blob: 5aab9643e09d866545c13f17a693a3cab6c59e54 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/ValueTypes.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DebugLoc.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/Metadata.h"
Andrew Scullcdfcccc2018-10-05 20:58:37 +010039#include "llvm/IR/Operator.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010040#include "llvm/Support/AlignOf.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/MachineValueType.h"
45#include <algorithm>
46#include <cassert>
47#include <climits>
48#include <cstddef>
49#include <cstdint>
50#include <cstring>
51#include <iterator>
52#include <string>
53#include <tuple>
54
55namespace llvm {
56
57class APInt;
58class Constant;
59template <typename T> struct DenseMapInfo;
60class GlobalValue;
61class MachineBasicBlock;
62class MachineConstantPoolValue;
63class MCSymbol;
64class raw_ostream;
65class SDNode;
66class SelectionDAG;
67class Type;
68class Value;
69
70void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
71 bool force = false);
72
73/// This represents a list of ValueType's that has been intern'd by
74/// a SelectionDAG. Instances of this simple value class are returned by
75/// SelectionDAG::getVTList(...).
76///
77struct SDVTList {
78 const EVT *VTs;
79 unsigned int NumVTs;
80};
81
82namespace ISD {
83
84 /// Node predicates
85
86 /// If N is a BUILD_VECTOR node whose elements are all the same constant or
87 /// undefined, return true and return the constant value in \p SplatValue.
88 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
89
90 /// Return true if the specified node is a BUILD_VECTOR where all of the
91 /// elements are ~0 or undef.
92 bool isBuildVectorAllOnes(const SDNode *N);
93
94 /// Return true if the specified node is a BUILD_VECTOR where all of the
95 /// elements are 0 or undef.
96 bool isBuildVectorAllZeros(const SDNode *N);
97
98 /// Return true if the specified node is a BUILD_VECTOR node of all
99 /// ConstantSDNode or undef.
100 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
101
102 /// Return true if the specified node is a BUILD_VECTOR node of all
103 /// ConstantFPSDNode or undef.
104 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
105
106 /// Return true if the node has at least one operand and all operands of the
107 /// specified node are ISD::UNDEF.
108 bool allOperandsUndef(const SDNode *N);
109
110} // end namespace ISD
111
112//===----------------------------------------------------------------------===//
113/// Unlike LLVM values, Selection DAG nodes may return multiple
114/// values as the result of a computation. Many nodes return multiple values,
115/// from loads (which define a token and a return value) to ADDC (which returns
116/// a result and a carry value), to calls (which may return an arbitrary number
117/// of values).
118///
119/// As such, each use of a SelectionDAG computation must indicate the node that
120/// computes it as well as which return value to use from that node. This pair
121/// of information is represented with the SDValue value type.
122///
123class SDValue {
124 friend struct DenseMapInfo<SDValue>;
125
126 SDNode *Node = nullptr; // The node defining the value we are using.
127 unsigned ResNo = 0; // Which return value of the node we are using.
128
129public:
130 SDValue() = default;
131 SDValue(SDNode *node, unsigned resno);
132
133 /// get the index which selects a specific result in the SDNode
134 unsigned getResNo() const { return ResNo; }
135
136 /// get the SDNode which holds the desired result
137 SDNode *getNode() const { return Node; }
138
139 /// set the SDNode
140 void setNode(SDNode *N) { Node = N; }
141
142 inline SDNode *operator->() const { return Node; }
143
144 bool operator==(const SDValue &O) const {
145 return Node == O.Node && ResNo == O.ResNo;
146 }
147 bool operator!=(const SDValue &O) const {
148 return !operator==(O);
149 }
150 bool operator<(const SDValue &O) const {
151 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
152 }
153 explicit operator bool() const {
154 return Node != nullptr;
155 }
156
157 SDValue getValue(unsigned R) const {
158 return SDValue(Node, R);
159 }
160
161 /// Return true if this node is an operand of N.
162 bool isOperandOf(const SDNode *N) const;
163
164 /// Return the ValueType of the referenced return value.
165 inline EVT getValueType() const;
166
167 /// Return the simple ValueType of the referenced return value.
168 MVT getSimpleValueType() const {
169 return getValueType().getSimpleVT();
170 }
171
172 /// Returns the size of the value in bits.
173 unsigned getValueSizeInBits() const {
174 return getValueType().getSizeInBits();
175 }
176
177 unsigned getScalarValueSizeInBits() const {
178 return getValueType().getScalarType().getSizeInBits();
179 }
180
181 // Forwarding methods - These forward to the corresponding methods in SDNode.
182 inline unsigned getOpcode() const;
183 inline unsigned getNumOperands() const;
184 inline const SDValue &getOperand(unsigned i) const;
185 inline uint64_t getConstantOperandVal(unsigned i) const;
Andrew Walbran16937d02019-10-22 13:54:20 +0100186 inline const APInt &getConstantOperandAPInt(unsigned i) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100187 inline bool isTargetMemoryOpcode() const;
188 inline bool isTargetOpcode() const;
189 inline bool isMachineOpcode() const;
190 inline bool isUndef() const;
191 inline unsigned getMachineOpcode() const;
192 inline const DebugLoc &getDebugLoc() const;
193 inline void dump() const;
194 inline void dump(const SelectionDAG *G) const;
195 inline void dumpr() const;
196 inline void dumpr(const SelectionDAG *G) const;
197
198 /// Return true if this operand (which must be a chain) reaches the
199 /// specified operand without crossing any side-effecting instructions.
200 /// In practice, this looks through token factors and non-volatile loads.
201 /// In order to remain efficient, this only
202 /// looks a couple of nodes in, it does not do an exhaustive search.
203 bool reachesChainWithoutSideEffects(SDValue Dest,
204 unsigned Depth = 2) const;
205
206 /// Return true if there are no nodes using value ResNo of Node.
207 inline bool use_empty() const;
208
209 /// Return true if there is exactly one node using value ResNo of Node.
210 inline bool hasOneUse() const;
211};
212
213template<> struct DenseMapInfo<SDValue> {
214 static inline SDValue getEmptyKey() {
215 SDValue V;
216 V.ResNo = -1U;
217 return V;
218 }
219
220 static inline SDValue getTombstoneKey() {
221 SDValue V;
222 V.ResNo = -2U;
223 return V;
224 }
225
226 static unsigned getHashValue(const SDValue &Val) {
227 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
228 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
229 }
230
231 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
232 return LHS == RHS;
233 }
234};
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100235
236/// Allow casting operators to work directly on
237/// SDValues as if they were SDNode*'s.
238template<> struct simplify_type<SDValue> {
239 using SimpleType = SDNode *;
240
241 static SimpleType getSimplifiedValue(SDValue &Val) {
242 return Val.getNode();
243 }
244};
245template<> struct simplify_type<const SDValue> {
246 using SimpleType = /*const*/ SDNode *;
247
248 static SimpleType getSimplifiedValue(const SDValue &Val) {
249 return Val.getNode();
250 }
251};
252
253/// Represents a use of a SDNode. This class holds an SDValue,
254/// which records the SDNode being used and the result number, a
255/// pointer to the SDNode using the value, and Next and Prev pointers,
256/// which link together all the uses of an SDNode.
257///
258class SDUse {
259 /// Val - The value being used.
260 SDValue Val;
261 /// User - The user of this value.
262 SDNode *User = nullptr;
263 /// Prev, Next - Pointers to the uses list of the SDNode referred by
264 /// this operand.
265 SDUse **Prev = nullptr;
266 SDUse *Next = nullptr;
267
268public:
269 SDUse() = default;
270 SDUse(const SDUse &U) = delete;
271 SDUse &operator=(const SDUse &) = delete;
272
273 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
274 operator const SDValue&() const { return Val; }
275
276 /// If implicit conversion to SDValue doesn't work, the get() method returns
277 /// the SDValue.
278 const SDValue &get() const { return Val; }
279
280 /// This returns the SDNode that contains this Use.
281 SDNode *getUser() { return User; }
282
283 /// Get the next SDUse in the use list.
284 SDUse *getNext() const { return Next; }
285
286 /// Convenience function for get().getNode().
287 SDNode *getNode() const { return Val.getNode(); }
288 /// Convenience function for get().getResNo().
289 unsigned getResNo() const { return Val.getResNo(); }
290 /// Convenience function for get().getValueType().
291 EVT getValueType() const { return Val.getValueType(); }
292
293 /// Convenience function for get().operator==
294 bool operator==(const SDValue &V) const {
295 return Val == V;
296 }
297
298 /// Convenience function for get().operator!=
299 bool operator!=(const SDValue &V) const {
300 return Val != V;
301 }
302
303 /// Convenience function for get().operator<
304 bool operator<(const SDValue &V) const {
305 return Val < V;
306 }
307
308private:
309 friend class SelectionDAG;
310 friend class SDNode;
311 // TODO: unfriend HandleSDNode once we fix its operand handling.
312 friend class HandleSDNode;
313
314 void setUser(SDNode *p) { User = p; }
315
316 /// Remove this use from its existing use list, assign it the
317 /// given value, and add it to the new value's node's use list.
318 inline void set(const SDValue &V);
319 /// Like set, but only supports initializing a newly-allocated
320 /// SDUse with a non-null value.
321 inline void setInitial(const SDValue &V);
322 /// Like set, but only sets the Node portion of the value,
323 /// leaving the ResNo portion unmodified.
324 inline void setNode(SDNode *N);
325
326 void addToList(SDUse **List) {
327 Next = *List;
328 if (Next) Next->Prev = &Next;
329 Prev = List;
330 *List = this;
331 }
332
333 void removeFromList() {
334 *Prev = Next;
335 if (Next) Next->Prev = Prev;
336 }
337};
338
339/// simplify_type specializations - Allow casting operators to work directly on
340/// SDValues as if they were SDNode*'s.
341template<> struct simplify_type<SDUse> {
342 using SimpleType = SDNode *;
343
344 static SimpleType getSimplifiedValue(SDUse &Val) {
345 return Val.getNode();
346 }
347};
348
349/// These are IR-level optimization flags that may be propagated to SDNodes.
350/// TODO: This data structure should be shared by the IR optimizer and the
351/// the backend.
352struct SDNodeFlags {
353private:
354 // This bit is used to determine if the flags are in a defined state.
355 // Flag bits can only be masked out during intersection if the masking flags
356 // are defined.
357 bool AnyDefined : 1;
358
359 bool NoUnsignedWrap : 1;
360 bool NoSignedWrap : 1;
361 bool Exact : 1;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100362 bool NoNaNs : 1;
363 bool NoInfs : 1;
364 bool NoSignedZeros : 1;
365 bool AllowReciprocal : 1;
366 bool VectorReduction : 1;
367 bool AllowContract : 1;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100368 bool ApproximateFuncs : 1;
369 bool AllowReassociation : 1;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100370
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100371 // We assume instructions do not raise floating-point exceptions by default,
372 // and only those marked explicitly may do so. We could choose to represent
373 // this via a positive "FPExcept" flags like on the MI level, but having a
374 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
375 // intersection logic more straightforward.
376 bool NoFPExcept : 1;
377
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100378public:
379 /// Default constructor turns off all optimization flags.
380 SDNodeFlags()
381 : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100382 Exact(false), NoNaNs(false), NoInfs(false),
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100383 NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100384 AllowContract(false), ApproximateFuncs(false),
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100385 AllowReassociation(false), NoFPExcept(true) {}
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100386
387 /// Propagate the fast-math-flags from an IR FPMathOperator.
388 void copyFMF(const FPMathOperator &FPMO) {
389 setNoNaNs(FPMO.hasNoNaNs());
390 setNoInfs(FPMO.hasNoInfs());
391 setNoSignedZeros(FPMO.hasNoSignedZeros());
392 setAllowReciprocal(FPMO.hasAllowReciprocal());
393 setAllowContract(FPMO.hasAllowContract());
394 setApproximateFuncs(FPMO.hasApproxFunc());
395 setAllowReassociation(FPMO.hasAllowReassoc());
396 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100397
398 /// Sets the state of the flags to the defined state.
399 void setDefined() { AnyDefined = true; }
400 /// Returns true if the flags are in a defined state.
401 bool isDefined() const { return AnyDefined; }
402
403 // These are mutators for each flag.
404 void setNoUnsignedWrap(bool b) {
405 setDefined();
406 NoUnsignedWrap = b;
407 }
408 void setNoSignedWrap(bool b) {
409 setDefined();
410 NoSignedWrap = b;
411 }
412 void setExact(bool b) {
413 setDefined();
414 Exact = b;
415 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100416 void setNoNaNs(bool b) {
417 setDefined();
418 NoNaNs = b;
419 }
420 void setNoInfs(bool b) {
421 setDefined();
422 NoInfs = b;
423 }
424 void setNoSignedZeros(bool b) {
425 setDefined();
426 NoSignedZeros = b;
427 }
428 void setAllowReciprocal(bool b) {
429 setDefined();
430 AllowReciprocal = b;
431 }
432 void setVectorReduction(bool b) {
433 setDefined();
434 VectorReduction = b;
435 }
436 void setAllowContract(bool b) {
437 setDefined();
438 AllowContract = b;
439 }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100440 void setApproximateFuncs(bool b) {
441 setDefined();
442 ApproximateFuncs = b;
443 }
444 void setAllowReassociation(bool b) {
445 setDefined();
446 AllowReassociation = b;
447 }
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100448 void setFPExcept(bool b) {
449 setDefined();
450 NoFPExcept = !b;
451 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100452
453 // These are accessors for each flag.
454 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
455 bool hasNoSignedWrap() const { return NoSignedWrap; }
456 bool hasExact() const { return Exact; }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100457 bool hasNoNaNs() const { return NoNaNs; }
458 bool hasNoInfs() const { return NoInfs; }
459 bool hasNoSignedZeros() const { return NoSignedZeros; }
460 bool hasAllowReciprocal() const { return AllowReciprocal; }
461 bool hasVectorReduction() const { return VectorReduction; }
462 bool hasAllowContract() const { return AllowContract; }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100463 bool hasApproximateFuncs() const { return ApproximateFuncs; }
464 bool hasAllowReassociation() const { return AllowReassociation; }
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100465 bool hasFPExcept() const { return !NoFPExcept; }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100466
467 bool isFast() const {
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100468 return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs && NoFPExcept &&
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100469 AllowContract && ApproximateFuncs && AllowReassociation;
470 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100471
472 /// Clear any flags in this flag set that aren't also set in Flags.
473 /// If the given Flags are undefined then don't do anything.
474 void intersectWith(const SDNodeFlags Flags) {
475 if (!Flags.isDefined())
476 return;
477 NoUnsignedWrap &= Flags.NoUnsignedWrap;
478 NoSignedWrap &= Flags.NoSignedWrap;
479 Exact &= Flags.Exact;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100480 NoNaNs &= Flags.NoNaNs;
481 NoInfs &= Flags.NoInfs;
482 NoSignedZeros &= Flags.NoSignedZeros;
483 AllowReciprocal &= Flags.AllowReciprocal;
484 VectorReduction &= Flags.VectorReduction;
485 AllowContract &= Flags.AllowContract;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100486 ApproximateFuncs &= Flags.ApproximateFuncs;
487 AllowReassociation &= Flags.AllowReassociation;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100488 NoFPExcept &= Flags.NoFPExcept;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100489 }
490};
491
492/// Represents one node in the SelectionDAG.
493///
494class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
495private:
496 /// The operation that this node performs.
497 int16_t NodeType;
498
499protected:
500 // We define a set of mini-helper classes to help us interpret the bits in our
501 // SubclassData. These are designed to fit within a uint16_t so they pack
502 // with NodeType.
503
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100504#if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__))
505// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
506// and give the `pack` pragma push semantics.
507#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
508#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
509#else
510#define BEGIN_TWO_BYTE_PACK()
511#define END_TWO_BYTE_PACK()
512#endif
513
514BEGIN_TWO_BYTE_PACK()
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100515 class SDNodeBitfields {
516 friend class SDNode;
517 friend class MemIntrinsicSDNode;
518 friend class MemSDNode;
519 friend class SelectionDAG;
520
521 uint16_t HasDebugValue : 1;
522 uint16_t IsMemIntrinsic : 1;
523 uint16_t IsDivergent : 1;
524 };
525 enum { NumSDNodeBits = 3 };
526
527 class ConstantSDNodeBitfields {
528 friend class ConstantSDNode;
529
530 uint16_t : NumSDNodeBits;
531
532 uint16_t IsOpaque : 1;
533 };
534
535 class MemSDNodeBitfields {
536 friend class MemSDNode;
537 friend class MemIntrinsicSDNode;
538 friend class AtomicSDNode;
539
540 uint16_t : NumSDNodeBits;
541
542 uint16_t IsVolatile : 1;
543 uint16_t IsNonTemporal : 1;
544 uint16_t IsDereferenceable : 1;
545 uint16_t IsInvariant : 1;
546 };
547 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
548
549 class LSBaseSDNodeBitfields {
550 friend class LSBaseSDNode;
551
552 uint16_t : NumMemSDNodeBits;
553
554 uint16_t AddressingMode : 3; // enum ISD::MemIndexedMode
555 };
556 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
557
558 class LoadSDNodeBitfields {
559 friend class LoadSDNode;
560 friend class MaskedLoadSDNode;
561
562 uint16_t : NumLSBaseSDNodeBits;
563
564 uint16_t ExtTy : 2; // enum ISD::LoadExtType
565 uint16_t IsExpanding : 1;
566 };
567
568 class StoreSDNodeBitfields {
569 friend class StoreSDNode;
570 friend class MaskedStoreSDNode;
571
572 uint16_t : NumLSBaseSDNodeBits;
573
574 uint16_t IsTruncating : 1;
575 uint16_t IsCompressing : 1;
576 };
577
578 union {
579 char RawSDNodeBits[sizeof(uint16_t)];
580 SDNodeBitfields SDNodeBits;
581 ConstantSDNodeBitfields ConstantSDNodeBits;
582 MemSDNodeBitfields MemSDNodeBits;
583 LSBaseSDNodeBitfields LSBaseSDNodeBits;
584 LoadSDNodeBitfields LoadSDNodeBits;
585 StoreSDNodeBitfields StoreSDNodeBits;
586 };
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100587END_TWO_BYTE_PACK()
588#undef BEGIN_TWO_BYTE_PACK
589#undef END_TWO_BYTE_PACK
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100590
591 // RawSDNodeBits must cover the entirety of the union. This means that all of
592 // the union's members must have size <= RawSDNodeBits. We write the RHS as
593 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
594 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
595 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
596 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
597 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100598 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100599 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
600
601private:
602 friend class SelectionDAG;
603 // TODO: unfriend HandleSDNode once we fix its operand handling.
604 friend class HandleSDNode;
605
606 /// Unique id per SDNode in the DAG.
607 int NodeId = -1;
608
609 /// The values that are used by this operation.
610 SDUse *OperandList = nullptr;
611
612 /// The types of the values this node defines. SDNode's may
613 /// define multiple values simultaneously.
614 const EVT *ValueList;
615
616 /// List of uses for this SDNode.
617 SDUse *UseList = nullptr;
618
619 /// The number of entries in the Operand/Value list.
620 unsigned short NumOperands = 0;
621 unsigned short NumValues;
622
623 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
624 // original LLVM instructions.
625 // This is used for turning off scheduling, because we'll forgo
626 // the normal scheduling algorithms and output the instructions according to
627 // this ordering.
628 unsigned IROrder;
629
630 /// Source line information.
631 DebugLoc debugLoc;
632
633 /// Return a pointer to the specified value type.
634 static const EVT *getValueTypeList(EVT VT);
635
636 SDNodeFlags Flags;
637
638public:
639 /// Unique and persistent id per SDNode in the DAG.
640 /// Used for debug printing.
641 uint16_t PersistentId;
642
643 //===--------------------------------------------------------------------===//
644 // Accessors
645 //
646
647 /// Return the SelectionDAG opcode value for this node. For
648 /// pre-isel nodes (those for which isMachineOpcode returns false), these
649 /// are the opcode values in the ISD and <target>ISD namespaces. For
650 /// post-isel opcodes, see getMachineOpcode.
651 unsigned getOpcode() const { return (unsigned short)NodeType; }
652
653 /// Test if this node has a target-specific opcode (in the
654 /// \<target\>ISD namespace).
655 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
656
657 /// Test if this node has a target-specific
658 /// memory-referencing opcode (in the \<target\>ISD namespace and
659 /// greater than FIRST_TARGET_MEMORY_OPCODE).
660 bool isTargetMemoryOpcode() const {
661 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
662 }
663
664 /// Return true if the type of the node type undefined.
665 bool isUndef() const { return NodeType == ISD::UNDEF; }
666
667 /// Test if this node is a memory intrinsic (with valid pointer information).
668 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
669 /// non-memory intrinsics (with chains) that are not really instances of
670 /// MemSDNode. For such nodes, we need some extra state to determine the
671 /// proper classof relationship.
672 bool isMemIntrinsic() const {
673 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
674 NodeType == ISD::INTRINSIC_VOID) &&
675 SDNodeBits.IsMemIntrinsic;
676 }
677
678 /// Test if this node is a strict floating point pseudo-op.
679 bool isStrictFPOpcode() {
680 switch (NodeType) {
681 default:
682 return false;
683 case ISD::STRICT_FADD:
684 case ISD::STRICT_FSUB:
685 case ISD::STRICT_FMUL:
686 case ISD::STRICT_FDIV:
687 case ISD::STRICT_FREM:
688 case ISD::STRICT_FMA:
689 case ISD::STRICT_FSQRT:
690 case ISD::STRICT_FPOW:
691 case ISD::STRICT_FPOWI:
692 case ISD::STRICT_FSIN:
693 case ISD::STRICT_FCOS:
694 case ISD::STRICT_FEXP:
695 case ISD::STRICT_FEXP2:
696 case ISD::STRICT_FLOG:
697 case ISD::STRICT_FLOG10:
698 case ISD::STRICT_FLOG2:
699 case ISD::STRICT_FRINT:
700 case ISD::STRICT_FNEARBYINT:
Andrew Walbran16937d02019-10-22 13:54:20 +0100701 case ISD::STRICT_FMAXNUM:
702 case ISD::STRICT_FMINNUM:
703 case ISD::STRICT_FCEIL:
704 case ISD::STRICT_FFLOOR:
705 case ISD::STRICT_FROUND:
706 case ISD::STRICT_FTRUNC:
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100707 case ISD::STRICT_FP_ROUND:
708 case ISD::STRICT_FP_EXTEND:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100709 return true;
710 }
711 }
712
713 /// Test if this node has a post-isel opcode, directly
714 /// corresponding to a MachineInstr opcode.
715 bool isMachineOpcode() const { return NodeType < 0; }
716
717 /// This may only be called if isMachineOpcode returns
718 /// true. It returns the MachineInstr opcode value that the node's opcode
719 /// corresponds to.
720 unsigned getMachineOpcode() const {
721 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
722 return ~NodeType;
723 }
724
725 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
726 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
727
728 bool isDivergent() const { return SDNodeBits.IsDivergent; }
729
730 /// Return true if there are no uses of this node.
731 bool use_empty() const { return UseList == nullptr; }
732
733 /// Return true if there is exactly one use of this node.
734 bool hasOneUse() const {
735 return !use_empty() && std::next(use_begin()) == use_end();
736 }
737
738 /// Return the number of uses of this node. This method takes
739 /// time proportional to the number of uses.
740 size_t use_size() const { return std::distance(use_begin(), use_end()); }
741
742 /// Return the unique node id.
743 int getNodeId() const { return NodeId; }
744
745 /// Set unique node id.
746 void setNodeId(int Id) { NodeId = Id; }
747
748 /// Return the node ordering.
749 unsigned getIROrder() const { return IROrder; }
750
751 /// Set the node ordering.
752 void setIROrder(unsigned Order) { IROrder = Order; }
753
754 /// Return the source location info.
755 const DebugLoc &getDebugLoc() const { return debugLoc; }
756
757 /// Set source location info. Try to avoid this, putting
758 /// it in the constructor is preferable.
759 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
760
761 /// This class provides iterator support for SDUse
762 /// operands that use a specific SDNode.
763 class use_iterator
764 : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
765 friend class SDNode;
766
767 SDUse *Op = nullptr;
768
769 explicit use_iterator(SDUse *op) : Op(op) {}
770
771 public:
772 using reference = std::iterator<std::forward_iterator_tag,
773 SDUse, ptrdiff_t>::reference;
774 using pointer = std::iterator<std::forward_iterator_tag,
775 SDUse, ptrdiff_t>::pointer;
776
777 use_iterator() = default;
778 use_iterator(const use_iterator &I) : Op(I.Op) {}
779
780 bool operator==(const use_iterator &x) const {
781 return Op == x.Op;
782 }
783 bool operator!=(const use_iterator &x) const {
784 return !operator==(x);
785 }
786
787 /// Return true if this iterator is at the end of uses list.
788 bool atEnd() const { return Op == nullptr; }
789
790 // Iterator traversal: forward iteration only.
791 use_iterator &operator++() { // Preincrement
792 assert(Op && "Cannot increment end iterator!");
793 Op = Op->getNext();
794 return *this;
795 }
796
797 use_iterator operator++(int) { // Postincrement
798 use_iterator tmp = *this; ++*this; return tmp;
799 }
800
801 /// Retrieve a pointer to the current user node.
802 SDNode *operator*() const {
803 assert(Op && "Cannot dereference end iterator!");
804 return Op->getUser();
805 }
806
807 SDNode *operator->() const { return operator*(); }
808
809 SDUse &getUse() const { return *Op; }
810
811 /// Retrieve the operand # of this use in its user.
812 unsigned getOperandNo() const {
813 assert(Op && "Cannot dereference end iterator!");
814 return (unsigned)(Op - Op->getUser()->OperandList);
815 }
816 };
817
818 /// Provide iteration support to walk over all uses of an SDNode.
819 use_iterator use_begin() const {
820 return use_iterator(UseList);
821 }
822
823 static use_iterator use_end() { return use_iterator(nullptr); }
824
825 inline iterator_range<use_iterator> uses() {
826 return make_range(use_begin(), use_end());
827 }
828 inline iterator_range<use_iterator> uses() const {
829 return make_range(use_begin(), use_end());
830 }
831
832 /// Return true if there are exactly NUSES uses of the indicated value.
833 /// This method ignores uses of other values defined by this operation.
834 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
835
836 /// Return true if there are any use of the indicated value.
837 /// This method ignores uses of other values defined by this operation.
838 bool hasAnyUseOfValue(unsigned Value) const;
839
840 /// Return true if this node is the only use of N.
841 bool isOnlyUserOf(const SDNode *N) const;
842
843 /// Return true if this node is an operand of N.
844 bool isOperandOf(const SDNode *N) const;
845
846 /// Return true if this node is a predecessor of N.
847 /// NOTE: Implemented on top of hasPredecessor and every bit as
848 /// expensive. Use carefully.
849 bool isPredecessorOf(const SDNode *N) const {
850 return N->hasPredecessor(this);
851 }
852
853 /// Return true if N is a predecessor of this node.
854 /// N is either an operand of this node, or can be reached by recursively
855 /// traversing up the operands.
856 /// NOTE: This is an expensive method. Use it carefully.
857 bool hasPredecessor(const SDNode *N) const;
858
859 /// Returns true if N is a predecessor of any node in Worklist. This
860 /// helper keeps Visited and Worklist sets externally to allow unions
861 /// searches to be performed in parallel, caching of results across
862 /// queries and incremental addition to Worklist. Stops early if N is
863 /// found but will resume. Remember to clear Visited and Worklists
864 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
865 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
866 /// topologically ordered (Operands have strictly smaller node id) and search
867 /// can be pruned leveraging this.
868 static bool hasPredecessorHelper(const SDNode *N,
869 SmallPtrSetImpl<const SDNode *> &Visited,
870 SmallVectorImpl<const SDNode *> &Worklist,
871 unsigned int MaxSteps = 0,
872 bool TopologicalPrune = false) {
873 SmallVector<const SDNode *, 8> DeferredNodes;
874 if (Visited.count(N))
875 return true;
876
877 // Node Id's are assigned in three places: As a topological
878 // ordering (> 0), during legalization (results in values set to
879 // 0), new nodes (set to -1). If N has a topolgical id then we
880 // know that all nodes with ids smaller than it cannot be
881 // successors and we need not check them. Filter out all node
882 // that can't be matches. We add them to the worklist before exit
883 // in case of multiple calls. Note that during selection the topological id
884 // may be violated if a node's predecessor is selected before it. We mark
885 // this at selection negating the id of unselected successors and
886 // restricting topological pruning to positive ids.
887
888 int NId = N->getNodeId();
889 // If we Invalidated the Id, reconstruct original NId.
890 if (NId < -1)
891 NId = -(NId + 1);
892
893 bool Found = false;
894 while (!Worklist.empty()) {
895 const SDNode *M = Worklist.pop_back_val();
896 int MId = M->getNodeId();
897 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
898 (MId > 0) && (MId < NId)) {
899 DeferredNodes.push_back(M);
900 continue;
901 }
902 for (const SDValue &OpV : M->op_values()) {
903 SDNode *Op = OpV.getNode();
904 if (Visited.insert(Op).second)
905 Worklist.push_back(Op);
906 if (Op == N)
907 Found = true;
908 }
909 if (Found)
910 break;
911 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
912 break;
913 }
914 // Push deferred nodes back on worklist.
915 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
916 // If we bailed early, conservatively return found.
917 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
918 return true;
919 return Found;
920 }
921
922 /// Return true if all the users of N are contained in Nodes.
923 /// NOTE: Requires at least one match, but doesn't require them all.
924 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
925
926 /// Return the number of values used by this operation.
927 unsigned getNumOperands() const { return NumOperands; }
928
Andrew Walbran16937d02019-10-22 13:54:20 +0100929 /// Return the maximum number of operands that a SDNode can hold.
930 static constexpr size_t getMaxNumOperands() {
931 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
932 }
933
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100934 /// Helper method returns the integer value of a ConstantSDNode operand.
935 inline uint64_t getConstantOperandVal(unsigned Num) const;
936
Andrew Walbran16937d02019-10-22 13:54:20 +0100937 /// Helper method returns the APInt of a ConstantSDNode operand.
938 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
939
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100940 const SDValue &getOperand(unsigned Num) const {
941 assert(Num < NumOperands && "Invalid child # of SDNode!");
942 return OperandList[Num];
943 }
944
945 using op_iterator = SDUse *;
946
947 op_iterator op_begin() const { return OperandList; }
948 op_iterator op_end() const { return OperandList+NumOperands; }
949 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
950
951 /// Iterator for directly iterating over the operand SDValue's.
952 struct value_op_iterator
953 : iterator_adaptor_base<value_op_iterator, op_iterator,
954 std::random_access_iterator_tag, SDValue,
955 ptrdiff_t, value_op_iterator *,
956 value_op_iterator *> {
957 explicit value_op_iterator(SDUse *U = nullptr)
958 : iterator_adaptor_base(U) {}
959
960 const SDValue &operator*() const { return I->get(); }
961 };
962
963 iterator_range<value_op_iterator> op_values() const {
964 return make_range(value_op_iterator(op_begin()),
965 value_op_iterator(op_end()));
966 }
967
968 SDVTList getVTList() const {
969 SDVTList X = { ValueList, NumValues };
970 return X;
971 }
972
973 /// If this node has a glue operand, return the node
974 /// to which the glue operand points. Otherwise return NULL.
975 SDNode *getGluedNode() const {
976 if (getNumOperands() != 0 &&
977 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
978 return getOperand(getNumOperands()-1).getNode();
979 return nullptr;
980 }
981
982 /// If this node has a glue value with a user, return
983 /// the user (there is at most one). Otherwise return NULL.
984 SDNode *getGluedUser() const {
985 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
986 if (UI.getUse().get().getValueType() == MVT::Glue)
987 return *UI;
988 return nullptr;
989 }
990
991 const SDNodeFlags getFlags() const { return Flags; }
992 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100993 bool isFast() { return Flags.isFast(); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100994
995 /// Clear any flags in this node that aren't also set in Flags.
996 /// If Flags is not in a defined state then this has no effect.
997 void intersectFlagsWith(const SDNodeFlags Flags);
998
999 /// Return the number of values defined/returned by this operator.
1000 unsigned getNumValues() const { return NumValues; }
1001
1002 /// Return the type of a specified result.
1003 EVT getValueType(unsigned ResNo) const {
1004 assert(ResNo < NumValues && "Illegal result number!");
1005 return ValueList[ResNo];
1006 }
1007
1008 /// Return the type of a specified result as a simple type.
1009 MVT getSimpleValueType(unsigned ResNo) const {
1010 return getValueType(ResNo).getSimpleVT();
1011 }
1012
1013 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1014 unsigned getValueSizeInBits(unsigned ResNo) const {
1015 return getValueType(ResNo).getSizeInBits();
1016 }
1017
1018 using value_iterator = const EVT *;
1019
1020 value_iterator value_begin() const { return ValueList; }
1021 value_iterator value_end() const { return ValueList+NumValues; }
1022
1023 /// Return the opcode of this operation for printing.
1024 std::string getOperationName(const SelectionDAG *G = nullptr) const;
1025 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1026 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1027 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1028 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1029 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1030
1031 /// Print a SelectionDAG node and all children down to
1032 /// the leaves. The given SelectionDAG allows target-specific nodes
1033 /// to be printed in human-readable form. Unlike printr, this will
1034 /// print the whole DAG, including children that appear multiple
1035 /// times.
1036 ///
1037 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1038
1039 /// Print a SelectionDAG node and children up to
1040 /// depth "depth." The given SelectionDAG allows target-specific
1041 /// nodes to be printed in human-readable form. Unlike printr, this
1042 /// will print children that appear multiple times wherever they are
1043 /// used.
1044 ///
1045 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1046 unsigned depth = 100) const;
1047
1048 /// Dump this node, for debugging.
1049 void dump() const;
1050
1051 /// Dump (recursively) this node and its use-def subgraph.
1052 void dumpr() const;
1053
1054 /// Dump this node, for debugging.
1055 /// The given SelectionDAG allows target-specific nodes to be printed
1056 /// in human-readable form.
1057 void dump(const SelectionDAG *G) const;
1058
1059 /// Dump (recursively) this node and its use-def subgraph.
1060 /// The given SelectionDAG allows target-specific nodes to be printed
1061 /// in human-readable form.
1062 void dumpr(const SelectionDAG *G) const;
1063
1064 /// printrFull to dbgs(). The given SelectionDAG allows
1065 /// target-specific nodes to be printed in human-readable form.
1066 /// Unlike dumpr, this will print the whole DAG, including children
1067 /// that appear multiple times.
1068 void dumprFull(const SelectionDAG *G = nullptr) const;
1069
1070 /// printrWithDepth to dbgs(). The given
1071 /// SelectionDAG allows target-specific nodes to be printed in
1072 /// human-readable form. Unlike dumpr, this will print children
1073 /// that appear multiple times wherever they are used.
1074 ///
1075 void dumprWithDepth(const SelectionDAG *G = nullptr,
1076 unsigned depth = 100) const;
1077
1078 /// Gather unique data for the node.
1079 void Profile(FoldingSetNodeID &ID) const;
1080
1081 /// This method should only be used by the SDUse class.
1082 void addUse(SDUse &U) { U.addToList(&UseList); }
1083
1084protected:
1085 static SDVTList getSDVTList(EVT VT) {
1086 SDVTList Ret = { getValueTypeList(VT), 1 };
1087 return Ret;
1088 }
1089
1090 /// Create an SDNode.
1091 ///
1092 /// SDNodes are created without any operands, and never own the operand
1093 /// storage. To add operands, see SelectionDAG::createOperands.
1094 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1095 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1096 IROrder(Order), debugLoc(std::move(dl)) {
1097 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1098 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1099 assert(NumValues == VTs.NumVTs &&
1100 "NumValues wasn't wide enough for its operands!");
1101 }
1102
1103 /// Release the operands and set this node to have zero operands.
1104 void DropOperands();
1105};
1106
1107/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1108/// into SDNode creation functions.
1109/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1110/// from the original Instruction, and IROrder is the ordinal position of
1111/// the instruction.
1112/// When an SDNode is created after the DAG is being built, both DebugLoc and
1113/// the IROrder are propagated from the original SDNode.
1114/// So SDLoc class provides two constructors besides the default one, one to
1115/// be used by the DAGBuilder, the other to be used by others.
1116class SDLoc {
1117private:
1118 DebugLoc DL;
1119 int IROrder = 0;
1120
1121public:
1122 SDLoc() = default;
1123 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1124 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1125 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1126 assert(Order >= 0 && "bad IROrder");
1127 if (I)
1128 DL = I->getDebugLoc();
1129 }
1130
1131 unsigned getIROrder() const { return IROrder; }
1132 const DebugLoc &getDebugLoc() const { return DL; }
1133};
1134
1135// Define inline functions from the SDValue class.
1136
1137inline SDValue::SDValue(SDNode *node, unsigned resno)
1138 : Node(node), ResNo(resno) {
1139 // Explicitly check for !ResNo to avoid use-after-free, because there are
1140 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1141 // combines.
1142 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1143 "Invalid result number for the given node!");
1144 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1145}
1146
1147inline unsigned SDValue::getOpcode() const {
1148 return Node->getOpcode();
1149}
1150
1151inline EVT SDValue::getValueType() const {
1152 return Node->getValueType(ResNo);
1153}
1154
1155inline unsigned SDValue::getNumOperands() const {
1156 return Node->getNumOperands();
1157}
1158
1159inline const SDValue &SDValue::getOperand(unsigned i) const {
1160 return Node->getOperand(i);
1161}
1162
1163inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1164 return Node->getConstantOperandVal(i);
1165}
1166
Andrew Walbran16937d02019-10-22 13:54:20 +01001167inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1168 return Node->getConstantOperandAPInt(i);
1169}
1170
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001171inline bool SDValue::isTargetOpcode() const {
1172 return Node->isTargetOpcode();
1173}
1174
1175inline bool SDValue::isTargetMemoryOpcode() const {
1176 return Node->isTargetMemoryOpcode();
1177}
1178
1179inline bool SDValue::isMachineOpcode() const {
1180 return Node->isMachineOpcode();
1181}
1182
1183inline unsigned SDValue::getMachineOpcode() const {
1184 return Node->getMachineOpcode();
1185}
1186
1187inline bool SDValue::isUndef() const {
1188 return Node->isUndef();
1189}
1190
1191inline bool SDValue::use_empty() const {
1192 return !Node->hasAnyUseOfValue(ResNo);
1193}
1194
1195inline bool SDValue::hasOneUse() const {
1196 return Node->hasNUsesOfValue(1, ResNo);
1197}
1198
1199inline const DebugLoc &SDValue::getDebugLoc() const {
1200 return Node->getDebugLoc();
1201}
1202
1203inline void SDValue::dump() const {
1204 return Node->dump();
1205}
1206
1207inline void SDValue::dump(const SelectionDAG *G) const {
1208 return Node->dump(G);
1209}
1210
1211inline void SDValue::dumpr() const {
1212 return Node->dumpr();
1213}
1214
1215inline void SDValue::dumpr(const SelectionDAG *G) const {
1216 return Node->dumpr(G);
1217}
1218
1219// Define inline functions from the SDUse class.
1220
1221inline void SDUse::set(const SDValue &V) {
1222 if (Val.getNode()) removeFromList();
1223 Val = V;
1224 if (V.getNode()) V.getNode()->addUse(*this);
1225}
1226
1227inline void SDUse::setInitial(const SDValue &V) {
1228 Val = V;
1229 V.getNode()->addUse(*this);
1230}
1231
1232inline void SDUse::setNode(SDNode *N) {
1233 if (Val.getNode()) removeFromList();
1234 Val.setNode(N);
1235 if (N) N->addUse(*this);
1236}
1237
1238/// This class is used to form a handle around another node that
1239/// is persistent and is updated across invocations of replaceAllUsesWith on its
1240/// operand. This node should be directly created by end-users and not added to
1241/// the AllNodes list.
1242class HandleSDNode : public SDNode {
1243 SDUse Op;
1244
1245public:
1246 explicit HandleSDNode(SDValue X)
1247 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1248 // HandleSDNodes are never inserted into the DAG, so they won't be
1249 // auto-numbered. Use ID 65535 as a sentinel.
1250 PersistentId = 0xffff;
1251
1252 // Manually set up the operand list. This node type is special in that it's
1253 // always stack allocated and SelectionDAG does not manage its operands.
1254 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1255 // be so special.
1256 Op.setUser(this);
1257 Op.setInitial(X);
1258 NumOperands = 1;
1259 OperandList = &Op;
1260 }
1261 ~HandleSDNode();
1262
1263 const SDValue &getValue() const { return Op; }
1264};
1265
1266class AddrSpaceCastSDNode : public SDNode {
1267private:
1268 unsigned SrcAddrSpace;
1269 unsigned DestAddrSpace;
1270
1271public:
1272 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1273 unsigned SrcAS, unsigned DestAS);
1274
1275 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1276 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1277
1278 static bool classof(const SDNode *N) {
1279 return N->getOpcode() == ISD::ADDRSPACECAST;
1280 }
1281};
1282
1283/// This is an abstract virtual class for memory operations.
1284class MemSDNode : public SDNode {
1285private:
1286 // VT of in-memory value.
1287 EVT MemoryVT;
1288
1289protected:
1290 /// Memory reference information.
1291 MachineMemOperand *MMO;
1292
1293public:
1294 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001295 EVT memvt, MachineMemOperand *MMO);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001296
1297 bool readMem() const { return MMO->isLoad(); }
1298 bool writeMem() const { return MMO->isStore(); }
1299
1300 /// Returns alignment and volatility of the memory access
1301 unsigned getOriginalAlignment() const {
1302 return MMO->getBaseAlignment();
1303 }
1304 unsigned getAlignment() const {
1305 return MMO->getAlignment();
1306 }
1307
1308 /// Return the SubclassData value, without HasDebugValue. This contains an
1309 /// encoding of the volatile flag, as well as bits used by subclasses. This
1310 /// function should only be used to compute a FoldingSetNodeID value.
1311 /// The HasDebugValue bit is masked out because CSE map needs to match
1312 /// nodes with debug info with nodes without debug info. Same is about
1313 /// isDivergent bit.
1314 unsigned getRawSubclassData() const {
1315 uint16_t Data;
1316 union {
1317 char RawSDNodeBits[sizeof(uint16_t)];
1318 SDNodeBitfields SDNodeBits;
1319 };
1320 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1321 SDNodeBits.HasDebugValue = 0;
1322 SDNodeBits.IsDivergent = false;
1323 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1324 return Data;
1325 }
1326
1327 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1328 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1329 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1330 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1331
1332 // Returns the offset from the location of the access.
1333 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1334
1335 /// Returns the AA info that describes the dereference.
1336 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1337
1338 /// Returns the Ranges that describes the dereference.
1339 const MDNode *getRanges() const { return MMO->getRanges(); }
1340
1341 /// Returns the synchronization scope ID for this memory operation.
1342 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1343
1344 /// Return the atomic ordering requirements for this memory operation. For
1345 /// cmpxchg atomic operations, return the atomic ordering requirements when
1346 /// store occurs.
1347 AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1348
1349 /// Return the type of the in-memory value.
1350 EVT getMemoryVT() const { return MemoryVT; }
1351
1352 /// Return a MachineMemOperand object describing the memory
1353 /// reference performed by operation.
1354 MachineMemOperand *getMemOperand() const { return MMO; }
1355
1356 const MachinePointerInfo &getPointerInfo() const {
1357 return MMO->getPointerInfo();
1358 }
1359
1360 /// Return the address space for the associated pointer
1361 unsigned getAddressSpace() const {
1362 return getPointerInfo().getAddrSpace();
1363 }
1364
1365 /// Update this MemSDNode's MachineMemOperand information
1366 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1367 /// This must only be used when the new alignment applies to all users of
1368 /// this MachineMemOperand.
1369 void refineAlignment(const MachineMemOperand *NewMMO) {
1370 MMO->refineAlignment(NewMMO);
1371 }
1372
1373 const SDValue &getChain() const { return getOperand(0); }
1374 const SDValue &getBasePtr() const {
1375 return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1376 }
1377
1378 // Methods to support isa and dyn_cast
1379 static bool classof(const SDNode *N) {
1380 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1381 // with either an intrinsic or a target opcode.
1382 return N->getOpcode() == ISD::LOAD ||
1383 N->getOpcode() == ISD::STORE ||
1384 N->getOpcode() == ISD::PREFETCH ||
1385 N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1386 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1387 N->getOpcode() == ISD::ATOMIC_SWAP ||
1388 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1389 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1390 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1391 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1392 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1393 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1394 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1395 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1396 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1397 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1398 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
Andrew Walbran16937d02019-10-22 13:54:20 +01001399 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1400 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001401 N->getOpcode() == ISD::ATOMIC_LOAD ||
1402 N->getOpcode() == ISD::ATOMIC_STORE ||
1403 N->getOpcode() == ISD::MLOAD ||
1404 N->getOpcode() == ISD::MSTORE ||
1405 N->getOpcode() == ISD::MGATHER ||
1406 N->getOpcode() == ISD::MSCATTER ||
1407 N->isMemIntrinsic() ||
1408 N->isTargetMemoryOpcode();
1409 }
1410};
1411
1412/// This is an SDNode representing atomic operations.
1413class AtomicSDNode : public MemSDNode {
1414public:
1415 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1416 EVT MemVT, MachineMemOperand *MMO)
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001417 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1418 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1419 MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1420 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001421
1422 const SDValue &getBasePtr() const { return getOperand(1); }
1423 const SDValue &getVal() const { return getOperand(2); }
1424
1425 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1426 /// otherwise.
1427 bool isCompareAndSwap() const {
1428 unsigned Op = getOpcode();
1429 return Op == ISD::ATOMIC_CMP_SWAP ||
1430 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1431 }
1432
1433 /// For cmpxchg atomic operations, return the atomic ordering requirements
1434 /// when store does not occur.
1435 AtomicOrdering getFailureOrdering() const {
1436 assert(isCompareAndSwap() && "Must be cmpxchg operation");
1437 return MMO->getFailureOrdering();
1438 }
1439
1440 // Methods to support isa and dyn_cast
1441 static bool classof(const SDNode *N) {
1442 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1443 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1444 N->getOpcode() == ISD::ATOMIC_SWAP ||
1445 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1446 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1447 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1448 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1449 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1450 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1451 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1452 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1453 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1454 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1455 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
Andrew Walbran16937d02019-10-22 13:54:20 +01001456 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1457 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001458 N->getOpcode() == ISD::ATOMIC_LOAD ||
1459 N->getOpcode() == ISD::ATOMIC_STORE;
1460 }
1461};
1462
1463/// This SDNode is used for target intrinsics that touch
1464/// memory and need an associated MachineMemOperand. Its opcode may be
1465/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1466/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1467class MemIntrinsicSDNode : public MemSDNode {
1468public:
1469 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1470 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1471 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1472 SDNodeBits.IsMemIntrinsic = true;
1473 }
1474
1475 // Methods to support isa and dyn_cast
1476 static bool classof(const SDNode *N) {
1477 // We lower some target intrinsics to their target opcode
1478 // early a node with a target opcode can be of this class
1479 return N->isMemIntrinsic() ||
1480 N->getOpcode() == ISD::PREFETCH ||
1481 N->isTargetMemoryOpcode();
1482 }
1483};
1484
1485/// This SDNode is used to implement the code generator
1486/// support for the llvm IR shufflevector instruction. It combines elements
1487/// from two input vectors into a new input vector, with the selection and
1488/// ordering of elements determined by an array of integers, referred to as
1489/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1490/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1491/// An index of -1 is treated as undef, such that the code generator may put
1492/// any value in the corresponding element of the result.
1493class ShuffleVectorSDNode : public SDNode {
1494 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1495 // is freed when the SelectionDAG object is destroyed.
1496 const int *Mask;
1497
1498protected:
1499 friend class SelectionDAG;
1500
1501 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1502 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1503
1504public:
1505 ArrayRef<int> getMask() const {
1506 EVT VT = getValueType(0);
1507 return makeArrayRef(Mask, VT.getVectorNumElements());
1508 }
1509
1510 int getMaskElt(unsigned Idx) const {
1511 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1512 return Mask[Idx];
1513 }
1514
1515 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1516
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001517 int getSplatIndex() const {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001518 assert(isSplat() && "Cannot get splat index for non-splat!");
1519 EVT VT = getValueType(0);
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001520 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001521 if (Mask[i] >= 0)
1522 return Mask[i];
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001523
1524 // We can choose any index value here and be correct because all elements
1525 // are undefined. Return 0 for better potential for callers to simplify.
1526 return 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001527 }
1528
1529 static bool isSplatMask(const int *Mask, EVT VT);
1530
1531 /// Change values in a shuffle permute mask assuming
1532 /// the two vector operands have swapped position.
1533 static void commuteMask(MutableArrayRef<int> Mask) {
1534 unsigned NumElems = Mask.size();
1535 for (unsigned i = 0; i != NumElems; ++i) {
1536 int idx = Mask[i];
1537 if (idx < 0)
1538 continue;
1539 else if (idx < (int)NumElems)
1540 Mask[i] = idx + NumElems;
1541 else
1542 Mask[i] = idx - NumElems;
1543 }
1544 }
1545
1546 static bool classof(const SDNode *N) {
1547 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1548 }
1549};
1550
1551class ConstantSDNode : public SDNode {
1552 friend class SelectionDAG;
1553
1554 const ConstantInt *Value;
1555
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001556 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1557 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001558 getSDVTList(VT)),
1559 Value(val) {
1560 ConstantSDNodeBits.IsOpaque = isOpaque;
1561 }
1562
1563public:
1564 const ConstantInt *getConstantIntValue() const { return Value; }
1565 const APInt &getAPIntValue() const { return Value->getValue(); }
1566 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1567 int64_t getSExtValue() const { return Value->getSExtValue(); }
1568 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1569 return Value->getLimitedValue(Limit);
1570 }
1571
1572 bool isOne() const { return Value->isOne(); }
1573 bool isNullValue() const { return Value->isZero(); }
1574 bool isAllOnesValue() const { return Value->isMinusOne(); }
1575
1576 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1577
1578 static bool classof(const SDNode *N) {
1579 return N->getOpcode() == ISD::Constant ||
1580 N->getOpcode() == ISD::TargetConstant;
1581 }
1582};
1583
1584uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1585 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1586}
1587
Andrew Walbran16937d02019-10-22 13:54:20 +01001588const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1589 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1590}
1591
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001592class ConstantFPSDNode : public SDNode {
1593 friend class SelectionDAG;
1594
1595 const ConstantFP *Value;
1596
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001597 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1598 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1599 DebugLoc(), getSDVTList(VT)),
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001600 Value(val) {}
1601
1602public:
1603 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1604 const ConstantFP *getConstantFPValue() const { return Value; }
1605
1606 /// Return true if the value is positive or negative zero.
1607 bool isZero() const { return Value->isZero(); }
1608
1609 /// Return true if the value is a NaN.
1610 bool isNaN() const { return Value->isNaN(); }
1611
1612 /// Return true if the value is an infinity
1613 bool isInfinity() const { return Value->isInfinity(); }
1614
1615 /// Return true if the value is negative.
1616 bool isNegative() const { return Value->isNegative(); }
1617
1618 /// We don't rely on operator== working on double values, as
1619 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1620 /// As such, this method can be used to do an exact bit-for-bit comparison of
1621 /// two floating point values.
1622
1623 /// We leave the version with the double argument here because it's just so
1624 /// convenient to write "2.0" and the like. Without this function we'd
1625 /// have to duplicate its logic everywhere it's called.
1626 bool isExactlyValue(double V) const {
1627 return Value->getValueAPF().isExactlyValue(V);
1628 }
1629 bool isExactlyValue(const APFloat& V) const;
1630
1631 static bool isValueValidForType(EVT VT, const APFloat& Val);
1632
1633 static bool classof(const SDNode *N) {
1634 return N->getOpcode() == ISD::ConstantFP ||
1635 N->getOpcode() == ISD::TargetConstantFP;
1636 }
1637};
1638
1639/// Returns true if \p V is a constant integer zero.
1640bool isNullConstant(SDValue V);
1641
1642/// Returns true if \p V is an FP constant with a value of positive zero.
1643bool isNullFPConstant(SDValue V);
1644
1645/// Returns true if \p V is an integer constant with all bits set.
1646bool isAllOnesConstant(SDValue V);
1647
1648/// Returns true if \p V is a constant integer one.
1649bool isOneConstant(SDValue V);
1650
Andrew Scull0372a572018-11-16 15:47:06 +00001651/// Return the non-bitcasted source operand of \p V if it exists.
1652/// If \p V is not a bitcasted value, it is returned as-is.
1653SDValue peekThroughBitcasts(SDValue V);
1654
1655/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1656/// If \p V is not a bitcasted one-use value, it is returned as-is.
1657SDValue peekThroughOneUseBitcasts(SDValue V);
1658
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001659/// Return the non-extracted vector source operand of \p V if it exists.
1660/// If \p V is not an extracted subvector, it is returned as-is.
1661SDValue peekThroughExtractSubvectors(SDValue V);
1662
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001663/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1664/// constant is canonicalized to be operand 1.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001665bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001666
1667/// Returns the SDNode if it is a constant splat BuildVector or constant int.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001668ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1669 bool AllowTruncation = false);
1670
1671/// Returns the SDNode if it is a demanded constant splat BuildVector or
1672/// constant int.
1673ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1674 bool AllowUndefs = false,
1675 bool AllowTruncation = false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001676
1677/// Returns the SDNode if it is a constant splat BuildVector or constant float.
Andrew Scull0372a572018-11-16 15:47:06 +00001678ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001679
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001680/// Returns the SDNode if it is a demanded constant splat BuildVector or
1681/// constant float.
1682ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1683 bool AllowUndefs = false);
1684
Andrew Walbran16937d02019-10-22 13:54:20 +01001685/// Return true if the value is a constant 0 integer or a splatted vector of
1686/// a constant 0 integer (with no undefs by default).
1687/// Build vector implicit truncation is not an issue for null values.
1688bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1689
1690/// Return true if the value is a constant 1 integer or a splatted vector of a
1691/// constant 1 integer (with no undefs).
1692/// Does not permit build vector implicit truncation.
1693bool isOneOrOneSplat(SDValue V);
1694
1695/// Return true if the value is a constant -1 integer or a splatted vector of a
1696/// constant -1 integer (with no undefs).
1697/// Does not permit build vector implicit truncation.
1698bool isAllOnesOrAllOnesSplat(SDValue V);
1699
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001700class GlobalAddressSDNode : public SDNode {
1701 friend class SelectionDAG;
1702
1703 const GlobalValue *TheGlobal;
1704 int64_t Offset;
1705 unsigned char TargetFlags;
1706
1707 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1708 const GlobalValue *GA, EVT VT, int64_t o,
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001709 unsigned char TF);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001710
1711public:
1712 const GlobalValue *getGlobal() const { return TheGlobal; }
1713 int64_t getOffset() const { return Offset; }
1714 unsigned char getTargetFlags() const { return TargetFlags; }
1715 // Return the address space this GlobalAddress belongs to.
1716 unsigned getAddressSpace() const;
1717
1718 static bool classof(const SDNode *N) {
1719 return N->getOpcode() == ISD::GlobalAddress ||
1720 N->getOpcode() == ISD::TargetGlobalAddress ||
1721 N->getOpcode() == ISD::GlobalTLSAddress ||
1722 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1723 }
1724};
1725
1726class FrameIndexSDNode : public SDNode {
1727 friend class SelectionDAG;
1728
1729 int FI;
1730
1731 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1732 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1733 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1734 }
1735
1736public:
1737 int getIndex() const { return FI; }
1738
1739 static bool classof(const SDNode *N) {
1740 return N->getOpcode() == ISD::FrameIndex ||
1741 N->getOpcode() == ISD::TargetFrameIndex;
1742 }
1743};
1744
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001745/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1746/// the offet and size that are started/ended in the underlying FrameIndex.
1747class LifetimeSDNode : public SDNode {
1748 friend class SelectionDAG;
1749 int64_t Size;
1750 int64_t Offset; // -1 if offset is unknown.
1751
1752 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1753 SDVTList VTs, int64_t Size, int64_t Offset)
1754 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1755public:
1756 int64_t getFrameIndex() const {
1757 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1758 }
1759
1760 bool hasOffset() const { return Offset >= 0; }
1761 int64_t getOffset() const {
1762 assert(hasOffset() && "offset is unknown");
1763 return Offset;
1764 }
1765 int64_t getSize() const {
1766 assert(hasOffset() && "offset is unknown");
1767 return Size;
1768 }
1769
1770 // Methods to support isa and dyn_cast
1771 static bool classof(const SDNode *N) {
1772 return N->getOpcode() == ISD::LIFETIME_START ||
1773 N->getOpcode() == ISD::LIFETIME_END;
1774 }
1775};
1776
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001777class JumpTableSDNode : public SDNode {
1778 friend class SelectionDAG;
1779
1780 int JTI;
1781 unsigned char TargetFlags;
1782
1783 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1784 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1785 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1786 }
1787
1788public:
1789 int getIndex() const { return JTI; }
1790 unsigned char getTargetFlags() const { return TargetFlags; }
1791
1792 static bool classof(const SDNode *N) {
1793 return N->getOpcode() == ISD::JumpTable ||
1794 N->getOpcode() == ISD::TargetJumpTable;
1795 }
1796};
1797
1798class ConstantPoolSDNode : public SDNode {
1799 friend class SelectionDAG;
1800
1801 union {
1802 const Constant *ConstVal;
1803 MachineConstantPoolValue *MachineCPVal;
1804 } Val;
1805 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1806 unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
1807 unsigned char TargetFlags;
1808
1809 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1810 unsigned Align, unsigned char TF)
1811 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1812 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1813 TargetFlags(TF) {
1814 assert(Offset >= 0 && "Offset is too large");
1815 Val.ConstVal = c;
1816 }
1817
1818 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1819 EVT VT, int o, unsigned Align, unsigned char TF)
1820 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1821 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1822 TargetFlags(TF) {
1823 assert(Offset >= 0 && "Offset is too large");
1824 Val.MachineCPVal = v;
1825 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1826 }
1827
1828public:
1829 bool isMachineConstantPoolEntry() const {
1830 return Offset < 0;
1831 }
1832
1833 const Constant *getConstVal() const {
1834 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1835 return Val.ConstVal;
1836 }
1837
1838 MachineConstantPoolValue *getMachineCPVal() const {
1839 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1840 return Val.MachineCPVal;
1841 }
1842
1843 int getOffset() const {
1844 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1845 }
1846
1847 // Return the alignment of this constant pool object, which is either 0 (for
1848 // default alignment) or the desired value.
1849 unsigned getAlignment() const { return Alignment; }
1850 unsigned char getTargetFlags() const { return TargetFlags; }
1851
1852 Type *getType() const;
1853
1854 static bool classof(const SDNode *N) {
1855 return N->getOpcode() == ISD::ConstantPool ||
1856 N->getOpcode() == ISD::TargetConstantPool;
1857 }
1858};
1859
1860/// Completely target-dependent object reference.
1861class TargetIndexSDNode : public SDNode {
1862 friend class SelectionDAG;
1863
1864 unsigned char TargetFlags;
1865 int Index;
1866 int64_t Offset;
1867
1868public:
1869 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
1870 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1871 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1872
1873 unsigned char getTargetFlags() const { return TargetFlags; }
1874 int getIndex() const { return Index; }
1875 int64_t getOffset() const { return Offset; }
1876
1877 static bool classof(const SDNode *N) {
1878 return N->getOpcode() == ISD::TargetIndex;
1879 }
1880};
1881
1882class BasicBlockSDNode : public SDNode {
1883 friend class SelectionDAG;
1884
1885 MachineBasicBlock *MBB;
1886
1887 /// Debug info is meaningful and potentially useful here, but we create
1888 /// blocks out of order when they're jumped to, which makes it a bit
1889 /// harder. Let's see if we need it first.
1890 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1891 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1892 {}
1893
1894public:
1895 MachineBasicBlock *getBasicBlock() const { return MBB; }
1896
1897 static bool classof(const SDNode *N) {
1898 return N->getOpcode() == ISD::BasicBlock;
1899 }
1900};
1901
1902/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1903class BuildVectorSDNode : public SDNode {
1904public:
1905 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1906 explicit BuildVectorSDNode() = delete;
1907
1908 /// Check if this is a constant splat, and if so, find the
1909 /// smallest element size that splats the vector. If MinSplatBits is
1910 /// nonzero, the element size must be at least that large. Note that the
1911 /// splat element may be the entire vector (i.e., a one element vector).
1912 /// Returns the splat element value in SplatValue. Any undefined bits in
1913 /// that value are zero, and the corresponding bits in the SplatUndef mask
1914 /// are set. The SplatBitSize value is set to the splat element size in
1915 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1916 /// undefined. isBigEndian describes the endianness of the target.
1917 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1918 unsigned &SplatBitSize, bool &HasAnyUndefs,
1919 unsigned MinSplatBits = 0,
1920 bool isBigEndian = false) const;
1921
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001922 /// Returns the demanded splatted value or a null value if this is not a
1923 /// splat.
1924 ///
1925 /// The DemandedElts mask indicates the elements that must be in the splat.
1926 /// If passed a non-null UndefElements bitvector, it will resize it to match
1927 /// the vector width and set the bits where elements are undef.
1928 SDValue getSplatValue(const APInt &DemandedElts,
1929 BitVector *UndefElements = nullptr) const;
1930
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001931 /// Returns the splatted value or a null value if this is not a splat.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001932 ///
1933 /// If passed a non-null UndefElements bitvector, it will resize it to match
1934 /// the vector width and set the bits where elements are undef.
1935 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1936
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001937 /// Returns the demanded splatted constant or null if this is not a constant
1938 /// splat.
1939 ///
1940 /// The DemandedElts mask indicates the elements that must be in the splat.
1941 /// If passed a non-null UndefElements bitvector, it will resize it to match
1942 /// the vector width and set the bits where elements are undef.
1943 ConstantSDNode *
1944 getConstantSplatNode(const APInt &DemandedElts,
1945 BitVector *UndefElements = nullptr) const;
1946
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001947 /// Returns the splatted constant or null if this is not a constant
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001948 /// splat.
1949 ///
1950 /// If passed a non-null UndefElements bitvector, it will resize it to match
1951 /// the vector width and set the bits where elements are undef.
1952 ConstantSDNode *
1953 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1954
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001955 /// Returns the demanded splatted constant FP or null if this is not a
1956 /// constant FP splat.
1957 ///
1958 /// The DemandedElts mask indicates the elements that must be in the splat.
1959 /// If passed a non-null UndefElements bitvector, it will resize it to match
1960 /// the vector width and set the bits where elements are undef.
1961 ConstantFPSDNode *
1962 getConstantFPSplatNode(const APInt &DemandedElts,
1963 BitVector *UndefElements = nullptr) const;
1964
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001965 /// Returns the splatted constant FP or null if this is not a constant
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001966 /// FP splat.
1967 ///
1968 /// If passed a non-null UndefElements bitvector, it will resize it to match
1969 /// the vector width and set the bits where elements are undef.
1970 ConstantFPSDNode *
1971 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
1972
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001973 /// If this is a constant FP splat and the splatted constant FP is an
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001974 /// exact power or 2, return the log base 2 integer value. Otherwise,
1975 /// return -1.
1976 ///
1977 /// The BitWidth specifies the necessary bit precision.
1978 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
1979 uint32_t BitWidth) const;
1980
1981 bool isConstant() const;
1982
1983 static bool classof(const SDNode *N) {
1984 return N->getOpcode() == ISD::BUILD_VECTOR;
1985 }
1986};
1987
1988/// An SDNode that holds an arbitrary LLVM IR Value. This is
1989/// used when the SelectionDAG needs to make a simple reference to something
1990/// in the LLVM IR representation.
1991///
1992class SrcValueSDNode : public SDNode {
1993 friend class SelectionDAG;
1994
1995 const Value *V;
1996
1997 /// Create a SrcValue for a general value.
1998 explicit SrcValueSDNode(const Value *v)
1999 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2000
2001public:
2002 /// Return the contained Value.
2003 const Value *getValue() const { return V; }
2004
2005 static bool classof(const SDNode *N) {
2006 return N->getOpcode() == ISD::SRCVALUE;
2007 }
2008};
2009
2010class MDNodeSDNode : public SDNode {
2011 friend class SelectionDAG;
2012
2013 const MDNode *MD;
2014
2015 explicit MDNodeSDNode(const MDNode *md)
2016 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2017 {}
2018
2019public:
2020 const MDNode *getMD() const { return MD; }
2021
2022 static bool classof(const SDNode *N) {
2023 return N->getOpcode() == ISD::MDNODE_SDNODE;
2024 }
2025};
2026
2027class RegisterSDNode : public SDNode {
2028 friend class SelectionDAG;
2029
2030 unsigned Reg;
2031
2032 RegisterSDNode(unsigned reg, EVT VT)
2033 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2034
2035public:
2036 unsigned getReg() const { return Reg; }
2037
2038 static bool classof(const SDNode *N) {
2039 return N->getOpcode() == ISD::Register;
2040 }
2041};
2042
2043class RegisterMaskSDNode : public SDNode {
2044 friend class SelectionDAG;
2045
2046 // The memory for RegMask is not owned by the node.
2047 const uint32_t *RegMask;
2048
2049 RegisterMaskSDNode(const uint32_t *mask)
2050 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2051 RegMask(mask) {}
2052
2053public:
2054 const uint32_t *getRegMask() const { return RegMask; }
2055
2056 static bool classof(const SDNode *N) {
2057 return N->getOpcode() == ISD::RegisterMask;
2058 }
2059};
2060
2061class BlockAddressSDNode : public SDNode {
2062 friend class SelectionDAG;
2063
2064 const BlockAddress *BA;
2065 int64_t Offset;
2066 unsigned char TargetFlags;
2067
2068 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2069 int64_t o, unsigned char Flags)
2070 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2071 BA(ba), Offset(o), TargetFlags(Flags) {}
2072
2073public:
2074 const BlockAddress *getBlockAddress() const { return BA; }
2075 int64_t getOffset() const { return Offset; }
2076 unsigned char getTargetFlags() const { return TargetFlags; }
2077
2078 static bool classof(const SDNode *N) {
2079 return N->getOpcode() == ISD::BlockAddress ||
2080 N->getOpcode() == ISD::TargetBlockAddress;
2081 }
2082};
2083
2084class LabelSDNode : public SDNode {
2085 friend class SelectionDAG;
2086
2087 MCSymbol *Label;
2088
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002089 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2090 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2091 assert(LabelSDNode::classof(this) && "not a label opcode");
2092 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002093
2094public:
2095 MCSymbol *getLabel() const { return Label; }
2096
2097 static bool classof(const SDNode *N) {
2098 return N->getOpcode() == ISD::EH_LABEL ||
2099 N->getOpcode() == ISD::ANNOTATION_LABEL;
2100 }
2101};
2102
2103class ExternalSymbolSDNode : public SDNode {
2104 friend class SelectionDAG;
2105
2106 const char *Symbol;
2107 unsigned char TargetFlags;
2108
2109 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2110 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2111 0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {}
2112
2113public:
2114 const char *getSymbol() const { return Symbol; }
2115 unsigned char getTargetFlags() const { return TargetFlags; }
2116
2117 static bool classof(const SDNode *N) {
2118 return N->getOpcode() == ISD::ExternalSymbol ||
2119 N->getOpcode() == ISD::TargetExternalSymbol;
2120 }
2121};
2122
2123class MCSymbolSDNode : public SDNode {
2124 friend class SelectionDAG;
2125
2126 MCSymbol *Symbol;
2127
2128 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2129 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2130
2131public:
2132 MCSymbol *getMCSymbol() const { return Symbol; }
2133
2134 static bool classof(const SDNode *N) {
2135 return N->getOpcode() == ISD::MCSymbol;
2136 }
2137};
2138
2139class CondCodeSDNode : public SDNode {
2140 friend class SelectionDAG;
2141
2142 ISD::CondCode Condition;
2143
2144 explicit CondCodeSDNode(ISD::CondCode Cond)
2145 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2146 Condition(Cond) {}
2147
2148public:
2149 ISD::CondCode get() const { return Condition; }
2150
2151 static bool classof(const SDNode *N) {
2152 return N->getOpcode() == ISD::CONDCODE;
2153 }
2154};
2155
2156/// This class is used to represent EVT's, which are used
2157/// to parameterize some operations.
2158class VTSDNode : public SDNode {
2159 friend class SelectionDAG;
2160
2161 EVT ValueType;
2162
2163 explicit VTSDNode(EVT VT)
2164 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2165 ValueType(VT) {}
2166
2167public:
2168 EVT getVT() const { return ValueType; }
2169
2170 static bool classof(const SDNode *N) {
2171 return N->getOpcode() == ISD::VALUETYPE;
2172 }
2173};
2174
2175/// Base class for LoadSDNode and StoreSDNode
2176class LSBaseSDNode : public MemSDNode {
2177public:
2178 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2179 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2180 MachineMemOperand *MMO)
2181 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2182 LSBaseSDNodeBits.AddressingMode = AM;
2183 assert(getAddressingMode() == AM && "Value truncated");
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002184 assert((!MMO->isAtomic() || MMO->isVolatile()) &&
2185 "use an AtomicSDNode instead for non-volatile atomics");
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002186 }
2187
2188 const SDValue &getOffset() const {
2189 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2190 }
2191
2192 /// Return the addressing mode for this load or store:
2193 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2194 ISD::MemIndexedMode getAddressingMode() const {
2195 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2196 }
2197
2198 /// Return true if this is a pre/post inc/dec load/store.
2199 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2200
2201 /// Return true if this is NOT a pre/post inc/dec load/store.
2202 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2203
2204 static bool classof(const SDNode *N) {
2205 return N->getOpcode() == ISD::LOAD ||
2206 N->getOpcode() == ISD::STORE;
2207 }
2208};
2209
2210/// This class is used to represent ISD::LOAD nodes.
2211class LoadSDNode : public LSBaseSDNode {
2212 friend class SelectionDAG;
2213
2214 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2215 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2216 MachineMemOperand *MMO)
2217 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2218 LoadSDNodeBits.ExtTy = ETy;
2219 assert(readMem() && "Load MachineMemOperand is not a load!");
2220 assert(!writeMem() && "Load MachineMemOperand is a store!");
2221 }
2222
2223public:
2224 /// Return whether this is a plain node,
2225 /// or one of the varieties of value-extending loads.
2226 ISD::LoadExtType getExtensionType() const {
2227 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2228 }
2229
2230 const SDValue &getBasePtr() const { return getOperand(1); }
2231 const SDValue &getOffset() const { return getOperand(2); }
2232
2233 static bool classof(const SDNode *N) {
2234 return N->getOpcode() == ISD::LOAD;
2235 }
2236};
2237
2238/// This class is used to represent ISD::STORE nodes.
2239class StoreSDNode : public LSBaseSDNode {
2240 friend class SelectionDAG;
2241
2242 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2243 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2244 MachineMemOperand *MMO)
2245 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2246 StoreSDNodeBits.IsTruncating = isTrunc;
2247 assert(!readMem() && "Store MachineMemOperand is a load!");
2248 assert(writeMem() && "Store MachineMemOperand is not a store!");
2249 }
2250
2251public:
2252 /// Return true if the op does a truncation before store.
2253 /// For integers this is the same as doing a TRUNCATE and storing the result.
2254 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2255 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2256 void setTruncatingStore(bool Truncating) {
2257 StoreSDNodeBits.IsTruncating = Truncating;
2258 }
2259
2260 const SDValue &getValue() const { return getOperand(1); }
2261 const SDValue &getBasePtr() const { return getOperand(2); }
2262 const SDValue &getOffset() const { return getOperand(3); }
2263
2264 static bool classof(const SDNode *N) {
2265 return N->getOpcode() == ISD::STORE;
2266 }
2267};
2268
2269/// This base class is used to represent MLOAD and MSTORE nodes
2270class MaskedLoadStoreSDNode : public MemSDNode {
2271public:
2272 friend class SelectionDAG;
2273
2274 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2275 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2276 MachineMemOperand *MMO)
2277 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
2278
Andrew Scull0372a572018-11-16 15:47:06 +00002279 // MaskedLoadSDNode (Chain, ptr, mask, passthru)
2280 // MaskedStoreSDNode (Chain, data, ptr, mask)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002281 // Mask is a vector of i1 elements
Andrew Scull0372a572018-11-16 15:47:06 +00002282 const SDValue &getBasePtr() const {
2283 return getOperand(getOpcode() == ISD::MLOAD ? 1 : 2);
2284 }
2285 const SDValue &getMask() const {
2286 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2287 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002288
2289 static bool classof(const SDNode *N) {
2290 return N->getOpcode() == ISD::MLOAD ||
2291 N->getOpcode() == ISD::MSTORE;
2292 }
2293};
2294
2295/// This class is used to represent an MLOAD node
2296class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2297public:
2298 friend class SelectionDAG;
2299
2300 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2301 ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
2302 MachineMemOperand *MMO)
2303 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
2304 LoadSDNodeBits.ExtTy = ETy;
2305 LoadSDNodeBits.IsExpanding = IsExpanding;
2306 }
2307
2308 ISD::LoadExtType getExtensionType() const {
2309 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2310 }
2311
Andrew Scull0372a572018-11-16 15:47:06 +00002312 const SDValue &getBasePtr() const { return getOperand(1); }
2313 const SDValue &getMask() const { return getOperand(2); }
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002314 const SDValue &getPassThru() const { return getOperand(3); }
Andrew Scull0372a572018-11-16 15:47:06 +00002315
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002316 static bool classof(const SDNode *N) {
2317 return N->getOpcode() == ISD::MLOAD;
2318 }
2319
2320 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2321};
2322
2323/// This class is used to represent an MSTORE node
2324class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2325public:
2326 friend class SelectionDAG;
2327
2328 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2329 bool isTrunc, bool isCompressing, EVT MemVT,
2330 MachineMemOperand *MMO)
2331 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
2332 StoreSDNodeBits.IsTruncating = isTrunc;
2333 StoreSDNodeBits.IsCompressing = isCompressing;
2334 }
2335
2336 /// Return true if the op does a truncation before store.
2337 /// For integers this is the same as doing a TRUNCATE and storing the result.
2338 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2339 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2340
2341 /// Returns true if the op does a compression to the vector before storing.
2342 /// The node contiguously stores the active elements (integers or floats)
2343 /// in src (those with their respective bit set in writemask k) to unaligned
2344 /// memory at base_addr.
2345 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2346
Andrew Scull0372a572018-11-16 15:47:06 +00002347 const SDValue &getValue() const { return getOperand(1); }
2348 const SDValue &getBasePtr() const { return getOperand(2); }
2349 const SDValue &getMask() const { return getOperand(3); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002350
2351 static bool classof(const SDNode *N) {
2352 return N->getOpcode() == ISD::MSTORE;
2353 }
2354};
2355
2356/// This is a base class used to represent
2357/// MGATHER and MSCATTER nodes
2358///
2359class MaskedGatherScatterSDNode : public MemSDNode {
2360public:
2361 friend class SelectionDAG;
2362
2363 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2364 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2365 MachineMemOperand *MMO)
2366 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
2367
2368 // In the both nodes address is Op1, mask is Op2:
2369 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2370 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2371 // Mask is a vector of i1 elements
2372 const SDValue &getBasePtr() const { return getOperand(3); }
2373 const SDValue &getIndex() const { return getOperand(4); }
2374 const SDValue &getMask() const { return getOperand(2); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002375 const SDValue &getScale() const { return getOperand(5); }
2376
2377 static bool classof(const SDNode *N) {
2378 return N->getOpcode() == ISD::MGATHER ||
2379 N->getOpcode() == ISD::MSCATTER;
2380 }
2381};
2382
2383/// This class is used to represent an MGATHER node
2384///
2385class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2386public:
2387 friend class SelectionDAG;
2388
2389 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2390 EVT MemVT, MachineMemOperand *MMO)
2391 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {}
2392
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002393 const SDValue &getPassThru() const { return getOperand(1); }
2394
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002395 static bool classof(const SDNode *N) {
2396 return N->getOpcode() == ISD::MGATHER;
2397 }
2398};
2399
2400/// This class is used to represent an MSCATTER node
2401///
2402class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2403public:
2404 friend class SelectionDAG;
2405
2406 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2407 EVT MemVT, MachineMemOperand *MMO)
2408 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {}
2409
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002410 const SDValue &getValue() const { return getOperand(1); }
2411
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002412 static bool classof(const SDNode *N) {
2413 return N->getOpcode() == ISD::MSCATTER;
2414 }
2415};
2416
2417/// An SDNode that represents everything that will be needed
2418/// to construct a MachineInstr. These nodes are created during the
2419/// instruction selection proper phase.
Andrew Scull0372a572018-11-16 15:47:06 +00002420///
2421/// Note that the only supported way to set the `memoperands` is by calling the
2422/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2423/// inside the DAG rather than in the node.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002424class MachineSDNode : public SDNode {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002425private:
2426 friend class SelectionDAG;
2427
2428 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2429 : SDNode(Opc, Order, DL, VTs) {}
2430
Andrew Scull0372a572018-11-16 15:47:06 +00002431 // We use a pointer union between a single `MachineMemOperand` pointer and
2432 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2433 // the number of these is zero, the single pointer variant used when the
2434 // number is one, and the array is used for larger numbers.
2435 //
2436 // The array is allocated via the `SelectionDAG`'s allocator and so will
2437 // always live until the DAG is cleaned up and doesn't require ownership here.
2438 //
2439 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2440 // subclasses aren't managed in a conforming C++ manner. See the comments on
2441 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2442 // constraint here is that these don't manage memory with their constructor or
2443 // destructor and can be initialized to a good state even if they start off
2444 // uninitialized.
2445 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2446
2447 // Note that this could be folded into the above `MemRefs` member if doing so
2448 // is advantageous at some point. We don't need to store this in most cases.
2449 // However, at the moment this doesn't appear to make the allocation any
2450 // smaller and makes the code somewhat simpler to read.
2451 int NumMemRefs = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002452
2453public:
Andrew Scull0372a572018-11-16 15:47:06 +00002454 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002455
Andrew Scull0372a572018-11-16 15:47:06 +00002456 ArrayRef<MachineMemOperand *> memoperands() const {
2457 // Special case the common cases.
2458 if (NumMemRefs == 0)
2459 return {};
2460 if (NumMemRefs == 1)
2461 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2462
2463 // Otherwise we have an actual array.
2464 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2465 }
2466 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2467 mmo_iterator memoperands_end() const { return memoperands().end(); }
2468 bool memoperands_empty() const { return memoperands().empty(); }
2469
2470 /// Clear out the memory reference descriptor list.
2471 void clearMemRefs() {
2472 MemRefs = nullptr;
2473 NumMemRefs = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002474 }
2475
2476 static bool classof(const SDNode *N) {
2477 return N->isMachineOpcode();
2478 }
2479};
2480
2481class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2482 SDNode, ptrdiff_t> {
2483 const SDNode *Node;
2484 unsigned Operand;
2485
2486 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2487
2488public:
2489 bool operator==(const SDNodeIterator& x) const {
2490 return Operand == x.Operand;
2491 }
2492 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2493
2494 pointer operator*() const {
2495 return Node->getOperand(Operand).getNode();
2496 }
2497 pointer operator->() const { return operator*(); }
2498
2499 SDNodeIterator& operator++() { // Preincrement
2500 ++Operand;
2501 return *this;
2502 }
2503 SDNodeIterator operator++(int) { // Postincrement
2504 SDNodeIterator tmp = *this; ++*this; return tmp;
2505 }
2506 size_t operator-(SDNodeIterator Other) const {
2507 assert(Node == Other.Node &&
2508 "Cannot compare iterators of two different nodes!");
2509 return Operand - Other.Operand;
2510 }
2511
2512 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2513 static SDNodeIterator end (const SDNode *N) {
2514 return SDNodeIterator(N, N->getNumOperands());
2515 }
2516
2517 unsigned getOperand() const { return Operand; }
2518 const SDNode *getNode() const { return Node; }
2519};
2520
2521template <> struct GraphTraits<SDNode*> {
2522 using NodeRef = SDNode *;
2523 using ChildIteratorType = SDNodeIterator;
2524
2525 static NodeRef getEntryNode(SDNode *N) { return N; }
2526
2527 static ChildIteratorType child_begin(NodeRef N) {
2528 return SDNodeIterator::begin(N);
2529 }
2530
2531 static ChildIteratorType child_end(NodeRef N) {
2532 return SDNodeIterator::end(N);
2533 }
2534};
2535
2536/// A representation of the largest SDNode, for use in sizeof().
2537///
2538/// This needs to be a union because the largest node differs on 32 bit systems
2539/// with 4 and 8 byte pointer alignment, respectively.
2540using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2541 BlockAddressSDNode,
2542 GlobalAddressSDNode>;
2543
2544/// The SDNode class with the greatest alignment requirement.
2545using MostAlignedSDNode = GlobalAddressSDNode;
2546
2547namespace ISD {
2548
2549 /// Returns true if the specified node is a non-extending and unindexed load.
2550 inline bool isNormalLoad(const SDNode *N) {
2551 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2552 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2553 Ld->getAddressingMode() == ISD::UNINDEXED;
2554 }
2555
2556 /// Returns true if the specified node is a non-extending load.
2557 inline bool isNON_EXTLoad(const SDNode *N) {
2558 return isa<LoadSDNode>(N) &&
2559 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2560 }
2561
2562 /// Returns true if the specified node is a EXTLOAD.
2563 inline bool isEXTLoad(const SDNode *N) {
2564 return isa<LoadSDNode>(N) &&
2565 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2566 }
2567
2568 /// Returns true if the specified node is a SEXTLOAD.
2569 inline bool isSEXTLoad(const SDNode *N) {
2570 return isa<LoadSDNode>(N) &&
2571 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2572 }
2573
2574 /// Returns true if the specified node is a ZEXTLOAD.
2575 inline bool isZEXTLoad(const SDNode *N) {
2576 return isa<LoadSDNode>(N) &&
2577 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2578 }
2579
2580 /// Returns true if the specified node is an unindexed load.
2581 inline bool isUNINDEXEDLoad(const SDNode *N) {
2582 return isa<LoadSDNode>(N) &&
2583 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2584 }
2585
2586 /// Returns true if the specified node is a non-truncating
2587 /// and unindexed store.
2588 inline bool isNormalStore(const SDNode *N) {
2589 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2590 return St && !St->isTruncatingStore() &&
2591 St->getAddressingMode() == ISD::UNINDEXED;
2592 }
2593
2594 /// Returns true if the specified node is a non-truncating store.
2595 inline bool isNON_TRUNCStore(const SDNode *N) {
2596 return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2597 }
2598
2599 /// Returns true if the specified node is a truncating store.
2600 inline bool isTRUNCStore(const SDNode *N) {
2601 return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2602 }
2603
2604 /// Returns true if the specified node is an unindexed store.
2605 inline bool isUNINDEXEDStore(const SDNode *N) {
2606 return isa<StoreSDNode>(N) &&
2607 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2608 }
2609
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002610 /// Attempt to match a unary predicate against a scalar/splat constant or
2611 /// every element of a constant BUILD_VECTOR.
Andrew Walbran16937d02019-10-22 13:54:20 +01002612 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002613 bool matchUnaryPredicate(SDValue Op,
Andrew Walbran16937d02019-10-22 13:54:20 +01002614 std::function<bool(ConstantSDNode *)> Match,
2615 bool AllowUndefs = false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002616
2617 /// Attempt to match a binary predicate against a pair of scalar/splat
2618 /// constants or every element of a pair of constant BUILD_VECTORs.
Andrew Walbran16937d02019-10-22 13:54:20 +01002619 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002620 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002621 bool matchBinaryPredicate(
2622 SDValue LHS, SDValue RHS,
Andrew Walbran16937d02019-10-22 13:54:20 +01002623 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002624 bool AllowUndefs = false, bool AllowTypeMismatch = false);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002625} // end namespace ISD
2626
2627} // end namespace llvm
2628
2629#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H