blob: 3d82279b8f6f7603ac395ca5afb306fed283dbf3 [file] [log] [blame]
shiqiane35fdd92008-12-10 05:08:54 +00001// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14// * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29//
30// Author: wan@google.com (Zhanyong Wan)
31
32// Google Mock - a framework for writing C++ mock classes.
33//
34// This file implements some commonly used argument matchers. More
35// matchers can be defined by the user implementing the
36// MatcherInterface<T> interface if necessary.
37
38#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
zhanyong.wan6a896b52009-01-16 01:13:50 +000041#include <algorithm>
zhanyong.wan16cf4732009-05-14 20:55:30 +000042#include <limits>
shiqiane35fdd92008-12-10 05:08:54 +000043#include <ostream> // NOLINT
44#include <sstream>
45#include <string>
46#include <vector>
47
48#include <gmock/gmock-printers.h>
49#include <gmock/internal/gmock-internal-utils.h>
50#include <gmock/internal/gmock-port.h>
51#include <gtest/gtest.h>
52
53namespace testing {
54
55// To implement a matcher Foo for type T, define:
56// 1. a class FooMatcherImpl that implements the
57// MatcherInterface<T> interface, and
58// 2. a factory function that creates a Matcher<T> object from a
59// FooMatcherImpl*.
60//
61// The two-level delegation design makes it possible to allow a user
62// to write "v" instead of "Eq(v)" where a Matcher is expected, which
63// is impossible if we pass matchers by pointers. It also eases
64// ownership management as Matcher objects can now be copied like
65// plain values.
66
67// The implementation of a matcher.
68template <typename T>
69class MatcherInterface {
70 public:
71 virtual ~MatcherInterface() {}
72
73 // Returns true iff the matcher matches x.
74 virtual bool Matches(T x) const = 0;
75
76 // Describes this matcher to an ostream.
77 virtual void DescribeTo(::std::ostream* os) const = 0;
78
79 // Describes the negation of this matcher to an ostream. For
80 // example, if the description of this matcher is "is greater than
81 // 7", the negated description could be "is not greater than 7".
82 // You are not required to override this when implementing
83 // MatcherInterface, but it is highly advised so that your matcher
84 // can produce good error messages.
85 virtual void DescribeNegationTo(::std::ostream* os) const {
86 *os << "not (";
87 DescribeTo(os);
88 *os << ")";
89 }
90
91 // Explains why x matches, or doesn't match, the matcher. Override
92 // this to provide any additional information that helps a user
93 // understand the match result.
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +000094 virtual void ExplainMatchResultTo(T /* x */, ::std::ostream* /* os */) const {
shiqiane35fdd92008-12-10 05:08:54 +000095 // By default, nothing more needs to be explained, as Google Mock
96 // has already printed the value of x when this function is
97 // called.
98 }
99};
100
101namespace internal {
102
103// An internal class for implementing Matcher<T>, which will derive
104// from it. We put functionalities common to all Matcher<T>
105// specializations here to avoid code duplication.
106template <typename T>
107class MatcherBase {
108 public:
109 // Returns true iff this matcher matches x.
110 bool Matches(T x) const { return impl_->Matches(x); }
111
112 // Describes this matcher to an ostream.
113 void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
114
115 // Describes the negation of this matcher to an ostream.
116 void DescribeNegationTo(::std::ostream* os) const {
117 impl_->DescribeNegationTo(os);
118 }
119
120 // Explains why x matches, or doesn't match, the matcher.
121 void ExplainMatchResultTo(T x, ::std::ostream* os) const {
122 impl_->ExplainMatchResultTo(x, os);
123 }
124 protected:
125 MatcherBase() {}
126
127 // Constructs a matcher from its implementation.
128 explicit MatcherBase(const MatcherInterface<T>* impl)
129 : impl_(impl) {}
130
131 virtual ~MatcherBase() {}
132 private:
133 // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
134 // interfaces. The former dynamically allocates a chunk of memory
135 // to hold the reference count, while the latter tracks all
136 // references using a circular linked list without allocating
137 // memory. It has been observed that linked_ptr performs better in
138 // typical scenarios. However, shared_ptr can out-perform
139 // linked_ptr when there are many more uses of the copy constructor
140 // than the default constructor.
141 //
142 // If performance becomes a problem, we should see if using
143 // shared_ptr helps.
144 ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
145};
146
147// The default implementation of ExplainMatchResultTo() for
148// polymorphic matchers.
149template <typename PolymorphicMatcherImpl, typename T>
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000150inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& /* impl */,
151 const T& /* x */,
152 ::std::ostream* /* os */) {
shiqiane35fdd92008-12-10 05:08:54 +0000153 // By default, nothing more needs to be said, as Google Mock already
154 // prints the value of x elsewhere.
155}
156
157} // namespace internal
158
159// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
160// object that can check whether a value of type T matches. The
161// implementation of Matcher<T> is just a linked_ptr to const
162// MatcherInterface<T>, so copying is fairly cheap. Don't inherit
163// from Matcher!
164template <typename T>
165class Matcher : public internal::MatcherBase<T> {
166 public:
167 // Constructs a null matcher. Needed for storing Matcher objects in
168 // STL containers.
169 Matcher() {}
170
171 // Constructs a matcher from its implementation.
172 explicit Matcher(const MatcherInterface<T>* impl)
173 : internal::MatcherBase<T>(impl) {}
174
zhanyong.wan18490652009-05-11 18:54:08 +0000175 // Implicit constructor here allows people to write
shiqiane35fdd92008-12-10 05:08:54 +0000176 // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
177 Matcher(T value); // NOLINT
178};
179
180// The following two specializations allow the user to write str
181// instead of Eq(str) and "foo" instead of Eq("foo") when a string
182// matcher is expected.
183template <>
184class Matcher<const internal::string&>
185 : public internal::MatcherBase<const internal::string&> {
186 public:
187 Matcher() {}
188
189 explicit Matcher(const MatcherInterface<const internal::string&>* impl)
190 : internal::MatcherBase<const internal::string&>(impl) {}
191
192 // Allows the user to write str instead of Eq(str) sometimes, where
193 // str is a string object.
194 Matcher(const internal::string& s); // NOLINT
195
196 // Allows the user to write "foo" instead of Eq("foo") sometimes.
197 Matcher(const char* s); // NOLINT
198};
199
200template <>
201class Matcher<internal::string>
202 : public internal::MatcherBase<internal::string> {
203 public:
204 Matcher() {}
205
206 explicit Matcher(const MatcherInterface<internal::string>* impl)
207 : internal::MatcherBase<internal::string>(impl) {}
208
209 // Allows the user to write str instead of Eq(str) sometimes, where
210 // str is a string object.
211 Matcher(const internal::string& s); // NOLINT
212
213 // Allows the user to write "foo" instead of Eq("foo") sometimes.
214 Matcher(const char* s); // NOLINT
215};
216
217// The PolymorphicMatcher class template makes it easy to implement a
218// polymorphic matcher (i.e. a matcher that can match values of more
219// than one type, e.g. Eq(n) and NotNull()).
220//
221// To define a polymorphic matcher, a user first provides a Impl class
222// that has a Matches() method, a DescribeTo() method, and a
223// DescribeNegationTo() method. The Matches() method is usually a
224// method template (such that it works with multiple types). Then the
225// user creates the polymorphic matcher using
226// MakePolymorphicMatcher(). To provide additional explanation to the
227// match result, define a FREE function (or function template)
228//
229// void ExplainMatchResultTo(const Impl& matcher, const Value& value,
230// ::std::ostream* os);
231//
232// in the SAME NAME SPACE where Impl is defined. See the definition
233// of NotNull() for a complete example.
234template <class Impl>
235class PolymorphicMatcher {
236 public:
237 explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {}
238
zhanyong.wan2b43a9e2009-08-31 23:51:23 +0000239 // Returns a mutable reference to the underlying matcher
240 // implementation object.
241 Impl& mutable_impl() { return impl_; }
242
243 // Returns an immutable reference to the underlying matcher
244 // implementation object.
245 const Impl& impl() const { return impl_; }
246
shiqiane35fdd92008-12-10 05:08:54 +0000247 template <typename T>
248 operator Matcher<T>() const {
249 return Matcher<T>(new MonomorphicImpl<T>(impl_));
250 }
251 private:
252 template <typename T>
253 class MonomorphicImpl : public MatcherInterface<T> {
254 public:
255 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
256
257 virtual bool Matches(T x) const { return impl_.Matches(x); }
258
259 virtual void DescribeTo(::std::ostream* os) const {
260 impl_.DescribeTo(os);
261 }
262
263 virtual void DescribeNegationTo(::std::ostream* os) const {
264 impl_.DescribeNegationTo(os);
265 }
266
267 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
268 using ::testing::internal::ExplainMatchResultTo;
269
270 // C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to
271 // resolve the call to ExplainMatchResultTo() here. This
272 // means that if there's a ExplainMatchResultTo() function
273 // defined in the name space where class Impl is defined, it
274 // will be picked by the compiler as the better match.
275 // Otherwise the default implementation of it in
276 // ::testing::internal will be picked.
277 //
278 // This look-up rule lets a writer of a polymorphic matcher
279 // customize the behavior of ExplainMatchResultTo() when he
280 // cares to. Nothing needs to be done by the writer if he
281 // doesn't need to customize it.
282 ExplainMatchResultTo(impl_, x, os);
283 }
zhanyong.wan2b43a9e2009-08-31 23:51:23 +0000284
shiqiane35fdd92008-12-10 05:08:54 +0000285 private:
286 const Impl impl_;
287 };
288
zhanyong.wan2b43a9e2009-08-31 23:51:23 +0000289 Impl impl_;
shiqiane35fdd92008-12-10 05:08:54 +0000290};
291
292// Creates a matcher from its implementation. This is easier to use
293// than the Matcher<T> constructor as it doesn't require you to
294// explicitly write the template argument, e.g.
295//
296// MakeMatcher(foo);
297// vs
298// Matcher<const string&>(foo);
299template <typename T>
300inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
301 return Matcher<T>(impl);
302};
303
304// Creates a polymorphic matcher from its implementation. This is
305// easier to use than the PolymorphicMatcher<Impl> constructor as it
306// doesn't require you to explicitly write the template argument, e.g.
307//
308// MakePolymorphicMatcher(foo);
309// vs
310// PolymorphicMatcher<TypeOfFoo>(foo);
311template <class Impl>
312inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
313 return PolymorphicMatcher<Impl>(impl);
314}
315
316// In order to be safe and clear, casting between different matcher
317// types is done explicitly via MatcherCast<T>(m), which takes a
318// matcher m and returns a Matcher<T>. It compiles only when T can be
319// statically converted to the argument type of m.
320template <typename T, typename M>
321Matcher<T> MatcherCast(M m);
322
zhanyong.wan18490652009-05-11 18:54:08 +0000323// Implements SafeMatcherCast().
324//
zhanyong.wan95b12332009-09-25 18:55:50 +0000325// We use an intermediate class to do the actual safe casting as Nokia's
326// Symbian compiler cannot decide between
327// template <T, M> ... (M) and
328// template <T, U> ... (const Matcher<U>&)
329// for function templates but can for member function templates.
330template <typename T>
331class SafeMatcherCastImpl {
332 public:
333 // This overload handles polymorphic matchers only since monomorphic
334 // matchers are handled by the next one.
335 template <typename M>
336 static inline Matcher<T> Cast(M polymorphic_matcher) {
337 return Matcher<T>(polymorphic_matcher);
338 }
zhanyong.wan18490652009-05-11 18:54:08 +0000339
zhanyong.wan95b12332009-09-25 18:55:50 +0000340 // This overload handles monomorphic matchers.
341 //
342 // In general, if type T can be implicitly converted to type U, we can
343 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
344 // contravariant): just keep a copy of the original Matcher<U>, convert the
345 // argument from type T to U, and then pass it to the underlying Matcher<U>.
346 // The only exception is when U is a reference and T is not, as the
347 // underlying Matcher<U> may be interested in the argument's address, which
348 // is not preserved in the conversion from T to U.
349 template <typename U>
350 static inline Matcher<T> Cast(const Matcher<U>& matcher) {
351 // Enforce that T can be implicitly converted to U.
352 GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
353 T_must_be_implicitly_convertible_to_U);
354 // Enforce that we are not converting a non-reference type T to a reference
355 // type U.
356 GMOCK_COMPILE_ASSERT_(
357 internal::is_reference<T>::value || !internal::is_reference<U>::value,
358 cannot_convert_non_referentce_arg_to_reference);
359 // In case both T and U are arithmetic types, enforce that the
360 // conversion is not lossy.
361 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
362 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
363 const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
364 const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
365 GMOCK_COMPILE_ASSERT_(
366 kTIsOther || kUIsOther ||
367 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
368 conversion_of_arithmetic_types_must_be_lossless);
369 return MatcherCast<T>(matcher);
370 }
371};
372
373template <typename T, typename M>
374inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
375 return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
zhanyong.wan18490652009-05-11 18:54:08 +0000376}
377
shiqiane35fdd92008-12-10 05:08:54 +0000378// A<T>() returns a matcher that matches any value of type T.
379template <typename T>
380Matcher<T> A();
381
382// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
383// and MUST NOT BE USED IN USER CODE!!!
384namespace internal {
385
386// Appends the explanation on the result of matcher.Matches(value) to
387// os iff the explanation is not empty.
388template <typename T>
389void ExplainMatchResultAsNeededTo(const Matcher<T>& matcher, T value,
390 ::std::ostream* os) {
391 ::std::stringstream reason;
392 matcher.ExplainMatchResultTo(value, &reason);
393 const internal::string s = reason.str();
394 if (s != "") {
395 *os << " (" << s << ")";
396 }
397}
398
399// An internal helper class for doing compile-time loop on a tuple's
400// fields.
401template <size_t N>
402class TuplePrefix {
403 public:
404 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
405 // iff the first N fields of matcher_tuple matches the first N
406 // fields of value_tuple, respectively.
407 template <typename MatcherTuple, typename ValueTuple>
408 static bool Matches(const MatcherTuple& matcher_tuple,
409 const ValueTuple& value_tuple) {
410 using ::std::tr1::get;
411 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
412 && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
413 }
414
415 // TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os)
416 // describes failures in matching the first N fields of matchers
417 // against the first N fields of values. If there is no failure,
418 // nothing will be streamed to os.
419 template <typename MatcherTuple, typename ValueTuple>
420 static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
421 const ValueTuple& values,
422 ::std::ostream* os) {
423 using ::std::tr1::tuple_element;
424 using ::std::tr1::get;
425
426 // First, describes failures in the first N - 1 fields.
427 TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os);
428
429 // Then describes the failure (if any) in the (N - 1)-th (0-based)
430 // field.
431 typename tuple_element<N - 1, MatcherTuple>::type matcher =
432 get<N - 1>(matchers);
433 typedef typename tuple_element<N - 1, ValueTuple>::type Value;
434 Value value = get<N - 1>(values);
435 if (!matcher.Matches(value)) {
436 // TODO(wan): include in the message the name of the parameter
437 // as used in MOCK_METHOD*() when possible.
438 *os << " Expected arg #" << N - 1 << ": ";
439 get<N - 1>(matchers).DescribeTo(os);
440 *os << "\n Actual: ";
441 // We remove the reference in type Value to prevent the
442 // universal printer from printing the address of value, which
443 // isn't interesting to the user most of the time. The
444 // matcher's ExplainMatchResultTo() method handles the case when
445 // the address is interesting.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000446 internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE_(Value)>::
shiqiane35fdd92008-12-10 05:08:54 +0000447 Print(value, os);
448 ExplainMatchResultAsNeededTo<Value>(matcher, value, os);
449 *os << "\n";
450 }
451 }
452};
453
454// The base case.
455template <>
456class TuplePrefix<0> {
457 public:
458 template <typename MatcherTuple, typename ValueTuple>
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000459 static bool Matches(const MatcherTuple& /* matcher_tuple */,
460 const ValueTuple& /* value_tuple */) {
shiqiane35fdd92008-12-10 05:08:54 +0000461 return true;
462 }
463
464 template <typename MatcherTuple, typename ValueTuple>
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000465 static void DescribeMatchFailuresTo(const MatcherTuple& /* matchers */,
466 const ValueTuple& /* values */,
467 ::std::ostream* /* os */) {}
shiqiane35fdd92008-12-10 05:08:54 +0000468};
469
470// TupleMatches(matcher_tuple, value_tuple) returns true iff all
471// matchers in matcher_tuple match the corresponding fields in
472// value_tuple. It is a compiler error if matcher_tuple and
473// value_tuple have different number of fields or incompatible field
474// types.
475template <typename MatcherTuple, typename ValueTuple>
476bool TupleMatches(const MatcherTuple& matcher_tuple,
477 const ValueTuple& value_tuple) {
478 using ::std::tr1::tuple_size;
479 // Makes sure that matcher_tuple and value_tuple have the same
480 // number of fields.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000481 GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
482 tuple_size<ValueTuple>::value,
483 matcher_and_value_have_different_numbers_of_fields);
shiqiane35fdd92008-12-10 05:08:54 +0000484 return TuplePrefix<tuple_size<ValueTuple>::value>::
485 Matches(matcher_tuple, value_tuple);
486}
487
488// Describes failures in matching matchers against values. If there
489// is no failure, nothing will be streamed to os.
490template <typename MatcherTuple, typename ValueTuple>
491void DescribeMatchFailureTupleTo(const MatcherTuple& matchers,
492 const ValueTuple& values,
493 ::std::ostream* os) {
494 using ::std::tr1::tuple_size;
495 TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo(
496 matchers, values, os);
497}
498
499// The MatcherCastImpl class template is a helper for implementing
500// MatcherCast(). We need this helper in order to partially
501// specialize the implementation of MatcherCast() (C++ allows
502// class/struct templates to be partially specialized, but not
503// function templates.).
504
505// This general version is used when MatcherCast()'s argument is a
506// polymorphic matcher (i.e. something that can be converted to a
507// Matcher but is not one yet; for example, Eq(value)).
508template <typename T, typename M>
509class MatcherCastImpl {
510 public:
511 static Matcher<T> Cast(M polymorphic_matcher) {
512 return Matcher<T>(polymorphic_matcher);
513 }
514};
515
516// This more specialized version is used when MatcherCast()'s argument
517// is already a Matcher. This only compiles when type T can be
518// statically converted to type U.
519template <typename T, typename U>
520class MatcherCastImpl<T, Matcher<U> > {
521 public:
522 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
523 return Matcher<T>(new Impl(source_matcher));
524 }
525 private:
526 class Impl : public MatcherInterface<T> {
527 public:
528 explicit Impl(const Matcher<U>& source_matcher)
529 : source_matcher_(source_matcher) {}
530
531 // We delegate the matching logic to the source matcher.
532 virtual bool Matches(T x) const {
533 return source_matcher_.Matches(static_cast<U>(x));
534 }
535
536 virtual void DescribeTo(::std::ostream* os) const {
537 source_matcher_.DescribeTo(os);
538 }
539
540 virtual void DescribeNegationTo(::std::ostream* os) const {
541 source_matcher_.DescribeNegationTo(os);
542 }
543
544 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
545 source_matcher_.ExplainMatchResultTo(static_cast<U>(x), os);
546 }
547 private:
548 const Matcher<U> source_matcher_;
549 };
550};
551
552// This even more specialized version is used for efficiently casting
553// a matcher to its own type.
554template <typename T>
555class MatcherCastImpl<T, Matcher<T> > {
556 public:
557 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
558};
559
560// Implements A<T>().
561template <typename T>
562class AnyMatcherImpl : public MatcherInterface<T> {
563 public:
zhanyong.wan3fbd2dd2009-03-26 19:06:45 +0000564 virtual bool Matches(T /* x */) const { return true; }
shiqiane35fdd92008-12-10 05:08:54 +0000565 virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
566 virtual void DescribeNegationTo(::std::ostream* os) const {
567 // This is mostly for completeness' safe, as it's not very useful
568 // to write Not(A<bool>()). However we cannot completely rule out
569 // such a possibility, and it doesn't hurt to be prepared.
570 *os << "never matches";
571 }
572};
573
574// Implements _, a matcher that matches any value of any
575// type. This is a polymorphic matcher, so we need a template type
576// conversion operator to make it appearing as a Matcher<T> for any
577// type T.
578class AnythingMatcher {
579 public:
580 template <typename T>
581 operator Matcher<T>() const { return A<T>(); }
582};
583
584// Implements a matcher that compares a given value with a
585// pre-supplied value using one of the ==, <=, <, etc, operators. The
586// two values being compared don't have to have the same type.
587//
588// The matcher defined here is polymorphic (for example, Eq(5) can be
589// used to match an int, a short, a double, etc). Therefore we use
590// a template type conversion operator in the implementation.
591//
592// We define this as a macro in order to eliminate duplicated source
593// code.
594//
595// The following template definition assumes that the Rhs parameter is
596// a "bare" type (i.e. neither 'const T' nor 'T&').
zhanyong.wane0d051e2009-02-19 00:33:37 +0000597#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_(name, op, relation) \
shiqiane35fdd92008-12-10 05:08:54 +0000598 template <typename Rhs> class name##Matcher { \
599 public: \
600 explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
601 template <typename Lhs> \
602 operator Matcher<Lhs>() const { \
603 return MakeMatcher(new Impl<Lhs>(rhs_)); \
604 } \
605 private: \
606 template <typename Lhs> \
607 class Impl : public MatcherInterface<Lhs> { \
608 public: \
609 explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
610 virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \
611 virtual void DescribeTo(::std::ostream* os) const { \
612 *os << "is " relation " "; \
613 UniversalPrinter<Rhs>::Print(rhs_, os); \
614 } \
615 virtual void DescribeNegationTo(::std::ostream* os) const { \
616 *os << "is not " relation " "; \
617 UniversalPrinter<Rhs>::Print(rhs_, os); \
618 } \
619 private: \
620 Rhs rhs_; \
621 }; \
622 Rhs rhs_; \
623 }
624
625// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
626// respectively.
zhanyong.wane0d051e2009-02-19 00:33:37 +0000627GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "equal to");
628GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "greater than or equal to");
629GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "greater than");
630GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "less than or equal to");
631GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "less than");
632GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "not equal to");
shiqiane35fdd92008-12-10 05:08:54 +0000633
zhanyong.wane0d051e2009-02-19 00:33:37 +0000634#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
shiqiane35fdd92008-12-10 05:08:54 +0000635
zhanyong.wan2d970ee2009-09-24 21:41:36 +0000636// Implements the polymorphic IsNull() matcher, which matches any
637// pointer that is NULL.
638class IsNullMatcher {
639 public:
640 template <typename T>
641 bool Matches(T* p) const { return p == NULL; }
642
643 void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
644 void DescribeNegationTo(::std::ostream* os) const {
645 *os << "is not NULL";
646 }
647};
648
shiqiane35fdd92008-12-10 05:08:54 +0000649// Implements the polymorphic NotNull() matcher, which matches any
650// pointer that is not NULL.
651class NotNullMatcher {
652 public:
653 template <typename T>
654 bool Matches(T* p) const { return p != NULL; }
655
656 void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }
657 void DescribeNegationTo(::std::ostream* os) const {
658 *os << "is NULL";
659 }
660};
661
662// Ref(variable) matches any argument that is a reference to
663// 'variable'. This matcher is polymorphic as it can match any
664// super type of the type of 'variable'.
665//
666// The RefMatcher template class implements Ref(variable). It can
667// only be instantiated with a reference type. This prevents a user
668// from mistakenly using Ref(x) to match a non-reference function
669// argument. For example, the following will righteously cause a
670// compiler error:
671//
672// int n;
673// Matcher<int> m1 = Ref(n); // This won't compile.
674// Matcher<int&> m2 = Ref(n); // This will compile.
675template <typename T>
676class RefMatcher;
677
678template <typename T>
679class RefMatcher<T&> {
680 // Google Mock is a generic framework and thus needs to support
681 // mocking any function types, including those that take non-const
682 // reference arguments. Therefore the template parameter T (and
683 // Super below) can be instantiated to either a const type or a
684 // non-const type.
685 public:
686 // RefMatcher() takes a T& instead of const T&, as we want the
687 // compiler to catch using Ref(const_value) as a matcher for a
688 // non-const reference.
689 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
690
691 template <typename Super>
692 operator Matcher<Super&>() const {
693 // By passing object_ (type T&) to Impl(), which expects a Super&,
694 // we make sure that Super is a super type of T. In particular,
695 // this catches using Ref(const_value) as a matcher for a
696 // non-const reference, as you cannot implicitly convert a const
697 // reference to a non-const reference.
698 return MakeMatcher(new Impl<Super>(object_));
699 }
700 private:
701 template <typename Super>
702 class Impl : public MatcherInterface<Super&> {
703 public:
704 explicit Impl(Super& x) : object_(x) {} // NOLINT
705
706 // Matches() takes a Super& (as opposed to const Super&) in
707 // order to match the interface MatcherInterface<Super&>.
708 virtual bool Matches(Super& x) const { return &x == &object_; } // NOLINT
709
710 virtual void DescribeTo(::std::ostream* os) const {
711 *os << "references the variable ";
712 UniversalPrinter<Super&>::Print(object_, os);
713 }
714
715 virtual void DescribeNegationTo(::std::ostream* os) const {
716 *os << "does not reference the variable ";
717 UniversalPrinter<Super&>::Print(object_, os);
718 }
719
720 virtual void ExplainMatchResultTo(Super& x, // NOLINT
721 ::std::ostream* os) const {
722 *os << "is located @" << static_cast<const void*>(&x);
723 }
724 private:
725 const Super& object_;
726 };
727
728 T& object_;
729};
730
731// Polymorphic helper functions for narrow and wide string matchers.
732inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
733 return String::CaseInsensitiveCStringEquals(lhs, rhs);
734}
735
736inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
737 const wchar_t* rhs) {
738 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
739}
740
741// String comparison for narrow or wide strings that can have embedded NUL
742// characters.
743template <typename StringType>
744bool CaseInsensitiveStringEquals(const StringType& s1,
745 const StringType& s2) {
746 // Are the heads equal?
747 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
748 return false;
749 }
750
751 // Skip the equal heads.
752 const typename StringType::value_type nul = 0;
753 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
754
755 // Are we at the end of either s1 or s2?
756 if (i1 == StringType::npos || i2 == StringType::npos) {
757 return i1 == i2;
758 }
759
760 // Are the tails equal?
761 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
762}
763
764// String matchers.
765
766// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
767template <typename StringType>
768class StrEqualityMatcher {
769 public:
770 typedef typename StringType::const_pointer ConstCharPointer;
771
772 StrEqualityMatcher(const StringType& str, bool expect_eq,
773 bool case_sensitive)
774 : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
775
776 // When expect_eq_ is true, returns true iff s is equal to string_;
777 // otherwise returns true iff s is not equal to string_.
778 bool Matches(ConstCharPointer s) const {
779 if (s == NULL) {
780 return !expect_eq_;
781 }
782 return Matches(StringType(s));
783 }
784
785 bool Matches(const StringType& s) const {
786 const bool eq = case_sensitive_ ? s == string_ :
787 CaseInsensitiveStringEquals(s, string_);
788 return expect_eq_ == eq;
789 }
790
791 void DescribeTo(::std::ostream* os) const {
792 DescribeToHelper(expect_eq_, os);
793 }
794
795 void DescribeNegationTo(::std::ostream* os) const {
796 DescribeToHelper(!expect_eq_, os);
797 }
798 private:
799 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
800 *os << "is ";
801 if (!expect_eq) {
802 *os << "not ";
803 }
804 *os << "equal to ";
805 if (!case_sensitive_) {
806 *os << "(ignoring case) ";
807 }
808 UniversalPrinter<StringType>::Print(string_, os);
809 }
810
811 const StringType string_;
812 const bool expect_eq_;
813 const bool case_sensitive_;
814};
815
816// Implements the polymorphic HasSubstr(substring) matcher, which
817// can be used as a Matcher<T> as long as T can be converted to a
818// string.
819template <typename StringType>
820class HasSubstrMatcher {
821 public:
822 typedef typename StringType::const_pointer ConstCharPointer;
823
824 explicit HasSubstrMatcher(const StringType& substring)
825 : substring_(substring) {}
826
827 // These overloaded methods allow HasSubstr(substring) to be used as a
828 // Matcher<T> as long as T can be converted to string. Returns true
829 // iff s contains substring_ as a substring.
830 bool Matches(ConstCharPointer s) const {
831 return s != NULL && Matches(StringType(s));
832 }
833
834 bool Matches(const StringType& s) const {
835 return s.find(substring_) != StringType::npos;
836 }
837
838 // Describes what this matcher matches.
839 void DescribeTo(::std::ostream* os) const {
840 *os << "has substring ";
841 UniversalPrinter<StringType>::Print(substring_, os);
842 }
843
844 void DescribeNegationTo(::std::ostream* os) const {
845 *os << "has no substring ";
846 UniversalPrinter<StringType>::Print(substring_, os);
847 }
848 private:
849 const StringType substring_;
850};
851
852// Implements the polymorphic StartsWith(substring) matcher, which
853// can be used as a Matcher<T> as long as T can be converted to a
854// string.
855template <typename StringType>
856class StartsWithMatcher {
857 public:
858 typedef typename StringType::const_pointer ConstCharPointer;
859
860 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
861 }
862
863 // These overloaded methods allow StartsWith(prefix) to be used as a
864 // Matcher<T> as long as T can be converted to string. Returns true
865 // iff s starts with prefix_.
866 bool Matches(ConstCharPointer s) const {
867 return s != NULL && Matches(StringType(s));
868 }
869
870 bool Matches(const StringType& s) const {
871 return s.length() >= prefix_.length() &&
872 s.substr(0, prefix_.length()) == prefix_;
873 }
874
875 void DescribeTo(::std::ostream* os) const {
876 *os << "starts with ";
877 UniversalPrinter<StringType>::Print(prefix_, os);
878 }
879
880 void DescribeNegationTo(::std::ostream* os) const {
881 *os << "doesn't start with ";
882 UniversalPrinter<StringType>::Print(prefix_, os);
883 }
884 private:
885 const StringType prefix_;
886};
887
888// Implements the polymorphic EndsWith(substring) matcher, which
889// can be used as a Matcher<T> as long as T can be converted to a
890// string.
891template <typename StringType>
892class EndsWithMatcher {
893 public:
894 typedef typename StringType::const_pointer ConstCharPointer;
895
896 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
897
898 // These overloaded methods allow EndsWith(suffix) to be used as a
899 // Matcher<T> as long as T can be converted to string. Returns true
900 // iff s ends with suffix_.
901 bool Matches(ConstCharPointer s) const {
902 return s != NULL && Matches(StringType(s));
903 }
904
905 bool Matches(const StringType& s) const {
906 return s.length() >= suffix_.length() &&
907 s.substr(s.length() - suffix_.length()) == suffix_;
908 }
909
910 void DescribeTo(::std::ostream* os) const {
911 *os << "ends with ";
912 UniversalPrinter<StringType>::Print(suffix_, os);
913 }
914
915 void DescribeNegationTo(::std::ostream* os) const {
916 *os << "doesn't end with ";
917 UniversalPrinter<StringType>::Print(suffix_, os);
918 }
919 private:
920 const StringType suffix_;
921};
922
923#if GMOCK_HAS_REGEX
924
925// Implements polymorphic matchers MatchesRegex(regex) and
926// ContainsRegex(regex), which can be used as a Matcher<T> as long as
927// T can be converted to a string.
928class MatchesRegexMatcher {
929 public:
930 MatchesRegexMatcher(const RE* regex, bool full_match)
931 : regex_(regex), full_match_(full_match) {}
932
933 // These overloaded methods allow MatchesRegex(regex) to be used as
934 // a Matcher<T> as long as T can be converted to string. Returns
935 // true iff s matches regular expression regex. When full_match_ is
936 // true, a full match is done; otherwise a partial match is done.
937 bool Matches(const char* s) const {
938 return s != NULL && Matches(internal::string(s));
939 }
940
941 bool Matches(const internal::string& s) const {
942 return full_match_ ? RE::FullMatch(s, *regex_) :
943 RE::PartialMatch(s, *regex_);
944 }
945
946 void DescribeTo(::std::ostream* os) const {
947 *os << (full_match_ ? "matches" : "contains")
948 << " regular expression ";
949 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
950 }
951
952 void DescribeNegationTo(::std::ostream* os) const {
953 *os << "doesn't " << (full_match_ ? "match" : "contain")
954 << " regular expression ";
955 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
956 }
957 private:
958 const internal::linked_ptr<const RE> regex_;
959 const bool full_match_;
960};
961
962#endif // GMOCK_HAS_REGEX
963
964// Implements a matcher that compares the two fields of a 2-tuple
965// using one of the ==, <=, <, etc, operators. The two fields being
966// compared don't have to have the same type.
967//
968// The matcher defined here is polymorphic (for example, Eq() can be
969// used to match a tuple<int, short>, a tuple<const long&, double>,
970// etc). Therefore we use a template type conversion operator in the
971// implementation.
972//
973// We define this as a macro in order to eliminate duplicated source
974// code.
zhanyong.wan2661c682009-06-09 05:42:12 +0000975#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op) \
shiqiane35fdd92008-12-10 05:08:54 +0000976 class name##2Matcher { \
977 public: \
978 template <typename T1, typename T2> \
979 operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
980 return MakeMatcher(new Impl<T1, T2>); \
981 } \
982 private: \
983 template <typename T1, typename T2> \
984 class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
985 public: \
986 virtual bool Matches(const ::std::tr1::tuple<T1, T2>& args) const { \
987 return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
988 } \
989 virtual void DescribeTo(::std::ostream* os) const { \
zhanyong.wan2661c682009-06-09 05:42:12 +0000990 *os << "are a pair (x, y) where x " #op " y"; \
shiqiane35fdd92008-12-10 05:08:54 +0000991 } \
992 virtual void DescribeNegationTo(::std::ostream* os) const { \
zhanyong.wan2661c682009-06-09 05:42:12 +0000993 *os << "are a pair (x, y) where x " #op " y is false"; \
shiqiane35fdd92008-12-10 05:08:54 +0000994 } \
995 }; \
996 }
997
998// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
zhanyong.wan2661c682009-06-09 05:42:12 +0000999GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==);
1000GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=);
1001GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >);
1002GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=);
1003GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <);
1004GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=);
shiqiane35fdd92008-12-10 05:08:54 +00001005
zhanyong.wane0d051e2009-02-19 00:33:37 +00001006#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
shiqiane35fdd92008-12-10 05:08:54 +00001007
zhanyong.wanc6a41232009-05-13 23:38:40 +00001008// Implements the Not(...) matcher for a particular argument type T.
1009// We do not nest it inside the NotMatcher class template, as that
1010// will prevent different instantiations of NotMatcher from sharing
1011// the same NotMatcherImpl<T> class.
1012template <typename T>
1013class NotMatcherImpl : public MatcherInterface<T> {
1014 public:
1015 explicit NotMatcherImpl(const Matcher<T>& matcher)
1016 : matcher_(matcher) {}
1017
1018 virtual bool Matches(T x) const {
1019 return !matcher_.Matches(x);
1020 }
1021
1022 virtual void DescribeTo(::std::ostream* os) const {
1023 matcher_.DescribeNegationTo(os);
1024 }
1025
1026 virtual void DescribeNegationTo(::std::ostream* os) const {
1027 matcher_.DescribeTo(os);
1028 }
1029
1030 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
1031 matcher_.ExplainMatchResultTo(x, os);
1032 }
1033 private:
1034 const Matcher<T> matcher_;
1035};
1036
shiqiane35fdd92008-12-10 05:08:54 +00001037// Implements the Not(m) matcher, which matches a value that doesn't
1038// match matcher m.
1039template <typename InnerMatcher>
1040class NotMatcher {
1041 public:
1042 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1043
1044 // This template type conversion operator allows Not(m) to be used
1045 // to match any type m can match.
1046 template <typename T>
1047 operator Matcher<T>() const {
zhanyong.wanc6a41232009-05-13 23:38:40 +00001048 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
shiqiane35fdd92008-12-10 05:08:54 +00001049 }
1050 private:
shiqiane35fdd92008-12-10 05:08:54 +00001051 InnerMatcher matcher_;
1052};
1053
zhanyong.wanc6a41232009-05-13 23:38:40 +00001054// Implements the AllOf(m1, m2) matcher for a particular argument type
1055// T. We do not nest it inside the BothOfMatcher class template, as
1056// that will prevent different instantiations of BothOfMatcher from
1057// sharing the same BothOfMatcherImpl<T> class.
1058template <typename T>
1059class BothOfMatcherImpl : public MatcherInterface<T> {
1060 public:
1061 BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1062 : matcher1_(matcher1), matcher2_(matcher2) {}
1063
1064 virtual bool Matches(T x) const {
1065 return matcher1_.Matches(x) && matcher2_.Matches(x);
1066 }
1067
1068 virtual void DescribeTo(::std::ostream* os) const {
1069 *os << "(";
1070 matcher1_.DescribeTo(os);
1071 *os << ") and (";
1072 matcher2_.DescribeTo(os);
1073 *os << ")";
1074 }
1075
1076 virtual void DescribeNegationTo(::std::ostream* os) const {
1077 *os << "not ";
1078 DescribeTo(os);
1079 }
1080
1081 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
1082 if (Matches(x)) {
1083 // When both matcher1_ and matcher2_ match x, we need to
1084 // explain why *both* of them match.
1085 ::std::stringstream ss1;
1086 matcher1_.ExplainMatchResultTo(x, &ss1);
1087 const internal::string s1 = ss1.str();
1088
1089 ::std::stringstream ss2;
1090 matcher2_.ExplainMatchResultTo(x, &ss2);
1091 const internal::string s2 = ss2.str();
1092
1093 if (s1 == "") {
1094 *os << s2;
1095 } else {
1096 *os << s1;
1097 if (s2 != "") {
1098 *os << "; " << s2;
1099 }
1100 }
1101 } else {
1102 // Otherwise we only need to explain why *one* of them fails
1103 // to match.
1104 if (!matcher1_.Matches(x)) {
1105 matcher1_.ExplainMatchResultTo(x, os);
1106 } else {
1107 matcher2_.ExplainMatchResultTo(x, os);
1108 }
1109 }
1110 }
1111 private:
1112 const Matcher<T> matcher1_;
1113 const Matcher<T> matcher2_;
1114};
1115
shiqiane35fdd92008-12-10 05:08:54 +00001116// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1117// matches a value that matches all of the matchers m_1, ..., and m_n.
1118template <typename Matcher1, typename Matcher2>
1119class BothOfMatcher {
1120 public:
1121 BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1122 : matcher1_(matcher1), matcher2_(matcher2) {}
1123
1124 // This template type conversion operator allows a
1125 // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1126 // both Matcher1 and Matcher2 can match.
1127 template <typename T>
1128 operator Matcher<T>() const {
zhanyong.wanc6a41232009-05-13 23:38:40 +00001129 return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1130 SafeMatcherCast<T>(matcher2_)));
shiqiane35fdd92008-12-10 05:08:54 +00001131 }
1132 private:
zhanyong.wanc6a41232009-05-13 23:38:40 +00001133 Matcher1 matcher1_;
1134 Matcher2 matcher2_;
1135};
shiqiane35fdd92008-12-10 05:08:54 +00001136
zhanyong.wanc6a41232009-05-13 23:38:40 +00001137// Implements the AnyOf(m1, m2) matcher for a particular argument type
1138// T. We do not nest it inside the AnyOfMatcher class template, as
1139// that will prevent different instantiations of AnyOfMatcher from
1140// sharing the same EitherOfMatcherImpl<T> class.
1141template <typename T>
1142class EitherOfMatcherImpl : public MatcherInterface<T> {
1143 public:
1144 EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1145 : matcher1_(matcher1), matcher2_(matcher2) {}
shiqiane35fdd92008-12-10 05:08:54 +00001146
zhanyong.wanc6a41232009-05-13 23:38:40 +00001147 virtual bool Matches(T x) const {
1148 return matcher1_.Matches(x) || matcher2_.Matches(x);
1149 }
shiqiane35fdd92008-12-10 05:08:54 +00001150
zhanyong.wanc6a41232009-05-13 23:38:40 +00001151 virtual void DescribeTo(::std::ostream* os) const {
1152 *os << "(";
1153 matcher1_.DescribeTo(os);
1154 *os << ") or (";
1155 matcher2_.DescribeTo(os);
1156 *os << ")";
1157 }
shiqiane35fdd92008-12-10 05:08:54 +00001158
zhanyong.wanc6a41232009-05-13 23:38:40 +00001159 virtual void DescribeNegationTo(::std::ostream* os) const {
1160 *os << "not ";
1161 DescribeTo(os);
1162 }
shiqiane35fdd92008-12-10 05:08:54 +00001163
zhanyong.wanc6a41232009-05-13 23:38:40 +00001164 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
1165 if (Matches(x)) {
1166 // If either matcher1_ or matcher2_ matches x, we just need
1167 // to explain why *one* of them matches.
1168 if (matcher1_.Matches(x)) {
1169 matcher1_.ExplainMatchResultTo(x, os);
shiqiane35fdd92008-12-10 05:08:54 +00001170 } else {
zhanyong.wanc6a41232009-05-13 23:38:40 +00001171 matcher2_.ExplainMatchResultTo(x, os);
1172 }
1173 } else {
1174 // Otherwise we need to explain why *neither* matches.
1175 ::std::stringstream ss1;
1176 matcher1_.ExplainMatchResultTo(x, &ss1);
1177 const internal::string s1 = ss1.str();
1178
1179 ::std::stringstream ss2;
1180 matcher2_.ExplainMatchResultTo(x, &ss2);
1181 const internal::string s2 = ss2.str();
1182
1183 if (s1 == "") {
1184 *os << s2;
1185 } else {
1186 *os << s1;
1187 if (s2 != "") {
1188 *os << "; " << s2;
shiqiane35fdd92008-12-10 05:08:54 +00001189 }
1190 }
1191 }
zhanyong.wanc6a41232009-05-13 23:38:40 +00001192 }
1193 private:
1194 const Matcher<T> matcher1_;
1195 const Matcher<T> matcher2_;
shiqiane35fdd92008-12-10 05:08:54 +00001196};
1197
1198// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1199// matches a value that matches at least one of the matchers m_1, ...,
1200// and m_n.
1201template <typename Matcher1, typename Matcher2>
1202class EitherOfMatcher {
1203 public:
1204 EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1205 : matcher1_(matcher1), matcher2_(matcher2) {}
1206
1207 // This template type conversion operator allows a
1208 // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1209 // both Matcher1 and Matcher2 can match.
1210 template <typename T>
1211 operator Matcher<T>() const {
zhanyong.wan16cf4732009-05-14 20:55:30 +00001212 return Matcher<T>(new EitherOfMatcherImpl<T>(
1213 SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
shiqiane35fdd92008-12-10 05:08:54 +00001214 }
1215 private:
shiqiane35fdd92008-12-10 05:08:54 +00001216 Matcher1 matcher1_;
1217 Matcher2 matcher2_;
1218};
1219
1220// Used for implementing Truly(pred), which turns a predicate into a
1221// matcher.
1222template <typename Predicate>
1223class TrulyMatcher {
1224 public:
1225 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1226
1227 // This method template allows Truly(pred) to be used as a matcher
1228 // for type T where T is the argument type of predicate 'pred'. The
1229 // argument is passed by reference as the predicate may be
1230 // interested in the address of the argument.
1231 template <typename T>
zhanyong.wan16cf4732009-05-14 20:55:30 +00001232 bool Matches(T& x) const { // NOLINT
zhanyong.wan652540a2009-02-23 23:37:29 +00001233#if GTEST_OS_WINDOWS
shiqiane35fdd92008-12-10 05:08:54 +00001234 // MSVC warns about converting a value into bool (warning 4800).
1235#pragma warning(push) // Saves the current warning state.
1236#pragma warning(disable:4800) // Temporarily disables warning 4800.
1237#endif // GTEST_OS_WINDOWS
1238 return predicate_(x);
zhanyong.wan652540a2009-02-23 23:37:29 +00001239#if GTEST_OS_WINDOWS
shiqiane35fdd92008-12-10 05:08:54 +00001240#pragma warning(pop) // Restores the warning state.
1241#endif // GTEST_OS_WINDOWS
1242 }
1243
1244 void DescribeTo(::std::ostream* os) const {
1245 *os << "satisfies the given predicate";
1246 }
1247
1248 void DescribeNegationTo(::std::ostream* os) const {
1249 *os << "doesn't satisfy the given predicate";
1250 }
1251 private:
1252 Predicate predicate_;
1253};
1254
1255// Used for implementing Matches(matcher), which turns a matcher into
1256// a predicate.
1257template <typename M>
1258class MatcherAsPredicate {
1259 public:
1260 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1261
1262 // This template operator() allows Matches(m) to be used as a
1263 // predicate on type T where m is a matcher on type T.
1264 //
1265 // The argument x is passed by reference instead of by value, as
1266 // some matcher may be interested in its address (e.g. as in
1267 // Matches(Ref(n))(x)).
1268 template <typename T>
1269 bool operator()(const T& x) const {
1270 // We let matcher_ commit to a particular type here instead of
1271 // when the MatcherAsPredicate object was constructed. This
1272 // allows us to write Matches(m) where m is a polymorphic matcher
1273 // (e.g. Eq(5)).
1274 //
1275 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1276 // compile when matcher_ has type Matcher<const T&>; if we write
1277 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1278 // when matcher_ has type Matcher<T>; if we just write
1279 // matcher_.Matches(x), it won't compile when matcher_ is
1280 // polymorphic, e.g. Eq(5).
1281 //
1282 // MatcherCast<const T&>() is necessary for making the code work
1283 // in all of the above situations.
1284 return MatcherCast<const T&>(matcher_).Matches(x);
1285 }
1286 private:
1287 M matcher_;
1288};
1289
1290// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1291// argument M must be a type that can be converted to a matcher.
1292template <typename M>
1293class PredicateFormatterFromMatcher {
1294 public:
1295 explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1296
1297 // This template () operator allows a PredicateFormatterFromMatcher
1298 // object to act as a predicate-formatter suitable for using with
1299 // Google Test's EXPECT_PRED_FORMAT1() macro.
1300 template <typename T>
1301 AssertionResult operator()(const char* value_text, const T& x) const {
1302 // We convert matcher_ to a Matcher<const T&> *now* instead of
1303 // when the PredicateFormatterFromMatcher object was constructed,
1304 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1305 // know which type to instantiate it to until we actually see the
1306 // type of x here.
1307 //
1308 // We write MatcherCast<const T&>(matcher_) instead of
1309 // Matcher<const T&>(matcher_), as the latter won't compile when
1310 // matcher_ has type Matcher<T> (e.g. An<int>()).
1311 const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1312 if (matcher.Matches(x)) {
1313 return AssertionSuccess();
1314 } else {
1315 ::std::stringstream ss;
1316 ss << "Value of: " << value_text << "\n"
1317 << "Expected: ";
1318 matcher.DescribeTo(&ss);
1319 ss << "\n Actual: ";
1320 UniversalPrinter<T>::Print(x, &ss);
1321 ExplainMatchResultAsNeededTo<const T&>(matcher, x, &ss);
1322 return AssertionFailure(Message() << ss.str());
1323 }
1324 }
1325 private:
1326 const M matcher_;
1327};
1328
1329// A helper function for converting a matcher to a predicate-formatter
1330// without the user needing to explicitly write the type. This is
1331// used for implementing ASSERT_THAT() and EXPECT_THAT().
1332template <typename M>
1333inline PredicateFormatterFromMatcher<M>
1334MakePredicateFormatterFromMatcher(const M& matcher) {
1335 return PredicateFormatterFromMatcher<M>(matcher);
1336}
1337
1338// Implements the polymorphic floating point equality matcher, which
1339// matches two float values using ULP-based approximation. The
1340// template is meant to be instantiated with FloatType being either
1341// float or double.
1342template <typename FloatType>
1343class FloatingEqMatcher {
1344 public:
1345 // Constructor for FloatingEqMatcher.
1346 // The matcher's input will be compared with rhs. The matcher treats two
1347 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1348 // equality comparisons between NANs will always return false.
1349 FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1350 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1351
1352 // Implements floating point equality matcher as a Matcher<T>.
1353 template <typename T>
1354 class Impl : public MatcherInterface<T> {
1355 public:
1356 Impl(FloatType rhs, bool nan_eq_nan) :
1357 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1358
1359 virtual bool Matches(T value) const {
1360 const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1361
1362 // Compares NaNs first, if nan_eq_nan_ is true.
1363 if (nan_eq_nan_ && lhs.is_nan()) {
1364 return rhs.is_nan();
1365 }
1366
1367 return lhs.AlmostEquals(rhs);
1368 }
1369
1370 virtual void DescribeTo(::std::ostream* os) const {
1371 // os->precision() returns the previously set precision, which we
1372 // store to restore the ostream to its original configuration
1373 // after outputting.
1374 const ::std::streamsize old_precision = os->precision(
1375 ::std::numeric_limits<FloatType>::digits10 + 2);
1376 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1377 if (nan_eq_nan_) {
1378 *os << "is NaN";
1379 } else {
1380 *os << "never matches";
1381 }
1382 } else {
1383 *os << "is approximately " << rhs_;
1384 }
1385 os->precision(old_precision);
1386 }
1387
1388 virtual void DescribeNegationTo(::std::ostream* os) const {
1389 // As before, get original precision.
1390 const ::std::streamsize old_precision = os->precision(
1391 ::std::numeric_limits<FloatType>::digits10 + 2);
1392 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1393 if (nan_eq_nan_) {
1394 *os << "is not NaN";
1395 } else {
1396 *os << "is anything";
1397 }
1398 } else {
1399 *os << "is not approximately " << rhs_;
1400 }
1401 // Restore original precision.
1402 os->precision(old_precision);
1403 }
1404
1405 private:
1406 const FloatType rhs_;
1407 const bool nan_eq_nan_;
1408 };
1409
1410 // The following 3 type conversion operators allow FloatEq(rhs) and
1411 // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1412 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1413 // (While Google's C++ coding style doesn't allow arguments passed
1414 // by non-const reference, we may see them in code not conforming to
1415 // the style. Therefore Google Mock needs to support them.)
1416 operator Matcher<FloatType>() const {
1417 return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1418 }
1419
1420 operator Matcher<const FloatType&>() const {
1421 return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1422 }
1423
1424 operator Matcher<FloatType&>() const {
1425 return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1426 }
1427 private:
1428 const FloatType rhs_;
1429 const bool nan_eq_nan_;
1430};
1431
1432// Implements the Pointee(m) matcher for matching a pointer whose
1433// pointee matches matcher m. The pointer can be either raw or smart.
1434template <typename InnerMatcher>
1435class PointeeMatcher {
1436 public:
1437 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1438
1439 // This type conversion operator template allows Pointee(m) to be
1440 // used as a matcher for any pointer type whose pointee type is
1441 // compatible with the inner matcher, where type Pointer can be
1442 // either a raw pointer or a smart pointer.
1443 //
1444 // The reason we do this instead of relying on
1445 // MakePolymorphicMatcher() is that the latter is not flexible
1446 // enough for implementing the DescribeTo() method of Pointee().
1447 template <typename Pointer>
1448 operator Matcher<Pointer>() const {
1449 return MakeMatcher(new Impl<Pointer>(matcher_));
1450 }
1451 private:
1452 // The monomorphic implementation that works for a particular pointer type.
1453 template <typename Pointer>
1454 class Impl : public MatcherInterface<Pointer> {
1455 public:
zhanyong.wane0d051e2009-02-19 00:33:37 +00001456 typedef typename PointeeOf<GMOCK_REMOVE_CONST_( // NOLINT
1457 GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee;
shiqiane35fdd92008-12-10 05:08:54 +00001458
1459 explicit Impl(const InnerMatcher& matcher)
1460 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1461
1462 virtual bool Matches(Pointer p) const {
1463 return GetRawPointer(p) != NULL && matcher_.Matches(*p);
1464 }
1465
1466 virtual void DescribeTo(::std::ostream* os) const {
1467 *os << "points to a value that ";
1468 matcher_.DescribeTo(os);
1469 }
1470
1471 virtual void DescribeNegationTo(::std::ostream* os) const {
1472 *os << "does not point to a value that ";
1473 matcher_.DescribeTo(os);
1474 }
1475
1476 virtual void ExplainMatchResultTo(Pointer pointer,
1477 ::std::ostream* os) const {
1478 if (GetRawPointer(pointer) == NULL)
1479 return;
1480
1481 ::std::stringstream ss;
1482 matcher_.ExplainMatchResultTo(*pointer, &ss);
1483 const internal::string s = ss.str();
1484 if (s != "") {
1485 *os << "points to a value that " << s;
1486 }
1487 }
1488 private:
1489 const Matcher<const Pointee&> matcher_;
1490 };
1491
1492 const InnerMatcher matcher_;
1493};
1494
1495// Implements the Field() matcher for matching a field (i.e. member
1496// variable) of an object.
1497template <typename Class, typename FieldType>
1498class FieldMatcher {
1499 public:
1500 FieldMatcher(FieldType Class::*field,
1501 const Matcher<const FieldType&>& matcher)
1502 : field_(field), matcher_(matcher) {}
1503
1504 // Returns true iff the inner matcher matches obj.field.
1505 bool Matches(const Class& obj) const {
1506 return matcher_.Matches(obj.*field_);
1507 }
1508
1509 // Returns true iff the inner matcher matches obj->field.
1510 bool Matches(const Class* p) const {
1511 return (p != NULL) && matcher_.Matches(p->*field_);
1512 }
1513
1514 void DescribeTo(::std::ostream* os) const {
1515 *os << "the given field ";
1516 matcher_.DescribeTo(os);
1517 }
1518
1519 void DescribeNegationTo(::std::ostream* os) const {
1520 *os << "the given field ";
1521 matcher_.DescribeNegationTo(os);
1522 }
1523
zhanyong.wan18490652009-05-11 18:54:08 +00001524 // The first argument of ExplainMatchResultTo() is needed to help
1525 // Symbian's C++ compiler choose which overload to use. Its type is
1526 // true_type iff the Field() matcher is used to match a pointer.
1527 void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
1528 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001529 ::std::stringstream ss;
1530 matcher_.ExplainMatchResultTo(obj.*field_, &ss);
1531 const internal::string s = ss.str();
1532 if (s != "") {
1533 *os << "the given field " << s;
1534 }
1535 }
1536
zhanyong.wan18490652009-05-11 18:54:08 +00001537 void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
1538 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001539 if (p != NULL) {
zhanyong.wan18490652009-05-11 18:54:08 +00001540 // Since *p has a field, it must be a class/struct/union type
1541 // and thus cannot be a pointer. Therefore we pass false_type()
1542 // as the first argument.
1543 ExplainMatchResultTo(false_type(), *p, os);
shiqiane35fdd92008-12-10 05:08:54 +00001544 }
1545 }
1546 private:
1547 const FieldType Class::*field_;
1548 const Matcher<const FieldType&> matcher_;
1549};
1550
zhanyong.wan18490652009-05-11 18:54:08 +00001551// Explains the result of matching an object or pointer against a field matcher.
1552template <typename Class, typename FieldType, typename T>
shiqiane35fdd92008-12-10 05:08:54 +00001553void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
zhanyong.wan18490652009-05-11 18:54:08 +00001554 const T& value, ::std::ostream* os) {
1555 matcher.ExplainMatchResultTo(
1556 typename ::testing::internal::is_pointer<T>::type(), value, os);
shiqiane35fdd92008-12-10 05:08:54 +00001557}
1558
1559// Implements the Property() matcher for matching a property
1560// (i.e. return value of a getter method) of an object.
1561template <typename Class, typename PropertyType>
1562class PropertyMatcher {
1563 public:
1564 // The property may have a reference type, so 'const PropertyType&'
1565 // may cause double references and fail to compile. That's why we
1566 // need GMOCK_REFERENCE_TO_CONST, which works regardless of
1567 // PropertyType being a reference or not.
zhanyong.wane0d051e2009-02-19 00:33:37 +00001568 typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
shiqiane35fdd92008-12-10 05:08:54 +00001569
1570 PropertyMatcher(PropertyType (Class::*property)() const,
1571 const Matcher<RefToConstProperty>& matcher)
1572 : property_(property), matcher_(matcher) {}
1573
1574 // Returns true iff obj.property() matches the inner matcher.
1575 bool Matches(const Class& obj) const {
1576 return matcher_.Matches((obj.*property_)());
1577 }
1578
1579 // Returns true iff p->property() matches the inner matcher.
1580 bool Matches(const Class* p) const {
1581 return (p != NULL) && matcher_.Matches((p->*property_)());
1582 }
1583
1584 void DescribeTo(::std::ostream* os) const {
1585 *os << "the given property ";
1586 matcher_.DescribeTo(os);
1587 }
1588
1589 void DescribeNegationTo(::std::ostream* os) const {
1590 *os << "the given property ";
1591 matcher_.DescribeNegationTo(os);
1592 }
1593
zhanyong.wan18490652009-05-11 18:54:08 +00001594 // The first argument of ExplainMatchResultTo() is needed to help
1595 // Symbian's C++ compiler choose which overload to use. Its type is
1596 // true_type iff the Property() matcher is used to match a pointer.
1597 void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
1598 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001599 ::std::stringstream ss;
1600 matcher_.ExplainMatchResultTo((obj.*property_)(), &ss);
1601 const internal::string s = ss.str();
1602 if (s != "") {
1603 *os << "the given property " << s;
1604 }
1605 }
1606
zhanyong.wan18490652009-05-11 18:54:08 +00001607 void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
1608 ::std::ostream* os) const {
shiqiane35fdd92008-12-10 05:08:54 +00001609 if (p != NULL) {
zhanyong.wan18490652009-05-11 18:54:08 +00001610 // Since *p has a property method, it must be a
1611 // class/struct/union type and thus cannot be a pointer.
1612 // Therefore we pass false_type() as the first argument.
1613 ExplainMatchResultTo(false_type(), *p, os);
shiqiane35fdd92008-12-10 05:08:54 +00001614 }
1615 }
1616 private:
1617 PropertyType (Class::*property_)() const;
1618 const Matcher<RefToConstProperty> matcher_;
1619};
1620
zhanyong.wan18490652009-05-11 18:54:08 +00001621// Explains the result of matching an object or pointer against a
1622// property matcher.
1623template <typename Class, typename PropertyType, typename T>
shiqiane35fdd92008-12-10 05:08:54 +00001624void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
zhanyong.wan18490652009-05-11 18:54:08 +00001625 const T& value, ::std::ostream* os) {
1626 matcher.ExplainMatchResultTo(
1627 typename ::testing::internal::is_pointer<T>::type(), value, os);
shiqiane35fdd92008-12-10 05:08:54 +00001628}
1629
1630// Type traits specifying various features of different functors for ResultOf.
1631// The default template specifies features for functor objects.
1632// Functor classes have to typedef argument_type and result_type
1633// to be compatible with ResultOf.
1634template <typename Functor>
1635struct CallableTraits {
1636 typedef typename Functor::result_type ResultType;
1637 typedef Functor StorageType;
1638
1639 static void CheckIsValid(Functor functor) {}
1640 template <typename T>
1641 static ResultType Invoke(Functor f, T arg) { return f(arg); }
1642};
1643
1644// Specialization for function pointers.
1645template <typename ArgType, typename ResType>
1646struct CallableTraits<ResType(*)(ArgType)> {
1647 typedef ResType ResultType;
1648 typedef ResType(*StorageType)(ArgType);
1649
1650 static void CheckIsValid(ResType(*f)(ArgType)) {
zhanyong.wanf5e1ce52009-09-16 07:02:02 +00001651 GTEST_CHECK_(f != NULL)
shiqiane35fdd92008-12-10 05:08:54 +00001652 << "NULL function pointer is passed into ResultOf().";
1653 }
1654 template <typename T>
1655 static ResType Invoke(ResType(*f)(ArgType), T arg) {
1656 return (*f)(arg);
1657 }
1658};
1659
1660// Implements the ResultOf() matcher for matching a return value of a
1661// unary function of an object.
1662template <typename Callable>
1663class ResultOfMatcher {
1664 public:
1665 typedef typename CallableTraits<Callable>::ResultType ResultType;
1666
1667 ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1668 : callable_(callable), matcher_(matcher) {
1669 CallableTraits<Callable>::CheckIsValid(callable_);
1670 }
1671
1672 template <typename T>
1673 operator Matcher<T>() const {
1674 return Matcher<T>(new Impl<T>(callable_, matcher_));
1675 }
1676
1677 private:
1678 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1679
1680 template <typename T>
1681 class Impl : public MatcherInterface<T> {
1682 public:
1683 Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1684 : callable_(callable), matcher_(matcher) {}
1685 // Returns true iff callable_(obj) matches the inner matcher.
1686 // The calling syntax is different for different types of callables
1687 // so we abstract it in CallableTraits<Callable>::Invoke().
1688 virtual bool Matches(T obj) const {
1689 return matcher_.Matches(
1690 CallableTraits<Callable>::template Invoke<T>(callable_, obj));
1691 }
1692
1693 virtual void DescribeTo(::std::ostream* os) const {
1694 *os << "result of the given callable ";
1695 matcher_.DescribeTo(os);
1696 }
1697
1698 virtual void DescribeNegationTo(::std::ostream* os) const {
1699 *os << "result of the given callable ";
1700 matcher_.DescribeNegationTo(os);
1701 }
1702
1703 virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const {
1704 ::std::stringstream ss;
1705 matcher_.ExplainMatchResultTo(
1706 CallableTraits<Callable>::template Invoke<T>(callable_, obj),
1707 &ss);
1708 const internal::string s = ss.str();
1709 if (s != "")
1710 *os << "result of the given callable " << s;
1711 }
1712 private:
1713 // Functors often define operator() as non-const method even though
1714 // they are actualy stateless. But we need to use them even when
1715 // 'this' is a const pointer. It's the user's responsibility not to
1716 // use stateful callables with ResultOf(), which does't guarantee
1717 // how many times the callable will be invoked.
1718 mutable CallableStorageType callable_;
1719 const Matcher<ResultType> matcher_;
1720 }; // class Impl
1721
1722 const CallableStorageType callable_;
1723 const Matcher<ResultType> matcher_;
1724};
1725
1726// Explains the result of matching a value against a functor matcher.
1727template <typename T, typename Callable>
1728void ExplainMatchResultTo(const ResultOfMatcher<Callable>& matcher,
1729 T obj, ::std::ostream* os) {
1730 matcher.ExplainMatchResultTo(obj, os);
1731}
1732
zhanyong.wan6a896b52009-01-16 01:13:50 +00001733// Implements an equality matcher for any STL-style container whose elements
1734// support ==. This matcher is like Eq(), but its failure explanations provide
1735// more detailed information that is useful when the container is used as a set.
1736// The failure message reports elements that are in one of the operands but not
1737// the other. The failure messages do not report duplicate or out-of-order
1738// elements in the containers (which don't properly matter to sets, but can
1739// occur if the containers are vectors or lists, for example).
1740//
1741// Uses the container's const_iterator, value_type, operator ==,
1742// begin(), and end().
1743template <typename Container>
1744class ContainerEqMatcher {
1745 public:
zhanyong.wanb8243162009-06-04 05:48:20 +00001746 typedef internal::StlContainerView<Container> View;
1747 typedef typename View::type StlContainer;
1748 typedef typename View::const_reference StlContainerReference;
1749
1750 // We make a copy of rhs in case the elements in it are modified
1751 // after this matcher is created.
1752 explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
1753 // Makes sure the user doesn't instantiate this class template
1754 // with a const or reference type.
1755 testing::StaticAssertTypeEq<Container,
1756 GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))>();
1757 }
1758
1759 template <typename LhsContainer>
1760 bool Matches(const LhsContainer& lhs) const {
1761 // GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
1762 // that causes LhsContainer to be a const type sometimes.
1763 typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)>
1764 LhsView;
1765 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
1766 return lhs_stl_container == rhs_;
1767 }
zhanyong.wan6a896b52009-01-16 01:13:50 +00001768 void DescribeTo(::std::ostream* os) const {
1769 *os << "equals ";
zhanyong.wanb8243162009-06-04 05:48:20 +00001770 UniversalPrinter<StlContainer>::Print(rhs_, os);
zhanyong.wan6a896b52009-01-16 01:13:50 +00001771 }
1772 void DescribeNegationTo(::std::ostream* os) const {
1773 *os << "does not equal ";
zhanyong.wanb8243162009-06-04 05:48:20 +00001774 UniversalPrinter<StlContainer>::Print(rhs_, os);
zhanyong.wan6a896b52009-01-16 01:13:50 +00001775 }
1776
zhanyong.wanb8243162009-06-04 05:48:20 +00001777 template <typename LhsContainer>
1778 void ExplainMatchResultTo(const LhsContainer& lhs,
zhanyong.wan6a896b52009-01-16 01:13:50 +00001779 ::std::ostream* os) const {
zhanyong.wanb8243162009-06-04 05:48:20 +00001780 // GMOCK_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
1781 // that causes LhsContainer to be a const type sometimes.
1782 typedef internal::StlContainerView<GMOCK_REMOVE_CONST_(LhsContainer)>
1783 LhsView;
1784 typedef typename LhsView::type LhsStlContainer;
1785 StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
1786
zhanyong.wan6a896b52009-01-16 01:13:50 +00001787 // Something is different. Check for missing values first.
1788 bool printed_header = false;
zhanyong.wanb8243162009-06-04 05:48:20 +00001789 for (typename LhsStlContainer::const_iterator it =
1790 lhs_stl_container.begin();
1791 it != lhs_stl_container.end(); ++it) {
1792 if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
1793 rhs_.end()) {
zhanyong.wan6a896b52009-01-16 01:13:50 +00001794 if (printed_header) {
1795 *os << ", ";
1796 } else {
1797 *os << "Only in actual: ";
1798 printed_header = true;
1799 }
zhanyong.wanb8243162009-06-04 05:48:20 +00001800 UniversalPrinter<typename LhsStlContainer::value_type>::Print(*it, os);
zhanyong.wan6a896b52009-01-16 01:13:50 +00001801 }
1802 }
1803
1804 // Now check for extra values.
1805 bool printed_header2 = false;
zhanyong.wanb8243162009-06-04 05:48:20 +00001806 for (typename StlContainer::const_iterator it = rhs_.begin();
zhanyong.wan6a896b52009-01-16 01:13:50 +00001807 it != rhs_.end(); ++it) {
zhanyong.wanb8243162009-06-04 05:48:20 +00001808 if (internal::ArrayAwareFind(
1809 lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
1810 lhs_stl_container.end()) {
zhanyong.wan6a896b52009-01-16 01:13:50 +00001811 if (printed_header2) {
1812 *os << ", ";
1813 } else {
1814 *os << (printed_header ? "; not" : "Not") << " in actual: ";
1815 printed_header2 = true;
1816 }
zhanyong.wanb8243162009-06-04 05:48:20 +00001817 UniversalPrinter<typename StlContainer::value_type>::Print(*it, os);
zhanyong.wan6a896b52009-01-16 01:13:50 +00001818 }
1819 }
1820 }
1821 private:
zhanyong.wanb8243162009-06-04 05:48:20 +00001822 const StlContainer rhs_;
zhanyong.wan6a896b52009-01-16 01:13:50 +00001823};
1824
zhanyong.wanb8243162009-06-04 05:48:20 +00001825template <typename LhsContainer, typename Container>
zhanyong.wan6a896b52009-01-16 01:13:50 +00001826void ExplainMatchResultTo(const ContainerEqMatcher<Container>& matcher,
zhanyong.wanb8243162009-06-04 05:48:20 +00001827 const LhsContainer& lhs,
zhanyong.wan6a896b52009-01-16 01:13:50 +00001828 ::std::ostream* os) {
1829 matcher.ExplainMatchResultTo(lhs, os);
1830}
1831
zhanyong.wanb8243162009-06-04 05:48:20 +00001832// Implements Contains(element_matcher) for the given argument type Container.
1833template <typename Container>
1834class ContainsMatcherImpl : public MatcherInterface<Container> {
1835 public:
1836 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
1837 typedef StlContainerView<RawContainer> View;
1838 typedef typename View::type StlContainer;
1839 typedef typename View::const_reference StlContainerReference;
1840 typedef typename StlContainer::value_type Element;
1841
1842 template <typename InnerMatcher>
1843 explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
1844 : inner_matcher_(
1845 testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
1846
1847 // Returns true iff 'container' matches.
1848 virtual bool Matches(Container container) const {
1849 StlContainerReference stl_container = View::ConstReference(container);
1850 for (typename StlContainer::const_iterator it = stl_container.begin();
1851 it != stl_container.end(); ++it) {
1852 if (inner_matcher_.Matches(*it))
1853 return true;
1854 }
1855 return false;
1856 }
1857
1858 // Describes what this matcher does.
1859 virtual void DescribeTo(::std::ostream* os) const {
1860 *os << "contains at least one element that ";
1861 inner_matcher_.DescribeTo(os);
1862 }
1863
1864 // Describes what the negation of this matcher does.
1865 virtual void DescribeNegationTo(::std::ostream* os) const {
1866 *os << "doesn't contain any element that ";
1867 inner_matcher_.DescribeTo(os);
1868 }
1869
1870 // Explains why 'container' matches, or doesn't match, this matcher.
1871 virtual void ExplainMatchResultTo(Container container,
1872 ::std::ostream* os) const {
1873 StlContainerReference stl_container = View::ConstReference(container);
1874
1875 // We need to explain which (if any) element matches inner_matcher_.
1876 typename StlContainer::const_iterator it = stl_container.begin();
1877 for (size_t i = 0; it != stl_container.end(); ++it, ++i) {
1878 if (inner_matcher_.Matches(*it)) {
1879 *os << "element " << i << " matches";
1880 return;
1881 }
1882 }
1883 }
1884
1885 private:
1886 const Matcher<const Element&> inner_matcher_;
1887};
1888
1889// Implements polymorphic Contains(element_matcher).
1890template <typename M>
1891class ContainsMatcher {
1892 public:
1893 explicit ContainsMatcher(M m) : inner_matcher_(m) {}
1894
1895 template <typename Container>
1896 operator Matcher<Container>() const {
1897 return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
1898 }
1899
1900 private:
1901 const M inner_matcher_;
1902};
1903
zhanyong.wanb5937da2009-07-16 20:26:41 +00001904// Implements Key(inner_matcher) for the given argument pair type.
1905// Key(inner_matcher) matches an std::pair whose 'first' field matches
1906// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
1907// std::map that contains at least one element whose key is >= 5.
1908template <typename PairType>
1909class KeyMatcherImpl : public MatcherInterface<PairType> {
1910 public:
1911 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
1912 typedef typename RawPairType::first_type KeyType;
1913
1914 template <typename InnerMatcher>
1915 explicit KeyMatcherImpl(InnerMatcher inner_matcher)
1916 : inner_matcher_(
1917 testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
1918 }
1919
1920 // Returns true iff 'key_value.first' (the key) matches the inner matcher.
1921 virtual bool Matches(PairType key_value) const {
1922 return inner_matcher_.Matches(key_value.first);
1923 }
1924
1925 // Describes what this matcher does.
1926 virtual void DescribeTo(::std::ostream* os) const {
1927 *os << "has a key that ";
1928 inner_matcher_.DescribeTo(os);
1929 }
1930
1931 // Describes what the negation of this matcher does.
1932 virtual void DescribeNegationTo(::std::ostream* os) const {
1933 *os << "doesn't have a key that ";
1934 inner_matcher_.DescribeTo(os);
1935 }
1936
1937 // Explains why 'key_value' matches, or doesn't match, this matcher.
1938 virtual void ExplainMatchResultTo(PairType key_value,
1939 ::std::ostream* os) const {
1940 inner_matcher_.ExplainMatchResultTo(key_value.first, os);
1941 }
1942
1943 private:
1944 const Matcher<const KeyType&> inner_matcher_;
1945};
1946
1947// Implements polymorphic Key(matcher_for_key).
1948template <typename M>
1949class KeyMatcher {
1950 public:
1951 explicit KeyMatcher(M m) : matcher_for_key_(m) {}
1952
1953 template <typename PairType>
1954 operator Matcher<PairType>() const {
1955 return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
1956 }
1957
1958 private:
1959 const M matcher_for_key_;
1960};
1961
zhanyong.wanf5e1ce52009-09-16 07:02:02 +00001962// Implements Pair(first_matcher, second_matcher) for the given argument pair
1963// type with its two matchers. See Pair() function below.
1964template <typename PairType>
1965class PairMatcherImpl : public MatcherInterface<PairType> {
1966 public:
1967 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(PairType)) RawPairType;
1968 typedef typename RawPairType::first_type FirstType;
1969 typedef typename RawPairType::second_type SecondType;
1970
1971 template <typename FirstMatcher, typename SecondMatcher>
1972 PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
1973 : first_matcher_(
1974 testing::SafeMatcherCast<const FirstType&>(first_matcher)),
1975 second_matcher_(
1976 testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
1977 }
1978
1979 // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
1980 // matches second_matcher.
1981 virtual bool Matches(PairType a_pair) const {
1982 return first_matcher_.Matches(a_pair.first) &&
1983 second_matcher_.Matches(a_pair.second);
1984 }
1985
1986 // Describes what this matcher does.
1987 virtual void DescribeTo(::std::ostream* os) const {
1988 *os << "has a first field that ";
1989 first_matcher_.DescribeTo(os);
1990 *os << ", and has a second field that ";
1991 second_matcher_.DescribeTo(os);
1992 }
1993
1994 // Describes what the negation of this matcher does.
1995 virtual void DescribeNegationTo(::std::ostream* os) const {
1996 *os << "has a first field that ";
1997 first_matcher_.DescribeNegationTo(os);
1998 *os << ", or has a second field that ";
1999 second_matcher_.DescribeNegationTo(os);
2000 }
2001
2002 // Explains why 'a_pair' matches, or doesn't match, this matcher.
2003 virtual void ExplainMatchResultTo(PairType a_pair,
2004 ::std::ostream* os) const {
2005 ::std::stringstream ss1;
2006 first_matcher_.ExplainMatchResultTo(a_pair.first, &ss1);
2007 internal::string s1 = ss1.str();
2008 if (s1 != "") {
2009 s1 = "the first field " + s1;
2010 }
2011
2012 ::std::stringstream ss2;
2013 second_matcher_.ExplainMatchResultTo(a_pair.second, &ss2);
2014 internal::string s2 = ss2.str();
2015 if (s2 != "") {
2016 s2 = "the second field " + s2;
2017 }
2018
2019 *os << s1;
2020 if (s1 != "" && s2 != "") {
2021 *os << ", and ";
2022 }
2023 *os << s2;
2024 }
2025
2026 private:
2027 const Matcher<const FirstType&> first_matcher_;
2028 const Matcher<const SecondType&> second_matcher_;
2029};
2030
2031// Implements polymorphic Pair(first_matcher, second_matcher).
2032template <typename FirstMatcher, typename SecondMatcher>
2033class PairMatcher {
2034 public:
2035 PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
2036 : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
2037
2038 template <typename PairType>
2039 operator Matcher<PairType> () const {
2040 return MakeMatcher(
2041 new PairMatcherImpl<PairType>(
2042 first_matcher_, second_matcher_));
2043 }
2044
2045 private:
2046 const FirstMatcher first_matcher_;
2047 const SecondMatcher second_matcher_;
2048};
2049
zhanyong.wan1afe1c72009-07-21 23:26:31 +00002050// Implements ElementsAre() and ElementsAreArray().
2051template <typename Container>
2052class ElementsAreMatcherImpl : public MatcherInterface<Container> {
2053 public:
2054 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
2055 typedef internal::StlContainerView<RawContainer> View;
2056 typedef typename View::type StlContainer;
2057 typedef typename View::const_reference StlContainerReference;
2058 typedef typename StlContainer::value_type Element;
2059
2060 // Constructs the matcher from a sequence of element values or
2061 // element matchers.
2062 template <typename InputIter>
2063 ElementsAreMatcherImpl(InputIter first, size_t count) {
2064 matchers_.reserve(count);
2065 InputIter it = first;
2066 for (size_t i = 0; i != count; ++i, ++it) {
2067 matchers_.push_back(MatcherCast<const Element&>(*it));
2068 }
2069 }
2070
2071 // Returns true iff 'container' matches.
2072 virtual bool Matches(Container container) const {
2073 StlContainerReference stl_container = View::ConstReference(container);
2074 if (stl_container.size() != count())
2075 return false;
2076
2077 typename StlContainer::const_iterator it = stl_container.begin();
2078 for (size_t i = 0; i != count(); ++it, ++i) {
2079 if (!matchers_[i].Matches(*it))
2080 return false;
2081 }
2082
2083 return true;
2084 }
2085
2086 // Describes what this matcher does.
2087 virtual void DescribeTo(::std::ostream* os) const {
2088 if (count() == 0) {
2089 *os << "is empty";
2090 } else if (count() == 1) {
2091 *os << "has 1 element that ";
2092 matchers_[0].DescribeTo(os);
2093 } else {
2094 *os << "has " << Elements(count()) << " where\n";
2095 for (size_t i = 0; i != count(); ++i) {
2096 *os << "element " << i << " ";
2097 matchers_[i].DescribeTo(os);
2098 if (i + 1 < count()) {
2099 *os << ",\n";
2100 }
2101 }
2102 }
2103 }
2104
2105 // Describes what the negation of this matcher does.
2106 virtual void DescribeNegationTo(::std::ostream* os) const {
2107 if (count() == 0) {
2108 *os << "is not empty";
2109 return;
2110 }
2111
2112 *os << "does not have " << Elements(count()) << ", or\n";
2113 for (size_t i = 0; i != count(); ++i) {
2114 *os << "element " << i << " ";
2115 matchers_[i].DescribeNegationTo(os);
2116 if (i + 1 < count()) {
2117 *os << ", or\n";
2118 }
2119 }
2120 }
2121
2122 // Explains why 'container' matches, or doesn't match, this matcher.
2123 virtual void ExplainMatchResultTo(Container container,
2124 ::std::ostream* os) const {
2125 StlContainerReference stl_container = View::ConstReference(container);
2126 if (Matches(container)) {
2127 // We need to explain why *each* element matches (the obvious
2128 // ones can be skipped).
2129
2130 bool reason_printed = false;
2131 typename StlContainer::const_iterator it = stl_container.begin();
2132 for (size_t i = 0; i != count(); ++it, ++i) {
2133 ::std::stringstream ss;
2134 matchers_[i].ExplainMatchResultTo(*it, &ss);
2135
2136 const string s = ss.str();
2137 if (!s.empty()) {
2138 if (reason_printed) {
2139 *os << ",\n";
2140 }
2141 *os << "element " << i << " " << s;
2142 reason_printed = true;
2143 }
2144 }
2145 } else {
2146 // We need to explain why the container doesn't match.
2147 const size_t actual_count = stl_container.size();
2148 if (actual_count != count()) {
2149 // The element count doesn't match. If the container is
2150 // empty, there's no need to explain anything as Google Mock
2151 // already prints the empty container. Otherwise we just need
2152 // to show how many elements there actually are.
2153 if (actual_count != 0) {
2154 *os << "has " << Elements(actual_count);
2155 }
2156 return;
2157 }
2158
2159 // The container has the right size but at least one element
2160 // doesn't match expectation. We need to find this element and
2161 // explain why it doesn't match.
2162 typename StlContainer::const_iterator it = stl_container.begin();
2163 for (size_t i = 0; i != count(); ++it, ++i) {
2164 if (matchers_[i].Matches(*it)) {
2165 continue;
2166 }
2167
2168 *os << "element " << i << " doesn't match";
2169
2170 ::std::stringstream ss;
2171 matchers_[i].ExplainMatchResultTo(*it, &ss);
2172 const string s = ss.str();
2173 if (!s.empty()) {
2174 *os << " (" << s << ")";
2175 }
2176 return;
2177 }
2178 }
2179 }
2180
2181 private:
2182 static Message Elements(size_t count) {
2183 return Message() << count << (count == 1 ? " element" : " elements");
2184 }
2185
2186 size_t count() const { return matchers_.size(); }
2187 std::vector<Matcher<const Element&> > matchers_;
2188};
2189
2190// Implements ElementsAre() of 0 arguments.
2191class ElementsAreMatcher0 {
2192 public:
2193 ElementsAreMatcher0() {}
2194
2195 template <typename Container>
2196 operator Matcher<Container>() const {
2197 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
2198 RawContainer;
2199 typedef typename internal::StlContainerView<RawContainer>::type::value_type
2200 Element;
2201
2202 const Matcher<const Element&>* const matchers = NULL;
2203 return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
2204 }
2205};
2206
2207// Implements ElementsAreArray().
2208template <typename T>
2209class ElementsAreArrayMatcher {
2210 public:
2211 ElementsAreArrayMatcher(const T* first, size_t count) :
2212 first_(first), count_(count) {}
2213
2214 template <typename Container>
2215 operator Matcher<Container>() const {
2216 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
2217 RawContainer;
2218 typedef typename internal::StlContainerView<RawContainer>::type::value_type
2219 Element;
2220
2221 return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
2222 }
2223
2224 private:
2225 const T* const first_;
2226 const size_t count_;
2227};
2228
2229// Constants denoting interpolations in a matcher description string.
2230const int kTupleInterpolation = -1; // "%(*)s"
2231const int kPercentInterpolation = -2; // "%%"
2232const int kInvalidInterpolation = -3; // "%" followed by invalid text
2233
2234// Records the location and content of an interpolation.
2235struct Interpolation {
2236 Interpolation(const char* start, const char* end, int param)
2237 : start_pos(start), end_pos(end), param_index(param) {}
2238
2239 // Points to the start of the interpolation (the '%' character).
2240 const char* start_pos;
2241 // Points to the first character after the interpolation.
2242 const char* end_pos;
2243 // 0-based index of the interpolated matcher parameter;
2244 // kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%".
2245 int param_index;
2246};
2247
2248typedef ::std::vector<Interpolation> Interpolations;
2249
2250// Parses a matcher description string and returns a vector of
2251// interpolations that appear in the string; generates non-fatal
2252// failures iff 'description' is an invalid matcher description.
2253// 'param_names' is a NULL-terminated array of parameter names in the
2254// order they appear in the MATCHER_P*() parameter list.
2255Interpolations ValidateMatcherDescription(
2256 const char* param_names[], const char* description);
2257
2258// Returns the actual matcher description, given the matcher name,
2259// user-supplied description template string, interpolations in the
2260// string, and the printed values of the matcher parameters.
2261string FormatMatcherDescription(
2262 const char* matcher_name, const char* description,
2263 const Interpolations& interp, const Strings& param_values);
2264
shiqiane35fdd92008-12-10 05:08:54 +00002265} // namespace internal
2266
2267// Implements MatcherCast().
2268template <typename T, typename M>
2269inline Matcher<T> MatcherCast(M matcher) {
2270 return internal::MatcherCastImpl<T, M>::Cast(matcher);
2271}
2272
2273// _ is a matcher that matches anything of any type.
2274//
2275// This definition is fine as:
2276//
2277// 1. The C++ standard permits using the name _ in a namespace that
2278// is not the global namespace or ::std.
2279// 2. The AnythingMatcher class has no data member or constructor,
2280// so it's OK to create global variables of this type.
2281// 3. c-style has approved of using _ in this case.
2282const internal::AnythingMatcher _ = {};
2283// Creates a matcher that matches any value of the given type T.
2284template <typename T>
2285inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
2286
2287// Creates a matcher that matches any value of the given type T.
2288template <typename T>
2289inline Matcher<T> An() { return A<T>(); }
2290
2291// Creates a polymorphic matcher that matches anything equal to x.
2292// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
2293// wouldn't compile.
2294template <typename T>
2295inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
2296
2297// Constructs a Matcher<T> from a 'value' of type T. The constructed
2298// matcher matches any value that's equal to 'value'.
2299template <typename T>
2300Matcher<T>::Matcher(T value) { *this = Eq(value); }
2301
2302// Creates a monomorphic matcher that matches anything with type Lhs
2303// and equal to rhs. A user may need to use this instead of Eq(...)
2304// in order to resolve an overloading ambiguity.
2305//
2306// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
2307// or Matcher<T>(x), but more readable than the latter.
2308//
2309// We could define similar monomorphic matchers for other comparison
2310// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
2311// it yet as those are used much less than Eq() in practice. A user
2312// can always write Matcher<T>(Lt(5)) to be explicit about the type,
2313// for example.
2314template <typename Lhs, typename Rhs>
2315inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
2316
2317// Creates a polymorphic matcher that matches anything >= x.
2318template <typename Rhs>
2319inline internal::GeMatcher<Rhs> Ge(Rhs x) {
2320 return internal::GeMatcher<Rhs>(x);
2321}
2322
2323// Creates a polymorphic matcher that matches anything > x.
2324template <typename Rhs>
2325inline internal::GtMatcher<Rhs> Gt(Rhs x) {
2326 return internal::GtMatcher<Rhs>(x);
2327}
2328
2329// Creates a polymorphic matcher that matches anything <= x.
2330template <typename Rhs>
2331inline internal::LeMatcher<Rhs> Le(Rhs x) {
2332 return internal::LeMatcher<Rhs>(x);
2333}
2334
2335// Creates a polymorphic matcher that matches anything < x.
2336template <typename Rhs>
2337inline internal::LtMatcher<Rhs> Lt(Rhs x) {
2338 return internal::LtMatcher<Rhs>(x);
2339}
2340
2341// Creates a polymorphic matcher that matches anything != x.
2342template <typename Rhs>
2343inline internal::NeMatcher<Rhs> Ne(Rhs x) {
2344 return internal::NeMatcher<Rhs>(x);
2345}
2346
zhanyong.wan2d970ee2009-09-24 21:41:36 +00002347// Creates a polymorphic matcher that matches any NULL pointer.
2348inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
2349 return MakePolymorphicMatcher(internal::IsNullMatcher());
2350}
2351
shiqiane35fdd92008-12-10 05:08:54 +00002352// Creates a polymorphic matcher that matches any non-NULL pointer.
2353// This is convenient as Not(NULL) doesn't compile (the compiler
2354// thinks that that expression is comparing a pointer with an integer).
2355inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
2356 return MakePolymorphicMatcher(internal::NotNullMatcher());
2357}
2358
2359// Creates a polymorphic matcher that matches any argument that
2360// references variable x.
2361template <typename T>
2362inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
2363 return internal::RefMatcher<T&>(x);
2364}
2365
2366// Creates a matcher that matches any double argument approximately
2367// equal to rhs, where two NANs are considered unequal.
2368inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
2369 return internal::FloatingEqMatcher<double>(rhs, false);
2370}
2371
2372// Creates a matcher that matches any double argument approximately
2373// equal to rhs, including NaN values when rhs is NaN.
2374inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
2375 return internal::FloatingEqMatcher<double>(rhs, true);
2376}
2377
2378// Creates a matcher that matches any float argument approximately
2379// equal to rhs, where two NANs are considered unequal.
2380inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
2381 return internal::FloatingEqMatcher<float>(rhs, false);
2382}
2383
2384// Creates a matcher that matches any double argument approximately
2385// equal to rhs, including NaN values when rhs is NaN.
2386inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
2387 return internal::FloatingEqMatcher<float>(rhs, true);
2388}
2389
2390// Creates a matcher that matches a pointer (raw or smart) that points
2391// to a value that matches inner_matcher.
2392template <typename InnerMatcher>
2393inline internal::PointeeMatcher<InnerMatcher> Pointee(
2394 const InnerMatcher& inner_matcher) {
2395 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
2396}
2397
2398// Creates a matcher that matches an object whose given field matches
2399// 'matcher'. For example,
2400// Field(&Foo::number, Ge(5))
2401// matches a Foo object x iff x.number >= 5.
2402template <typename Class, typename FieldType, typename FieldMatcher>
2403inline PolymorphicMatcher<
2404 internal::FieldMatcher<Class, FieldType> > Field(
2405 FieldType Class::*field, const FieldMatcher& matcher) {
2406 return MakePolymorphicMatcher(
2407 internal::FieldMatcher<Class, FieldType>(
2408 field, MatcherCast<const FieldType&>(matcher)));
2409 // The call to MatcherCast() is required for supporting inner
2410 // matchers of compatible types. For example, it allows
2411 // Field(&Foo::bar, m)
2412 // to compile where bar is an int32 and m is a matcher for int64.
2413}
2414
2415// Creates a matcher that matches an object whose given property
2416// matches 'matcher'. For example,
2417// Property(&Foo::str, StartsWith("hi"))
2418// matches a Foo object x iff x.str() starts with "hi".
2419template <typename Class, typename PropertyType, typename PropertyMatcher>
2420inline PolymorphicMatcher<
2421 internal::PropertyMatcher<Class, PropertyType> > Property(
2422 PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
2423 return MakePolymorphicMatcher(
2424 internal::PropertyMatcher<Class, PropertyType>(
2425 property,
zhanyong.wane0d051e2009-02-19 00:33:37 +00002426 MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
shiqiane35fdd92008-12-10 05:08:54 +00002427 // The call to MatcherCast() is required for supporting inner
2428 // matchers of compatible types. For example, it allows
2429 // Property(&Foo::bar, m)
2430 // to compile where bar() returns an int32 and m is a matcher for int64.
2431}
2432
2433// Creates a matcher that matches an object iff the result of applying
2434// a callable to x matches 'matcher'.
2435// For example,
2436// ResultOf(f, StartsWith("hi"))
2437// matches a Foo object x iff f(x) starts with "hi".
2438// callable parameter can be a function, function pointer, or a functor.
2439// Callable has to satisfy the following conditions:
2440// * It is required to keep no state affecting the results of
2441// the calls on it and make no assumptions about how many calls
2442// will be made. Any state it keeps must be protected from the
2443// concurrent access.
2444// * If it is a function object, it has to define type result_type.
2445// We recommend deriving your functor classes from std::unary_function.
2446template <typename Callable, typename ResultOfMatcher>
2447internal::ResultOfMatcher<Callable> ResultOf(
2448 Callable callable, const ResultOfMatcher& matcher) {
2449 return internal::ResultOfMatcher<Callable>(
2450 callable,
2451 MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
2452 matcher));
2453 // The call to MatcherCast() is required for supporting inner
2454 // matchers of compatible types. For example, it allows
2455 // ResultOf(Function, m)
2456 // to compile where Function() returns an int32 and m is a matcher for int64.
2457}
2458
2459// String matchers.
2460
2461// Matches a string equal to str.
2462inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2463 StrEq(const internal::string& str) {
2464 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2465 str, true, true));
2466}
2467
2468// Matches a string not equal to str.
2469inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2470 StrNe(const internal::string& str) {
2471 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2472 str, false, true));
2473}
2474
2475// Matches a string equal to str, ignoring case.
2476inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2477 StrCaseEq(const internal::string& str) {
2478 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2479 str, true, false));
2480}
2481
2482// Matches a string not equal to str, ignoring case.
2483inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
2484 StrCaseNe(const internal::string& str) {
2485 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
2486 str, false, false));
2487}
2488
2489// Creates a matcher that matches any string, std::string, or C string
2490// that contains the given substring.
2491inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
2492 HasSubstr(const internal::string& substring) {
2493 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
2494 substring));
2495}
2496
2497// Matches a string that starts with 'prefix' (case-sensitive).
2498inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
2499 StartsWith(const internal::string& prefix) {
2500 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
2501 prefix));
2502}
2503
2504// Matches a string that ends with 'suffix' (case-sensitive).
2505inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
2506 EndsWith(const internal::string& suffix) {
2507 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
2508 suffix));
2509}
2510
2511#ifdef GMOCK_HAS_REGEX
2512
2513// Matches a string that fully matches regular expression 'regex'.
2514// The matcher takes ownership of 'regex'.
2515inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2516 const internal::RE* regex) {
2517 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2518}
2519inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2520 const internal::string& regex) {
2521 return MatchesRegex(new internal::RE(regex));
2522}
2523
2524// Matches a string that contains regular expression 'regex'.
2525// The matcher takes ownership of 'regex'.
2526inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2527 const internal::RE* regex) {
2528 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2529}
2530inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2531 const internal::string& regex) {
2532 return ContainsRegex(new internal::RE(regex));
2533}
2534
2535#endif // GMOCK_HAS_REGEX
2536
2537#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2538// Wide string matchers.
2539
2540// Matches a string equal to str.
2541inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2542 StrEq(const internal::wstring& str) {
2543 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2544 str, true, true));
2545}
2546
2547// Matches a string not equal to str.
2548inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2549 StrNe(const internal::wstring& str) {
2550 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2551 str, false, true));
2552}
2553
2554// Matches a string equal to str, ignoring case.
2555inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2556 StrCaseEq(const internal::wstring& str) {
2557 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2558 str, true, false));
2559}
2560
2561// Matches a string not equal to str, ignoring case.
2562inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2563 StrCaseNe(const internal::wstring& str) {
2564 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2565 str, false, false));
2566}
2567
2568// Creates a matcher that matches any wstring, std::wstring, or C wide string
2569// that contains the given substring.
2570inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2571 HasSubstr(const internal::wstring& substring) {
2572 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2573 substring));
2574}
2575
2576// Matches a string that starts with 'prefix' (case-sensitive).
2577inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2578 StartsWith(const internal::wstring& prefix) {
2579 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2580 prefix));
2581}
2582
2583// Matches a string that ends with 'suffix' (case-sensitive).
2584inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2585 EndsWith(const internal::wstring& suffix) {
2586 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2587 suffix));
2588}
2589
2590#endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2591
2592// Creates a polymorphic matcher that matches a 2-tuple where the
2593// first field == the second field.
2594inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
2595
2596// Creates a polymorphic matcher that matches a 2-tuple where the
2597// first field >= the second field.
2598inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
2599
2600// Creates a polymorphic matcher that matches a 2-tuple where the
2601// first field > the second field.
2602inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
2603
2604// Creates a polymorphic matcher that matches a 2-tuple where the
2605// first field <= the second field.
2606inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
2607
2608// Creates a polymorphic matcher that matches a 2-tuple where the
2609// first field < the second field.
2610inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
2611
2612// Creates a polymorphic matcher that matches a 2-tuple where the
2613// first field != the second field.
2614inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
2615
2616// Creates a matcher that matches any value of type T that m doesn't
2617// match.
2618template <typename InnerMatcher>
2619inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
2620 return internal::NotMatcher<InnerMatcher>(m);
2621}
2622
2623// Creates a matcher that matches any value that matches all of the
2624// given matchers.
2625//
2626// For now we only support up to 5 matchers. Support for more
2627// matchers can be added as needed, or the user can use nested
2628// AllOf()s.
2629template <typename Matcher1, typename Matcher2>
2630inline internal::BothOfMatcher<Matcher1, Matcher2>
2631AllOf(Matcher1 m1, Matcher2 m2) {
2632 return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
2633}
2634
2635template <typename Matcher1, typename Matcher2, typename Matcher3>
2636inline internal::BothOfMatcher<Matcher1,
2637 internal::BothOfMatcher<Matcher2, Matcher3> >
2638AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2639 return AllOf(m1, AllOf(m2, m3));
2640}
2641
2642template <typename Matcher1, typename Matcher2, typename Matcher3,
2643 typename Matcher4>
2644inline internal::BothOfMatcher<Matcher1,
2645 internal::BothOfMatcher<Matcher2,
2646 internal::BothOfMatcher<Matcher3, Matcher4> > >
2647AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2648 return AllOf(m1, AllOf(m2, m3, m4));
2649}
2650
2651template <typename Matcher1, typename Matcher2, typename Matcher3,
2652 typename Matcher4, typename Matcher5>
2653inline internal::BothOfMatcher<Matcher1,
2654 internal::BothOfMatcher<Matcher2,
2655 internal::BothOfMatcher<Matcher3,
2656 internal::BothOfMatcher<Matcher4, Matcher5> > > >
2657AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2658 return AllOf(m1, AllOf(m2, m3, m4, m5));
2659}
2660
2661// Creates a matcher that matches any value that matches at least one
2662// of the given matchers.
2663//
2664// For now we only support up to 5 matchers. Support for more
2665// matchers can be added as needed, or the user can use nested
2666// AnyOf()s.
2667template <typename Matcher1, typename Matcher2>
2668inline internal::EitherOfMatcher<Matcher1, Matcher2>
2669AnyOf(Matcher1 m1, Matcher2 m2) {
2670 return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
2671}
2672
2673template <typename Matcher1, typename Matcher2, typename Matcher3>
2674inline internal::EitherOfMatcher<Matcher1,
2675 internal::EitherOfMatcher<Matcher2, Matcher3> >
2676AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2677 return AnyOf(m1, AnyOf(m2, m3));
2678}
2679
2680template <typename Matcher1, typename Matcher2, typename Matcher3,
2681 typename Matcher4>
2682inline internal::EitherOfMatcher<Matcher1,
2683 internal::EitherOfMatcher<Matcher2,
2684 internal::EitherOfMatcher<Matcher3, Matcher4> > >
2685AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2686 return AnyOf(m1, AnyOf(m2, m3, m4));
2687}
2688
2689template <typename Matcher1, typename Matcher2, typename Matcher3,
2690 typename Matcher4, typename Matcher5>
2691inline internal::EitherOfMatcher<Matcher1,
2692 internal::EitherOfMatcher<Matcher2,
2693 internal::EitherOfMatcher<Matcher3,
2694 internal::EitherOfMatcher<Matcher4, Matcher5> > > >
2695AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2696 return AnyOf(m1, AnyOf(m2, m3, m4, m5));
2697}
2698
2699// Returns a matcher that matches anything that satisfies the given
2700// predicate. The predicate can be any unary function or functor
2701// whose return type can be implicitly converted to bool.
2702template <typename Predicate>
2703inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
2704Truly(Predicate pred) {
2705 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
2706}
2707
zhanyong.wan6a896b52009-01-16 01:13:50 +00002708// Returns a matcher that matches an equal container.
2709// This matcher behaves like Eq(), but in the event of mismatch lists the
2710// values that are included in one container but not the other. (Duplicate
2711// values and order differences are not explained.)
2712template <typename Container>
zhanyong.wanb8243162009-06-04 05:48:20 +00002713inline PolymorphicMatcher<internal::ContainerEqMatcher<
2714 GMOCK_REMOVE_CONST_(Container)> >
zhanyong.wan6a896b52009-01-16 01:13:50 +00002715 ContainerEq(const Container& rhs) {
zhanyong.wanb8243162009-06-04 05:48:20 +00002716 // This following line is for working around a bug in MSVC 8.0,
2717 // which causes Container to be a const type sometimes.
2718 typedef GMOCK_REMOVE_CONST_(Container) RawContainer;
2719 return MakePolymorphicMatcher(internal::ContainerEqMatcher<RawContainer>(rhs));
2720}
2721
2722// Matches an STL-style container or a native array that contains at
2723// least one element matching the given value or matcher.
2724//
2725// Examples:
2726// ::std::set<int> page_ids;
2727// page_ids.insert(3);
2728// page_ids.insert(1);
2729// EXPECT_THAT(page_ids, Contains(1));
2730// EXPECT_THAT(page_ids, Contains(Gt(2)));
2731// EXPECT_THAT(page_ids, Not(Contains(4)));
2732//
2733// ::std::map<int, size_t> page_lengths;
2734// page_lengths[1] = 100;
zhanyong.wan40198192009-07-01 05:03:39 +00002735// EXPECT_THAT(page_lengths,
2736// Contains(::std::pair<const int, size_t>(1, 100)));
zhanyong.wanb8243162009-06-04 05:48:20 +00002737//
2738// const char* user_ids[] = { "joe", "mike", "tom" };
2739// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
2740template <typename M>
2741inline internal::ContainsMatcher<M> Contains(M matcher) {
2742 return internal::ContainsMatcher<M>(matcher);
zhanyong.wan6a896b52009-01-16 01:13:50 +00002743}
2744
zhanyong.wanb5937da2009-07-16 20:26:41 +00002745// Key(inner_matcher) matches an std::pair whose 'first' field matches
2746// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
2747// std::map that contains at least one element whose key is >= 5.
2748template <typename M>
2749inline internal::KeyMatcher<M> Key(M inner_matcher) {
2750 return internal::KeyMatcher<M>(inner_matcher);
2751}
2752
zhanyong.wanf5e1ce52009-09-16 07:02:02 +00002753// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
2754// matches first_matcher and whose 'second' field matches second_matcher. For
2755// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
2756// to match a std::map<int, string> that contains exactly one element whose key
2757// is >= 5 and whose value equals "foo".
2758template <typename FirstMatcher, typename SecondMatcher>
2759inline internal::PairMatcher<FirstMatcher, SecondMatcher>
2760Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
2761 return internal::PairMatcher<FirstMatcher, SecondMatcher>(
2762 first_matcher, second_matcher);
2763}
2764
shiqiane35fdd92008-12-10 05:08:54 +00002765// Returns a predicate that is satisfied by anything that matches the
2766// given matcher.
2767template <typename M>
2768inline internal::MatcherAsPredicate<M> Matches(M matcher) {
2769 return internal::MatcherAsPredicate<M>(matcher);
2770}
2771
zhanyong.wanb8243162009-06-04 05:48:20 +00002772// Returns true iff the value matches the matcher.
2773template <typename T, typename M>
2774inline bool Value(const T& value, M matcher) {
2775 return testing::Matches(matcher)(value);
2776}
2777
zhanyong.wanbf550852009-06-09 06:09:53 +00002778// AllArgs(m) is a synonym of m. This is useful in
2779//
2780// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
2781//
2782// which is easier to read than
2783//
2784// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
2785template <typename InnerMatcher>
2786inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
2787
shiqiane35fdd92008-12-10 05:08:54 +00002788// These macros allow using matchers to check values in Google Test
2789// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
2790// succeed iff the value matches the matcher. If the assertion fails,
2791// the value and the description of the matcher will be printed.
2792#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
2793 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2794#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
2795 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2796
2797} // namespace testing
2798
2799#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_