Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===-- Analysis/CFG.h - BasicBlock Analyses --------------------*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This family of functions performs analyses on basic blocks, and instructions |
| 10 | // contained within basic blocks. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ANALYSIS_CFG_H |
| 15 | #define LLVM_ANALYSIS_CFG_H |
| 16 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 17 | #include "llvm/ADT/GraphTraits.h" |
| 18 | #include "llvm/ADT/SmallPtrSet.h" |
| 19 | #include <utility> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 20 | |
| 21 | namespace llvm { |
| 22 | |
| 23 | class BasicBlock; |
| 24 | class DominatorTree; |
| 25 | class Function; |
| 26 | class Instruction; |
| 27 | class LoopInfo; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 28 | template <typename T> class SmallVectorImpl; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 29 | |
| 30 | /// Analyze the specified function to find all of the loop backedges in the |
| 31 | /// function and return them. This is a relatively cheap (compared to |
| 32 | /// computing dominators and loop info) analysis. |
| 33 | /// |
| 34 | /// The output is added to Result, as pairs of <from,to> edge info. |
| 35 | void FindFunctionBackedges( |
| 36 | const Function &F, |
| 37 | SmallVectorImpl<std::pair<const BasicBlock *, const BasicBlock *> > & |
| 38 | Result); |
| 39 | |
| 40 | /// Search for the specified successor of basic block BB and return its position |
| 41 | /// in the terminator instruction's list of successors. It is an error to call |
| 42 | /// this with a block that is not a successor. |
| 43 | unsigned GetSuccessorNumber(const BasicBlock *BB, const BasicBlock *Succ); |
| 44 | |
| 45 | /// Return true if the specified edge is a critical edge. Critical edges are |
| 46 | /// edges from a block with multiple successors to a block with multiple |
| 47 | /// predecessors. |
| 48 | /// |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 49 | bool isCriticalEdge(const Instruction *TI, unsigned SuccNum, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 50 | bool AllowIdenticalEdges = false); |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 51 | bool isCriticalEdge(const Instruction *TI, const BasicBlock *Succ, |
| 52 | bool AllowIdenticalEdges = false); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 53 | |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 54 | /// Determine whether instruction 'To' is reachable from 'From', without passing |
| 55 | /// through any blocks in ExclusionSet, returning true if uncertain. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 56 | /// |
| 57 | /// Determine whether there is a path from From to To within a single function. |
| 58 | /// Returns false only if we can prove that once 'From' has been executed then |
| 59 | /// 'To' can not be executed. Conservatively returns true. |
| 60 | /// |
| 61 | /// This function is linear with respect to the number of blocks in the CFG, |
| 62 | /// walking down successors from From to reach To, with a fixed threshold. |
| 63 | /// Using DT or LI allows us to answer more quickly. LI reduces the cost of |
| 64 | /// an entire loop of any number of blocks to be the same as the cost of a |
| 65 | /// single block. DT reduces the cost by allowing the search to terminate when |
| 66 | /// we find a block that dominates the block containing 'To'. DT is most useful |
| 67 | /// on branchy code but not loops, and LI is most useful on code with loops but |
| 68 | /// does not help on branchy code outside loops. |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 69 | bool isPotentiallyReachable( |
| 70 | const Instruction *From, const Instruction *To, |
| 71 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet = nullptr, |
| 72 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 73 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 74 | /// Determine whether block 'To' is reachable from 'From', returning |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 75 | /// true if uncertain. |
| 76 | /// |
| 77 | /// Determine whether there is a path from From to To within a single function. |
| 78 | /// Returns false only if we can prove that once 'From' has been reached then |
| 79 | /// 'To' can not be executed. Conservatively returns true. |
| 80 | bool isPotentiallyReachable(const BasicBlock *From, const BasicBlock *To, |
| 81 | const DominatorTree *DT = nullptr, |
| 82 | const LoopInfo *LI = nullptr); |
| 83 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 84 | /// Determine whether there is at least one path from a block in |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 85 | /// 'Worklist' to 'StopBB', returning true if uncertain. |
| 86 | /// |
| 87 | /// Determine whether there is a path from at least one block in Worklist to |
| 88 | /// StopBB within a single function. Returns false only if we can prove that |
| 89 | /// once any block in 'Worklist' has been reached then 'StopBB' can not be |
| 90 | /// executed. Conservatively returns true. |
| 91 | bool isPotentiallyReachableFromMany(SmallVectorImpl<BasicBlock *> &Worklist, |
| 92 | BasicBlock *StopBB, |
| 93 | const DominatorTree *DT = nullptr, |
| 94 | const LoopInfo *LI = nullptr); |
| 95 | |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 96 | /// Determine whether there is at least one path from a block in |
| 97 | /// 'Worklist' to 'StopBB' without passing through any blocks in |
| 98 | /// 'ExclusionSet', returning true if uncertain. |
| 99 | /// |
| 100 | /// Determine whether there is a path from at least one block in Worklist to |
| 101 | /// StopBB within a single function without passing through any of the blocks |
| 102 | /// in 'ExclusionSet'. Returns false only if we can prove that once any block |
| 103 | /// in 'Worklist' has been reached then 'StopBB' can not be executed. |
| 104 | /// Conservatively returns true. |
| 105 | bool isPotentiallyReachableFromMany( |
| 106 | SmallVectorImpl<BasicBlock *> &Worklist, BasicBlock *StopBB, |
| 107 | const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, |
| 108 | const DominatorTree *DT = nullptr, const LoopInfo *LI = nullptr); |
| 109 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 110 | /// Return true if the control flow in \p RPOTraversal is irreducible. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 111 | /// |
| 112 | /// This is a generic implementation to detect CFG irreducibility based on loop |
| 113 | /// info analysis. It can be used for any kind of CFG (Loop, MachineLoop, |
| 114 | /// Function, MachineFunction, etc.) by providing an RPO traversal (\p |
| 115 | /// RPOTraversal) and the loop info analysis (\p LI) of the CFG. This utility |
| 116 | /// function is only recommended when loop info analysis is available. If loop |
| 117 | /// info analysis isn't available, please, don't compute it explicitly for this |
| 118 | /// purpose. There are more efficient ways to detect CFG irreducibility that |
| 119 | /// don't require recomputing loop info analysis (e.g., T1/T2 or Tarjan's |
| 120 | /// algorithm). |
| 121 | /// |
| 122 | /// Requirements: |
| 123 | /// 1) GraphTraits must be implemented for NodeT type. It is used to access |
| 124 | /// NodeT successors. |
| 125 | // 2) \p RPOTraversal must be a valid reverse post-order traversal of the |
| 126 | /// target CFG with begin()/end() iterator interfaces. |
| 127 | /// 3) \p LI must be a valid LoopInfoBase that contains up-to-date loop |
| 128 | /// analysis information of the CFG. |
| 129 | /// |
| 130 | /// This algorithm uses the information about reducible loop back-edges already |
| 131 | /// computed in \p LI. When a back-edge is found during the RPO traversal, the |
| 132 | /// algorithm checks whether the back-edge is one of the reducible back-edges in |
| 133 | /// loop info. If it isn't, the CFG is irreducible. For example, for the CFG |
| 134 | /// below (canonical irreducible graph) loop info won't contain any loop, so the |
| 135 | /// algorithm will return that the CFG is irreducible when checking the B <- |
| 136 | /// -> C back-edge. |
| 137 | /// |
| 138 | /// (A->B, A->C, B->C, C->B, C->D) |
| 139 | /// A |
| 140 | /// / \ |
| 141 | /// B<- ->C |
| 142 | /// | |
| 143 | /// D |
| 144 | /// |
| 145 | template <class NodeT, class RPOTraversalT, class LoopInfoT, |
| 146 | class GT = GraphTraits<NodeT>> |
| 147 | bool containsIrreducibleCFG(RPOTraversalT &RPOTraversal, const LoopInfoT &LI) { |
| 148 | /// Check whether the edge (\p Src, \p Dst) is a reducible loop backedge |
| 149 | /// according to LI. I.e., check if there exists a loop that contains Src and |
| 150 | /// where Dst is the loop header. |
| 151 | auto isProperBackedge = [&](NodeT Src, NodeT Dst) { |
| 152 | for (const auto *Lp = LI.getLoopFor(Src); Lp; Lp = Lp->getParentLoop()) { |
| 153 | if (Lp->getHeader() == Dst) |
| 154 | return true; |
| 155 | } |
| 156 | return false; |
| 157 | }; |
| 158 | |
| 159 | SmallPtrSet<NodeT, 32> Visited; |
| 160 | for (NodeT Node : RPOTraversal) { |
| 161 | Visited.insert(Node); |
| 162 | for (NodeT Succ : make_range(GT::child_begin(Node), GT::child_end(Node))) { |
| 163 | // Succ hasn't been visited yet |
| 164 | if (!Visited.count(Succ)) |
| 165 | continue; |
| 166 | // We already visited Succ, thus Node->Succ must be a backedge. Check that |
| 167 | // the head matches what we have in the loop information. Otherwise, we |
| 168 | // have an irreducible graph. |
| 169 | if (!isProperBackedge(Node, Succ)) |
| 170 | return true; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | return false; |
| 175 | } |
| 176 | } // End llvm namespace |
| 177 | |
| 178 | #endif |