Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame^] | 1 | //===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements methods to test, set and extract typed bits from packed |
| 11 | /// unsigned integers. |
| 12 | /// |
| 13 | /// Why not C++ bitfields? |
| 14 | /// ---------------------- |
| 15 | /// C++ bitfields do not offer control over the bit layout nor consistent |
| 16 | /// behavior when it comes to out of range values. |
| 17 | /// For instance, the layout is implementation defined and adjacent bits may be |
| 18 | /// packed together but are not required to. This is problematic when storage is |
| 19 | /// sparse and data must be stored in a particular integer type. |
| 20 | /// |
| 21 | /// The methods provided in this file ensure precise control over the |
| 22 | /// layout/storage as well as protection against out of range values. |
| 23 | /// |
| 24 | /// Usage example |
| 25 | /// ------------- |
| 26 | /// \code{.cpp} |
| 27 | /// uint8_t Storage = 0; |
| 28 | /// |
| 29 | /// // Store and retrieve a single bit as bool. |
| 30 | /// using Bool = Bitfield::Element<bool, 0, 1>; |
| 31 | /// Bitfield::set<Bool>(Storage, true); |
| 32 | /// EXPECT_EQ(Storage, 0b00000001); |
| 33 | /// // ^ |
| 34 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
| 35 | /// |
| 36 | /// // Store and retrieve a 2 bit typed enum. |
| 37 | /// // Note: enum underlying type must be unsigned. |
| 38 | /// enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES }; |
| 39 | /// // Note: enum maximum value needs to be passed in as last parameter. |
| 40 | /// using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>; |
| 41 | /// Bitfield::set<Suit>(Storage, SuitEnum::HEARTS); |
| 42 | /// EXPECT_EQ(Storage, 0b00000101); |
| 43 | /// // ^^ |
| 44 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS); |
| 45 | /// |
| 46 | /// // Store and retrieve a 5 bit value as unsigned. |
| 47 | /// using Value = Bitfield::Element<unsigned, 3, 5>; |
| 48 | /// Bitfield::set<Value>(Storage, 10); |
| 49 | /// EXPECT_EQ(Storage, 0b01010101); |
| 50 | /// // ^^^^^ |
| 51 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 10U); |
| 52 | /// |
| 53 | /// // Interpret the same 5 bit value as signed. |
| 54 | /// using SignedValue = Bitfield::Element<int, 3, 5>; |
| 55 | /// Bitfield::set<SignedValue>(Storage, -2); |
| 56 | /// EXPECT_EQ(Storage, 0b11110101); |
| 57 | /// // ^^^^^ |
| 58 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2); |
| 59 | /// |
| 60 | /// // Ability to efficiently test if a field is non zero. |
| 61 | /// EXPECT_TRUE(Bitfield::test<Value>(Storage)); |
| 62 | /// |
| 63 | /// // Alter Storage changes value. |
| 64 | /// Storage = 0; |
| 65 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), false); |
| 66 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS); |
| 67 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 0U); |
| 68 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0); |
| 69 | /// |
| 70 | /// Storage = 255; |
| 71 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
| 72 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES); |
| 73 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 31U); |
| 74 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1); |
| 75 | /// \endcode |
| 76 | /// |
| 77 | //===----------------------------------------------------------------------===// |
| 78 | |
| 79 | #ifndef LLVM_ADT_BITFIELDS_H |
| 80 | #define LLVM_ADT_BITFIELDS_H |
| 81 | |
| 82 | #include <cassert> |
| 83 | #include <climits> // CHAR_BIT |
| 84 | #include <cstddef> // size_t |
| 85 | #include <cstdint> // uintXX_t |
| 86 | #include <limits> // numeric_limits |
| 87 | #include <type_traits> |
| 88 | |
| 89 | namespace llvm { |
| 90 | |
| 91 | namespace bitfields_details { |
| 92 | |
| 93 | /// A struct defining useful bit patterns for n-bits integer types. |
| 94 | template <typename T, unsigned Bits> struct BitPatterns { |
| 95 | /// Bit patterns are forged using the equivalent `Unsigned` type because of |
| 96 | /// undefined operations over signed types (e.g. Bitwise shift operators). |
| 97 | /// Moreover same size casting from unsigned to signed is well defined but not |
| 98 | /// the other way around. |
| 99 | using Unsigned = typename std::make_unsigned<T>::type; |
| 100 | static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size"); |
| 101 | |
| 102 | static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT; |
| 103 | static_assert(TypeBits >= Bits, "n-bit must fit in T"); |
| 104 | |
| 105 | /// e.g. with TypeBits == 8 and Bits == 6. |
| 106 | static constexpr Unsigned AllZeros = Unsigned(0); // 00000000 |
| 107 | static constexpr Unsigned AllOnes = ~Unsigned(0); // 11111111 |
| 108 | static constexpr Unsigned Umin = AllZeros; // 00000000 |
| 109 | static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits); // 00111111 |
| 110 | static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000 |
| 111 | static constexpr Unsigned Smax = Umax >> 1U; // 00011111 |
| 112 | static constexpr Unsigned Smin = ~Smax; // 11100000 |
| 113 | static constexpr Unsigned SignExtend = Unsigned(Smin << 1U); // 11000000 |
| 114 | }; |
| 115 | |
| 116 | /// `Compressor` is used to manipulate the bits of a (possibly signed) integer |
| 117 | /// type so it can be packed and unpacked into a `bits` sized integer, |
| 118 | /// `Compressor` is specialized on signed-ness so no runtime cost is incurred. |
| 119 | /// The `pack` method also checks that the passed in `UserValue` is valid. |
| 120 | template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value> |
| 121 | struct Compressor { |
| 122 | static_assert(std::is_unsigned<T>::value, "T is unsigned"); |
| 123 | using BP = BitPatterns<T, Bits>; |
| 124 | |
| 125 | static T pack(T UserValue, T UserMaxValue) { |
| 126 | assert(UserValue <= UserMaxValue && "value is too big"); |
| 127 | assert(UserValue <= BP::Umax && "value is too big"); |
| 128 | return UserValue; |
| 129 | } |
| 130 | |
| 131 | static T unpack(T StorageValue) { return StorageValue; } |
| 132 | }; |
| 133 | |
| 134 | template <typename T, unsigned Bits> struct Compressor<T, Bits, false> { |
| 135 | static_assert(std::is_signed<T>::value, "T is signed"); |
| 136 | using BP = BitPatterns<T, Bits>; |
| 137 | |
| 138 | static T pack(T UserValue, T UserMaxValue) { |
| 139 | assert(UserValue <= UserMaxValue && "value is too big"); |
| 140 | assert(UserValue <= T(BP::Smax) && "value is too big"); |
| 141 | assert(UserValue >= T(BP::Smin) && "value is too small"); |
| 142 | if (UserValue < 0) |
| 143 | UserValue &= ~BP::SignExtend; |
| 144 | return UserValue; |
| 145 | } |
| 146 | |
| 147 | static T unpack(T StorageValue) { |
| 148 | if (StorageValue >= T(BP::SignBitMask)) |
| 149 | StorageValue |= BP::SignExtend; |
| 150 | return StorageValue; |
| 151 | } |
| 152 | }; |
| 153 | |
| 154 | /// Impl is where Bifield description and Storage are put together to interact |
| 155 | /// with values. |
| 156 | template <typename Bitfield, typename StorageType> struct Impl { |
| 157 | static_assert(std::is_unsigned<StorageType>::value, |
| 158 | "Storage must be unsigned"); |
| 159 | using IntegerType = typename Bitfield::IntegerType; |
| 160 | using C = Compressor<IntegerType, Bitfield::Bits>; |
| 161 | using BP = BitPatterns<StorageType, Bitfield::Bits>; |
| 162 | |
| 163 | static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT; |
| 164 | static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask"); |
| 165 | static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask"); |
| 166 | static constexpr StorageType Mask = BP::Umax << Bitfield::Shift; |
| 167 | |
| 168 | /// Checks `UserValue` is within bounds and packs it between `FirstBit` and |
| 169 | /// `LastBit` of `Packed` leaving the rest unchanged. |
| 170 | static void update(StorageType &Packed, IntegerType UserValue) { |
| 171 | const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue); |
| 172 | Packed &= ~Mask; |
| 173 | Packed |= StorageValue << Bitfield::Shift; |
| 174 | } |
| 175 | |
| 176 | /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
| 177 | /// an`IntegerType`. |
| 178 | static IntegerType extract(StorageType Packed) { |
| 179 | const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift; |
| 180 | return C::unpack(StorageValue); |
| 181 | } |
| 182 | |
| 183 | /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
| 184 | /// an`IntegerType`. |
| 185 | static StorageType test(StorageType Packed) { return Packed & Mask; } |
| 186 | }; |
| 187 | |
| 188 | /// `Bitfield` deals with the following type: |
| 189 | /// - unsigned enums |
| 190 | /// - signed and unsigned integer |
| 191 | /// - `bool` |
| 192 | /// Internally though we only manipulate integer with well defined and |
| 193 | /// consistent semantics, this excludes typed enums and `bool` that are replaced |
| 194 | /// with their unsigned counterparts. The correct type is restored in the public |
| 195 | /// API. |
| 196 | template <typename T, bool = std::is_enum<T>::value> |
| 197 | struct ResolveUnderlyingType { |
| 198 | using type = typename std::underlying_type<T>::type; |
| 199 | }; |
| 200 | template <typename T> struct ResolveUnderlyingType<T, false> { |
| 201 | using type = T; |
| 202 | }; |
| 203 | template <> struct ResolveUnderlyingType<bool, false> { |
| 204 | /// In case sizeof(bool) != 1, replace `void` by an additionnal |
| 205 | /// std::conditional. |
| 206 | using type = std::conditional<sizeof(bool) == 1, uint8_t, void>::type; |
| 207 | }; |
| 208 | |
| 209 | } // namespace bitfields_details |
| 210 | |
| 211 | /// Holds functions to get, set or test bitfields. |
| 212 | struct Bitfield { |
| 213 | /// Describes an element of a Bitfield. This type is then used with the |
| 214 | /// Bitfield static member functions. |
| 215 | /// \tparam T The type of the field once in unpacked form. |
| 216 | /// \tparam Offset The position of the first bit. |
| 217 | /// \tparam Size The size of the field. |
| 218 | /// \tparam MaxValue For enums the maximum enum allowed. |
| 219 | template <typename T, unsigned Offset, unsigned Size, |
| 220 | T MaxValue = std::is_enum<T>::value |
| 221 | ? T(0) // coupled with static_assert below |
| 222 | : std::numeric_limits<T>::max()> |
| 223 | struct Element { |
| 224 | using Type = T; |
| 225 | using IntegerType = |
| 226 | typename bitfields_details::ResolveUnderlyingType<T>::type; |
| 227 | static constexpr unsigned Shift = Offset; |
| 228 | static constexpr unsigned Bits = Size; |
| 229 | static constexpr unsigned FirstBit = Offset; |
| 230 | static constexpr unsigned LastBit = Shift + Bits - 1; |
| 231 | static constexpr unsigned NextBit = Shift + Bits; |
| 232 | |
| 233 | private: |
| 234 | template <typename, typename> friend struct bitfields_details::Impl; |
| 235 | |
| 236 | static_assert(Bits > 0, "Bits must be non zero"); |
| 237 | static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT; |
| 238 | static_assert(Bits <= TypeBits, "Bits may not be greater than T size"); |
| 239 | static_assert(!std::is_enum<T>::value || MaxValue != T(0), |
| 240 | "Enum Bitfields must provide a MaxValue"); |
| 241 | static_assert(!std::is_enum<T>::value || |
| 242 | std::is_unsigned<IntegerType>::value, |
| 243 | "Enum must be unsigned"); |
| 244 | static_assert(std::is_integral<IntegerType>::value && |
| 245 | std::numeric_limits<IntegerType>::is_integer, |
| 246 | "IntegerType must be an integer type"); |
| 247 | |
| 248 | static constexpr IntegerType UserMaxValue = |
| 249 | static_cast<IntegerType>(MaxValue); |
| 250 | }; |
| 251 | |
| 252 | /// Unpacks the field from the `Packed` value. |
| 253 | template <typename Bitfield, typename StorageType> |
| 254 | static typename Bitfield::Type get(StorageType Packed) { |
| 255 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
| 256 | return static_cast<typename Bitfield::Type>(I::extract(Packed)); |
| 257 | } |
| 258 | |
| 259 | /// Return a non-zero value if the field is non-zero. |
| 260 | /// It is more efficient than `getField`. |
| 261 | template <typename Bitfield, typename StorageType> |
| 262 | static StorageType test(StorageType Packed) { |
| 263 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
| 264 | return I::test(Packed); |
| 265 | } |
| 266 | |
| 267 | /// Sets the typed value in the provided `Packed` value. |
| 268 | /// The method will asserts if the provided value is too big to fit in. |
| 269 | template <typename Bitfield, typename StorageType> |
| 270 | static void set(StorageType &Packed, typename Bitfield::Type Value) { |
| 271 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
| 272 | I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value)); |
| 273 | } |
| 274 | |
| 275 | /// Returns whether the two bitfields share common bits. |
| 276 | template <typename A, typename B> static constexpr bool isOverlapping() { |
| 277 | return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit; |
| 278 | } |
| 279 | |
| 280 | template <typename A> static constexpr bool areContiguous() { return true; } |
| 281 | template <typename A, typename B, typename... Others> |
| 282 | static constexpr bool areContiguous() { |
| 283 | return A::NextBit == B::FirstBit && areContiguous<B, Others...>(); |
| 284 | } |
| 285 | }; |
| 286 | |
| 287 | } // namespace llvm |
| 288 | |
| 289 | #endif // LLVM_ADT_BITFIELDS_H |