinand_mtd_write;
+	mtd->_block_isbad = spinand_mtd_block_isbad;
+	mtd->_block_markbad = spinand_mtd_block_markbad;
+	mtd->_block_isreserved = spinand_mtd_block_isreserved;
+	mtd->_erase = spinand_mtd_erase;
+
+	if (spinand->eccinfo.ooblayout)
+		mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
+	else
+		mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
+
+	ret = mtd_ooblayout_count_freebytes(mtd);
+	if (ret < 0)
+		goto err_cleanup_nanddev;
+
+	mtd->oobavail = ret;
+
+	return 0;
+
+err_cleanup_nanddev:
+	nanddev_cleanup(nand);
+
+err_manuf_cleanup:
+	spinand_manufacturer_cleanup(spinand);
+
+err_free_bufs:
+	kfree(spinand->databuf);
+	kfree(spinand->scratchbuf);
+	return ret;
+}
+
+static void spinand_cleanup(struct spinand_device *spinand)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+
+	nanddev_cleanup(nand);
+	spinand_manufacturer_cleanup(spinand);
+	kfree(spinand->databuf);
+	kfree(spinand->scratchbuf);
+}
+
+static int spinand_probe(struct spi_mem *mem)
+{
+	struct spinand_device *spinand;
+	struct mtd_info *mtd;
+	int ret;
+
+	spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
+			       GFP_KERNEL);
+	if (!spinand)
+		return -ENOMEM;
+
+	spinand->spimem = mem;
+	spi_mem_set_drvdata(mem, spinand);
+	spinand_set_of_node(spinand, mem->spi->dev.of_node);
+	mutex_init(&spinand->lock);
+	mtd = spinand_to_mtd(spinand);
+	mtd->dev.parent = &mem->spi->dev;
+
+	ret = spinand_init(spinand);
+	if (ret)
+		return ret;
+
+	ret = mtd_device_register(mtd, NULL, 0);
+	if (ret)
+		goto err_spinand_cleanup;
+
+	return 0;
+
+err_spinand_cleanup:
+	spinand_cleanup(spinand);
+
+	return ret;
+}
+
+static int spinand_remove(struct spi_mem *mem)
+{
+	struct spinand_device *spinand;
+	struct mtd_info *mtd;
+	int ret;
+
+	spinand = spi_mem_get_drvdata(mem);
+	mtd = spinand_to_mtd(spinand);
+
+	ret = mtd_device_unregister(mtd);
+	if (ret)
+		return ret;
+
+	spinand_cleanup(spinand);
+
+	return 0;
+}
+
+static const struct spi_device_id spinand_ids[] = {
+	{ .name = "spi-nand" },
+	{ /* sentinel */ },
+};
+
+#ifdef CONFIG_OF
+static const struct of_device_id spinand_of_ids[] = {
+	{ .compatible = "spi-nand" },
+	{ /* sentinel */ },
+};
+#endif
+
+static struct spi_mem_driver spinand_drv = {
+	.spidrv = {
+		.id_table = spinand_ids,
+		.driver = {
+			.name = "spi-nand",
+			.of_match_table = of_match_ptr(spinand_of_ids),
+		},
+	},
+	.probe = spinand_probe,
+	.remove = spinand_remove,
+};
+module_spi_mem_driver(spinand_drv);
+
+MODULE_DESCRIPTION("SPI NAND framework");
+MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/spi/macronix.c b/drivers/mtd/nand/spi/macronix.c
new file mode 100644
index 0000000..98f6b9c
--- /dev/null
+++ b/drivers/mtd/nand/spi/macronix.c
@@ -0,0 +1,144 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2018 Macronix
+ *
+ * Author: Boris Brezillon <boris.brezillon@bootlin.com>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+#define SPINAND_MFR_MACRONIX		0xC2
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+		SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
+		SPINAND_PROG_LOAD(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+		SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
+		SPINAND_PROG_LOAD(false, 0, NULL, 0));
+
+static int mx35lfxge4ab_ooblayout_ecc(struct mtd_info *mtd, int section,
+				      struct mtd_oob_region *region)
+{
+	return -ERANGE;
+}
+
+static int mx35lfxge4ab_ooblayout_free(struct mtd_info *mtd, int section,
+				       struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	region->offset = 2;
+	region->length = mtd->oobsize - 2;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops mx35lfxge4ab_ooblayout = {
+	.ecc = mx35lfxge4ab_ooblayout_ecc,
+	.free = mx35lfxge4ab_ooblayout_free,
+};
+
+static int mx35lf1ge4ab_get_eccsr(struct spinand_device *spinand, u8 *eccsr)
+{
+	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0x7c, 1),
+					  SPI_MEM_OP_NO_ADDR,
+					  SPI_MEM_OP_DUMMY(1, 1),
+					  SPI_MEM_OP_DATA_IN(1, eccsr, 1));
+
+	return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static int mx35lf1ge4ab_ecc_get_status(struct spinand_device *spinand,
+				       u8 status)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	u8 eccsr;
+
+	switch (status & STATUS_ECC_MASK) {
+	case STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	case STATUS_ECC_HAS_BITFLIPS:
+		/*
+		 * Let's try to retrieve the real maximum number of bitflips
+		 * in order to avoid forcing the wear-leveling layer to move
+		 * data around if it's not necessary.
+		 */
+		if (mx35lf1ge4ab_get_eccsr(spinand, &eccsr))
+			return nand->eccreq.strength;
+
+		if (WARN_ON(eccsr > nand->eccreq.strength || !eccsr))
+			return nand->eccreq.strength;
+
+		return eccsr;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
+static const struct spinand_info macronix_spinand_table[] = {
+	SPINAND_INFO("MX35LF1GE4AB", 0x12,
+		     NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 1),
+		     NAND_ECCREQ(4, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     SPINAND_HAS_QE_BIT,
+		     SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout,
+				     mx35lf1ge4ab_ecc_get_status)),
+	SPINAND_INFO("MX35LF2GE4AB", 0x22,
+		     NAND_MEMORG(1, 2048, 64, 64, 2048, 2, 1, 1),
+		     NAND_ECCREQ(4, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     SPINAND_HAS_QE_BIT,
+		     SPINAND_ECCINFO(&mx35lfxge4ab_ooblayout, NULL)),
+};
+
+static int macronix_spinand_detect(struct spinand_device *spinand)
+{
+	u8 *id = spinand->id.data;
+	int ret;
+
+	/*
+	 * Macronix SPI NAND read ID needs a dummy byte, so the first byte in
+	 * raw_id is garbage.
+	 */
+	if (id[1] != SPINAND_MFR_MACRONIX)
+		return 0;
+
+	ret = spinand_match_and_init(spinand, macronix_spinand_table,
+				     ARRAY_SIZE(macronix_spinand_table),
+				     id[2]);
+	if (ret)
+		return ret;
+
+	return 1;
+}
+
+static const struct spinand_manufacturer_ops macronix_spinand_manuf_ops = {
+	.detect = macronix_spinand_detect,
+};
+
+const struct spinand_manufacturer macronix_spinand_manufacturer = {
+	.id = SPINAND_MFR_MACRONIX,
+	.name = "Macronix",
+	.ops = &macronix_spinand_manuf_ops,
+};
diff --git a/drivers/mtd/nand/spi/micron.c b/drivers/mtd/nand/spi/micron.c
new file mode 100644
index 0000000..9c4381d
--- /dev/null
+++ b/drivers/mtd/nand/spi/micron.c
@@ -0,0 +1,133 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2016-2017 Micron Technology, Inc.
+ *
+ * Authors:
+ *	Peter Pan <peterpandong@micron.com>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+#define SPINAND_MFR_MICRON		0x2c
+
+#define MICRON_STATUS_ECC_MASK		GENMASK(7, 4)
+#define MICRON_STATUS_ECC_NO_BITFLIPS	(0 << 4)
+#define MICRON_STATUS_ECC_1TO3_BITFLIPS	(1 << 4)
+#define MICRON_STATUS_ECC_4TO6_BITFLIPS	(3 << 4)
+#define MICRON_STATUS_ECC_7TO8_BITFLIPS	(5 << 4)
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+		SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
+		SPINAND_PROG_LOAD(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+		SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
+		SPINAND_PROG_LOAD(false, 0, NULL, 0));
+
+static int mt29f2g01abagd_ooblayout_ecc(struct mtd_info *mtd, int section,
+					struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	region->offset = 64;
+	region->length = 64;
+
+	return 0;
+}
+
+static int mt29f2g01abagd_ooblayout_free(struct mtd_info *mtd, int section,
+					 struct mtd_oob_region *region)
+{
+	if (section)
+		return -ERANGE;
+
+	/* Reserve 2 bytes for the BBM. */
+	region->offset = 2;
+	region->length = 62;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops mt29f2g01abagd_ooblayout = {
+	.ecc = mt29f2g01abagd_ooblayout_ecc,
+	.free = mt29f2g01abagd_ooblayout_free,
+};
+
+static int mt29f2g01abagd_ecc_get_status(struct spinand_device *spinand,
+					 u8 status)
+{
+	switch (status & MICRON_STATUS_ECC_MASK) {
+	case STATUS_ECC_NO_BITFLIPS:
+		return 0;
+
+	case STATUS_ECC_UNCOR_ERROR:
+		return -EBADMSG;
+
+	case MICRON_STATUS_ECC_1TO3_BITFLIPS:
+		return 3;
+
+	case MICRON_STATUS_ECC_4TO6_BITFLIPS:
+		return 6;
+
+	case MICRON_STATUS_ECC_7TO8_BITFLIPS:
+		return 8;
+
+	default:
+		break;
+	}
+
+	return -EINVAL;
+}
+
+static const struct spinand_info micron_spinand_table[] = {
+	SPINAND_INFO("MT29F2G01ABAGD", 0x24,
+		     NAND_MEMORG(1, 2048, 128, 64, 2048, 2, 1, 1),
+		     NAND_ECCREQ(8, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&mt29f2g01abagd_ooblayout,
+				     mt29f2g01abagd_ecc_get_status)),
+};
+
+static int micron_spinand_detect(struct spinand_device *spinand)
+{
+	u8 *id = spinand->id.data;
+	int ret;
+
+	/*
+	 * Micron SPI NAND read ID need a dummy byte,
+	 * so the first byte in raw_id is dummy.
+	 */
+	if (id[1] != SPINAND_MFR_MICRON)
+		return 0;
+
+	ret = spinand_match_and_init(spinand, micron_spinand_table,
+				     ARRAY_SIZE(micron_spinand_table), id[2]);
+	if (ret)
+		return ret;
+
+	return 1;
+}
+
+static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = {
+	.detect = micron_spinand_detect,
+};
+
+const struct spinand_manufacturer micron_spinand_manufacturer = {
+	.id = SPINAND_MFR_MICRON,
+	.name = "Micron",
+	.ops = &micron_spinand_manuf_ops,
+};
diff --git a/drivers/mtd/nand/spi/winbond.c b/drivers/mtd/nand/spi/winbond.c
new file mode 100644
index 0000000..67baa1b
--- /dev/null
+++ b/drivers/mtd/nand/spi/winbond.c
@@ -0,0 +1,141 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2017 exceet electronics GmbH
+ *
+ * Authors:
+ *	Frieder Schrempf <frieder.schrempf@exceet.de>
+ *	Boris Brezillon <boris.brezillon@bootlin.com>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+#define SPINAND_MFR_WINBOND		0xEF
+
+#define WINBOND_CFG_BUF_READ		BIT(3)
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+		SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
+		SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+		SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
+		SPINAND_PROG_LOAD(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+		SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
+		SPINAND_PROG_LOAD(false, 0, NULL, 0));
+
+static int w25m02gv_ooblayout_ecc(struct mtd_info *mtd, int section,
+				  struct mtd_oob_region *region)
+{
+	if (section > 3)
+		return -ERANGE;
+
+	region->offset = (16 * section) + 8;
+	region->length = 8;
+
+	return 0;
+}
+
+static int w25m02gv_ooblayout_free(struct mtd_info *mtd, int section,
+				   struct mtd_oob_region *region)
+{
+	if (section > 3)
+		return -ERANGE;
+
+	region->offset = (16 * section) + 2;
+	region->length = 6;
+
+	return 0;
+}
+
+static const struct mtd_ooblayout_ops w25m02gv_ooblayout = {
+	.ecc = w25m02gv_ooblayout_ecc,
+	.free = w25m02gv_ooblayout_free,
+};
+
+static int w25m02gv_select_target(struct spinand_device *spinand,
+				  unsigned int target)
+{
+	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(0xc2, 1),
+					  SPI_MEM_OP_NO_ADDR,
+					  SPI_MEM_OP_NO_DUMMY,
+					  SPI_MEM_OP_DATA_OUT(1,
+							spinand->scratchbuf,
+							1));
+
+	*spinand->scratchbuf = target;
+	return spi_mem_exec_op(spinand->spimem, &op);
+}
+
+static const struct spinand_info winbond_spinand_table[] = {
+	SPINAND_INFO("W25M02GV", 0xAB,
+		     NAND_MEMORG(1, 2048, 64, 64, 1024, 1, 1, 2),
+		     NAND_ECCREQ(1, 512),
+		     SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+					      &write_cache_variants,
+					      &update_cache_variants),
+		     0,
+		     SPINAND_ECCINFO(&w25m02gv_ooblayout, NULL),
+		     SPINAND_SELECT_TARGET(w25m02gv_select_target)),
+};
+
+/**
+ * winbond_spinand_detect - initialize device related part in spinand_device
+ * struct if it is a Winbond device.
+ * @spinand: SPI NAND device structure
+ */
+static int winbond_spinand_detect(struct spinand_device *spinand)
+{
+	u8 *id = spinand->id.data;
+	int ret;
+
+	/*
+	 * Winbond SPI NAND read ID need a dummy byte,
+	 * so the first byte in raw_id is dummy.
+	 */
+	if (id[1] != SPINAND_MFR_WINBOND)
+		return 0;
+
+	ret = spinand_match_and_init(spinand, winbond_spinand_table,
+				     ARRAY_SIZE(winbond_spinand_table), id[2]);
+	if (ret)
+		return ret;
+
+	return 1;
+}
+
+static int winbond_spinand_init(struct spinand_device *spinand)
+{
+	struct nand_device *nand = spinand_to_nand(spinand);
+	unsigned int i;
+
+	/*
+	 * Make sure all dies are in buffer read mode and not continuous read
+	 * mode.
+	 */
+	for (i = 0; i < nand->memorg.ntargets; i++) {
+		spinand_select_target(spinand, i);
+		spinand_upd_cfg(spinand, WINBOND_CFG_BUF_READ,
+				WINBOND_CFG_BUF_READ);
+	}
+
+	return 0;
+}
+
+static const struct spinand_manufacturer_ops winbond_spinand_manuf_ops = {
+	.detect = winbond_spinand_detect,
+	.init = winbond_spinand_init,
+};
+
+const struct spinand_manufacturer winbond_spinand_manufacturer = {
+	.id = SPINAND_MFR_WINBOND,
+	.name = "Winbond",
+	.ops = &winbond_spinand_manuf_ops,
+};