Import prebuilt clang toolchain for linux.
diff --git a/linux-x64/clang/include/llvm/Analysis/ScalarEvolution.h b/linux-x64/clang/include/llvm/Analysis/ScalarEvolution.h
new file mode 100644
index 0000000..7a43b81
--- /dev/null
+++ b/linux-x64/clang/include/llvm/Analysis/ScalarEvolution.h
@@ -0,0 +1,1980 @@
+//===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// The ScalarEvolution class is an LLVM pass which can be used to analyze and
+// categorize scalar expressions in loops.  It specializes in recognizing
+// general induction variables, representing them with the abstract and opaque
+// SCEV class.  Given this analysis, trip counts of loops and other important
+// properties can be obtained.
+//
+// This analysis is primarily useful for induction variable substitution and
+// strength reduction.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
+#define LLVM_ANALYSIS_SCALAREVOLUTION_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/IR/ValueMap.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <memory>
+#include <utility>
+
+namespace llvm {
+
+class AssumptionCache;
+class BasicBlock;
+class Constant;
+class ConstantInt;
+class DataLayout;
+class DominatorTree;
+class GEPOperator;
+class Instruction;
+class LLVMContext;
+class raw_ostream;
+class ScalarEvolution;
+class SCEVAddRecExpr;
+class SCEVUnknown;
+class StructType;
+class TargetLibraryInfo;
+class Type;
+class Value;
+
+/// This class represents an analyzed expression in the program.  These are
+/// opaque objects that the client is not allowed to do much with directly.
+///
+class SCEV : public FoldingSetNode {
+  friend struct FoldingSetTrait<SCEV>;
+
+  /// A reference to an Interned FoldingSetNodeID for this node.  The
+  /// ScalarEvolution's BumpPtrAllocator holds the data.
+  FoldingSetNodeIDRef FastID;
+
+  // The SCEV baseclass this node corresponds to
+  const unsigned short SCEVType;
+
+protected:
+  /// This field is initialized to zero and may be used in subclasses to store
+  /// miscellaneous information.
+  unsigned short SubclassData = 0;
+
+public:
+  /// NoWrapFlags are bitfield indices into SubclassData.
+  ///
+  /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
+  /// no-signed-wrap <NSW> properties, which are derived from the IR
+  /// operator. NSW is a misnomer that we use to mean no signed overflow or
+  /// underflow.
+  ///
+  /// AddRec expressions may have a no-self-wraparound <NW> property if, in
+  /// the integer domain, abs(step) * max-iteration(loop) <=
+  /// unsigned-max(bitwidth).  This means that the recurrence will never reach
+  /// its start value if the step is non-zero.  Computing the same value on
+  /// each iteration is not considered wrapping, and recurrences with step = 0
+  /// are trivially <NW>.  <NW> is independent of the sign of step and the
+  /// value the add recurrence starts with.
+  ///
+  /// Note that NUW and NSW are also valid properties of a recurrence, and
+  /// either implies NW. For convenience, NW will be set for a recurrence
+  /// whenever either NUW or NSW are set.
+  enum NoWrapFlags {
+    FlagAnyWrap = 0,    // No guarantee.
+    FlagNW = (1 << 0),  // No self-wrap.
+    FlagNUW = (1 << 1), // No unsigned wrap.
+    FlagNSW = (1 << 2), // No signed wrap.
+    NoWrapMask = (1 << 3) - 1
+  };
+
+  explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy)
+      : FastID(ID), SCEVType(SCEVTy) {}
+  SCEV(const SCEV &) = delete;
+  SCEV &operator=(const SCEV &) = delete;
+
+  unsigned getSCEVType() const { return SCEVType; }
+
+  /// Return the LLVM type of this SCEV expression.
+  Type *getType() const;
+
+  /// Return true if the expression is a constant zero.
+  bool isZero() const;
+
+  /// Return true if the expression is a constant one.
+  bool isOne() const;
+
+  /// Return true if the expression is a constant all-ones value.
+  bool isAllOnesValue() const;
+
+  /// Return true if the specified scev is negated, but not a constant.
+  bool isNonConstantNegative() const;
+
+  /// Print out the internal representation of this scalar to the specified
+  /// stream.  This should really only be used for debugging purposes.
+  void print(raw_ostream &OS) const;
+
+  /// This method is used for debugging.
+  void dump() const;
+};
+
+// Specialize FoldingSetTrait for SCEV to avoid needing to compute
+// temporary FoldingSetNodeID values.
+template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
+  static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
+
+  static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
+                     FoldingSetNodeID &TempID) {
+    return ID == X.FastID;
+  }
+
+  static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
+    return X.FastID.ComputeHash();
+  }
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
+  S.print(OS);
+  return OS;
+}
+
+/// An object of this class is returned by queries that could not be answered.
+/// For example, if you ask for the number of iterations of a linked-list
+/// traversal loop, you will get one of these.  None of the standard SCEV
+/// operations are valid on this class, it is just a marker.
+struct SCEVCouldNotCompute : public SCEV {
+  SCEVCouldNotCompute();
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static bool classof(const SCEV *S);
+};
+
+/// This class represents an assumption made using SCEV expressions which can
+/// be checked at run-time.
+class SCEVPredicate : public FoldingSetNode {
+  friend struct FoldingSetTrait<SCEVPredicate>;
+
+  /// A reference to an Interned FoldingSetNodeID for this node.  The
+  /// ScalarEvolution's BumpPtrAllocator holds the data.
+  FoldingSetNodeIDRef FastID;
+
+public:
+  enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
+
+protected:
+  SCEVPredicateKind Kind;
+  ~SCEVPredicate() = default;
+  SCEVPredicate(const SCEVPredicate &) = default;
+  SCEVPredicate &operator=(const SCEVPredicate &) = default;
+
+public:
+  SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
+
+  SCEVPredicateKind getKind() const { return Kind; }
+
+  /// Returns the estimated complexity of this predicate.  This is roughly
+  /// measured in the number of run-time checks required.
+  virtual unsigned getComplexity() const { return 1; }
+
+  /// Returns true if the predicate is always true. This means that no
+  /// assumptions were made and nothing needs to be checked at run-time.
+  virtual bool isAlwaysTrue() const = 0;
+
+  /// Returns true if this predicate implies \p N.
+  virtual bool implies(const SCEVPredicate *N) const = 0;
+
+  /// Prints a textual representation of this predicate with an indentation of
+  /// \p Depth.
+  virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
+
+  /// Returns the SCEV to which this predicate applies, or nullptr if this is
+  /// a SCEVUnionPredicate.
+  virtual const SCEV *getExpr() const = 0;
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
+  P.print(OS);
+  return OS;
+}
+
+// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
+// temporary FoldingSetNodeID values.
+template <>
+struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
+  static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
+    ID = X.FastID;
+  }
+
+  static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
+                     unsigned IDHash, FoldingSetNodeID &TempID) {
+    return ID == X.FastID;
+  }
+
+  static unsigned ComputeHash(const SCEVPredicate &X,
+                              FoldingSetNodeID &TempID) {
+    return X.FastID.ComputeHash();
+  }
+};
+
+/// This class represents an assumption that two SCEV expressions are equal,
+/// and this can be checked at run-time.
+class SCEVEqualPredicate final : public SCEVPredicate {
+  /// We assume that LHS == RHS.
+  const SCEV *LHS;
+  const SCEV *RHS;
+
+public:
+  SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
+                     const SCEV *RHS);
+
+  /// Implementation of the SCEVPredicate interface
+  bool implies(const SCEVPredicate *N) const override;
+  void print(raw_ostream &OS, unsigned Depth = 0) const override;
+  bool isAlwaysTrue() const override;
+  const SCEV *getExpr() const override;
+
+  /// Returns the left hand side of the equality.
+  const SCEV *getLHS() const { return LHS; }
+
+  /// Returns the right hand side of the equality.
+  const SCEV *getRHS() const { return RHS; }
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static bool classof(const SCEVPredicate *P) {
+    return P->getKind() == P_Equal;
+  }
+};
+
+/// This class represents an assumption made on an AddRec expression. Given an
+/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
+/// flags (defined below) in the first X iterations of the loop, where X is a
+/// SCEV expression returned by getPredicatedBackedgeTakenCount).
+///
+/// Note that this does not imply that X is equal to the backedge taken
+/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
+/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
+/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
+/// have more than X iterations.
+class SCEVWrapPredicate final : public SCEVPredicate {
+public:
+  /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
+  /// for FlagNUSW. The increment is considered to be signed, and a + b
+  /// (where b is the increment) is considered to wrap if:
+  ///    zext(a + b) != zext(a) + sext(b)
+  ///
+  /// If Signed is a function that takes an n-bit tuple and maps to the
+  /// integer domain as the tuples value interpreted as twos complement,
+  /// and Unsigned a function that takes an n-bit tuple and maps to the
+  /// integer domain as as the base two value of input tuple, then a + b
+  /// has IncrementNUSW iff:
+  ///
+  /// 0 <= Unsigned(a) + Signed(b) < 2^n
+  ///
+  /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
+  ///
+  /// Note that the IncrementNUSW flag is not commutative: if base + inc
+  /// has IncrementNUSW, then inc + base doesn't neccessarily have this
+  /// property. The reason for this is that this is used for sign/zero
+  /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
+  /// assumed. A {base,+,inc} expression is already non-commutative with
+  /// regards to base and inc, since it is interpreted as:
+  ///     (((base + inc) + inc) + inc) ...
+  enum IncrementWrapFlags {
+    IncrementAnyWrap = 0,     // No guarantee.
+    IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
+    IncrementNSSW = (1 << 1), // No signed with signed increment wrap
+                              // (equivalent with SCEV::NSW)
+    IncrementNoWrapMask = (1 << 2) - 1
+  };
+
+  /// Convenient IncrementWrapFlags manipulation methods.
+  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
+  clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
+             SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
+    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
+    assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
+           "Invalid flags value!");
+    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
+  }
+
+  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
+  maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
+    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
+    assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
+
+    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
+  }
+
+  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
+  setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
+           SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
+    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
+    assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
+           "Invalid flags value!");
+
+    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
+  }
+
+  /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
+  /// SCEVAddRecExpr.
+  LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
+  getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
+
+private:
+  const SCEVAddRecExpr *AR;
+  IncrementWrapFlags Flags;
+
+public:
+  explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
+                             const SCEVAddRecExpr *AR,
+                             IncrementWrapFlags Flags);
+
+  /// Returns the set assumed no overflow flags.
+  IncrementWrapFlags getFlags() const { return Flags; }
+
+  /// Implementation of the SCEVPredicate interface
+  const SCEV *getExpr() const override;
+  bool implies(const SCEVPredicate *N) const override;
+  void print(raw_ostream &OS, unsigned Depth = 0) const override;
+  bool isAlwaysTrue() const override;
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static bool classof(const SCEVPredicate *P) {
+    return P->getKind() == P_Wrap;
+  }
+};
+
+/// This class represents a composition of other SCEV predicates, and is the
+/// class that most clients will interact with.  This is equivalent to a
+/// logical "AND" of all the predicates in the union.
+///
+/// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
+/// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
+class SCEVUnionPredicate final : public SCEVPredicate {
+private:
+  using PredicateMap =
+      DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
+
+  /// Vector with references to all predicates in this union.
+  SmallVector<const SCEVPredicate *, 16> Preds;
+
+  /// Maps SCEVs to predicates for quick look-ups.
+  PredicateMap SCEVToPreds;
+
+public:
+  SCEVUnionPredicate();
+
+  const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
+    return Preds;
+  }
+
+  /// Adds a predicate to this union.
+  void add(const SCEVPredicate *N);
+
+  /// Returns a reference to a vector containing all predicates which apply to
+  /// \p Expr.
+  ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
+
+  /// Implementation of the SCEVPredicate interface
+  bool isAlwaysTrue() const override;
+  bool implies(const SCEVPredicate *N) const override;
+  void print(raw_ostream &OS, unsigned Depth) const override;
+  const SCEV *getExpr() const override;
+
+  /// We estimate the complexity of a union predicate as the size number of
+  /// predicates in the union.
+  unsigned getComplexity() const override { return Preds.size(); }
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static bool classof(const SCEVPredicate *P) {
+    return P->getKind() == P_Union;
+  }
+};
+
+struct ExitLimitQuery {
+  ExitLimitQuery(const Loop *L, BasicBlock *ExitingBlock, bool AllowPredicates)
+      : L(L), ExitingBlock(ExitingBlock), AllowPredicates(AllowPredicates) {}
+
+  const Loop *L;
+  BasicBlock *ExitingBlock;
+  bool AllowPredicates;
+};
+
+template <> struct DenseMapInfo<ExitLimitQuery> {
+  static inline ExitLimitQuery getEmptyKey() {
+    return ExitLimitQuery(nullptr, nullptr, true);
+  }
+
+  static inline ExitLimitQuery getTombstoneKey() {
+    return ExitLimitQuery(nullptr, nullptr, false);
+  }
+
+  static unsigned getHashValue(ExitLimitQuery Val) {
+    return hash_combine(hash_combine(Val.L, Val.ExitingBlock),
+                        Val.AllowPredicates);
+  }
+
+  static bool isEqual(ExitLimitQuery LHS, ExitLimitQuery RHS) {
+    return LHS.L == RHS.L && LHS.ExitingBlock == RHS.ExitingBlock &&
+           LHS.AllowPredicates == RHS.AllowPredicates;
+  }
+};
+
+/// The main scalar evolution driver. Because client code (intentionally)
+/// can't do much with the SCEV objects directly, they must ask this class
+/// for services.
+class ScalarEvolution {
+public:
+  /// An enum describing the relationship between a SCEV and a loop.
+  enum LoopDisposition {
+    LoopVariant,   ///< The SCEV is loop-variant (unknown).
+    LoopInvariant, ///< The SCEV is loop-invariant.
+    LoopComputable ///< The SCEV varies predictably with the loop.
+  };
+
+  /// An enum describing the relationship between a SCEV and a basic block.
+  enum BlockDisposition {
+    DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
+    DominatesBlock,        ///< The SCEV dominates the block.
+    ProperlyDominatesBlock ///< The SCEV properly dominates the block.
+  };
+
+  /// Convenient NoWrapFlags manipulation that hides enum casts and is
+  /// visible in the ScalarEvolution name space.
+  LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
+                                                    int Mask) {
+    return (SCEV::NoWrapFlags)(Flags & Mask);
+  }
+  LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
+                                                   SCEV::NoWrapFlags OnFlags) {
+    return (SCEV::NoWrapFlags)(Flags | OnFlags);
+  }
+  LLVM_NODISCARD static SCEV::NoWrapFlags
+  clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
+    return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
+  }
+
+  ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
+                  DominatorTree &DT, LoopInfo &LI);
+  ScalarEvolution(ScalarEvolution &&Arg);
+  ~ScalarEvolution();
+
+  LLVMContext &getContext() const { return F.getContext(); }
+
+  /// Test if values of the given type are analyzable within the SCEV
+  /// framework. This primarily includes integer types, and it can optionally
+  /// include pointer types if the ScalarEvolution class has access to
+  /// target-specific information.
+  bool isSCEVable(Type *Ty) const;
+
+  /// Return the size in bits of the specified type, for which isSCEVable must
+  /// return true.
+  uint64_t getTypeSizeInBits(Type *Ty) const;
+
+  /// Return a type with the same bitwidth as the given type and which
+  /// represents how SCEV will treat the given type, for which isSCEVable must
+  /// return true. For pointer types, this is the pointer-sized integer type.
+  Type *getEffectiveSCEVType(Type *Ty) const;
+
+  // Returns a wider type among {Ty1, Ty2}.
+  Type *getWiderType(Type *Ty1, Type *Ty2) const;
+
+  /// Return true if the SCEV is a scAddRecExpr or it contains
+  /// scAddRecExpr. The result will be cached in HasRecMap.
+  bool containsAddRecurrence(const SCEV *S);
+
+  /// Erase Value from ValueExprMap and ExprValueMap.
+  void eraseValueFromMap(Value *V);
+
+  /// Return a SCEV expression for the full generality of the specified
+  /// expression.
+  const SCEV *getSCEV(Value *V);
+
+  const SCEV *getConstant(ConstantInt *V);
+  const SCEV *getConstant(const APInt &Val);
+  const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
+  const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
+  const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
+  const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
+  const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
+  const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
+                         unsigned Depth = 0);
+  const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
+                         unsigned Depth = 0) {
+    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
+    return getAddExpr(Ops, Flags, Depth);
+  }
+  const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
+                         unsigned Depth = 0) {
+    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
+    return getAddExpr(Ops, Flags, Depth);
+  }
+  const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
+                         unsigned Depth = 0);
+  const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
+                         unsigned Depth = 0) {
+    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
+    return getMulExpr(Ops, Flags, Depth);
+  }
+  const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
+                         unsigned Depth = 0) {
+    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
+    return getMulExpr(Ops, Flags, Depth);
+  }
+  const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
+                            SCEV::NoWrapFlags Flags);
+  const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
+                            const Loop *L, SCEV::NoWrapFlags Flags);
+  const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
+                            const Loop *L, SCEV::NoWrapFlags Flags) {
+    SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
+    return getAddRecExpr(NewOp, L, Flags);
+  }
+
+  /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
+  /// Predicates. If successful return these <AddRecExpr, Predicates>;
+  /// The function is intended to be called from PSCEV (the caller will decide
+  /// whether to actually add the predicates and carry out the rewrites).
+  Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
+  createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
+
+  /// Returns an expression for a GEP
+  ///
+  /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
+  /// instead we use IndexExprs.
+  /// \p IndexExprs The expressions for the indices.
+  const SCEV *getGEPExpr(GEPOperator *GEP,
+                         const SmallVectorImpl<const SCEV *> &IndexExprs);
+  const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
+  const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
+  const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUnknown(Value *V);
+  const SCEV *getCouldNotCompute();
+
+  /// Return a SCEV for the constant 0 of a specific type.
+  const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
+
+  /// Return a SCEV for the constant 1 of a specific type.
+  const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
+
+  /// Return an expression for sizeof AllocTy that is type IntTy
+  const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
+
+  /// Return an expression for offsetof on the given field with type IntTy
+  const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
+
+  /// Return the SCEV object corresponding to -V.
+  const SCEV *getNegativeSCEV(const SCEV *V,
+                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
+
+  /// Return the SCEV object corresponding to ~V.
+  const SCEV *getNotSCEV(const SCEV *V);
+
+  /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
+  const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
+                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
+                           unsigned Depth = 0);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is zero extended.
+  const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is sign extended.
+  const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is zero extended.  The
+  /// conversion must not be narrowing.
+  const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is sign extended.  The
+  /// conversion must not be narrowing.
+  const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type. If the type must be extended, it is extended with
+  /// unspecified bits. The conversion must not be narrowing.
+  const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  The conversion must not be widening.
+  const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
+
+  /// Promote the operands to the wider of the types using zero-extension, and
+  /// then perform a umax operation with them.
+  const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
+
+  /// Promote the operands to the wider of the types using zero-extension, and
+  /// then perform a umin operation with them.
+  const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
+
+  /// Transitively follow the chain of pointer-type operands until reaching a
+  /// SCEV that does not have a single pointer operand. This returns a
+  /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
+  /// cases do exist.
+  const SCEV *getPointerBase(const SCEV *V);
+
+  /// Return a SCEV expression for the specified value at the specified scope
+  /// in the program.  The L value specifies a loop nest to evaluate the
+  /// expression at, where null is the top-level or a specified loop is
+  /// immediately inside of the loop.
+  ///
+  /// This method can be used to compute the exit value for a variable defined
+  /// in a loop by querying what the value will hold in the parent loop.
+  ///
+  /// In the case that a relevant loop exit value cannot be computed, the
+  /// original value V is returned.
+  const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
+
+  /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
+  const SCEV *getSCEVAtScope(Value *V, const Loop *L);
+
+  /// Test whether entry to the loop is protected by a conditional between LHS
+  /// and RHS.  This is used to help avoid max expressions in loop trip
+  /// counts, and to eliminate casts.
+  bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
+                                const SCEV *LHS, const SCEV *RHS);
+
+  /// Test whether the backedge of the loop is protected by a conditional
+  /// between LHS and RHS.  This is used to eliminate casts.
+  bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
+                                   const SCEV *LHS, const SCEV *RHS);
+
+  /// Returns the maximum trip count of the loop if it is a single-exit
+  /// loop and we can compute a small maximum for that loop.
+  ///
+  /// Implemented in terms of the \c getSmallConstantTripCount overload with
+  /// the single exiting block passed to it. See that routine for details.
+  unsigned getSmallConstantTripCount(const Loop *L);
+
+  /// Returns the maximum trip count of this loop as a normal unsigned
+  /// value. Returns 0 if the trip count is unknown or not constant. This
+  /// "trip count" assumes that control exits via ExitingBlock. More
+  /// precisely, it is the number of times that control may reach ExitingBlock
+  /// before taking the branch. For loops with multiple exits, it may not be
+  /// the number times that the loop header executes if the loop exits
+  /// prematurely via another branch.
+  unsigned getSmallConstantTripCount(const Loop *L, BasicBlock *ExitingBlock);
+
+  /// Returns the upper bound of the loop trip count as a normal unsigned
+  /// value.
+  /// Returns 0 if the trip count is unknown or not constant.
+  unsigned getSmallConstantMaxTripCount(const Loop *L);
+
+  /// Returns the largest constant divisor of the trip count of the
+  /// loop if it is a single-exit loop and we can compute a small maximum for
+  /// that loop.
+  ///
+  /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
+  /// the single exiting block passed to it. See that routine for details.
+  unsigned getSmallConstantTripMultiple(const Loop *L);
+
+  /// Returns the largest constant divisor of the trip count of this loop as a
+  /// normal unsigned value, if possible. This means that the actual trip
+  /// count is always a multiple of the returned value (don't forget the trip
+  /// count could very well be zero as well!). As explained in the comments
+  /// for getSmallConstantTripCount, this assumes that control exits the loop
+  /// via ExitingBlock.
+  unsigned getSmallConstantTripMultiple(const Loop *L,
+                                        BasicBlock *ExitingBlock);
+
+  /// Get the expression for the number of loop iterations for which this loop
+  /// is guaranteed not to exit via ExitingBlock. Otherwise return
+  /// SCEVCouldNotCompute.
+  const SCEV *getExitCount(const Loop *L, BasicBlock *ExitingBlock);
+
+  /// If the specified loop has a predictable backedge-taken count, return it,
+  /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
+  /// the number of times the loop header will be branched to from within the
+  /// loop, assuming there are no abnormal exists like exception throws. This is
+  /// one less than the trip count of the loop, since it doesn't count the first
+  /// iteration, when the header is branched to from outside the loop.
+  ///
+  /// Note that it is not valid to call this method on a loop without a
+  /// loop-invariant backedge-taken count (see
+  /// hasLoopInvariantBackedgeTakenCount).
+  const SCEV *getBackedgeTakenCount(const Loop *L);
+
+  /// Similar to getBackedgeTakenCount, except it will add a set of
+  /// SCEV predicates to Predicates that are required to be true in order for
+  /// the answer to be correct. Predicates can be checked with run-time
+  /// checks and can be used to perform loop versioning.
+  const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
+                                              SCEVUnionPredicate &Predicates);
+
+  /// When successful, this returns a SCEVConstant that is greater than or equal
+  /// to (i.e. a "conservative over-approximation") of the value returend by
+  /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
+  /// SCEVCouldNotCompute object.
+  const SCEV *getMaxBackedgeTakenCount(const Loop *L);
+
+  /// Return true if the backedge taken count is either the value returned by
+  /// getMaxBackedgeTakenCount or zero.
+  bool isBackedgeTakenCountMaxOrZero(const Loop *L);
+
+  /// Return true if the specified loop has an analyzable loop-invariant
+  /// backedge-taken count.
+  bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
+
+  /// This method should be called by the client when it has changed a loop in
+  /// a way that may effect ScalarEvolution's ability to compute a trip count,
+  /// or if the loop is deleted.  This call is potentially expensive for large
+  /// loop bodies.
+  void forgetLoop(const Loop *L);
+
+  /// This method should be called by the client when it has changed a value
+  /// in a way that may effect its value, or which may disconnect it from a
+  /// def-use chain linking it to a loop.
+  void forgetValue(Value *V);
+
+  /// Called when the client has changed the disposition of values in
+  /// this loop.
+  ///
+  /// We don't have a way to invalidate per-loop dispositions. Clear and
+  /// recompute is simpler.
+  void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
+
+  /// Determine the minimum number of zero bits that S is guaranteed to end in
+  /// (at every loop iteration).  It is, at the same time, the minimum number
+  /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
+  /// If S is guaranteed to be 0, it returns the bitwidth of S.
+  uint32_t GetMinTrailingZeros(const SCEV *S);
+
+  /// Determine the unsigned range for a particular SCEV.
+  /// NOTE: This returns a copy of the reference returned by getRangeRef.
+  ConstantRange getUnsignedRange(const SCEV *S) {
+    return getRangeRef(S, HINT_RANGE_UNSIGNED);
+  }
+
+  /// Determine the min of the unsigned range for a particular SCEV.
+  APInt getUnsignedRangeMin(const SCEV *S) {
+    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
+  }
+
+  /// Determine the max of the unsigned range for a particular SCEV.
+  APInt getUnsignedRangeMax(const SCEV *S) {
+    return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
+  }
+
+  /// Determine the signed range for a particular SCEV.
+  /// NOTE: This returns a copy of the reference returned by getRangeRef.
+  ConstantRange getSignedRange(const SCEV *S) {
+    return getRangeRef(S, HINT_RANGE_SIGNED);
+  }
+
+  /// Determine the min of the signed range for a particular SCEV.
+  APInt getSignedRangeMin(const SCEV *S) {
+    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
+  }
+
+  /// Determine the max of the signed range for a particular SCEV.
+  APInt getSignedRangeMax(const SCEV *S) {
+    return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
+  }
+
+  /// Test if the given expression is known to be negative.
+  bool isKnownNegative(const SCEV *S);
+
+  /// Test if the given expression is known to be positive.
+  bool isKnownPositive(const SCEV *S);
+
+  /// Test if the given expression is known to be non-negative.
+  bool isKnownNonNegative(const SCEV *S);
+
+  /// Test if the given expression is known to be non-positive.
+  bool isKnownNonPositive(const SCEV *S);
+
+  /// Test if the given expression is known to be non-zero.
+  bool isKnownNonZero(const SCEV *S);
+
+  /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
+  /// \p S by substitution of all AddRec sub-expression related to loop \p L
+  /// with initial value of that SCEV. The second is obtained from \p S by
+  /// substitution of all AddRec sub-expressions related to loop \p L with post
+  /// increment of this AddRec in the loop \p L. In both cases all other AddRec
+  /// sub-expressions (not related to \p L) remain the same.
+  /// If the \p S contains non-invariant unknown SCEV the function returns
+  /// CouldNotCompute SCEV in both values of std::pair.
+  /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
+  /// the function returns pair:
+  /// first = {0, +, 1}<L2>
+  /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
+  /// We can see that for the first AddRec sub-expression it was replaced with
+  /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
+  /// increment value) for the second one. In both cases AddRec expression
+  /// related to L2 remains the same.
+  std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
+                                                                const SCEV *S);
+
+  /// We'd like to check the predicate on every iteration of the most dominated
+  /// loop between loops used in LHS and RHS.
+  /// To do this we use the following list of steps:
+  /// 1. Collect set S all loops on which either LHS or RHS depend.
+  /// 2. If S is non-empty
+  /// a. Let PD be the element of S which is dominated by all other elements.
+  /// b. Let E(LHS) be value of LHS on entry of PD.
+  ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
+  ///    attached to PD on with their entry values.
+  ///    Define E(RHS) in the same way.
+  /// c. Let B(LHS) be value of L on backedge of PD.
+  ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
+  ///    attached to PD on with their backedge values.
+  ///    Define B(RHS) in the same way.
+  /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
+  ///    so we can assert on that.
+  /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
+  ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
+  bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
+                           const SCEV *RHS);
+
+  /// Test if the given expression is known to satisfy the condition described
+  /// by Pred, LHS, and RHS.
+  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
+                        const SCEV *RHS);
+
+  /// Test if the condition described by Pred, LHS, RHS is known to be true on
+  /// every iteration of the loop of the recurrency LHS.
+  bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
+                               const SCEVAddRecExpr *LHS, const SCEV *RHS);
+
+  /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
+  /// is monotonically increasing or decreasing.  In the former case set
+  /// `Increasing` to true and in the latter case set `Increasing` to false.
+  ///
+  /// A predicate is said to be monotonically increasing if may go from being
+  /// false to being true as the loop iterates, but never the other way
+  /// around.  A predicate is said to be monotonically decreasing if may go
+  /// from being true to being false as the loop iterates, but never the other
+  /// way around.
+  bool isMonotonicPredicate(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred,
+                            bool &Increasing);
+
+  /// Return true if the result of the predicate LHS `Pred` RHS is loop
+  /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
+  /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
+  /// loop invariant form of LHS `Pred` RHS.
+  bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                const SCEV *RHS, const Loop *L,
+                                ICmpInst::Predicate &InvariantPred,
+                                const SCEV *&InvariantLHS,
+                                const SCEV *&InvariantRHS);
+
+  /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
+  /// iff any changes were made. If the operands are provably equal or
+  /// unequal, LHS and RHS are set to the same value and Pred is set to either
+  /// ICMP_EQ or ICMP_NE.
+  bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
+                            const SCEV *&RHS, unsigned Depth = 0);
+
+  /// Return the "disposition" of the given SCEV with respect to the given
+  /// loop.
+  LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
+
+  /// Return true if the value of the given SCEV is unchanging in the
+  /// specified loop.
+  bool isLoopInvariant(const SCEV *S, const Loop *L);
+
+  /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
+  /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
+  /// the header of loop L.
+  bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
+
+  /// Return true if the given SCEV changes value in a known way in the
+  /// specified loop.  This property being true implies that the value is
+  /// variant in the loop AND that we can emit an expression to compute the
+  /// value of the expression at any particular loop iteration.
+  bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
+
+  /// Return the "disposition" of the given SCEV with respect to the given
+  /// block.
+  BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
+
+  /// Return true if elements that makes up the given SCEV dominate the
+  /// specified basic block.
+  bool dominates(const SCEV *S, const BasicBlock *BB);
+
+  /// Return true if elements that makes up the given SCEV properly dominate
+  /// the specified basic block.
+  bool properlyDominates(const SCEV *S, const BasicBlock *BB);
+
+  /// Test whether the given SCEV has Op as a direct or indirect operand.
+  bool hasOperand(const SCEV *S, const SCEV *Op) const;
+
+  /// Return the size of an element read or written by Inst.
+  const SCEV *getElementSize(Instruction *Inst);
+
+  /// Compute the array dimensions Sizes from the set of Terms extracted from
+  /// the memory access function of this SCEVAddRecExpr (second step of
+  /// delinearization).
+  void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
+                           SmallVectorImpl<const SCEV *> &Sizes,
+                           const SCEV *ElementSize);
+
+  void print(raw_ostream &OS) const;
+  void verify() const;
+  bool invalidate(Function &F, const PreservedAnalyses &PA,
+                  FunctionAnalysisManager::Invalidator &Inv);
+
+  /// Collect parametric terms occurring in step expressions (first step of
+  /// delinearization).
+  void collectParametricTerms(const SCEV *Expr,
+                              SmallVectorImpl<const SCEV *> &Terms);
+
+  /// Return in Subscripts the access functions for each dimension in Sizes
+  /// (third step of delinearization).
+  void computeAccessFunctions(const SCEV *Expr,
+                              SmallVectorImpl<const SCEV *> &Subscripts,
+                              SmallVectorImpl<const SCEV *> &Sizes);
+
+  /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
+  /// subscripts and sizes of an array access.
+  ///
+  /// The delinearization is a 3 step process: the first two steps compute the
+  /// sizes of each subscript and the third step computes the access functions
+  /// for the delinearized array:
+  ///
+  /// 1. Find the terms in the step functions
+  /// 2. Compute the array size
+  /// 3. Compute the access function: divide the SCEV by the array size
+  ///    starting with the innermost dimensions found in step 2. The Quotient
+  ///    is the SCEV to be divided in the next step of the recursion. The
+  ///    Remainder is the subscript of the innermost dimension. Loop over all
+  ///    array dimensions computed in step 2.
+  ///
+  /// To compute a uniform array size for several memory accesses to the same
+  /// object, one can collect in step 1 all the step terms for all the memory
+  /// accesses, and compute in step 2 a unique array shape. This guarantees
+  /// that the array shape will be the same across all memory accesses.
+  ///
+  /// FIXME: We could derive the result of steps 1 and 2 from a description of
+  /// the array shape given in metadata.
+  ///
+  /// Example:
+  ///
+  /// A[][n][m]
+  ///
+  /// for i
+  ///   for j
+  ///     for k
+  ///       A[j+k][2i][5i] =
+  ///
+  /// The initial SCEV:
+  ///
+  /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
+  ///
+  /// 1. Find the different terms in the step functions:
+  /// -> [2*m, 5, n*m, n*m]
+  ///
+  /// 2. Compute the array size: sort and unique them
+  /// -> [n*m, 2*m, 5]
+  /// find the GCD of all the terms = 1
+  /// divide by the GCD and erase constant terms
+  /// -> [n*m, 2*m]
+  /// GCD = m
+  /// divide by GCD -> [n, 2]
+  /// remove constant terms
+  /// -> [n]
+  /// size of the array is A[unknown][n][m]
+  ///
+  /// 3. Compute the access function
+  /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
+  /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
+  /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
+  /// The remainder is the subscript of the innermost array dimension: [5i].
+  ///
+  /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
+  /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
+  /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
+  /// The Remainder is the subscript of the next array dimension: [2i].
+  ///
+  /// The subscript of the outermost dimension is the Quotient: [j+k].
+  ///
+  /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
+  void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
+                   SmallVectorImpl<const SCEV *> &Sizes,
+                   const SCEV *ElementSize);
+
+  /// Return the DataLayout associated with the module this SCEV instance is
+  /// operating on.
+  const DataLayout &getDataLayout() const {
+    return F.getParent()->getDataLayout();
+  }
+
+  const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
+
+  const SCEVPredicate *
+  getWrapPredicate(const SCEVAddRecExpr *AR,
+                   SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
+
+  /// Re-writes the SCEV according to the Predicates in \p A.
+  const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
+                                    SCEVUnionPredicate &A);
+  /// Tries to convert the \p S expression to an AddRec expression,
+  /// adding additional predicates to \p Preds as required.
+  const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
+      const SCEV *S, const Loop *L,
+      SmallPtrSetImpl<const SCEVPredicate *> &Preds);
+
+private:
+  /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
+  /// Value is deleted.
+  class SCEVCallbackVH final : public CallbackVH {
+    ScalarEvolution *SE;
+
+    void deleted() override;
+    void allUsesReplacedWith(Value *New) override;
+
+  public:
+    SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
+  };
+
+  friend class SCEVCallbackVH;
+  friend class SCEVExpander;
+  friend class SCEVUnknown;
+
+  /// The function we are analyzing.
+  Function &F;
+
+  /// Does the module have any calls to the llvm.experimental.guard intrinsic
+  /// at all?  If this is false, we avoid doing work that will only help if
+  /// thare are guards present in the IR.
+  bool HasGuards;
+
+  /// The target library information for the target we are targeting.
+  TargetLibraryInfo &TLI;
+
+  /// The tracker for @llvm.assume intrinsics in this function.
+  AssumptionCache &AC;
+
+  /// The dominator tree.
+  DominatorTree &DT;
+
+  /// The loop information for the function we are currently analyzing.
+  LoopInfo &LI;
+
+  /// This SCEV is used to represent unknown trip counts and things.
+  std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
+
+  /// The type for HasRecMap.
+  using HasRecMapType = DenseMap<const SCEV *, bool>;
+
+  /// This is a cache to record whether a SCEV contains any scAddRecExpr.
+  HasRecMapType HasRecMap;
+
+  /// The type for ExprValueMap.
+  using ValueOffsetPair = std::pair<Value *, ConstantInt *>;
+  using ExprValueMapType = DenseMap<const SCEV *, SetVector<ValueOffsetPair>>;
+
+  /// ExprValueMap -- This map records the original values from which
+  /// the SCEV expr is generated from.
+  ///
+  /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
+  /// of SCEV -> Value:
+  /// Suppose we know S1 expands to V1, and
+  ///  S1 = S2 + C_a
+  ///  S3 = S2 + C_b
+  /// where C_a and C_b are different SCEVConstants. Then we'd like to
+  /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
+  /// It is helpful when S2 is a complex SCEV expr.
+  ///
+  /// In order to do that, we represent ExprValueMap as a mapping from
+  /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
+  /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
+  /// is expanded, it will first expand S2 to V1 - C_a because of
+  /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
+  ///
+  /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
+  /// to V - Offset.
+  ExprValueMapType ExprValueMap;
+
+  /// The type for ValueExprMap.
+  using ValueExprMapType =
+      DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
+
+  /// This is a cache of the values we have analyzed so far.
+  ValueExprMapType ValueExprMap;
+
+  /// Mark predicate values currently being processed by isImpliedCond.
+  SmallPtrSet<Value *, 6> PendingLoopPredicates;
+
+  /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
+  SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
+
+  /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
+  /// conditions dominating the backedge of a loop.
+  bool WalkingBEDominatingConds = false;
+
+  /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
+  /// predicate by splitting it into a set of independent predicates.
+  bool ProvingSplitPredicate = false;
+
+  /// Memoized values for the GetMinTrailingZeros
+  DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
+
+  /// Return the Value set from which the SCEV expr is generated.
+  SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S);
+
+  /// Private helper method for the GetMinTrailingZeros method
+  uint32_t GetMinTrailingZerosImpl(const SCEV *S);
+
+  /// Information about the number of loop iterations for which a loop exit's
+  /// branch condition evaluates to the not-taken path.  This is a temporary
+  /// pair of exact and max expressions that are eventually summarized in
+  /// ExitNotTakenInfo and BackedgeTakenInfo.
+  struct ExitLimit {
+    const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
+    const SCEV *MaxNotTaken; // The exit is not taken at most this many times
+
+    // Not taken either exactly MaxNotTaken or zero times
+    bool MaxOrZero = false;
+
+    /// A set of predicate guards for this ExitLimit. The result is only valid
+    /// if all of the predicates in \c Predicates evaluate to 'true' at
+    /// run-time.
+    SmallPtrSet<const SCEVPredicate *, 4> Predicates;
+
+    void addPredicate(const SCEVPredicate *P) {
+      assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
+      Predicates.insert(P);
+    }
+
+    /*implicit*/ ExitLimit(const SCEV *E);
+
+    ExitLimit(
+        const SCEV *E, const SCEV *M, bool MaxOrZero,
+        ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);
+
+    ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
+              const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
+
+    ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);
+
+    /// Test whether this ExitLimit contains any computed information, or
+    /// whether it's all SCEVCouldNotCompute values.
+    bool hasAnyInfo() const {
+      return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
+             !isa<SCEVCouldNotCompute>(MaxNotTaken);
+    }
+
+    bool hasOperand(const SCEV *S) const;
+
+    /// Test whether this ExitLimit contains all information.
+    bool hasFullInfo() const {
+      return !isa<SCEVCouldNotCompute>(ExactNotTaken);
+    }
+  };
+
+  /// Information about the number of times a particular loop exit may be
+  /// reached before exiting the loop.
+  struct ExitNotTakenInfo {
+    PoisoningVH<BasicBlock> ExitingBlock;
+    const SCEV *ExactNotTaken;
+    std::unique_ptr<SCEVUnionPredicate> Predicate;
+
+    explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
+                              const SCEV *ExactNotTaken,
+                              std::unique_ptr<SCEVUnionPredicate> Predicate)
+        : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
+          Predicate(std::move(Predicate)) {}
+
+    bool hasAlwaysTruePredicate() const {
+      return !Predicate || Predicate->isAlwaysTrue();
+    }
+  };
+
+  /// Information about the backedge-taken count of a loop. This currently
+  /// includes an exact count and a maximum count.
+  ///
+  class BackedgeTakenInfo {
+    /// A list of computable exits and their not-taken counts.  Loops almost
+    /// never have more than one computable exit.
+    SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
+
+    /// The pointer part of \c MaxAndComplete is an expression indicating the
+    /// least maximum backedge-taken count of the loop that is known, or a
+    /// SCEVCouldNotCompute. This expression is only valid if the predicates
+    /// associated with all loop exits are true.
+    ///
+    /// The integer part of \c MaxAndComplete is a boolean indicating if \c
+    /// ExitNotTaken has an element for every exiting block in the loop.
+    PointerIntPair<const SCEV *, 1> MaxAndComplete;
+
+    /// True iff the backedge is taken either exactly Max or zero times.
+    bool MaxOrZero = false;
+
+    /// \name Helper projection functions on \c MaxAndComplete.
+    /// @{
+    bool isComplete() const { return MaxAndComplete.getInt(); }
+    const SCEV *getMax() const { return MaxAndComplete.getPointer(); }
+    /// @}
+
+  public:
+    BackedgeTakenInfo() : MaxAndComplete(nullptr, 0) {}
+    BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
+    BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
+
+    using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
+
+    /// Initialize BackedgeTakenInfo from a list of exact exit counts.
+    BackedgeTakenInfo(SmallVectorImpl<EdgeExitInfo> &&ExitCounts, bool Complete,
+                      const SCEV *MaxCount, bool MaxOrZero);
+
+    /// Test whether this BackedgeTakenInfo contains any computed information,
+    /// or whether it's all SCEVCouldNotCompute values.
+    bool hasAnyInfo() const {
+      return !ExitNotTaken.empty() || !isa<SCEVCouldNotCompute>(getMax());
+    }
+
+    /// Test whether this BackedgeTakenInfo contains complete information.
+    bool hasFullInfo() const { return isComplete(); }
+
+    /// Return an expression indicating the exact *backedge-taken*
+    /// count of the loop if it is known or SCEVCouldNotCompute
+    /// otherwise.  If execution makes it to the backedge on every
+    /// iteration (i.e. there are no abnormal exists like exception
+    /// throws and thread exits) then this is the number of times the
+    /// loop header will execute minus one.
+    ///
+    /// If the SCEV predicate associated with the answer can be different
+    /// from AlwaysTrue, we must add a (non null) Predicates argument.
+    /// The SCEV predicate associated with the answer will be added to
+    /// Predicates. A run-time check needs to be emitted for the SCEV
+    /// predicate in order for the answer to be valid.
+    ///
+    /// Note that we should always know if we need to pass a predicate
+    /// argument or not from the way the ExitCounts vector was computed.
+    /// If we allowed SCEV predicates to be generated when populating this
+    /// vector, this information can contain them and therefore a
+    /// SCEVPredicate argument should be added to getExact.
+    const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
+                         SCEVUnionPredicate *Predicates = nullptr) const;
+
+    /// Return the number of times this loop exit may fall through to the back
+    /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
+    /// this block before this number of iterations, but may exit via another
+    /// block.
+    const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
+
+    /// Get the max backedge taken count for the loop.
+    const SCEV *getMax(ScalarEvolution *SE) const;
+
+    /// Return true if the number of times this backedge is taken is either the
+    /// value returned by getMax or zero.
+    bool isMaxOrZero(ScalarEvolution *SE) const;
+
+    /// Return true if any backedge taken count expressions refer to the given
+    /// subexpression.
+    bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
+
+    /// Invalidate this result and free associated memory.
+    void clear();
+  };
+
+  /// Cache the backedge-taken count of the loops for this function as they
+  /// are computed.
+  DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
+
+  /// Cache the predicated backedge-taken count of the loops for this
+  /// function as they are computed.
+  DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
+
+  /// This map contains entries for all of the PHI instructions that we
+  /// attempt to compute constant evolutions for.  This allows us to avoid
+  /// potentially expensive recomputation of these properties.  An instruction
+  /// maps to null if we are unable to compute its exit value.
+  DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
+
+  /// This map contains entries for all the expressions that we attempt to
+  /// compute getSCEVAtScope information for, which can be expensive in
+  /// extreme cases.
+  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
+      ValuesAtScopes;
+
+  /// Memoized computeLoopDisposition results.
+  DenseMap<const SCEV *,
+           SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
+      LoopDispositions;
+
+  struct LoopProperties {
+    /// Set to true if the loop contains no instruction that can have side
+    /// effects (i.e. via throwing an exception, volatile or atomic access).
+    bool HasNoAbnormalExits;
+
+    /// Set to true if the loop contains no instruction that can abnormally exit
+    /// the loop (i.e. via throwing an exception, by terminating the thread
+    /// cleanly or by infinite looping in a called function).  Strictly
+    /// speaking, the last one is not leaving the loop, but is identical to
+    /// leaving the loop for reasoning about undefined behavior.
+    bool HasNoSideEffects;
+  };
+
+  /// Cache for \c getLoopProperties.
+  DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
+
+  /// Return a \c LoopProperties instance for \p L, creating one if necessary.
+  LoopProperties getLoopProperties(const Loop *L);
+
+  bool loopHasNoSideEffects(const Loop *L) {
+    return getLoopProperties(L).HasNoSideEffects;
+  }
+
+  bool loopHasNoAbnormalExits(const Loop *L) {
+    return getLoopProperties(L).HasNoAbnormalExits;
+  }
+
+  /// Compute a LoopDisposition value.
+  LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
+
+  /// Memoized computeBlockDisposition results.
+  DenseMap<
+      const SCEV *,
+      SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
+      BlockDispositions;
+
+  /// Compute a BlockDisposition value.
+  BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
+
+  /// Memoized results from getRange
+  DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
+
+  /// Memoized results from getRange
+  DenseMap<const SCEV *, ConstantRange> SignedRanges;
+
+  /// Used to parameterize getRange
+  enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
+
+  /// Set the memoized range for the given SCEV.
+  const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
+                                ConstantRange CR) {
+    DenseMap<const SCEV *, ConstantRange> &Cache =
+        Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
+
+    auto Pair = Cache.try_emplace(S, std::move(CR));
+    if (!Pair.second)
+      Pair.first->second = std::move(CR);
+    return Pair.first->second;
+  }
+
+  /// Determine the range for a particular SCEV.
+  /// NOTE: This returns a reference to an entry in a cache. It must be
+  /// copied if its needed for longer.
+  const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);
+
+  /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
+  /// Helper for \c getRange.
+  ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
+                                    const SCEV *MaxBECount, unsigned BitWidth);
+
+  /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
+  /// Stop} by "factoring out" a ternary expression from the add recurrence.
+  /// Helper called by \c getRange.
+  ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
+                                     const SCEV *MaxBECount, unsigned BitWidth);
+
+  /// We know that there is no SCEV for the specified value.  Analyze the
+  /// expression.
+  const SCEV *createSCEV(Value *V);
+
+  /// Provide the special handling we need to analyze PHI SCEVs.
+  const SCEV *createNodeForPHI(PHINode *PN);
+
+  /// Helper function called from createNodeForPHI.
+  const SCEV *createAddRecFromPHI(PHINode *PN);
+
+  /// A helper function for createAddRecFromPHI to handle simple cases.
+  const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
+                                            Value *StartValueV);
+
+  /// Helper function called from createNodeForPHI.
+  const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
+
+  /// Provide special handling for a select-like instruction (currently this
+  /// is either a select instruction or a phi node).  \p I is the instruction
+  /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
+  /// FalseVal".
+  const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
+                                       Value *TrueVal, Value *FalseVal);
+
+  /// Provide the special handling we need to analyze GEP SCEVs.
+  const SCEV *createNodeForGEP(GEPOperator *GEP);
+
+  /// Implementation code for getSCEVAtScope; called at most once for each
+  /// SCEV+Loop pair.
+  const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
+
+  /// This looks up computed SCEV values for all instructions that depend on
+  /// the given instruction and removes them from the ValueExprMap map if they
+  /// reference SymName. This is used during PHI resolution.
+  void forgetSymbolicName(Instruction *I, const SCEV *SymName);
+
+  /// Return the BackedgeTakenInfo for the given loop, lazily computing new
+  /// values if the loop hasn't been analyzed yet. The returned result is
+  /// guaranteed not to be predicated.
+  const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
+
+  /// Similar to getBackedgeTakenInfo, but will add predicates as required
+  /// with the purpose of returning complete information.
+  const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
+
+  /// Compute the number of times the specified loop will iterate.
+  /// If AllowPredicates is set, we will create new SCEV predicates as
+  /// necessary in order to return an exact answer.
+  BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
+                                              bool AllowPredicates = false);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if it exits via the specified block. If AllowPredicates is set,
+  /// this call will try to use a minimal set of SCEV predicates in order to
+  /// return an exact answer.
+  ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
+                             bool AllowPredicates = false);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if its exit condition were a conditional branch of ExitCond.
+  ///
+  /// \p ControlsExit is true if ExitCond directly controls the exit
+  /// branch. In this case, we can assume that the loop exits only if the
+  /// condition is true and can infer that failing to meet the condition prior
+  /// to integer wraparound results in undefined behavior.
+  ///
+  /// If \p AllowPredicates is set, this call will try to use a minimal set of
+  /// SCEV predicates in order to return an exact answer.
+  ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
+                                     bool ExitIfTrue, bool ControlsExit,
+                                     bool AllowPredicates = false);
+
+  // Helper functions for computeExitLimitFromCond to avoid exponential time
+  // complexity.
+
+  class ExitLimitCache {
+    // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
+    // AllowPredicates) tuple, but recursive calls to
+    // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
+    // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
+    // initial values of the other values to assert our assumption.
+    SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
+
+    const Loop *L;
+    bool ExitIfTrue;
+    bool AllowPredicates;
+
+  public:
+    ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
+        : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
+
+    Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
+                             bool ControlsExit, bool AllowPredicates);
+
+    void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
+                bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
+  };
+
+  using ExitLimitCacheTy = ExitLimitCache;
+
+  ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
+                                           const Loop *L, Value *ExitCond,
+                                           bool ExitIfTrue,
+                                           bool ControlsExit,
+                                           bool AllowPredicates);
+  ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
+                                         Value *ExitCond, bool ExitIfTrue,
+                                         bool ControlsExit,
+                                         bool AllowPredicates);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if its exit condition were a conditional branch of the ICmpInst
+  /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
+  /// to use a minimal set of SCEV predicates in order to return an exact
+  /// answer.
+  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
+                                     bool ExitIfTrue,
+                                     bool IsSubExpr,
+                                     bool AllowPredicates = false);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if its exit condition were a switch with a single exiting case
+  /// to ExitingBB.
+  ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
+                                                 SwitchInst *Switch,
+                                                 BasicBlock *ExitingBB,
+                                                 bool IsSubExpr);
+
+  /// Given an exit condition of 'icmp op load X, cst', try to see if we can
+  /// compute the backedge-taken count.
+  ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS,
+                                                const Loop *L,
+                                                ICmpInst::Predicate p);
+
+  /// Compute the exit limit of a loop that is controlled by a
+  /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
+  /// count in these cases (since SCEV has no way of expressing them), but we
+  /// can still sometimes compute an upper bound.
+  ///
+  /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
+  /// RHS`.
+  ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
+                                         ICmpInst::Predicate Pred);
+
+  /// If the loop is known to execute a constant number of times (the
+  /// condition evolves only from constants), try to evaluate a few iterations
+  /// of the loop until we get the exit condition gets a value of ExitWhen
+  /// (true or false).  If we cannot evaluate the exit count of the loop,
+  /// return CouldNotCompute.
+  const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
+                                           bool ExitWhen);
+
+  /// Return the number of times an exit condition comparing the specified
+  /// value to zero will execute.  If not computable, return CouldNotCompute.
+  /// If AllowPredicates is set, this call will try to use a minimal set of
+  /// SCEV predicates in order to return an exact answer.
+  ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
+                         bool AllowPredicates = false);
+
+  /// Return the number of times an exit condition checking the specified
+  /// value for nonzero will execute.  If not computable, return
+  /// CouldNotCompute.
+  ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
+
+  /// Return the number of times an exit condition containing the specified
+  /// less-than comparison will execute.  If not computable, return
+  /// CouldNotCompute.
+  ///
+  /// \p isSigned specifies whether the less-than is signed.
+  ///
+  /// \p ControlsExit is true when the LHS < RHS condition directly controls
+  /// the branch (loops exits only if condition is true). In this case, we can
+  /// use NoWrapFlags to skip overflow checks.
+  ///
+  /// If \p AllowPredicates is set, this call will try to use a minimal set of
+  /// SCEV predicates in order to return an exact answer.
+  ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
+                             bool isSigned, bool ControlsExit,
+                             bool AllowPredicates = false);
+
+  ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
+                                bool isSigned, bool IsSubExpr,
+                                bool AllowPredicates = false);
+
+  /// Return a predecessor of BB (which may not be an immediate predecessor)
+  /// which has exactly one successor from which BB is reachable, or null if
+  /// no such block is found.
+  std::pair<BasicBlock *, BasicBlock *>
+  getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the given FoundCondValue value evaluates to true.
+  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
+                     Value *FoundCondValue, bool Inverse);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
+  /// true.
+  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
+                     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
+                     const SCEV *FoundRHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.
+  bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
+                             const SCEV *RHS, const SCEV *FoundLHS,
+                             const SCEV *FoundRHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true. Here LHS is an operation that includes FoundLHS as one of its
+  /// arguments.
+  bool isImpliedViaOperations(ICmpInst::Predicate Pred,
+                              const SCEV *LHS, const SCEV *RHS,
+                              const SCEV *FoundLHS, const SCEV *FoundRHS,
+                              unsigned Depth = 0);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true.
+  /// Use only simple non-recursive types of checks, such as range analysis etc.
+  bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
+                                       const SCEV *LHS, const SCEV *RHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.
+  bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                   const SCEV *RHS, const SCEV *FoundLHS,
+                                   const SCEV *FoundRHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.  Utility function used by isImpliedCondOperands.  Tries to get
+  /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
+  bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                      const SCEV *RHS, const SCEV *FoundLHS,
+                                      const SCEV *FoundRHS);
+
+  /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
+  /// by a call to \c @llvm.experimental.guard in \p BB.
+  bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
+                         const SCEV *LHS, const SCEV *RHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.
+  ///
+  /// This routine tries to rule out certain kinds of integer overflow, and
+  /// then tries to reason about arithmetic properties of the predicates.
+  bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
+                                          const SCEV *LHS, const SCEV *RHS,
+                                          const SCEV *FoundLHS,
+                                          const SCEV *FoundRHS);
+
+  /// If we know that the specified Phi is in the header of its containing
+  /// loop, we know the loop executes a constant number of times, and the PHI
+  /// node is just a recurrence involving constants, fold it.
+  Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
+                                              const Loop *L);
+
+  /// Test if the given expression is known to satisfy the condition described
+  /// by Pred and the known constant ranges of LHS and RHS.
+  bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
+                                         const SCEV *LHS, const SCEV *RHS);
+
+  /// Try to prove the condition described by "LHS Pred RHS" by ruling out
+  /// integer overflow.
+  ///
+  /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
+  /// positive.
+  bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                     const SCEV *RHS);
+
+  /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
+  /// prove them individually.
+  bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                    const SCEV *RHS);
+
+  /// Try to match the Expr as "(L + R)<Flags>".
+  bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
+                      SCEV::NoWrapFlags &Flags);
+
+  /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
+  /// constant, and None if it isn't.
+  ///
+  /// This is intended to be a cheaper version of getMinusSCEV.  We can be
+  /// frugal here since we just bail out of actually constructing and
+  /// canonicalizing an expression in the cases where the result isn't going
+  /// to be a constant.
+  Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
+
+  /// Drop memoized information computed for S.
+  void forgetMemoizedResults(const SCEV *S);
+
+  /// Return an existing SCEV for V if there is one, otherwise return nullptr.
+  const SCEV *getExistingSCEV(Value *V);
+
+  /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
+  /// pointer.
+  bool checkValidity(const SCEV *S) const;
+
+  /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
+  /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
+  /// equivalent to proving no signed (resp. unsigned) wrap in
+  /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
+  /// (resp. `SCEVZeroExtendExpr`).
+  template <typename ExtendOpTy>
+  bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
+                                 const Loop *L);
+
+  /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
+  SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
+
+  bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
+                                ICmpInst::Predicate Pred, bool &Increasing);
+
+  /// Return SCEV no-wrap flags that can be proven based on reasoning about
+  /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
+  /// would trigger undefined behavior on overflow.
+  SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
+
+  /// Return true if the SCEV corresponding to \p I is never poison.  Proving
+  /// this is more complex than proving that just \p I is never poison, since
+  /// SCEV commons expressions across control flow, and you can have cases
+  /// like:
+  ///
+  ///   idx0 = a + b;
+  ///   ptr[idx0] = 100;
+  ///   if (<condition>) {
+  ///     idx1 = a +nsw b;
+  ///     ptr[idx1] = 200;
+  ///   }
+  ///
+  /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
+  /// hence not sign-overflow) only if "<condition>" is true.  Since both
+  /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
+  /// it is not okay to annotate (+ a b) with <nsw> in the above example.
+  bool isSCEVExprNeverPoison(const Instruction *I);
+
+  /// This is like \c isSCEVExprNeverPoison but it specifically works for
+  /// instructions that will get mapped to SCEV add recurrences.  Return true
+  /// if \p I will never generate poison under the assumption that \p I is an
+  /// add recurrence on the loop \p L.
+  bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
+
+  /// Similar to createAddRecFromPHI, but with the additional flexibility of
+  /// suggesting runtime overflow checks in case casts are encountered.
+  /// If successful, the analysis records that for this loop, \p SymbolicPHI,
+  /// which is the UnknownSCEV currently representing the PHI, can be rewritten
+  /// into an AddRec, assuming some predicates; The function then returns the
+  /// AddRec and the predicates as a pair, and caches this pair in
+  /// PredicatedSCEVRewrites.
+  /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
+  /// itself (with no predicates) is recorded, and a nullptr with an empty
+  /// predicates vector is returned as a pair.
+  Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
+  createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
+
+  /// Compute the backedge taken count knowing the interval difference, the
+  /// stride and presence of the equality in the comparison.
+  const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
+                             bool Equality);
+
+  /// Compute the maximum backedge count based on the range of values
+  /// permitted by Start, End, and Stride. This is for loops of the form
+  /// {Start, +, Stride} LT End.
+  ///
+  /// Precondition: the induction variable is known to be positive.  We *don't*
+  /// assert these preconditions so please be careful.
+  const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
+                                     const SCEV *End, unsigned BitWidth,
+                                     bool IsSigned);
+
+  /// Verify if an linear IV with positive stride can overflow when in a
+  /// less-than comparison, knowing the invariant term of the comparison,
+  /// the stride and the knowledge of NSW/NUW flags on the recurrence.
+  bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
+                          bool NoWrap);
+
+  /// Verify if an linear IV with negative stride can overflow when in a
+  /// greater-than comparison, knowing the invariant term of the comparison,
+  /// the stride and the knowledge of NSW/NUW flags on the recurrence.
+  bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
+                          bool NoWrap);
+
+  /// Get add expr already created or create a new one.
+  const SCEV *getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
+                                 SCEV::NoWrapFlags Flags);
+
+  /// Get mul expr already created or create a new one.
+  const SCEV *getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
+                                 SCEV::NoWrapFlags Flags);
+
+  /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
+  /// A loop is considered "used" by an expression if it contains
+  /// an add rec on said loop.
+  void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
+
+  /// Find all of the loops transitively used in \p S, and update \c LoopUsers
+  /// accordingly.
+  void addToLoopUseLists(const SCEV *S);
+
+  FoldingSet<SCEV> UniqueSCEVs;
+  FoldingSet<SCEVPredicate> UniquePreds;
+  BumpPtrAllocator SCEVAllocator;
+
+  /// This maps loops to a list of SCEV expressions that (transitively) use said
+  /// loop.
+  DenseMap<const Loop *, SmallVector<const SCEV *, 4>> LoopUsers;
+
+  /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
+  /// they can be rewritten into under certain predicates.
+  DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
+           std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
+      PredicatedSCEVRewrites;
+
+  /// The head of a linked list of all SCEVUnknown values that have been
+  /// allocated. This is used by releaseMemory to locate them all and call
+  /// their destructors.
+  SCEVUnknown *FirstUnknown = nullptr;
+};
+
+/// Analysis pass that exposes the \c ScalarEvolution for a function.
+class ScalarEvolutionAnalysis
+    : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
+  friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
+
+  static AnalysisKey Key;
+
+public:
+  using Result = ScalarEvolution;
+
+  ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// Printer pass for the \c ScalarEvolutionAnalysis results.
+class ScalarEvolutionPrinterPass
+    : public PassInfoMixin<ScalarEvolutionPrinterPass> {
+  raw_ostream &OS;
+
+public:
+  explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
+
+  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+class ScalarEvolutionWrapperPass : public FunctionPass {
+  std::unique_ptr<ScalarEvolution> SE;
+
+public:
+  static char ID;
+
+  ScalarEvolutionWrapperPass();
+
+  ScalarEvolution &getSE() { return *SE; }
+  const ScalarEvolution &getSE() const { return *SE; }
+
+  bool runOnFunction(Function &F) override;
+  void releaseMemory() override;
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+  void print(raw_ostream &OS, const Module * = nullptr) const override;
+  void verifyAnalysis() const override;
+};
+
+/// An interface layer with SCEV used to manage how we see SCEV expressions
+/// for values in the context of existing predicates. We can add new
+/// predicates, but we cannot remove them.
+///
+/// This layer has multiple purposes:
+///   - provides a simple interface for SCEV versioning.
+///   - guarantees that the order of transformations applied on a SCEV
+///     expression for a single Value is consistent across two different
+///     getSCEV calls. This means that, for example, once we've obtained
+///     an AddRec expression for a certain value through expression
+///     rewriting, we will continue to get an AddRec expression for that
+///     Value.
+///   - lowers the number of expression rewrites.
+class PredicatedScalarEvolution {
+public:
+  PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
+
+  const SCEVUnionPredicate &getUnionPredicate() const;
+
+  /// Returns the SCEV expression of V, in the context of the current SCEV
+  /// predicate.  The order of transformations applied on the expression of V
+  /// returned by ScalarEvolution is guaranteed to be preserved, even when
+  /// adding new predicates.
+  const SCEV *getSCEV(Value *V);
+
+  /// Get the (predicated) backedge count for the analyzed loop.
+  const SCEV *getBackedgeTakenCount();
+
+  /// Adds a new predicate.
+  void addPredicate(const SCEVPredicate &Pred);
+
+  /// Attempts to produce an AddRecExpr for V by adding additional SCEV
+  /// predicates. If we can't transform the expression into an AddRecExpr we
+  /// return nullptr and not add additional SCEV predicates to the current
+  /// context.
+  const SCEVAddRecExpr *getAsAddRec(Value *V);
+
+  /// Proves that V doesn't overflow by adding SCEV predicate.
+  void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
+
+  /// Returns true if we've proved that V doesn't wrap by means of a SCEV
+  /// predicate.
+  bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
+
+  /// Returns the ScalarEvolution analysis used.
+  ScalarEvolution *getSE() const { return &SE; }
+
+  /// We need to explicitly define the copy constructor because of FlagsMap.
+  PredicatedScalarEvolution(const PredicatedScalarEvolution &);
+
+  /// Print the SCEV mappings done by the Predicated Scalar Evolution.
+  /// The printed text is indented by \p Depth.
+  void print(raw_ostream &OS, unsigned Depth) const;
+
+  /// Check if \p AR1 and \p AR2 are equal, while taking into account
+  /// Equal predicates in Preds.
+  bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
+                                const SCEVAddRecExpr *AR2) const;
+
+private:
+  /// Increments the version number of the predicate.  This needs to be called
+  /// every time the SCEV predicate changes.
+  void updateGeneration();
+
+  /// Holds a SCEV and the version number of the SCEV predicate used to
+  /// perform the rewrite of the expression.
+  using RewriteEntry = std::pair<unsigned, const SCEV *>;
+
+  /// Maps a SCEV to the rewrite result of that SCEV at a certain version
+  /// number. If this number doesn't match the current Generation, we will
+  /// need to do a rewrite. To preserve the transformation order of previous
+  /// rewrites, we will rewrite the previous result instead of the original
+  /// SCEV.
+  DenseMap<const SCEV *, RewriteEntry> RewriteMap;
+
+  /// Records what NoWrap flags we've added to a Value *.
+  ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
+
+  /// The ScalarEvolution analysis.
+  ScalarEvolution &SE;
+
+  /// The analyzed Loop.
+  const Loop &L;
+
+  /// The SCEVPredicate that forms our context. We will rewrite all
+  /// expressions assuming that this predicate true.
+  SCEVUnionPredicate Preds;
+
+  /// Marks the version of the SCEV predicate used. When rewriting a SCEV
+  /// expression we mark it with the version of the predicate. We use this to
+  /// figure out if the predicate has changed from the last rewrite of the
+  /// SCEV. If so, we need to perform a new rewrite.
+  unsigned Generation = 0;
+
+  /// The backedge taken count.
+  const SCEV *BackedgeCount = nullptr;
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ANALYSIS_SCALAREVOLUTION_H