Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 1 | |
| 2 | """ |
| 3 | csv.py - read/write/investigate CSV files |
| 4 | """ |
| 5 | |
| 6 | import re |
| 7 | from _csv import Error, __version__, writer, reader, register_dialect, \ |
| 8 | unregister_dialect, get_dialect, list_dialects, \ |
| 9 | field_size_limit, \ |
| 10 | QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \ |
| 11 | __doc__ |
| 12 | from _csv import Dialect as _Dialect |
| 13 | |
| 14 | from io import StringIO |
| 15 | |
| 16 | __all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE", |
| 17 | "Error", "Dialect", "__doc__", "excel", "excel_tab", |
| 18 | "field_size_limit", "reader", "writer", |
| 19 | "register_dialect", "get_dialect", "list_dialects", "Sniffer", |
| 20 | "unregister_dialect", "__version__", "DictReader", "DictWriter", |
| 21 | "unix_dialect"] |
| 22 | |
| 23 | class Dialect: |
| 24 | """Describe a CSV dialect. |
| 25 | |
| 26 | This must be subclassed (see csv.excel). Valid attributes are: |
| 27 | delimiter, quotechar, escapechar, doublequote, skipinitialspace, |
| 28 | lineterminator, quoting. |
| 29 | |
| 30 | """ |
| 31 | _name = "" |
| 32 | _valid = False |
| 33 | # placeholders |
| 34 | delimiter = None |
| 35 | quotechar = None |
| 36 | escapechar = None |
| 37 | doublequote = None |
| 38 | skipinitialspace = None |
| 39 | lineterminator = None |
| 40 | quoting = None |
| 41 | |
| 42 | def __init__(self): |
| 43 | if self.__class__ != Dialect: |
| 44 | self._valid = True |
| 45 | self._validate() |
| 46 | |
| 47 | def _validate(self): |
| 48 | try: |
| 49 | _Dialect(self) |
| 50 | except TypeError as e: |
| 51 | # We do this for compatibility with py2.3 |
| 52 | raise Error(str(e)) |
| 53 | |
| 54 | class excel(Dialect): |
| 55 | """Describe the usual properties of Excel-generated CSV files.""" |
| 56 | delimiter = ',' |
| 57 | quotechar = '"' |
| 58 | doublequote = True |
| 59 | skipinitialspace = False |
| 60 | lineterminator = '\r\n' |
| 61 | quoting = QUOTE_MINIMAL |
| 62 | register_dialect("excel", excel) |
| 63 | |
| 64 | class excel_tab(excel): |
| 65 | """Describe the usual properties of Excel-generated TAB-delimited files.""" |
| 66 | delimiter = '\t' |
| 67 | register_dialect("excel-tab", excel_tab) |
| 68 | |
| 69 | class unix_dialect(Dialect): |
| 70 | """Describe the usual properties of Unix-generated CSV files.""" |
| 71 | delimiter = ',' |
| 72 | quotechar = '"' |
| 73 | doublequote = True |
| 74 | skipinitialspace = False |
| 75 | lineterminator = '\n' |
| 76 | quoting = QUOTE_ALL |
| 77 | register_dialect("unix", unix_dialect) |
| 78 | |
| 79 | |
| 80 | class DictReader: |
| 81 | def __init__(self, f, fieldnames=None, restkey=None, restval=None, |
| 82 | dialect="excel", *args, **kwds): |
| 83 | self._fieldnames = fieldnames # list of keys for the dict |
| 84 | self.restkey = restkey # key to catch long rows |
| 85 | self.restval = restval # default value for short rows |
| 86 | self.reader = reader(f, dialect, *args, **kwds) |
| 87 | self.dialect = dialect |
| 88 | self.line_num = 0 |
| 89 | |
| 90 | def __iter__(self): |
| 91 | return self |
| 92 | |
| 93 | @property |
| 94 | def fieldnames(self): |
| 95 | if self._fieldnames is None: |
| 96 | try: |
| 97 | self._fieldnames = next(self.reader) |
| 98 | except StopIteration: |
| 99 | pass |
| 100 | self.line_num = self.reader.line_num |
| 101 | return self._fieldnames |
| 102 | |
| 103 | @fieldnames.setter |
| 104 | def fieldnames(self, value): |
| 105 | self._fieldnames = value |
| 106 | |
| 107 | def __next__(self): |
| 108 | if self.line_num == 0: |
| 109 | # Used only for its side effect. |
| 110 | self.fieldnames |
| 111 | row = next(self.reader) |
| 112 | self.line_num = self.reader.line_num |
| 113 | |
| 114 | # unlike the basic reader, we prefer not to return blanks, |
| 115 | # because we will typically wind up with a dict full of None |
| 116 | # values |
| 117 | while row == []: |
| 118 | row = next(self.reader) |
| 119 | d = dict(zip(self.fieldnames, row)) |
| 120 | lf = len(self.fieldnames) |
| 121 | lr = len(row) |
| 122 | if lf < lr: |
| 123 | d[self.restkey] = row[lf:] |
| 124 | elif lf > lr: |
| 125 | for key in self.fieldnames[lr:]: |
| 126 | d[key] = self.restval |
| 127 | return d |
| 128 | |
| 129 | |
| 130 | class DictWriter: |
| 131 | def __init__(self, f, fieldnames, restval="", extrasaction="raise", |
| 132 | dialect="excel", *args, **kwds): |
| 133 | self.fieldnames = fieldnames # list of keys for the dict |
| 134 | self.restval = restval # for writing short dicts |
| 135 | if extrasaction.lower() not in ("raise", "ignore"): |
| 136 | raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'" |
| 137 | % extrasaction) |
| 138 | self.extrasaction = extrasaction |
| 139 | self.writer = writer(f, dialect, *args, **kwds) |
| 140 | |
| 141 | def writeheader(self): |
| 142 | header = dict(zip(self.fieldnames, self.fieldnames)) |
| 143 | return self.writerow(header) |
| 144 | |
| 145 | def _dict_to_list(self, rowdict): |
| 146 | if self.extrasaction == "raise": |
| 147 | wrong_fields = rowdict.keys() - self.fieldnames |
| 148 | if wrong_fields: |
| 149 | raise ValueError("dict contains fields not in fieldnames: " |
| 150 | + ", ".join([repr(x) for x in wrong_fields])) |
| 151 | return (rowdict.get(key, self.restval) for key in self.fieldnames) |
| 152 | |
| 153 | def writerow(self, rowdict): |
| 154 | return self.writer.writerow(self._dict_to_list(rowdict)) |
| 155 | |
| 156 | def writerows(self, rowdicts): |
| 157 | return self.writer.writerows(map(self._dict_to_list, rowdicts)) |
| 158 | |
| 159 | # Guard Sniffer's type checking against builds that exclude complex() |
| 160 | try: |
| 161 | complex |
| 162 | except NameError: |
| 163 | complex = float |
| 164 | |
| 165 | class Sniffer: |
| 166 | ''' |
| 167 | "Sniffs" the format of a CSV file (i.e. delimiter, quotechar) |
| 168 | Returns a Dialect object. |
| 169 | ''' |
| 170 | def __init__(self): |
| 171 | # in case there is more than one possible delimiter |
| 172 | self.preferred = [',', '\t', ';', ' ', ':'] |
| 173 | |
| 174 | |
| 175 | def sniff(self, sample, delimiters=None): |
| 176 | """ |
| 177 | Returns a dialect (or None) corresponding to the sample |
| 178 | """ |
| 179 | |
| 180 | quotechar, doublequote, delimiter, skipinitialspace = \ |
| 181 | self._guess_quote_and_delimiter(sample, delimiters) |
| 182 | if not delimiter: |
| 183 | delimiter, skipinitialspace = self._guess_delimiter(sample, |
| 184 | delimiters) |
| 185 | |
| 186 | if not delimiter: |
| 187 | raise Error("Could not determine delimiter") |
| 188 | |
| 189 | class dialect(Dialect): |
| 190 | _name = "sniffed" |
| 191 | lineterminator = '\r\n' |
| 192 | quoting = QUOTE_MINIMAL |
| 193 | # escapechar = '' |
| 194 | |
| 195 | dialect.doublequote = doublequote |
| 196 | dialect.delimiter = delimiter |
| 197 | # _csv.reader won't accept a quotechar of '' |
| 198 | dialect.quotechar = quotechar or '"' |
| 199 | dialect.skipinitialspace = skipinitialspace |
| 200 | |
| 201 | return dialect |
| 202 | |
| 203 | |
| 204 | def _guess_quote_and_delimiter(self, data, delimiters): |
| 205 | """ |
| 206 | Looks for text enclosed between two identical quotes |
| 207 | (the probable quotechar) which are preceded and followed |
| 208 | by the same character (the probable delimiter). |
| 209 | For example: |
| 210 | ,'some text', |
| 211 | The quote with the most wins, same with the delimiter. |
| 212 | If there is no quotechar the delimiter can't be determined |
| 213 | this way. |
| 214 | """ |
| 215 | |
| 216 | matches = [] |
| 217 | for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?", |
| 218 | r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?", |
| 219 | r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?" |
| 220 | r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) |
| 221 | regexp = re.compile(restr, re.DOTALL | re.MULTILINE) |
| 222 | matches = regexp.findall(data) |
| 223 | if matches: |
| 224 | break |
| 225 | |
| 226 | if not matches: |
| 227 | # (quotechar, doublequote, delimiter, skipinitialspace) |
| 228 | return ('', False, None, 0) |
| 229 | quotes = {} |
| 230 | delims = {} |
| 231 | spaces = 0 |
| 232 | groupindex = regexp.groupindex |
| 233 | for m in matches: |
| 234 | n = groupindex['quote'] - 1 |
| 235 | key = m[n] |
| 236 | if key: |
| 237 | quotes[key] = quotes.get(key, 0) + 1 |
| 238 | try: |
| 239 | n = groupindex['delim'] - 1 |
| 240 | key = m[n] |
| 241 | except KeyError: |
| 242 | continue |
| 243 | if key and (delimiters is None or key in delimiters): |
| 244 | delims[key] = delims.get(key, 0) + 1 |
| 245 | try: |
| 246 | n = groupindex['space'] - 1 |
| 247 | except KeyError: |
| 248 | continue |
| 249 | if m[n]: |
| 250 | spaces += 1 |
| 251 | |
| 252 | quotechar = max(quotes, key=quotes.get) |
| 253 | |
| 254 | if delims: |
| 255 | delim = max(delims, key=delims.get) |
| 256 | skipinitialspace = delims[delim] == spaces |
| 257 | if delim == '\n': # most likely a file with a single column |
| 258 | delim = '' |
| 259 | else: |
| 260 | # there is *no* delimiter, it's a single column of quoted data |
| 261 | delim = '' |
| 262 | skipinitialspace = 0 |
| 263 | |
| 264 | # if we see an extra quote between delimiters, we've got a |
| 265 | # double quoted format |
| 266 | dq_regexp = re.compile( |
| 267 | r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \ |
| 268 | {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE) |
| 269 | |
| 270 | |
| 271 | |
| 272 | if dq_regexp.search(data): |
| 273 | doublequote = True |
| 274 | else: |
| 275 | doublequote = False |
| 276 | |
| 277 | return (quotechar, doublequote, delim, skipinitialspace) |
| 278 | |
| 279 | |
| 280 | def _guess_delimiter(self, data, delimiters): |
| 281 | """ |
| 282 | The delimiter /should/ occur the same number of times on |
| 283 | each row. However, due to malformed data, it may not. We don't want |
| 284 | an all or nothing approach, so we allow for small variations in this |
| 285 | number. |
| 286 | 1) build a table of the frequency of each character on every line. |
| 287 | 2) build a table of frequencies of this frequency (meta-frequency?), |
| 288 | e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, |
| 289 | 7 times in 2 rows' |
| 290 | 3) use the mode of the meta-frequency to determine the /expected/ |
| 291 | frequency for that character |
| 292 | 4) find out how often the character actually meets that goal |
| 293 | 5) the character that best meets its goal is the delimiter |
| 294 | For performance reasons, the data is evaluated in chunks, so it can |
| 295 | try and evaluate the smallest portion of the data possible, evaluating |
| 296 | additional chunks as necessary. |
| 297 | """ |
| 298 | |
| 299 | data = list(filter(None, data.split('\n'))) |
| 300 | |
| 301 | ascii = [chr(c) for c in range(127)] # 7-bit ASCII |
| 302 | |
| 303 | # build frequency tables |
| 304 | chunkLength = min(10, len(data)) |
| 305 | iteration = 0 |
| 306 | charFrequency = {} |
| 307 | modes = {} |
| 308 | delims = {} |
| 309 | start, end = 0, chunkLength |
| 310 | while start < len(data): |
| 311 | iteration += 1 |
| 312 | for line in data[start:end]: |
| 313 | for char in ascii: |
| 314 | metaFrequency = charFrequency.get(char, {}) |
| 315 | # must count even if frequency is 0 |
| 316 | freq = line.count(char) |
| 317 | # value is the mode |
| 318 | metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 |
| 319 | charFrequency[char] = metaFrequency |
| 320 | |
| 321 | for char in charFrequency.keys(): |
| 322 | items = list(charFrequency[char].items()) |
| 323 | if len(items) == 1 and items[0][0] == 0: |
| 324 | continue |
| 325 | # get the mode of the frequencies |
| 326 | if len(items) > 1: |
| 327 | modes[char] = max(items, key=lambda x: x[1]) |
| 328 | # adjust the mode - subtract the sum of all |
| 329 | # other frequencies |
| 330 | items.remove(modes[char]) |
| 331 | modes[char] = (modes[char][0], modes[char][1] |
| 332 | - sum(item[1] for item in items)) |
| 333 | else: |
| 334 | modes[char] = items[0] |
| 335 | |
| 336 | # build a list of possible delimiters |
| 337 | modeList = modes.items() |
| 338 | total = float(min(chunkLength * iteration, len(data))) |
| 339 | # (rows of consistent data) / (number of rows) = 100% |
| 340 | consistency = 1.0 |
| 341 | # minimum consistency threshold |
| 342 | threshold = 0.9 |
| 343 | while len(delims) == 0 and consistency >= threshold: |
| 344 | for k, v in modeList: |
| 345 | if v[0] > 0 and v[1] > 0: |
| 346 | if ((v[1]/total) >= consistency and |
| 347 | (delimiters is None or k in delimiters)): |
| 348 | delims[k] = v |
| 349 | consistency -= 0.01 |
| 350 | |
| 351 | if len(delims) == 1: |
| 352 | delim = list(delims.keys())[0] |
| 353 | skipinitialspace = (data[0].count(delim) == |
| 354 | data[0].count("%c " % delim)) |
| 355 | return (delim, skipinitialspace) |
| 356 | |
| 357 | # analyze another chunkLength lines |
| 358 | start = end |
| 359 | end += chunkLength |
| 360 | |
| 361 | if not delims: |
| 362 | return ('', 0) |
| 363 | |
| 364 | # if there's more than one, fall back to a 'preferred' list |
| 365 | if len(delims) > 1: |
| 366 | for d in self.preferred: |
| 367 | if d in delims.keys(): |
| 368 | skipinitialspace = (data[0].count(d) == |
| 369 | data[0].count("%c " % d)) |
| 370 | return (d, skipinitialspace) |
| 371 | |
| 372 | # nothing else indicates a preference, pick the character that |
| 373 | # dominates(?) |
| 374 | items = [(v,k) for (k,v) in delims.items()] |
| 375 | items.sort() |
| 376 | delim = items[-1][1] |
| 377 | |
| 378 | skipinitialspace = (data[0].count(delim) == |
| 379 | data[0].count("%c " % delim)) |
| 380 | return (delim, skipinitialspace) |
| 381 | |
| 382 | |
| 383 | def has_header(self, sample): |
| 384 | # Creates a dictionary of types of data in each column. If any |
| 385 | # column is of a single type (say, integers), *except* for the first |
| 386 | # row, then the first row is presumed to be labels. If the type |
| 387 | # can't be determined, it is assumed to be a string in which case |
| 388 | # the length of the string is the determining factor: if all of the |
| 389 | # rows except for the first are the same length, it's a header. |
| 390 | # Finally, a 'vote' is taken at the end for each column, adding or |
| 391 | # subtracting from the likelihood of the first row being a header. |
| 392 | |
| 393 | rdr = reader(StringIO(sample), self.sniff(sample)) |
| 394 | |
| 395 | header = next(rdr) # assume first row is header |
| 396 | |
| 397 | columns = len(header) |
| 398 | columnTypes = {} |
| 399 | for i in range(columns): columnTypes[i] = None |
| 400 | |
| 401 | checked = 0 |
| 402 | for row in rdr: |
| 403 | # arbitrary number of rows to check, to keep it sane |
| 404 | if checked > 20: |
| 405 | break |
| 406 | checked += 1 |
| 407 | |
| 408 | if len(row) != columns: |
| 409 | continue # skip rows that have irregular number of columns |
| 410 | |
| 411 | for col in list(columnTypes.keys()): |
| 412 | |
| 413 | for thisType in [int, float, complex]: |
| 414 | try: |
| 415 | thisType(row[col]) |
| 416 | break |
| 417 | except (ValueError, OverflowError): |
| 418 | pass |
| 419 | else: |
| 420 | # fallback to length of string |
| 421 | thisType = len(row[col]) |
| 422 | |
| 423 | if thisType != columnTypes[col]: |
| 424 | if columnTypes[col] is None: # add new column type |
| 425 | columnTypes[col] = thisType |
| 426 | else: |
| 427 | # type is inconsistent, remove column from |
| 428 | # consideration |
| 429 | del columnTypes[col] |
| 430 | |
| 431 | # finally, compare results against first row and "vote" |
| 432 | # on whether it's a header |
| 433 | hasHeader = 0 |
| 434 | for col, colType in columnTypes.items(): |
| 435 | if type(colType) == type(0): # it's a length |
| 436 | if len(header[col]) != colType: |
| 437 | hasHeader += 1 |
| 438 | else: |
| 439 | hasHeader -= 1 |
| 440 | else: # attempt typecast |
| 441 | try: |
| 442 | colType(header[col]) |
| 443 | except (ValueError, TypeError): |
| 444 | hasHeader += 1 |
| 445 | else: |
| 446 | hasHeader -= 1 |
| 447 | |
| 448 | return hasHeader > 0 |