Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The ScalarEvolution class is an LLVM pass which can be used to analyze and |
| 11 | // categorize scalar expressions in loops. It specializes in recognizing |
| 12 | // general induction variables, representing them with the abstract and opaque |
| 13 | // SCEV class. Given this analysis, trip counts of loops and other important |
| 14 | // properties can be obtained. |
| 15 | // |
| 16 | // This analysis is primarily useful for induction variable substitution and |
| 17 | // strength reduction. |
| 18 | // |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | |
| 21 | #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H |
| 22 | #define LLVM_ANALYSIS_SCALAREVOLUTION_H |
| 23 | |
| 24 | #include "llvm/ADT/APInt.h" |
| 25 | #include "llvm/ADT/ArrayRef.h" |
| 26 | #include "llvm/ADT/DenseMap.h" |
| 27 | #include "llvm/ADT/DenseMapInfo.h" |
| 28 | #include "llvm/ADT/FoldingSet.h" |
| 29 | #include "llvm/ADT/Hashing.h" |
| 30 | #include "llvm/ADT/Optional.h" |
| 31 | #include "llvm/ADT/PointerIntPair.h" |
| 32 | #include "llvm/ADT/SetVector.h" |
| 33 | #include "llvm/ADT/SmallPtrSet.h" |
| 34 | #include "llvm/ADT/SmallVector.h" |
| 35 | #include "llvm/Analysis/LoopInfo.h" |
| 36 | #include "llvm/IR/ConstantRange.h" |
| 37 | #include "llvm/IR/Function.h" |
| 38 | #include "llvm/IR/InstrTypes.h" |
| 39 | #include "llvm/IR/Instructions.h" |
| 40 | #include "llvm/IR/Operator.h" |
| 41 | #include "llvm/IR/PassManager.h" |
| 42 | #include "llvm/IR/ValueHandle.h" |
| 43 | #include "llvm/IR/ValueMap.h" |
| 44 | #include "llvm/Pass.h" |
| 45 | #include "llvm/Support/Allocator.h" |
| 46 | #include "llvm/Support/Casting.h" |
| 47 | #include "llvm/Support/Compiler.h" |
| 48 | #include <algorithm> |
| 49 | #include <cassert> |
| 50 | #include <cstdint> |
| 51 | #include <memory> |
| 52 | #include <utility> |
| 53 | |
| 54 | namespace llvm { |
| 55 | |
| 56 | class AssumptionCache; |
| 57 | class BasicBlock; |
| 58 | class Constant; |
| 59 | class ConstantInt; |
| 60 | class DataLayout; |
| 61 | class DominatorTree; |
| 62 | class GEPOperator; |
| 63 | class Instruction; |
| 64 | class LLVMContext; |
| 65 | class raw_ostream; |
| 66 | class ScalarEvolution; |
| 67 | class SCEVAddRecExpr; |
| 68 | class SCEVUnknown; |
| 69 | class StructType; |
| 70 | class TargetLibraryInfo; |
| 71 | class Type; |
| 72 | class Value; |
| 73 | |
| 74 | /// This class represents an analyzed expression in the program. These are |
| 75 | /// opaque objects that the client is not allowed to do much with directly. |
| 76 | /// |
| 77 | class SCEV : public FoldingSetNode { |
| 78 | friend struct FoldingSetTrait<SCEV>; |
| 79 | |
| 80 | /// A reference to an Interned FoldingSetNodeID for this node. The |
| 81 | /// ScalarEvolution's BumpPtrAllocator holds the data. |
| 82 | FoldingSetNodeIDRef FastID; |
| 83 | |
| 84 | // The SCEV baseclass this node corresponds to |
| 85 | const unsigned short SCEVType; |
| 86 | |
| 87 | protected: |
| 88 | /// This field is initialized to zero and may be used in subclasses to store |
| 89 | /// miscellaneous information. |
| 90 | unsigned short SubclassData = 0; |
| 91 | |
| 92 | public: |
| 93 | /// NoWrapFlags are bitfield indices into SubclassData. |
| 94 | /// |
| 95 | /// Add and Mul expressions may have no-unsigned-wrap <NUW> or |
| 96 | /// no-signed-wrap <NSW> properties, which are derived from the IR |
| 97 | /// operator. NSW is a misnomer that we use to mean no signed overflow or |
| 98 | /// underflow. |
| 99 | /// |
| 100 | /// AddRec expressions may have a no-self-wraparound <NW> property if, in |
| 101 | /// the integer domain, abs(step) * max-iteration(loop) <= |
| 102 | /// unsigned-max(bitwidth). This means that the recurrence will never reach |
| 103 | /// its start value if the step is non-zero. Computing the same value on |
| 104 | /// each iteration is not considered wrapping, and recurrences with step = 0 |
| 105 | /// are trivially <NW>. <NW> is independent of the sign of step and the |
| 106 | /// value the add recurrence starts with. |
| 107 | /// |
| 108 | /// Note that NUW and NSW are also valid properties of a recurrence, and |
| 109 | /// either implies NW. For convenience, NW will be set for a recurrence |
| 110 | /// whenever either NUW or NSW are set. |
| 111 | enum NoWrapFlags { |
| 112 | FlagAnyWrap = 0, // No guarantee. |
| 113 | FlagNW = (1 << 0), // No self-wrap. |
| 114 | FlagNUW = (1 << 1), // No unsigned wrap. |
| 115 | FlagNSW = (1 << 2), // No signed wrap. |
| 116 | NoWrapMask = (1 << 3) - 1 |
| 117 | }; |
| 118 | |
| 119 | explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) |
| 120 | : FastID(ID), SCEVType(SCEVTy) {} |
| 121 | SCEV(const SCEV &) = delete; |
| 122 | SCEV &operator=(const SCEV &) = delete; |
| 123 | |
| 124 | unsigned getSCEVType() const { return SCEVType; } |
| 125 | |
| 126 | /// Return the LLVM type of this SCEV expression. |
| 127 | Type *getType() const; |
| 128 | |
| 129 | /// Return true if the expression is a constant zero. |
| 130 | bool isZero() const; |
| 131 | |
| 132 | /// Return true if the expression is a constant one. |
| 133 | bool isOne() const; |
| 134 | |
| 135 | /// Return true if the expression is a constant all-ones value. |
| 136 | bool isAllOnesValue() const; |
| 137 | |
| 138 | /// Return true if the specified scev is negated, but not a constant. |
| 139 | bool isNonConstantNegative() const; |
| 140 | |
| 141 | /// Print out the internal representation of this scalar to the specified |
| 142 | /// stream. This should really only be used for debugging purposes. |
| 143 | void print(raw_ostream &OS) const; |
| 144 | |
| 145 | /// This method is used for debugging. |
| 146 | void dump() const; |
| 147 | }; |
| 148 | |
| 149 | // Specialize FoldingSetTrait for SCEV to avoid needing to compute |
| 150 | // temporary FoldingSetNodeID values. |
| 151 | template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> { |
| 152 | static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; } |
| 153 | |
| 154 | static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash, |
| 155 | FoldingSetNodeID &TempID) { |
| 156 | return ID == X.FastID; |
| 157 | } |
| 158 | |
| 159 | static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) { |
| 160 | return X.FastID.ComputeHash(); |
| 161 | } |
| 162 | }; |
| 163 | |
| 164 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) { |
| 165 | S.print(OS); |
| 166 | return OS; |
| 167 | } |
| 168 | |
| 169 | /// An object of this class is returned by queries that could not be answered. |
| 170 | /// For example, if you ask for the number of iterations of a linked-list |
| 171 | /// traversal loop, you will get one of these. None of the standard SCEV |
| 172 | /// operations are valid on this class, it is just a marker. |
| 173 | struct SCEVCouldNotCompute : public SCEV { |
| 174 | SCEVCouldNotCompute(); |
| 175 | |
| 176 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 177 | static bool classof(const SCEV *S); |
| 178 | }; |
| 179 | |
| 180 | /// This class represents an assumption made using SCEV expressions which can |
| 181 | /// be checked at run-time. |
| 182 | class SCEVPredicate : public FoldingSetNode { |
| 183 | friend struct FoldingSetTrait<SCEVPredicate>; |
| 184 | |
| 185 | /// A reference to an Interned FoldingSetNodeID for this node. The |
| 186 | /// ScalarEvolution's BumpPtrAllocator holds the data. |
| 187 | FoldingSetNodeIDRef FastID; |
| 188 | |
| 189 | public: |
| 190 | enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap }; |
| 191 | |
| 192 | protected: |
| 193 | SCEVPredicateKind Kind; |
| 194 | ~SCEVPredicate() = default; |
| 195 | SCEVPredicate(const SCEVPredicate &) = default; |
| 196 | SCEVPredicate &operator=(const SCEVPredicate &) = default; |
| 197 | |
| 198 | public: |
| 199 | SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind); |
| 200 | |
| 201 | SCEVPredicateKind getKind() const { return Kind; } |
| 202 | |
| 203 | /// Returns the estimated complexity of this predicate. This is roughly |
| 204 | /// measured in the number of run-time checks required. |
| 205 | virtual unsigned getComplexity() const { return 1; } |
| 206 | |
| 207 | /// Returns true if the predicate is always true. This means that no |
| 208 | /// assumptions were made and nothing needs to be checked at run-time. |
| 209 | virtual bool isAlwaysTrue() const = 0; |
| 210 | |
| 211 | /// Returns true if this predicate implies \p N. |
| 212 | virtual bool implies(const SCEVPredicate *N) const = 0; |
| 213 | |
| 214 | /// Prints a textual representation of this predicate with an indentation of |
| 215 | /// \p Depth. |
| 216 | virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0; |
| 217 | |
| 218 | /// Returns the SCEV to which this predicate applies, or nullptr if this is |
| 219 | /// a SCEVUnionPredicate. |
| 220 | virtual const SCEV *getExpr() const = 0; |
| 221 | }; |
| 222 | |
| 223 | inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) { |
| 224 | P.print(OS); |
| 225 | return OS; |
| 226 | } |
| 227 | |
| 228 | // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute |
| 229 | // temporary FoldingSetNodeID values. |
| 230 | template <> |
| 231 | struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> { |
| 232 | static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) { |
| 233 | ID = X.FastID; |
| 234 | } |
| 235 | |
| 236 | static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID, |
| 237 | unsigned IDHash, FoldingSetNodeID &TempID) { |
| 238 | return ID == X.FastID; |
| 239 | } |
| 240 | |
| 241 | static unsigned ComputeHash(const SCEVPredicate &X, |
| 242 | FoldingSetNodeID &TempID) { |
| 243 | return X.FastID.ComputeHash(); |
| 244 | } |
| 245 | }; |
| 246 | |
| 247 | /// This class represents an assumption that two SCEV expressions are equal, |
| 248 | /// and this can be checked at run-time. |
| 249 | class SCEVEqualPredicate final : public SCEVPredicate { |
| 250 | /// We assume that LHS == RHS. |
| 251 | const SCEV *LHS; |
| 252 | const SCEV *RHS; |
| 253 | |
| 254 | public: |
| 255 | SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS, |
| 256 | const SCEV *RHS); |
| 257 | |
| 258 | /// Implementation of the SCEVPredicate interface |
| 259 | bool implies(const SCEVPredicate *N) const override; |
| 260 | void print(raw_ostream &OS, unsigned Depth = 0) const override; |
| 261 | bool isAlwaysTrue() const override; |
| 262 | const SCEV *getExpr() const override; |
| 263 | |
| 264 | /// Returns the left hand side of the equality. |
| 265 | const SCEV *getLHS() const { return LHS; } |
| 266 | |
| 267 | /// Returns the right hand side of the equality. |
| 268 | const SCEV *getRHS() const { return RHS; } |
| 269 | |
| 270 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 271 | static bool classof(const SCEVPredicate *P) { |
| 272 | return P->getKind() == P_Equal; |
| 273 | } |
| 274 | }; |
| 275 | |
| 276 | /// This class represents an assumption made on an AddRec expression. Given an |
| 277 | /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw |
| 278 | /// flags (defined below) in the first X iterations of the loop, where X is a |
| 279 | /// SCEV expression returned by getPredicatedBackedgeTakenCount). |
| 280 | /// |
| 281 | /// Note that this does not imply that X is equal to the backedge taken |
| 282 | /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a |
| 283 | /// predicated backedge taken count of X, we only guarantee that {0,+,1} has |
| 284 | /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we |
| 285 | /// have more than X iterations. |
| 286 | class SCEVWrapPredicate final : public SCEVPredicate { |
| 287 | public: |
| 288 | /// Similar to SCEV::NoWrapFlags, but with slightly different semantics |
| 289 | /// for FlagNUSW. The increment is considered to be signed, and a + b |
| 290 | /// (where b is the increment) is considered to wrap if: |
| 291 | /// zext(a + b) != zext(a) + sext(b) |
| 292 | /// |
| 293 | /// If Signed is a function that takes an n-bit tuple and maps to the |
| 294 | /// integer domain as the tuples value interpreted as twos complement, |
| 295 | /// and Unsigned a function that takes an n-bit tuple and maps to the |
| 296 | /// integer domain as as the base two value of input tuple, then a + b |
| 297 | /// has IncrementNUSW iff: |
| 298 | /// |
| 299 | /// 0 <= Unsigned(a) + Signed(b) < 2^n |
| 300 | /// |
| 301 | /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW. |
| 302 | /// |
| 303 | /// Note that the IncrementNUSW flag is not commutative: if base + inc |
| 304 | /// has IncrementNUSW, then inc + base doesn't neccessarily have this |
| 305 | /// property. The reason for this is that this is used for sign/zero |
| 306 | /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is |
| 307 | /// assumed. A {base,+,inc} expression is already non-commutative with |
| 308 | /// regards to base and inc, since it is interpreted as: |
| 309 | /// (((base + inc) + inc) + inc) ... |
| 310 | enum IncrementWrapFlags { |
| 311 | IncrementAnyWrap = 0, // No guarantee. |
| 312 | IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap. |
| 313 | IncrementNSSW = (1 << 1), // No signed with signed increment wrap |
| 314 | // (equivalent with SCEV::NSW) |
| 315 | IncrementNoWrapMask = (1 << 2) - 1 |
| 316 | }; |
| 317 | |
| 318 | /// Convenient IncrementWrapFlags manipulation methods. |
| 319 | LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags |
| 320 | clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, |
| 321 | SCEVWrapPredicate::IncrementWrapFlags OffFlags) { |
| 322 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
| 323 | assert((OffFlags & IncrementNoWrapMask) == OffFlags && |
| 324 | "Invalid flags value!"); |
| 325 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags); |
| 326 | } |
| 327 | |
| 328 | LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags |
| 329 | maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) { |
| 330 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
| 331 | assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!"); |
| 332 | |
| 333 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask); |
| 334 | } |
| 335 | |
| 336 | LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags |
| 337 | setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, |
| 338 | SCEVWrapPredicate::IncrementWrapFlags OnFlags) { |
| 339 | assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!"); |
| 340 | assert((OnFlags & IncrementNoWrapMask) == OnFlags && |
| 341 | "Invalid flags value!"); |
| 342 | |
| 343 | return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags); |
| 344 | } |
| 345 | |
| 346 | /// Returns the set of SCEVWrapPredicate no wrap flags implied by a |
| 347 | /// SCEVAddRecExpr. |
| 348 | LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags |
| 349 | getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE); |
| 350 | |
| 351 | private: |
| 352 | const SCEVAddRecExpr *AR; |
| 353 | IncrementWrapFlags Flags; |
| 354 | |
| 355 | public: |
| 356 | explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID, |
| 357 | const SCEVAddRecExpr *AR, |
| 358 | IncrementWrapFlags Flags); |
| 359 | |
| 360 | /// Returns the set assumed no overflow flags. |
| 361 | IncrementWrapFlags getFlags() const { return Flags; } |
| 362 | |
| 363 | /// Implementation of the SCEVPredicate interface |
| 364 | const SCEV *getExpr() const override; |
| 365 | bool implies(const SCEVPredicate *N) const override; |
| 366 | void print(raw_ostream &OS, unsigned Depth = 0) const override; |
| 367 | bool isAlwaysTrue() const override; |
| 368 | |
| 369 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 370 | static bool classof(const SCEVPredicate *P) { |
| 371 | return P->getKind() == P_Wrap; |
| 372 | } |
| 373 | }; |
| 374 | |
| 375 | /// This class represents a composition of other SCEV predicates, and is the |
| 376 | /// class that most clients will interact with. This is equivalent to a |
| 377 | /// logical "AND" of all the predicates in the union. |
| 378 | /// |
| 379 | /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the |
| 380 | /// ScalarEvolution::Preds folding set. This is why the \c add function is sound. |
| 381 | class SCEVUnionPredicate final : public SCEVPredicate { |
| 382 | private: |
| 383 | using PredicateMap = |
| 384 | DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>; |
| 385 | |
| 386 | /// Vector with references to all predicates in this union. |
| 387 | SmallVector<const SCEVPredicate *, 16> Preds; |
| 388 | |
| 389 | /// Maps SCEVs to predicates for quick look-ups. |
| 390 | PredicateMap SCEVToPreds; |
| 391 | |
| 392 | public: |
| 393 | SCEVUnionPredicate(); |
| 394 | |
| 395 | const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const { |
| 396 | return Preds; |
| 397 | } |
| 398 | |
| 399 | /// Adds a predicate to this union. |
| 400 | void add(const SCEVPredicate *N); |
| 401 | |
| 402 | /// Returns a reference to a vector containing all predicates which apply to |
| 403 | /// \p Expr. |
| 404 | ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr); |
| 405 | |
| 406 | /// Implementation of the SCEVPredicate interface |
| 407 | bool isAlwaysTrue() const override; |
| 408 | bool implies(const SCEVPredicate *N) const override; |
| 409 | void print(raw_ostream &OS, unsigned Depth) const override; |
| 410 | const SCEV *getExpr() const override; |
| 411 | |
| 412 | /// We estimate the complexity of a union predicate as the size number of |
| 413 | /// predicates in the union. |
| 414 | unsigned getComplexity() const override { return Preds.size(); } |
| 415 | |
| 416 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 417 | static bool classof(const SCEVPredicate *P) { |
| 418 | return P->getKind() == P_Union; |
| 419 | } |
| 420 | }; |
| 421 | |
| 422 | struct ExitLimitQuery { |
| 423 | ExitLimitQuery(const Loop *L, BasicBlock *ExitingBlock, bool AllowPredicates) |
| 424 | : L(L), ExitingBlock(ExitingBlock), AllowPredicates(AllowPredicates) {} |
| 425 | |
| 426 | const Loop *L; |
| 427 | BasicBlock *ExitingBlock; |
| 428 | bool AllowPredicates; |
| 429 | }; |
| 430 | |
| 431 | template <> struct DenseMapInfo<ExitLimitQuery> { |
| 432 | static inline ExitLimitQuery getEmptyKey() { |
| 433 | return ExitLimitQuery(nullptr, nullptr, true); |
| 434 | } |
| 435 | |
| 436 | static inline ExitLimitQuery getTombstoneKey() { |
| 437 | return ExitLimitQuery(nullptr, nullptr, false); |
| 438 | } |
| 439 | |
| 440 | static unsigned getHashValue(ExitLimitQuery Val) { |
| 441 | return hash_combine(hash_combine(Val.L, Val.ExitingBlock), |
| 442 | Val.AllowPredicates); |
| 443 | } |
| 444 | |
| 445 | static bool isEqual(ExitLimitQuery LHS, ExitLimitQuery RHS) { |
| 446 | return LHS.L == RHS.L && LHS.ExitingBlock == RHS.ExitingBlock && |
| 447 | LHS.AllowPredicates == RHS.AllowPredicates; |
| 448 | } |
| 449 | }; |
| 450 | |
| 451 | /// The main scalar evolution driver. Because client code (intentionally) |
| 452 | /// can't do much with the SCEV objects directly, they must ask this class |
| 453 | /// for services. |
| 454 | class ScalarEvolution { |
| 455 | public: |
| 456 | /// An enum describing the relationship between a SCEV and a loop. |
| 457 | enum LoopDisposition { |
| 458 | LoopVariant, ///< The SCEV is loop-variant (unknown). |
| 459 | LoopInvariant, ///< The SCEV is loop-invariant. |
| 460 | LoopComputable ///< The SCEV varies predictably with the loop. |
| 461 | }; |
| 462 | |
| 463 | /// An enum describing the relationship between a SCEV and a basic block. |
| 464 | enum BlockDisposition { |
| 465 | DoesNotDominateBlock, ///< The SCEV does not dominate the block. |
| 466 | DominatesBlock, ///< The SCEV dominates the block. |
| 467 | ProperlyDominatesBlock ///< The SCEV properly dominates the block. |
| 468 | }; |
| 469 | |
| 470 | /// Convenient NoWrapFlags manipulation that hides enum casts and is |
| 471 | /// visible in the ScalarEvolution name space. |
| 472 | LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags, |
| 473 | int Mask) { |
| 474 | return (SCEV::NoWrapFlags)(Flags & Mask); |
| 475 | } |
| 476 | LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags, |
| 477 | SCEV::NoWrapFlags OnFlags) { |
| 478 | return (SCEV::NoWrapFlags)(Flags | OnFlags); |
| 479 | } |
| 480 | LLVM_NODISCARD static SCEV::NoWrapFlags |
| 481 | clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) { |
| 482 | return (SCEV::NoWrapFlags)(Flags & ~OffFlags); |
| 483 | } |
| 484 | |
| 485 | ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC, |
| 486 | DominatorTree &DT, LoopInfo &LI); |
| 487 | ScalarEvolution(ScalarEvolution &&Arg); |
| 488 | ~ScalarEvolution(); |
| 489 | |
| 490 | LLVMContext &getContext() const { return F.getContext(); } |
| 491 | |
| 492 | /// Test if values of the given type are analyzable within the SCEV |
| 493 | /// framework. This primarily includes integer types, and it can optionally |
| 494 | /// include pointer types if the ScalarEvolution class has access to |
| 495 | /// target-specific information. |
| 496 | bool isSCEVable(Type *Ty) const; |
| 497 | |
| 498 | /// Return the size in bits of the specified type, for which isSCEVable must |
| 499 | /// return true. |
| 500 | uint64_t getTypeSizeInBits(Type *Ty) const; |
| 501 | |
| 502 | /// Return a type with the same bitwidth as the given type and which |
| 503 | /// represents how SCEV will treat the given type, for which isSCEVable must |
| 504 | /// return true. For pointer types, this is the pointer-sized integer type. |
| 505 | Type *getEffectiveSCEVType(Type *Ty) const; |
| 506 | |
| 507 | // Returns a wider type among {Ty1, Ty2}. |
| 508 | Type *getWiderType(Type *Ty1, Type *Ty2) const; |
| 509 | |
| 510 | /// Return true if the SCEV is a scAddRecExpr or it contains |
| 511 | /// scAddRecExpr. The result will be cached in HasRecMap. |
| 512 | bool containsAddRecurrence(const SCEV *S); |
| 513 | |
| 514 | /// Erase Value from ValueExprMap and ExprValueMap. |
| 515 | void eraseValueFromMap(Value *V); |
| 516 | |
| 517 | /// Return a SCEV expression for the full generality of the specified |
| 518 | /// expression. |
| 519 | const SCEV *getSCEV(Value *V); |
| 520 | |
| 521 | const SCEV *getConstant(ConstantInt *V); |
| 522 | const SCEV *getConstant(const APInt &Val); |
| 523 | const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false); |
| 524 | const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty); |
| 525 | const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); |
| 526 | const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0); |
| 527 | const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty); |
| 528 | const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
| 529 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
| 530 | unsigned Depth = 0); |
| 531 | const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS, |
| 532 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
| 533 | unsigned Depth = 0) { |
| 534 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
| 535 | return getAddExpr(Ops, Flags, Depth); |
| 536 | } |
| 537 | const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, |
| 538 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
| 539 | unsigned Depth = 0) { |
| 540 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; |
| 541 | return getAddExpr(Ops, Flags, Depth); |
| 542 | } |
| 543 | const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
| 544 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
| 545 | unsigned Depth = 0); |
| 546 | const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS, |
| 547 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
| 548 | unsigned Depth = 0) { |
| 549 | SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; |
| 550 | return getMulExpr(Ops, Flags, Depth); |
| 551 | } |
| 552 | const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2, |
| 553 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
| 554 | unsigned Depth = 0) { |
| 555 | SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2}; |
| 556 | return getMulExpr(Ops, Flags, Depth); |
| 557 | } |
| 558 | const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS); |
| 559 | const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS); |
| 560 | const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS); |
| 561 | const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, |
| 562 | SCEV::NoWrapFlags Flags); |
| 563 | const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, |
| 564 | const Loop *L, SCEV::NoWrapFlags Flags); |
| 565 | const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands, |
| 566 | const Loop *L, SCEV::NoWrapFlags Flags) { |
| 567 | SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end()); |
| 568 | return getAddRecExpr(NewOp, L, Flags); |
| 569 | } |
| 570 | |
| 571 | /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some |
| 572 | /// Predicates. If successful return these <AddRecExpr, Predicates>; |
| 573 | /// The function is intended to be called from PSCEV (the caller will decide |
| 574 | /// whether to actually add the predicates and carry out the rewrites). |
| 575 | Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| 576 | createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI); |
| 577 | |
| 578 | /// Returns an expression for a GEP |
| 579 | /// |
| 580 | /// \p GEP The GEP. The indices contained in the GEP itself are ignored, |
| 581 | /// instead we use IndexExprs. |
| 582 | /// \p IndexExprs The expressions for the indices. |
| 583 | const SCEV *getGEPExpr(GEPOperator *GEP, |
| 584 | const SmallVectorImpl<const SCEV *> &IndexExprs); |
| 585 | const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS); |
| 586 | const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands); |
| 587 | const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS); |
| 588 | const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands); |
| 589 | const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS); |
| 590 | const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS); |
| 591 | const SCEV *getUnknown(Value *V); |
| 592 | const SCEV *getCouldNotCompute(); |
| 593 | |
| 594 | /// Return a SCEV for the constant 0 of a specific type. |
| 595 | const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); } |
| 596 | |
| 597 | /// Return a SCEV for the constant 1 of a specific type. |
| 598 | const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); } |
| 599 | |
| 600 | /// Return an expression for sizeof AllocTy that is type IntTy |
| 601 | const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy); |
| 602 | |
| 603 | /// Return an expression for offsetof on the given field with type IntTy |
| 604 | const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo); |
| 605 | |
| 606 | /// Return the SCEV object corresponding to -V. |
| 607 | const SCEV *getNegativeSCEV(const SCEV *V, |
| 608 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap); |
| 609 | |
| 610 | /// Return the SCEV object corresponding to ~V. |
| 611 | const SCEV *getNotSCEV(const SCEV *V); |
| 612 | |
| 613 | /// Return LHS-RHS. Minus is represented in SCEV as A+B*-1. |
| 614 | const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS, |
| 615 | SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap, |
| 616 | unsigned Depth = 0); |
| 617 | |
| 618 | /// Return a SCEV corresponding to a conversion of the input value to the |
| 619 | /// specified type. If the type must be extended, it is zero extended. |
| 620 | const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty); |
| 621 | |
| 622 | /// Return a SCEV corresponding to a conversion of the input value to the |
| 623 | /// specified type. If the type must be extended, it is sign extended. |
| 624 | const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty); |
| 625 | |
| 626 | /// Return a SCEV corresponding to a conversion of the input value to the |
| 627 | /// specified type. If the type must be extended, it is zero extended. The |
| 628 | /// conversion must not be narrowing. |
| 629 | const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty); |
| 630 | |
| 631 | /// Return a SCEV corresponding to a conversion of the input value to the |
| 632 | /// specified type. If the type must be extended, it is sign extended. The |
| 633 | /// conversion must not be narrowing. |
| 634 | const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty); |
| 635 | |
| 636 | /// Return a SCEV corresponding to a conversion of the input value to the |
| 637 | /// specified type. If the type must be extended, it is extended with |
| 638 | /// unspecified bits. The conversion must not be narrowing. |
| 639 | const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty); |
| 640 | |
| 641 | /// Return a SCEV corresponding to a conversion of the input value to the |
| 642 | /// specified type. The conversion must not be widening. |
| 643 | const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty); |
| 644 | |
| 645 | /// Promote the operands to the wider of the types using zero-extension, and |
| 646 | /// then perform a umax operation with them. |
| 647 | const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); |
| 648 | |
| 649 | /// Promote the operands to the wider of the types using zero-extension, and |
| 650 | /// then perform a umin operation with them. |
| 651 | const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS); |
| 652 | |
| 653 | /// Transitively follow the chain of pointer-type operands until reaching a |
| 654 | /// SCEV that does not have a single pointer operand. This returns a |
| 655 | /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner |
| 656 | /// cases do exist. |
| 657 | const SCEV *getPointerBase(const SCEV *V); |
| 658 | |
| 659 | /// Return a SCEV expression for the specified value at the specified scope |
| 660 | /// in the program. The L value specifies a loop nest to evaluate the |
| 661 | /// expression at, where null is the top-level or a specified loop is |
| 662 | /// immediately inside of the loop. |
| 663 | /// |
| 664 | /// This method can be used to compute the exit value for a variable defined |
| 665 | /// in a loop by querying what the value will hold in the parent loop. |
| 666 | /// |
| 667 | /// In the case that a relevant loop exit value cannot be computed, the |
| 668 | /// original value V is returned. |
| 669 | const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L); |
| 670 | |
| 671 | /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L). |
| 672 | const SCEV *getSCEVAtScope(Value *V, const Loop *L); |
| 673 | |
| 674 | /// Test whether entry to the loop is protected by a conditional between LHS |
| 675 | /// and RHS. This is used to help avoid max expressions in loop trip |
| 676 | /// counts, and to eliminate casts. |
| 677 | bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, |
| 678 | const SCEV *LHS, const SCEV *RHS); |
| 679 | |
| 680 | /// Test whether the backedge of the loop is protected by a conditional |
| 681 | /// between LHS and RHS. This is used to eliminate casts. |
| 682 | bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred, |
| 683 | const SCEV *LHS, const SCEV *RHS); |
| 684 | |
| 685 | /// Returns the maximum trip count of the loop if it is a single-exit |
| 686 | /// loop and we can compute a small maximum for that loop. |
| 687 | /// |
| 688 | /// Implemented in terms of the \c getSmallConstantTripCount overload with |
| 689 | /// the single exiting block passed to it. See that routine for details. |
| 690 | unsigned getSmallConstantTripCount(const Loop *L); |
| 691 | |
| 692 | /// Returns the maximum trip count of this loop as a normal unsigned |
| 693 | /// value. Returns 0 if the trip count is unknown or not constant. This |
| 694 | /// "trip count" assumes that control exits via ExitingBlock. More |
| 695 | /// precisely, it is the number of times that control may reach ExitingBlock |
| 696 | /// before taking the branch. For loops with multiple exits, it may not be |
| 697 | /// the number times that the loop header executes if the loop exits |
| 698 | /// prematurely via another branch. |
| 699 | unsigned getSmallConstantTripCount(const Loop *L, BasicBlock *ExitingBlock); |
| 700 | |
| 701 | /// Returns the upper bound of the loop trip count as a normal unsigned |
| 702 | /// value. |
| 703 | /// Returns 0 if the trip count is unknown or not constant. |
| 704 | unsigned getSmallConstantMaxTripCount(const Loop *L); |
| 705 | |
| 706 | /// Returns the largest constant divisor of the trip count of the |
| 707 | /// loop if it is a single-exit loop and we can compute a small maximum for |
| 708 | /// that loop. |
| 709 | /// |
| 710 | /// Implemented in terms of the \c getSmallConstantTripMultiple overload with |
| 711 | /// the single exiting block passed to it. See that routine for details. |
| 712 | unsigned getSmallConstantTripMultiple(const Loop *L); |
| 713 | |
| 714 | /// Returns the largest constant divisor of the trip count of this loop as a |
| 715 | /// normal unsigned value, if possible. This means that the actual trip |
| 716 | /// count is always a multiple of the returned value (don't forget the trip |
| 717 | /// count could very well be zero as well!). As explained in the comments |
| 718 | /// for getSmallConstantTripCount, this assumes that control exits the loop |
| 719 | /// via ExitingBlock. |
| 720 | unsigned getSmallConstantTripMultiple(const Loop *L, |
| 721 | BasicBlock *ExitingBlock); |
| 722 | |
| 723 | /// Get the expression for the number of loop iterations for which this loop |
| 724 | /// is guaranteed not to exit via ExitingBlock. Otherwise return |
| 725 | /// SCEVCouldNotCompute. |
| 726 | const SCEV *getExitCount(const Loop *L, BasicBlock *ExitingBlock); |
| 727 | |
| 728 | /// If the specified loop has a predictable backedge-taken count, return it, |
| 729 | /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is |
| 730 | /// the number of times the loop header will be branched to from within the |
| 731 | /// loop, assuming there are no abnormal exists like exception throws. This is |
| 732 | /// one less than the trip count of the loop, since it doesn't count the first |
| 733 | /// iteration, when the header is branched to from outside the loop. |
| 734 | /// |
| 735 | /// Note that it is not valid to call this method on a loop without a |
| 736 | /// loop-invariant backedge-taken count (see |
| 737 | /// hasLoopInvariantBackedgeTakenCount). |
| 738 | const SCEV *getBackedgeTakenCount(const Loop *L); |
| 739 | |
| 740 | /// Similar to getBackedgeTakenCount, except it will add a set of |
| 741 | /// SCEV predicates to Predicates that are required to be true in order for |
| 742 | /// the answer to be correct. Predicates can be checked with run-time |
| 743 | /// checks and can be used to perform loop versioning. |
| 744 | const SCEV *getPredicatedBackedgeTakenCount(const Loop *L, |
| 745 | SCEVUnionPredicate &Predicates); |
| 746 | |
| 747 | /// When successful, this returns a SCEVConstant that is greater than or equal |
| 748 | /// to (i.e. a "conservative over-approximation") of the value returend by |
| 749 | /// getBackedgeTakenCount. If such a value cannot be computed, it returns the |
| 750 | /// SCEVCouldNotCompute object. |
| 751 | const SCEV *getMaxBackedgeTakenCount(const Loop *L); |
| 752 | |
| 753 | /// Return true if the backedge taken count is either the value returned by |
| 754 | /// getMaxBackedgeTakenCount or zero. |
| 755 | bool isBackedgeTakenCountMaxOrZero(const Loop *L); |
| 756 | |
| 757 | /// Return true if the specified loop has an analyzable loop-invariant |
| 758 | /// backedge-taken count. |
| 759 | bool hasLoopInvariantBackedgeTakenCount(const Loop *L); |
| 760 | |
| 761 | /// This method should be called by the client when it has changed a loop in |
| 762 | /// a way that may effect ScalarEvolution's ability to compute a trip count, |
| 763 | /// or if the loop is deleted. This call is potentially expensive for large |
| 764 | /// loop bodies. |
| 765 | void forgetLoop(const Loop *L); |
| 766 | |
| 767 | /// This method should be called by the client when it has changed a value |
| 768 | /// in a way that may effect its value, or which may disconnect it from a |
| 769 | /// def-use chain linking it to a loop. |
| 770 | void forgetValue(Value *V); |
| 771 | |
| 772 | /// Called when the client has changed the disposition of values in |
| 773 | /// this loop. |
| 774 | /// |
| 775 | /// We don't have a way to invalidate per-loop dispositions. Clear and |
| 776 | /// recompute is simpler. |
| 777 | void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); } |
| 778 | |
| 779 | /// Determine the minimum number of zero bits that S is guaranteed to end in |
| 780 | /// (at every loop iteration). It is, at the same time, the minimum number |
| 781 | /// of times S is divisible by 2. For example, given {4,+,8} it returns 2. |
| 782 | /// If S is guaranteed to be 0, it returns the bitwidth of S. |
| 783 | uint32_t GetMinTrailingZeros(const SCEV *S); |
| 784 | |
| 785 | /// Determine the unsigned range for a particular SCEV. |
| 786 | /// NOTE: This returns a copy of the reference returned by getRangeRef. |
| 787 | ConstantRange getUnsignedRange(const SCEV *S) { |
| 788 | return getRangeRef(S, HINT_RANGE_UNSIGNED); |
| 789 | } |
| 790 | |
| 791 | /// Determine the min of the unsigned range for a particular SCEV. |
| 792 | APInt getUnsignedRangeMin(const SCEV *S) { |
| 793 | return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin(); |
| 794 | } |
| 795 | |
| 796 | /// Determine the max of the unsigned range for a particular SCEV. |
| 797 | APInt getUnsignedRangeMax(const SCEV *S) { |
| 798 | return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax(); |
| 799 | } |
| 800 | |
| 801 | /// Determine the signed range for a particular SCEV. |
| 802 | /// NOTE: This returns a copy of the reference returned by getRangeRef. |
| 803 | ConstantRange getSignedRange(const SCEV *S) { |
| 804 | return getRangeRef(S, HINT_RANGE_SIGNED); |
| 805 | } |
| 806 | |
| 807 | /// Determine the min of the signed range for a particular SCEV. |
| 808 | APInt getSignedRangeMin(const SCEV *S) { |
| 809 | return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin(); |
| 810 | } |
| 811 | |
| 812 | /// Determine the max of the signed range for a particular SCEV. |
| 813 | APInt getSignedRangeMax(const SCEV *S) { |
| 814 | return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax(); |
| 815 | } |
| 816 | |
| 817 | /// Test if the given expression is known to be negative. |
| 818 | bool isKnownNegative(const SCEV *S); |
| 819 | |
| 820 | /// Test if the given expression is known to be positive. |
| 821 | bool isKnownPositive(const SCEV *S); |
| 822 | |
| 823 | /// Test if the given expression is known to be non-negative. |
| 824 | bool isKnownNonNegative(const SCEV *S); |
| 825 | |
| 826 | /// Test if the given expression is known to be non-positive. |
| 827 | bool isKnownNonPositive(const SCEV *S); |
| 828 | |
| 829 | /// Test if the given expression is known to be non-zero. |
| 830 | bool isKnownNonZero(const SCEV *S); |
| 831 | |
| 832 | /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from |
| 833 | /// \p S by substitution of all AddRec sub-expression related to loop \p L |
| 834 | /// with initial value of that SCEV. The second is obtained from \p S by |
| 835 | /// substitution of all AddRec sub-expressions related to loop \p L with post |
| 836 | /// increment of this AddRec in the loop \p L. In both cases all other AddRec |
| 837 | /// sub-expressions (not related to \p L) remain the same. |
| 838 | /// If the \p S contains non-invariant unknown SCEV the function returns |
| 839 | /// CouldNotCompute SCEV in both values of std::pair. |
| 840 | /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1 |
| 841 | /// the function returns pair: |
| 842 | /// first = {0, +, 1}<L2> |
| 843 | /// second = {1, +, 1}<L1> + {0, +, 1}<L2> |
| 844 | /// We can see that for the first AddRec sub-expression it was replaced with |
| 845 | /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post |
| 846 | /// increment value) for the second one. In both cases AddRec expression |
| 847 | /// related to L2 remains the same. |
| 848 | std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L, |
| 849 | const SCEV *S); |
| 850 | |
| 851 | /// We'd like to check the predicate on every iteration of the most dominated |
| 852 | /// loop between loops used in LHS and RHS. |
| 853 | /// To do this we use the following list of steps: |
| 854 | /// 1. Collect set S all loops on which either LHS or RHS depend. |
| 855 | /// 2. If S is non-empty |
| 856 | /// a. Let PD be the element of S which is dominated by all other elements. |
| 857 | /// b. Let E(LHS) be value of LHS on entry of PD. |
| 858 | /// To get E(LHS), we should just take LHS and replace all AddRecs that are |
| 859 | /// attached to PD on with their entry values. |
| 860 | /// Define E(RHS) in the same way. |
| 861 | /// c. Let B(LHS) be value of L on backedge of PD. |
| 862 | /// To get B(LHS), we should just take LHS and replace all AddRecs that are |
| 863 | /// attached to PD on with their backedge values. |
| 864 | /// Define B(RHS) in the same way. |
| 865 | /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD, |
| 866 | /// so we can assert on that. |
| 867 | /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) && |
| 868 | /// isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS)) |
| 869 | bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 870 | const SCEV *RHS); |
| 871 | |
| 872 | /// Test if the given expression is known to satisfy the condition described |
| 873 | /// by Pred, LHS, and RHS. |
| 874 | bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 875 | const SCEV *RHS); |
| 876 | |
| 877 | /// Test if the condition described by Pred, LHS, RHS is known to be true on |
| 878 | /// every iteration of the loop of the recurrency LHS. |
| 879 | bool isKnownOnEveryIteration(ICmpInst::Predicate Pred, |
| 880 | const SCEVAddRecExpr *LHS, const SCEV *RHS); |
| 881 | |
| 882 | /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X" |
| 883 | /// is monotonically increasing or decreasing. In the former case set |
| 884 | /// `Increasing` to true and in the latter case set `Increasing` to false. |
| 885 | /// |
| 886 | /// A predicate is said to be monotonically increasing if may go from being |
| 887 | /// false to being true as the loop iterates, but never the other way |
| 888 | /// around. A predicate is said to be monotonically decreasing if may go |
| 889 | /// from being true to being false as the loop iterates, but never the other |
| 890 | /// way around. |
| 891 | bool isMonotonicPredicate(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred, |
| 892 | bool &Increasing); |
| 893 | |
| 894 | /// Return true if the result of the predicate LHS `Pred` RHS is loop |
| 895 | /// invariant with respect to L. Set InvariantPred, InvariantLHS and |
| 896 | /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the |
| 897 | /// loop invariant form of LHS `Pred` RHS. |
| 898 | bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 899 | const SCEV *RHS, const Loop *L, |
| 900 | ICmpInst::Predicate &InvariantPred, |
| 901 | const SCEV *&InvariantLHS, |
| 902 | const SCEV *&InvariantRHS); |
| 903 | |
| 904 | /// Simplify LHS and RHS in a comparison with predicate Pred. Return true |
| 905 | /// iff any changes were made. If the operands are provably equal or |
| 906 | /// unequal, LHS and RHS are set to the same value and Pred is set to either |
| 907 | /// ICMP_EQ or ICMP_NE. |
| 908 | bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS, |
| 909 | const SCEV *&RHS, unsigned Depth = 0); |
| 910 | |
| 911 | /// Return the "disposition" of the given SCEV with respect to the given |
| 912 | /// loop. |
| 913 | LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L); |
| 914 | |
| 915 | /// Return true if the value of the given SCEV is unchanging in the |
| 916 | /// specified loop. |
| 917 | bool isLoopInvariant(const SCEV *S, const Loop *L); |
| 918 | |
| 919 | /// Determine if the SCEV can be evaluated at loop's entry. It is true if it |
| 920 | /// doesn't depend on a SCEVUnknown of an instruction which is dominated by |
| 921 | /// the header of loop L. |
| 922 | bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L); |
| 923 | |
| 924 | /// Return true if the given SCEV changes value in a known way in the |
| 925 | /// specified loop. This property being true implies that the value is |
| 926 | /// variant in the loop AND that we can emit an expression to compute the |
| 927 | /// value of the expression at any particular loop iteration. |
| 928 | bool hasComputableLoopEvolution(const SCEV *S, const Loop *L); |
| 929 | |
| 930 | /// Return the "disposition" of the given SCEV with respect to the given |
| 931 | /// block. |
| 932 | BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB); |
| 933 | |
| 934 | /// Return true if elements that makes up the given SCEV dominate the |
| 935 | /// specified basic block. |
| 936 | bool dominates(const SCEV *S, const BasicBlock *BB); |
| 937 | |
| 938 | /// Return true if elements that makes up the given SCEV properly dominate |
| 939 | /// the specified basic block. |
| 940 | bool properlyDominates(const SCEV *S, const BasicBlock *BB); |
| 941 | |
| 942 | /// Test whether the given SCEV has Op as a direct or indirect operand. |
| 943 | bool hasOperand(const SCEV *S, const SCEV *Op) const; |
| 944 | |
| 945 | /// Return the size of an element read or written by Inst. |
| 946 | const SCEV *getElementSize(Instruction *Inst); |
| 947 | |
| 948 | /// Compute the array dimensions Sizes from the set of Terms extracted from |
| 949 | /// the memory access function of this SCEVAddRecExpr (second step of |
| 950 | /// delinearization). |
| 951 | void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, |
| 952 | SmallVectorImpl<const SCEV *> &Sizes, |
| 953 | const SCEV *ElementSize); |
| 954 | |
| 955 | void print(raw_ostream &OS) const; |
| 956 | void verify() const; |
| 957 | bool invalidate(Function &F, const PreservedAnalyses &PA, |
| 958 | FunctionAnalysisManager::Invalidator &Inv); |
| 959 | |
| 960 | /// Collect parametric terms occurring in step expressions (first step of |
| 961 | /// delinearization). |
| 962 | void collectParametricTerms(const SCEV *Expr, |
| 963 | SmallVectorImpl<const SCEV *> &Terms); |
| 964 | |
| 965 | /// Return in Subscripts the access functions for each dimension in Sizes |
| 966 | /// (third step of delinearization). |
| 967 | void computeAccessFunctions(const SCEV *Expr, |
| 968 | SmallVectorImpl<const SCEV *> &Subscripts, |
| 969 | SmallVectorImpl<const SCEV *> &Sizes); |
| 970 | |
| 971 | /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the |
| 972 | /// subscripts and sizes of an array access. |
| 973 | /// |
| 974 | /// The delinearization is a 3 step process: the first two steps compute the |
| 975 | /// sizes of each subscript and the third step computes the access functions |
| 976 | /// for the delinearized array: |
| 977 | /// |
| 978 | /// 1. Find the terms in the step functions |
| 979 | /// 2. Compute the array size |
| 980 | /// 3. Compute the access function: divide the SCEV by the array size |
| 981 | /// starting with the innermost dimensions found in step 2. The Quotient |
| 982 | /// is the SCEV to be divided in the next step of the recursion. The |
| 983 | /// Remainder is the subscript of the innermost dimension. Loop over all |
| 984 | /// array dimensions computed in step 2. |
| 985 | /// |
| 986 | /// To compute a uniform array size for several memory accesses to the same |
| 987 | /// object, one can collect in step 1 all the step terms for all the memory |
| 988 | /// accesses, and compute in step 2 a unique array shape. This guarantees |
| 989 | /// that the array shape will be the same across all memory accesses. |
| 990 | /// |
| 991 | /// FIXME: We could derive the result of steps 1 and 2 from a description of |
| 992 | /// the array shape given in metadata. |
| 993 | /// |
| 994 | /// Example: |
| 995 | /// |
| 996 | /// A[][n][m] |
| 997 | /// |
| 998 | /// for i |
| 999 | /// for j |
| 1000 | /// for k |
| 1001 | /// A[j+k][2i][5i] = |
| 1002 | /// |
| 1003 | /// The initial SCEV: |
| 1004 | /// |
| 1005 | /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k] |
| 1006 | /// |
| 1007 | /// 1. Find the different terms in the step functions: |
| 1008 | /// -> [2*m, 5, n*m, n*m] |
| 1009 | /// |
| 1010 | /// 2. Compute the array size: sort and unique them |
| 1011 | /// -> [n*m, 2*m, 5] |
| 1012 | /// find the GCD of all the terms = 1 |
| 1013 | /// divide by the GCD and erase constant terms |
| 1014 | /// -> [n*m, 2*m] |
| 1015 | /// GCD = m |
| 1016 | /// divide by GCD -> [n, 2] |
| 1017 | /// remove constant terms |
| 1018 | /// -> [n] |
| 1019 | /// size of the array is A[unknown][n][m] |
| 1020 | /// |
| 1021 | /// 3. Compute the access function |
| 1022 | /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m |
| 1023 | /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k |
| 1024 | /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k |
| 1025 | /// The remainder is the subscript of the innermost array dimension: [5i]. |
| 1026 | /// |
| 1027 | /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n |
| 1028 | /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k |
| 1029 | /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k |
| 1030 | /// The Remainder is the subscript of the next array dimension: [2i]. |
| 1031 | /// |
| 1032 | /// The subscript of the outermost dimension is the Quotient: [j+k]. |
| 1033 | /// |
| 1034 | /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i]. |
| 1035 | void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, |
| 1036 | SmallVectorImpl<const SCEV *> &Sizes, |
| 1037 | const SCEV *ElementSize); |
| 1038 | |
| 1039 | /// Return the DataLayout associated with the module this SCEV instance is |
| 1040 | /// operating on. |
| 1041 | const DataLayout &getDataLayout() const { |
| 1042 | return F.getParent()->getDataLayout(); |
| 1043 | } |
| 1044 | |
| 1045 | const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS); |
| 1046 | |
| 1047 | const SCEVPredicate * |
| 1048 | getWrapPredicate(const SCEVAddRecExpr *AR, |
| 1049 | SCEVWrapPredicate::IncrementWrapFlags AddedFlags); |
| 1050 | |
| 1051 | /// Re-writes the SCEV according to the Predicates in \p A. |
| 1052 | const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L, |
| 1053 | SCEVUnionPredicate &A); |
| 1054 | /// Tries to convert the \p S expression to an AddRec expression, |
| 1055 | /// adding additional predicates to \p Preds as required. |
| 1056 | const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates( |
| 1057 | const SCEV *S, const Loop *L, |
| 1058 | SmallPtrSetImpl<const SCEVPredicate *> &Preds); |
| 1059 | |
| 1060 | private: |
| 1061 | /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a |
| 1062 | /// Value is deleted. |
| 1063 | class SCEVCallbackVH final : public CallbackVH { |
| 1064 | ScalarEvolution *SE; |
| 1065 | |
| 1066 | void deleted() override; |
| 1067 | void allUsesReplacedWith(Value *New) override; |
| 1068 | |
| 1069 | public: |
| 1070 | SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr); |
| 1071 | }; |
| 1072 | |
| 1073 | friend class SCEVCallbackVH; |
| 1074 | friend class SCEVExpander; |
| 1075 | friend class SCEVUnknown; |
| 1076 | |
| 1077 | /// The function we are analyzing. |
| 1078 | Function &F; |
| 1079 | |
| 1080 | /// Does the module have any calls to the llvm.experimental.guard intrinsic |
| 1081 | /// at all? If this is false, we avoid doing work that will only help if |
| 1082 | /// thare are guards present in the IR. |
| 1083 | bool HasGuards; |
| 1084 | |
| 1085 | /// The target library information for the target we are targeting. |
| 1086 | TargetLibraryInfo &TLI; |
| 1087 | |
| 1088 | /// The tracker for @llvm.assume intrinsics in this function. |
| 1089 | AssumptionCache &AC; |
| 1090 | |
| 1091 | /// The dominator tree. |
| 1092 | DominatorTree &DT; |
| 1093 | |
| 1094 | /// The loop information for the function we are currently analyzing. |
| 1095 | LoopInfo &LI; |
| 1096 | |
| 1097 | /// This SCEV is used to represent unknown trip counts and things. |
| 1098 | std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute; |
| 1099 | |
| 1100 | /// The type for HasRecMap. |
| 1101 | using HasRecMapType = DenseMap<const SCEV *, bool>; |
| 1102 | |
| 1103 | /// This is a cache to record whether a SCEV contains any scAddRecExpr. |
| 1104 | HasRecMapType HasRecMap; |
| 1105 | |
| 1106 | /// The type for ExprValueMap. |
| 1107 | using ValueOffsetPair = std::pair<Value *, ConstantInt *>; |
| 1108 | using ExprValueMapType = DenseMap<const SCEV *, SetVector<ValueOffsetPair>>; |
| 1109 | |
| 1110 | /// ExprValueMap -- This map records the original values from which |
| 1111 | /// the SCEV expr is generated from. |
| 1112 | /// |
| 1113 | /// We want to represent the mapping as SCEV -> ValueOffsetPair instead |
| 1114 | /// of SCEV -> Value: |
| 1115 | /// Suppose we know S1 expands to V1, and |
| 1116 | /// S1 = S2 + C_a |
| 1117 | /// S3 = S2 + C_b |
| 1118 | /// where C_a and C_b are different SCEVConstants. Then we'd like to |
| 1119 | /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally. |
| 1120 | /// It is helpful when S2 is a complex SCEV expr. |
| 1121 | /// |
| 1122 | /// In order to do that, we represent ExprValueMap as a mapping from |
| 1123 | /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and |
| 1124 | /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3 |
| 1125 | /// is expanded, it will first expand S2 to V1 - C_a because of |
| 1126 | /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b. |
| 1127 | /// |
| 1128 | /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded |
| 1129 | /// to V - Offset. |
| 1130 | ExprValueMapType ExprValueMap; |
| 1131 | |
| 1132 | /// The type for ValueExprMap. |
| 1133 | using ValueExprMapType = |
| 1134 | DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>; |
| 1135 | |
| 1136 | /// This is a cache of the values we have analyzed so far. |
| 1137 | ValueExprMapType ValueExprMap; |
| 1138 | |
| 1139 | /// Mark predicate values currently being processed by isImpliedCond. |
| 1140 | SmallPtrSet<Value *, 6> PendingLoopPredicates; |
| 1141 | |
| 1142 | /// Mark SCEVUnknown Phis currently being processed by getRangeRef. |
| 1143 | SmallPtrSet<const PHINode *, 6> PendingPhiRanges; |
| 1144 | |
| 1145 | /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of |
| 1146 | /// conditions dominating the backedge of a loop. |
| 1147 | bool WalkingBEDominatingConds = false; |
| 1148 | |
| 1149 | /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a |
| 1150 | /// predicate by splitting it into a set of independent predicates. |
| 1151 | bool ProvingSplitPredicate = false; |
| 1152 | |
| 1153 | /// Memoized values for the GetMinTrailingZeros |
| 1154 | DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache; |
| 1155 | |
| 1156 | /// Return the Value set from which the SCEV expr is generated. |
| 1157 | SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S); |
| 1158 | |
| 1159 | /// Private helper method for the GetMinTrailingZeros method |
| 1160 | uint32_t GetMinTrailingZerosImpl(const SCEV *S); |
| 1161 | |
| 1162 | /// Information about the number of loop iterations for which a loop exit's |
| 1163 | /// branch condition evaluates to the not-taken path. This is a temporary |
| 1164 | /// pair of exact and max expressions that are eventually summarized in |
| 1165 | /// ExitNotTakenInfo and BackedgeTakenInfo. |
| 1166 | struct ExitLimit { |
| 1167 | const SCEV *ExactNotTaken; // The exit is not taken exactly this many times |
| 1168 | const SCEV *MaxNotTaken; // The exit is not taken at most this many times |
| 1169 | |
| 1170 | // Not taken either exactly MaxNotTaken or zero times |
| 1171 | bool MaxOrZero = false; |
| 1172 | |
| 1173 | /// A set of predicate guards for this ExitLimit. The result is only valid |
| 1174 | /// if all of the predicates in \c Predicates evaluate to 'true' at |
| 1175 | /// run-time. |
| 1176 | SmallPtrSet<const SCEVPredicate *, 4> Predicates; |
| 1177 | |
| 1178 | void addPredicate(const SCEVPredicate *P) { |
| 1179 | assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!"); |
| 1180 | Predicates.insert(P); |
| 1181 | } |
| 1182 | |
| 1183 | /*implicit*/ ExitLimit(const SCEV *E); |
| 1184 | |
| 1185 | ExitLimit( |
| 1186 | const SCEV *E, const SCEV *M, bool MaxOrZero, |
| 1187 | ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList); |
| 1188 | |
| 1189 | ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero, |
| 1190 | const SmallPtrSetImpl<const SCEVPredicate *> &PredSet); |
| 1191 | |
| 1192 | ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero); |
| 1193 | |
| 1194 | /// Test whether this ExitLimit contains any computed information, or |
| 1195 | /// whether it's all SCEVCouldNotCompute values. |
| 1196 | bool hasAnyInfo() const { |
| 1197 | return !isa<SCEVCouldNotCompute>(ExactNotTaken) || |
| 1198 | !isa<SCEVCouldNotCompute>(MaxNotTaken); |
| 1199 | } |
| 1200 | |
| 1201 | bool hasOperand(const SCEV *S) const; |
| 1202 | |
| 1203 | /// Test whether this ExitLimit contains all information. |
| 1204 | bool hasFullInfo() const { |
| 1205 | return !isa<SCEVCouldNotCompute>(ExactNotTaken); |
| 1206 | } |
| 1207 | }; |
| 1208 | |
| 1209 | /// Information about the number of times a particular loop exit may be |
| 1210 | /// reached before exiting the loop. |
| 1211 | struct ExitNotTakenInfo { |
| 1212 | PoisoningVH<BasicBlock> ExitingBlock; |
| 1213 | const SCEV *ExactNotTaken; |
| 1214 | std::unique_ptr<SCEVUnionPredicate> Predicate; |
| 1215 | |
| 1216 | explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock, |
| 1217 | const SCEV *ExactNotTaken, |
| 1218 | std::unique_ptr<SCEVUnionPredicate> Predicate) |
| 1219 | : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken), |
| 1220 | Predicate(std::move(Predicate)) {} |
| 1221 | |
| 1222 | bool hasAlwaysTruePredicate() const { |
| 1223 | return !Predicate || Predicate->isAlwaysTrue(); |
| 1224 | } |
| 1225 | }; |
| 1226 | |
| 1227 | /// Information about the backedge-taken count of a loop. This currently |
| 1228 | /// includes an exact count and a maximum count. |
| 1229 | /// |
| 1230 | class BackedgeTakenInfo { |
| 1231 | /// A list of computable exits and their not-taken counts. Loops almost |
| 1232 | /// never have more than one computable exit. |
| 1233 | SmallVector<ExitNotTakenInfo, 1> ExitNotTaken; |
| 1234 | |
| 1235 | /// The pointer part of \c MaxAndComplete is an expression indicating the |
| 1236 | /// least maximum backedge-taken count of the loop that is known, or a |
| 1237 | /// SCEVCouldNotCompute. This expression is only valid if the predicates |
| 1238 | /// associated with all loop exits are true. |
| 1239 | /// |
| 1240 | /// The integer part of \c MaxAndComplete is a boolean indicating if \c |
| 1241 | /// ExitNotTaken has an element for every exiting block in the loop. |
| 1242 | PointerIntPair<const SCEV *, 1> MaxAndComplete; |
| 1243 | |
| 1244 | /// True iff the backedge is taken either exactly Max or zero times. |
| 1245 | bool MaxOrZero = false; |
| 1246 | |
| 1247 | /// \name Helper projection functions on \c MaxAndComplete. |
| 1248 | /// @{ |
| 1249 | bool isComplete() const { return MaxAndComplete.getInt(); } |
| 1250 | const SCEV *getMax() const { return MaxAndComplete.getPointer(); } |
| 1251 | /// @} |
| 1252 | |
| 1253 | public: |
| 1254 | BackedgeTakenInfo() : MaxAndComplete(nullptr, 0) {} |
| 1255 | BackedgeTakenInfo(BackedgeTakenInfo &&) = default; |
| 1256 | BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default; |
| 1257 | |
| 1258 | using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>; |
| 1259 | |
| 1260 | /// Initialize BackedgeTakenInfo from a list of exact exit counts. |
| 1261 | BackedgeTakenInfo(SmallVectorImpl<EdgeExitInfo> &&ExitCounts, bool Complete, |
| 1262 | const SCEV *MaxCount, bool MaxOrZero); |
| 1263 | |
| 1264 | /// Test whether this BackedgeTakenInfo contains any computed information, |
| 1265 | /// or whether it's all SCEVCouldNotCompute values. |
| 1266 | bool hasAnyInfo() const { |
| 1267 | return !ExitNotTaken.empty() || !isa<SCEVCouldNotCompute>(getMax()); |
| 1268 | } |
| 1269 | |
| 1270 | /// Test whether this BackedgeTakenInfo contains complete information. |
| 1271 | bool hasFullInfo() const { return isComplete(); } |
| 1272 | |
| 1273 | /// Return an expression indicating the exact *backedge-taken* |
| 1274 | /// count of the loop if it is known or SCEVCouldNotCompute |
| 1275 | /// otherwise. If execution makes it to the backedge on every |
| 1276 | /// iteration (i.e. there are no abnormal exists like exception |
| 1277 | /// throws and thread exits) then this is the number of times the |
| 1278 | /// loop header will execute minus one. |
| 1279 | /// |
| 1280 | /// If the SCEV predicate associated with the answer can be different |
| 1281 | /// from AlwaysTrue, we must add a (non null) Predicates argument. |
| 1282 | /// The SCEV predicate associated with the answer will be added to |
| 1283 | /// Predicates. A run-time check needs to be emitted for the SCEV |
| 1284 | /// predicate in order for the answer to be valid. |
| 1285 | /// |
| 1286 | /// Note that we should always know if we need to pass a predicate |
| 1287 | /// argument or not from the way the ExitCounts vector was computed. |
| 1288 | /// If we allowed SCEV predicates to be generated when populating this |
| 1289 | /// vector, this information can contain them and therefore a |
| 1290 | /// SCEVPredicate argument should be added to getExact. |
| 1291 | const SCEV *getExact(const Loop *L, ScalarEvolution *SE, |
| 1292 | SCEVUnionPredicate *Predicates = nullptr) const; |
| 1293 | |
| 1294 | /// Return the number of times this loop exit may fall through to the back |
| 1295 | /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via |
| 1296 | /// this block before this number of iterations, but may exit via another |
| 1297 | /// block. |
| 1298 | const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const; |
| 1299 | |
| 1300 | /// Get the max backedge taken count for the loop. |
| 1301 | const SCEV *getMax(ScalarEvolution *SE) const; |
| 1302 | |
| 1303 | /// Return true if the number of times this backedge is taken is either the |
| 1304 | /// value returned by getMax or zero. |
| 1305 | bool isMaxOrZero(ScalarEvolution *SE) const; |
| 1306 | |
| 1307 | /// Return true if any backedge taken count expressions refer to the given |
| 1308 | /// subexpression. |
| 1309 | bool hasOperand(const SCEV *S, ScalarEvolution *SE) const; |
| 1310 | |
| 1311 | /// Invalidate this result and free associated memory. |
| 1312 | void clear(); |
| 1313 | }; |
| 1314 | |
| 1315 | /// Cache the backedge-taken count of the loops for this function as they |
| 1316 | /// are computed. |
| 1317 | DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts; |
| 1318 | |
| 1319 | /// Cache the predicated backedge-taken count of the loops for this |
| 1320 | /// function as they are computed. |
| 1321 | DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts; |
| 1322 | |
| 1323 | /// This map contains entries for all of the PHI instructions that we |
| 1324 | /// attempt to compute constant evolutions for. This allows us to avoid |
| 1325 | /// potentially expensive recomputation of these properties. An instruction |
| 1326 | /// maps to null if we are unable to compute its exit value. |
| 1327 | DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue; |
| 1328 | |
| 1329 | /// This map contains entries for all the expressions that we attempt to |
| 1330 | /// compute getSCEVAtScope information for, which can be expensive in |
| 1331 | /// extreme cases. |
| 1332 | DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>> |
| 1333 | ValuesAtScopes; |
| 1334 | |
| 1335 | /// Memoized computeLoopDisposition results. |
| 1336 | DenseMap<const SCEV *, |
| 1337 | SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>> |
| 1338 | LoopDispositions; |
| 1339 | |
| 1340 | struct LoopProperties { |
| 1341 | /// Set to true if the loop contains no instruction that can have side |
| 1342 | /// effects (i.e. via throwing an exception, volatile or atomic access). |
| 1343 | bool HasNoAbnormalExits; |
| 1344 | |
| 1345 | /// Set to true if the loop contains no instruction that can abnormally exit |
| 1346 | /// the loop (i.e. via throwing an exception, by terminating the thread |
| 1347 | /// cleanly or by infinite looping in a called function). Strictly |
| 1348 | /// speaking, the last one is not leaving the loop, but is identical to |
| 1349 | /// leaving the loop for reasoning about undefined behavior. |
| 1350 | bool HasNoSideEffects; |
| 1351 | }; |
| 1352 | |
| 1353 | /// Cache for \c getLoopProperties. |
| 1354 | DenseMap<const Loop *, LoopProperties> LoopPropertiesCache; |
| 1355 | |
| 1356 | /// Return a \c LoopProperties instance for \p L, creating one if necessary. |
| 1357 | LoopProperties getLoopProperties(const Loop *L); |
| 1358 | |
| 1359 | bool loopHasNoSideEffects(const Loop *L) { |
| 1360 | return getLoopProperties(L).HasNoSideEffects; |
| 1361 | } |
| 1362 | |
| 1363 | bool loopHasNoAbnormalExits(const Loop *L) { |
| 1364 | return getLoopProperties(L).HasNoAbnormalExits; |
| 1365 | } |
| 1366 | |
| 1367 | /// Compute a LoopDisposition value. |
| 1368 | LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L); |
| 1369 | |
| 1370 | /// Memoized computeBlockDisposition results. |
| 1371 | DenseMap< |
| 1372 | const SCEV *, |
| 1373 | SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>> |
| 1374 | BlockDispositions; |
| 1375 | |
| 1376 | /// Compute a BlockDisposition value. |
| 1377 | BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB); |
| 1378 | |
| 1379 | /// Memoized results from getRange |
| 1380 | DenseMap<const SCEV *, ConstantRange> UnsignedRanges; |
| 1381 | |
| 1382 | /// Memoized results from getRange |
| 1383 | DenseMap<const SCEV *, ConstantRange> SignedRanges; |
| 1384 | |
| 1385 | /// Used to parameterize getRange |
| 1386 | enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED }; |
| 1387 | |
| 1388 | /// Set the memoized range for the given SCEV. |
| 1389 | const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint, |
| 1390 | ConstantRange CR) { |
| 1391 | DenseMap<const SCEV *, ConstantRange> &Cache = |
| 1392 | Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges; |
| 1393 | |
| 1394 | auto Pair = Cache.try_emplace(S, std::move(CR)); |
| 1395 | if (!Pair.second) |
| 1396 | Pair.first->second = std::move(CR); |
| 1397 | return Pair.first->second; |
| 1398 | } |
| 1399 | |
| 1400 | /// Determine the range for a particular SCEV. |
| 1401 | /// NOTE: This returns a reference to an entry in a cache. It must be |
| 1402 | /// copied if its needed for longer. |
| 1403 | const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint); |
| 1404 | |
| 1405 | /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}. |
| 1406 | /// Helper for \c getRange. |
| 1407 | ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop, |
| 1408 | const SCEV *MaxBECount, unsigned BitWidth); |
| 1409 | |
| 1410 | /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p |
| 1411 | /// Stop} by "factoring out" a ternary expression from the add recurrence. |
| 1412 | /// Helper called by \c getRange. |
| 1413 | ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop, |
| 1414 | const SCEV *MaxBECount, unsigned BitWidth); |
| 1415 | |
| 1416 | /// We know that there is no SCEV for the specified value. Analyze the |
| 1417 | /// expression. |
| 1418 | const SCEV *createSCEV(Value *V); |
| 1419 | |
| 1420 | /// Provide the special handling we need to analyze PHI SCEVs. |
| 1421 | const SCEV *createNodeForPHI(PHINode *PN); |
| 1422 | |
| 1423 | /// Helper function called from createNodeForPHI. |
| 1424 | const SCEV *createAddRecFromPHI(PHINode *PN); |
| 1425 | |
| 1426 | /// A helper function for createAddRecFromPHI to handle simple cases. |
| 1427 | const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV, |
| 1428 | Value *StartValueV); |
| 1429 | |
| 1430 | /// Helper function called from createNodeForPHI. |
| 1431 | const SCEV *createNodeFromSelectLikePHI(PHINode *PN); |
| 1432 | |
| 1433 | /// Provide special handling for a select-like instruction (currently this |
| 1434 | /// is either a select instruction or a phi node). \p I is the instruction |
| 1435 | /// being processed, and it is assumed equivalent to "Cond ? TrueVal : |
| 1436 | /// FalseVal". |
| 1437 | const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond, |
| 1438 | Value *TrueVal, Value *FalseVal); |
| 1439 | |
| 1440 | /// Provide the special handling we need to analyze GEP SCEVs. |
| 1441 | const SCEV *createNodeForGEP(GEPOperator *GEP); |
| 1442 | |
| 1443 | /// Implementation code for getSCEVAtScope; called at most once for each |
| 1444 | /// SCEV+Loop pair. |
| 1445 | const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L); |
| 1446 | |
| 1447 | /// This looks up computed SCEV values for all instructions that depend on |
| 1448 | /// the given instruction and removes them from the ValueExprMap map if they |
| 1449 | /// reference SymName. This is used during PHI resolution. |
| 1450 | void forgetSymbolicName(Instruction *I, const SCEV *SymName); |
| 1451 | |
| 1452 | /// Return the BackedgeTakenInfo for the given loop, lazily computing new |
| 1453 | /// values if the loop hasn't been analyzed yet. The returned result is |
| 1454 | /// guaranteed not to be predicated. |
| 1455 | const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L); |
| 1456 | |
| 1457 | /// Similar to getBackedgeTakenInfo, but will add predicates as required |
| 1458 | /// with the purpose of returning complete information. |
| 1459 | const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L); |
| 1460 | |
| 1461 | /// Compute the number of times the specified loop will iterate. |
| 1462 | /// If AllowPredicates is set, we will create new SCEV predicates as |
| 1463 | /// necessary in order to return an exact answer. |
| 1464 | BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L, |
| 1465 | bool AllowPredicates = false); |
| 1466 | |
| 1467 | /// Compute the number of times the backedge of the specified loop will |
| 1468 | /// execute if it exits via the specified block. If AllowPredicates is set, |
| 1469 | /// this call will try to use a minimal set of SCEV predicates in order to |
| 1470 | /// return an exact answer. |
| 1471 | ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, |
| 1472 | bool AllowPredicates = false); |
| 1473 | |
| 1474 | /// Compute the number of times the backedge of the specified loop will |
| 1475 | /// execute if its exit condition were a conditional branch of ExitCond. |
| 1476 | /// |
| 1477 | /// \p ControlsExit is true if ExitCond directly controls the exit |
| 1478 | /// branch. In this case, we can assume that the loop exits only if the |
| 1479 | /// condition is true and can infer that failing to meet the condition prior |
| 1480 | /// to integer wraparound results in undefined behavior. |
| 1481 | /// |
| 1482 | /// If \p AllowPredicates is set, this call will try to use a minimal set of |
| 1483 | /// SCEV predicates in order to return an exact answer. |
| 1484 | ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond, |
| 1485 | bool ExitIfTrue, bool ControlsExit, |
| 1486 | bool AllowPredicates = false); |
| 1487 | |
| 1488 | // Helper functions for computeExitLimitFromCond to avoid exponential time |
| 1489 | // complexity. |
| 1490 | |
| 1491 | class ExitLimitCache { |
| 1492 | // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit, |
| 1493 | // AllowPredicates) tuple, but recursive calls to |
| 1494 | // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only |
| 1495 | // vary the in \c ExitCond and \c ControlsExit parameters. We remember the |
| 1496 | // initial values of the other values to assert our assumption. |
| 1497 | SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap; |
| 1498 | |
| 1499 | const Loop *L; |
| 1500 | bool ExitIfTrue; |
| 1501 | bool AllowPredicates; |
| 1502 | |
| 1503 | public: |
| 1504 | ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates) |
| 1505 | : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {} |
| 1506 | |
| 1507 | Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| 1508 | bool ControlsExit, bool AllowPredicates); |
| 1509 | |
| 1510 | void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue, |
| 1511 | bool ControlsExit, bool AllowPredicates, const ExitLimit &EL); |
| 1512 | }; |
| 1513 | |
| 1514 | using ExitLimitCacheTy = ExitLimitCache; |
| 1515 | |
| 1516 | ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache, |
| 1517 | const Loop *L, Value *ExitCond, |
| 1518 | bool ExitIfTrue, |
| 1519 | bool ControlsExit, |
| 1520 | bool AllowPredicates); |
| 1521 | ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L, |
| 1522 | Value *ExitCond, bool ExitIfTrue, |
| 1523 | bool ControlsExit, |
| 1524 | bool AllowPredicates); |
| 1525 | |
| 1526 | /// Compute the number of times the backedge of the specified loop will |
| 1527 | /// execute if its exit condition were a conditional branch of the ICmpInst |
| 1528 | /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try |
| 1529 | /// to use a minimal set of SCEV predicates in order to return an exact |
| 1530 | /// answer. |
| 1531 | ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond, |
| 1532 | bool ExitIfTrue, |
| 1533 | bool IsSubExpr, |
| 1534 | bool AllowPredicates = false); |
| 1535 | |
| 1536 | /// Compute the number of times the backedge of the specified loop will |
| 1537 | /// execute if its exit condition were a switch with a single exiting case |
| 1538 | /// to ExitingBB. |
| 1539 | ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L, |
| 1540 | SwitchInst *Switch, |
| 1541 | BasicBlock *ExitingBB, |
| 1542 | bool IsSubExpr); |
| 1543 | |
| 1544 | /// Given an exit condition of 'icmp op load X, cst', try to see if we can |
| 1545 | /// compute the backedge-taken count. |
| 1546 | ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS, |
| 1547 | const Loop *L, |
| 1548 | ICmpInst::Predicate p); |
| 1549 | |
| 1550 | /// Compute the exit limit of a loop that is controlled by a |
| 1551 | /// "(IV >> 1) != 0" type comparison. We cannot compute the exact trip |
| 1552 | /// count in these cases (since SCEV has no way of expressing them), but we |
| 1553 | /// can still sometimes compute an upper bound. |
| 1554 | /// |
| 1555 | /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred |
| 1556 | /// RHS`. |
| 1557 | ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L, |
| 1558 | ICmpInst::Predicate Pred); |
| 1559 | |
| 1560 | /// If the loop is known to execute a constant number of times (the |
| 1561 | /// condition evolves only from constants), try to evaluate a few iterations |
| 1562 | /// of the loop until we get the exit condition gets a value of ExitWhen |
| 1563 | /// (true or false). If we cannot evaluate the exit count of the loop, |
| 1564 | /// return CouldNotCompute. |
| 1565 | const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond, |
| 1566 | bool ExitWhen); |
| 1567 | |
| 1568 | /// Return the number of times an exit condition comparing the specified |
| 1569 | /// value to zero will execute. If not computable, return CouldNotCompute. |
| 1570 | /// If AllowPredicates is set, this call will try to use a minimal set of |
| 1571 | /// SCEV predicates in order to return an exact answer. |
| 1572 | ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr, |
| 1573 | bool AllowPredicates = false); |
| 1574 | |
| 1575 | /// Return the number of times an exit condition checking the specified |
| 1576 | /// value for nonzero will execute. If not computable, return |
| 1577 | /// CouldNotCompute. |
| 1578 | ExitLimit howFarToNonZero(const SCEV *V, const Loop *L); |
| 1579 | |
| 1580 | /// Return the number of times an exit condition containing the specified |
| 1581 | /// less-than comparison will execute. If not computable, return |
| 1582 | /// CouldNotCompute. |
| 1583 | /// |
| 1584 | /// \p isSigned specifies whether the less-than is signed. |
| 1585 | /// |
| 1586 | /// \p ControlsExit is true when the LHS < RHS condition directly controls |
| 1587 | /// the branch (loops exits only if condition is true). In this case, we can |
| 1588 | /// use NoWrapFlags to skip overflow checks. |
| 1589 | /// |
| 1590 | /// If \p AllowPredicates is set, this call will try to use a minimal set of |
| 1591 | /// SCEV predicates in order to return an exact answer. |
| 1592 | ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, |
| 1593 | bool isSigned, bool ControlsExit, |
| 1594 | bool AllowPredicates = false); |
| 1595 | |
| 1596 | ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L, |
| 1597 | bool isSigned, bool IsSubExpr, |
| 1598 | bool AllowPredicates = false); |
| 1599 | |
| 1600 | /// Return a predecessor of BB (which may not be an immediate predecessor) |
| 1601 | /// which has exactly one successor from which BB is reachable, or null if |
| 1602 | /// no such block is found. |
| 1603 | std::pair<BasicBlock *, BasicBlock *> |
| 1604 | getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB); |
| 1605 | |
| 1606 | /// Test whether the condition described by Pred, LHS, and RHS is true |
| 1607 | /// whenever the given FoundCondValue value evaluates to true. |
| 1608 | bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, |
| 1609 | Value *FoundCondValue, bool Inverse); |
| 1610 | |
| 1611 | /// Test whether the condition described by Pred, LHS, and RHS is true |
| 1612 | /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is |
| 1613 | /// true. |
| 1614 | bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, |
| 1615 | ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, |
| 1616 | const SCEV *FoundRHS); |
| 1617 | |
| 1618 | /// Test whether the condition described by Pred, LHS, and RHS is true |
| 1619 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
| 1620 | /// true. |
| 1621 | bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 1622 | const SCEV *RHS, const SCEV *FoundLHS, |
| 1623 | const SCEV *FoundRHS); |
| 1624 | |
| 1625 | /// Test whether the condition described by Pred, LHS, and RHS is true |
| 1626 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
| 1627 | /// true. Here LHS is an operation that includes FoundLHS as one of its |
| 1628 | /// arguments. |
| 1629 | bool isImpliedViaOperations(ICmpInst::Predicate Pred, |
| 1630 | const SCEV *LHS, const SCEV *RHS, |
| 1631 | const SCEV *FoundLHS, const SCEV *FoundRHS, |
| 1632 | unsigned Depth = 0); |
| 1633 | |
| 1634 | /// Test whether the condition described by Pred, LHS, and RHS is true. |
| 1635 | /// Use only simple non-recursive types of checks, such as range analysis etc. |
| 1636 | bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, |
| 1637 | const SCEV *LHS, const SCEV *RHS); |
| 1638 | |
| 1639 | /// Test whether the condition described by Pred, LHS, and RHS is true |
| 1640 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
| 1641 | /// true. |
| 1642 | bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 1643 | const SCEV *RHS, const SCEV *FoundLHS, |
| 1644 | const SCEV *FoundRHS); |
| 1645 | |
| 1646 | /// Test whether the condition described by Pred, LHS, and RHS is true |
| 1647 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
| 1648 | /// true. Utility function used by isImpliedCondOperands. Tries to get |
| 1649 | /// cases like "X `sgt` 0 => X - 1 `sgt` -1". |
| 1650 | bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 1651 | const SCEV *RHS, const SCEV *FoundLHS, |
| 1652 | const SCEV *FoundRHS); |
| 1653 | |
| 1654 | /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied |
| 1655 | /// by a call to \c @llvm.experimental.guard in \p BB. |
| 1656 | bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred, |
| 1657 | const SCEV *LHS, const SCEV *RHS); |
| 1658 | |
| 1659 | /// Test whether the condition described by Pred, LHS, and RHS is true |
| 1660 | /// whenever the condition described by Pred, FoundLHS, and FoundRHS is |
| 1661 | /// true. |
| 1662 | /// |
| 1663 | /// This routine tries to rule out certain kinds of integer overflow, and |
| 1664 | /// then tries to reason about arithmetic properties of the predicates. |
| 1665 | bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred, |
| 1666 | const SCEV *LHS, const SCEV *RHS, |
| 1667 | const SCEV *FoundLHS, |
| 1668 | const SCEV *FoundRHS); |
| 1669 | |
| 1670 | /// If we know that the specified Phi is in the header of its containing |
| 1671 | /// loop, we know the loop executes a constant number of times, and the PHI |
| 1672 | /// node is just a recurrence involving constants, fold it. |
| 1673 | Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs, |
| 1674 | const Loop *L); |
| 1675 | |
| 1676 | /// Test if the given expression is known to satisfy the condition described |
| 1677 | /// by Pred and the known constant ranges of LHS and RHS. |
| 1678 | bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred, |
| 1679 | const SCEV *LHS, const SCEV *RHS); |
| 1680 | |
| 1681 | /// Try to prove the condition described by "LHS Pred RHS" by ruling out |
| 1682 | /// integer overflow. |
| 1683 | /// |
| 1684 | /// For instance, this will return true for "A s< (A + C)<nsw>" if C is |
| 1685 | /// positive. |
| 1686 | bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 1687 | const SCEV *RHS); |
| 1688 | |
| 1689 | /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to |
| 1690 | /// prove them individually. |
| 1691 | bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS, |
| 1692 | const SCEV *RHS); |
| 1693 | |
| 1694 | /// Try to match the Expr as "(L + R)<Flags>". |
| 1695 | bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R, |
| 1696 | SCEV::NoWrapFlags &Flags); |
| 1697 | |
| 1698 | /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a |
| 1699 | /// constant, and None if it isn't. |
| 1700 | /// |
| 1701 | /// This is intended to be a cheaper version of getMinusSCEV. We can be |
| 1702 | /// frugal here since we just bail out of actually constructing and |
| 1703 | /// canonicalizing an expression in the cases where the result isn't going |
| 1704 | /// to be a constant. |
| 1705 | Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS); |
| 1706 | |
| 1707 | /// Drop memoized information computed for S. |
| 1708 | void forgetMemoizedResults(const SCEV *S); |
| 1709 | |
| 1710 | /// Return an existing SCEV for V if there is one, otherwise return nullptr. |
| 1711 | const SCEV *getExistingSCEV(Value *V); |
| 1712 | |
| 1713 | /// Return false iff given SCEV contains a SCEVUnknown with NULL value- |
| 1714 | /// pointer. |
| 1715 | bool checkValidity(const SCEV *S) const; |
| 1716 | |
| 1717 | /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be |
| 1718 | /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}. This is |
| 1719 | /// equivalent to proving no signed (resp. unsigned) wrap in |
| 1720 | /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr` |
| 1721 | /// (resp. `SCEVZeroExtendExpr`). |
| 1722 | template <typename ExtendOpTy> |
| 1723 | bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step, |
| 1724 | const Loop *L); |
| 1725 | |
| 1726 | /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation. |
| 1727 | SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR); |
| 1728 | |
| 1729 | bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, |
| 1730 | ICmpInst::Predicate Pred, bool &Increasing); |
| 1731 | |
| 1732 | /// Return SCEV no-wrap flags that can be proven based on reasoning about |
| 1733 | /// how poison produced from no-wrap flags on this value (e.g. a nuw add) |
| 1734 | /// would trigger undefined behavior on overflow. |
| 1735 | SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V); |
| 1736 | |
| 1737 | /// Return true if the SCEV corresponding to \p I is never poison. Proving |
| 1738 | /// this is more complex than proving that just \p I is never poison, since |
| 1739 | /// SCEV commons expressions across control flow, and you can have cases |
| 1740 | /// like: |
| 1741 | /// |
| 1742 | /// idx0 = a + b; |
| 1743 | /// ptr[idx0] = 100; |
| 1744 | /// if (<condition>) { |
| 1745 | /// idx1 = a +nsw b; |
| 1746 | /// ptr[idx1] = 200; |
| 1747 | /// } |
| 1748 | /// |
| 1749 | /// where the SCEV expression (+ a b) is guaranteed to not be poison (and |
| 1750 | /// hence not sign-overflow) only if "<condition>" is true. Since both |
| 1751 | /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b), |
| 1752 | /// it is not okay to annotate (+ a b) with <nsw> in the above example. |
| 1753 | bool isSCEVExprNeverPoison(const Instruction *I); |
| 1754 | |
| 1755 | /// This is like \c isSCEVExprNeverPoison but it specifically works for |
| 1756 | /// instructions that will get mapped to SCEV add recurrences. Return true |
| 1757 | /// if \p I will never generate poison under the assumption that \p I is an |
| 1758 | /// add recurrence on the loop \p L. |
| 1759 | bool isAddRecNeverPoison(const Instruction *I, const Loop *L); |
| 1760 | |
| 1761 | /// Similar to createAddRecFromPHI, but with the additional flexibility of |
| 1762 | /// suggesting runtime overflow checks in case casts are encountered. |
| 1763 | /// If successful, the analysis records that for this loop, \p SymbolicPHI, |
| 1764 | /// which is the UnknownSCEV currently representing the PHI, can be rewritten |
| 1765 | /// into an AddRec, assuming some predicates; The function then returns the |
| 1766 | /// AddRec and the predicates as a pair, and caches this pair in |
| 1767 | /// PredicatedSCEVRewrites. |
| 1768 | /// If the analysis is not successful, a mapping from the \p SymbolicPHI to |
| 1769 | /// itself (with no predicates) is recorded, and a nullptr with an empty |
| 1770 | /// predicates vector is returned as a pair. |
| 1771 | Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| 1772 | createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI); |
| 1773 | |
| 1774 | /// Compute the backedge taken count knowing the interval difference, the |
| 1775 | /// stride and presence of the equality in the comparison. |
| 1776 | const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride, |
| 1777 | bool Equality); |
| 1778 | |
| 1779 | /// Compute the maximum backedge count based on the range of values |
| 1780 | /// permitted by Start, End, and Stride. This is for loops of the form |
| 1781 | /// {Start, +, Stride} LT End. |
| 1782 | /// |
| 1783 | /// Precondition: the induction variable is known to be positive. We *don't* |
| 1784 | /// assert these preconditions so please be careful. |
| 1785 | const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride, |
| 1786 | const SCEV *End, unsigned BitWidth, |
| 1787 | bool IsSigned); |
| 1788 | |
| 1789 | /// Verify if an linear IV with positive stride can overflow when in a |
| 1790 | /// less-than comparison, knowing the invariant term of the comparison, |
| 1791 | /// the stride and the knowledge of NSW/NUW flags on the recurrence. |
| 1792 | bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned, |
| 1793 | bool NoWrap); |
| 1794 | |
| 1795 | /// Verify if an linear IV with negative stride can overflow when in a |
| 1796 | /// greater-than comparison, knowing the invariant term of the comparison, |
| 1797 | /// the stride and the knowledge of NSW/NUW flags on the recurrence. |
| 1798 | bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned, |
| 1799 | bool NoWrap); |
| 1800 | |
| 1801 | /// Get add expr already created or create a new one. |
| 1802 | const SCEV *getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops, |
| 1803 | SCEV::NoWrapFlags Flags); |
| 1804 | |
| 1805 | /// Get mul expr already created or create a new one. |
| 1806 | const SCEV *getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops, |
| 1807 | SCEV::NoWrapFlags Flags); |
| 1808 | |
| 1809 | /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed. |
| 1810 | /// A loop is considered "used" by an expression if it contains |
| 1811 | /// an add rec on said loop. |
| 1812 | void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed); |
| 1813 | |
| 1814 | /// Find all of the loops transitively used in \p S, and update \c LoopUsers |
| 1815 | /// accordingly. |
| 1816 | void addToLoopUseLists(const SCEV *S); |
| 1817 | |
| 1818 | FoldingSet<SCEV> UniqueSCEVs; |
| 1819 | FoldingSet<SCEVPredicate> UniquePreds; |
| 1820 | BumpPtrAllocator SCEVAllocator; |
| 1821 | |
| 1822 | /// This maps loops to a list of SCEV expressions that (transitively) use said |
| 1823 | /// loop. |
| 1824 | DenseMap<const Loop *, SmallVector<const SCEV *, 4>> LoopUsers; |
| 1825 | |
| 1826 | /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression |
| 1827 | /// they can be rewritten into under certain predicates. |
| 1828 | DenseMap<std::pair<const SCEVUnknown *, const Loop *>, |
| 1829 | std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> |
| 1830 | PredicatedSCEVRewrites; |
| 1831 | |
| 1832 | /// The head of a linked list of all SCEVUnknown values that have been |
| 1833 | /// allocated. This is used by releaseMemory to locate them all and call |
| 1834 | /// their destructors. |
| 1835 | SCEVUnknown *FirstUnknown = nullptr; |
| 1836 | }; |
| 1837 | |
| 1838 | /// Analysis pass that exposes the \c ScalarEvolution for a function. |
| 1839 | class ScalarEvolutionAnalysis |
| 1840 | : public AnalysisInfoMixin<ScalarEvolutionAnalysis> { |
| 1841 | friend AnalysisInfoMixin<ScalarEvolutionAnalysis>; |
| 1842 | |
| 1843 | static AnalysisKey Key; |
| 1844 | |
| 1845 | public: |
| 1846 | using Result = ScalarEvolution; |
| 1847 | |
| 1848 | ScalarEvolution run(Function &F, FunctionAnalysisManager &AM); |
| 1849 | }; |
| 1850 | |
| 1851 | /// Printer pass for the \c ScalarEvolutionAnalysis results. |
| 1852 | class ScalarEvolutionPrinterPass |
| 1853 | : public PassInfoMixin<ScalarEvolutionPrinterPass> { |
| 1854 | raw_ostream &OS; |
| 1855 | |
| 1856 | public: |
| 1857 | explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {} |
| 1858 | |
| 1859 | PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); |
| 1860 | }; |
| 1861 | |
| 1862 | class ScalarEvolutionWrapperPass : public FunctionPass { |
| 1863 | std::unique_ptr<ScalarEvolution> SE; |
| 1864 | |
| 1865 | public: |
| 1866 | static char ID; |
| 1867 | |
| 1868 | ScalarEvolutionWrapperPass(); |
| 1869 | |
| 1870 | ScalarEvolution &getSE() { return *SE; } |
| 1871 | const ScalarEvolution &getSE() const { return *SE; } |
| 1872 | |
| 1873 | bool runOnFunction(Function &F) override; |
| 1874 | void releaseMemory() override; |
| 1875 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 1876 | void print(raw_ostream &OS, const Module * = nullptr) const override; |
| 1877 | void verifyAnalysis() const override; |
| 1878 | }; |
| 1879 | |
| 1880 | /// An interface layer with SCEV used to manage how we see SCEV expressions |
| 1881 | /// for values in the context of existing predicates. We can add new |
| 1882 | /// predicates, but we cannot remove them. |
| 1883 | /// |
| 1884 | /// This layer has multiple purposes: |
| 1885 | /// - provides a simple interface for SCEV versioning. |
| 1886 | /// - guarantees that the order of transformations applied on a SCEV |
| 1887 | /// expression for a single Value is consistent across two different |
| 1888 | /// getSCEV calls. This means that, for example, once we've obtained |
| 1889 | /// an AddRec expression for a certain value through expression |
| 1890 | /// rewriting, we will continue to get an AddRec expression for that |
| 1891 | /// Value. |
| 1892 | /// - lowers the number of expression rewrites. |
| 1893 | class PredicatedScalarEvolution { |
| 1894 | public: |
| 1895 | PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L); |
| 1896 | |
| 1897 | const SCEVUnionPredicate &getUnionPredicate() const; |
| 1898 | |
| 1899 | /// Returns the SCEV expression of V, in the context of the current SCEV |
| 1900 | /// predicate. The order of transformations applied on the expression of V |
| 1901 | /// returned by ScalarEvolution is guaranteed to be preserved, even when |
| 1902 | /// adding new predicates. |
| 1903 | const SCEV *getSCEV(Value *V); |
| 1904 | |
| 1905 | /// Get the (predicated) backedge count for the analyzed loop. |
| 1906 | const SCEV *getBackedgeTakenCount(); |
| 1907 | |
| 1908 | /// Adds a new predicate. |
| 1909 | void addPredicate(const SCEVPredicate &Pred); |
| 1910 | |
| 1911 | /// Attempts to produce an AddRecExpr for V by adding additional SCEV |
| 1912 | /// predicates. If we can't transform the expression into an AddRecExpr we |
| 1913 | /// return nullptr and not add additional SCEV predicates to the current |
| 1914 | /// context. |
| 1915 | const SCEVAddRecExpr *getAsAddRec(Value *V); |
| 1916 | |
| 1917 | /// Proves that V doesn't overflow by adding SCEV predicate. |
| 1918 | void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); |
| 1919 | |
| 1920 | /// Returns true if we've proved that V doesn't wrap by means of a SCEV |
| 1921 | /// predicate. |
| 1922 | bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags); |
| 1923 | |
| 1924 | /// Returns the ScalarEvolution analysis used. |
| 1925 | ScalarEvolution *getSE() const { return &SE; } |
| 1926 | |
| 1927 | /// We need to explicitly define the copy constructor because of FlagsMap. |
| 1928 | PredicatedScalarEvolution(const PredicatedScalarEvolution &); |
| 1929 | |
| 1930 | /// Print the SCEV mappings done by the Predicated Scalar Evolution. |
| 1931 | /// The printed text is indented by \p Depth. |
| 1932 | void print(raw_ostream &OS, unsigned Depth) const; |
| 1933 | |
| 1934 | /// Check if \p AR1 and \p AR2 are equal, while taking into account |
| 1935 | /// Equal predicates in Preds. |
| 1936 | bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1, |
| 1937 | const SCEVAddRecExpr *AR2) const; |
| 1938 | |
| 1939 | private: |
| 1940 | /// Increments the version number of the predicate. This needs to be called |
| 1941 | /// every time the SCEV predicate changes. |
| 1942 | void updateGeneration(); |
| 1943 | |
| 1944 | /// Holds a SCEV and the version number of the SCEV predicate used to |
| 1945 | /// perform the rewrite of the expression. |
| 1946 | using RewriteEntry = std::pair<unsigned, const SCEV *>; |
| 1947 | |
| 1948 | /// Maps a SCEV to the rewrite result of that SCEV at a certain version |
| 1949 | /// number. If this number doesn't match the current Generation, we will |
| 1950 | /// need to do a rewrite. To preserve the transformation order of previous |
| 1951 | /// rewrites, we will rewrite the previous result instead of the original |
| 1952 | /// SCEV. |
| 1953 | DenseMap<const SCEV *, RewriteEntry> RewriteMap; |
| 1954 | |
| 1955 | /// Records what NoWrap flags we've added to a Value *. |
| 1956 | ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap; |
| 1957 | |
| 1958 | /// The ScalarEvolution analysis. |
| 1959 | ScalarEvolution &SE; |
| 1960 | |
| 1961 | /// The analyzed Loop. |
| 1962 | const Loop &L; |
| 1963 | |
| 1964 | /// The SCEVPredicate that forms our context. We will rewrite all |
| 1965 | /// expressions assuming that this predicate true. |
| 1966 | SCEVUnionPredicate Preds; |
| 1967 | |
| 1968 | /// Marks the version of the SCEV predicate used. When rewriting a SCEV |
| 1969 | /// expression we mark it with the version of the predicate. We use this to |
| 1970 | /// figure out if the predicate has changed from the last rewrite of the |
| 1971 | /// SCEV. If so, we need to perform a new rewrite. |
| 1972 | unsigned Generation = 0; |
| 1973 | |
| 1974 | /// The backedge taken count. |
| 1975 | const SCEV *BackedgeCount = nullptr; |
| 1976 | }; |
| 1977 | |
| 1978 | } // end namespace llvm |
| 1979 | |
| 1980 | #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H |