Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 1 | #ifndef Py_OBJECT_H |
| 2 | #define Py_OBJECT_H |
| 3 | |
| 4 | #ifdef __cplusplus |
| 5 | extern "C" { |
| 6 | #endif |
| 7 | |
| 8 | |
| 9 | /* Object and type object interface */ |
| 10 | |
| 11 | /* |
| 12 | Objects are structures allocated on the heap. Special rules apply to |
| 13 | the use of objects to ensure they are properly garbage-collected. |
| 14 | Objects are never allocated statically or on the stack; they must be |
| 15 | accessed through special macros and functions only. (Type objects are |
| 16 | exceptions to the first rule; the standard types are represented by |
| 17 | statically initialized type objects, although work on type/class unification |
| 18 | for Python 2.2 made it possible to have heap-allocated type objects too). |
| 19 | |
| 20 | An object has a 'reference count' that is increased or decreased when a |
| 21 | pointer to the object is copied or deleted; when the reference count |
| 22 | reaches zero there are no references to the object left and it can be |
| 23 | removed from the heap. |
| 24 | |
| 25 | An object has a 'type' that determines what it represents and what kind |
| 26 | of data it contains. An object's type is fixed when it is created. |
| 27 | Types themselves are represented as objects; an object contains a |
| 28 | pointer to the corresponding type object. The type itself has a type |
| 29 | pointer pointing to the object representing the type 'type', which |
| 30 | contains a pointer to itself!. |
| 31 | |
| 32 | Objects do not float around in memory; once allocated an object keeps |
| 33 | the same size and address. Objects that must hold variable-size data |
| 34 | can contain pointers to variable-size parts of the object. Not all |
| 35 | objects of the same type have the same size; but the size cannot change |
| 36 | after allocation. (These restrictions are made so a reference to an |
| 37 | object can be simply a pointer -- moving an object would require |
| 38 | updating all the pointers, and changing an object's size would require |
| 39 | moving it if there was another object right next to it.) |
| 40 | |
| 41 | Objects are always accessed through pointers of the type 'PyObject *'. |
| 42 | The type 'PyObject' is a structure that only contains the reference count |
| 43 | and the type pointer. The actual memory allocated for an object |
| 44 | contains other data that can only be accessed after casting the pointer |
| 45 | to a pointer to a longer structure type. This longer type must start |
| 46 | with the reference count and type fields; the macro PyObject_HEAD should be |
| 47 | used for this (to accommodate for future changes). The implementation |
| 48 | of a particular object type can cast the object pointer to the proper |
| 49 | type and back. |
| 50 | |
| 51 | A standard interface exists for objects that contain an array of items |
| 52 | whose size is determined when the object is allocated. |
| 53 | */ |
| 54 | |
| 55 | /* Py_DEBUG implies Py_REF_DEBUG. */ |
| 56 | #if defined(Py_DEBUG) && !defined(Py_REF_DEBUG) |
| 57 | #define Py_REF_DEBUG |
| 58 | #endif |
| 59 | |
| 60 | #if defined(Py_LIMITED_API) && defined(Py_REF_DEBUG) |
| 61 | #error Py_LIMITED_API is incompatible with Py_DEBUG, Py_TRACE_REFS, and Py_REF_DEBUG |
| 62 | #endif |
| 63 | |
| 64 | /* PyTypeObject structure is defined in cpython/object.h. |
| 65 | In Py_LIMITED_API, PyTypeObject is an opaque structure. */ |
| 66 | typedef struct _typeobject PyTypeObject; |
| 67 | |
| 68 | #ifdef Py_TRACE_REFS |
| 69 | /* Define pointers to support a doubly-linked list of all live heap objects. */ |
| 70 | #define _PyObject_HEAD_EXTRA \ |
| 71 | struct _object *_ob_next; \ |
| 72 | struct _object *_ob_prev; |
| 73 | |
| 74 | #define _PyObject_EXTRA_INIT 0, 0, |
| 75 | |
| 76 | #else |
| 77 | #define _PyObject_HEAD_EXTRA |
| 78 | #define _PyObject_EXTRA_INIT |
| 79 | #endif |
| 80 | |
| 81 | /* PyObject_HEAD defines the initial segment of every PyObject. */ |
| 82 | #define PyObject_HEAD PyObject ob_base; |
| 83 | |
| 84 | #define PyObject_HEAD_INIT(type) \ |
| 85 | { _PyObject_EXTRA_INIT \ |
| 86 | 1, type }, |
| 87 | |
| 88 | #define PyVarObject_HEAD_INIT(type, size) \ |
| 89 | { PyObject_HEAD_INIT(type) size }, |
| 90 | |
| 91 | /* PyObject_VAR_HEAD defines the initial segment of all variable-size |
| 92 | * container objects. These end with a declaration of an array with 1 |
| 93 | * element, but enough space is malloc'ed so that the array actually |
| 94 | * has room for ob_size elements. Note that ob_size is an element count, |
| 95 | * not necessarily a byte count. |
| 96 | */ |
| 97 | #define PyObject_VAR_HEAD PyVarObject ob_base; |
| 98 | #define Py_INVALID_SIZE (Py_ssize_t)-1 |
| 99 | |
| 100 | /* Nothing is actually declared to be a PyObject, but every pointer to |
| 101 | * a Python object can be cast to a PyObject*. This is inheritance built |
| 102 | * by hand. Similarly every pointer to a variable-size Python object can, |
| 103 | * in addition, be cast to PyVarObject*. |
| 104 | */ |
| 105 | typedef struct _object { |
| 106 | _PyObject_HEAD_EXTRA |
| 107 | Py_ssize_t ob_refcnt; |
| 108 | PyTypeObject *ob_type; |
| 109 | } PyObject; |
| 110 | |
| 111 | /* Cast argument to PyObject* type. */ |
| 112 | #define _PyObject_CAST(op) ((PyObject*)(op)) |
| 113 | #define _PyObject_CAST_CONST(op) ((const PyObject*)(op)) |
| 114 | |
| 115 | typedef struct { |
| 116 | PyObject ob_base; |
| 117 | Py_ssize_t ob_size; /* Number of items in variable part */ |
| 118 | } PyVarObject; |
| 119 | |
| 120 | /* Cast argument to PyVarObject* type. */ |
| 121 | #define _PyVarObject_CAST(op) ((PyVarObject*)(op)) |
| 122 | |
| 123 | #define Py_REFCNT(ob) (_PyObject_CAST(ob)->ob_refcnt) |
| 124 | #define Py_TYPE(ob) (_PyObject_CAST(ob)->ob_type) |
| 125 | #define Py_SIZE(ob) (_PyVarObject_CAST(ob)->ob_size) |
| 126 | |
| 127 | static inline int _Py_IS_TYPE(const PyObject *ob, const PyTypeObject *type) { |
| 128 | return ob->ob_type == type; |
| 129 | } |
| 130 | #define Py_IS_TYPE(ob, type) _Py_IS_TYPE(_PyObject_CAST_CONST(ob), type) |
| 131 | |
| 132 | static inline void _Py_SET_REFCNT(PyObject *ob, Py_ssize_t refcnt) { |
| 133 | ob->ob_refcnt = refcnt; |
| 134 | } |
| 135 | #define Py_SET_REFCNT(ob, refcnt) _Py_SET_REFCNT(_PyObject_CAST(ob), refcnt) |
| 136 | |
| 137 | static inline void _Py_SET_TYPE(PyObject *ob, PyTypeObject *type) { |
| 138 | ob->ob_type = type; |
| 139 | } |
| 140 | #define Py_SET_TYPE(ob, type) _Py_SET_TYPE(_PyObject_CAST(ob), type) |
| 141 | |
| 142 | static inline void _Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size) { |
| 143 | ob->ob_size = size; |
| 144 | } |
| 145 | #define Py_SET_SIZE(ob, size) _Py_SET_SIZE(_PyVarObject_CAST(ob), size) |
| 146 | |
| 147 | |
| 148 | /* |
| 149 | Type objects contain a string containing the type name (to help somewhat |
| 150 | in debugging), the allocation parameters (see PyObject_New() and |
| 151 | PyObject_NewVar()), |
| 152 | and methods for accessing objects of the type. Methods are optional, a |
| 153 | nil pointer meaning that particular kind of access is not available for |
| 154 | this type. The Py_DECREF() macro uses the tp_dealloc method without |
| 155 | checking for a nil pointer; it should always be implemented except if |
| 156 | the implementation can guarantee that the reference count will never |
| 157 | reach zero (e.g., for statically allocated type objects). |
| 158 | |
| 159 | NB: the methods for certain type groups are now contained in separate |
| 160 | method blocks. |
| 161 | */ |
| 162 | |
| 163 | typedef PyObject * (*unaryfunc)(PyObject *); |
| 164 | typedef PyObject * (*binaryfunc)(PyObject *, PyObject *); |
| 165 | typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *); |
| 166 | typedef int (*inquiry)(PyObject *); |
| 167 | typedef Py_ssize_t (*lenfunc)(PyObject *); |
| 168 | typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t); |
| 169 | typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t); |
| 170 | typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *); |
| 171 | typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *); |
| 172 | typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *); |
| 173 | |
| 174 | typedef int (*objobjproc)(PyObject *, PyObject *); |
| 175 | typedef int (*visitproc)(PyObject *, void *); |
| 176 | typedef int (*traverseproc)(PyObject *, visitproc, void *); |
| 177 | |
| 178 | |
| 179 | typedef void (*freefunc)(void *); |
| 180 | typedef void (*destructor)(PyObject *); |
| 181 | typedef PyObject *(*getattrfunc)(PyObject *, char *); |
| 182 | typedef PyObject *(*getattrofunc)(PyObject *, PyObject *); |
| 183 | typedef int (*setattrfunc)(PyObject *, char *, PyObject *); |
| 184 | typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *); |
| 185 | typedef PyObject *(*reprfunc)(PyObject *); |
| 186 | typedef Py_hash_t (*hashfunc)(PyObject *); |
| 187 | typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int); |
| 188 | typedef PyObject *(*getiterfunc) (PyObject *); |
| 189 | typedef PyObject *(*iternextfunc) (PyObject *); |
| 190 | typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *); |
| 191 | typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *); |
| 192 | typedef int (*initproc)(PyObject *, PyObject *, PyObject *); |
| 193 | typedef PyObject *(*newfunc)(PyTypeObject *, PyObject *, PyObject *); |
| 194 | typedef PyObject *(*allocfunc)(PyTypeObject *, Py_ssize_t); |
| 195 | |
| 196 | typedef struct{ |
| 197 | int slot; /* slot id, see below */ |
| 198 | void *pfunc; /* function pointer */ |
| 199 | } PyType_Slot; |
| 200 | |
| 201 | typedef struct{ |
| 202 | const char* name; |
| 203 | int basicsize; |
| 204 | int itemsize; |
| 205 | unsigned int flags; |
| 206 | PyType_Slot *slots; /* terminated by slot==0. */ |
| 207 | } PyType_Spec; |
| 208 | |
| 209 | PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*); |
| 210 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 |
| 211 | PyAPI_FUNC(PyObject*) PyType_FromSpecWithBases(PyType_Spec*, PyObject*); |
| 212 | #endif |
| 213 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03040000 |
| 214 | PyAPI_FUNC(void*) PyType_GetSlot(PyTypeObject*, int); |
| 215 | #endif |
| 216 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03090000 |
| 217 | PyAPI_FUNC(PyObject*) PyType_FromModuleAndSpec(PyObject *, PyType_Spec *, PyObject *); |
| 218 | PyAPI_FUNC(PyObject *) PyType_GetModule(struct _typeobject *); |
| 219 | PyAPI_FUNC(void *) PyType_GetModuleState(struct _typeobject *); |
| 220 | #endif |
| 221 | |
| 222 | /* Generic type check */ |
| 223 | PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *); |
| 224 | #define PyObject_TypeCheck(ob, tp) \ |
| 225 | (Py_IS_TYPE(ob, tp) || PyType_IsSubtype(Py_TYPE(ob), (tp))) |
| 226 | |
| 227 | PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */ |
| 228 | PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */ |
| 229 | PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */ |
| 230 | |
| 231 | PyAPI_FUNC(unsigned long) PyType_GetFlags(PyTypeObject*); |
| 232 | |
| 233 | PyAPI_FUNC(int) PyType_Ready(PyTypeObject *); |
| 234 | PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t); |
| 235 | PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *, |
| 236 | PyObject *, PyObject *); |
| 237 | PyAPI_FUNC(unsigned int) PyType_ClearCache(void); |
| 238 | PyAPI_FUNC(void) PyType_Modified(PyTypeObject *); |
| 239 | |
| 240 | /* Generic operations on objects */ |
| 241 | PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *); |
| 242 | PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *); |
| 243 | PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *); |
| 244 | PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *); |
| 245 | PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int); |
| 246 | PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int); |
| 247 | PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *); |
| 248 | PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *); |
| 249 | PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *); |
| 250 | PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *); |
| 251 | PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *); |
| 252 | PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *); |
| 253 | PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *); |
| 254 | PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *); |
| 255 | PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, PyObject *, PyObject *); |
| 256 | #if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 |
| 257 | PyAPI_FUNC(int) PyObject_GenericSetDict(PyObject *, PyObject *, void *); |
| 258 | #endif |
| 259 | PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *); |
| 260 | PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *); |
| 261 | PyAPI_FUNC(int) PyObject_IsTrue(PyObject *); |
| 262 | PyAPI_FUNC(int) PyObject_Not(PyObject *); |
| 263 | PyAPI_FUNC(int) PyCallable_Check(PyObject *); |
| 264 | PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *); |
| 265 | |
| 266 | /* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a |
| 267 | list of strings. PyObject_Dir(NULL) is like builtins.dir(), |
| 268 | returning the names of the current locals. In this case, if there are |
| 269 | no current locals, NULL is returned, and PyErr_Occurred() is false. |
| 270 | */ |
| 271 | PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *); |
| 272 | |
| 273 | |
| 274 | /* Helpers for printing recursive container types */ |
| 275 | PyAPI_FUNC(int) Py_ReprEnter(PyObject *); |
| 276 | PyAPI_FUNC(void) Py_ReprLeave(PyObject *); |
| 277 | |
| 278 | /* Flag bits for printing: */ |
| 279 | #define Py_PRINT_RAW 1 /* No string quotes etc. */ |
| 280 | |
| 281 | /* |
| 282 | Type flags (tp_flags) |
| 283 | |
| 284 | These flags are used to change expected features and behavior for a |
| 285 | particular type. |
| 286 | |
| 287 | Arbitration of the flag bit positions will need to be coordinated among |
| 288 | all extension writers who publicly release their extensions (this will |
| 289 | be fewer than you might expect!). |
| 290 | |
| 291 | Most flags were removed as of Python 3.0 to make room for new flags. (Some |
| 292 | flags are not for backwards compatibility but to indicate the presence of an |
| 293 | optional feature; these flags remain of course.) |
| 294 | |
| 295 | Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value. |
| 296 | |
| 297 | Code can use PyType_HasFeature(type_ob, flag_value) to test whether the |
| 298 | given type object has a specified feature. |
| 299 | */ |
| 300 | |
| 301 | /* Set if the type object is dynamically allocated */ |
| 302 | #define Py_TPFLAGS_HEAPTYPE (1UL << 9) |
| 303 | |
| 304 | /* Set if the type allows subclassing */ |
| 305 | #define Py_TPFLAGS_BASETYPE (1UL << 10) |
| 306 | |
| 307 | /* Set if the type implements the vectorcall protocol (PEP 590) */ |
| 308 | #ifndef Py_LIMITED_API |
| 309 | #define Py_TPFLAGS_HAVE_VECTORCALL (1UL << 11) |
| 310 | // Backwards compatibility alias for API that was provisional in Python 3.8 |
| 311 | #define _Py_TPFLAGS_HAVE_VECTORCALL Py_TPFLAGS_HAVE_VECTORCALL |
| 312 | #endif |
| 313 | |
| 314 | /* Set if the type is 'ready' -- fully initialized */ |
| 315 | #define Py_TPFLAGS_READY (1UL << 12) |
| 316 | |
| 317 | /* Set while the type is being 'readied', to prevent recursive ready calls */ |
| 318 | #define Py_TPFLAGS_READYING (1UL << 13) |
| 319 | |
| 320 | /* Objects support garbage collection (see objimpl.h) */ |
| 321 | #define Py_TPFLAGS_HAVE_GC (1UL << 14) |
| 322 | |
| 323 | /* These two bits are preserved for Stackless Python, next after this is 17 */ |
| 324 | #ifdef STACKLESS |
| 325 | #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3UL << 15) |
| 326 | #else |
| 327 | #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0 |
| 328 | #endif |
| 329 | |
| 330 | /* Objects behave like an unbound method */ |
| 331 | #define Py_TPFLAGS_METHOD_DESCRIPTOR (1UL << 17) |
| 332 | |
| 333 | /* Objects support type attribute cache */ |
| 334 | #define Py_TPFLAGS_HAVE_VERSION_TAG (1UL << 18) |
| 335 | #define Py_TPFLAGS_VALID_VERSION_TAG (1UL << 19) |
| 336 | |
| 337 | /* Type is abstract and cannot be instantiated */ |
| 338 | #define Py_TPFLAGS_IS_ABSTRACT (1UL << 20) |
| 339 | |
| 340 | /* These flags are used to determine if a type is a subclass. */ |
| 341 | #define Py_TPFLAGS_LONG_SUBCLASS (1UL << 24) |
| 342 | #define Py_TPFLAGS_LIST_SUBCLASS (1UL << 25) |
| 343 | #define Py_TPFLAGS_TUPLE_SUBCLASS (1UL << 26) |
| 344 | #define Py_TPFLAGS_BYTES_SUBCLASS (1UL << 27) |
| 345 | #define Py_TPFLAGS_UNICODE_SUBCLASS (1UL << 28) |
| 346 | #define Py_TPFLAGS_DICT_SUBCLASS (1UL << 29) |
| 347 | #define Py_TPFLAGS_BASE_EXC_SUBCLASS (1UL << 30) |
| 348 | #define Py_TPFLAGS_TYPE_SUBCLASS (1UL << 31) |
| 349 | |
| 350 | #define Py_TPFLAGS_DEFAULT ( \ |
| 351 | Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \ |
| 352 | Py_TPFLAGS_HAVE_VERSION_TAG | \ |
| 353 | 0) |
| 354 | |
| 355 | /* NOTE: The following flags reuse lower bits (removed as part of the |
| 356 | * Python 3.0 transition). */ |
| 357 | |
| 358 | /* The following flag is kept for compatibility. Starting with 3.8, |
| 359 | * binary compatibility of C extensions across feature releases of |
| 360 | * Python is not supported anymore, except when using the stable ABI. |
| 361 | */ |
| 362 | |
| 363 | /* Type structure has tp_finalize member (3.4) */ |
| 364 | #define Py_TPFLAGS_HAVE_FINALIZE (1UL << 0) |
| 365 | |
| 366 | |
| 367 | /* |
| 368 | The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement |
| 369 | reference counts. Py_DECREF calls the object's deallocator function when |
| 370 | the refcount falls to 0; for |
| 371 | objects that don't contain references to other objects or heap memory |
| 372 | this can be the standard function free(). Both macros can be used |
| 373 | wherever a void expression is allowed. The argument must not be a |
| 374 | NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead. |
| 375 | The macro _Py_NewReference(op) initialize reference counts to 1, and |
| 376 | in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional |
| 377 | bookkeeping appropriate to the special build. |
| 378 | |
| 379 | We assume that the reference count field can never overflow; this can |
| 380 | be proven when the size of the field is the same as the pointer size, so |
| 381 | we ignore the possibility. Provided a C int is at least 32 bits (which |
| 382 | is implicitly assumed in many parts of this code), that's enough for |
| 383 | about 2**31 references to an object. |
| 384 | |
| 385 | XXX The following became out of date in Python 2.2, but I'm not sure |
| 386 | XXX what the full truth is now. Certainly, heap-allocated type objects |
| 387 | XXX can and should be deallocated. |
| 388 | Type objects should never be deallocated; the type pointer in an object |
| 389 | is not considered to be a reference to the type object, to save |
| 390 | complications in the deallocation function. (This is actually a |
| 391 | decision that's up to the implementer of each new type so if you want, |
| 392 | you can count such references to the type object.) |
| 393 | */ |
| 394 | |
| 395 | #ifdef Py_REF_DEBUG |
| 396 | PyAPI_DATA(Py_ssize_t) _Py_RefTotal; |
| 397 | PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno, |
| 398 | PyObject *op); |
| 399 | #endif /* Py_REF_DEBUG */ |
| 400 | |
| 401 | PyAPI_FUNC(void) _Py_Dealloc(PyObject *); |
| 402 | |
| 403 | static inline void _Py_INCREF(PyObject *op) |
| 404 | { |
| 405 | #ifdef Py_REF_DEBUG |
| 406 | _Py_RefTotal++; |
| 407 | #endif |
| 408 | op->ob_refcnt++; |
| 409 | } |
| 410 | |
| 411 | #define Py_INCREF(op) _Py_INCREF(_PyObject_CAST(op)) |
| 412 | |
| 413 | static inline void _Py_DECREF( |
| 414 | #ifdef Py_REF_DEBUG |
| 415 | const char *filename, int lineno, |
| 416 | #endif |
| 417 | PyObject *op) |
| 418 | { |
| 419 | #ifdef Py_REF_DEBUG |
| 420 | _Py_RefTotal--; |
| 421 | #endif |
| 422 | if (--op->ob_refcnt != 0) { |
| 423 | #ifdef Py_REF_DEBUG |
| 424 | if (op->ob_refcnt < 0) { |
| 425 | _Py_NegativeRefcount(filename, lineno, op); |
| 426 | } |
| 427 | #endif |
| 428 | } |
| 429 | else { |
| 430 | _Py_Dealloc(op); |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | #ifdef Py_REF_DEBUG |
| 435 | # define Py_DECREF(op) _Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op)) |
| 436 | #else |
| 437 | # define Py_DECREF(op) _Py_DECREF(_PyObject_CAST(op)) |
| 438 | #endif |
| 439 | |
| 440 | |
| 441 | /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear |
| 442 | * and tp_dealloc implementations. |
| 443 | * |
| 444 | * Note that "the obvious" code can be deadly: |
| 445 | * |
| 446 | * Py_XDECREF(op); |
| 447 | * op = NULL; |
| 448 | * |
| 449 | * Typically, `op` is something like self->containee, and `self` is done |
| 450 | * using its `containee` member. In the code sequence above, suppose |
| 451 | * `containee` is non-NULL with a refcount of 1. Its refcount falls to |
| 452 | * 0 on the first line, which can trigger an arbitrary amount of code, |
| 453 | * possibly including finalizers (like __del__ methods or weakref callbacks) |
| 454 | * coded in Python, which in turn can release the GIL and allow other threads |
| 455 | * to run, etc. Such code may even invoke methods of `self` again, or cause |
| 456 | * cyclic gc to trigger, but-- oops! --self->containee still points to the |
| 457 | * object being torn down, and it may be in an insane state while being torn |
| 458 | * down. This has in fact been a rich historic source of miserable (rare & |
| 459 | * hard-to-diagnose) segfaulting (and other) bugs. |
| 460 | * |
| 461 | * The safe way is: |
| 462 | * |
| 463 | * Py_CLEAR(op); |
| 464 | * |
| 465 | * That arranges to set `op` to NULL _before_ decref'ing, so that any code |
| 466 | * triggered as a side-effect of `op` getting torn down no longer believes |
| 467 | * `op` points to a valid object. |
| 468 | * |
| 469 | * There are cases where it's safe to use the naive code, but they're brittle. |
| 470 | * For example, if `op` points to a Python integer, you know that destroying |
| 471 | * one of those can't cause problems -- but in part that relies on that |
| 472 | * Python integers aren't currently weakly referencable. Best practice is |
| 473 | * to use Py_CLEAR() even if you can't think of a reason for why you need to. |
| 474 | */ |
| 475 | #define Py_CLEAR(op) \ |
| 476 | do { \ |
| 477 | PyObject *_py_tmp = _PyObject_CAST(op); \ |
| 478 | if (_py_tmp != NULL) { \ |
| 479 | (op) = NULL; \ |
| 480 | Py_DECREF(_py_tmp); \ |
| 481 | } \ |
| 482 | } while (0) |
| 483 | |
| 484 | /* Function to use in case the object pointer can be NULL: */ |
| 485 | static inline void _Py_XINCREF(PyObject *op) |
| 486 | { |
| 487 | if (op != NULL) { |
| 488 | Py_INCREF(op); |
| 489 | } |
| 490 | } |
| 491 | |
| 492 | #define Py_XINCREF(op) _Py_XINCREF(_PyObject_CAST(op)) |
| 493 | |
| 494 | static inline void _Py_XDECREF(PyObject *op) |
| 495 | { |
| 496 | if (op != NULL) { |
| 497 | Py_DECREF(op); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | #define Py_XDECREF(op) _Py_XDECREF(_PyObject_CAST(op)) |
| 502 | |
| 503 | /* |
| 504 | These are provided as conveniences to Python runtime embedders, so that |
| 505 | they can have object code that is not dependent on Python compilation flags. |
| 506 | */ |
| 507 | PyAPI_FUNC(void) Py_IncRef(PyObject *); |
| 508 | PyAPI_FUNC(void) Py_DecRef(PyObject *); |
| 509 | |
| 510 | /* |
| 511 | _Py_NoneStruct is an object of undefined type which can be used in contexts |
| 512 | where NULL (nil) is not suitable (since NULL often means 'error'). |
| 513 | |
| 514 | Don't forget to apply Py_INCREF() when returning this value!!! |
| 515 | */ |
| 516 | PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */ |
| 517 | #define Py_None (&_Py_NoneStruct) |
| 518 | |
| 519 | /* Macro for returning Py_None from a function */ |
| 520 | #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None |
| 521 | |
| 522 | /* |
| 523 | Py_NotImplemented is a singleton used to signal that an operation is |
| 524 | not implemented for a given type combination. |
| 525 | */ |
| 526 | PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */ |
| 527 | #define Py_NotImplemented (&_Py_NotImplementedStruct) |
| 528 | |
| 529 | /* Macro for returning Py_NotImplemented from a function */ |
| 530 | #define Py_RETURN_NOTIMPLEMENTED \ |
| 531 | return Py_INCREF(Py_NotImplemented), Py_NotImplemented |
| 532 | |
| 533 | /* Rich comparison opcodes */ |
| 534 | #define Py_LT 0 |
| 535 | #define Py_LE 1 |
| 536 | #define Py_EQ 2 |
| 537 | #define Py_NE 3 |
| 538 | #define Py_GT 4 |
| 539 | #define Py_GE 5 |
| 540 | |
| 541 | /* |
| 542 | * Macro for implementing rich comparisons |
| 543 | * |
| 544 | * Needs to be a macro because any C-comparable type can be used. |
| 545 | */ |
| 546 | #define Py_RETURN_RICHCOMPARE(val1, val2, op) \ |
| 547 | do { \ |
| 548 | switch (op) { \ |
| 549 | case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
| 550 | case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
| 551 | case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
| 552 | case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
| 553 | case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
| 554 | case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ |
| 555 | default: \ |
| 556 | Py_UNREACHABLE(); \ |
| 557 | } \ |
| 558 | } while (0) |
| 559 | |
| 560 | |
| 561 | /* |
| 562 | More conventions |
| 563 | ================ |
| 564 | |
| 565 | Argument Checking |
| 566 | ----------------- |
| 567 | |
| 568 | Functions that take objects as arguments normally don't check for nil |
| 569 | arguments, but they do check the type of the argument, and return an |
| 570 | error if the function doesn't apply to the type. |
| 571 | |
| 572 | Failure Modes |
| 573 | ------------- |
| 574 | |
| 575 | Functions may fail for a variety of reasons, including running out of |
| 576 | memory. This is communicated to the caller in two ways: an error string |
| 577 | is set (see errors.h), and the function result differs: functions that |
| 578 | normally return a pointer return NULL for failure, functions returning |
| 579 | an integer return -1 (which could be a legal return value too!), and |
| 580 | other functions return 0 for success and -1 for failure. |
| 581 | Callers should always check for errors before using the result. If |
| 582 | an error was set, the caller must either explicitly clear it, or pass |
| 583 | the error on to its caller. |
| 584 | |
| 585 | Reference Counts |
| 586 | ---------------- |
| 587 | |
| 588 | It takes a while to get used to the proper usage of reference counts. |
| 589 | |
| 590 | Functions that create an object set the reference count to 1; such new |
| 591 | objects must be stored somewhere or destroyed again with Py_DECREF(). |
| 592 | Some functions that 'store' objects, such as PyTuple_SetItem() and |
| 593 | PyList_SetItem(), |
| 594 | don't increment the reference count of the object, since the most |
| 595 | frequent use is to store a fresh object. Functions that 'retrieve' |
| 596 | objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also |
| 597 | don't increment |
| 598 | the reference count, since most frequently the object is only looked at |
| 599 | quickly. Thus, to retrieve an object and store it again, the caller |
| 600 | must call Py_INCREF() explicitly. |
| 601 | |
| 602 | NOTE: functions that 'consume' a reference count, like |
| 603 | PyList_SetItem(), consume the reference even if the object wasn't |
| 604 | successfully stored, to simplify error handling. |
| 605 | |
| 606 | It seems attractive to make other functions that take an object as |
| 607 | argument consume a reference count; however, this may quickly get |
| 608 | confusing (even the current practice is already confusing). Consider |
| 609 | it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at |
| 610 | times. |
| 611 | */ |
| 612 | |
| 613 | #ifndef Py_LIMITED_API |
| 614 | # define Py_CPYTHON_OBJECT_H |
| 615 | # include "cpython/object.h" |
| 616 | # undef Py_CPYTHON_OBJECT_H |
| 617 | #endif |
| 618 | |
| 619 | |
| 620 | static inline int |
| 621 | PyType_HasFeature(PyTypeObject *type, unsigned long feature) |
| 622 | { |
| 623 | unsigned long flags; |
| 624 | #ifdef Py_LIMITED_API |
| 625 | // PyTypeObject is opaque in the limited C API |
| 626 | flags = PyType_GetFlags(type); |
| 627 | #else |
| 628 | flags = type->tp_flags; |
| 629 | #endif |
| 630 | return ((flags & feature) != 0); |
| 631 | } |
| 632 | |
| 633 | #define PyType_FastSubclass(type, flag) PyType_HasFeature(type, flag) |
| 634 | |
| 635 | static inline int _PyType_Check(PyObject *op) { |
| 636 | return PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS); |
| 637 | } |
| 638 | #define PyType_Check(op) _PyType_Check(_PyObject_CAST(op)) |
| 639 | |
| 640 | static inline int _PyType_CheckExact(PyObject *op) { |
| 641 | return Py_IS_TYPE(op, &PyType_Type); |
| 642 | } |
| 643 | #define PyType_CheckExact(op) _PyType_CheckExact(_PyObject_CAST(op)) |
| 644 | |
| 645 | #ifdef __cplusplus |
| 646 | } |
| 647 | #endif |
| 648 | #endif /* !Py_OBJECT_H */ |