blob: bf049d45830a9500ad8284ea72366c6fbab1a475 [file] [log] [blame]
shiqiane35fdd92008-12-10 05:08:54 +00001// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used argument matchers. More
35// matchers can be defined by the user implementing the
36// MatcherInterface<T> interface if necessary.
37
38#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
zhanyong.wan6a896b52009-01-16 01:13:50 +000041#include <algorithm>
shiqiane35fdd92008-12-10 05:08:54 +000042#include <ostream> // NOLINT
43#include <sstream>
44#include <string>
45#include <vector>
46
47#include <gmock/gmock-printers.h>
48#include <gmock/internal/gmock-internal-utils.h>
49#include <gmock/internal/gmock-port.h>
50#include <gtest/gtest.h>
51
52namespace testing {
53
54// To implement a matcher Foo for type T, define:
55// 1. a class FooMatcherImpl that implements the
56// MatcherInterface<T> interface, and
57// 2. a factory function that creates a Matcher<T> object from a
58// FooMatcherImpl*.
59//
60// The two-level delegation design makes it possible to allow a user
61// to write "v" instead of "Eq(v)" where a Matcher is expected, which
62// is impossible if we pass matchers by pointers. It also eases
63// ownership management as Matcher objects can now be copied like
64// plain values.
65
66// The implementation of a matcher.
67template <typename T>
68class MatcherInterface {
69 public:
70 virtual ~MatcherInterface() {}
71
72 // Returns true iff the matcher matches x.
73 virtual bool Matches(T x) const = 0;
74
75 // Describes this matcher to an ostream.
76 virtual void DescribeTo(::std::ostream* os) const = 0;
77
78 // Describes the negation of this matcher to an ostream. For
79 // example, if the description of this matcher is "is greater than
80 // 7", the negated description could be "is not greater than 7".
81 // You are not required to override this when implementing
82 // MatcherInterface, but it is highly advised so that your matcher
83 // can produce good error messages.
84 virtual void DescribeNegationTo(::std::ostream* os) const {
85 *os << "not (";
86 DescribeTo(os);
87 *os << ")";
88 }
89
90 // Explains why x matches, or doesn't match, the matcher. Override
91 // this to provide any additional information that helps a user
92 // understand the match result.
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +000093 virtual void ExplainMatchResultTo(T /* x */, ::std::ostream* /* os */) const {
shiqiane35fdd92008-12-10 05:08:54 +000094 // By default, nothing more needs to be explained, as Google Mock
95 // has already printed the value of x when this function is
96 // called.
97 }
98};
99
100namespace internal {
101
102// An internal class for implementing Matcher<T>, which will derive
103// from it. We put functionalities common to all Matcher<T>
104// specializations here to avoid code duplication.
105template <typename T>
106class MatcherBase {
107 public:
108 // Returns true iff this matcher matches x.
109 bool Matches(T x) const { return impl_->Matches(x); }
110
111 // Describes this matcher to an ostream.
112 void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
113
114 // Describes the negation of this matcher to an ostream.
115 void DescribeNegationTo(::std::ostream* os) const {
116 impl_->DescribeNegationTo(os);
117 }
118
119 // Explains why x matches, or doesn't match, the matcher.
120 void ExplainMatchResultTo(T x, ::std::ostream* os) const {
121 impl_->ExplainMatchResultTo(x, os);
122 }
123 protected:
124 MatcherBase() {}
125
126 // Constructs a matcher from its implementation.
127 explicit MatcherBase(const MatcherInterface<T>* impl)
128 : impl_(impl) {}
129
130 virtual ~MatcherBase() {}
131 private:
132 // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
133 // interfaces. The former dynamically allocates a chunk of memory
134 // to hold the reference count, while the latter tracks all
135 // references using a circular linked list without allocating
136 // memory. It has been observed that linked_ptr performs better in
137 // typical scenarios. However, shared_ptr can out-perform
138 // linked_ptr when there are many more uses of the copy constructor
139 // than the default constructor.
140 //
141 // If performance becomes a problem, we should see if using
142 // shared_ptr helps.
143 ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
144};
145
146// The default implementation of ExplainMatchResultTo() for
147// polymorphic matchers.
148template <typename PolymorphicMatcherImpl, typename T>
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000149inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& /* impl */,
150 const T& /* x */,
151 ::std::ostream* /* os */) {
shiqiane35fdd92008-12-10 05:08:54 +0000152 // By default, nothing more needs to be said, as Google Mock already
153 // prints the value of x elsewhere.
154}
155
156} // namespace internal
157
158// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
159// object that can check whether a value of type T matches. The
160// implementation of Matcher<T> is just a linked_ptr to const
161// MatcherInterface<T>, so copying is fairly cheap. Don't inherit
162// from Matcher!
163template <typename T>
164class Matcher : public internal::MatcherBase<T> {
165 public:
166 // Constructs a null matcher. Needed for storing Matcher objects in
167 // STL containers.
168 Matcher() {}
169
170 // Constructs a matcher from its implementation.
171 explicit Matcher(const MatcherInterface<T>* impl)
172 : internal::MatcherBase<T>(impl) {}
173
zhanyong.wan18490652009-05-11 18:54:08 +0000174 // Implicit constructor here allows people to write
shiqiane35fdd92008-12-10 05:08:54 +0000175 // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
176 Matcher(T value); // NOLINT
177};
178
179// The following two specializations allow the user to write str
180// instead of Eq(str) and "foo" instead of Eq("foo") when a string
181// matcher is expected.
182template <>
183class Matcher<const internal::string&>
184 : public internal::MatcherBase<const internal::string&> {
185 public:
186 Matcher() {}
187
188 explicit Matcher(const MatcherInterface<const internal::string&>* impl)
189 : internal::MatcherBase<const internal::string&>(impl) {}
190
191 // Allows the user to write str instead of Eq(str) sometimes, where
192 // str is a string object.
193 Matcher(const internal::string& s); // NOLINT
194
195 // Allows the user to write "foo" instead of Eq("foo") sometimes.
196 Matcher(const char* s); // NOLINT
197};
198
199template <>
200class Matcher<internal::string>
201 : public internal::MatcherBase<internal::string> {
202 public:
203 Matcher() {}
204
205 explicit Matcher(const MatcherInterface<internal::string>* impl)
206 : internal::MatcherBase<internal::string>(impl) {}
207
208 // Allows the user to write str instead of Eq(str) sometimes, where
209 // str is a string object.
210 Matcher(const internal::string& s); // NOLINT
211
212 // Allows the user to write "foo" instead of Eq("foo") sometimes.
213 Matcher(const char* s); // NOLINT
214};
215
216// The PolymorphicMatcher class template makes it easy to implement a
217// polymorphic matcher (i.e. a matcher that can match values of more
218// than one type, e.g. Eq(n) and NotNull()).
219//
220// To define a polymorphic matcher, a user first provides a Impl class
221// that has a Matches() method, a DescribeTo() method, and a
222// DescribeNegationTo() method. The Matches() method is usually a
223// method template (such that it works with multiple types). Then the
224// user creates the polymorphic matcher using
225// MakePolymorphicMatcher(). To provide additional explanation to the
226// match result, define a FREE function (or function template)
227//
228// void ExplainMatchResultTo(const Impl& matcher, const Value& value,
229// ::std::ostream* os);
230//
231// in the SAME NAME SPACE where Impl is defined. See the definition
232// of NotNull() for a complete example.
233template <class Impl>
234class PolymorphicMatcher {
235 public:
236 explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {}
237
238 template <typename T>
239 operator Matcher<T>() const {
240 return Matcher<T>(new MonomorphicImpl<T>(impl_));
241 }
242 private:
243 template <typename T>
244 class MonomorphicImpl : public MatcherInterface<T> {
245 public:
246 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
247
248 virtual bool Matches(T x) const { return impl_.Matches(x); }
249
250 virtual void DescribeTo(::std::ostream* os) const {
251 impl_.DescribeTo(os);
252 }
253
254 virtual void DescribeNegationTo(::std::ostream* os) const {
255 impl_.DescribeNegationTo(os);
256 }
257
258 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
259 using ::testing::internal::ExplainMatchResultTo;
260
261 // C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to
262 // resolve the call to ExplainMatchResultTo() here. This
263 // means that if there's a ExplainMatchResultTo() function
264 // defined in the name space where class Impl is defined, it
265 // will be picked by the compiler as the better match.
266 // Otherwise the default implementation of it in
267 // ::testing::internal will be picked.
268 //
269 // This look-up rule lets a writer of a polymorphic matcher
270 // customize the behavior of ExplainMatchResultTo() when he
271 // cares to. Nothing needs to be done by the writer if he
272 // doesn't need to customize it.
273 ExplainMatchResultTo(impl_, x, os);
274 }
275 private:
276 const Impl impl_;
277 };
278
279 const Impl impl_;
280};
281
282// Creates a matcher from its implementation. This is easier to use
283// than the Matcher<T> constructor as it doesn't require you to
284// explicitly write the template argument, e.g.
285//
286// MakeMatcher(foo);
287// vs
288// Matcher<const string&>(foo);
289template <typename T>
290inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
291 return Matcher<T>(impl);
292};
293
294// Creates a polymorphic matcher from its implementation. This is
295// easier to use than the PolymorphicMatcher<Impl> constructor as it
296// doesn't require you to explicitly write the template argument, e.g.
297//
298// MakePolymorphicMatcher(foo);
299// vs
300// PolymorphicMatcher<TypeOfFoo>(foo);
301template <class Impl>
302inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
303 return PolymorphicMatcher<Impl>(impl);
304}
305
306// In order to be safe and clear, casting between different matcher
307// types is done explicitly via MatcherCast<T>(m), which takes a
308// matcher m and returns a Matcher<T>. It compiles only when T can be
309// statically converted to the argument type of m.
310template <typename T, typename M>
311Matcher<T> MatcherCast(M m);
312
zhanyong.wan18490652009-05-11 18:54:08 +0000313// TODO(vladl@google.com): Modify the implementation to reject casting
314// Matcher<int> to Matcher<double>.
315// Implements SafeMatcherCast().
316//
317// This overload handles polymorphic matchers only since monomorphic
318// matchers are handled by the next one.
319template <typename T, typename M>
320inline Matcher<T> SafeMatcherCast(M polymorphic_matcher) {
321 return Matcher<T>(polymorphic_matcher);
322}
323
324// This overload handles monomorphic matchers.
325//
326// In general, if type T can be implicitly converted to type U, we can
327// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
328// contravariant): just keep a copy of the original Matcher<U>, convert the
329// argument from type T to U, and then pass it to the underlying Matcher<U>.
330// The only exception is when U is a reference and T is not, as the
331// underlying Matcher<U> may be interested in the argument's address, which
332// is not preserved in the conversion from T to U.
333template <typename T, typename U>
334Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
335 // Enforce that T can be implicitly converted to U.
336 GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
337 T_must_be_implicitly_convertible_to_U);
338 // Enforce that we are not converting a non-reference type T to a reference
339 // type U.
340 GMOCK_COMPILE_ASSERT_(
341 internal::is_reference<T>::value || !internal::is_reference<U>::value,
342 cannot_convert_non_referentce_arg_to_reference);
343 return MatcherCast<T>(matcher);
344}
345
shiqiane35fdd92008-12-10 05:08:54 +0000346// A<T>() returns a matcher that matches any value of type T.
347template <typename T>
348Matcher<T> A();
349
350// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
351// and MUST NOT BE USED IN USER CODE!!!
352namespace internal {
353
354// Appends the explanation on the result of matcher.Matches(value) to
355// os iff the explanation is not empty.
356template <typename T>
357void ExplainMatchResultAsNeededTo(const Matcher<T>& matcher, T value,
358 ::std::ostream* os) {
359 ::std::stringstream reason;
360 matcher.ExplainMatchResultTo(value, &reason);
361 const internal::string s = reason.str();
362 if (s != "") {
363 *os << " (" << s << ")";
364 }
365}
366
367// An internal helper class for doing compile-time loop on a tuple's
368// fields.
369template <size_t N>
370class TuplePrefix {
371 public:
372 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
373 // iff the first N fields of matcher_tuple matches the first N
374 // fields of value_tuple, respectively.
375 template <typename MatcherTuple, typename ValueTuple>
376 static bool Matches(const MatcherTuple& matcher_tuple,
377 const ValueTuple& value_tuple) {
378 using ::std::tr1::get;
379 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
380 && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
381 }
382
383 // TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os)
384 // describes failures in matching the first N fields of matchers
385 // against the first N fields of values. If there is no failure,
386 // nothing will be streamed to os.
387 template <typename MatcherTuple, typename ValueTuple>
388 static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
389 const ValueTuple& values,
390 ::std::ostream* os) {
391 using ::std::tr1::tuple_element;
392 using ::std::tr1::get;
393
394 // First, describes failures in the first N - 1 fields.
395 TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os);
396
397 // Then describes the failure (if any) in the (N - 1)-th (0-based)
398 // field.
399 typename tuple_element<N - 1, MatcherTuple>::type matcher =
400 get<N - 1>(matchers);
401 typedef typename tuple_element<N - 1, ValueTuple>::type Value;
402 Value value = get<N - 1>(values);
403 if (!matcher.Matches(value)) {
404 // TODO(wan): include in the message the name of the parameter
405 // as used in MOCK_METHOD*() when possible.
406 *os << " Expected arg #" << N - 1 << ": ";
407 get<N - 1>(matchers).DescribeTo(os);
408 *os << "\n Actual: ";
409 // We remove the reference in type Value to prevent the
410 // universal printer from printing the address of value, which
411 // isn't interesting to the user most of the time. The
412 // matcher's ExplainMatchResultTo() method handles the case when
413 // the address is interesting.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000414 internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE_(Value)>::
shiqiane35fdd92008-12-10 05:08:54 +0000415 Print(value, os);
416 ExplainMatchResultAsNeededTo<Value>(matcher, value, os);
417 *os << "\n";
418 }
419 }
420};
421
422// The base case.
423template <>
424class TuplePrefix<0> {
425 public:
426 template <typename MatcherTuple, typename ValueTuple>
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000427 static bool Matches(const MatcherTuple& /* matcher_tuple */,
428 const ValueTuple& /* value_tuple */) {
shiqiane35fdd92008-12-10 05:08:54 +0000429 return true;
430 }
431
432 template <typename MatcherTuple, typename ValueTuple>
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000433 static void DescribeMatchFailuresTo(const MatcherTuple& /* matchers */,
434 const ValueTuple& /* values */,
435 ::std::ostream* /* os */) {}
shiqiane35fdd92008-12-10 05:08:54 +0000436};
437
438// TupleMatches(matcher_tuple, value_tuple) returns true iff all
439// matchers in matcher_tuple match the corresponding fields in
440// value_tuple. It is a compiler error if matcher_tuple and
441// value_tuple have different number of fields or incompatible field
442// types.
443template <typename MatcherTuple, typename ValueTuple>
444bool TupleMatches(const MatcherTuple& matcher_tuple,
445 const ValueTuple& value_tuple) {
446 using ::std::tr1::tuple_size;
447 // Makes sure that matcher_tuple and value_tuple have the same
448 // number of fields.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000449 GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
450 tuple_size<ValueTuple>::value,
451 matcher_and_value_have_different_numbers_of_fields);
shiqiane35fdd92008-12-10 05:08:54 +0000452 return TuplePrefix<tuple_size<ValueTuple>::value>::
453 Matches(matcher_tuple, value_tuple);
454}
455
456// Describes failures in matching matchers against values. If there
457// is no failure, nothing will be streamed to os.
458template <typename MatcherTuple, typename ValueTuple>
459void DescribeMatchFailureTupleTo(const MatcherTuple& matchers,
460 const ValueTuple& values,
461 ::std::ostream* os) {
462 using ::std::tr1::tuple_size;
463 TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo(
464 matchers, values, os);
465}
466
467// The MatcherCastImpl class template is a helper for implementing
468// MatcherCast(). We need this helper in order to partially
469// specialize the implementation of MatcherCast() (C++ allows
470// class/struct templates to be partially specialized, but not
471// function templates.).
472
473// This general version is used when MatcherCast()'s argument is a
474// polymorphic matcher (i.e. something that can be converted to a
475// Matcher but is not one yet; for example, Eq(value)).
476template <typename T, typename M>
477class MatcherCastImpl {
478 public:
479 static Matcher<T> Cast(M polymorphic_matcher) {
480 return Matcher<T>(polymorphic_matcher);
481 }
482};
483
484// This more specialized version is used when MatcherCast()'s argument
485// is already a Matcher. This only compiles when type T can be
486// statically converted to type U.
487template <typename T, typename U>
488class MatcherCastImpl<T, Matcher<U> > {
489 public:
490 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
491 return Matcher<T>(new Impl(source_matcher));
492 }
493 private:
494 class Impl : public MatcherInterface<T> {
495 public:
496 explicit Impl(const Matcher<U>& source_matcher)
497 : source_matcher_(source_matcher) {}
498
499 // We delegate the matching logic to the source matcher.
500 virtual bool Matches(T x) const {
501 return source_matcher_.Matches(static_cast<U>(x));
502 }
503
504 virtual void DescribeTo(::std::ostream* os) const {
505 source_matcher_.DescribeTo(os);
506 }
507
508 virtual void DescribeNegationTo(::std::ostream* os) const {
509 source_matcher_.DescribeNegationTo(os);
510 }
511
512 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
513 source_matcher_.ExplainMatchResultTo(static_cast<U>(x), os);
514 }
515 private:
516 const Matcher<U> source_matcher_;
517 };
518};
519
520// This even more specialized version is used for efficiently casting
521// a matcher to its own type.
522template <typename T>
523class MatcherCastImpl<T, Matcher<T> > {
524 public:
525 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
526};
527
528// Implements A<T>().
529template <typename T>
530class AnyMatcherImpl : public MatcherInterface<T> {
531 public:
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000532 virtual bool Matches(T /* x */) const { return true; }
shiqiane35fdd92008-12-10 05:08:54 +0000533 virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
534 virtual void DescribeNegationTo(::std::ostream* os) const {
535 // This is mostly for completeness' safe, as it's not very useful
536 // to write Not(A<bool>()). However we cannot completely rule out
537 // such a possibility, and it doesn't hurt to be prepared.
538 *os << "never matches";
539 }
540};
541
542// Implements _, a matcher that matches any value of any
543// type. This is a polymorphic matcher, so we need a template type
544// conversion operator to make it appearing as a Matcher<T> for any
545// type T.
546class AnythingMatcher {
547 public:
548 template <typename T>
549 operator Matcher<T>() const { return A<T>(); }
550};
551
552// Implements a matcher that compares a given value with a
553// pre-supplied value using one of the ==, <=, <, etc, operators. The
554// two values being compared don't have to have the same type.
555//
556// The matcher defined here is polymorphic (for example, Eq(5) can be
557// used to match an int, a short, a double, etc). Therefore we use
558// a template type conversion operator in the implementation.
559//
560// We define this as a macro in order to eliminate duplicated source
561// code.
562//
563// The following template definition assumes that the Rhs parameter is
564// a "bare" type (i.e. neither 'const T' nor 'T&').
zhanyong.wane0d051e2009-02-19 00:33:37 +0000565#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_(name, op, relation) \
shiqiane35fdd92008-12-10 05:08:54 +0000566 template <typename Rhs> class name##Matcher { \
567 public: \
568 explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
569 template <typename Lhs> \
570 operator Matcher<Lhs>() const { \
571 return MakeMatcher(new Impl<Lhs>(rhs_)); \
572 } \
573 private: \
574 template <typename Lhs> \
575 class Impl : public MatcherInterface<Lhs> { \
576 public: \
577 explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
578 virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \
579 virtual void DescribeTo(::std::ostream* os) const { \
580 *os << "is " relation " "; \
581 UniversalPrinter<Rhs>::Print(rhs_, os); \
582 } \
583 virtual void DescribeNegationTo(::std::ostream* os) const { \
584 *os << "is not " relation " "; \
585 UniversalPrinter<Rhs>::Print(rhs_, os); \
586 } \
587 private: \
588 Rhs rhs_; \
589 }; \
590 Rhs rhs_; \
591 }
592
593// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
594// respectively.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000595GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "equal to");
596GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "greater than or equal to");
597GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "greater than");
598GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "less than or equal to");
599GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "less than");
600GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "not equal to");
shiqiane35fdd92008-12-10 05:08:54 +0000601
zhanyong.wane0d051e2009-02-19 00:33:37 +0000602#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
shiqiane35fdd92008-12-10 05:08:54 +0000603
604// Implements the polymorphic NotNull() matcher, which matches any
605// pointer that is not NULL.
606class NotNullMatcher {
607 public:
608 template <typename T>
609 bool Matches(T* p) const { return p != NULL; }
610
611 void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }
612 void DescribeNegationTo(::std::ostream* os) const {
613 *os << "is NULL";
614 }
615};
616
617// Ref(variable) matches any argument that is a reference to
618// 'variable'. This matcher is polymorphic as it can match any
619// super type of the type of 'variable'.
620//
621// The RefMatcher template class implements Ref(variable). It can
622// only be instantiated with a reference type. This prevents a user
623// from mistakenly using Ref(x) to match a non-reference function
624// argument. For example, the following will righteously cause a
625// compiler error:
626//
627// int n;
628// Matcher<int> m1 = Ref(n); // This won't compile.
629// Matcher<int&> m2 = Ref(n); // This will compile.
630template <typename T>
631class RefMatcher;
632
633template <typename T>
634class RefMatcher<T&> {
635 // Google Mock is a generic framework and thus needs to support
636 // mocking any function types, including those that take non-const
637 // reference arguments. Therefore the template parameter T (and
638 // Super below) can be instantiated to either a const type or a
639 // non-const type.
640 public:
641 // RefMatcher() takes a T& instead of const T&, as we want the
642 // compiler to catch using Ref(const_value) as a matcher for a
643 // non-const reference.
644 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
645
646 template <typename Super>
647 operator Matcher<Super&>() const {
648 // By passing object_ (type T&) to Impl(), which expects a Super&,
649 // we make sure that Super is a super type of T. In particular,
650 // this catches using Ref(const_value) as a matcher for a
651 // non-const reference, as you cannot implicitly convert a const
652 // reference to a non-const reference.
653 return MakeMatcher(new Impl<Super>(object_));
654 }
655 private:
656 template <typename Super>
657 class Impl : public MatcherInterface<Super&> {
658 public:
659 explicit Impl(Super& x) : object_(x) {} // NOLINT
660
661 // Matches() takes a Super& (as opposed to const Super&) in
662 // order to match the interface MatcherInterface<Super&>.
663 virtual bool Matches(Super& x) const { return &x == &object_; } // NOLINT
664
665 virtual void DescribeTo(::std::ostream* os) const {
666 *os << "references the variable ";
667 UniversalPrinter<Super&>::Print(object_, os);
668 }
669
670 virtual void DescribeNegationTo(::std::ostream* os) const {
671 *os << "does not reference the variable ";
672 UniversalPrinter<Super&>::Print(object_, os);
673 }
674
675 virtual void ExplainMatchResultTo(Super& x, // NOLINT
676 ::std::ostream* os) const {
677 *os << "is located @" << static_cast<const void*>(&x);
678 }
679 private:
680 const Super& object_;
681 };
682
683 T& object_;
684};
685
686// Polymorphic helper functions for narrow and wide string matchers.
687inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
688 return String::CaseInsensitiveCStringEquals(lhs, rhs);
689}
690
691inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
692 const wchar_t* rhs) {
693 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
694}
695
696// String comparison for narrow or wide strings that can have embedded NUL
697// characters.
698template <typename StringType>
699bool CaseInsensitiveStringEquals(const StringType& s1,
700 const StringType& s2) {
701 // Are the heads equal?
702 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
703 return false;
704 }
705
706 // Skip the equal heads.
707 const typename StringType::value_type nul = 0;
708 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
709
710 // Are we at the end of either s1 or s2?
711 if (i1 == StringType::npos || i2 == StringType::npos) {
712 return i1 == i2;
713 }
714
715 // Are the tails equal?
716 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
717}
718
719// String matchers.
720
721// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
722template <typename StringType>
723class StrEqualityMatcher {
724 public:
725 typedef typename StringType::const_pointer ConstCharPointer;
726
727 StrEqualityMatcher(const StringType& str, bool expect_eq,
728 bool case_sensitive)
729 : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
730
731 // When expect_eq_ is true, returns true iff s is equal to string_;
732 // otherwise returns true iff s is not equal to string_.
733 bool Matches(ConstCharPointer s) const {
734 if (s == NULL) {
735 return !expect_eq_;
736 }
737 return Matches(StringType(s));
738 }
739
740 bool Matches(const StringType& s) const {
741 const bool eq = case_sensitive_ ? s == string_ :
742 CaseInsensitiveStringEquals(s, string_);
743 return expect_eq_ == eq;
744 }
745
746 void DescribeTo(::std::ostream* os) const {
747 DescribeToHelper(expect_eq_, os);
748 }
749
750 void DescribeNegationTo(::std::ostream* os) const {
751 DescribeToHelper(!expect_eq_, os);
752 }
753 private:
754 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
755 *os << "is ";
756 if (!expect_eq) {
757 *os << "not ";
758 }
759 *os << "equal to ";
760 if (!case_sensitive_) {
761 *os << "(ignoring case) ";
762 }
763 UniversalPrinter<StringType>::Print(string_, os);
764 }
765
766 const StringType string_;
767 const bool expect_eq_;
768 const bool case_sensitive_;
769};
770
771// Implements the polymorphic HasSubstr(substring) matcher, which
772// can be used as a Matcher<T> as long as T can be converted to a
773// string.
774template <typename StringType>
775class HasSubstrMatcher {
776 public:
777 typedef typename StringType::const_pointer ConstCharPointer;
778
779 explicit HasSubstrMatcher(const StringType& substring)
780 : substring_(substring) {}
781
782 // These overloaded methods allow HasSubstr(substring) to be used as a
783 // Matcher<T> as long as T can be converted to string. Returns true
784 // iff s contains substring_ as a substring.
785 bool Matches(ConstCharPointer s) const {
786 return s != NULL && Matches(StringType(s));
787 }
788
789 bool Matches(const StringType& s) const {
790 return s.find(substring_) != StringType::npos;
791 }
792
793 // Describes what this matcher matches.
794 void DescribeTo(::std::ostream* os) const {
795 *os << "has substring ";
796 UniversalPrinter<StringType>::Print(substring_, os);
797 }
798
799 void DescribeNegationTo(::std::ostream* os) const {
800 *os << "has no substring ";
801 UniversalPrinter<StringType>::Print(substring_, os);
802 }
803 private:
804 const StringType substring_;
805};
806
807// Implements the polymorphic StartsWith(substring) matcher, which
808// can be used as a Matcher<T> as long as T can be converted to a
809// string.
810template <typename StringType>
811class StartsWithMatcher {
812 public:
813 typedef typename StringType::const_pointer ConstCharPointer;
814
815 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
816 }
817
818 // These overloaded methods allow StartsWith(prefix) to be used as a
819 // Matcher<T> as long as T can be converted to string. Returns true
820 // iff s starts with prefix_.
821 bool Matches(ConstCharPointer s) const {
822 return s != NULL && Matches(StringType(s));
823 }
824
825 bool Matches(const StringType& s) const {
826 return s.length() >= prefix_.length() &&
827 s.substr(0, prefix_.length()) == prefix_;
828 }
829
830 void DescribeTo(::std::ostream* os) const {
831 *os << "starts with ";
832 UniversalPrinter<StringType>::Print(prefix_, os);
833 }
834
835 void DescribeNegationTo(::std::ostream* os) const {
836 *os << "doesn't start with ";
837 UniversalPrinter<StringType>::Print(prefix_, os);
838 }
839 private:
840 const StringType prefix_;
841};
842
843// Implements the polymorphic EndsWith(substring) matcher, which
844// can be used as a Matcher<T> as long as T can be converted to a
845// string.
846template <typename StringType>
847class EndsWithMatcher {
848 public:
849 typedef typename StringType::const_pointer ConstCharPointer;
850
851 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
852
853 // These overloaded methods allow EndsWith(suffix) to be used as a
854 // Matcher<T> as long as T can be converted to string. Returns true
855 // iff s ends with suffix_.
856 bool Matches(ConstCharPointer s) const {
857 return s != NULL && Matches(StringType(s));
858 }
859
860 bool Matches(const StringType& s) const {
861 return s.length() >= suffix_.length() &&
862 s.substr(s.length() - suffix_.length()) == suffix_;
863 }
864
865 void DescribeTo(::std::ostream* os) const {
866 *os << "ends with ";
867 UniversalPrinter<StringType>::Print(suffix_, os);
868 }
869
870 void DescribeNegationTo(::std::ostream* os) const {
871 *os << "doesn't end with ";
872 UniversalPrinter<StringType>::Print(suffix_, os);
873 }
874 private:
875 const StringType suffix_;
876};
877
878#if GMOCK_HAS_REGEX
879
880// Implements polymorphic matchers MatchesRegex(regex) and
881// ContainsRegex(regex), which can be used as a Matcher<T> as long as
882// T can be converted to a string.
883class MatchesRegexMatcher {
884 public:
885 MatchesRegexMatcher(const RE* regex, bool full_match)
886 : regex_(regex), full_match_(full_match) {}
887
888 // These overloaded methods allow MatchesRegex(regex) to be used as
889 // a Matcher<T> as long as T can be converted to string. Returns
890 // true iff s matches regular expression regex. When full_match_ is
891 // true, a full match is done; otherwise a partial match is done.
892 bool Matches(const char* s) const {
893 return s != NULL && Matches(internal::string(s));
894 }
895
896 bool Matches(const internal::string& s) const {
897 return full_match_ ? RE::FullMatch(s, *regex_) :
898 RE::PartialMatch(s, *regex_);
899 }
900
901 void DescribeTo(::std::ostream* os) const {
902 *os << (full_match_ ? "matches" : "contains")
903 << " regular expression ";
904 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
905 }
906
907 void DescribeNegationTo(::std::ostream* os) const {
908 *os << "doesn't " << (full_match_ ? "match" : "contain")
909 << " regular expression ";
910 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
911 }
912 private:
913 const internal::linked_ptr<const RE> regex_;
914 const bool full_match_;
915};
916
917#endif // GMOCK_HAS_REGEX
918
919// Implements a matcher that compares the two fields of a 2-tuple
920// using one of the ==, <=, <, etc, operators. The two fields being
921// compared don't have to have the same type.
922//
923// The matcher defined here is polymorphic (for example, Eq() can be
924// used to match a tuple<int, short>, a tuple<const long&, double>,
925// etc). Therefore we use a template type conversion operator in the
926// implementation.
927//
928// We define this as a macro in order to eliminate duplicated source
929// code.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000930#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
shiqiane35fdd92008-12-10 05:08:54 +0000931 class name##2Matcher { \
932 public: \
933 template <typename T1, typename T2> \
934 operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
935 return MakeMatcher(new Impl<T1, T2>); \
936 } \
937 private: \
938 template <typename T1, typename T2> \
939 class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
940 public: \
941 virtual bool Matches(const ::std::tr1::tuple<T1, T2>& args) const { \
942 return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
943 } \
944 virtual void DescribeTo(::std::ostream* os) const { \
945 *os << "argument #0 is " relation " argument #1"; \
946 } \
947 virtual void DescribeNegationTo(::std::ostream* os) const { \
948 *os << "argument #0 is not " relation " argument #1"; \
949 } \
950 }; \
951 }
952
953// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000954GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "equal to");
955GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=, "greater than or equal to");
956GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >, "greater than");
957GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=, "less than or equal to");
958GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <, "less than");
959GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "not equal to");
shiqiane35fdd92008-12-10 05:08:54 +0000960
zhanyong.wane0d051e2009-02-19 00:33:37 +0000961#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
shiqiane35fdd92008-12-10 05:08:54 +0000962
zhanyong.wanc6a41232009-05-13 23:38:40 +0000963// Implements the Not(...) matcher for a particular argument type T.
964// We do not nest it inside the NotMatcher class template, as that
965// will prevent different instantiations of NotMatcher from sharing
966// the same NotMatcherImpl<T> class.
967template <typename T>
968class NotMatcherImpl : public MatcherInterface<T> {
969 public:
970 explicit NotMatcherImpl(const Matcher<T>& matcher)
971 : matcher_(matcher) {}
972
973 virtual bool Matches(T x) const {
974 return !matcher_.Matches(x);
975 }
976
977 virtual void DescribeTo(::std::ostream* os) const {
978 matcher_.DescribeNegationTo(os);
979 }
980
981 virtual void DescribeNegationTo(::std::ostream* os) const {
982 matcher_.DescribeTo(os);
983 }
984
985 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
986 matcher_.ExplainMatchResultTo(x, os);
987 }
988 private:
989 const Matcher<T> matcher_;
990};
991
shiqiane35fdd92008-12-10 05:08:54 +0000992// Implements the Not(m) matcher, which matches a value that doesn't
993// match matcher m.
994template <typename InnerMatcher>
995class NotMatcher {
996 public:
997 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
998
999 // This template type conversion operator allows Not(m) to be used
1000 // to match any type m can match.
1001 template <typename T>
1002 operator Matcher<T>() const {
zhanyong.wanc6a41232009-05-13 23:38:40 +00001003 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
shiqiane35fdd92008-12-10 05:08:54 +00001004 }
1005 private:
shiqiane35fdd92008-12-10 05:08:54 +00001006 InnerMatcher matcher_;
1007};
1008
zhanyong.wanc6a41232009-05-13 23:38:40 +00001009// Implements the AllOf(m1, m2) matcher for a particular argument type
1010// T. We do not nest it inside the BothOfMatcher class template, as
1011// that will prevent different instantiations of BothOfMatcher from
1012// sharing the same BothOfMatcherImpl<T> class.
1013template <typename T>
1014class BothOfMatcherImpl : public MatcherInterface<T> {
1015 public:
1016 BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1017 : matcher1_(matcher1), matcher2_(matcher2) {}
1018
1019 virtual bool Matches(T x) const {
1020 return matcher1_.Matches(x) && matcher2_.Matches(x);
1021 }
1022
1023 virtual void DescribeTo(::std::ostream* os) const {
1024 *os << "(";
1025 matcher1_.DescribeTo(os);
1026 *os << ") and (";
1027 matcher2_.DescribeTo(os);
1028 *os << ")";
1029 }
1030
1031 virtual void DescribeNegationTo(::std::ostream* os) const {
1032 *os << "not ";
1033 DescribeTo(os);
1034 }
1035
1036 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
1037 if (Matches(x)) {
1038 // When both matcher1_ and matcher2_ match x, we need to
1039 // explain why *both* of them match.
1040 ::std::stringstream ss1;
1041 matcher1_.ExplainMatchResultTo(x, &ss1);
1042 const internal::string s1 = ss1.str();
1043
1044 ::std::stringstream ss2;
1045 matcher2_.ExplainMatchResultTo(x, &ss2);
1046 const internal::string s2 = ss2.str();
1047
1048 if (s1 == "") {
1049 *os << s2;
1050 } else {
1051 *os << s1;
1052 if (s2 != "") {
1053 *os << "; " << s2;
1054 }
1055 }
1056 } else {
1057 // Otherwise we only need to explain why *one* of them fails
1058 // to match.
1059 if (!matcher1_.Matches(x)) {
1060 matcher1_.ExplainMatchResultTo(x, os);
1061 } else {
1062 matcher2_.ExplainMatchResultTo(x, os);
1063 }
1064 }
1065 }
1066 private:
1067 const Matcher<T> matcher1_;
1068 const Matcher<T> matcher2_;
1069};
1070
shiqiane35fdd92008-12-10 05:08:54 +00001071// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1072// matches a value that matches all of the matchers m_1, ..., and m_n.
1073template <typename Matcher1, typename Matcher2>
1074class BothOfMatcher {
1075 public:
1076 BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1077 : matcher1_(matcher1), matcher2_(matcher2) {}
1078
1079 // This template type conversion operator allows a
1080 // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1081 // both Matcher1 and Matcher2 can match.
1082 template <typename T>
1083 operator Matcher<T>() const {
zhanyong.wanc6a41232009-05-13 23:38:40 +00001084 return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1085 SafeMatcherCast<T>(matcher2_)));
shiqiane35fdd92008-12-10 05:08:54 +00001086 }
1087 private:
zhanyong.wanc6a41232009-05-13 23:38:40 +00001088 Matcher1 matcher1_;
1089 Matcher2 matcher2_;
1090};
shiqiane35fdd92008-12-10 05:08:54 +00001091
zhanyong.wanc6a41232009-05-13 23:38:40 +00001092// Implements the AnyOf(m1, m2) matcher for a particular argument type
1093// T. We do not nest it inside the AnyOfMatcher class template, as
1094// that will prevent different instantiations of AnyOfMatcher from
1095// sharing the same EitherOfMatcherImpl<T> class.
1096template <typename T>
1097class EitherOfMatcherImpl : public MatcherInterface<T> {
1098 public:
1099 EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1100 : matcher1_(matcher1), matcher2_(matcher2) {}
shiqiane35fdd92008-12-10 05:08:54 +00001101
zhanyong.wanc6a41232009-05-13 23:38:40 +00001102 virtual bool Matches(T x) const {
1103 return matcher1_.Matches(x) || matcher2_.Matches(x);
1104 }
shiqiane35fdd92008-12-10 05:08:54 +00001105
zhanyong.wanc6a41232009-05-13 23:38:40 +00001106 virtual void DescribeTo(::std::ostream* os) const {
1107 *os << "(";
1108 matcher1_.DescribeTo(os);
1109 *os << ") or (";
1110 matcher2_.DescribeTo(os);
1111 *os << ")";
1112 }
shiqiane35fdd92008-12-10 05:08:54 +00001113
zhanyong.wanc6a41232009-05-13 23:38:40 +00001114 virtual void DescribeNegationTo(::std::ostream* os) const {
1115 *os << "not ";
1116 DescribeTo(os);
1117 }
shiqiane35fdd92008-12-10 05:08:54 +00001118
zhanyong.wanc6a41232009-05-13 23:38:40 +00001119 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
1120 if (Matches(x)) {
1121 // If either matcher1_ or matcher2_ matches x, we just need
1122 // to explain why *one* of them matches.
1123 if (matcher1_.Matches(x)) {
1124 matcher1_.ExplainMatchResultTo(x, os);
shiqiane35fdd92008-12-10 05:08:54 +00001125 } else {
zhanyong.wanc6a41232009-05-13 23:38:40 +00001126 matcher2_.ExplainMatchResultTo(x, os);
1127 }
1128 } else {
1129 // Otherwise we need to explain why *neither* matches.
1130 ::std::stringstream ss1;
1131 matcher1_.ExplainMatchResultTo(x, &ss1);
1132 const internal::string s1 = ss1.str();
1133
1134 ::std::stringstream ss2;
1135 matcher2_.ExplainMatchResultTo(x, &ss2);
1136 const internal::string s2 = ss2.str();
1137
1138 if (s1 == "") {
1139 *os << s2;
1140 } else {
1141 *os << s1;
1142 if (s2 != "") {
1143 *os << "; " << s2;
shiqiane35fdd92008-12-10 05:08:54 +00001144 }
1145 }
1146 }
zhanyong.wanc6a41232009-05-13 23:38:40 +00001147 }
1148 private:
1149 const Matcher<T> matcher1_;
1150 const Matcher<T> matcher2_;
shiqiane35fdd92008-12-10 05:08:54 +00001151};
1152
1153// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1154// matches a value that matches at least one of the matchers m_1, ...,
1155// and m_n.
1156template <typename Matcher1, typename Matcher2>
1157class EitherOfMatcher {
1158 public:
1159 EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1160 : matcher1_(matcher1), matcher2_(matcher2) {}
1161
1162 // This template type conversion operator allows a
1163 // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1164 // both Matcher1 and Matcher2 can match.
1165 template <typename T>
1166 operator Matcher<T>() const {
zhanyong.wanc6a41232009-05-13 23:38:40 +00001167 return Matcher<T>(new EitherOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1168 SafeMatcherCast<T>(matcher2_)));
shiqiane35fdd92008-12-10 05:08:54 +00001169 }
1170 private:
shiqiane35fdd92008-12-10 05:08:54 +00001171 Matcher1 matcher1_;
1172 Matcher2 matcher2_;
1173};
1174
1175// Used for implementing Truly(pred), which turns a predicate into a
1176// matcher.
1177template <typename Predicate>
1178class TrulyMatcher {
1179 public:
1180 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1181
1182 // This method template allows Truly(pred) to be used as a matcher
1183 // for type T where T is the argument type of predicate 'pred'. The
1184 // argument is passed by reference as the predicate may be
1185 // interested in the address of the argument.
1186 template <typename T>
1187 bool Matches(T& x) const {
zhanyong.wan652540a2009-02-23 23:37:29 +00001188#if GTEST_OS_WINDOWS
shiqiane35fdd92008-12-10 05:08:54 +00001189 // MSVC warns about converting a value into bool (warning 4800).
1190#pragma warning(push) // Saves the current warning state.
1191#pragma warning(disable:4800) // Temporarily disables warning 4800.
1192#endif // GTEST_OS_WINDOWS
1193 return predicate_(x);
zhanyong.wan652540a2009-02-23 23:37:29 +00001194#if GTEST_OS_WINDOWS
shiqiane35fdd92008-12-10 05:08:54 +00001195#pragma warning(pop) // Restores the warning state.
1196#endif // GTEST_OS_WINDOWS
1197 }
1198
1199 void DescribeTo(::std::ostream* os) const {
1200 *os << "satisfies the given predicate";
1201 }
1202
1203 void DescribeNegationTo(::std::ostream* os) const {
1204 *os << "doesn't satisfy the given predicate";
1205 }
1206 private:
1207 Predicate predicate_;
1208};
1209
1210// Used for implementing Matches(matcher), which turns a matcher into
1211// a predicate.
1212template <typename M>
1213class MatcherAsPredicate {
1214 public:
1215 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1216
1217 // This template operator() allows Matches(m) to be used as a
1218 // predicate on type T where m is a matcher on type T.
1219 //
1220 // The argument x is passed by reference instead of by value, as
1221 // some matcher may be interested in its address (e.g. as in
1222 // Matches(Ref(n))(x)).
1223 template <typename T>
1224 bool operator()(const T& x) const {
1225 // We let matcher_ commit to a particular type here instead of
1226 // when the MatcherAsPredicate object was constructed. This
1227 // allows us to write Matches(m) where m is a polymorphic matcher
1228 // (e.g. Eq(5)).
1229 //
1230 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1231 // compile when matcher_ has type Matcher<const T&>; if we write
1232 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1233 // when matcher_ has type Matcher<T>; if we just write
1234 // matcher_.Matches(x), it won't compile when matcher_ is
1235 // polymorphic, e.g. Eq(5).
1236 //
1237 // MatcherCast<const T&>() is necessary for making the code work
1238 // in all of the above situations.
1239 return MatcherCast<const T&>(matcher_).Matches(x);
1240 }
1241 private:
1242 M matcher_;
1243};
1244
1245// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1246// argument M must be a type that can be converted to a matcher.
1247template <typename M>
1248class PredicateFormatterFromMatcher {
1249 public:
1250 explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1251
1252 // This template () operator allows a PredicateFormatterFromMatcher
1253 // object to act as a predicate-formatter suitable for using with
1254 // Google Test's EXPECT_PRED_FORMAT1() macro.
1255 template <typename T>
1256 AssertionResult operator()(const char* value_text, const T& x) const {
1257 // We convert matcher_ to a Matcher<const T&> *now* instead of
1258 // when the PredicateFormatterFromMatcher object was constructed,
1259 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1260 // know which type to instantiate it to until we actually see the
1261 // type of x here.
1262 //
1263 // We write MatcherCast<const T&>(matcher_) instead of
1264 // Matcher<const T&>(matcher_), as the latter won't compile when
1265 // matcher_ has type Matcher<T> (e.g. An<int>()).
1266 const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1267 if (matcher.Matches(x)) {
1268 return AssertionSuccess();
1269 } else {
1270 ::std::stringstream ss;
1271 ss << "Value of: " << value_text << "\n"
1272 << "Expected: ";
1273 matcher.DescribeTo(&ss);
1274 ss << "\n Actual: ";
1275 UniversalPrinter<T>::Print(x, &ss);
1276 ExplainMatchResultAsNeededTo<const T&>(matcher, x, &ss);
1277 return AssertionFailure(Message() << ss.str());
1278 }
1279 }
1280 private:
1281 const M matcher_;
1282};
1283
1284// A helper function for converting a matcher to a predicate-formatter
1285// without the user needing to explicitly write the type. This is
1286// used for implementing ASSERT_THAT() and EXPECT_THAT().
1287template <typename M>
1288inline PredicateFormatterFromMatcher<M>
1289MakePredicateFormatterFromMatcher(const M& matcher) {
1290 return PredicateFormatterFromMatcher<M>(matcher);
1291}
1292
1293// Implements the polymorphic floating point equality matcher, which
1294// matches two float values using ULP-based approximation. The
1295// template is meant to be instantiated with FloatType being either
1296// float or double.
1297template <typename FloatType>
1298class FloatingEqMatcher {
1299 public:
1300 // Constructor for FloatingEqMatcher.
1301 // The matcher's input will be compared with rhs. The matcher treats two
1302 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1303 // equality comparisons between NANs will always return false.
1304 FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1305 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1306
1307 // Implements floating point equality matcher as a Matcher<T>.
1308 template <typename T>
1309 class Impl : public MatcherInterface<T> {
1310 public:
1311 Impl(FloatType rhs, bool nan_eq_nan) :
1312 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1313
1314 virtual bool Matches(T value) const {
1315 const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1316
1317 // Compares NaNs first, if nan_eq_nan_ is true.
1318 if (nan_eq_nan_ && lhs.is_nan()) {
1319 return rhs.is_nan();
1320 }
1321
1322 return lhs.AlmostEquals(rhs);
1323 }
1324
1325 virtual void DescribeTo(::std::ostream* os) const {
1326 // os->precision() returns the previously set precision, which we
1327 // store to restore the ostream to its original configuration
1328 // after outputting.
1329 const ::std::streamsize old_precision = os->precision(
1330 ::std::numeric_limits<FloatType>::digits10 + 2);
1331 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1332 if (nan_eq_nan_) {
1333 *os << "is NaN";
1334 } else {
1335 *os << "never matches";
1336 }
1337 } else {
1338 *os << "is approximately " << rhs_;
1339 }
1340 os->precision(old_precision);
1341 }
1342
1343 virtual void DescribeNegationTo(::std::ostream* os) const {
1344 // As before, get original precision.
1345 const ::std::streamsize old_precision = os->precision(
1346 ::std::numeric_limits<FloatType>::digits10 + 2);
1347 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1348 if (nan_eq_nan_) {
1349 *os << "is not NaN";
1350 } else {
1351 *os << "is anything";
1352 }
1353 } else {
1354 *os << "is not approximately " << rhs_;
1355 }
1356 // Restore original precision.
1357 os->precision(old_precision);
1358 }
1359
1360 private:
1361 const FloatType rhs_;
1362 const bool nan_eq_nan_;
1363 };
1364
1365 // The following 3 type conversion operators allow FloatEq(rhs) and
1366 // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1367 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1368 // (While Google's C++ coding style doesn't allow arguments passed
1369 // by non-const reference, we may see them in code not conforming to
1370 // the style. Therefore Google Mock needs to support them.)
1371 operator Matcher<FloatType>() const {
1372 return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1373 }
1374
1375 operator Matcher<const FloatType&>() const {
1376 return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1377 }
1378
1379 operator Matcher<FloatType&>() const {
1380 return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1381 }
1382 private:
1383 const FloatType rhs_;
1384 const bool nan_eq_nan_;
1385};
1386
1387// Implements the Pointee(m) matcher for matching a pointer whose
1388// pointee matches matcher m. The pointer can be either raw or smart.
1389template <typename InnerMatcher>
1390class PointeeMatcher {
1391 public:
1392 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1393
1394 // This type conversion operator template allows Pointee(m) to be
1395 // used as a matcher for any pointer type whose pointee type is
1396 // compatible with the inner matcher, where type Pointer can be
1397 // either a raw pointer or a smart pointer.
1398 //
1399 // The reason we do this instead of relying on
1400 // MakePolymorphicMatcher() is that the latter is not flexible
1401 // enough for implementing the DescribeTo() method of Pointee().
1402 template <typename Pointer>
1403 operator Matcher<Pointer>() const {
1404 return MakeMatcher(new Impl<Pointer>(matcher_));
1405 }
1406 private:
1407 // The monomorphic implementation that works for a particular pointer type.
1408 template <typename Pointer>
1409 class Impl : public MatcherInterface<Pointer> {
1410 public:
zhanyong.wane0d051e2009-02-19 00:33:37 +00001411 typedef typename PointeeOf<GMOCK_REMOVE_CONST_( // NOLINT
1412 GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee;
shiqiane35fdd92008-12-10 05:08:54 +00001413
1414 explicit Impl(const InnerMatcher& matcher)
1415 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1416
1417 virtual bool Matches(Pointer p) const {
1418 return GetRawPointer(p) != NULL && matcher_.Matches(*p);
1419 }
1420
1421 virtual void DescribeTo(::std::ostream* os) const {
1422 *os << "points to a value that ";
1423 matcher_.DescribeTo(os);
1424 }
1425
1426 virtual void DescribeNegationTo(::std::ostream* os) const {
1427 *os << "does not point to a value that ";
1428 matcher_.DescribeTo(os);
1429 }
1430
1431 virtual void ExplainMatchResultTo(Pointer pointer,
1432 ::std::ostream* os) const {
1433 if (GetRawPointer(pointer) == NULL)
1434 return;
1435
1436 ::std::stringstream ss;
1437 matcher_.ExplainMatchResultTo(*pointer, &ss);
1438 const internal::string s = ss.str();
1439 if (s != "") {
1440 *os << "points to a value that " << s;
1441 }
1442 }
1443 private:
1444 const Matcher<const Pointee&> matcher_;
1445 };
1446
1447 const InnerMatcher matcher_;
1448};
1449
1450// Implements the Field() matcher for matching a field (i.e. member
1451// variable) of an object.
1452template <typename Class, typename FieldType>
1453class FieldMatcher {
1454 public:
1455 FieldMatcher(FieldType Class::*field,
1456 const Matcher<const FieldType&>& matcher)
1457 : field_(field), matcher_(matcher) {}
1458
1459 // Returns true iff the inner matcher matches obj.field.
1460 bool Matches(const Class& obj) const {
1461 return matcher_.Matches(obj.*field_);
1462 }
1463
1464 // Returns true iff the inner matcher matches obj->field.
1465 bool Matches(const Class* p) const {
1466 return (p != NULL) && matcher_.Matches(p->*field_);
1467 }
1468
1469 void DescribeTo(::std::ostream* os) const {
1470 *os << "the given field ";
1471 matcher_.DescribeTo(os);
1472 }
1473
1474 void DescribeNegationTo(::std::ostream* os) const {
1475 *os << "the given field ";
1476 matcher_.DescribeNegationTo(os);
1477 }
1478
zhanyong.wan18490652009-05-11 18:54:08 +00001479 // The first argument of ExplainMatchResultTo() is needed to help
1480 // Symbian's C++ compiler choose which overload to use. Its type is
1481 // true_type iff the Field() matcher is used to match a pointer.
1482 void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
1483 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001484 ::std::stringstream ss;
1485 matcher_.ExplainMatchResultTo(obj.*field_, &ss);
1486 const internal::string s = ss.str();
1487 if (s != "") {
1488 *os << "the given field " << s;
1489 }
1490 }
1491
zhanyong.wan18490652009-05-11 18:54:08 +00001492 void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
1493 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001494 if (p != NULL) {
zhanyong.wan18490652009-05-11 18:54:08 +00001495 // Since *p has a field, it must be a class/struct/union type
1496 // and thus cannot be a pointer. Therefore we pass false_type()
1497 // as the first argument.
1498 ExplainMatchResultTo(false_type(), *p, os);
shiqiane35fdd92008-12-10 05:08:54 +00001499 }
1500 }
1501 private:
1502 const FieldType Class::*field_;
1503 const Matcher<const FieldType&> matcher_;
1504};
1505
zhanyong.wan18490652009-05-11 18:54:08 +00001506// Explains the result of matching an object or pointer against a field matcher.
1507template <typename Class, typename FieldType, typename T>
shiqiane35fdd92008-12-10 05:08:54 +00001508void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
zhanyong.wan18490652009-05-11 18:54:08 +00001509 const T& value, ::std::ostream* os) {
1510 matcher.ExplainMatchResultTo(
1511 typename ::testing::internal::is_pointer<T>::type(), value, os);
shiqiane35fdd92008-12-10 05:08:54 +00001512}
1513
1514// Implements the Property() matcher for matching a property
1515// (i.e. return value of a getter method) of an object.
1516template <typename Class, typename PropertyType>
1517class PropertyMatcher {
1518 public:
1519 // The property may have a reference type, so 'const PropertyType&'
1520 // may cause double references and fail to compile. That's why we
1521 // need GMOCK_REFERENCE_TO_CONST, which works regardless of
1522 // PropertyType being a reference or not.
zhanyong.wane0d051e2009-02-19 00:33:37 +00001523 typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
shiqiane35fdd92008-12-10 05:08:54 +00001524
1525 PropertyMatcher(PropertyType (Class::*property)() const,
1526 const Matcher<RefToConstProperty>& matcher)
1527 : property_(property), matcher_(matcher) {}
1528
1529 // Returns true iff obj.property() matches the inner matcher.
1530 bool Matches(const Class& obj) const {
1531 return matcher_.Matches((obj.*property_)());
1532 }
1533
1534 // Returns true iff p->property() matches the inner matcher.
1535 bool Matches(const Class* p) const {
1536 return (p != NULL) && matcher_.Matches((p->*property_)());
1537 }
1538
1539 void DescribeTo(::std::ostream* os) const {
1540 *os << "the given property ";
1541 matcher_.DescribeTo(os);
1542 }
1543
1544 void DescribeNegationTo(::std::ostream* os) const {
1545 *os << "the given property ";
1546 matcher_.DescribeNegationTo(os);
1547 }
1548
zhanyong.wan18490652009-05-11 18:54:08 +00001549 // The first argument of ExplainMatchResultTo() is needed to help
1550 // Symbian's C++ compiler choose which overload to use. Its type is
1551 // true_type iff the Property() matcher is used to match a pointer.
1552 void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
1553 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001554 ::std::stringstream ss;
1555 matcher_.ExplainMatchResultTo((obj.*property_)(), &ss);
1556 const internal::string s = ss.str();
1557 if (s != "") {
1558 *os << "the given property " << s;
1559 }
1560 }
1561
zhanyong.wan18490652009-05-11 18:54:08 +00001562 void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
1563 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001564 if (p != NULL) {
zhanyong.wan18490652009-05-11 18:54:08 +00001565 // Since *p has a property method, it must be a
1566 // class/struct/union type and thus cannot be a pointer.
1567 // Therefore we pass false_type() as the first argument.
1568 ExplainMatchResultTo(false_type(), *p, os);
shiqiane35fdd92008-12-10 05:08:54 +00001569 }
1570 }
1571 private:
1572 PropertyType (Class::*property_)() const;
1573 const Matcher<RefToConstProperty> matcher_;
1574};
1575
zhanyong.wan18490652009-05-11 18:54:08 +00001576// Explains the result of matching an object or pointer against a
1577// property matcher.
1578template <typename Class, typename PropertyType, typename T>
shiqiane35fdd92008-12-10 05:08:54 +00001579void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
zhanyong.wan18490652009-05-11 18:54:08 +00001580 const T& value, ::std::ostream* os) {
1581 matcher.ExplainMatchResultTo(
1582 typename ::testing::internal::is_pointer<T>::type(), value, os);
shiqiane35fdd92008-12-10 05:08:54 +00001583}
1584
1585// Type traits specifying various features of different functors for ResultOf.
1586// The default template specifies features for functor objects.
1587// Functor classes have to typedef argument_type and result_type
1588// to be compatible with ResultOf.
1589template <typename Functor>
1590struct CallableTraits {
1591 typedef typename Functor::result_type ResultType;
1592 typedef Functor StorageType;
1593
1594 static void CheckIsValid(Functor functor) {}
1595 template <typename T>
1596 static ResultType Invoke(Functor f, T arg) { return f(arg); }
1597};
1598
1599// Specialization for function pointers.
1600template <typename ArgType, typename ResType>
1601struct CallableTraits<ResType(*)(ArgType)> {
1602 typedef ResType ResultType;
1603 typedef ResType(*StorageType)(ArgType);
1604
1605 static void CheckIsValid(ResType(*f)(ArgType)) {
1606 GMOCK_CHECK_(f != NULL)
1607 << "NULL function pointer is passed into ResultOf().";
1608 }
1609 template <typename T>
1610 static ResType Invoke(ResType(*f)(ArgType), T arg) {
1611 return (*f)(arg);
1612 }
1613};
1614
1615// Implements the ResultOf() matcher for matching a return value of a
1616// unary function of an object.
1617template <typename Callable>
1618class ResultOfMatcher {
1619 public:
1620 typedef typename CallableTraits<Callable>::ResultType ResultType;
1621
1622 ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1623 : callable_(callable), matcher_(matcher) {
1624 CallableTraits<Callable>::CheckIsValid(callable_);
1625 }
1626
1627 template <typename T>
1628 operator Matcher<T>() const {
1629 return Matcher<T>(new Impl<T>(callable_, matcher_));
1630 }
1631
1632 private:
1633 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1634
1635 template <typename T>
1636 class Impl : public MatcherInterface<T> {
1637 public:
1638 Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1639 : callable_(callable), matcher_(matcher) {}
1640 // Returns true iff callable_(obj) matches the inner matcher.
1641 // The calling syntax is different for different types of callables
1642 // so we abstract it in CallableTraits<Callable>::Invoke().
1643 virtual bool Matches(T obj) const {
1644 return matcher_.Matches(
1645 CallableTraits<Callable>::template Invoke<T>(callable_, obj));
1646 }
1647
1648 virtual void DescribeTo(::std::ostream* os) const {
1649 *os << "result of the given callable ";
1650 matcher_.DescribeTo(os);
1651 }
1652
1653 virtual void DescribeNegationTo(::std::ostream* os) const {
1654 *os << "result of the given callable ";
1655 matcher_.DescribeNegationTo(os);
1656 }
1657
1658 virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const {
1659 ::std::stringstream ss;
1660 matcher_.ExplainMatchResultTo(
1661 CallableTraits<Callable>::template Invoke<T>(callable_, obj),
1662 &ss);
1663 const internal::string s = ss.str();
1664 if (s != "")
1665 *os << "result of the given callable " << s;
1666 }
1667 private:
1668 // Functors often define operator() as non-const method even though
1669 // they are actualy stateless. But we need to use them even when
1670 // 'this' is a const pointer. It's the user's responsibility not to
1671 // use stateful callables with ResultOf(), which does't guarantee
1672 // how many times the callable will be invoked.
1673 mutable CallableStorageType callable_;
1674 const Matcher<ResultType> matcher_;
1675 }; // class Impl
1676
1677 const CallableStorageType callable_;
1678 const Matcher<ResultType> matcher_;
1679};
1680
1681// Explains the result of matching a value against a functor matcher.
1682template <typename T, typename Callable>
1683void ExplainMatchResultTo(const ResultOfMatcher<Callable>& matcher,
1684 T obj, ::std::ostream* os) {
1685 matcher.ExplainMatchResultTo(obj, os);
1686}
1687
zhanyong.wan6a896b52009-01-16 01:13:50 +00001688// Implements an equality matcher for any STL-style container whose elements
1689// support ==. This matcher is like Eq(), but its failure explanations provide
1690// more detailed information that is useful when the container is used as a set.
1691// The failure message reports elements that are in one of the operands but not
1692// the other. The failure messages do not report duplicate or out-of-order
1693// elements in the containers (which don't properly matter to sets, but can
1694// occur if the containers are vectors or lists, for example).
1695//
1696// Uses the container's const_iterator, value_type, operator ==,
1697// begin(), and end().
1698template <typename Container>
1699class ContainerEqMatcher {
1700 public:
1701 explicit ContainerEqMatcher(const Container& rhs) : rhs_(rhs) {}
1702 bool Matches(const Container& lhs) const { return lhs == rhs_; }
1703 void DescribeTo(::std::ostream* os) const {
1704 *os << "equals ";
1705 UniversalPrinter<Container>::Print(rhs_, os);
1706 }
1707 void DescribeNegationTo(::std::ostream* os) const {
1708 *os << "does not equal ";
1709 UniversalPrinter<Container>::Print(rhs_, os);
1710 }
1711
1712 void ExplainMatchResultTo(const Container& lhs,
1713 ::std::ostream* os) const {
1714 // Something is different. Check for missing values first.
1715 bool printed_header = false;
1716 for (typename Container::const_iterator it = lhs.begin();
1717 it != lhs.end(); ++it) {
1718 if (std::find(rhs_.begin(), rhs_.end(), *it) == rhs_.end()) {
1719 if (printed_header) {
1720 *os << ", ";
1721 } else {
1722 *os << "Only in actual: ";
1723 printed_header = true;
1724 }
1725 UniversalPrinter<typename Container::value_type>::Print(*it, os);
1726 }
1727 }
1728
1729 // Now check for extra values.
1730 bool printed_header2 = false;
1731 for (typename Container::const_iterator it = rhs_.begin();
1732 it != rhs_.end(); ++it) {
1733 if (std::find(lhs.begin(), lhs.end(), *it) == lhs.end()) {
1734 if (printed_header2) {
1735 *os << ", ";
1736 } else {
1737 *os << (printed_header ? "; not" : "Not") << " in actual: ";
1738 printed_header2 = true;
1739 }
1740 UniversalPrinter<typename Container::value_type>::Print(*it, os);
1741 }
1742 }
1743 }
1744 private:
1745 const Container rhs_;
1746};
1747
1748template <typename Container>
1749void ExplainMatchResultTo(const ContainerEqMatcher<Container>& matcher,
1750 const Container& lhs,
1751 ::std::ostream* os) {
1752 matcher.ExplainMatchResultTo(lhs, os);
1753}
1754
shiqiane35fdd92008-12-10 05:08:54 +00001755} // namespace internal
1756
1757// Implements MatcherCast().
1758template <typename T, typename M>
1759inline Matcher<T> MatcherCast(M matcher) {
1760 return internal::MatcherCastImpl<T, M>::Cast(matcher);
1761}
1762
1763// _ is a matcher that matches anything of any type.
1764//
1765// This definition is fine as:
1766//
1767// 1. The C++ standard permits using the name _ in a namespace that
1768// is not the global namespace or ::std.
1769// 2. The AnythingMatcher class has no data member or constructor,
1770// so it's OK to create global variables of this type.
1771// 3. c-style has approved of using _ in this case.
1772const internal::AnythingMatcher _ = {};
1773// Creates a matcher that matches any value of the given type T.
1774template <typename T>
1775inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
1776
1777// Creates a matcher that matches any value of the given type T.
1778template <typename T>
1779inline Matcher<T> An() { return A<T>(); }
1780
1781// Creates a polymorphic matcher that matches anything equal to x.
1782// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
1783// wouldn't compile.
1784template <typename T>
1785inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
1786
1787// Constructs a Matcher<T> from a 'value' of type T. The constructed
1788// matcher matches any value that's equal to 'value'.
1789template <typename T>
1790Matcher<T>::Matcher(T value) { *this = Eq(value); }
1791
1792// Creates a monomorphic matcher that matches anything with type Lhs
1793// and equal to rhs. A user may need to use this instead of Eq(...)
1794// in order to resolve an overloading ambiguity.
1795//
1796// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
1797// or Matcher<T>(x), but more readable than the latter.
1798//
1799// We could define similar monomorphic matchers for other comparison
1800// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
1801// it yet as those are used much less than Eq() in practice. A user
1802// can always write Matcher<T>(Lt(5)) to be explicit about the type,
1803// for example.
1804template <typename Lhs, typename Rhs>
1805inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
1806
1807// Creates a polymorphic matcher that matches anything >= x.
1808template <typename Rhs>
1809inline internal::GeMatcher<Rhs> Ge(Rhs x) {
1810 return internal::GeMatcher<Rhs>(x);
1811}
1812
1813// Creates a polymorphic matcher that matches anything > x.
1814template <typename Rhs>
1815inline internal::GtMatcher<Rhs> Gt(Rhs x) {
1816 return internal::GtMatcher<Rhs>(x);
1817}
1818
1819// Creates a polymorphic matcher that matches anything <= x.
1820template <typename Rhs>
1821inline internal::LeMatcher<Rhs> Le(Rhs x) {
1822 return internal::LeMatcher<Rhs>(x);
1823}
1824
1825// Creates a polymorphic matcher that matches anything < x.
1826template <typename Rhs>
1827inline internal::LtMatcher<Rhs> Lt(Rhs x) {
1828 return internal::LtMatcher<Rhs>(x);
1829}
1830
1831// Creates a polymorphic matcher that matches anything != x.
1832template <typename Rhs>
1833inline internal::NeMatcher<Rhs> Ne(Rhs x) {
1834 return internal::NeMatcher<Rhs>(x);
1835}
1836
1837// Creates a polymorphic matcher that matches any non-NULL pointer.
1838// This is convenient as Not(NULL) doesn't compile (the compiler
1839// thinks that that expression is comparing a pointer with an integer).
1840inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
1841 return MakePolymorphicMatcher(internal::NotNullMatcher());
1842}
1843
1844// Creates a polymorphic matcher that matches any argument that
1845// references variable x.
1846template <typename T>
1847inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
1848 return internal::RefMatcher<T&>(x);
1849}
1850
1851// Creates a matcher that matches any double argument approximately
1852// equal to rhs, where two NANs are considered unequal.
1853inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
1854 return internal::FloatingEqMatcher<double>(rhs, false);
1855}
1856
1857// Creates a matcher that matches any double argument approximately
1858// equal to rhs, including NaN values when rhs is NaN.
1859inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
1860 return internal::FloatingEqMatcher<double>(rhs, true);
1861}
1862
1863// Creates a matcher that matches any float argument approximately
1864// equal to rhs, where two NANs are considered unequal.
1865inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
1866 return internal::FloatingEqMatcher<float>(rhs, false);
1867}
1868
1869// Creates a matcher that matches any double argument approximately
1870// equal to rhs, including NaN values when rhs is NaN.
1871inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
1872 return internal::FloatingEqMatcher<float>(rhs, true);
1873}
1874
1875// Creates a matcher that matches a pointer (raw or smart) that points
1876// to a value that matches inner_matcher.
1877template <typename InnerMatcher>
1878inline internal::PointeeMatcher<InnerMatcher> Pointee(
1879 const InnerMatcher& inner_matcher) {
1880 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
1881}
1882
1883// Creates a matcher that matches an object whose given field matches
1884// 'matcher'. For example,
1885// Field(&Foo::number, Ge(5))
1886// matches a Foo object x iff x.number >= 5.
1887template <typename Class, typename FieldType, typename FieldMatcher>
1888inline PolymorphicMatcher<
1889 internal::FieldMatcher<Class, FieldType> > Field(
1890 FieldType Class::*field, const FieldMatcher& matcher) {
1891 return MakePolymorphicMatcher(
1892 internal::FieldMatcher<Class, FieldType>(
1893 field, MatcherCast<const FieldType&>(matcher)));
1894 // The call to MatcherCast() is required for supporting inner
1895 // matchers of compatible types. For example, it allows
1896 // Field(&Foo::bar, m)
1897 // to compile where bar is an int32 and m is a matcher for int64.
1898}
1899
1900// Creates a matcher that matches an object whose given property
1901// matches 'matcher'. For example,
1902// Property(&Foo::str, StartsWith("hi"))
1903// matches a Foo object x iff x.str() starts with "hi".
1904template <typename Class, typename PropertyType, typename PropertyMatcher>
1905inline PolymorphicMatcher<
1906 internal::PropertyMatcher<Class, PropertyType> > Property(
1907 PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
1908 return MakePolymorphicMatcher(
1909 internal::PropertyMatcher<Class, PropertyType>(
1910 property,
zhanyong.wane0d051e2009-02-19 00:33:37 +00001911 MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
shiqiane35fdd92008-12-10 05:08:54 +00001912 // The call to MatcherCast() is required for supporting inner
1913 // matchers of compatible types. For example, it allows
1914 // Property(&Foo::bar, m)
1915 // to compile where bar() returns an int32 and m is a matcher for int64.
1916}
1917
1918// Creates a matcher that matches an object iff the result of applying
1919// a callable to x matches 'matcher'.
1920// For example,
1921// ResultOf(f, StartsWith("hi"))
1922// matches a Foo object x iff f(x) starts with "hi".
1923// callable parameter can be a function, function pointer, or a functor.
1924// Callable has to satisfy the following conditions:
1925// * It is required to keep no state affecting the results of
1926// the calls on it and make no assumptions about how many calls
1927// will be made. Any state it keeps must be protected from the
1928// concurrent access.
1929// * If it is a function object, it has to define type result_type.
1930// We recommend deriving your functor classes from std::unary_function.
1931template <typename Callable, typename ResultOfMatcher>
1932internal::ResultOfMatcher<Callable> ResultOf(
1933 Callable callable, const ResultOfMatcher& matcher) {
1934 return internal::ResultOfMatcher<Callable>(
1935 callable,
1936 MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
1937 matcher));
1938 // The call to MatcherCast() is required for supporting inner
1939 // matchers of compatible types. For example, it allows
1940 // ResultOf(Function, m)
1941 // to compile where Function() returns an int32 and m is a matcher for int64.
1942}
1943
1944// String matchers.
1945
1946// Matches a string equal to str.
1947inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1948 StrEq(const internal::string& str) {
1949 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1950 str, true, true));
1951}
1952
1953// Matches a string not equal to str.
1954inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1955 StrNe(const internal::string& str) {
1956 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1957 str, false, true));
1958}
1959
1960// Matches a string equal to str, ignoring case.
1961inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1962 StrCaseEq(const internal::string& str) {
1963 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1964 str, true, false));
1965}
1966
1967// Matches a string not equal to str, ignoring case.
1968inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1969 StrCaseNe(const internal::string& str) {
1970 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1971 str, false, false));
1972}
1973
1974// Creates a matcher that matches any string, std::string, or C string
1975// that contains the given substring.
1976inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
1977 HasSubstr(const internal::string& substring) {
1978 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
1979 substring));
1980}
1981
1982// Matches a string that starts with 'prefix' (case-sensitive).
1983inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
1984 StartsWith(const internal::string& prefix) {
1985 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
1986 prefix));
1987}
1988
1989// Matches a string that ends with 'suffix' (case-sensitive).
1990inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
1991 EndsWith(const internal::string& suffix) {
1992 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
1993 suffix));
1994}
1995
1996#ifdef GMOCK_HAS_REGEX
1997
1998// Matches a string that fully matches regular expression 'regex'.
1999// The matcher takes ownership of 'regex'.
2000inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2001 const internal::RE* regex) {
2002 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2003}
2004inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2005 const internal::string& regex) {
2006 return MatchesRegex(new internal::RE(regex));
2007}
2008
2009// Matches a string that contains regular expression 'regex'.
2010// The matcher takes ownership of 'regex'.
2011inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2012 const internal::RE* regex) {
2013 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2014}
2015inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2016 const internal::string& regex) {
2017 return ContainsRegex(new internal::RE(regex));
2018}
2019
2020#endif // GMOCK_HAS_REGEX
2021
2022#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2023// Wide string matchers.
2024
2025// Matches a string equal to str.
2026inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2027 StrEq(const internal::wstring& str) {
2028 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2029 str, true, true));
2030}
2031
2032// Matches a string not equal to str.
2033inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2034 StrNe(const internal::wstring& str) {
2035 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2036 str, false, true));
2037}
2038
2039// Matches a string equal to str, ignoring case.
2040inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2041 StrCaseEq(const internal::wstring& str) {
2042 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2043 str, true, false));
2044}
2045
2046// Matches a string not equal to str, ignoring case.
2047inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2048 StrCaseNe(const internal::wstring& str) {
2049 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2050 str, false, false));
2051}
2052
2053// Creates a matcher that matches any wstring, std::wstring, or C wide string
2054// that contains the given substring.
2055inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2056 HasSubstr(const internal::wstring& substring) {
2057 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2058 substring));
2059}
2060
2061// Matches a string that starts with 'prefix' (case-sensitive).
2062inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2063 StartsWith(const internal::wstring& prefix) {
2064 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2065 prefix));
2066}
2067
2068// Matches a string that ends with 'suffix' (case-sensitive).
2069inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2070 EndsWith(const internal::wstring& suffix) {
2071 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2072 suffix));
2073}
2074
2075#endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2076
2077// Creates a polymorphic matcher that matches a 2-tuple where the
2078// first field == the second field.
2079inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
2080
2081// Creates a polymorphic matcher that matches a 2-tuple where the
2082// first field >= the second field.
2083inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
2084
2085// Creates a polymorphic matcher that matches a 2-tuple where the
2086// first field > the second field.
2087inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
2088
2089// Creates a polymorphic matcher that matches a 2-tuple where the
2090// first field <= the second field.
2091inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
2092
2093// Creates a polymorphic matcher that matches a 2-tuple where the
2094// first field < the second field.
2095inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
2096
2097// Creates a polymorphic matcher that matches a 2-tuple where the
2098// first field != the second field.
2099inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
2100
2101// Creates a matcher that matches any value of type T that m doesn't
2102// match.
2103template <typename InnerMatcher>
2104inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
2105 return internal::NotMatcher<InnerMatcher>(m);
2106}
2107
2108// Creates a matcher that matches any value that matches all of the
2109// given matchers.
2110//
2111// For now we only support up to 5 matchers. Support for more
2112// matchers can be added as needed, or the user can use nested
2113// AllOf()s.
2114template <typename Matcher1, typename Matcher2>
2115inline internal::BothOfMatcher<Matcher1, Matcher2>
2116AllOf(Matcher1 m1, Matcher2 m2) {
2117 return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
2118}
2119
2120template <typename Matcher1, typename Matcher2, typename Matcher3>
2121inline internal::BothOfMatcher<Matcher1,
2122 internal::BothOfMatcher<Matcher2, Matcher3> >
2123AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2124 return AllOf(m1, AllOf(m2, m3));
2125}
2126
2127template <typename Matcher1, typename Matcher2, typename Matcher3,
2128 typename Matcher4>
2129inline internal::BothOfMatcher<Matcher1,
2130 internal::BothOfMatcher<Matcher2,
2131 internal::BothOfMatcher<Matcher3, Matcher4> > >
2132AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2133 return AllOf(m1, AllOf(m2, m3, m4));
2134}
2135
2136template <typename Matcher1, typename Matcher2, typename Matcher3,
2137 typename Matcher4, typename Matcher5>
2138inline internal::BothOfMatcher<Matcher1,
2139 internal::BothOfMatcher<Matcher2,
2140 internal::BothOfMatcher<Matcher3,
2141 internal::BothOfMatcher<Matcher4, Matcher5> > > >
2142AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2143 return AllOf(m1, AllOf(m2, m3, m4, m5));
2144}
2145
2146// Creates a matcher that matches any value that matches at least one
2147// of the given matchers.
2148//
2149// For now we only support up to 5 matchers. Support for more
2150// matchers can be added as needed, or the user can use nested
2151// AnyOf()s.
2152template <typename Matcher1, typename Matcher2>
2153inline internal::EitherOfMatcher<Matcher1, Matcher2>
2154AnyOf(Matcher1 m1, Matcher2 m2) {
2155 return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
2156}
2157
2158template <typename Matcher1, typename Matcher2, typename Matcher3>
2159inline internal::EitherOfMatcher<Matcher1,
2160 internal::EitherOfMatcher<Matcher2, Matcher3> >
2161AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2162 return AnyOf(m1, AnyOf(m2, m3));
2163}
2164
2165template <typename Matcher1, typename Matcher2, typename Matcher3,
2166 typename Matcher4>
2167inline internal::EitherOfMatcher<Matcher1,
2168 internal::EitherOfMatcher<Matcher2,
2169 internal::EitherOfMatcher<Matcher3, Matcher4> > >
2170AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2171 return AnyOf(m1, AnyOf(m2, m3, m4));
2172}
2173
2174template <typename Matcher1, typename Matcher2, typename Matcher3,
2175 typename Matcher4, typename Matcher5>
2176inline internal::EitherOfMatcher<Matcher1,
2177 internal::EitherOfMatcher<Matcher2,
2178 internal::EitherOfMatcher<Matcher3,
2179 internal::EitherOfMatcher<Matcher4, Matcher5> > > >
2180AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2181 return AnyOf(m1, AnyOf(m2, m3, m4, m5));
2182}
2183
2184// Returns a matcher that matches anything that satisfies the given
2185// predicate. The predicate can be any unary function or functor
2186// whose return type can be implicitly converted to bool.
2187template <typename Predicate>
2188inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
2189Truly(Predicate pred) {
2190 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
2191}
2192
zhanyong.wan6a896b52009-01-16 01:13:50 +00002193// Returns a matcher that matches an equal container.
2194// This matcher behaves like Eq(), but in the event of mismatch lists the
2195// values that are included in one container but not the other. (Duplicate
2196// values and order differences are not explained.)
2197template <typename Container>
2198inline PolymorphicMatcher<internal::ContainerEqMatcher<Container> >
2199 ContainerEq(const Container& rhs) {
2200 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
2201}
2202
shiqiane35fdd92008-12-10 05:08:54 +00002203// Returns a predicate that is satisfied by anything that matches the
2204// given matcher.
2205template <typename M>
2206inline internal::MatcherAsPredicate<M> Matches(M matcher) {
2207 return internal::MatcherAsPredicate<M>(matcher);
2208}
2209
2210// These macros allow using matchers to check values in Google Test
2211// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
2212// succeed iff the value matches the matcher. If the assertion fails,
2213// the value and the description of the matcher will be printed.
2214#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
2215 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2216#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
2217 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2218
2219} // namespace testing
2220
2221#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_