Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/CodeGen/SelectionDAGNodes.h b/linux-x64/clang/include/llvm/CodeGen/SelectionDAGNodes.h
new file mode 100644
index 0000000..ffb5c00
--- /dev/null
+++ b/linux-x64/clang/include/llvm/CodeGen/SelectionDAGNodes.h
@@ -0,0 +1,2399 @@
+//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SDNode class and derived classes, which are used to
+// represent the nodes and operations present in a SelectionDAG. These nodes
+// and operations are machine code level operations, with some similarities to
+// the GCC RTL representation.
+//
+// Clients should include the SelectionDAG.h file instead of this file directly.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
+#define LLVM_CODEGEN_SELECTIONDAGNODES_H
+
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/Support/AlignOf.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachineValueType.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstddef>
+#include <cstdint>
+#include <cstring>
+#include <iterator>
+#include <string>
+#include <tuple>
+
+namespace llvm {
+
+class APInt;
+class Constant;
+template <typename T> struct DenseMapInfo;
+class GlobalValue;
+class MachineBasicBlock;
+class MachineConstantPoolValue;
+class MCSymbol;
+class raw_ostream;
+class SDNode;
+class SelectionDAG;
+class Type;
+class Value;
+
+void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
+ bool force = false);
+
+/// This represents a list of ValueType's that has been intern'd by
+/// a SelectionDAG. Instances of this simple value class are returned by
+/// SelectionDAG::getVTList(...).
+///
+struct SDVTList {
+ const EVT *VTs;
+ unsigned int NumVTs;
+};
+
+namespace ISD {
+
+ /// Node predicates
+
+ /// If N is a BUILD_VECTOR node whose elements are all the same constant or
+ /// undefined, return true and return the constant value in \p SplatValue.
+ bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
+
+ /// Return true if the specified node is a BUILD_VECTOR where all of the
+ /// elements are ~0 or undef.
+ bool isBuildVectorAllOnes(const SDNode *N);
+
+ /// Return true if the specified node is a BUILD_VECTOR where all of the
+ /// elements are 0 or undef.
+ bool isBuildVectorAllZeros(const SDNode *N);
+
+ /// Return true if the specified node is a BUILD_VECTOR node of all
+ /// ConstantSDNode or undef.
+ bool isBuildVectorOfConstantSDNodes(const SDNode *N);
+
+ /// Return true if the specified node is a BUILD_VECTOR node of all
+ /// ConstantFPSDNode or undef.
+ bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
+
+ /// Return true if the node has at least one operand and all operands of the
+ /// specified node are ISD::UNDEF.
+ bool allOperandsUndef(const SDNode *N);
+
+} // end namespace ISD
+
+//===----------------------------------------------------------------------===//
+/// Unlike LLVM values, Selection DAG nodes may return multiple
+/// values as the result of a computation. Many nodes return multiple values,
+/// from loads (which define a token and a return value) to ADDC (which returns
+/// a result and a carry value), to calls (which may return an arbitrary number
+/// of values).
+///
+/// As such, each use of a SelectionDAG computation must indicate the node that
+/// computes it as well as which return value to use from that node. This pair
+/// of information is represented with the SDValue value type.
+///
+class SDValue {
+ friend struct DenseMapInfo<SDValue>;
+
+ SDNode *Node = nullptr; // The node defining the value we are using.
+ unsigned ResNo = 0; // Which return value of the node we are using.
+
+public:
+ SDValue() = default;
+ SDValue(SDNode *node, unsigned resno);
+
+ /// get the index which selects a specific result in the SDNode
+ unsigned getResNo() const { return ResNo; }
+
+ /// get the SDNode which holds the desired result
+ SDNode *getNode() const { return Node; }
+
+ /// set the SDNode
+ void setNode(SDNode *N) { Node = N; }
+
+ inline SDNode *operator->() const { return Node; }
+
+ bool operator==(const SDValue &O) const {
+ return Node == O.Node && ResNo == O.ResNo;
+ }
+ bool operator!=(const SDValue &O) const {
+ return !operator==(O);
+ }
+ bool operator<(const SDValue &O) const {
+ return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
+ }
+ explicit operator bool() const {
+ return Node != nullptr;
+ }
+
+ SDValue getValue(unsigned R) const {
+ return SDValue(Node, R);
+ }
+
+ /// Return true if this node is an operand of N.
+ bool isOperandOf(const SDNode *N) const;
+
+ /// Return the ValueType of the referenced return value.
+ inline EVT getValueType() const;
+
+ /// Return the simple ValueType of the referenced return value.
+ MVT getSimpleValueType() const {
+ return getValueType().getSimpleVT();
+ }
+
+ /// Returns the size of the value in bits.
+ unsigned getValueSizeInBits() const {
+ return getValueType().getSizeInBits();
+ }
+
+ unsigned getScalarValueSizeInBits() const {
+ return getValueType().getScalarType().getSizeInBits();
+ }
+
+ // Forwarding methods - These forward to the corresponding methods in SDNode.
+ inline unsigned getOpcode() const;
+ inline unsigned getNumOperands() const;
+ inline const SDValue &getOperand(unsigned i) const;
+ inline uint64_t getConstantOperandVal(unsigned i) const;
+ inline bool isTargetMemoryOpcode() const;
+ inline bool isTargetOpcode() const;
+ inline bool isMachineOpcode() const;
+ inline bool isUndef() const;
+ inline unsigned getMachineOpcode() const;
+ inline const DebugLoc &getDebugLoc() const;
+ inline void dump() const;
+ inline void dump(const SelectionDAG *G) const;
+ inline void dumpr() const;
+ inline void dumpr(const SelectionDAG *G) const;
+
+ /// Return true if this operand (which must be a chain) reaches the
+ /// specified operand without crossing any side-effecting instructions.
+ /// In practice, this looks through token factors and non-volatile loads.
+ /// In order to remain efficient, this only
+ /// looks a couple of nodes in, it does not do an exhaustive search.
+ bool reachesChainWithoutSideEffects(SDValue Dest,
+ unsigned Depth = 2) const;
+
+ /// Return true if there are no nodes using value ResNo of Node.
+ inline bool use_empty() const;
+
+ /// Return true if there is exactly one node using value ResNo of Node.
+ inline bool hasOneUse() const;
+};
+
+template<> struct DenseMapInfo<SDValue> {
+ static inline SDValue getEmptyKey() {
+ SDValue V;
+ V.ResNo = -1U;
+ return V;
+ }
+
+ static inline SDValue getTombstoneKey() {
+ SDValue V;
+ V.ResNo = -2U;
+ return V;
+ }
+
+ static unsigned getHashValue(const SDValue &Val) {
+ return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
+ (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
+ }
+
+ static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
+ return LHS == RHS;
+ }
+};
+template <> struct isPodLike<SDValue> { static const bool value = true; };
+
+/// Allow casting operators to work directly on
+/// SDValues as if they were SDNode*'s.
+template<> struct simplify_type<SDValue> {
+ using SimpleType = SDNode *;
+
+ static SimpleType getSimplifiedValue(SDValue &Val) {
+ return Val.getNode();
+ }
+};
+template<> struct simplify_type<const SDValue> {
+ using SimpleType = /*const*/ SDNode *;
+
+ static SimpleType getSimplifiedValue(const SDValue &Val) {
+ return Val.getNode();
+ }
+};
+
+/// Represents a use of a SDNode. This class holds an SDValue,
+/// which records the SDNode being used and the result number, a
+/// pointer to the SDNode using the value, and Next and Prev pointers,
+/// which link together all the uses of an SDNode.
+///
+class SDUse {
+ /// Val - The value being used.
+ SDValue Val;
+ /// User - The user of this value.
+ SDNode *User = nullptr;
+ /// Prev, Next - Pointers to the uses list of the SDNode referred by
+ /// this operand.
+ SDUse **Prev = nullptr;
+ SDUse *Next = nullptr;
+
+public:
+ SDUse() = default;
+ SDUse(const SDUse &U) = delete;
+ SDUse &operator=(const SDUse &) = delete;
+
+ /// Normally SDUse will just implicitly convert to an SDValue that it holds.
+ operator const SDValue&() const { return Val; }
+
+ /// If implicit conversion to SDValue doesn't work, the get() method returns
+ /// the SDValue.
+ const SDValue &get() const { return Val; }
+
+ /// This returns the SDNode that contains this Use.
+ SDNode *getUser() { return User; }
+
+ /// Get the next SDUse in the use list.
+ SDUse *getNext() const { return Next; }
+
+ /// Convenience function for get().getNode().
+ SDNode *getNode() const { return Val.getNode(); }
+ /// Convenience function for get().getResNo().
+ unsigned getResNo() const { return Val.getResNo(); }
+ /// Convenience function for get().getValueType().
+ EVT getValueType() const { return Val.getValueType(); }
+
+ /// Convenience function for get().operator==
+ bool operator==(const SDValue &V) const {
+ return Val == V;
+ }
+
+ /// Convenience function for get().operator!=
+ bool operator!=(const SDValue &V) const {
+ return Val != V;
+ }
+
+ /// Convenience function for get().operator<
+ bool operator<(const SDValue &V) const {
+ return Val < V;
+ }
+
+private:
+ friend class SelectionDAG;
+ friend class SDNode;
+ // TODO: unfriend HandleSDNode once we fix its operand handling.
+ friend class HandleSDNode;
+
+ void setUser(SDNode *p) { User = p; }
+
+ /// Remove this use from its existing use list, assign it the
+ /// given value, and add it to the new value's node's use list.
+ inline void set(const SDValue &V);
+ /// Like set, but only supports initializing a newly-allocated
+ /// SDUse with a non-null value.
+ inline void setInitial(const SDValue &V);
+ /// Like set, but only sets the Node portion of the value,
+ /// leaving the ResNo portion unmodified.
+ inline void setNode(SDNode *N);
+
+ void addToList(SDUse **List) {
+ Next = *List;
+ if (Next) Next->Prev = &Next;
+ Prev = List;
+ *List = this;
+ }
+
+ void removeFromList() {
+ *Prev = Next;
+ if (Next) Next->Prev = Prev;
+ }
+};
+
+/// simplify_type specializations - Allow casting operators to work directly on
+/// SDValues as if they were SDNode*'s.
+template<> struct simplify_type<SDUse> {
+ using SimpleType = SDNode *;
+
+ static SimpleType getSimplifiedValue(SDUse &Val) {
+ return Val.getNode();
+ }
+};
+
+/// These are IR-level optimization flags that may be propagated to SDNodes.
+/// TODO: This data structure should be shared by the IR optimizer and the
+/// the backend.
+struct SDNodeFlags {
+private:
+ // This bit is used to determine if the flags are in a defined state.
+ // Flag bits can only be masked out during intersection if the masking flags
+ // are defined.
+ bool AnyDefined : 1;
+
+ bool NoUnsignedWrap : 1;
+ bool NoSignedWrap : 1;
+ bool Exact : 1;
+ bool UnsafeAlgebra : 1;
+ bool NoNaNs : 1;
+ bool NoInfs : 1;
+ bool NoSignedZeros : 1;
+ bool AllowReciprocal : 1;
+ bool VectorReduction : 1;
+ bool AllowContract : 1;
+
+public:
+ /// Default constructor turns off all optimization flags.
+ SDNodeFlags()
+ : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
+ Exact(false), UnsafeAlgebra(false), NoNaNs(false), NoInfs(false),
+ NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
+ AllowContract(false) {}
+
+ /// Sets the state of the flags to the defined state.
+ void setDefined() { AnyDefined = true; }
+ /// Returns true if the flags are in a defined state.
+ bool isDefined() const { return AnyDefined; }
+
+ // These are mutators for each flag.
+ void setNoUnsignedWrap(bool b) {
+ setDefined();
+ NoUnsignedWrap = b;
+ }
+ void setNoSignedWrap(bool b) {
+ setDefined();
+ NoSignedWrap = b;
+ }
+ void setExact(bool b) {
+ setDefined();
+ Exact = b;
+ }
+ void setUnsafeAlgebra(bool b) {
+ setDefined();
+ UnsafeAlgebra = b;
+ }
+ void setNoNaNs(bool b) {
+ setDefined();
+ NoNaNs = b;
+ }
+ void setNoInfs(bool b) {
+ setDefined();
+ NoInfs = b;
+ }
+ void setNoSignedZeros(bool b) {
+ setDefined();
+ NoSignedZeros = b;
+ }
+ void setAllowReciprocal(bool b) {
+ setDefined();
+ AllowReciprocal = b;
+ }
+ void setVectorReduction(bool b) {
+ setDefined();
+ VectorReduction = b;
+ }
+ void setAllowContract(bool b) {
+ setDefined();
+ AllowContract = b;
+ }
+
+ // These are accessors for each flag.
+ bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
+ bool hasNoSignedWrap() const { return NoSignedWrap; }
+ bool hasExact() const { return Exact; }
+ bool hasUnsafeAlgebra() const { return UnsafeAlgebra; }
+ bool hasNoNaNs() const { return NoNaNs; }
+ bool hasNoInfs() const { return NoInfs; }
+ bool hasNoSignedZeros() const { return NoSignedZeros; }
+ bool hasAllowReciprocal() const { return AllowReciprocal; }
+ bool hasVectorReduction() const { return VectorReduction; }
+ bool hasAllowContract() const { return AllowContract; }
+
+ /// Clear any flags in this flag set that aren't also set in Flags.
+ /// If the given Flags are undefined then don't do anything.
+ void intersectWith(const SDNodeFlags Flags) {
+ if (!Flags.isDefined())
+ return;
+ NoUnsignedWrap &= Flags.NoUnsignedWrap;
+ NoSignedWrap &= Flags.NoSignedWrap;
+ Exact &= Flags.Exact;
+ UnsafeAlgebra &= Flags.UnsafeAlgebra;
+ NoNaNs &= Flags.NoNaNs;
+ NoInfs &= Flags.NoInfs;
+ NoSignedZeros &= Flags.NoSignedZeros;
+ AllowReciprocal &= Flags.AllowReciprocal;
+ VectorReduction &= Flags.VectorReduction;
+ AllowContract &= Flags.AllowContract;
+ }
+};
+
+/// Represents one node in the SelectionDAG.
+///
+class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
+private:
+ /// The operation that this node performs.
+ int16_t NodeType;
+
+protected:
+ // We define a set of mini-helper classes to help us interpret the bits in our
+ // SubclassData. These are designed to fit within a uint16_t so they pack
+ // with NodeType.
+
+ class SDNodeBitfields {
+ friend class SDNode;
+ friend class MemIntrinsicSDNode;
+ friend class MemSDNode;
+ friend class SelectionDAG;
+
+ uint16_t HasDebugValue : 1;
+ uint16_t IsMemIntrinsic : 1;
+ uint16_t IsDivergent : 1;
+ };
+ enum { NumSDNodeBits = 3 };
+
+ class ConstantSDNodeBitfields {
+ friend class ConstantSDNode;
+
+ uint16_t : NumSDNodeBits;
+
+ uint16_t IsOpaque : 1;
+ };
+
+ class MemSDNodeBitfields {
+ friend class MemSDNode;
+ friend class MemIntrinsicSDNode;
+ friend class AtomicSDNode;
+
+ uint16_t : NumSDNodeBits;
+
+ uint16_t IsVolatile : 1;
+ uint16_t IsNonTemporal : 1;
+ uint16_t IsDereferenceable : 1;
+ uint16_t IsInvariant : 1;
+ };
+ enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
+
+ class LSBaseSDNodeBitfields {
+ friend class LSBaseSDNode;
+
+ uint16_t : NumMemSDNodeBits;
+
+ uint16_t AddressingMode : 3; // enum ISD::MemIndexedMode
+ };
+ enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
+
+ class LoadSDNodeBitfields {
+ friend class LoadSDNode;
+ friend class MaskedLoadSDNode;
+
+ uint16_t : NumLSBaseSDNodeBits;
+
+ uint16_t ExtTy : 2; // enum ISD::LoadExtType
+ uint16_t IsExpanding : 1;
+ };
+
+ class StoreSDNodeBitfields {
+ friend class StoreSDNode;
+ friend class MaskedStoreSDNode;
+
+ uint16_t : NumLSBaseSDNodeBits;
+
+ uint16_t IsTruncating : 1;
+ uint16_t IsCompressing : 1;
+ };
+
+ union {
+ char RawSDNodeBits[sizeof(uint16_t)];
+ SDNodeBitfields SDNodeBits;
+ ConstantSDNodeBitfields ConstantSDNodeBits;
+ MemSDNodeBitfields MemSDNodeBits;
+ LSBaseSDNodeBitfields LSBaseSDNodeBits;
+ LoadSDNodeBitfields LoadSDNodeBits;
+ StoreSDNodeBitfields StoreSDNodeBits;
+ };
+
+ // RawSDNodeBits must cover the entirety of the union. This means that all of
+ // the union's members must have size <= RawSDNodeBits. We write the RHS as
+ // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
+ static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
+ static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
+ static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
+ static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
+ static_assert(sizeof(LoadSDNodeBitfields) <= 4, "field too wide");
+ static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
+
+private:
+ friend class SelectionDAG;
+ // TODO: unfriend HandleSDNode once we fix its operand handling.
+ friend class HandleSDNode;
+
+ /// Unique id per SDNode in the DAG.
+ int NodeId = -1;
+
+ /// The values that are used by this operation.
+ SDUse *OperandList = nullptr;
+
+ /// The types of the values this node defines. SDNode's may
+ /// define multiple values simultaneously.
+ const EVT *ValueList;
+
+ /// List of uses for this SDNode.
+ SDUse *UseList = nullptr;
+
+ /// The number of entries in the Operand/Value list.
+ unsigned short NumOperands = 0;
+ unsigned short NumValues;
+
+ // The ordering of the SDNodes. It roughly corresponds to the ordering of the
+ // original LLVM instructions.
+ // This is used for turning off scheduling, because we'll forgo
+ // the normal scheduling algorithms and output the instructions according to
+ // this ordering.
+ unsigned IROrder;
+
+ /// Source line information.
+ DebugLoc debugLoc;
+
+ /// Return a pointer to the specified value type.
+ static const EVT *getValueTypeList(EVT VT);
+
+ SDNodeFlags Flags;
+
+public:
+ /// Unique and persistent id per SDNode in the DAG.
+ /// Used for debug printing.
+ uint16_t PersistentId;
+
+ //===--------------------------------------------------------------------===//
+ // Accessors
+ //
+
+ /// Return the SelectionDAG opcode value for this node. For
+ /// pre-isel nodes (those for which isMachineOpcode returns false), these
+ /// are the opcode values in the ISD and <target>ISD namespaces. For
+ /// post-isel opcodes, see getMachineOpcode.
+ unsigned getOpcode() const { return (unsigned short)NodeType; }
+
+ /// Test if this node has a target-specific opcode (in the
+ /// \<target\>ISD namespace).
+ bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
+
+ /// Test if this node has a target-specific
+ /// memory-referencing opcode (in the \<target\>ISD namespace and
+ /// greater than FIRST_TARGET_MEMORY_OPCODE).
+ bool isTargetMemoryOpcode() const {
+ return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
+ }
+
+ /// Return true if the type of the node type undefined.
+ bool isUndef() const { return NodeType == ISD::UNDEF; }
+
+ /// Test if this node is a memory intrinsic (with valid pointer information).
+ /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
+ /// non-memory intrinsics (with chains) that are not really instances of
+ /// MemSDNode. For such nodes, we need some extra state to determine the
+ /// proper classof relationship.
+ bool isMemIntrinsic() const {
+ return (NodeType == ISD::INTRINSIC_W_CHAIN ||
+ NodeType == ISD::INTRINSIC_VOID) &&
+ SDNodeBits.IsMemIntrinsic;
+ }
+
+ /// Test if this node is a strict floating point pseudo-op.
+ bool isStrictFPOpcode() {
+ switch (NodeType) {
+ default:
+ return false;
+ case ISD::STRICT_FADD:
+ case ISD::STRICT_FSUB:
+ case ISD::STRICT_FMUL:
+ case ISD::STRICT_FDIV:
+ case ISD::STRICT_FREM:
+ case ISD::STRICT_FMA:
+ case ISD::STRICT_FSQRT:
+ case ISD::STRICT_FPOW:
+ case ISD::STRICT_FPOWI:
+ case ISD::STRICT_FSIN:
+ case ISD::STRICT_FCOS:
+ case ISD::STRICT_FEXP:
+ case ISD::STRICT_FEXP2:
+ case ISD::STRICT_FLOG:
+ case ISD::STRICT_FLOG10:
+ case ISD::STRICT_FLOG2:
+ case ISD::STRICT_FRINT:
+ case ISD::STRICT_FNEARBYINT:
+ return true;
+ }
+ }
+
+ /// Test if this node has a post-isel opcode, directly
+ /// corresponding to a MachineInstr opcode.
+ bool isMachineOpcode() const { return NodeType < 0; }
+
+ /// This may only be called if isMachineOpcode returns
+ /// true. It returns the MachineInstr opcode value that the node's opcode
+ /// corresponds to.
+ unsigned getMachineOpcode() const {
+ assert(isMachineOpcode() && "Not a MachineInstr opcode!");
+ return ~NodeType;
+ }
+
+ bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
+ void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
+
+ bool isDivergent() const { return SDNodeBits.IsDivergent; }
+
+ /// Return true if there are no uses of this node.
+ bool use_empty() const { return UseList == nullptr; }
+
+ /// Return true if there is exactly one use of this node.
+ bool hasOneUse() const {
+ return !use_empty() && std::next(use_begin()) == use_end();
+ }
+
+ /// Return the number of uses of this node. This method takes
+ /// time proportional to the number of uses.
+ size_t use_size() const { return std::distance(use_begin(), use_end()); }
+
+ /// Return the unique node id.
+ int getNodeId() const { return NodeId; }
+
+ /// Set unique node id.
+ void setNodeId(int Id) { NodeId = Id; }
+
+ /// Return the node ordering.
+ unsigned getIROrder() const { return IROrder; }
+
+ /// Set the node ordering.
+ void setIROrder(unsigned Order) { IROrder = Order; }
+
+ /// Return the source location info.
+ const DebugLoc &getDebugLoc() const { return debugLoc; }
+
+ /// Set source location info. Try to avoid this, putting
+ /// it in the constructor is preferable.
+ void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
+
+ /// This class provides iterator support for SDUse
+ /// operands that use a specific SDNode.
+ class use_iterator
+ : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
+ friend class SDNode;
+
+ SDUse *Op = nullptr;
+
+ explicit use_iterator(SDUse *op) : Op(op) {}
+
+ public:
+ using reference = std::iterator<std::forward_iterator_tag,
+ SDUse, ptrdiff_t>::reference;
+ using pointer = std::iterator<std::forward_iterator_tag,
+ SDUse, ptrdiff_t>::pointer;
+
+ use_iterator() = default;
+ use_iterator(const use_iterator &I) : Op(I.Op) {}
+
+ bool operator==(const use_iterator &x) const {
+ return Op == x.Op;
+ }
+ bool operator!=(const use_iterator &x) const {
+ return !operator==(x);
+ }
+
+ /// Return true if this iterator is at the end of uses list.
+ bool atEnd() const { return Op == nullptr; }
+
+ // Iterator traversal: forward iteration only.
+ use_iterator &operator++() { // Preincrement
+ assert(Op && "Cannot increment end iterator!");
+ Op = Op->getNext();
+ return *this;
+ }
+
+ use_iterator operator++(int) { // Postincrement
+ use_iterator tmp = *this; ++*this; return tmp;
+ }
+
+ /// Retrieve a pointer to the current user node.
+ SDNode *operator*() const {
+ assert(Op && "Cannot dereference end iterator!");
+ return Op->getUser();
+ }
+
+ SDNode *operator->() const { return operator*(); }
+
+ SDUse &getUse() const { return *Op; }
+
+ /// Retrieve the operand # of this use in its user.
+ unsigned getOperandNo() const {
+ assert(Op && "Cannot dereference end iterator!");
+ return (unsigned)(Op - Op->getUser()->OperandList);
+ }
+ };
+
+ /// Provide iteration support to walk over all uses of an SDNode.
+ use_iterator use_begin() const {
+ return use_iterator(UseList);
+ }
+
+ static use_iterator use_end() { return use_iterator(nullptr); }
+
+ inline iterator_range<use_iterator> uses() {
+ return make_range(use_begin(), use_end());
+ }
+ inline iterator_range<use_iterator> uses() const {
+ return make_range(use_begin(), use_end());
+ }
+
+ /// Return true if there are exactly NUSES uses of the indicated value.
+ /// This method ignores uses of other values defined by this operation.
+ bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
+
+ /// Return true if there are any use of the indicated value.
+ /// This method ignores uses of other values defined by this operation.
+ bool hasAnyUseOfValue(unsigned Value) const;
+
+ /// Return true if this node is the only use of N.
+ bool isOnlyUserOf(const SDNode *N) const;
+
+ /// Return true if this node is an operand of N.
+ bool isOperandOf(const SDNode *N) const;
+
+ /// Return true if this node is a predecessor of N.
+ /// NOTE: Implemented on top of hasPredecessor and every bit as
+ /// expensive. Use carefully.
+ bool isPredecessorOf(const SDNode *N) const {
+ return N->hasPredecessor(this);
+ }
+
+ /// Return true if N is a predecessor of this node.
+ /// N is either an operand of this node, or can be reached by recursively
+ /// traversing up the operands.
+ /// NOTE: This is an expensive method. Use it carefully.
+ bool hasPredecessor(const SDNode *N) const;
+
+ /// Returns true if N is a predecessor of any node in Worklist. This
+ /// helper keeps Visited and Worklist sets externally to allow unions
+ /// searches to be performed in parallel, caching of results across
+ /// queries and incremental addition to Worklist. Stops early if N is
+ /// found but will resume. Remember to clear Visited and Worklists
+ /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
+ /// giving up. The TopologicalPrune flag signals that positive NodeIds are
+ /// topologically ordered (Operands have strictly smaller node id) and search
+ /// can be pruned leveraging this.
+ static bool hasPredecessorHelper(const SDNode *N,
+ SmallPtrSetImpl<const SDNode *> &Visited,
+ SmallVectorImpl<const SDNode *> &Worklist,
+ unsigned int MaxSteps = 0,
+ bool TopologicalPrune = false) {
+ SmallVector<const SDNode *, 8> DeferredNodes;
+ if (Visited.count(N))
+ return true;
+
+ // Node Id's are assigned in three places: As a topological
+ // ordering (> 0), during legalization (results in values set to
+ // 0), new nodes (set to -1). If N has a topolgical id then we
+ // know that all nodes with ids smaller than it cannot be
+ // successors and we need not check them. Filter out all node
+ // that can't be matches. We add them to the worklist before exit
+ // in case of multiple calls. Note that during selection the topological id
+ // may be violated if a node's predecessor is selected before it. We mark
+ // this at selection negating the id of unselected successors and
+ // restricting topological pruning to positive ids.
+
+ int NId = N->getNodeId();
+ // If we Invalidated the Id, reconstruct original NId.
+ if (NId < -1)
+ NId = -(NId + 1);
+
+ bool Found = false;
+ while (!Worklist.empty()) {
+ const SDNode *M = Worklist.pop_back_val();
+ int MId = M->getNodeId();
+ if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
+ (MId > 0) && (MId < NId)) {
+ DeferredNodes.push_back(M);
+ continue;
+ }
+ for (const SDValue &OpV : M->op_values()) {
+ SDNode *Op = OpV.getNode();
+ if (Visited.insert(Op).second)
+ Worklist.push_back(Op);
+ if (Op == N)
+ Found = true;
+ }
+ if (Found)
+ break;
+ if (MaxSteps != 0 && Visited.size() >= MaxSteps)
+ break;
+ }
+ // Push deferred nodes back on worklist.
+ Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
+ // If we bailed early, conservatively return found.
+ if (MaxSteps != 0 && Visited.size() >= MaxSteps)
+ return true;
+ return Found;
+ }
+
+ /// Return true if all the users of N are contained in Nodes.
+ /// NOTE: Requires at least one match, but doesn't require them all.
+ static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
+
+ /// Return the number of values used by this operation.
+ unsigned getNumOperands() const { return NumOperands; }
+
+ /// Helper method returns the integer value of a ConstantSDNode operand.
+ inline uint64_t getConstantOperandVal(unsigned Num) const;
+
+ const SDValue &getOperand(unsigned Num) const {
+ assert(Num < NumOperands && "Invalid child # of SDNode!");
+ return OperandList[Num];
+ }
+
+ using op_iterator = SDUse *;
+
+ op_iterator op_begin() const { return OperandList; }
+ op_iterator op_end() const { return OperandList+NumOperands; }
+ ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
+
+ /// Iterator for directly iterating over the operand SDValue's.
+ struct value_op_iterator
+ : iterator_adaptor_base<value_op_iterator, op_iterator,
+ std::random_access_iterator_tag, SDValue,
+ ptrdiff_t, value_op_iterator *,
+ value_op_iterator *> {
+ explicit value_op_iterator(SDUse *U = nullptr)
+ : iterator_adaptor_base(U) {}
+
+ const SDValue &operator*() const { return I->get(); }
+ };
+
+ iterator_range<value_op_iterator> op_values() const {
+ return make_range(value_op_iterator(op_begin()),
+ value_op_iterator(op_end()));
+ }
+
+ SDVTList getVTList() const {
+ SDVTList X = { ValueList, NumValues };
+ return X;
+ }
+
+ /// If this node has a glue operand, return the node
+ /// to which the glue operand points. Otherwise return NULL.
+ SDNode *getGluedNode() const {
+ if (getNumOperands() != 0 &&
+ getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
+ return getOperand(getNumOperands()-1).getNode();
+ return nullptr;
+ }
+
+ /// If this node has a glue value with a user, return
+ /// the user (there is at most one). Otherwise return NULL.
+ SDNode *getGluedUser() const {
+ for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
+ if (UI.getUse().get().getValueType() == MVT::Glue)
+ return *UI;
+ return nullptr;
+ }
+
+ const SDNodeFlags getFlags() const { return Flags; }
+ void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
+
+ /// Clear any flags in this node that aren't also set in Flags.
+ /// If Flags is not in a defined state then this has no effect.
+ void intersectFlagsWith(const SDNodeFlags Flags);
+
+ /// Return the number of values defined/returned by this operator.
+ unsigned getNumValues() const { return NumValues; }
+
+ /// Return the type of a specified result.
+ EVT getValueType(unsigned ResNo) const {
+ assert(ResNo < NumValues && "Illegal result number!");
+ return ValueList[ResNo];
+ }
+
+ /// Return the type of a specified result as a simple type.
+ MVT getSimpleValueType(unsigned ResNo) const {
+ return getValueType(ResNo).getSimpleVT();
+ }
+
+ /// Returns MVT::getSizeInBits(getValueType(ResNo)).
+ unsigned getValueSizeInBits(unsigned ResNo) const {
+ return getValueType(ResNo).getSizeInBits();
+ }
+
+ using value_iterator = const EVT *;
+
+ value_iterator value_begin() const { return ValueList; }
+ value_iterator value_end() const { return ValueList+NumValues; }
+
+ /// Return the opcode of this operation for printing.
+ std::string getOperationName(const SelectionDAG *G = nullptr) const;
+ static const char* getIndexedModeName(ISD::MemIndexedMode AM);
+ void print_types(raw_ostream &OS, const SelectionDAG *G) const;
+ void print_details(raw_ostream &OS, const SelectionDAG *G) const;
+ void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
+ void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
+
+ /// Print a SelectionDAG node and all children down to
+ /// the leaves. The given SelectionDAG allows target-specific nodes
+ /// to be printed in human-readable form. Unlike printr, this will
+ /// print the whole DAG, including children that appear multiple
+ /// times.
+ ///
+ void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
+
+ /// Print a SelectionDAG node and children up to
+ /// depth "depth." The given SelectionDAG allows target-specific
+ /// nodes to be printed in human-readable form. Unlike printr, this
+ /// will print children that appear multiple times wherever they are
+ /// used.
+ ///
+ void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
+ unsigned depth = 100) const;
+
+ /// Dump this node, for debugging.
+ void dump() const;
+
+ /// Dump (recursively) this node and its use-def subgraph.
+ void dumpr() const;
+
+ /// Dump this node, for debugging.
+ /// The given SelectionDAG allows target-specific nodes to be printed
+ /// in human-readable form.
+ void dump(const SelectionDAG *G) const;
+
+ /// Dump (recursively) this node and its use-def subgraph.
+ /// The given SelectionDAG allows target-specific nodes to be printed
+ /// in human-readable form.
+ void dumpr(const SelectionDAG *G) const;
+
+ /// printrFull to dbgs(). The given SelectionDAG allows
+ /// target-specific nodes to be printed in human-readable form.
+ /// Unlike dumpr, this will print the whole DAG, including children
+ /// that appear multiple times.
+ void dumprFull(const SelectionDAG *G = nullptr) const;
+
+ /// printrWithDepth to dbgs(). The given
+ /// SelectionDAG allows target-specific nodes to be printed in
+ /// human-readable form. Unlike dumpr, this will print children
+ /// that appear multiple times wherever they are used.
+ ///
+ void dumprWithDepth(const SelectionDAG *G = nullptr,
+ unsigned depth = 100) const;
+
+ /// Gather unique data for the node.
+ void Profile(FoldingSetNodeID &ID) const;
+
+ /// This method should only be used by the SDUse class.
+ void addUse(SDUse &U) { U.addToList(&UseList); }
+
+protected:
+ static SDVTList getSDVTList(EVT VT) {
+ SDVTList Ret = { getValueTypeList(VT), 1 };
+ return Ret;
+ }
+
+ /// Create an SDNode.
+ ///
+ /// SDNodes are created without any operands, and never own the operand
+ /// storage. To add operands, see SelectionDAG::createOperands.
+ SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
+ : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
+ IROrder(Order), debugLoc(std::move(dl)) {
+ memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
+ assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
+ assert(NumValues == VTs.NumVTs &&
+ "NumValues wasn't wide enough for its operands!");
+ }
+
+ /// Release the operands and set this node to have zero operands.
+ void DropOperands();
+};
+
+/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
+/// into SDNode creation functions.
+/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
+/// from the original Instruction, and IROrder is the ordinal position of
+/// the instruction.
+/// When an SDNode is created after the DAG is being built, both DebugLoc and
+/// the IROrder are propagated from the original SDNode.
+/// So SDLoc class provides two constructors besides the default one, one to
+/// be used by the DAGBuilder, the other to be used by others.
+class SDLoc {
+private:
+ DebugLoc DL;
+ int IROrder = 0;
+
+public:
+ SDLoc() = default;
+ SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
+ SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
+ SDLoc(const Instruction *I, int Order) : IROrder(Order) {
+ assert(Order >= 0 && "bad IROrder");
+ if (I)
+ DL = I->getDebugLoc();
+ }
+
+ unsigned getIROrder() const { return IROrder; }
+ const DebugLoc &getDebugLoc() const { return DL; }
+};
+
+// Define inline functions from the SDValue class.
+
+inline SDValue::SDValue(SDNode *node, unsigned resno)
+ : Node(node), ResNo(resno) {
+ // Explicitly check for !ResNo to avoid use-after-free, because there are
+ // callers that use SDValue(N, 0) with a deleted N to indicate successful
+ // combines.
+ assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
+ "Invalid result number for the given node!");
+ assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
+}
+
+inline unsigned SDValue::getOpcode() const {
+ return Node->getOpcode();
+}
+
+inline EVT SDValue::getValueType() const {
+ return Node->getValueType(ResNo);
+}
+
+inline unsigned SDValue::getNumOperands() const {
+ return Node->getNumOperands();
+}
+
+inline const SDValue &SDValue::getOperand(unsigned i) const {
+ return Node->getOperand(i);
+}
+
+inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
+ return Node->getConstantOperandVal(i);
+}
+
+inline bool SDValue::isTargetOpcode() const {
+ return Node->isTargetOpcode();
+}
+
+inline bool SDValue::isTargetMemoryOpcode() const {
+ return Node->isTargetMemoryOpcode();
+}
+
+inline bool SDValue::isMachineOpcode() const {
+ return Node->isMachineOpcode();
+}
+
+inline unsigned SDValue::getMachineOpcode() const {
+ return Node->getMachineOpcode();
+}
+
+inline bool SDValue::isUndef() const {
+ return Node->isUndef();
+}
+
+inline bool SDValue::use_empty() const {
+ return !Node->hasAnyUseOfValue(ResNo);
+}
+
+inline bool SDValue::hasOneUse() const {
+ return Node->hasNUsesOfValue(1, ResNo);
+}
+
+inline const DebugLoc &SDValue::getDebugLoc() const {
+ return Node->getDebugLoc();
+}
+
+inline void SDValue::dump() const {
+ return Node->dump();
+}
+
+inline void SDValue::dump(const SelectionDAG *G) const {
+ return Node->dump(G);
+}
+
+inline void SDValue::dumpr() const {
+ return Node->dumpr();
+}
+
+inline void SDValue::dumpr(const SelectionDAG *G) const {
+ return Node->dumpr(G);
+}
+
+// Define inline functions from the SDUse class.
+
+inline void SDUse::set(const SDValue &V) {
+ if (Val.getNode()) removeFromList();
+ Val = V;
+ if (V.getNode()) V.getNode()->addUse(*this);
+}
+
+inline void SDUse::setInitial(const SDValue &V) {
+ Val = V;
+ V.getNode()->addUse(*this);
+}
+
+inline void SDUse::setNode(SDNode *N) {
+ if (Val.getNode()) removeFromList();
+ Val.setNode(N);
+ if (N) N->addUse(*this);
+}
+
+/// This class is used to form a handle around another node that
+/// is persistent and is updated across invocations of replaceAllUsesWith on its
+/// operand. This node should be directly created by end-users and not added to
+/// the AllNodes list.
+class HandleSDNode : public SDNode {
+ SDUse Op;
+
+public:
+ explicit HandleSDNode(SDValue X)
+ : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
+ // HandleSDNodes are never inserted into the DAG, so they won't be
+ // auto-numbered. Use ID 65535 as a sentinel.
+ PersistentId = 0xffff;
+
+ // Manually set up the operand list. This node type is special in that it's
+ // always stack allocated and SelectionDAG does not manage its operands.
+ // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
+ // be so special.
+ Op.setUser(this);
+ Op.setInitial(X);
+ NumOperands = 1;
+ OperandList = &Op;
+ }
+ ~HandleSDNode();
+
+ const SDValue &getValue() const { return Op; }
+};
+
+class AddrSpaceCastSDNode : public SDNode {
+private:
+ unsigned SrcAddrSpace;
+ unsigned DestAddrSpace;
+
+public:
+ AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
+ unsigned SrcAS, unsigned DestAS);
+
+ unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
+ unsigned getDestAddressSpace() const { return DestAddrSpace; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ADDRSPACECAST;
+ }
+};
+
+/// This is an abstract virtual class for memory operations.
+class MemSDNode : public SDNode {
+private:
+ // VT of in-memory value.
+ EVT MemoryVT;
+
+protected:
+ /// Memory reference information.
+ MachineMemOperand *MMO;
+
+public:
+ MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
+ EVT MemoryVT, MachineMemOperand *MMO);
+
+ bool readMem() const { return MMO->isLoad(); }
+ bool writeMem() const { return MMO->isStore(); }
+
+ /// Returns alignment and volatility of the memory access
+ unsigned getOriginalAlignment() const {
+ return MMO->getBaseAlignment();
+ }
+ unsigned getAlignment() const {
+ return MMO->getAlignment();
+ }
+
+ /// Return the SubclassData value, without HasDebugValue. This contains an
+ /// encoding of the volatile flag, as well as bits used by subclasses. This
+ /// function should only be used to compute a FoldingSetNodeID value.
+ /// The HasDebugValue bit is masked out because CSE map needs to match
+ /// nodes with debug info with nodes without debug info. Same is about
+ /// isDivergent bit.
+ unsigned getRawSubclassData() const {
+ uint16_t Data;
+ union {
+ char RawSDNodeBits[sizeof(uint16_t)];
+ SDNodeBitfields SDNodeBits;
+ };
+ memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
+ SDNodeBits.HasDebugValue = 0;
+ SDNodeBits.IsDivergent = false;
+ memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
+ return Data;
+ }
+
+ bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
+ bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
+ bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
+ bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
+
+ // Returns the offset from the location of the access.
+ int64_t getSrcValueOffset() const { return MMO->getOffset(); }
+
+ /// Returns the AA info that describes the dereference.
+ AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
+
+ /// Returns the Ranges that describes the dereference.
+ const MDNode *getRanges() const { return MMO->getRanges(); }
+
+ /// Returns the synchronization scope ID for this memory operation.
+ SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
+
+ /// Return the atomic ordering requirements for this memory operation. For
+ /// cmpxchg atomic operations, return the atomic ordering requirements when
+ /// store occurs.
+ AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
+
+ /// Return the type of the in-memory value.
+ EVT getMemoryVT() const { return MemoryVT; }
+
+ /// Return a MachineMemOperand object describing the memory
+ /// reference performed by operation.
+ MachineMemOperand *getMemOperand() const { return MMO; }
+
+ const MachinePointerInfo &getPointerInfo() const {
+ return MMO->getPointerInfo();
+ }
+
+ /// Return the address space for the associated pointer
+ unsigned getAddressSpace() const {
+ return getPointerInfo().getAddrSpace();
+ }
+
+ /// Update this MemSDNode's MachineMemOperand information
+ /// to reflect the alignment of NewMMO, if it has a greater alignment.
+ /// This must only be used when the new alignment applies to all users of
+ /// this MachineMemOperand.
+ void refineAlignment(const MachineMemOperand *NewMMO) {
+ MMO->refineAlignment(NewMMO);
+ }
+
+ const SDValue &getChain() const { return getOperand(0); }
+ const SDValue &getBasePtr() const {
+ return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
+ }
+
+ // Methods to support isa and dyn_cast
+ static bool classof(const SDNode *N) {
+ // For some targets, we lower some target intrinsics to a MemIntrinsicNode
+ // with either an intrinsic or a target opcode.
+ return N->getOpcode() == ISD::LOAD ||
+ N->getOpcode() == ISD::STORE ||
+ N->getOpcode() == ISD::PREFETCH ||
+ N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
+ N->getOpcode() == ISD::ATOMIC_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
+ N->getOpcode() == ISD::ATOMIC_LOAD ||
+ N->getOpcode() == ISD::ATOMIC_STORE ||
+ N->getOpcode() == ISD::MLOAD ||
+ N->getOpcode() == ISD::MSTORE ||
+ N->getOpcode() == ISD::MGATHER ||
+ N->getOpcode() == ISD::MSCATTER ||
+ N->isMemIntrinsic() ||
+ N->isTargetMemoryOpcode();
+ }
+};
+
+/// This is an SDNode representing atomic operations.
+class AtomicSDNode : public MemSDNode {
+public:
+ AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
+ EVT MemVT, MachineMemOperand *MMO)
+ : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {}
+
+ const SDValue &getBasePtr() const { return getOperand(1); }
+ const SDValue &getVal() const { return getOperand(2); }
+
+ /// Returns true if this SDNode represents cmpxchg atomic operation, false
+ /// otherwise.
+ bool isCompareAndSwap() const {
+ unsigned Op = getOpcode();
+ return Op == ISD::ATOMIC_CMP_SWAP ||
+ Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
+ }
+
+ /// For cmpxchg atomic operations, return the atomic ordering requirements
+ /// when store does not occur.
+ AtomicOrdering getFailureOrdering() const {
+ assert(isCompareAndSwap() && "Must be cmpxchg operation");
+ return MMO->getFailureOrdering();
+ }
+
+ // Methods to support isa and dyn_cast
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
+ N->getOpcode() == ISD::ATOMIC_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
+ N->getOpcode() == ISD::ATOMIC_LOAD ||
+ N->getOpcode() == ISD::ATOMIC_STORE;
+ }
+};
+
+/// This SDNode is used for target intrinsics that touch
+/// memory and need an associated MachineMemOperand. Its opcode may be
+/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
+/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
+class MemIntrinsicSDNode : public MemSDNode {
+public:
+ MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
+ SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
+ : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
+ SDNodeBits.IsMemIntrinsic = true;
+ }
+
+ // Methods to support isa and dyn_cast
+ static bool classof(const SDNode *N) {
+ // We lower some target intrinsics to their target opcode
+ // early a node with a target opcode can be of this class
+ return N->isMemIntrinsic() ||
+ N->getOpcode() == ISD::PREFETCH ||
+ N->isTargetMemoryOpcode();
+ }
+};
+
+/// This SDNode is used to implement the code generator
+/// support for the llvm IR shufflevector instruction. It combines elements
+/// from two input vectors into a new input vector, with the selection and
+/// ordering of elements determined by an array of integers, referred to as
+/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
+/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
+/// An index of -1 is treated as undef, such that the code generator may put
+/// any value in the corresponding element of the result.
+class ShuffleVectorSDNode : public SDNode {
+ // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
+ // is freed when the SelectionDAG object is destroyed.
+ const int *Mask;
+
+protected:
+ friend class SelectionDAG;
+
+ ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
+ : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
+
+public:
+ ArrayRef<int> getMask() const {
+ EVT VT = getValueType(0);
+ return makeArrayRef(Mask, VT.getVectorNumElements());
+ }
+
+ int getMaskElt(unsigned Idx) const {
+ assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
+ return Mask[Idx];
+ }
+
+ bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
+
+ int getSplatIndex() const {
+ assert(isSplat() && "Cannot get splat index for non-splat!");
+ EVT VT = getValueType(0);
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
+ if (Mask[i] >= 0)
+ return Mask[i];
+ }
+ llvm_unreachable("Splat with all undef indices?");
+ }
+
+ static bool isSplatMask(const int *Mask, EVT VT);
+
+ /// Change values in a shuffle permute mask assuming
+ /// the two vector operands have swapped position.
+ static void commuteMask(MutableArrayRef<int> Mask) {
+ unsigned NumElems = Mask.size();
+ for (unsigned i = 0; i != NumElems; ++i) {
+ int idx = Mask[i];
+ if (idx < 0)
+ continue;
+ else if (idx < (int)NumElems)
+ Mask[i] = idx + NumElems;
+ else
+ Mask[i] = idx - NumElems;
+ }
+ }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::VECTOR_SHUFFLE;
+ }
+};
+
+class ConstantSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ const ConstantInt *Value;
+
+ ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
+ const DebugLoc &DL, EVT VT)
+ : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DL,
+ getSDVTList(VT)),
+ Value(val) {
+ ConstantSDNodeBits.IsOpaque = isOpaque;
+ }
+
+public:
+ const ConstantInt *getConstantIntValue() const { return Value; }
+ const APInt &getAPIntValue() const { return Value->getValue(); }
+ uint64_t getZExtValue() const { return Value->getZExtValue(); }
+ int64_t getSExtValue() const { return Value->getSExtValue(); }
+ uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
+ return Value->getLimitedValue(Limit);
+ }
+
+ bool isOne() const { return Value->isOne(); }
+ bool isNullValue() const { return Value->isZero(); }
+ bool isAllOnesValue() const { return Value->isMinusOne(); }
+
+ bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::Constant ||
+ N->getOpcode() == ISD::TargetConstant;
+ }
+};
+
+uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
+ return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
+}
+
+class ConstantFPSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ const ConstantFP *Value;
+
+ ConstantFPSDNode(bool isTarget, const ConstantFP *val, const DebugLoc &DL,
+ EVT VT)
+ : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, DL,
+ getSDVTList(VT)),
+ Value(val) {}
+
+public:
+ const APFloat& getValueAPF() const { return Value->getValueAPF(); }
+ const ConstantFP *getConstantFPValue() const { return Value; }
+
+ /// Return true if the value is positive or negative zero.
+ bool isZero() const { return Value->isZero(); }
+
+ /// Return true if the value is a NaN.
+ bool isNaN() const { return Value->isNaN(); }
+
+ /// Return true if the value is an infinity
+ bool isInfinity() const { return Value->isInfinity(); }
+
+ /// Return true if the value is negative.
+ bool isNegative() const { return Value->isNegative(); }
+
+ /// We don't rely on operator== working on double values, as
+ /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+ /// As such, this method can be used to do an exact bit-for-bit comparison of
+ /// two floating point values.
+
+ /// We leave the version with the double argument here because it's just so
+ /// convenient to write "2.0" and the like. Without this function we'd
+ /// have to duplicate its logic everywhere it's called.
+ bool isExactlyValue(double V) const {
+ return Value->getValueAPF().isExactlyValue(V);
+ }
+ bool isExactlyValue(const APFloat& V) const;
+
+ static bool isValueValidForType(EVT VT, const APFloat& Val);
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ConstantFP ||
+ N->getOpcode() == ISD::TargetConstantFP;
+ }
+};
+
+/// Returns true if \p V is a constant integer zero.
+bool isNullConstant(SDValue V);
+
+/// Returns true if \p V is an FP constant with a value of positive zero.
+bool isNullFPConstant(SDValue V);
+
+/// Returns true if \p V is an integer constant with all bits set.
+bool isAllOnesConstant(SDValue V);
+
+/// Returns true if \p V is a constant integer one.
+bool isOneConstant(SDValue V);
+
+/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
+/// constant is canonicalized to be operand 1.
+bool isBitwiseNot(SDValue V);
+
+/// Returns the SDNode if it is a constant splat BuildVector or constant int.
+ConstantSDNode *isConstOrConstSplat(SDValue V);
+
+/// Returns the SDNode if it is a constant splat BuildVector or constant float.
+ConstantFPSDNode *isConstOrConstSplatFP(SDValue V);
+
+class GlobalAddressSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ const GlobalValue *TheGlobal;
+ int64_t Offset;
+ unsigned char TargetFlags;
+
+ GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
+ const GlobalValue *GA, EVT VT, int64_t o,
+ unsigned char TargetFlags);
+
+public:
+ const GlobalValue *getGlobal() const { return TheGlobal; }
+ int64_t getOffset() const { return Offset; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+ // Return the address space this GlobalAddress belongs to.
+ unsigned getAddressSpace() const;
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::GlobalAddress ||
+ N->getOpcode() == ISD::TargetGlobalAddress ||
+ N->getOpcode() == ISD::GlobalTLSAddress ||
+ N->getOpcode() == ISD::TargetGlobalTLSAddress;
+ }
+};
+
+class FrameIndexSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ int FI;
+
+ FrameIndexSDNode(int fi, EVT VT, bool isTarg)
+ : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
+ 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
+ }
+
+public:
+ int getIndex() const { return FI; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::FrameIndex ||
+ N->getOpcode() == ISD::TargetFrameIndex;
+ }
+};
+
+class JumpTableSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ int JTI;
+ unsigned char TargetFlags;
+
+ JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
+ : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
+ 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
+ }
+
+public:
+ int getIndex() const { return JTI; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::JumpTable ||
+ N->getOpcode() == ISD::TargetJumpTable;
+ }
+};
+
+class ConstantPoolSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ union {
+ const Constant *ConstVal;
+ MachineConstantPoolValue *MachineCPVal;
+ } Val;
+ int Offset; // It's a MachineConstantPoolValue if top bit is set.
+ unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
+ unsigned char TargetFlags;
+
+ ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
+ unsigned Align, unsigned char TF)
+ : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
+ DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
+ TargetFlags(TF) {
+ assert(Offset >= 0 && "Offset is too large");
+ Val.ConstVal = c;
+ }
+
+ ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
+ EVT VT, int o, unsigned Align, unsigned char TF)
+ : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
+ DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
+ TargetFlags(TF) {
+ assert(Offset >= 0 && "Offset is too large");
+ Val.MachineCPVal = v;
+ Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
+ }
+
+public:
+ bool isMachineConstantPoolEntry() const {
+ return Offset < 0;
+ }
+
+ const Constant *getConstVal() const {
+ assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
+ return Val.ConstVal;
+ }
+
+ MachineConstantPoolValue *getMachineCPVal() const {
+ assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
+ return Val.MachineCPVal;
+ }
+
+ int getOffset() const {
+ return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
+ }
+
+ // Return the alignment of this constant pool object, which is either 0 (for
+ // default alignment) or the desired value.
+ unsigned getAlignment() const { return Alignment; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ Type *getType() const;
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ConstantPool ||
+ N->getOpcode() == ISD::TargetConstantPool;
+ }
+};
+
+/// Completely target-dependent object reference.
+class TargetIndexSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ unsigned char TargetFlags;
+ int Index;
+ int64_t Offset;
+
+public:
+ TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
+ : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
+ TargetFlags(TF), Index(Idx), Offset(Ofs) {}
+
+ unsigned char getTargetFlags() const { return TargetFlags; }
+ int getIndex() const { return Index; }
+ int64_t getOffset() const { return Offset; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::TargetIndex;
+ }
+};
+
+class BasicBlockSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ MachineBasicBlock *MBB;
+
+ /// Debug info is meaningful and potentially useful here, but we create
+ /// blocks out of order when they're jumped to, which makes it a bit
+ /// harder. Let's see if we need it first.
+ explicit BasicBlockSDNode(MachineBasicBlock *mbb)
+ : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
+ {}
+
+public:
+ MachineBasicBlock *getBasicBlock() const { return MBB; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::BasicBlock;
+ }
+};
+
+/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
+class BuildVectorSDNode : public SDNode {
+public:
+ // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
+ explicit BuildVectorSDNode() = delete;
+
+ /// Check if this is a constant splat, and if so, find the
+ /// smallest element size that splats the vector. If MinSplatBits is
+ /// nonzero, the element size must be at least that large. Note that the
+ /// splat element may be the entire vector (i.e., a one element vector).
+ /// Returns the splat element value in SplatValue. Any undefined bits in
+ /// that value are zero, and the corresponding bits in the SplatUndef mask
+ /// are set. The SplatBitSize value is set to the splat element size in
+ /// bits. HasAnyUndefs is set to true if any bits in the vector are
+ /// undefined. isBigEndian describes the endianness of the target.
+ bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
+ unsigned &SplatBitSize, bool &HasAnyUndefs,
+ unsigned MinSplatBits = 0,
+ bool isBigEndian = false) const;
+
+ /// \brief Returns the splatted value or a null value if this is not a splat.
+ ///
+ /// If passed a non-null UndefElements bitvector, it will resize it to match
+ /// the vector width and set the bits where elements are undef.
+ SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
+
+ /// \brief Returns the splatted constant or null if this is not a constant
+ /// splat.
+ ///
+ /// If passed a non-null UndefElements bitvector, it will resize it to match
+ /// the vector width and set the bits where elements are undef.
+ ConstantSDNode *
+ getConstantSplatNode(BitVector *UndefElements = nullptr) const;
+
+ /// \brief Returns the splatted constant FP or null if this is not a constant
+ /// FP splat.
+ ///
+ /// If passed a non-null UndefElements bitvector, it will resize it to match
+ /// the vector width and set the bits where elements are undef.
+ ConstantFPSDNode *
+ getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
+
+ /// \brief If this is a constant FP splat and the splatted constant FP is an
+ /// exact power or 2, return the log base 2 integer value. Otherwise,
+ /// return -1.
+ ///
+ /// The BitWidth specifies the necessary bit precision.
+ int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
+ uint32_t BitWidth) const;
+
+ bool isConstant() const;
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::BUILD_VECTOR;
+ }
+};
+
+/// An SDNode that holds an arbitrary LLVM IR Value. This is
+/// used when the SelectionDAG needs to make a simple reference to something
+/// in the LLVM IR representation.
+///
+class SrcValueSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ const Value *V;
+
+ /// Create a SrcValue for a general value.
+ explicit SrcValueSDNode(const Value *v)
+ : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
+
+public:
+ /// Return the contained Value.
+ const Value *getValue() const { return V; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::SRCVALUE;
+ }
+};
+
+class MDNodeSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ const MDNode *MD;
+
+ explicit MDNodeSDNode(const MDNode *md)
+ : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
+ {}
+
+public:
+ const MDNode *getMD() const { return MD; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MDNODE_SDNODE;
+ }
+};
+
+class RegisterSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ unsigned Reg;
+
+ RegisterSDNode(unsigned reg, EVT VT)
+ : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
+
+public:
+ unsigned getReg() const { return Reg; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::Register;
+ }
+};
+
+class RegisterMaskSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ // The memory for RegMask is not owned by the node.
+ const uint32_t *RegMask;
+
+ RegisterMaskSDNode(const uint32_t *mask)
+ : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
+ RegMask(mask) {}
+
+public:
+ const uint32_t *getRegMask() const { return RegMask; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::RegisterMask;
+ }
+};
+
+class BlockAddressSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ const BlockAddress *BA;
+ int64_t Offset;
+ unsigned char TargetFlags;
+
+ BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
+ int64_t o, unsigned char Flags)
+ : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
+ BA(ba), Offset(o), TargetFlags(Flags) {}
+
+public:
+ const BlockAddress *getBlockAddress() const { return BA; }
+ int64_t getOffset() const { return Offset; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::BlockAddress ||
+ N->getOpcode() == ISD::TargetBlockAddress;
+ }
+};
+
+class LabelSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ MCSymbol *Label;
+
+ LabelSDNode(unsigned Order, const DebugLoc &dl, MCSymbol *L)
+ : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {}
+
+public:
+ MCSymbol *getLabel() const { return Label; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::EH_LABEL ||
+ N->getOpcode() == ISD::ANNOTATION_LABEL;
+ }
+};
+
+class ExternalSymbolSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ const char *Symbol;
+ unsigned char TargetFlags;
+
+ ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
+ : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
+ 0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {}
+
+public:
+ const char *getSymbol() const { return Symbol; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ExternalSymbol ||
+ N->getOpcode() == ISD::TargetExternalSymbol;
+ }
+};
+
+class MCSymbolSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ MCSymbol *Symbol;
+
+ MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
+ : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
+
+public:
+ MCSymbol *getMCSymbol() const { return Symbol; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MCSymbol;
+ }
+};
+
+class CondCodeSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ ISD::CondCode Condition;
+
+ explicit CondCodeSDNode(ISD::CondCode Cond)
+ : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
+ Condition(Cond) {}
+
+public:
+ ISD::CondCode get() const { return Condition; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::CONDCODE;
+ }
+};
+
+/// This class is used to represent EVT's, which are used
+/// to parameterize some operations.
+class VTSDNode : public SDNode {
+ friend class SelectionDAG;
+
+ EVT ValueType;
+
+ explicit VTSDNode(EVT VT)
+ : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
+ ValueType(VT) {}
+
+public:
+ EVT getVT() const { return ValueType; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::VALUETYPE;
+ }
+};
+
+/// Base class for LoadSDNode and StoreSDNode
+class LSBaseSDNode : public MemSDNode {
+public:
+ LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
+ SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
+ MachineMemOperand *MMO)
+ : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
+ LSBaseSDNodeBits.AddressingMode = AM;
+ assert(getAddressingMode() == AM && "Value truncated");
+ }
+
+ const SDValue &getOffset() const {
+ return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
+ }
+
+ /// Return the addressing mode for this load or store:
+ /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
+ ISD::MemIndexedMode getAddressingMode() const {
+ return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
+ }
+
+ /// Return true if this is a pre/post inc/dec load/store.
+ bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
+
+ /// Return true if this is NOT a pre/post inc/dec load/store.
+ bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::LOAD ||
+ N->getOpcode() == ISD::STORE;
+ }
+};
+
+/// This class is used to represent ISD::LOAD nodes.
+class LoadSDNode : public LSBaseSDNode {
+ friend class SelectionDAG;
+
+ LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
+ ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
+ MachineMemOperand *MMO)
+ : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
+ LoadSDNodeBits.ExtTy = ETy;
+ assert(readMem() && "Load MachineMemOperand is not a load!");
+ assert(!writeMem() && "Load MachineMemOperand is a store!");
+ }
+
+public:
+ /// Return whether this is a plain node,
+ /// or one of the varieties of value-extending loads.
+ ISD::LoadExtType getExtensionType() const {
+ return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
+ }
+
+ const SDValue &getBasePtr() const { return getOperand(1); }
+ const SDValue &getOffset() const { return getOperand(2); }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::LOAD;
+ }
+};
+
+/// This class is used to represent ISD::STORE nodes.
+class StoreSDNode : public LSBaseSDNode {
+ friend class SelectionDAG;
+
+ StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
+ ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
+ MachineMemOperand *MMO)
+ : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
+ StoreSDNodeBits.IsTruncating = isTrunc;
+ assert(!readMem() && "Store MachineMemOperand is a load!");
+ assert(writeMem() && "Store MachineMemOperand is not a store!");
+ }
+
+public:
+ /// Return true if the op does a truncation before store.
+ /// For integers this is the same as doing a TRUNCATE and storing the result.
+ /// For floats, it is the same as doing an FP_ROUND and storing the result.
+ bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
+ void setTruncatingStore(bool Truncating) {
+ StoreSDNodeBits.IsTruncating = Truncating;
+ }
+
+ const SDValue &getValue() const { return getOperand(1); }
+ const SDValue &getBasePtr() const { return getOperand(2); }
+ const SDValue &getOffset() const { return getOperand(3); }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::STORE;
+ }
+};
+
+/// This base class is used to represent MLOAD and MSTORE nodes
+class MaskedLoadStoreSDNode : public MemSDNode {
+public:
+ friend class SelectionDAG;
+
+ MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
+ const DebugLoc &dl, SDVTList VTs, EVT MemVT,
+ MachineMemOperand *MMO)
+ : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
+
+ // In the both nodes address is Op1, mask is Op2:
+ // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
+ // MaskedStoreSDNode (Chain, ptr, mask, data)
+ // Mask is a vector of i1 elements
+ const SDValue &getBasePtr() const { return getOperand(1); }
+ const SDValue &getMask() const { return getOperand(2); }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MLOAD ||
+ N->getOpcode() == ISD::MSTORE;
+ }
+};
+
+/// This class is used to represent an MLOAD node
+class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
+public:
+ friend class SelectionDAG;
+
+ MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
+ ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
+ MachineMemOperand *MMO)
+ : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
+ LoadSDNodeBits.ExtTy = ETy;
+ LoadSDNodeBits.IsExpanding = IsExpanding;
+ }
+
+ ISD::LoadExtType getExtensionType() const {
+ return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
+ }
+
+ const SDValue &getSrc0() const { return getOperand(3); }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MLOAD;
+ }
+
+ bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
+};
+
+/// This class is used to represent an MSTORE node
+class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
+public:
+ friend class SelectionDAG;
+
+ MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
+ bool isTrunc, bool isCompressing, EVT MemVT,
+ MachineMemOperand *MMO)
+ : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
+ StoreSDNodeBits.IsTruncating = isTrunc;
+ StoreSDNodeBits.IsCompressing = isCompressing;
+ }
+
+ /// Return true if the op does a truncation before store.
+ /// For integers this is the same as doing a TRUNCATE and storing the result.
+ /// For floats, it is the same as doing an FP_ROUND and storing the result.
+ bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
+
+ /// Returns true if the op does a compression to the vector before storing.
+ /// The node contiguously stores the active elements (integers or floats)
+ /// in src (those with their respective bit set in writemask k) to unaligned
+ /// memory at base_addr.
+ bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
+
+ const SDValue &getValue() const { return getOperand(3); }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MSTORE;
+ }
+};
+
+/// This is a base class used to represent
+/// MGATHER and MSCATTER nodes
+///
+class MaskedGatherScatterSDNode : public MemSDNode {
+public:
+ friend class SelectionDAG;
+
+ MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
+ const DebugLoc &dl, SDVTList VTs, EVT MemVT,
+ MachineMemOperand *MMO)
+ : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
+
+ // In the both nodes address is Op1, mask is Op2:
+ // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
+ // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
+ // Mask is a vector of i1 elements
+ const SDValue &getBasePtr() const { return getOperand(3); }
+ const SDValue &getIndex() const { return getOperand(4); }
+ const SDValue &getMask() const { return getOperand(2); }
+ const SDValue &getValue() const { return getOperand(1); }
+ const SDValue &getScale() const { return getOperand(5); }
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MGATHER ||
+ N->getOpcode() == ISD::MSCATTER;
+ }
+};
+
+/// This class is used to represent an MGATHER node
+///
+class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
+public:
+ friend class SelectionDAG;
+
+ MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
+ EVT MemVT, MachineMemOperand *MMO)
+ : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {}
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MGATHER;
+ }
+};
+
+/// This class is used to represent an MSCATTER node
+///
+class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
+public:
+ friend class SelectionDAG;
+
+ MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
+ EVT MemVT, MachineMemOperand *MMO)
+ : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {}
+
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::MSCATTER;
+ }
+};
+
+/// An SDNode that represents everything that will be needed
+/// to construct a MachineInstr. These nodes are created during the
+/// instruction selection proper phase.
+class MachineSDNode : public SDNode {
+public:
+ using mmo_iterator = MachineMemOperand **;
+
+private:
+ friend class SelectionDAG;
+
+ MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
+ : SDNode(Opc, Order, DL, VTs) {}
+
+ /// Memory reference descriptions for this instruction.
+ mmo_iterator MemRefs = nullptr;
+ mmo_iterator MemRefsEnd = nullptr;
+
+public:
+ mmo_iterator memoperands_begin() const { return MemRefs; }
+ mmo_iterator memoperands_end() const { return MemRefsEnd; }
+ bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
+
+ /// Assign this MachineSDNodes's memory reference descriptor
+ /// list. This does not transfer ownership.
+ void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
+ for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
+ assert(*MMI && "Null mem ref detected!");
+ MemRefs = NewMemRefs;
+ MemRefsEnd = NewMemRefsEnd;
+ }
+
+ static bool classof(const SDNode *N) {
+ return N->isMachineOpcode();
+ }
+};
+
+class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
+ SDNode, ptrdiff_t> {
+ const SDNode *Node;
+ unsigned Operand;
+
+ SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
+
+public:
+ bool operator==(const SDNodeIterator& x) const {
+ return Operand == x.Operand;
+ }
+ bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
+
+ pointer operator*() const {
+ return Node->getOperand(Operand).getNode();
+ }
+ pointer operator->() const { return operator*(); }
+
+ SDNodeIterator& operator++() { // Preincrement
+ ++Operand;
+ return *this;
+ }
+ SDNodeIterator operator++(int) { // Postincrement
+ SDNodeIterator tmp = *this; ++*this; return tmp;
+ }
+ size_t operator-(SDNodeIterator Other) const {
+ assert(Node == Other.Node &&
+ "Cannot compare iterators of two different nodes!");
+ return Operand - Other.Operand;
+ }
+
+ static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
+ static SDNodeIterator end (const SDNode *N) {
+ return SDNodeIterator(N, N->getNumOperands());
+ }
+
+ unsigned getOperand() const { return Operand; }
+ const SDNode *getNode() const { return Node; }
+};
+
+template <> struct GraphTraits<SDNode*> {
+ using NodeRef = SDNode *;
+ using ChildIteratorType = SDNodeIterator;
+
+ static NodeRef getEntryNode(SDNode *N) { return N; }
+
+ static ChildIteratorType child_begin(NodeRef N) {
+ return SDNodeIterator::begin(N);
+ }
+
+ static ChildIteratorType child_end(NodeRef N) {
+ return SDNodeIterator::end(N);
+ }
+};
+
+/// A representation of the largest SDNode, for use in sizeof().
+///
+/// This needs to be a union because the largest node differs on 32 bit systems
+/// with 4 and 8 byte pointer alignment, respectively.
+using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
+ BlockAddressSDNode,
+ GlobalAddressSDNode>;
+
+/// The SDNode class with the greatest alignment requirement.
+using MostAlignedSDNode = GlobalAddressSDNode;
+
+namespace ISD {
+
+ /// Returns true if the specified node is a non-extending and unindexed load.
+ inline bool isNormalLoad(const SDNode *N) {
+ const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
+ return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
+ Ld->getAddressingMode() == ISD::UNINDEXED;
+ }
+
+ /// Returns true if the specified node is a non-extending load.
+ inline bool isNON_EXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
+ }
+
+ /// Returns true if the specified node is a EXTLOAD.
+ inline bool isEXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
+ }
+
+ /// Returns true if the specified node is a SEXTLOAD.
+ inline bool isSEXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
+ }
+
+ /// Returns true if the specified node is a ZEXTLOAD.
+ inline bool isZEXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
+ }
+
+ /// Returns true if the specified node is an unindexed load.
+ inline bool isUNINDEXEDLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
+ }
+
+ /// Returns true if the specified node is a non-truncating
+ /// and unindexed store.
+ inline bool isNormalStore(const SDNode *N) {
+ const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
+ return St && !St->isTruncatingStore() &&
+ St->getAddressingMode() == ISD::UNINDEXED;
+ }
+
+ /// Returns true if the specified node is a non-truncating store.
+ inline bool isNON_TRUNCStore(const SDNode *N) {
+ return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
+ }
+
+ /// Returns true if the specified node is a truncating store.
+ inline bool isTRUNCStore(const SDNode *N) {
+ return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
+ }
+
+ /// Returns true if the specified node is an unindexed store.
+ inline bool isUNINDEXEDStore(const SDNode *N) {
+ return isa<StoreSDNode>(N) &&
+ cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
+ }
+
+ /// Attempt to match a unary predicate against a scalar/splat constant or
+ /// every element of a constant BUILD_VECTOR.
+ bool matchUnaryPredicate(SDValue Op,
+ std::function<bool(ConstantSDNode *)> Match);
+
+ /// Attempt to match a binary predicate against a pair of scalar/splat
+ /// constants or every element of a pair of constant BUILD_VECTORs.
+ bool matchBinaryPredicate(
+ SDValue LHS, SDValue RHS,
+ std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match);
+
+} // end namespace ISD
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H