blob: eab9b492c4a5c3dbcfa94d28d45027d7b2ac9fad [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_SUPPORT_PARALLEL_H
10#define LLVM_SUPPORT_PARALLEL_H
11
12#include "llvm/ADT/STLExtras.h"
13#include "llvm/Config/llvm-config.h"
14#include "llvm/Support/MathExtras.h"
15
16#include <algorithm>
17#include <condition_variable>
18#include <functional>
19#include <mutex>
20
21#if defined(_MSC_VER) && LLVM_ENABLE_THREADS
22#pragma warning(push)
23#pragma warning(disable : 4530)
24#include <concrt.h>
25#include <ppl.h>
26#pragma warning(pop)
27#endif
28
29namespace llvm {
30
31namespace parallel {
32struct sequential_execution_policy {};
33struct parallel_execution_policy {};
34
35template <typename T>
36struct is_execution_policy
37 : public std::integral_constant<
38 bool, llvm::is_one_of<T, sequential_execution_policy,
39 parallel_execution_policy>::value> {};
40
41constexpr sequential_execution_policy seq{};
42constexpr parallel_execution_policy par{};
43
44namespace detail {
45
46#if LLVM_ENABLE_THREADS
47
48class Latch {
49 uint32_t Count;
50 mutable std::mutex Mutex;
51 mutable std::condition_variable Cond;
52
53public:
54 explicit Latch(uint32_t Count = 0) : Count(Count) {}
55 ~Latch() { sync(); }
56
57 void inc() {
58 std::lock_guard<std::mutex> lock(Mutex);
59 ++Count;
60 }
61
62 void dec() {
63 std::lock_guard<std::mutex> lock(Mutex);
64 if (--Count == 0)
65 Cond.notify_all();
66 }
67
68 void sync() const {
69 std::unique_lock<std::mutex> lock(Mutex);
70 Cond.wait(lock, [&] { return Count == 0; });
71 }
72};
73
74class TaskGroup {
75 Latch L;
Andrew Walbran3d2c1972020-04-07 12:24:26 +010076 bool Parallel;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010077
78public:
Andrew Walbran3d2c1972020-04-07 12:24:26 +010079 TaskGroup();
80 ~TaskGroup();
81
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010082 void spawn(std::function<void()> f);
83
84 void sync() const { L.sync(); }
85};
86
87#if defined(_MSC_VER)
88template <class RandomAccessIterator, class Comparator>
89void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
90 const Comparator &Comp) {
91 concurrency::parallel_sort(Start, End, Comp);
92}
93template <class IterTy, class FuncTy>
94void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
95 concurrency::parallel_for_each(Begin, End, Fn);
96}
97
98template <class IndexTy, class FuncTy>
99void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
100 concurrency::parallel_for(Begin, End, Fn);
101}
102
103#else
104const ptrdiff_t MinParallelSize = 1024;
105
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100106/// Inclusive median.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100107template <class RandomAccessIterator, class Comparator>
108RandomAccessIterator medianOf3(RandomAccessIterator Start,
109 RandomAccessIterator End,
110 const Comparator &Comp) {
111 RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
112 return Comp(*Start, *(End - 1))
113 ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
114 : End - 1)
115 : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
116 : Start);
117}
118
119template <class RandomAccessIterator, class Comparator>
120void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
121 const Comparator &Comp, TaskGroup &TG, size_t Depth) {
122 // Do a sequential sort for small inputs.
123 if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100124 llvm::sort(Start, End, Comp);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100125 return;
126 }
127
128 // Partition.
129 auto Pivot = medianOf3(Start, End, Comp);
130 // Move Pivot to End.
131 std::swap(*(End - 1), *Pivot);
132 Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
133 return Comp(V, *(End - 1));
134 });
135 // Move Pivot to middle of partition.
136 std::swap(*Pivot, *(End - 1));
137
138 // Recurse.
139 TG.spawn([=, &Comp, &TG] {
140 parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
141 });
142 parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
143}
144
145template <class RandomAccessIterator, class Comparator>
146void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
147 const Comparator &Comp) {
148 TaskGroup TG;
149 parallel_quick_sort(Start, End, Comp, TG,
150 llvm::Log2_64(std::distance(Start, End)) + 1);
151}
152
153template <class IterTy, class FuncTy>
154void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
155 // TaskGroup has a relatively high overhead, so we want to reduce
156 // the number of spawn() calls. We'll create up to 1024 tasks here.
157 // (Note that 1024 is an arbitrary number. This code probably needs
158 // improving to take the number of available cores into account.)
159 ptrdiff_t TaskSize = std::distance(Begin, End) / 1024;
160 if (TaskSize == 0)
161 TaskSize = 1;
162
163 TaskGroup TG;
164 while (TaskSize < std::distance(Begin, End)) {
165 TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); });
166 Begin += TaskSize;
167 }
168 std::for_each(Begin, End, Fn);
169}
170
171template <class IndexTy, class FuncTy>
172void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
173 ptrdiff_t TaskSize = (End - Begin) / 1024;
174 if (TaskSize == 0)
175 TaskSize = 1;
176
177 TaskGroup TG;
178 IndexTy I = Begin;
179 for (; I + TaskSize < End; I += TaskSize) {
180 TG.spawn([=, &Fn] {
181 for (IndexTy J = I, E = I + TaskSize; J != E; ++J)
182 Fn(J);
183 });
184 }
185 for (IndexTy J = I; J < End; ++J)
186 Fn(J);
187}
188
189#endif
190
191#endif
192
193template <typename Iter>
194using DefComparator =
195 std::less<typename std::iterator_traits<Iter>::value_type>;
196
197} // namespace detail
198
199// sequential algorithm implementations.
200template <class Policy, class RandomAccessIterator,
201 class Comparator = detail::DefComparator<RandomAccessIterator>>
202void sort(Policy policy, RandomAccessIterator Start, RandomAccessIterator End,
203 const Comparator &Comp = Comparator()) {
204 static_assert(is_execution_policy<Policy>::value,
205 "Invalid execution policy!");
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100206 llvm::sort(Start, End, Comp);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100207}
208
209template <class Policy, class IterTy, class FuncTy>
210void for_each(Policy policy, IterTy Begin, IterTy End, FuncTy Fn) {
211 static_assert(is_execution_policy<Policy>::value,
212 "Invalid execution policy!");
213 std::for_each(Begin, End, Fn);
214}
215
216template <class Policy, class IndexTy, class FuncTy>
217void for_each_n(Policy policy, IndexTy Begin, IndexTy End, FuncTy Fn) {
218 static_assert(is_execution_policy<Policy>::value,
219 "Invalid execution policy!");
220 for (IndexTy I = Begin; I != End; ++I)
221 Fn(I);
222}
223
224// Parallel algorithm implementations, only available when LLVM_ENABLE_THREADS
225// is true.
226#if LLVM_ENABLE_THREADS
227template <class RandomAccessIterator,
228 class Comparator = detail::DefComparator<RandomAccessIterator>>
229void sort(parallel_execution_policy policy, RandomAccessIterator Start,
230 RandomAccessIterator End, const Comparator &Comp = Comparator()) {
231 detail::parallel_sort(Start, End, Comp);
232}
233
234template <class IterTy, class FuncTy>
235void for_each(parallel_execution_policy policy, IterTy Begin, IterTy End,
236 FuncTy Fn) {
237 detail::parallel_for_each(Begin, End, Fn);
238}
239
240template <class IndexTy, class FuncTy>
241void for_each_n(parallel_execution_policy policy, IndexTy Begin, IndexTy End,
242 FuncTy Fn) {
243 detail::parallel_for_each_n(Begin, End, Fn);
244}
245#endif
246
247} // namespace parallel
248} // namespace llvm
249
250#endif // LLVM_SUPPORT_PARALLEL_H