Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains a class for representing known zeros and ones used by |
| 11 | // computeKnownBits. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_SUPPORT_KNOWNBITS_H |
| 16 | #define LLVM_SUPPORT_KNOWNBITS_H |
| 17 | |
| 18 | #include "llvm/ADT/APInt.h" |
| 19 | |
| 20 | namespace llvm { |
| 21 | |
| 22 | // Struct for tracking the known zeros and ones of a value. |
| 23 | struct KnownBits { |
| 24 | APInt Zero; |
| 25 | APInt One; |
| 26 | |
| 27 | private: |
| 28 | // Internal constructor for creating a KnownBits from two APInts. |
| 29 | KnownBits(APInt Zero, APInt One) |
| 30 | : Zero(std::move(Zero)), One(std::move(One)) {} |
| 31 | |
| 32 | public: |
| 33 | // Default construct Zero and One. |
| 34 | KnownBits() {} |
| 35 | |
| 36 | /// Create a known bits object of BitWidth bits initialized to unknown. |
| 37 | KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {} |
| 38 | |
| 39 | /// Get the bit width of this value. |
| 40 | unsigned getBitWidth() const { |
| 41 | assert(Zero.getBitWidth() == One.getBitWidth() && |
| 42 | "Zero and One should have the same width!"); |
| 43 | return Zero.getBitWidth(); |
| 44 | } |
| 45 | |
| 46 | /// Returns true if there is conflicting information. |
| 47 | bool hasConflict() const { return Zero.intersects(One); } |
| 48 | |
| 49 | /// Returns true if we know the value of all bits. |
| 50 | bool isConstant() const { |
| 51 | assert(!hasConflict() && "KnownBits conflict!"); |
| 52 | return Zero.countPopulation() + One.countPopulation() == getBitWidth(); |
| 53 | } |
| 54 | |
| 55 | /// Returns the value when all bits have a known value. This just returns One |
| 56 | /// with a protective assertion. |
| 57 | const APInt &getConstant() const { |
| 58 | assert(isConstant() && "Can only get value when all bits are known"); |
| 59 | return One; |
| 60 | } |
| 61 | |
| 62 | /// Returns true if we don't know any bits. |
| 63 | bool isUnknown() const { return Zero.isNullValue() && One.isNullValue(); } |
| 64 | |
| 65 | /// Resets the known state of all bits. |
| 66 | void resetAll() { |
| 67 | Zero.clearAllBits(); |
| 68 | One.clearAllBits(); |
| 69 | } |
| 70 | |
| 71 | /// Returns true if value is all zero. |
| 72 | bool isZero() const { |
| 73 | assert(!hasConflict() && "KnownBits conflict!"); |
| 74 | return Zero.isAllOnesValue(); |
| 75 | } |
| 76 | |
| 77 | /// Returns true if value is all one bits. |
| 78 | bool isAllOnes() const { |
| 79 | assert(!hasConflict() && "KnownBits conflict!"); |
| 80 | return One.isAllOnesValue(); |
| 81 | } |
| 82 | |
| 83 | /// Make all bits known to be zero and discard any previous information. |
| 84 | void setAllZero() { |
| 85 | Zero.setAllBits(); |
| 86 | One.clearAllBits(); |
| 87 | } |
| 88 | |
| 89 | /// Make all bits known to be one and discard any previous information. |
| 90 | void setAllOnes() { |
| 91 | Zero.clearAllBits(); |
| 92 | One.setAllBits(); |
| 93 | } |
| 94 | |
| 95 | /// Returns true if this value is known to be negative. |
| 96 | bool isNegative() const { return One.isSignBitSet(); } |
| 97 | |
| 98 | /// Returns true if this value is known to be non-negative. |
| 99 | bool isNonNegative() const { return Zero.isSignBitSet(); } |
| 100 | |
| 101 | /// Make this value negative. |
| 102 | void makeNegative() { |
| 103 | One.setSignBit(); |
| 104 | } |
| 105 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame^] | 106 | /// Make this value non-negative. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 107 | void makeNonNegative() { |
| 108 | Zero.setSignBit(); |
| 109 | } |
| 110 | |
| 111 | /// Truncate the underlying known Zero and One bits. This is equivalent |
| 112 | /// to truncating the value we're tracking. |
| 113 | KnownBits trunc(unsigned BitWidth) { |
| 114 | return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth)); |
| 115 | } |
| 116 | |
| 117 | /// Zero extends the underlying known Zero and One bits. This is equivalent |
| 118 | /// to zero extending the value we're tracking. |
| 119 | KnownBits zext(unsigned BitWidth) { |
| 120 | return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth)); |
| 121 | } |
| 122 | |
| 123 | /// Sign extends the underlying known Zero and One bits. This is equivalent |
| 124 | /// to sign extending the value we're tracking. |
| 125 | KnownBits sext(unsigned BitWidth) { |
| 126 | return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth)); |
| 127 | } |
| 128 | |
| 129 | /// Zero extends or truncates the underlying known Zero and One bits. This is |
| 130 | /// equivalent to zero extending or truncating the value we're tracking. |
| 131 | KnownBits zextOrTrunc(unsigned BitWidth) { |
| 132 | return KnownBits(Zero.zextOrTrunc(BitWidth), One.zextOrTrunc(BitWidth)); |
| 133 | } |
| 134 | |
| 135 | /// Returns the minimum number of trailing zero bits. |
| 136 | unsigned countMinTrailingZeros() const { |
| 137 | return Zero.countTrailingOnes(); |
| 138 | } |
| 139 | |
| 140 | /// Returns the minimum number of trailing one bits. |
| 141 | unsigned countMinTrailingOnes() const { |
| 142 | return One.countTrailingOnes(); |
| 143 | } |
| 144 | |
| 145 | /// Returns the minimum number of leading zero bits. |
| 146 | unsigned countMinLeadingZeros() const { |
| 147 | return Zero.countLeadingOnes(); |
| 148 | } |
| 149 | |
| 150 | /// Returns the minimum number of leading one bits. |
| 151 | unsigned countMinLeadingOnes() const { |
| 152 | return One.countLeadingOnes(); |
| 153 | } |
| 154 | |
| 155 | /// Returns the number of times the sign bit is replicated into the other |
| 156 | /// bits. |
| 157 | unsigned countMinSignBits() const { |
| 158 | if (isNonNegative()) |
| 159 | return countMinLeadingZeros(); |
| 160 | if (isNegative()) |
| 161 | return countMinLeadingOnes(); |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | /// Returns the maximum number of trailing zero bits possible. |
| 166 | unsigned countMaxTrailingZeros() const { |
| 167 | return One.countTrailingZeros(); |
| 168 | } |
| 169 | |
| 170 | /// Returns the maximum number of trailing one bits possible. |
| 171 | unsigned countMaxTrailingOnes() const { |
| 172 | return Zero.countTrailingZeros(); |
| 173 | } |
| 174 | |
| 175 | /// Returns the maximum number of leading zero bits possible. |
| 176 | unsigned countMaxLeadingZeros() const { |
| 177 | return One.countLeadingZeros(); |
| 178 | } |
| 179 | |
| 180 | /// Returns the maximum number of leading one bits possible. |
| 181 | unsigned countMaxLeadingOnes() const { |
| 182 | return Zero.countLeadingZeros(); |
| 183 | } |
| 184 | |
| 185 | /// Returns the number of bits known to be one. |
| 186 | unsigned countMinPopulation() const { |
| 187 | return One.countPopulation(); |
| 188 | } |
| 189 | |
| 190 | /// Returns the maximum number of bits that could be one. |
| 191 | unsigned countMaxPopulation() const { |
| 192 | return getBitWidth() - Zero.countPopulation(); |
| 193 | } |
| 194 | |
| 195 | /// Compute known bits resulting from adding LHS and RHS. |
| 196 | static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS, |
| 197 | KnownBits RHS); |
| 198 | }; |
| 199 | |
| 200 | } // end namespace llvm |
| 201 | |
| 202 | #endif |