Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the SparseSet class derived from the version described in |
| 10 | // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters |
| 11 | // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. |
| 12 | // |
| 13 | // A sparse set holds a small number of objects identified by integer keys from |
| 14 | // a moderately sized universe. The sparse set uses more memory than other |
| 15 | // containers in order to provide faster operations. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #ifndef LLVM_ADT_SPARSESET_H |
| 20 | #define LLVM_ADT_SPARSESET_H |
| 21 | |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 24 | #include "llvm/Support/AllocatorBase.h" |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 25 | #include <cassert> |
| 26 | #include <cstdint> |
| 27 | #include <cstdlib> |
| 28 | #include <limits> |
| 29 | #include <utility> |
| 30 | |
| 31 | namespace llvm { |
| 32 | |
| 33 | /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can |
| 34 | /// be uniquely converted to a small integer less than the set's universe. This |
| 35 | /// class allows the set to hold values that differ from the set's key type as |
| 36 | /// long as an index can still be derived from the value. SparseSet never |
| 37 | /// directly compares ValueT, only their indices, so it can map keys to |
| 38 | /// arbitrary values. SparseSetValTraits computes the index from the value |
| 39 | /// object. To compute the index from a key, SparseSet uses a separate |
| 40 | /// KeyFunctorT template argument. |
| 41 | /// |
| 42 | /// A simple type declaration, SparseSet<Type>, handles these cases: |
| 43 | /// - unsigned key, identity index, identity value |
| 44 | /// - unsigned key, identity index, fat value providing getSparseSetIndex() |
| 45 | /// |
| 46 | /// The type declaration SparseSet<Type, UnaryFunction> handles: |
| 47 | /// - unsigned key, remapped index, identity value (virtual registers) |
| 48 | /// - pointer key, pointer-derived index, identity value (node+ID) |
| 49 | /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() |
| 50 | /// |
| 51 | /// Only other, unexpected cases require specializing SparseSetValTraits. |
| 52 | /// |
| 53 | /// For best results, ValueT should not require a destructor. |
| 54 | /// |
| 55 | template<typename ValueT> |
| 56 | struct SparseSetValTraits { |
| 57 | static unsigned getValIndex(const ValueT &Val) { |
| 58 | return Val.getSparseSetIndex(); |
| 59 | } |
| 60 | }; |
| 61 | |
| 62 | /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The |
| 63 | /// generic implementation handles ValueT classes which either provide |
| 64 | /// getSparseSetIndex() or specialize SparseSetValTraits<>. |
| 65 | /// |
| 66 | template<typename KeyT, typename ValueT, typename KeyFunctorT> |
| 67 | struct SparseSetValFunctor { |
| 68 | unsigned operator()(const ValueT &Val) const { |
| 69 | return SparseSetValTraits<ValueT>::getValIndex(Val); |
| 70 | } |
| 71 | }; |
| 72 | |
| 73 | /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of |
| 74 | /// identity key/value sets. |
| 75 | template<typename KeyT, typename KeyFunctorT> |
| 76 | struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { |
| 77 | unsigned operator()(const KeyT &Key) const { |
| 78 | return KeyFunctorT()(Key); |
| 79 | } |
| 80 | }; |
| 81 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 82 | /// SparseSet - Fast set implementation for objects that can be identified by |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 83 | /// small unsigned keys. |
| 84 | /// |
| 85 | /// SparseSet allocates memory proportional to the size of the key universe, so |
| 86 | /// it is not recommended for building composite data structures. It is useful |
| 87 | /// for algorithms that require a single set with fast operations. |
| 88 | /// |
| 89 | /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast |
| 90 | /// clear() and iteration as fast as a vector. The find(), insert(), and |
| 91 | /// erase() operations are all constant time, and typically faster than a hash |
| 92 | /// table. The iteration order doesn't depend on numerical key values, it only |
| 93 | /// depends on the order of insert() and erase() operations. When no elements |
| 94 | /// have been erased, the iteration order is the insertion order. |
| 95 | /// |
| 96 | /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but |
| 97 | /// offers constant-time clear() and size() operations as well as fast |
| 98 | /// iteration independent on the size of the universe. |
| 99 | /// |
| 100 | /// SparseSet contains a dense vector holding all the objects and a sparse |
| 101 | /// array holding indexes into the dense vector. Most of the memory is used by |
| 102 | /// the sparse array which is the size of the key universe. The SparseT |
| 103 | /// template parameter provides a space/speed tradeoff for sets holding many |
| 104 | /// elements. |
| 105 | /// |
| 106 | /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse |
| 107 | /// array uses 4 x Universe bytes. |
| 108 | /// |
| 109 | /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache |
| 110 | /// lines, but the sparse array is 4x smaller. N is the number of elements in |
| 111 | /// the set. |
| 112 | /// |
| 113 | /// For sets that may grow to thousands of elements, SparseT should be set to |
| 114 | /// uint16_t or uint32_t. |
| 115 | /// |
| 116 | /// @tparam ValueT The type of objects in the set. |
| 117 | /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. |
| 118 | /// @tparam SparseT An unsigned integer type. See above. |
| 119 | /// |
| 120 | template<typename ValueT, |
| 121 | typename KeyFunctorT = identity<unsigned>, |
| 122 | typename SparseT = uint8_t> |
| 123 | class SparseSet { |
| 124 | static_assert(std::numeric_limits<SparseT>::is_integer && |
| 125 | !std::numeric_limits<SparseT>::is_signed, |
| 126 | "SparseT must be an unsigned integer type"); |
| 127 | |
| 128 | using KeyT = typename KeyFunctorT::argument_type; |
| 129 | using DenseT = SmallVector<ValueT, 8>; |
| 130 | using size_type = unsigned; |
| 131 | DenseT Dense; |
| 132 | SparseT *Sparse = nullptr; |
| 133 | unsigned Universe = 0; |
| 134 | KeyFunctorT KeyIndexOf; |
| 135 | SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; |
| 136 | |
| 137 | public: |
| 138 | using value_type = ValueT; |
| 139 | using reference = ValueT &; |
| 140 | using const_reference = const ValueT &; |
| 141 | using pointer = ValueT *; |
| 142 | using const_pointer = const ValueT *; |
| 143 | |
| 144 | SparseSet() = default; |
| 145 | SparseSet(const SparseSet &) = delete; |
| 146 | SparseSet &operator=(const SparseSet &) = delete; |
| 147 | ~SparseSet() { free(Sparse); } |
| 148 | |
| 149 | /// setUniverse - Set the universe size which determines the largest key the |
| 150 | /// set can hold. The universe must be sized before any elements can be |
| 151 | /// added. |
| 152 | /// |
| 153 | /// @param U Universe size. All object keys must be less than U. |
| 154 | /// |
| 155 | void setUniverse(unsigned U) { |
| 156 | // It's not hard to resize the universe on a non-empty set, but it doesn't |
| 157 | // seem like a likely use case, so we can add that code when we need it. |
| 158 | assert(empty() && "Can only resize universe on an empty map"); |
| 159 | // Hysteresis prevents needless reallocations. |
| 160 | if (U >= Universe/4 && U <= Universe) |
| 161 | return; |
| 162 | free(Sparse); |
| 163 | // The Sparse array doesn't actually need to be initialized, so malloc |
| 164 | // would be enough here, but that will cause tools like valgrind to |
| 165 | // complain about branching on uninitialized data. |
| 166 | Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT))); |
| 167 | Universe = U; |
| 168 | } |
| 169 | |
| 170 | // Import trivial vector stuff from DenseT. |
| 171 | using iterator = typename DenseT::iterator; |
| 172 | using const_iterator = typename DenseT::const_iterator; |
| 173 | |
| 174 | const_iterator begin() const { return Dense.begin(); } |
| 175 | const_iterator end() const { return Dense.end(); } |
| 176 | iterator begin() { return Dense.begin(); } |
| 177 | iterator end() { return Dense.end(); } |
| 178 | |
| 179 | /// empty - Returns true if the set is empty. |
| 180 | /// |
| 181 | /// This is not the same as BitVector::empty(). |
| 182 | /// |
| 183 | bool empty() const { return Dense.empty(); } |
| 184 | |
| 185 | /// size - Returns the number of elements in the set. |
| 186 | /// |
| 187 | /// This is not the same as BitVector::size() which returns the size of the |
| 188 | /// universe. |
| 189 | /// |
| 190 | size_type size() const { return Dense.size(); } |
| 191 | |
| 192 | /// clear - Clears the set. This is a very fast constant time operation. |
| 193 | /// |
| 194 | void clear() { |
| 195 | // Sparse does not need to be cleared, see find(). |
| 196 | Dense.clear(); |
| 197 | } |
| 198 | |
| 199 | /// findIndex - Find an element by its index. |
| 200 | /// |
| 201 | /// @param Idx A valid index to find. |
| 202 | /// @returns An iterator to the element identified by key, or end(). |
| 203 | /// |
| 204 | iterator findIndex(unsigned Idx) { |
| 205 | assert(Idx < Universe && "Key out of range"); |
| 206 | const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; |
| 207 | for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { |
| 208 | const unsigned FoundIdx = ValIndexOf(Dense[i]); |
| 209 | assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?"); |
| 210 | if (Idx == FoundIdx) |
| 211 | return begin() + i; |
| 212 | // Stride is 0 when SparseT >= unsigned. We don't need to loop. |
| 213 | if (!Stride) |
| 214 | break; |
| 215 | } |
| 216 | return end(); |
| 217 | } |
| 218 | |
| 219 | /// find - Find an element by its key. |
| 220 | /// |
| 221 | /// @param Key A valid key to find. |
| 222 | /// @returns An iterator to the element identified by key, or end(). |
| 223 | /// |
| 224 | iterator find(const KeyT &Key) { |
| 225 | return findIndex(KeyIndexOf(Key)); |
| 226 | } |
| 227 | |
| 228 | const_iterator find(const KeyT &Key) const { |
| 229 | return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); |
| 230 | } |
| 231 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 232 | /// Check if the set contains the given \c Key. |
| 233 | /// |
| 234 | /// @param Key A valid key to find. |
| 235 | bool contains(const KeyT &Key) const { return find(Key) == end() ? 0 : 1; } |
| 236 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 237 | /// count - Returns 1 if this set contains an element identified by Key, |
| 238 | /// 0 otherwise. |
| 239 | /// |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 240 | size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 241 | |
| 242 | /// insert - Attempts to insert a new element. |
| 243 | /// |
| 244 | /// If Val is successfully inserted, return (I, true), where I is an iterator |
| 245 | /// pointing to the newly inserted element. |
| 246 | /// |
| 247 | /// If the set already contains an element with the same key as Val, return |
| 248 | /// (I, false), where I is an iterator pointing to the existing element. |
| 249 | /// |
| 250 | /// Insertion invalidates all iterators. |
| 251 | /// |
| 252 | std::pair<iterator, bool> insert(const ValueT &Val) { |
| 253 | unsigned Idx = ValIndexOf(Val); |
| 254 | iterator I = findIndex(Idx); |
| 255 | if (I != end()) |
| 256 | return std::make_pair(I, false); |
| 257 | Sparse[Idx] = size(); |
| 258 | Dense.push_back(Val); |
| 259 | return std::make_pair(end() - 1, true); |
| 260 | } |
| 261 | |
| 262 | /// array subscript - If an element already exists with this key, return it. |
| 263 | /// Otherwise, automatically construct a new value from Key, insert it, |
| 264 | /// and return the newly inserted element. |
| 265 | ValueT &operator[](const KeyT &Key) { |
| 266 | return *insert(ValueT(Key)).first; |
| 267 | } |
| 268 | |
| 269 | ValueT pop_back_val() { |
| 270 | // Sparse does not need to be cleared, see find(). |
| 271 | return Dense.pop_back_val(); |
| 272 | } |
| 273 | |
| 274 | /// erase - Erases an existing element identified by a valid iterator. |
| 275 | /// |
| 276 | /// This invalidates all iterators, but erase() returns an iterator pointing |
| 277 | /// to the next element. This makes it possible to erase selected elements |
| 278 | /// while iterating over the set: |
| 279 | /// |
| 280 | /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) |
| 281 | /// if (test(*I)) |
| 282 | /// I = Set.erase(I); |
| 283 | /// else |
| 284 | /// ++I; |
| 285 | /// |
| 286 | /// Note that end() changes when elements are erased, unlike std::list. |
| 287 | /// |
| 288 | iterator erase(iterator I) { |
| 289 | assert(unsigned(I - begin()) < size() && "Invalid iterator"); |
| 290 | if (I != end() - 1) { |
| 291 | *I = Dense.back(); |
| 292 | unsigned BackIdx = ValIndexOf(Dense.back()); |
| 293 | assert(BackIdx < Universe && "Invalid key in set. Did object mutate?"); |
| 294 | Sparse[BackIdx] = I - begin(); |
| 295 | } |
| 296 | // This depends on SmallVector::pop_back() not invalidating iterators. |
| 297 | // std::vector::pop_back() doesn't give that guarantee. |
| 298 | Dense.pop_back(); |
| 299 | return I; |
| 300 | } |
| 301 | |
| 302 | /// erase - Erases an element identified by Key, if it exists. |
| 303 | /// |
| 304 | /// @param Key The key identifying the element to erase. |
| 305 | /// @returns True when an element was erased, false if no element was found. |
| 306 | /// |
| 307 | bool erase(const KeyT &Key) { |
| 308 | iterator I = find(Key); |
| 309 | if (I == end()) |
| 310 | return false; |
| 311 | erase(I); |
| 312 | return true; |
| 313 | } |
| 314 | }; |
| 315 | |
| 316 | } // end namespace llvm |
| 317 | |
| 318 | #endif // LLVM_ADT_SPARSESET_H |