Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The file defines the MachineFrameInfo class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H |
| 15 | #define LLVM_CODEGEN_MACHINEFRAMEINFO_H |
| 16 | |
| 17 | #include "llvm/ADT/SmallVector.h" |
| 18 | #include "llvm/Support/DataTypes.h" |
| 19 | #include <cassert> |
| 20 | #include <vector> |
| 21 | |
| 22 | namespace llvm { |
| 23 | class raw_ostream; |
| 24 | class MachineFunction; |
| 25 | class MachineBasicBlock; |
| 26 | class BitVector; |
| 27 | class AllocaInst; |
| 28 | |
| 29 | /// The CalleeSavedInfo class tracks the information need to locate where a |
| 30 | /// callee saved register is in the current frame. |
| 31 | class CalleeSavedInfo { |
| 32 | unsigned Reg; |
| 33 | int FrameIdx; |
| 34 | /// Flag indicating whether the register is actually restored in the epilog. |
| 35 | /// In most cases, if a register is saved, it is also restored. There are |
| 36 | /// some situations, though, when this is not the case. For example, the |
| 37 | /// LR register on ARM is usually saved, but on exit from the function its |
| 38 | /// saved value may be loaded directly into PC. Since liveness tracking of |
| 39 | /// physical registers treats callee-saved registers are live outside of |
| 40 | /// the function, LR would be treated as live-on-exit, even though in these |
| 41 | /// scenarios it is not. This flag is added to indicate that the saved |
| 42 | /// register described by this object is not restored in the epilog. |
| 43 | /// The long-term solution is to model the liveness of callee-saved registers |
| 44 | /// by implicit uses on the return instructions, however, the required |
| 45 | /// changes in the ARM backend would be quite extensive. |
| 46 | bool Restored; |
| 47 | |
| 48 | public: |
| 49 | explicit CalleeSavedInfo(unsigned R, int FI = 0) |
| 50 | : Reg(R), FrameIdx(FI), Restored(true) {} |
| 51 | |
| 52 | // Accessors. |
| 53 | unsigned getReg() const { return Reg; } |
| 54 | int getFrameIdx() const { return FrameIdx; } |
| 55 | void setFrameIdx(int FI) { FrameIdx = FI; } |
| 56 | bool isRestored() const { return Restored; } |
| 57 | void setRestored(bool R) { Restored = R; } |
| 58 | }; |
| 59 | |
| 60 | /// The MachineFrameInfo class represents an abstract stack frame until |
| 61 | /// prolog/epilog code is inserted. This class is key to allowing stack frame |
| 62 | /// representation optimizations, such as frame pointer elimination. It also |
| 63 | /// allows more mundane (but still important) optimizations, such as reordering |
| 64 | /// of abstract objects on the stack frame. |
| 65 | /// |
| 66 | /// To support this, the class assigns unique integer identifiers to stack |
| 67 | /// objects requested clients. These identifiers are negative integers for |
| 68 | /// fixed stack objects (such as arguments passed on the stack) or nonnegative |
| 69 | /// for objects that may be reordered. Instructions which refer to stack |
| 70 | /// objects use a special MO_FrameIndex operand to represent these frame |
| 71 | /// indexes. |
| 72 | /// |
| 73 | /// Because this class keeps track of all references to the stack frame, it |
| 74 | /// knows when a variable sized object is allocated on the stack. This is the |
| 75 | /// sole condition which prevents frame pointer elimination, which is an |
| 76 | /// important optimization on register-poor architectures. Because original |
| 77 | /// variable sized alloca's in the source program are the only source of |
| 78 | /// variable sized stack objects, it is safe to decide whether there will be |
| 79 | /// any variable sized objects before all stack objects are known (for |
| 80 | /// example, register allocator spill code never needs variable sized |
| 81 | /// objects). |
| 82 | /// |
| 83 | /// When prolog/epilog code emission is performed, the final stack frame is |
| 84 | /// built and the machine instructions are modified to refer to the actual |
| 85 | /// stack offsets of the object, eliminating all MO_FrameIndex operands from |
| 86 | /// the program. |
| 87 | /// |
| 88 | /// @brief Abstract Stack Frame Information |
| 89 | class MachineFrameInfo { |
| 90 | |
| 91 | // Represent a single object allocated on the stack. |
| 92 | struct StackObject { |
| 93 | // The offset of this object from the stack pointer on entry to |
| 94 | // the function. This field has no meaning for a variable sized element. |
| 95 | int64_t SPOffset; |
| 96 | |
| 97 | // The size of this object on the stack. 0 means a variable sized object, |
| 98 | // ~0ULL means a dead object. |
| 99 | uint64_t Size; |
| 100 | |
| 101 | // The required alignment of this stack slot. |
| 102 | unsigned Alignment; |
| 103 | |
| 104 | // If true, the value of the stack object is set before |
| 105 | // entering the function and is not modified inside the function. By |
| 106 | // default, fixed objects are immutable unless marked otherwise. |
| 107 | bool isImmutable; |
| 108 | |
| 109 | // If true the stack object is used as spill slot. It |
| 110 | // cannot alias any other memory objects. |
| 111 | bool isSpillSlot; |
| 112 | |
| 113 | /// If true, this stack slot is used to spill a value (could be deopt |
| 114 | /// and/or GC related) over a statepoint. We know that the address of the |
| 115 | /// slot can't alias any LLVM IR value. This is very similar to a Spill |
| 116 | /// Slot, but is created by statepoint lowering is SelectionDAG, not the |
| 117 | /// register allocator. |
| 118 | bool isStatepointSpillSlot = false; |
| 119 | |
| 120 | /// Identifier for stack memory type analagous to address space. If this is |
| 121 | /// non-0, the meaning is target defined. Offsets cannot be directly |
| 122 | /// compared between objects with different stack IDs. The object may not |
| 123 | /// necessarily reside in the same contiguous memory block as other stack |
| 124 | /// objects. Objects with differing stack IDs should not be merged or |
| 125 | /// replaced substituted for each other. |
| 126 | uint8_t StackID; |
| 127 | |
| 128 | /// If this stack object is originated from an Alloca instruction |
| 129 | /// this value saves the original IR allocation. Can be NULL. |
| 130 | const AllocaInst *Alloca; |
| 131 | |
| 132 | // If true, the object was mapped into the local frame |
| 133 | // block and doesn't need additional handling for allocation beyond that. |
| 134 | bool PreAllocated = false; |
| 135 | |
| 136 | // If true, an LLVM IR value might point to this object. |
| 137 | // Normally, spill slots and fixed-offset objects don't alias IR-accessible |
| 138 | // objects, but there are exceptions (on PowerPC, for example, some byval |
| 139 | // arguments have ABI-prescribed offsets). |
| 140 | bool isAliased; |
| 141 | |
| 142 | /// If true, the object has been zero-extended. |
| 143 | bool isZExt = false; |
| 144 | |
| 145 | /// If true, the object has been zero-extended. |
| 146 | bool isSExt = false; |
| 147 | |
| 148 | StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset, |
| 149 | bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca, |
| 150 | bool IsAliased, uint8_t StackID = 0) |
| 151 | : SPOffset(SPOffset), Size(Size), Alignment(Alignment), |
| 152 | isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), |
| 153 | StackID(StackID), Alloca(Alloca), isAliased(IsAliased) {} |
| 154 | }; |
| 155 | |
| 156 | /// The alignment of the stack. |
| 157 | unsigned StackAlignment; |
| 158 | |
| 159 | /// Can the stack be realigned. This can be false if the target does not |
| 160 | /// support stack realignment, or if the user asks us not to realign the |
| 161 | /// stack. In this situation, overaligned allocas are all treated as dynamic |
| 162 | /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC |
| 163 | /// lowering. All non-alloca stack objects have their alignment clamped to the |
| 164 | /// base ABI stack alignment. |
| 165 | /// FIXME: There is room for improvement in this case, in terms of |
| 166 | /// grouping overaligned allocas into a "secondary stack frame" and |
| 167 | /// then only use a single alloca to allocate this frame and only a |
| 168 | /// single virtual register to access it. Currently, without such an |
| 169 | /// optimization, each such alloca gets its own dynamic realignment. |
| 170 | bool StackRealignable; |
| 171 | |
| 172 | /// Whether the function has the \c alignstack attribute. |
| 173 | bool ForcedRealign; |
| 174 | |
| 175 | /// The list of stack objects allocated. |
| 176 | std::vector<StackObject> Objects; |
| 177 | |
| 178 | /// This contains the number of fixed objects contained on |
| 179 | /// the stack. Because fixed objects are stored at a negative index in the |
| 180 | /// Objects list, this is also the index to the 0th object in the list. |
| 181 | unsigned NumFixedObjects = 0; |
| 182 | |
| 183 | /// This boolean keeps track of whether any variable |
| 184 | /// sized objects have been allocated yet. |
| 185 | bool HasVarSizedObjects = false; |
| 186 | |
| 187 | /// This boolean keeps track of whether there is a call |
| 188 | /// to builtin \@llvm.frameaddress. |
| 189 | bool FrameAddressTaken = false; |
| 190 | |
| 191 | /// This boolean keeps track of whether there is a call |
| 192 | /// to builtin \@llvm.returnaddress. |
| 193 | bool ReturnAddressTaken = false; |
| 194 | |
| 195 | /// This boolean keeps track of whether there is a call |
| 196 | /// to builtin \@llvm.experimental.stackmap. |
| 197 | bool HasStackMap = false; |
| 198 | |
| 199 | /// This boolean keeps track of whether there is a call |
| 200 | /// to builtin \@llvm.experimental.patchpoint. |
| 201 | bool HasPatchPoint = false; |
| 202 | |
| 203 | /// The prolog/epilog code inserter calculates the final stack |
| 204 | /// offsets for all of the fixed size objects, updating the Objects list |
| 205 | /// above. It then updates StackSize to contain the number of bytes that need |
| 206 | /// to be allocated on entry to the function. |
| 207 | uint64_t StackSize = 0; |
| 208 | |
| 209 | /// The amount that a frame offset needs to be adjusted to |
| 210 | /// have the actual offset from the stack/frame pointer. The exact usage of |
| 211 | /// this is target-dependent, but it is typically used to adjust between |
| 212 | /// SP-relative and FP-relative offsets. E.G., if objects are accessed via |
| 213 | /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set |
| 214 | /// to the distance between the initial SP and the value in FP. For many |
| 215 | /// targets, this value is only used when generating debug info (via |
| 216 | /// TargetRegisterInfo::getFrameIndexReference); when generating code, the |
| 217 | /// corresponding adjustments are performed directly. |
| 218 | int OffsetAdjustment = 0; |
| 219 | |
| 220 | /// The prolog/epilog code inserter may process objects that require greater |
| 221 | /// alignment than the default alignment the target provides. |
| 222 | /// To handle this, MaxAlignment is set to the maximum alignment |
| 223 | /// needed by the objects on the current frame. If this is greater than the |
| 224 | /// native alignment maintained by the compiler, dynamic alignment code will |
| 225 | /// be needed. |
| 226 | /// |
| 227 | unsigned MaxAlignment = 0; |
| 228 | |
| 229 | /// Set to true if this function adjusts the stack -- e.g., |
| 230 | /// when calling another function. This is only valid during and after |
| 231 | /// prolog/epilog code insertion. |
| 232 | bool AdjustsStack = false; |
| 233 | |
| 234 | /// Set to true if this function has any function calls. |
| 235 | bool HasCalls = false; |
| 236 | |
| 237 | /// The frame index for the stack protector. |
| 238 | int StackProtectorIdx = -1; |
| 239 | |
| 240 | /// The frame index for the function context. Used for SjLj exceptions. |
| 241 | int FunctionContextIdx = -1; |
| 242 | |
| 243 | /// This contains the size of the largest call frame if the target uses frame |
| 244 | /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo |
| 245 | /// class). This information is important for frame pointer elimination. |
| 246 | /// It is only valid during and after prolog/epilog code insertion. |
| 247 | unsigned MaxCallFrameSize = ~0u; |
| 248 | |
| 249 | /// The prolog/epilog code inserter fills in this vector with each |
| 250 | /// callee saved register saved in the frame. Beyond its use by the prolog/ |
| 251 | /// epilog code inserter, this data used for debug info and exception |
| 252 | /// handling. |
| 253 | std::vector<CalleeSavedInfo> CSInfo; |
| 254 | |
| 255 | /// Has CSInfo been set yet? |
| 256 | bool CSIValid = false; |
| 257 | |
| 258 | /// References to frame indices which are mapped |
| 259 | /// into the local frame allocation block. <FrameIdx, LocalOffset> |
| 260 | SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects; |
| 261 | |
| 262 | /// Size of the pre-allocated local frame block. |
| 263 | int64_t LocalFrameSize = 0; |
| 264 | |
| 265 | /// Required alignment of the local object blob, which is the strictest |
| 266 | /// alignment of any object in it. |
| 267 | unsigned LocalFrameMaxAlign = 0; |
| 268 | |
| 269 | /// Whether the local object blob needs to be allocated together. If not, |
| 270 | /// PEI should ignore the isPreAllocated flags on the stack objects and |
| 271 | /// just allocate them normally. |
| 272 | bool UseLocalStackAllocationBlock = false; |
| 273 | |
| 274 | /// True if the function dynamically adjusts the stack pointer through some |
| 275 | /// opaque mechanism like inline assembly or Win32 EH. |
| 276 | bool HasOpaqueSPAdjustment = false; |
| 277 | |
| 278 | /// True if the function contains operations which will lower down to |
| 279 | /// instructions which manipulate the stack pointer. |
| 280 | bool HasCopyImplyingStackAdjustment = false; |
| 281 | |
| 282 | /// True if the function contains a call to the llvm.vastart intrinsic. |
| 283 | bool HasVAStart = false; |
| 284 | |
| 285 | /// True if this is a varargs function that contains a musttail call. |
| 286 | bool HasMustTailInVarArgFunc = false; |
| 287 | |
| 288 | /// True if this function contains a tail call. If so immutable objects like |
| 289 | /// function arguments are no longer so. A tail call *can* override fixed |
| 290 | /// stack objects like arguments so we can't treat them as immutable. |
| 291 | bool HasTailCall = false; |
| 292 | |
| 293 | /// Not null, if shrink-wrapping found a better place for the prologue. |
| 294 | MachineBasicBlock *Save = nullptr; |
| 295 | /// Not null, if shrink-wrapping found a better place for the epilogue. |
| 296 | MachineBasicBlock *Restore = nullptr; |
| 297 | |
| 298 | public: |
| 299 | explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable, |
| 300 | bool ForcedRealign) |
| 301 | : StackAlignment(StackAlignment), StackRealignable(StackRealignable), |
| 302 | ForcedRealign(ForcedRealign) {} |
| 303 | |
| 304 | /// Return true if there are any stack objects in this function. |
| 305 | bool hasStackObjects() const { return !Objects.empty(); } |
| 306 | |
| 307 | /// This method may be called any time after instruction |
| 308 | /// selection is complete to determine if the stack frame for this function |
| 309 | /// contains any variable sized objects. |
| 310 | bool hasVarSizedObjects() const { return HasVarSizedObjects; } |
| 311 | |
| 312 | /// Return the index for the stack protector object. |
| 313 | int getStackProtectorIndex() const { return StackProtectorIdx; } |
| 314 | void setStackProtectorIndex(int I) { StackProtectorIdx = I; } |
| 315 | bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; } |
| 316 | |
| 317 | /// Return the index for the function context object. |
| 318 | /// This object is used for SjLj exceptions. |
| 319 | int getFunctionContextIndex() const { return FunctionContextIdx; } |
| 320 | void setFunctionContextIndex(int I) { FunctionContextIdx = I; } |
| 321 | |
| 322 | /// This method may be called any time after instruction |
| 323 | /// selection is complete to determine if there is a call to |
| 324 | /// \@llvm.frameaddress in this function. |
| 325 | bool isFrameAddressTaken() const { return FrameAddressTaken; } |
| 326 | void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; } |
| 327 | |
| 328 | /// This method may be called any time after |
| 329 | /// instruction selection is complete to determine if there is a call to |
| 330 | /// \@llvm.returnaddress in this function. |
| 331 | bool isReturnAddressTaken() const { return ReturnAddressTaken; } |
| 332 | void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; } |
| 333 | |
| 334 | /// This method may be called any time after instruction |
| 335 | /// selection is complete to determine if there is a call to builtin |
| 336 | /// \@llvm.experimental.stackmap. |
| 337 | bool hasStackMap() const { return HasStackMap; } |
| 338 | void setHasStackMap(bool s = true) { HasStackMap = s; } |
| 339 | |
| 340 | /// This method may be called any time after instruction |
| 341 | /// selection is complete to determine if there is a call to builtin |
| 342 | /// \@llvm.experimental.patchpoint. |
| 343 | bool hasPatchPoint() const { return HasPatchPoint; } |
| 344 | void setHasPatchPoint(bool s = true) { HasPatchPoint = s; } |
| 345 | |
| 346 | /// Return the minimum frame object index. |
| 347 | int getObjectIndexBegin() const { return -NumFixedObjects; } |
| 348 | |
| 349 | /// Return one past the maximum frame object index. |
| 350 | int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; } |
| 351 | |
| 352 | /// Return the number of fixed objects. |
| 353 | unsigned getNumFixedObjects() const { return NumFixedObjects; } |
| 354 | |
| 355 | /// Return the number of objects. |
| 356 | unsigned getNumObjects() const { return Objects.size(); } |
| 357 | |
| 358 | /// Map a frame index into the local object block |
| 359 | void mapLocalFrameObject(int ObjectIndex, int64_t Offset) { |
| 360 | LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset)); |
| 361 | Objects[ObjectIndex + NumFixedObjects].PreAllocated = true; |
| 362 | } |
| 363 | |
| 364 | /// Get the local offset mapping for a for an object. |
| 365 | std::pair<int, int64_t> getLocalFrameObjectMap(int i) const { |
| 366 | assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() && |
| 367 | "Invalid local object reference!"); |
| 368 | return LocalFrameObjects[i]; |
| 369 | } |
| 370 | |
| 371 | /// Return the number of objects allocated into the local object block. |
| 372 | int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); } |
| 373 | |
| 374 | /// Set the size of the local object blob. |
| 375 | void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; } |
| 376 | |
| 377 | /// Get the size of the local object blob. |
| 378 | int64_t getLocalFrameSize() const { return LocalFrameSize; } |
| 379 | |
| 380 | /// Required alignment of the local object blob, |
| 381 | /// which is the strictest alignment of any object in it. |
| 382 | void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; } |
| 383 | |
| 384 | /// Return the required alignment of the local object blob. |
| 385 | unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; } |
| 386 | |
| 387 | /// Get whether the local allocation blob should be allocated together or |
| 388 | /// let PEI allocate the locals in it directly. |
| 389 | bool getUseLocalStackAllocationBlock() const { |
| 390 | return UseLocalStackAllocationBlock; |
| 391 | } |
| 392 | |
| 393 | /// setUseLocalStackAllocationBlock - Set whether the local allocation blob |
| 394 | /// should be allocated together or let PEI allocate the locals in it |
| 395 | /// directly. |
| 396 | void setUseLocalStackAllocationBlock(bool v) { |
| 397 | UseLocalStackAllocationBlock = v; |
| 398 | } |
| 399 | |
| 400 | /// Return true if the object was pre-allocated into the local block. |
| 401 | bool isObjectPreAllocated(int ObjectIdx) const { |
| 402 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 403 | "Invalid Object Idx!"); |
| 404 | return Objects[ObjectIdx+NumFixedObjects].PreAllocated; |
| 405 | } |
| 406 | |
| 407 | /// Return the size of the specified object. |
| 408 | int64_t getObjectSize(int ObjectIdx) const { |
| 409 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 410 | "Invalid Object Idx!"); |
| 411 | return Objects[ObjectIdx+NumFixedObjects].Size; |
| 412 | } |
| 413 | |
| 414 | /// Change the size of the specified stack object. |
| 415 | void setObjectSize(int ObjectIdx, int64_t Size) { |
| 416 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 417 | "Invalid Object Idx!"); |
| 418 | Objects[ObjectIdx+NumFixedObjects].Size = Size; |
| 419 | } |
| 420 | |
| 421 | /// Return the alignment of the specified stack object. |
| 422 | unsigned getObjectAlignment(int ObjectIdx) const { |
| 423 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 424 | "Invalid Object Idx!"); |
| 425 | return Objects[ObjectIdx+NumFixedObjects].Alignment; |
| 426 | } |
| 427 | |
| 428 | /// setObjectAlignment - Change the alignment of the specified stack object. |
| 429 | void setObjectAlignment(int ObjectIdx, unsigned Align) { |
| 430 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 431 | "Invalid Object Idx!"); |
| 432 | Objects[ObjectIdx+NumFixedObjects].Alignment = Align; |
| 433 | ensureMaxAlignment(Align); |
| 434 | } |
| 435 | |
| 436 | /// Return the underlying Alloca of the specified |
| 437 | /// stack object if it exists. Returns 0 if none exists. |
| 438 | const AllocaInst* getObjectAllocation(int ObjectIdx) const { |
| 439 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 440 | "Invalid Object Idx!"); |
| 441 | return Objects[ObjectIdx+NumFixedObjects].Alloca; |
| 442 | } |
| 443 | |
| 444 | /// Return the assigned stack offset of the specified object |
| 445 | /// from the incoming stack pointer. |
| 446 | int64_t getObjectOffset(int ObjectIdx) const { |
| 447 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 448 | "Invalid Object Idx!"); |
| 449 | assert(!isDeadObjectIndex(ObjectIdx) && |
| 450 | "Getting frame offset for a dead object?"); |
| 451 | return Objects[ObjectIdx+NumFixedObjects].SPOffset; |
| 452 | } |
| 453 | |
| 454 | bool isObjectZExt(int ObjectIdx) const { |
| 455 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 456 | "Invalid Object Idx!"); |
| 457 | return Objects[ObjectIdx+NumFixedObjects].isZExt; |
| 458 | } |
| 459 | |
| 460 | void setObjectZExt(int ObjectIdx, bool IsZExt) { |
| 461 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 462 | "Invalid Object Idx!"); |
| 463 | Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt; |
| 464 | } |
| 465 | |
| 466 | bool isObjectSExt(int ObjectIdx) const { |
| 467 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 468 | "Invalid Object Idx!"); |
| 469 | return Objects[ObjectIdx+NumFixedObjects].isSExt; |
| 470 | } |
| 471 | |
| 472 | void setObjectSExt(int ObjectIdx, bool IsSExt) { |
| 473 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 474 | "Invalid Object Idx!"); |
| 475 | Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt; |
| 476 | } |
| 477 | |
| 478 | /// Set the stack frame offset of the specified object. The |
| 479 | /// offset is relative to the stack pointer on entry to the function. |
| 480 | void setObjectOffset(int ObjectIdx, int64_t SPOffset) { |
| 481 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 482 | "Invalid Object Idx!"); |
| 483 | assert(!isDeadObjectIndex(ObjectIdx) && |
| 484 | "Setting frame offset for a dead object?"); |
| 485 | Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; |
| 486 | } |
| 487 | |
| 488 | /// Return the number of bytes that must be allocated to hold |
| 489 | /// all of the fixed size frame objects. This is only valid after |
| 490 | /// Prolog/Epilog code insertion has finalized the stack frame layout. |
| 491 | uint64_t getStackSize() const { return StackSize; } |
| 492 | |
| 493 | /// Set the size of the stack. |
| 494 | void setStackSize(uint64_t Size) { StackSize = Size; } |
| 495 | |
| 496 | /// Estimate and return the size of the stack frame. |
| 497 | unsigned estimateStackSize(const MachineFunction &MF) const; |
| 498 | |
| 499 | /// Return the correction for frame offsets. |
| 500 | int getOffsetAdjustment() const { return OffsetAdjustment; } |
| 501 | |
| 502 | /// Set the correction for frame offsets. |
| 503 | void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; } |
| 504 | |
| 505 | /// Return the alignment in bytes that this function must be aligned to, |
| 506 | /// which is greater than the default stack alignment provided by the target. |
| 507 | unsigned getMaxAlignment() const { return MaxAlignment; } |
| 508 | |
| 509 | /// Make sure the function is at least Align bytes aligned. |
| 510 | void ensureMaxAlignment(unsigned Align); |
| 511 | |
| 512 | /// Return true if this function adjusts the stack -- e.g., |
| 513 | /// when calling another function. This is only valid during and after |
| 514 | /// prolog/epilog code insertion. |
| 515 | bool adjustsStack() const { return AdjustsStack; } |
| 516 | void setAdjustsStack(bool V) { AdjustsStack = V; } |
| 517 | |
| 518 | /// Return true if the current function has any function calls. |
| 519 | bool hasCalls() const { return HasCalls; } |
| 520 | void setHasCalls(bool V) { HasCalls = V; } |
| 521 | |
| 522 | /// Returns true if the function contains opaque dynamic stack adjustments. |
| 523 | bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; } |
| 524 | void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; } |
| 525 | |
| 526 | /// Returns true if the function contains operations which will lower down to |
| 527 | /// instructions which manipulate the stack pointer. |
| 528 | bool hasCopyImplyingStackAdjustment() const { |
| 529 | return HasCopyImplyingStackAdjustment; |
| 530 | } |
| 531 | void setHasCopyImplyingStackAdjustment(bool B) { |
| 532 | HasCopyImplyingStackAdjustment = B; |
| 533 | } |
| 534 | |
| 535 | /// Returns true if the function calls the llvm.va_start intrinsic. |
| 536 | bool hasVAStart() const { return HasVAStart; } |
| 537 | void setHasVAStart(bool B) { HasVAStart = B; } |
| 538 | |
| 539 | /// Returns true if the function is variadic and contains a musttail call. |
| 540 | bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; } |
| 541 | void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; } |
| 542 | |
| 543 | /// Returns true if the function contains a tail call. |
| 544 | bool hasTailCall() const { return HasTailCall; } |
| 545 | void setHasTailCall() { HasTailCall = true; } |
| 546 | |
| 547 | /// Computes the maximum size of a callframe and the AdjustsStack property. |
| 548 | /// This only works for targets defining |
| 549 | /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(), |
| 550 | /// and getFrameSize(). |
| 551 | /// This is usually computed by the prologue epilogue inserter but some |
| 552 | /// targets may call this to compute it earlier. |
| 553 | void computeMaxCallFrameSize(const MachineFunction &MF); |
| 554 | |
| 555 | /// Return the maximum size of a call frame that must be |
| 556 | /// allocated for an outgoing function call. This is only available if |
| 557 | /// CallFrameSetup/Destroy pseudo instructions are used by the target, and |
| 558 | /// then only during or after prolog/epilog code insertion. |
| 559 | /// |
| 560 | unsigned getMaxCallFrameSize() const { |
| 561 | // TODO: Enable this assert when targets are fixed. |
| 562 | //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet"); |
| 563 | if (!isMaxCallFrameSizeComputed()) |
| 564 | return 0; |
| 565 | return MaxCallFrameSize; |
| 566 | } |
| 567 | bool isMaxCallFrameSizeComputed() const { |
| 568 | return MaxCallFrameSize != ~0u; |
| 569 | } |
| 570 | void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; } |
| 571 | |
| 572 | /// Create a new object at a fixed location on the stack. |
| 573 | /// All fixed objects should be created before other objects are created for |
| 574 | /// efficiency. By default, fixed objects are not pointed to by LLVM IR |
| 575 | /// values. This returns an index with a negative value. |
| 576 | int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, |
| 577 | bool isAliased = false); |
| 578 | |
| 579 | /// Create a spill slot at a fixed location on the stack. |
| 580 | /// Returns an index with a negative value. |
| 581 | int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset, |
| 582 | bool IsImmutable = false); |
| 583 | |
| 584 | /// Returns true if the specified index corresponds to a fixed stack object. |
| 585 | bool isFixedObjectIndex(int ObjectIdx) const { |
| 586 | return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects); |
| 587 | } |
| 588 | |
| 589 | /// Returns true if the specified index corresponds |
| 590 | /// to an object that might be pointed to by an LLVM IR value. |
| 591 | bool isAliasedObjectIndex(int ObjectIdx) const { |
| 592 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 593 | "Invalid Object Idx!"); |
| 594 | return Objects[ObjectIdx+NumFixedObjects].isAliased; |
| 595 | } |
| 596 | |
| 597 | /// Returns true if the specified index corresponds to an immutable object. |
| 598 | bool isImmutableObjectIndex(int ObjectIdx) const { |
| 599 | // Tail calling functions can clobber their function arguments. |
| 600 | if (HasTailCall) |
| 601 | return false; |
| 602 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 603 | "Invalid Object Idx!"); |
| 604 | return Objects[ObjectIdx+NumFixedObjects].isImmutable; |
| 605 | } |
| 606 | |
| 607 | /// Marks the immutability of an object. |
| 608 | void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) { |
| 609 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 610 | "Invalid Object Idx!"); |
| 611 | Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable; |
| 612 | } |
| 613 | |
| 614 | /// Returns true if the specified index corresponds to a spill slot. |
| 615 | bool isSpillSlotObjectIndex(int ObjectIdx) const { |
| 616 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 617 | "Invalid Object Idx!"); |
| 618 | return Objects[ObjectIdx+NumFixedObjects].isSpillSlot; |
| 619 | } |
| 620 | |
| 621 | bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const { |
| 622 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 623 | "Invalid Object Idx!"); |
| 624 | return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot; |
| 625 | } |
| 626 | |
| 627 | /// \see StackID |
| 628 | uint8_t getStackID(int ObjectIdx) const { |
| 629 | return Objects[ObjectIdx+NumFixedObjects].StackID; |
| 630 | } |
| 631 | |
| 632 | /// \see StackID |
| 633 | void setStackID(int ObjectIdx, uint8_t ID) { |
| 634 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 635 | "Invalid Object Idx!"); |
| 636 | Objects[ObjectIdx+NumFixedObjects].StackID = ID; |
| 637 | } |
| 638 | |
| 639 | /// Returns true if the specified index corresponds to a dead object. |
| 640 | bool isDeadObjectIndex(int ObjectIdx) const { |
| 641 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 642 | "Invalid Object Idx!"); |
| 643 | return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL; |
| 644 | } |
| 645 | |
| 646 | /// Returns true if the specified index corresponds to a variable sized |
| 647 | /// object. |
| 648 | bool isVariableSizedObjectIndex(int ObjectIdx) const { |
| 649 | assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && |
| 650 | "Invalid Object Idx!"); |
| 651 | return Objects[ObjectIdx + NumFixedObjects].Size == 0; |
| 652 | } |
| 653 | |
| 654 | void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) { |
| 655 | assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && |
| 656 | "Invalid Object Idx!"); |
| 657 | Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true; |
| 658 | assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent"); |
| 659 | } |
| 660 | |
| 661 | /// Create a new statically sized stack object, returning |
| 662 | /// a nonnegative identifier to represent it. |
| 663 | int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot, |
| 664 | const AllocaInst *Alloca = nullptr, uint8_t ID = 0); |
| 665 | |
| 666 | /// Create a new statically sized stack object that represents a spill slot, |
| 667 | /// returning a nonnegative identifier to represent it. |
| 668 | int CreateSpillStackObject(uint64_t Size, unsigned Alignment); |
| 669 | |
| 670 | /// Remove or mark dead a statically sized stack object. |
| 671 | void RemoveStackObject(int ObjectIdx) { |
| 672 | // Mark it dead. |
| 673 | Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL; |
| 674 | } |
| 675 | |
| 676 | /// Notify the MachineFrameInfo object that a variable sized object has been |
| 677 | /// created. This must be created whenever a variable sized object is |
| 678 | /// created, whether or not the index returned is actually used. |
| 679 | int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca); |
| 680 | |
| 681 | /// Returns a reference to call saved info vector for the current function. |
| 682 | const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const { |
| 683 | return CSInfo; |
| 684 | } |
| 685 | /// \copydoc getCalleeSavedInfo() |
| 686 | std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; } |
| 687 | |
| 688 | /// Used by prolog/epilog inserter to set the function's callee saved |
| 689 | /// information. |
| 690 | void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) { |
| 691 | CSInfo = CSI; |
| 692 | } |
| 693 | |
| 694 | /// Has the callee saved info been calculated yet? |
| 695 | bool isCalleeSavedInfoValid() const { return CSIValid; } |
| 696 | |
| 697 | void setCalleeSavedInfoValid(bool v) { CSIValid = v; } |
| 698 | |
| 699 | MachineBasicBlock *getSavePoint() const { return Save; } |
| 700 | void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; } |
| 701 | MachineBasicBlock *getRestorePoint() const { return Restore; } |
| 702 | void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; } |
| 703 | |
| 704 | /// Return a set of physical registers that are pristine. |
| 705 | /// |
| 706 | /// Pristine registers hold a value that is useless to the current function, |
| 707 | /// but that must be preserved - they are callee saved registers that are not |
| 708 | /// saved. |
| 709 | /// |
| 710 | /// Before the PrologueEpilogueInserter has placed the CSR spill code, this |
| 711 | /// method always returns an empty set. |
| 712 | BitVector getPristineRegs(const MachineFunction &MF) const; |
| 713 | |
| 714 | /// Used by the MachineFunction printer to print information about |
| 715 | /// stack objects. Implemented in MachineFunction.cpp. |
| 716 | void print(const MachineFunction &MF, raw_ostream &OS) const; |
| 717 | |
| 718 | /// dump - Print the function to stderr. |
| 719 | void dump(const MachineFunction &MF) const; |
| 720 | }; |
| 721 | |
| 722 | } // End llvm namespace |
| 723 | |
| 724 | #endif |