Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- MachineScheduler.h - MachineInstr Scheduling Pass --------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file provides an interface for customizing the standard MachineScheduler |
| 11 | // pass. Note that the entire pass may be replaced as follows: |
| 12 | // |
| 13 | // <Target>TargetMachine::createPassConfig(PassManagerBase &PM) { |
| 14 | // PM.substitutePass(&MachineSchedulerID, &CustomSchedulerPassID); |
| 15 | // ...} |
| 16 | // |
| 17 | // The MachineScheduler pass is only responsible for choosing the regions to be |
| 18 | // scheduled. Targets can override the DAG builder and scheduler without |
| 19 | // replacing the pass as follows: |
| 20 | // |
| 21 | // ScheduleDAGInstrs *<Target>PassConfig:: |
| 22 | // createMachineScheduler(MachineSchedContext *C) { |
| 23 | // return new CustomMachineScheduler(C); |
| 24 | // } |
| 25 | // |
| 26 | // The default scheduler, ScheduleDAGMILive, builds the DAG and drives list |
| 27 | // scheduling while updating the instruction stream, register pressure, and live |
| 28 | // intervals. Most targets don't need to override the DAG builder and list |
| 29 | // scheduler, but subtargets that require custom scheduling heuristics may |
| 30 | // plugin an alternate MachineSchedStrategy. The strategy is responsible for |
| 31 | // selecting the highest priority node from the list: |
| 32 | // |
| 33 | // ScheduleDAGInstrs *<Target>PassConfig:: |
| 34 | // createMachineScheduler(MachineSchedContext *C) { |
| 35 | // return new ScheduleDAGMILive(C, CustomStrategy(C)); |
| 36 | // } |
| 37 | // |
| 38 | // The DAG builder can also be customized in a sense by adding DAG mutations |
| 39 | // that will run after DAG building and before list scheduling. DAG mutations |
| 40 | // can adjust dependencies based on target-specific knowledge or add weak edges |
| 41 | // to aid heuristics: |
| 42 | // |
| 43 | // ScheduleDAGInstrs *<Target>PassConfig:: |
| 44 | // createMachineScheduler(MachineSchedContext *C) { |
| 45 | // ScheduleDAGMI *DAG = createGenericSchedLive(C); |
| 46 | // DAG->addMutation(new CustomDAGMutation(...)); |
| 47 | // return DAG; |
| 48 | // } |
| 49 | // |
| 50 | // A target that supports alternative schedulers can use the |
| 51 | // MachineSchedRegistry to allow command line selection. This can be done by |
| 52 | // implementing the following boilerplate: |
| 53 | // |
| 54 | // static ScheduleDAGInstrs *createCustomMachineSched(MachineSchedContext *C) { |
| 55 | // return new CustomMachineScheduler(C); |
| 56 | // } |
| 57 | // static MachineSchedRegistry |
| 58 | // SchedCustomRegistry("custom", "Run my target's custom scheduler", |
| 59 | // createCustomMachineSched); |
| 60 | // |
| 61 | // |
| 62 | // Finally, subtargets that don't need to implement custom heuristics but would |
| 63 | // like to configure the GenericScheduler's policy for a given scheduler region, |
| 64 | // including scheduling direction and register pressure tracking policy, can do |
| 65 | // this: |
| 66 | // |
| 67 | // void <SubTarget>Subtarget:: |
| 68 | // overrideSchedPolicy(MachineSchedPolicy &Policy, |
| 69 | // unsigned NumRegionInstrs) const { |
| 70 | // Policy.<Flag> = true; |
| 71 | // } |
| 72 | // |
| 73 | //===----------------------------------------------------------------------===// |
| 74 | |
| 75 | #ifndef LLVM_CODEGEN_MACHINESCHEDULER_H |
| 76 | #define LLVM_CODEGEN_MACHINESCHEDULER_H |
| 77 | |
| 78 | #include "llvm/ADT/ArrayRef.h" |
| 79 | #include "llvm/ADT/BitVector.h" |
| 80 | #include "llvm/ADT/STLExtras.h" |
| 81 | #include "llvm/ADT/SmallVector.h" |
| 82 | #include "llvm/ADT/StringRef.h" |
| 83 | #include "llvm/ADT/Twine.h" |
| 84 | #include "llvm/Analysis/AliasAnalysis.h" |
| 85 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 86 | #include "llvm/CodeGen/MachinePassRegistry.h" |
| 87 | #include "llvm/CodeGen/RegisterPressure.h" |
| 88 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 89 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| 90 | #include "llvm/CodeGen/ScheduleDAGMutation.h" |
| 91 | #include "llvm/CodeGen/TargetSchedule.h" |
| 92 | #include "llvm/Support/CommandLine.h" |
| 93 | #include "llvm/Support/ErrorHandling.h" |
| 94 | #include <algorithm> |
| 95 | #include <cassert> |
| 96 | #include <memory> |
| 97 | #include <string> |
| 98 | #include <vector> |
| 99 | |
| 100 | namespace llvm { |
| 101 | |
| 102 | extern cl::opt<bool> ForceTopDown; |
| 103 | extern cl::opt<bool> ForceBottomUp; |
| 104 | |
| 105 | class LiveIntervals; |
| 106 | class MachineDominatorTree; |
| 107 | class MachineFunction; |
| 108 | class MachineInstr; |
| 109 | class MachineLoopInfo; |
| 110 | class RegisterClassInfo; |
| 111 | class SchedDFSResult; |
| 112 | class ScheduleHazardRecognizer; |
| 113 | class TargetInstrInfo; |
| 114 | class TargetPassConfig; |
| 115 | class TargetRegisterInfo; |
| 116 | |
| 117 | /// MachineSchedContext provides enough context from the MachineScheduler pass |
| 118 | /// for the target to instantiate a scheduler. |
| 119 | struct MachineSchedContext { |
| 120 | MachineFunction *MF = nullptr; |
| 121 | const MachineLoopInfo *MLI = nullptr; |
| 122 | const MachineDominatorTree *MDT = nullptr; |
| 123 | const TargetPassConfig *PassConfig = nullptr; |
| 124 | AliasAnalysis *AA = nullptr; |
| 125 | LiveIntervals *LIS = nullptr; |
| 126 | |
| 127 | RegisterClassInfo *RegClassInfo; |
| 128 | |
| 129 | MachineSchedContext(); |
| 130 | virtual ~MachineSchedContext(); |
| 131 | }; |
| 132 | |
| 133 | /// MachineSchedRegistry provides a selection of available machine instruction |
| 134 | /// schedulers. |
| 135 | class MachineSchedRegistry : public MachinePassRegistryNode { |
| 136 | public: |
| 137 | using ScheduleDAGCtor = ScheduleDAGInstrs *(*)(MachineSchedContext *); |
| 138 | |
| 139 | // RegisterPassParser requires a (misnamed) FunctionPassCtor type. |
| 140 | using FunctionPassCtor = ScheduleDAGCtor; |
| 141 | |
| 142 | static MachinePassRegistry Registry; |
| 143 | |
| 144 | MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C) |
| 145 | : MachinePassRegistryNode(N, D, (MachinePassCtor)C) { |
| 146 | Registry.Add(this); |
| 147 | } |
| 148 | |
| 149 | ~MachineSchedRegistry() { Registry.Remove(this); } |
| 150 | |
| 151 | // Accessors. |
| 152 | // |
| 153 | MachineSchedRegistry *getNext() const { |
| 154 | return (MachineSchedRegistry *)MachinePassRegistryNode::getNext(); |
| 155 | } |
| 156 | |
| 157 | static MachineSchedRegistry *getList() { |
| 158 | return (MachineSchedRegistry *)Registry.getList(); |
| 159 | } |
| 160 | |
| 161 | static void setListener(MachinePassRegistryListener *L) { |
| 162 | Registry.setListener(L); |
| 163 | } |
| 164 | }; |
| 165 | |
| 166 | class ScheduleDAGMI; |
| 167 | |
| 168 | /// Define a generic scheduling policy for targets that don't provide their own |
| 169 | /// MachineSchedStrategy. This can be overriden for each scheduling region |
| 170 | /// before building the DAG. |
| 171 | struct MachineSchedPolicy { |
| 172 | // Allow the scheduler to disable register pressure tracking. |
| 173 | bool ShouldTrackPressure = false; |
| 174 | /// Track LaneMasks to allow reordering of independent subregister writes |
| 175 | /// of the same vreg. \sa MachineSchedStrategy::shouldTrackLaneMasks() |
| 176 | bool ShouldTrackLaneMasks = false; |
| 177 | |
| 178 | // Allow the scheduler to force top-down or bottom-up scheduling. If neither |
| 179 | // is true, the scheduler runs in both directions and converges. |
| 180 | bool OnlyTopDown = false; |
| 181 | bool OnlyBottomUp = false; |
| 182 | |
| 183 | // Disable heuristic that tries to fetch nodes from long dependency chains |
| 184 | // first. |
| 185 | bool DisableLatencyHeuristic = false; |
| 186 | |
| 187 | MachineSchedPolicy() = default; |
| 188 | }; |
| 189 | |
| 190 | /// MachineSchedStrategy - Interface to the scheduling algorithm used by |
| 191 | /// ScheduleDAGMI. |
| 192 | /// |
| 193 | /// Initialization sequence: |
| 194 | /// initPolicy -> shouldTrackPressure -> initialize(DAG) -> registerRoots |
| 195 | class MachineSchedStrategy { |
| 196 | virtual void anchor(); |
| 197 | |
| 198 | public: |
| 199 | virtual ~MachineSchedStrategy() = default; |
| 200 | |
| 201 | /// Optionally override the per-region scheduling policy. |
| 202 | virtual void initPolicy(MachineBasicBlock::iterator Begin, |
| 203 | MachineBasicBlock::iterator End, |
| 204 | unsigned NumRegionInstrs) {} |
| 205 | |
| 206 | virtual void dumpPolicy() const {} |
| 207 | |
| 208 | /// Check if pressure tracking is needed before building the DAG and |
| 209 | /// initializing this strategy. Called after initPolicy. |
| 210 | virtual bool shouldTrackPressure() const { return true; } |
| 211 | |
| 212 | /// Returns true if lanemasks should be tracked. LaneMask tracking is |
| 213 | /// necessary to reorder independent subregister defs for the same vreg. |
| 214 | /// This has to be enabled in combination with shouldTrackPressure(). |
| 215 | virtual bool shouldTrackLaneMasks() const { return false; } |
| 216 | |
| 217 | // If this method returns true, handling of the scheduling regions |
| 218 | // themselves (in case of a scheduling boundary in MBB) will be done |
| 219 | // beginning with the topmost region of MBB. |
| 220 | virtual bool doMBBSchedRegionsTopDown() const { return false; } |
| 221 | |
| 222 | /// Initialize the strategy after building the DAG for a new region. |
| 223 | virtual void initialize(ScheduleDAGMI *DAG) = 0; |
| 224 | |
| 225 | /// Tell the strategy that MBB is about to be processed. |
| 226 | virtual void enterMBB(MachineBasicBlock *MBB) {}; |
| 227 | |
| 228 | /// Tell the strategy that current MBB is done. |
| 229 | virtual void leaveMBB() {}; |
| 230 | |
| 231 | /// Notify this strategy that all roots have been released (including those |
| 232 | /// that depend on EntrySU or ExitSU). |
| 233 | virtual void registerRoots() {} |
| 234 | |
| 235 | /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to |
| 236 | /// schedule the node at the top of the unscheduled region. Otherwise it will |
| 237 | /// be scheduled at the bottom. |
| 238 | virtual SUnit *pickNode(bool &IsTopNode) = 0; |
| 239 | |
| 240 | /// \brief Scheduler callback to notify that a new subtree is scheduled. |
| 241 | virtual void scheduleTree(unsigned SubtreeID) {} |
| 242 | |
| 243 | /// Notify MachineSchedStrategy that ScheduleDAGMI has scheduled an |
| 244 | /// instruction and updated scheduled/remaining flags in the DAG nodes. |
| 245 | virtual void schedNode(SUnit *SU, bool IsTopNode) = 0; |
| 246 | |
| 247 | /// When all predecessor dependencies have been resolved, free this node for |
| 248 | /// top-down scheduling. |
| 249 | virtual void releaseTopNode(SUnit *SU) = 0; |
| 250 | |
| 251 | /// When all successor dependencies have been resolved, free this node for |
| 252 | /// bottom-up scheduling. |
| 253 | virtual void releaseBottomNode(SUnit *SU) = 0; |
| 254 | }; |
| 255 | |
| 256 | /// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply |
| 257 | /// schedules machine instructions according to the given MachineSchedStrategy |
| 258 | /// without much extra book-keeping. This is the common functionality between |
| 259 | /// PreRA and PostRA MachineScheduler. |
| 260 | class ScheduleDAGMI : public ScheduleDAGInstrs { |
| 261 | protected: |
| 262 | AliasAnalysis *AA; |
| 263 | LiveIntervals *LIS; |
| 264 | std::unique_ptr<MachineSchedStrategy> SchedImpl; |
| 265 | |
| 266 | /// Topo - A topological ordering for SUnits which permits fast IsReachable |
| 267 | /// and similar queries. |
| 268 | ScheduleDAGTopologicalSort Topo; |
| 269 | |
| 270 | /// Ordered list of DAG postprocessing steps. |
| 271 | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
| 272 | |
| 273 | /// The top of the unscheduled zone. |
| 274 | MachineBasicBlock::iterator CurrentTop; |
| 275 | |
| 276 | /// The bottom of the unscheduled zone. |
| 277 | MachineBasicBlock::iterator CurrentBottom; |
| 278 | |
| 279 | /// Record the next node in a scheduled cluster. |
| 280 | const SUnit *NextClusterPred = nullptr; |
| 281 | const SUnit *NextClusterSucc = nullptr; |
| 282 | |
| 283 | #ifndef NDEBUG |
| 284 | /// The number of instructions scheduled so far. Used to cut off the |
| 285 | /// scheduler at the point determined by misched-cutoff. |
| 286 | unsigned NumInstrsScheduled = 0; |
| 287 | #endif |
| 288 | |
| 289 | public: |
| 290 | ScheduleDAGMI(MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S, |
| 291 | bool RemoveKillFlags) |
| 292 | : ScheduleDAGInstrs(*C->MF, C->MLI, RemoveKillFlags), AA(C->AA), |
| 293 | LIS(C->LIS), SchedImpl(std::move(S)), Topo(SUnits, &ExitSU) {} |
| 294 | |
| 295 | // Provide a vtable anchor |
| 296 | ~ScheduleDAGMI() override; |
| 297 | |
| 298 | /// If this method returns true, handling of the scheduling regions |
| 299 | /// themselves (in case of a scheduling boundary in MBB) will be done |
| 300 | /// beginning with the topmost region of MBB. |
| 301 | bool doMBBSchedRegionsTopDown() const override { |
| 302 | return SchedImpl->doMBBSchedRegionsTopDown(); |
| 303 | } |
| 304 | |
| 305 | // Returns LiveIntervals instance for use in DAG mutators and such. |
| 306 | LiveIntervals *getLIS() const { return LIS; } |
| 307 | |
| 308 | /// Return true if this DAG supports VReg liveness and RegPressure. |
| 309 | virtual bool hasVRegLiveness() const { return false; } |
| 310 | |
| 311 | /// Add a postprocessing step to the DAG builder. |
| 312 | /// Mutations are applied in the order that they are added after normal DAG |
| 313 | /// building and before MachineSchedStrategy initialization. |
| 314 | /// |
| 315 | /// ScheduleDAGMI takes ownership of the Mutation object. |
| 316 | void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { |
| 317 | if (Mutation) |
| 318 | Mutations.push_back(std::move(Mutation)); |
| 319 | } |
| 320 | |
| 321 | /// \brief True if an edge can be added from PredSU to SuccSU without creating |
| 322 | /// a cycle. |
| 323 | bool canAddEdge(SUnit *SuccSU, SUnit *PredSU); |
| 324 | |
| 325 | /// \brief Add a DAG edge to the given SU with the given predecessor |
| 326 | /// dependence data. |
| 327 | /// |
| 328 | /// \returns true if the edge may be added without creating a cycle OR if an |
| 329 | /// equivalent edge already existed (false indicates failure). |
| 330 | bool addEdge(SUnit *SuccSU, const SDep &PredDep); |
| 331 | |
| 332 | MachineBasicBlock::iterator top() const { return CurrentTop; } |
| 333 | MachineBasicBlock::iterator bottom() const { return CurrentBottom; } |
| 334 | |
| 335 | /// Implement the ScheduleDAGInstrs interface for handling the next scheduling |
| 336 | /// region. This covers all instructions in a block, while schedule() may only |
| 337 | /// cover a subset. |
| 338 | void enterRegion(MachineBasicBlock *bb, |
| 339 | MachineBasicBlock::iterator begin, |
| 340 | MachineBasicBlock::iterator end, |
| 341 | unsigned regioninstrs) override; |
| 342 | |
| 343 | /// Implement ScheduleDAGInstrs interface for scheduling a sequence of |
| 344 | /// reorderable instructions. |
| 345 | void schedule() override; |
| 346 | |
| 347 | void startBlock(MachineBasicBlock *bb) override; |
| 348 | void finishBlock() override; |
| 349 | |
| 350 | /// Change the position of an instruction within the basic block and update |
| 351 | /// live ranges and region boundary iterators. |
| 352 | void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos); |
| 353 | |
| 354 | const SUnit *getNextClusterPred() const { return NextClusterPred; } |
| 355 | |
| 356 | const SUnit *getNextClusterSucc() const { return NextClusterSucc; } |
| 357 | |
| 358 | void viewGraph(const Twine &Name, const Twine &Title) override; |
| 359 | void viewGraph() override; |
| 360 | |
| 361 | protected: |
| 362 | // Top-Level entry points for the schedule() driver... |
| 363 | |
| 364 | /// Apply each ScheduleDAGMutation step in order. This allows different |
| 365 | /// instances of ScheduleDAGMI to perform custom DAG postprocessing. |
| 366 | void postprocessDAG(); |
| 367 | |
| 368 | /// Release ExitSU predecessors and setup scheduler queues. |
| 369 | void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots); |
| 370 | |
| 371 | /// Update scheduler DAG and queues after scheduling an instruction. |
| 372 | void updateQueues(SUnit *SU, bool IsTopNode); |
| 373 | |
| 374 | /// Reinsert debug_values recorded in ScheduleDAGInstrs::DbgValues. |
| 375 | void placeDebugValues(); |
| 376 | |
| 377 | /// \brief dump the scheduled Sequence. |
| 378 | void dumpSchedule() const; |
| 379 | |
| 380 | // Lesser helpers... |
| 381 | bool checkSchedLimit(); |
| 382 | |
| 383 | void findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, |
| 384 | SmallVectorImpl<SUnit*> &BotRoots); |
| 385 | |
| 386 | void releaseSucc(SUnit *SU, SDep *SuccEdge); |
| 387 | void releaseSuccessors(SUnit *SU); |
| 388 | void releasePred(SUnit *SU, SDep *PredEdge); |
| 389 | void releasePredecessors(SUnit *SU); |
| 390 | }; |
| 391 | |
| 392 | /// ScheduleDAGMILive is an implementation of ScheduleDAGInstrs that schedules |
| 393 | /// machine instructions while updating LiveIntervals and tracking regpressure. |
| 394 | class ScheduleDAGMILive : public ScheduleDAGMI { |
| 395 | protected: |
| 396 | RegisterClassInfo *RegClassInfo; |
| 397 | |
| 398 | /// Information about DAG subtrees. If DFSResult is NULL, then SchedulerTrees |
| 399 | /// will be empty. |
| 400 | SchedDFSResult *DFSResult = nullptr; |
| 401 | BitVector ScheduledTrees; |
| 402 | |
| 403 | MachineBasicBlock::iterator LiveRegionEnd; |
| 404 | |
| 405 | /// Maps vregs to the SUnits of their uses in the current scheduling region. |
| 406 | VReg2SUnitMultiMap VRegUses; |
| 407 | |
| 408 | // Map each SU to its summary of pressure changes. This array is updated for |
| 409 | // liveness during bottom-up scheduling. Top-down scheduling may proceed but |
| 410 | // has no affect on the pressure diffs. |
| 411 | PressureDiffs SUPressureDiffs; |
| 412 | |
| 413 | /// Register pressure in this region computed by initRegPressure. |
| 414 | bool ShouldTrackPressure = false; |
| 415 | bool ShouldTrackLaneMasks = false; |
| 416 | IntervalPressure RegPressure; |
| 417 | RegPressureTracker RPTracker; |
| 418 | |
| 419 | /// List of pressure sets that exceed the target's pressure limit before |
| 420 | /// scheduling, listed in increasing set ID order. Each pressure set is paired |
| 421 | /// with its max pressure in the currently scheduled regions. |
| 422 | std::vector<PressureChange> RegionCriticalPSets; |
| 423 | |
| 424 | /// The top of the unscheduled zone. |
| 425 | IntervalPressure TopPressure; |
| 426 | RegPressureTracker TopRPTracker; |
| 427 | |
| 428 | /// The bottom of the unscheduled zone. |
| 429 | IntervalPressure BotPressure; |
| 430 | RegPressureTracker BotRPTracker; |
| 431 | |
| 432 | /// True if disconnected subregister components are already renamed. |
| 433 | /// The renaming is only done on demand if lane masks are tracked. |
| 434 | bool DisconnectedComponentsRenamed = false; |
| 435 | |
| 436 | public: |
| 437 | ScheduleDAGMILive(MachineSchedContext *C, |
| 438 | std::unique_ptr<MachineSchedStrategy> S) |
| 439 | : ScheduleDAGMI(C, std::move(S), /*RemoveKillFlags=*/false), |
| 440 | RegClassInfo(C->RegClassInfo), RPTracker(RegPressure), |
| 441 | TopRPTracker(TopPressure), BotRPTracker(BotPressure) {} |
| 442 | |
| 443 | ~ScheduleDAGMILive() override; |
| 444 | |
| 445 | /// Return true if this DAG supports VReg liveness and RegPressure. |
| 446 | bool hasVRegLiveness() const override { return true; } |
| 447 | |
| 448 | /// \brief Return true if register pressure tracking is enabled. |
| 449 | bool isTrackingPressure() const { return ShouldTrackPressure; } |
| 450 | |
| 451 | /// Get current register pressure for the top scheduled instructions. |
| 452 | const IntervalPressure &getTopPressure() const { return TopPressure; } |
| 453 | const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; } |
| 454 | |
| 455 | /// Get current register pressure for the bottom scheduled instructions. |
| 456 | const IntervalPressure &getBotPressure() const { return BotPressure; } |
| 457 | const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; } |
| 458 | |
| 459 | /// Get register pressure for the entire scheduling region before scheduling. |
| 460 | const IntervalPressure &getRegPressure() const { return RegPressure; } |
| 461 | |
| 462 | const std::vector<PressureChange> &getRegionCriticalPSets() const { |
| 463 | return RegionCriticalPSets; |
| 464 | } |
| 465 | |
| 466 | PressureDiff &getPressureDiff(const SUnit *SU) { |
| 467 | return SUPressureDiffs[SU->NodeNum]; |
| 468 | } |
| 469 | |
| 470 | /// Compute a DFSResult after DAG building is complete, and before any |
| 471 | /// queue comparisons. |
| 472 | void computeDFSResult(); |
| 473 | |
| 474 | /// Return a non-null DFS result if the scheduling strategy initialized it. |
| 475 | const SchedDFSResult *getDFSResult() const { return DFSResult; } |
| 476 | |
| 477 | BitVector &getScheduledTrees() { return ScheduledTrees; } |
| 478 | |
| 479 | /// Implement the ScheduleDAGInstrs interface for handling the next scheduling |
| 480 | /// region. This covers all instructions in a block, while schedule() may only |
| 481 | /// cover a subset. |
| 482 | void enterRegion(MachineBasicBlock *bb, |
| 483 | MachineBasicBlock::iterator begin, |
| 484 | MachineBasicBlock::iterator end, |
| 485 | unsigned regioninstrs) override; |
| 486 | |
| 487 | /// Implement ScheduleDAGInstrs interface for scheduling a sequence of |
| 488 | /// reorderable instructions. |
| 489 | void schedule() override; |
| 490 | |
| 491 | /// Compute the cyclic critical path through the DAG. |
| 492 | unsigned computeCyclicCriticalPath(); |
| 493 | |
| 494 | protected: |
| 495 | // Top-Level entry points for the schedule() driver... |
| 496 | |
| 497 | /// Call ScheduleDAGInstrs::buildSchedGraph with register pressure tracking |
| 498 | /// enabled. This sets up three trackers. RPTracker will cover the entire DAG |
| 499 | /// region, TopTracker and BottomTracker will be initialized to the top and |
| 500 | /// bottom of the DAG region without covereing any unscheduled instruction. |
| 501 | void buildDAGWithRegPressure(); |
| 502 | |
| 503 | /// Release ExitSU predecessors and setup scheduler queues. Re-position |
| 504 | /// the Top RP tracker in case the region beginning has changed. |
| 505 | void initQueues(ArrayRef<SUnit*> TopRoots, ArrayRef<SUnit*> BotRoots); |
| 506 | |
| 507 | /// Move an instruction and update register pressure. |
| 508 | void scheduleMI(SUnit *SU, bool IsTopNode); |
| 509 | |
| 510 | // Lesser helpers... |
| 511 | |
| 512 | void initRegPressure(); |
| 513 | |
| 514 | void updatePressureDiffs(ArrayRef<RegisterMaskPair> LiveUses); |
| 515 | |
| 516 | void updateScheduledPressure(const SUnit *SU, |
| 517 | const std::vector<unsigned> &NewMaxPressure); |
| 518 | |
| 519 | void collectVRegUses(SUnit &SU); |
| 520 | }; |
| 521 | |
| 522 | //===----------------------------------------------------------------------===// |
| 523 | /// |
| 524 | /// Helpers for implementing custom MachineSchedStrategy classes. These take |
| 525 | /// care of the book-keeping associated with list scheduling heuristics. |
| 526 | /// |
| 527 | //===----------------------------------------------------------------------===// |
| 528 | |
| 529 | /// ReadyQueue encapsulates vector of "ready" SUnits with basic convenience |
| 530 | /// methods for pushing and removing nodes. ReadyQueue's are uniquely identified |
| 531 | /// by an ID. SUnit::NodeQueueId is a mask of the ReadyQueues the SUnit is in. |
| 532 | /// |
| 533 | /// This is a convenience class that may be used by implementations of |
| 534 | /// MachineSchedStrategy. |
| 535 | class ReadyQueue { |
| 536 | unsigned ID; |
| 537 | std::string Name; |
| 538 | std::vector<SUnit*> Queue; |
| 539 | |
| 540 | public: |
| 541 | ReadyQueue(unsigned id, const Twine &name): ID(id), Name(name.str()) {} |
| 542 | |
| 543 | unsigned getID() const { return ID; } |
| 544 | |
| 545 | StringRef getName() const { return Name; } |
| 546 | |
| 547 | // SU is in this queue if it's NodeQueueID is a superset of this ID. |
| 548 | bool isInQueue(SUnit *SU) const { return (SU->NodeQueueId & ID); } |
| 549 | |
| 550 | bool empty() const { return Queue.empty(); } |
| 551 | |
| 552 | void clear() { Queue.clear(); } |
| 553 | |
| 554 | unsigned size() const { return Queue.size(); } |
| 555 | |
| 556 | using iterator = std::vector<SUnit*>::iterator; |
| 557 | |
| 558 | iterator begin() { return Queue.begin(); } |
| 559 | |
| 560 | iterator end() { return Queue.end(); } |
| 561 | |
| 562 | ArrayRef<SUnit*> elements() { return Queue; } |
| 563 | |
| 564 | iterator find(SUnit *SU) { return llvm::find(Queue, SU); } |
| 565 | |
| 566 | void push(SUnit *SU) { |
| 567 | Queue.push_back(SU); |
| 568 | SU->NodeQueueId |= ID; |
| 569 | } |
| 570 | |
| 571 | iterator remove(iterator I) { |
| 572 | (*I)->NodeQueueId &= ~ID; |
| 573 | *I = Queue.back(); |
| 574 | unsigned idx = I - Queue.begin(); |
| 575 | Queue.pop_back(); |
| 576 | return Queue.begin() + idx; |
| 577 | } |
| 578 | |
| 579 | void dump() const; |
| 580 | }; |
| 581 | |
| 582 | /// Summarize the unscheduled region. |
| 583 | struct SchedRemainder { |
| 584 | // Critical path through the DAG in expected latency. |
| 585 | unsigned CriticalPath; |
| 586 | unsigned CyclicCritPath; |
| 587 | |
| 588 | // Scaled count of micro-ops left to schedule. |
| 589 | unsigned RemIssueCount; |
| 590 | |
| 591 | bool IsAcyclicLatencyLimited; |
| 592 | |
| 593 | // Unscheduled resources |
| 594 | SmallVector<unsigned, 16> RemainingCounts; |
| 595 | |
| 596 | SchedRemainder() { reset(); } |
| 597 | |
| 598 | void reset() { |
| 599 | CriticalPath = 0; |
| 600 | CyclicCritPath = 0; |
| 601 | RemIssueCount = 0; |
| 602 | IsAcyclicLatencyLimited = false; |
| 603 | RemainingCounts.clear(); |
| 604 | } |
| 605 | |
| 606 | void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel); |
| 607 | }; |
| 608 | |
| 609 | /// Each Scheduling boundary is associated with ready queues. It tracks the |
| 610 | /// current cycle in the direction of movement, and maintains the state |
| 611 | /// of "hazards" and other interlocks at the current cycle. |
| 612 | class SchedBoundary { |
| 613 | public: |
| 614 | /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both) |
| 615 | enum { |
| 616 | TopQID = 1, |
| 617 | BotQID = 2, |
| 618 | LogMaxQID = 2 |
| 619 | }; |
| 620 | |
| 621 | ScheduleDAGMI *DAG = nullptr; |
| 622 | const TargetSchedModel *SchedModel = nullptr; |
| 623 | SchedRemainder *Rem = nullptr; |
| 624 | |
| 625 | ReadyQueue Available; |
| 626 | ReadyQueue Pending; |
| 627 | |
| 628 | ScheduleHazardRecognizer *HazardRec = nullptr; |
| 629 | |
| 630 | private: |
| 631 | /// True if the pending Q should be checked/updated before scheduling another |
| 632 | /// instruction. |
| 633 | bool CheckPending; |
| 634 | |
| 635 | /// Number of cycles it takes to issue the instructions scheduled in this |
| 636 | /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls. |
| 637 | /// See getStalls(). |
| 638 | unsigned CurrCycle; |
| 639 | |
| 640 | /// Micro-ops issued in the current cycle |
| 641 | unsigned CurrMOps; |
| 642 | |
| 643 | /// MinReadyCycle - Cycle of the soonest available instruction. |
| 644 | unsigned MinReadyCycle; |
| 645 | |
| 646 | // The expected latency of the critical path in this scheduled zone. |
| 647 | unsigned ExpectedLatency; |
| 648 | |
| 649 | // The latency of dependence chains leading into this zone. |
| 650 | // For each node scheduled bottom-up: DLat = max DLat, N.Depth. |
| 651 | // For each cycle scheduled: DLat -= 1. |
| 652 | unsigned DependentLatency; |
| 653 | |
| 654 | /// Count the scheduled (issued) micro-ops that can be retired by |
| 655 | /// time=CurrCycle assuming the first scheduled instr is retired at time=0. |
| 656 | unsigned RetiredMOps; |
| 657 | |
| 658 | // Count scheduled resources that have been executed. Resources are |
| 659 | // considered executed if they become ready in the time that it takes to |
| 660 | // saturate any resource including the one in question. Counts are scaled |
| 661 | // for direct comparison with other resources. Counts can be compared with |
| 662 | // MOps * getMicroOpFactor and Latency * getLatencyFactor. |
| 663 | SmallVector<unsigned, 16> ExecutedResCounts; |
| 664 | |
| 665 | /// Cache the max count for a single resource. |
| 666 | unsigned MaxExecutedResCount; |
| 667 | |
| 668 | // Cache the critical resources ID in this scheduled zone. |
| 669 | unsigned ZoneCritResIdx; |
| 670 | |
| 671 | // Is the scheduled region resource limited vs. latency limited. |
| 672 | bool IsResourceLimited; |
| 673 | |
| 674 | // Record the highest cycle at which each resource has been reserved by a |
| 675 | // scheduled instruction. |
| 676 | SmallVector<unsigned, 16> ReservedCycles; |
| 677 | |
| 678 | #ifndef NDEBUG |
| 679 | // Remember the greatest possible stall as an upper bound on the number of |
| 680 | // times we should retry the pending queue because of a hazard. |
| 681 | unsigned MaxObservedStall; |
| 682 | #endif |
| 683 | |
| 684 | public: |
| 685 | /// Pending queues extend the ready queues with the same ID and the |
| 686 | /// PendingFlag set. |
| 687 | SchedBoundary(unsigned ID, const Twine &Name): |
| 688 | Available(ID, Name+".A"), Pending(ID << LogMaxQID, Name+".P") { |
| 689 | reset(); |
| 690 | } |
| 691 | |
| 692 | ~SchedBoundary(); |
| 693 | |
| 694 | void reset(); |
| 695 | |
| 696 | void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, |
| 697 | SchedRemainder *rem); |
| 698 | |
| 699 | bool isTop() const { |
| 700 | return Available.getID() == TopQID; |
| 701 | } |
| 702 | |
| 703 | /// Number of cycles to issue the instructions scheduled in this zone. |
| 704 | unsigned getCurrCycle() const { return CurrCycle; } |
| 705 | |
| 706 | /// Micro-ops issued in the current cycle |
| 707 | unsigned getCurrMOps() const { return CurrMOps; } |
| 708 | |
| 709 | // The latency of dependence chains leading into this zone. |
| 710 | unsigned getDependentLatency() const { return DependentLatency; } |
| 711 | |
| 712 | /// Get the number of latency cycles "covered" by the scheduled |
| 713 | /// instructions. This is the larger of the critical path within the zone |
| 714 | /// and the number of cycles required to issue the instructions. |
| 715 | unsigned getScheduledLatency() const { |
| 716 | return std::max(ExpectedLatency, CurrCycle); |
| 717 | } |
| 718 | |
| 719 | unsigned getUnscheduledLatency(SUnit *SU) const { |
| 720 | return isTop() ? SU->getHeight() : SU->getDepth(); |
| 721 | } |
| 722 | |
| 723 | unsigned getResourceCount(unsigned ResIdx) const { |
| 724 | return ExecutedResCounts[ResIdx]; |
| 725 | } |
| 726 | |
| 727 | /// Get the scaled count of scheduled micro-ops and resources, including |
| 728 | /// executed resources. |
| 729 | unsigned getCriticalCount() const { |
| 730 | if (!ZoneCritResIdx) |
| 731 | return RetiredMOps * SchedModel->getMicroOpFactor(); |
| 732 | return getResourceCount(ZoneCritResIdx); |
| 733 | } |
| 734 | |
| 735 | /// Get a scaled count for the minimum execution time of the scheduled |
| 736 | /// micro-ops that are ready to execute by getExecutedCount. Notice the |
| 737 | /// feedback loop. |
| 738 | unsigned getExecutedCount() const { |
| 739 | return std::max(CurrCycle * SchedModel->getLatencyFactor(), |
| 740 | MaxExecutedResCount); |
| 741 | } |
| 742 | |
| 743 | unsigned getZoneCritResIdx() const { return ZoneCritResIdx; } |
| 744 | |
| 745 | // Is the scheduled region resource limited vs. latency limited. |
| 746 | bool isResourceLimited() const { return IsResourceLimited; } |
| 747 | |
| 748 | /// Get the difference between the given SUnit's ready time and the current |
| 749 | /// cycle. |
| 750 | unsigned getLatencyStallCycles(SUnit *SU); |
| 751 | |
| 752 | unsigned getNextResourceCycle(unsigned PIdx, unsigned Cycles); |
| 753 | |
| 754 | bool checkHazard(SUnit *SU); |
| 755 | |
| 756 | unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs); |
| 757 | |
| 758 | unsigned getOtherResourceCount(unsigned &OtherCritIdx); |
| 759 | |
| 760 | void releaseNode(SUnit *SU, unsigned ReadyCycle); |
| 761 | |
| 762 | void bumpCycle(unsigned NextCycle); |
| 763 | |
| 764 | void incExecutedResources(unsigned PIdx, unsigned Count); |
| 765 | |
| 766 | unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle); |
| 767 | |
| 768 | void bumpNode(SUnit *SU); |
| 769 | |
| 770 | void releasePending(); |
| 771 | |
| 772 | void removeReady(SUnit *SU); |
| 773 | |
| 774 | /// Call this before applying any other heuristics to the Available queue. |
| 775 | /// Updates the Available/Pending Q's if necessary and returns the single |
| 776 | /// available instruction, or NULL if there are multiple candidates. |
| 777 | SUnit *pickOnlyChoice(); |
| 778 | |
| 779 | void dumpScheduledState() const; |
| 780 | }; |
| 781 | |
| 782 | /// Base class for GenericScheduler. This class maintains information about |
| 783 | /// scheduling candidates based on TargetSchedModel making it easy to implement |
| 784 | /// heuristics for either preRA or postRA scheduling. |
| 785 | class GenericSchedulerBase : public MachineSchedStrategy { |
| 786 | public: |
| 787 | /// Represent the type of SchedCandidate found within a single queue. |
| 788 | /// pickNodeBidirectional depends on these listed by decreasing priority. |
| 789 | enum CandReason : uint8_t { |
| 790 | NoCand, Only1, PhysRegCopy, RegExcess, RegCritical, Stall, Cluster, Weak, |
| 791 | RegMax, ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce, |
| 792 | TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder}; |
| 793 | |
| 794 | #ifndef NDEBUG |
| 795 | static const char *getReasonStr(GenericSchedulerBase::CandReason Reason); |
| 796 | #endif |
| 797 | |
| 798 | /// Policy for scheduling the next instruction in the candidate's zone. |
| 799 | struct CandPolicy { |
| 800 | bool ReduceLatency = false; |
| 801 | unsigned ReduceResIdx = 0; |
| 802 | unsigned DemandResIdx = 0; |
| 803 | |
| 804 | CandPolicy() = default; |
| 805 | |
| 806 | bool operator==(const CandPolicy &RHS) const { |
| 807 | return ReduceLatency == RHS.ReduceLatency && |
| 808 | ReduceResIdx == RHS.ReduceResIdx && |
| 809 | DemandResIdx == RHS.DemandResIdx; |
| 810 | } |
| 811 | bool operator!=(const CandPolicy &RHS) const { |
| 812 | return !(*this == RHS); |
| 813 | } |
| 814 | }; |
| 815 | |
| 816 | /// Status of an instruction's critical resource consumption. |
| 817 | struct SchedResourceDelta { |
| 818 | // Count critical resources in the scheduled region required by SU. |
| 819 | unsigned CritResources = 0; |
| 820 | |
| 821 | // Count critical resources from another region consumed by SU. |
| 822 | unsigned DemandedResources = 0; |
| 823 | |
| 824 | SchedResourceDelta() = default; |
| 825 | |
| 826 | bool operator==(const SchedResourceDelta &RHS) const { |
| 827 | return CritResources == RHS.CritResources |
| 828 | && DemandedResources == RHS.DemandedResources; |
| 829 | } |
| 830 | bool operator!=(const SchedResourceDelta &RHS) const { |
| 831 | return !operator==(RHS); |
| 832 | } |
| 833 | }; |
| 834 | |
| 835 | /// Store the state used by GenericScheduler heuristics, required for the |
| 836 | /// lifetime of one invocation of pickNode(). |
| 837 | struct SchedCandidate { |
| 838 | CandPolicy Policy; |
| 839 | |
| 840 | // The best SUnit candidate. |
| 841 | SUnit *SU; |
| 842 | |
| 843 | // The reason for this candidate. |
| 844 | CandReason Reason; |
| 845 | |
| 846 | // Whether this candidate should be scheduled at top/bottom. |
| 847 | bool AtTop; |
| 848 | |
| 849 | // Register pressure values for the best candidate. |
| 850 | RegPressureDelta RPDelta; |
| 851 | |
| 852 | // Critical resource consumption of the best candidate. |
| 853 | SchedResourceDelta ResDelta; |
| 854 | |
| 855 | SchedCandidate() { reset(CandPolicy()); } |
| 856 | SchedCandidate(const CandPolicy &Policy) { reset(Policy); } |
| 857 | |
| 858 | void reset(const CandPolicy &NewPolicy) { |
| 859 | Policy = NewPolicy; |
| 860 | SU = nullptr; |
| 861 | Reason = NoCand; |
| 862 | AtTop = false; |
| 863 | RPDelta = RegPressureDelta(); |
| 864 | ResDelta = SchedResourceDelta(); |
| 865 | } |
| 866 | |
| 867 | bool isValid() const { return SU; } |
| 868 | |
| 869 | // Copy the status of another candidate without changing policy. |
| 870 | void setBest(SchedCandidate &Best) { |
| 871 | assert(Best.Reason != NoCand && "uninitialized Sched candidate"); |
| 872 | SU = Best.SU; |
| 873 | Reason = Best.Reason; |
| 874 | AtTop = Best.AtTop; |
| 875 | RPDelta = Best.RPDelta; |
| 876 | ResDelta = Best.ResDelta; |
| 877 | } |
| 878 | |
| 879 | void initResourceDelta(const ScheduleDAGMI *DAG, |
| 880 | const TargetSchedModel *SchedModel); |
| 881 | }; |
| 882 | |
| 883 | protected: |
| 884 | const MachineSchedContext *Context; |
| 885 | const TargetSchedModel *SchedModel = nullptr; |
| 886 | const TargetRegisterInfo *TRI = nullptr; |
| 887 | |
| 888 | SchedRemainder Rem; |
| 889 | |
| 890 | GenericSchedulerBase(const MachineSchedContext *C) : Context(C) {} |
| 891 | |
| 892 | void setPolicy(CandPolicy &Policy, bool IsPostRA, SchedBoundary &CurrZone, |
| 893 | SchedBoundary *OtherZone); |
| 894 | |
| 895 | #ifndef NDEBUG |
| 896 | void traceCandidate(const SchedCandidate &Cand); |
| 897 | #endif |
| 898 | }; |
| 899 | |
| 900 | /// GenericScheduler shrinks the unscheduled zone using heuristics to balance |
| 901 | /// the schedule. |
| 902 | class GenericScheduler : public GenericSchedulerBase { |
| 903 | public: |
| 904 | GenericScheduler(const MachineSchedContext *C): |
| 905 | GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ"), |
| 906 | Bot(SchedBoundary::BotQID, "BotQ") {} |
| 907 | |
| 908 | void initPolicy(MachineBasicBlock::iterator Begin, |
| 909 | MachineBasicBlock::iterator End, |
| 910 | unsigned NumRegionInstrs) override; |
| 911 | |
| 912 | void dumpPolicy() const override; |
| 913 | |
| 914 | bool shouldTrackPressure() const override { |
| 915 | return RegionPolicy.ShouldTrackPressure; |
| 916 | } |
| 917 | |
| 918 | bool shouldTrackLaneMasks() const override { |
| 919 | return RegionPolicy.ShouldTrackLaneMasks; |
| 920 | } |
| 921 | |
| 922 | void initialize(ScheduleDAGMI *dag) override; |
| 923 | |
| 924 | SUnit *pickNode(bool &IsTopNode) override; |
| 925 | |
| 926 | void schedNode(SUnit *SU, bool IsTopNode) override; |
| 927 | |
| 928 | void releaseTopNode(SUnit *SU) override { |
| 929 | if (SU->isScheduled) |
| 930 | return; |
| 931 | |
| 932 | Top.releaseNode(SU, SU->TopReadyCycle); |
| 933 | TopCand.SU = nullptr; |
| 934 | } |
| 935 | |
| 936 | void releaseBottomNode(SUnit *SU) override { |
| 937 | if (SU->isScheduled) |
| 938 | return; |
| 939 | |
| 940 | Bot.releaseNode(SU, SU->BotReadyCycle); |
| 941 | BotCand.SU = nullptr; |
| 942 | } |
| 943 | |
| 944 | void registerRoots() override; |
| 945 | |
| 946 | protected: |
| 947 | ScheduleDAGMILive *DAG = nullptr; |
| 948 | |
| 949 | MachineSchedPolicy RegionPolicy; |
| 950 | |
| 951 | // State of the top and bottom scheduled instruction boundaries. |
| 952 | SchedBoundary Top; |
| 953 | SchedBoundary Bot; |
| 954 | |
| 955 | /// Candidate last picked from Top boundary. |
| 956 | SchedCandidate TopCand; |
| 957 | /// Candidate last picked from Bot boundary. |
| 958 | SchedCandidate BotCand; |
| 959 | |
| 960 | void checkAcyclicLatency(); |
| 961 | |
| 962 | void initCandidate(SchedCandidate &Cand, SUnit *SU, bool AtTop, |
| 963 | const RegPressureTracker &RPTracker, |
| 964 | RegPressureTracker &TempTracker); |
| 965 | |
| 966 | void tryCandidate(SchedCandidate &Cand, |
| 967 | SchedCandidate &TryCand, |
| 968 | SchedBoundary *Zone); |
| 969 | |
| 970 | SUnit *pickNodeBidirectional(bool &IsTopNode); |
| 971 | |
| 972 | void pickNodeFromQueue(SchedBoundary &Zone, |
| 973 | const CandPolicy &ZonePolicy, |
| 974 | const RegPressureTracker &RPTracker, |
| 975 | SchedCandidate &Candidate); |
| 976 | |
| 977 | void reschedulePhysRegCopies(SUnit *SU, bool isTop); |
| 978 | }; |
| 979 | |
| 980 | /// PostGenericScheduler - Interface to the scheduling algorithm used by |
| 981 | /// ScheduleDAGMI. |
| 982 | /// |
| 983 | /// Callbacks from ScheduleDAGMI: |
| 984 | /// initPolicy -> initialize(DAG) -> registerRoots -> pickNode ... |
| 985 | class PostGenericScheduler : public GenericSchedulerBase { |
| 986 | ScheduleDAGMI *DAG; |
| 987 | SchedBoundary Top; |
| 988 | SmallVector<SUnit*, 8> BotRoots; |
| 989 | |
| 990 | public: |
| 991 | PostGenericScheduler(const MachineSchedContext *C): |
| 992 | GenericSchedulerBase(C), Top(SchedBoundary::TopQID, "TopQ") {} |
| 993 | |
| 994 | ~PostGenericScheduler() override = default; |
| 995 | |
| 996 | void initPolicy(MachineBasicBlock::iterator Begin, |
| 997 | MachineBasicBlock::iterator End, |
| 998 | unsigned NumRegionInstrs) override { |
| 999 | /* no configurable policy */ |
| 1000 | } |
| 1001 | |
| 1002 | /// PostRA scheduling does not track pressure. |
| 1003 | bool shouldTrackPressure() const override { return false; } |
| 1004 | |
| 1005 | void initialize(ScheduleDAGMI *Dag) override; |
| 1006 | |
| 1007 | void registerRoots() override; |
| 1008 | |
| 1009 | SUnit *pickNode(bool &IsTopNode) override; |
| 1010 | |
| 1011 | void scheduleTree(unsigned SubtreeID) override { |
| 1012 | llvm_unreachable("PostRA scheduler does not support subtree analysis."); |
| 1013 | } |
| 1014 | |
| 1015 | void schedNode(SUnit *SU, bool IsTopNode) override; |
| 1016 | |
| 1017 | void releaseTopNode(SUnit *SU) override { |
| 1018 | if (SU->isScheduled) |
| 1019 | return; |
| 1020 | Top.releaseNode(SU, SU->TopReadyCycle); |
| 1021 | } |
| 1022 | |
| 1023 | // Only called for roots. |
| 1024 | void releaseBottomNode(SUnit *SU) override { |
| 1025 | BotRoots.push_back(SU); |
| 1026 | } |
| 1027 | |
| 1028 | protected: |
| 1029 | void tryCandidate(SchedCandidate &Cand, SchedCandidate &TryCand); |
| 1030 | |
| 1031 | void pickNodeFromQueue(SchedCandidate &Cand); |
| 1032 | }; |
| 1033 | |
| 1034 | /// Create the standard converging machine scheduler. This will be used as the |
| 1035 | /// default scheduler if the target does not set a default. |
| 1036 | /// Adds default DAG mutations. |
| 1037 | ScheduleDAGMILive *createGenericSchedLive(MachineSchedContext *C); |
| 1038 | |
| 1039 | /// Create a generic scheduler with no vreg liveness or DAG mutation passes. |
| 1040 | ScheduleDAGMI *createGenericSchedPostRA(MachineSchedContext *C); |
| 1041 | |
| 1042 | std::unique_ptr<ScheduleDAGMutation> |
| 1043 | createLoadClusterDAGMutation(const TargetInstrInfo *TII, |
| 1044 | const TargetRegisterInfo *TRI); |
| 1045 | |
| 1046 | std::unique_ptr<ScheduleDAGMutation> |
| 1047 | createStoreClusterDAGMutation(const TargetInstrInfo *TII, |
| 1048 | const TargetRegisterInfo *TRI); |
| 1049 | |
| 1050 | std::unique_ptr<ScheduleDAGMutation> |
| 1051 | createCopyConstrainDAGMutation(const TargetInstrInfo *TII, |
| 1052 | const TargetRegisterInfo *TRI); |
| 1053 | |
| 1054 | } // end namespace llvm |
| 1055 | |
| 1056 | #endif // LLVM_CODEGEN_MACHINESCHEDULER_H |