Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some functions that are useful for math stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| 14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
| 15 | |
| 16 | #include "llvm/Support/Compiler.h" |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 17 | #include <algorithm> |
| 18 | #include <cassert> |
| 19 | #include <climits> |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 20 | #include <cmath> |
| 21 | #include <cstdint> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 22 | #include <cstring> |
| 23 | #include <limits> |
| 24 | #include <type_traits> |
| 25 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 26 | #ifdef __ANDROID_NDK__ |
| 27 | #include <android/api-level.h> |
| 28 | #endif |
| 29 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 30 | #ifdef _MSC_VER |
| 31 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 32 | // expensive, and MathExtras.h is popular. |
| 33 | // #include <intrin.h> |
| 34 | extern "C" { |
| 35 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 36 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 37 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 38 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 39 | } |
| 40 | #endif |
| 41 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 42 | namespace llvm { |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 43 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 44 | /// The behavior an operation has on an input of 0. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 45 | enum ZeroBehavior { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 46 | /// The returned value is undefined. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 47 | ZB_Undefined, |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 48 | /// The returned value is numeric_limits<T>::max() |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 49 | ZB_Max, |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 50 | /// The returned value is numeric_limits<T>::digits |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 51 | ZB_Width |
| 52 | }; |
| 53 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 54 | /// Mathematical constants. |
| 55 | namespace numbers { |
| 56 | // TODO: Track C++20 std::numbers. |
| 57 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
| 58 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
| 59 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
| 60 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
| 61 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
| 62 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
| 63 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
| 64 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
| 65 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
| 66 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
| 67 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
| 68 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
| 69 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
| 70 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
| 71 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
| 72 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
| 73 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
| 74 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
| 75 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
| 76 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
| 77 | log2ef = 1.44269504F, // (0x1.715476P+0) |
| 78 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
| 79 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
| 80 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
| 81 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
| 82 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
| 83 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
| 84 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
| 85 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
| 86 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
| 87 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
| 88 | } // namespace numbers |
| 89 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 90 | namespace detail { |
| 91 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 92 | static unsigned count(T Val, ZeroBehavior) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 93 | if (!Val) |
| 94 | return std::numeric_limits<T>::digits; |
| 95 | if (Val & 0x1) |
| 96 | return 0; |
| 97 | |
| 98 | // Bisection method. |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 99 | unsigned ZeroBits = 0; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 100 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 101 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 102 | while (Shift) { |
| 103 | if ((Val & Mask) == 0) { |
| 104 | Val >>= Shift; |
| 105 | ZeroBits |= Shift; |
| 106 | } |
| 107 | Shift >>= 1; |
| 108 | Mask >>= Shift; |
| 109 | } |
| 110 | return ZeroBits; |
| 111 | } |
| 112 | }; |
| 113 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 114 | #if defined(__GNUC__) || defined(_MSC_VER) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 115 | template <typename T> struct TrailingZerosCounter<T, 4> { |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 116 | static unsigned count(T Val, ZeroBehavior ZB) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 117 | if (ZB != ZB_Undefined && Val == 0) |
| 118 | return 32; |
| 119 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 120 | #if __has_builtin(__builtin_ctz) || defined(__GNUC__) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 121 | return __builtin_ctz(Val); |
| 122 | #elif defined(_MSC_VER) |
| 123 | unsigned long Index; |
| 124 | _BitScanForward(&Index, Val); |
| 125 | return Index; |
| 126 | #endif |
| 127 | } |
| 128 | }; |
| 129 | |
| 130 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 131 | template <typename T> struct TrailingZerosCounter<T, 8> { |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 132 | static unsigned count(T Val, ZeroBehavior ZB) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 133 | if (ZB != ZB_Undefined && Val == 0) |
| 134 | return 64; |
| 135 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 136 | #if __has_builtin(__builtin_ctzll) || defined(__GNUC__) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 137 | return __builtin_ctzll(Val); |
| 138 | #elif defined(_MSC_VER) |
| 139 | unsigned long Index; |
| 140 | _BitScanForward64(&Index, Val); |
| 141 | return Index; |
| 142 | #endif |
| 143 | } |
| 144 | }; |
| 145 | #endif |
| 146 | #endif |
| 147 | } // namespace detail |
| 148 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 149 | /// Count number of 0's from the least significant bit to the most |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 150 | /// stopping at the first 1. |
| 151 | /// |
| 152 | /// Only unsigned integral types are allowed. |
| 153 | /// |
| 154 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 155 | /// valid arguments. |
| 156 | template <typename T> |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 157 | unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 158 | static_assert(std::numeric_limits<T>::is_integer && |
| 159 | !std::numeric_limits<T>::is_signed, |
| 160 | "Only unsigned integral types are allowed."); |
| 161 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 162 | } |
| 163 | |
| 164 | namespace detail { |
| 165 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 166 | static unsigned count(T Val, ZeroBehavior) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 167 | if (!Val) |
| 168 | return std::numeric_limits<T>::digits; |
| 169 | |
| 170 | // Bisection method. |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 171 | unsigned ZeroBits = 0; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 172 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 173 | T Tmp = Val >> Shift; |
| 174 | if (Tmp) |
| 175 | Val = Tmp; |
| 176 | else |
| 177 | ZeroBits |= Shift; |
| 178 | } |
| 179 | return ZeroBits; |
| 180 | } |
| 181 | }; |
| 182 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 183 | #if defined(__GNUC__) || defined(_MSC_VER) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 184 | template <typename T> struct LeadingZerosCounter<T, 4> { |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 185 | static unsigned count(T Val, ZeroBehavior ZB) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 186 | if (ZB != ZB_Undefined && Val == 0) |
| 187 | return 32; |
| 188 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 189 | #if __has_builtin(__builtin_clz) || defined(__GNUC__) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 190 | return __builtin_clz(Val); |
| 191 | #elif defined(_MSC_VER) |
| 192 | unsigned long Index; |
| 193 | _BitScanReverse(&Index, Val); |
| 194 | return Index ^ 31; |
| 195 | #endif |
| 196 | } |
| 197 | }; |
| 198 | |
| 199 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 200 | template <typename T> struct LeadingZerosCounter<T, 8> { |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 201 | static unsigned count(T Val, ZeroBehavior ZB) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 202 | if (ZB != ZB_Undefined && Val == 0) |
| 203 | return 64; |
| 204 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 205 | #if __has_builtin(__builtin_clzll) || defined(__GNUC__) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 206 | return __builtin_clzll(Val); |
| 207 | #elif defined(_MSC_VER) |
| 208 | unsigned long Index; |
| 209 | _BitScanReverse64(&Index, Val); |
| 210 | return Index ^ 63; |
| 211 | #endif |
| 212 | } |
| 213 | }; |
| 214 | #endif |
| 215 | #endif |
| 216 | } // namespace detail |
| 217 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 218 | /// Count number of 0's from the most significant bit to the least |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 219 | /// stopping at the first 1. |
| 220 | /// |
| 221 | /// Only unsigned integral types are allowed. |
| 222 | /// |
| 223 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 224 | /// valid arguments. |
| 225 | template <typename T> |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 226 | unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 227 | static_assert(std::numeric_limits<T>::is_integer && |
| 228 | !std::numeric_limits<T>::is_signed, |
| 229 | "Only unsigned integral types are allowed."); |
| 230 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 231 | } |
| 232 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 233 | /// Get the index of the first set bit starting from the least |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 234 | /// significant bit. |
| 235 | /// |
| 236 | /// Only unsigned integral types are allowed. |
| 237 | /// |
| 238 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 239 | /// valid arguments. |
| 240 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 241 | if (ZB == ZB_Max && Val == 0) |
| 242 | return std::numeric_limits<T>::max(); |
| 243 | |
| 244 | return countTrailingZeros(Val, ZB_Undefined); |
| 245 | } |
| 246 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 247 | /// Create a bitmask with the N right-most bits set to 1, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 248 | /// bits set to 0. Only unsigned types are allowed. |
| 249 | template <typename T> T maskTrailingOnes(unsigned N) { |
| 250 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
| 251 | const unsigned Bits = CHAR_BIT * sizeof(T); |
| 252 | assert(N <= Bits && "Invalid bit index"); |
| 253 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
| 254 | } |
| 255 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 256 | /// Create a bitmask with the N left-most bits set to 1, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 257 | /// bits set to 0. Only unsigned types are allowed. |
| 258 | template <typename T> T maskLeadingOnes(unsigned N) { |
| 259 | return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 260 | } |
| 261 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 262 | /// Create a bitmask with the N right-most bits set to 0, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 263 | /// bits set to 1. Only unsigned types are allowed. |
| 264 | template <typename T> T maskTrailingZeros(unsigned N) { |
| 265 | return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 266 | } |
| 267 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 268 | /// Create a bitmask with the N left-most bits set to 0, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 269 | /// bits set to 1. Only unsigned types are allowed. |
| 270 | template <typename T> T maskLeadingZeros(unsigned N) { |
| 271 | return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 272 | } |
| 273 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 274 | /// Get the index of the last set bit starting from the least |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 275 | /// significant bit. |
| 276 | /// |
| 277 | /// Only unsigned integral types are allowed. |
| 278 | /// |
| 279 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 280 | /// valid arguments. |
| 281 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 282 | if (ZB == ZB_Max && Val == 0) |
| 283 | return std::numeric_limits<T>::max(); |
| 284 | |
| 285 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
| 286 | // in the __builtin_clz intrinsic on x86. |
| 287 | return countLeadingZeros(Val, ZB_Undefined) ^ |
| 288 | (std::numeric_limits<T>::digits - 1); |
| 289 | } |
| 290 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 291 | /// Macro compressed bit reversal table for 256 bits. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 292 | /// |
| 293 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
| 294 | static const unsigned char BitReverseTable256[256] = { |
| 295 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
| 296 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
| 297 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
| 298 | R6(0), R6(2), R6(1), R6(3) |
| 299 | #undef R2 |
| 300 | #undef R4 |
| 301 | #undef R6 |
| 302 | }; |
| 303 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 304 | /// Reverse the bits in \p Val. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 305 | template <typename T> |
| 306 | T reverseBits(T Val) { |
| 307 | unsigned char in[sizeof(Val)]; |
| 308 | unsigned char out[sizeof(Val)]; |
| 309 | std::memcpy(in, &Val, sizeof(Val)); |
| 310 | for (unsigned i = 0; i < sizeof(Val); ++i) |
| 311 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
| 312 | std::memcpy(&Val, out, sizeof(Val)); |
| 313 | return Val; |
| 314 | } |
| 315 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 316 | #if __has_builtin(__builtin_bitreverse8) |
| 317 | template<> |
| 318 | inline uint8_t reverseBits<uint8_t>(uint8_t Val) { |
| 319 | return __builtin_bitreverse8(Val); |
| 320 | } |
| 321 | #endif |
| 322 | |
| 323 | #if __has_builtin(__builtin_bitreverse16) |
| 324 | template<> |
| 325 | inline uint16_t reverseBits<uint16_t>(uint16_t Val) { |
| 326 | return __builtin_bitreverse16(Val); |
| 327 | } |
| 328 | #endif |
| 329 | |
| 330 | #if __has_builtin(__builtin_bitreverse32) |
| 331 | template<> |
| 332 | inline uint32_t reverseBits<uint32_t>(uint32_t Val) { |
| 333 | return __builtin_bitreverse32(Val); |
| 334 | } |
| 335 | #endif |
| 336 | |
| 337 | #if __has_builtin(__builtin_bitreverse64) |
| 338 | template<> |
| 339 | inline uint64_t reverseBits<uint64_t>(uint64_t Val) { |
| 340 | return __builtin_bitreverse64(Val); |
| 341 | } |
| 342 | #endif |
| 343 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 344 | // NOTE: The following support functions use the _32/_64 extensions instead of |
| 345 | // type overloading so that signed and unsigned integers can be used without |
| 346 | // ambiguity. |
| 347 | |
| 348 | /// Return the high 32 bits of a 64 bit value. |
| 349 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
| 350 | return static_cast<uint32_t>(Value >> 32); |
| 351 | } |
| 352 | |
| 353 | /// Return the low 32 bits of a 64 bit value. |
| 354 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
| 355 | return static_cast<uint32_t>(Value); |
| 356 | } |
| 357 | |
| 358 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
| 359 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
| 360 | return ((uint64_t)High << 32) | (uint64_t)Low; |
| 361 | } |
| 362 | |
| 363 | /// Checks if an integer fits into the given bit width. |
| 364 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
| 365 | return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); |
| 366 | } |
| 367 | // Template specializations to get better code for common cases. |
| 368 | template <> constexpr inline bool isInt<8>(int64_t x) { |
| 369 | return static_cast<int8_t>(x) == x; |
| 370 | } |
| 371 | template <> constexpr inline bool isInt<16>(int64_t x) { |
| 372 | return static_cast<int16_t>(x) == x; |
| 373 | } |
| 374 | template <> constexpr inline bool isInt<32>(int64_t x) { |
| 375 | return static_cast<int32_t>(x) == x; |
| 376 | } |
| 377 | |
| 378 | /// Checks if a signed integer is an N bit number shifted left by S. |
| 379 | template <unsigned N, unsigned S> |
| 380 | constexpr inline bool isShiftedInt(int64_t x) { |
| 381 | static_assert( |
| 382 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
| 383 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
| 384 | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
| 385 | } |
| 386 | |
| 387 | /// Checks if an unsigned integer fits into the given bit width. |
| 388 | /// |
| 389 | /// This is written as two functions rather than as simply |
| 390 | /// |
| 391 | /// return N >= 64 || X < (UINT64_C(1) << N); |
| 392 | /// |
| 393 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting |
| 394 | /// left too many places. |
| 395 | template <unsigned N> |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 396 | constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 397 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
| 398 | return X < (UINT64_C(1) << (N)); |
| 399 | } |
| 400 | template <unsigned N> |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 401 | constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t X) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 402 | return true; |
| 403 | } |
| 404 | |
| 405 | // Template specializations to get better code for common cases. |
| 406 | template <> constexpr inline bool isUInt<8>(uint64_t x) { |
| 407 | return static_cast<uint8_t>(x) == x; |
| 408 | } |
| 409 | template <> constexpr inline bool isUInt<16>(uint64_t x) { |
| 410 | return static_cast<uint16_t>(x) == x; |
| 411 | } |
| 412 | template <> constexpr inline bool isUInt<32>(uint64_t x) { |
| 413 | return static_cast<uint32_t>(x) == x; |
| 414 | } |
| 415 | |
| 416 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
| 417 | template <unsigned N, unsigned S> |
| 418 | constexpr inline bool isShiftedUInt(uint64_t x) { |
| 419 | static_assert( |
| 420 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
| 421 | static_assert(N + S <= 64, |
| 422 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
| 423 | // Per the two static_asserts above, S must be strictly less than 64. So |
| 424 | // 1 << S is not undefined behavior. |
| 425 | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
| 426 | } |
| 427 | |
| 428 | /// Gets the maximum value for a N-bit unsigned integer. |
| 429 | inline uint64_t maxUIntN(uint64_t N) { |
| 430 | assert(N > 0 && N <= 64 && "integer width out of range"); |
| 431 | |
| 432 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
| 433 | // (uint64_t(1) << N) - 1 |
| 434 | // without checking first that N != 64. But this works and doesn't have a |
| 435 | // branch. |
| 436 | return UINT64_MAX >> (64 - N); |
| 437 | } |
| 438 | |
| 439 | /// Gets the minimum value for a N-bit signed integer. |
| 440 | inline int64_t minIntN(int64_t N) { |
| 441 | assert(N > 0 && N <= 64 && "integer width out of range"); |
| 442 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 443 | return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 444 | } |
| 445 | |
| 446 | /// Gets the maximum value for a N-bit signed integer. |
| 447 | inline int64_t maxIntN(int64_t N) { |
| 448 | assert(N > 0 && N <= 64 && "integer width out of range"); |
| 449 | |
| 450 | // This relies on two's complement wraparound when N == 64, so we convert to |
| 451 | // int64_t only at the very end to avoid UB. |
| 452 | return (UINT64_C(1) << (N - 1)) - 1; |
| 453 | } |
| 454 | |
| 455 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
| 456 | inline bool isUIntN(unsigned N, uint64_t x) { |
| 457 | return N >= 64 || x <= maxUIntN(N); |
| 458 | } |
| 459 | |
| 460 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
| 461 | inline bool isIntN(unsigned N, int64_t x) { |
| 462 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
| 463 | } |
| 464 | |
| 465 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 466 | /// least significant bit with the remainder zero (32 bit version). |
| 467 | /// Ex. isMask_32(0x0000FFFFU) == true. |
| 468 | constexpr inline bool isMask_32(uint32_t Value) { |
| 469 | return Value && ((Value + 1) & Value) == 0; |
| 470 | } |
| 471 | |
| 472 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 473 | /// least significant bit with the remainder zero (64 bit version). |
| 474 | constexpr inline bool isMask_64(uint64_t Value) { |
| 475 | return Value && ((Value + 1) & Value) == 0; |
| 476 | } |
| 477 | |
| 478 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 479 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 480 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
| 481 | return Value && isMask_32((Value - 1) | Value); |
| 482 | } |
| 483 | |
| 484 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 485 | /// remainder zero (64 bit version.) |
| 486 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
| 487 | return Value && isMask_64((Value - 1) | Value); |
| 488 | } |
| 489 | |
| 490 | /// Return true if the argument is a power of two > 0. |
| 491 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| 492 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
| 493 | return Value && !(Value & (Value - 1)); |
| 494 | } |
| 495 | |
| 496 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
| 497 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
| 498 | return Value && !(Value & (Value - 1)); |
| 499 | } |
| 500 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 501 | /// Count the number of ones from the most significant bit to the first |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 502 | /// zero bit. |
| 503 | /// |
| 504 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
| 505 | /// Only unsigned integral types are allowed. |
| 506 | /// |
| 507 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 508 | /// ZB_Undefined are valid arguments. |
| 509 | template <typename T> |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 510 | unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 511 | static_assert(std::numeric_limits<T>::is_integer && |
| 512 | !std::numeric_limits<T>::is_signed, |
| 513 | "Only unsigned integral types are allowed."); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 514 | return countLeadingZeros<T>(~Value, ZB); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 515 | } |
| 516 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 517 | /// Count the number of ones from the least significant bit to the first |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 518 | /// zero bit. |
| 519 | /// |
| 520 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
| 521 | /// Only unsigned integral types are allowed. |
| 522 | /// |
| 523 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 524 | /// ZB_Undefined are valid arguments. |
| 525 | template <typename T> |
Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame] | 526 | unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 527 | static_assert(std::numeric_limits<T>::is_integer && |
| 528 | !std::numeric_limits<T>::is_signed, |
| 529 | "Only unsigned integral types are allowed."); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 530 | return countTrailingZeros<T>(~Value, ZB); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 531 | } |
| 532 | |
| 533 | namespace detail { |
| 534 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 535 | static unsigned count(T Value) { |
| 536 | // Generic version, forward to 32 bits. |
| 537 | static_assert(SizeOfT <= 4, "Not implemented!"); |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 538 | #if defined(__GNUC__) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 539 | return __builtin_popcount(Value); |
| 540 | #else |
| 541 | uint32_t v = Value; |
| 542 | v = v - ((v >> 1) & 0x55555555); |
| 543 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 544 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
| 545 | #endif |
| 546 | } |
| 547 | }; |
| 548 | |
| 549 | template <typename T> struct PopulationCounter<T, 8> { |
| 550 | static unsigned count(T Value) { |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 551 | #if defined(__GNUC__) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 552 | return __builtin_popcountll(Value); |
| 553 | #else |
| 554 | uint64_t v = Value; |
| 555 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 556 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 557 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 558 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 559 | #endif |
| 560 | } |
| 561 | }; |
| 562 | } // namespace detail |
| 563 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 564 | /// Count the number of set bits in a value. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 565 | /// Ex. countPopulation(0xF000F000) = 8 |
| 566 | /// Returns 0 if the word is zero. |
| 567 | template <typename T> |
| 568 | inline unsigned countPopulation(T Value) { |
| 569 | static_assert(std::numeric_limits<T>::is_integer && |
| 570 | !std::numeric_limits<T>::is_signed, |
| 571 | "Only unsigned integral types are allowed."); |
| 572 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 573 | } |
| 574 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 575 | /// Compile time Log2. |
| 576 | /// Valid only for positive powers of two. |
| 577 | template <size_t kValue> constexpr inline size_t CTLog2() { |
| 578 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), |
| 579 | "Value is not a valid power of 2"); |
| 580 | return 1 + CTLog2<kValue / 2>(); |
| 581 | } |
| 582 | |
| 583 | template <> constexpr inline size_t CTLog2<1>() { return 0; } |
| 584 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 585 | /// Return the log base 2 of the specified value. |
| 586 | inline double Log2(double Value) { |
| 587 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 |
| 588 | return __builtin_log(Value) / __builtin_log(2.0); |
| 589 | #else |
| 590 | return log2(Value); |
| 591 | #endif |
| 592 | } |
| 593 | |
| 594 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 595 | /// (32 bit edition.) |
| 596 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| 597 | inline unsigned Log2_32(uint32_t Value) { |
| 598 | return 31 - countLeadingZeros(Value); |
| 599 | } |
| 600 | |
| 601 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 602 | /// (64 bit edition.) |
| 603 | inline unsigned Log2_64(uint64_t Value) { |
| 604 | return 63 - countLeadingZeros(Value); |
| 605 | } |
| 606 | |
| 607 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
| 608 | /// (32 bit edition). |
| 609 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| 610 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
| 611 | return 32 - countLeadingZeros(Value - 1); |
| 612 | } |
| 613 | |
| 614 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
| 615 | /// (64 bit edition.) |
| 616 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
| 617 | return 64 - countLeadingZeros(Value - 1); |
| 618 | } |
| 619 | |
| 620 | /// Return the greatest common divisor of the values using Euclid's algorithm. |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 621 | template <typename T> |
| 622 | inline T greatestCommonDivisor(T A, T B) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 623 | while (B) { |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 624 | T Tmp = B; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 625 | B = A % B; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 626 | A = Tmp; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 627 | } |
| 628 | return A; |
| 629 | } |
| 630 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 631 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
| 632 | return greatestCommonDivisor<uint64_t>(A, B); |
| 633 | } |
| 634 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 635 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
| 636 | inline double BitsToDouble(uint64_t Bits) { |
| 637 | double D; |
| 638 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 639 | memcpy(&D, &Bits, sizeof(Bits)); |
| 640 | return D; |
| 641 | } |
| 642 | |
| 643 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
| 644 | inline float BitsToFloat(uint32_t Bits) { |
| 645 | float F; |
| 646 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 647 | memcpy(&F, &Bits, sizeof(Bits)); |
| 648 | return F; |
| 649 | } |
| 650 | |
| 651 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
| 652 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
| 653 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 654 | inline uint64_t DoubleToBits(double Double) { |
| 655 | uint64_t Bits; |
| 656 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 657 | memcpy(&Bits, &Double, sizeof(Double)); |
| 658 | return Bits; |
| 659 | } |
| 660 | |
| 661 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
| 662 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
| 663 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 664 | inline uint32_t FloatToBits(float Float) { |
| 665 | uint32_t Bits; |
| 666 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 667 | memcpy(&Bits, &Float, sizeof(Float)); |
| 668 | return Bits; |
| 669 | } |
| 670 | |
| 671 | /// A and B are either alignments or offsets. Return the minimum alignment that |
| 672 | /// may be assumed after adding the two together. |
| 673 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
| 674 | // The largest power of 2 that divides both A and B. |
| 675 | // |
| 676 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
| 677 | // MSVC warning C4146 |
| 678 | // return (A | B) & -(A | B); |
| 679 | return (A | B) & (1 + ~(A | B)); |
| 680 | } |
| 681 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 682 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
| 683 | /// Returns zero on overflow. |
| 684 | inline uint64_t NextPowerOf2(uint64_t A) { |
| 685 | A |= (A >> 1); |
| 686 | A |= (A >> 2); |
| 687 | A |= (A >> 4); |
| 688 | A |= (A >> 8); |
| 689 | A |= (A >> 16); |
| 690 | A |= (A >> 32); |
| 691 | return A + 1; |
| 692 | } |
| 693 | |
| 694 | /// Returns the power of two which is less than or equal to the given value. |
| 695 | /// Essentially, it is a floor operation across the domain of powers of two. |
| 696 | inline uint64_t PowerOf2Floor(uint64_t A) { |
| 697 | if (!A) return 0; |
| 698 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); |
| 699 | } |
| 700 | |
| 701 | /// Returns the power of two which is greater than or equal to the given value. |
| 702 | /// Essentially, it is a ceil operation across the domain of powers of two. |
| 703 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
| 704 | if (!A) |
| 705 | return 0; |
| 706 | return NextPowerOf2(A - 1); |
| 707 | } |
| 708 | |
| 709 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 710 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
| 711 | /// |
| 712 | /// If non-zero \p Skew is specified, the return value will be a minimal |
| 713 | /// integer that is greater than or equal to \p Value and equal to |
| 714 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than |
| 715 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. |
| 716 | /// |
| 717 | /// Examples: |
| 718 | /// \code |
| 719 | /// alignTo(5, 8) = 8 |
| 720 | /// alignTo(17, 8) = 24 |
| 721 | /// alignTo(~0LL, 8) = 0 |
| 722 | /// alignTo(321, 255) = 510 |
| 723 | /// |
| 724 | /// alignTo(5, 8, 7) = 7 |
| 725 | /// alignTo(17, 8, 1) = 17 |
| 726 | /// alignTo(~0LL, 8, 3) = 3 |
| 727 | /// alignTo(321, 255, 42) = 552 |
| 728 | /// \endcode |
| 729 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 730 | assert(Align != 0u && "Align can't be 0."); |
| 731 | Skew %= Align; |
| 732 | return (Value + Align - 1 - Skew) / Align * Align + Skew; |
| 733 | } |
| 734 | |
| 735 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 736 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
| 737 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
| 738 | static_assert(Align != 0u, "Align must be non-zero"); |
| 739 | return (Value + Align - 1) / Align * Align; |
| 740 | } |
| 741 | |
| 742 | /// Returns the integer ceil(Numerator / Denominator). |
| 743 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
| 744 | return alignTo(Numerator, Denominator) / Denominator; |
| 745 | } |
| 746 | |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 747 | /// Returns the integer nearest(Numerator / Denominator). |
| 748 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { |
| 749 | return (Numerator + (Denominator / 2)) / Denominator; |
| 750 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 751 | |
| 752 | /// Returns the largest uint64_t less than or equal to \p Value and is |
| 753 | /// \p Skew mod \p Align. \p Align must be non-zero |
| 754 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 755 | assert(Align != 0u && "Align can't be 0."); |
| 756 | Skew %= Align; |
| 757 | return (Value - Skew) / Align * Align + Skew; |
| 758 | } |
| 759 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 760 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 761 | /// Requires 0 < B <= 32. |
| 762 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
| 763 | static_assert(B > 0, "Bit width can't be 0."); |
| 764 | static_assert(B <= 32, "Bit width out of range."); |
| 765 | return int32_t(X << (32 - B)) >> (32 - B); |
| 766 | } |
| 767 | |
| 768 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 769 | /// Requires 0 < B < 32. |
| 770 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
| 771 | assert(B > 0 && "Bit width can't be 0."); |
| 772 | assert(B <= 32 && "Bit width out of range."); |
| 773 | return int32_t(X << (32 - B)) >> (32 - B); |
| 774 | } |
| 775 | |
| 776 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 777 | /// Requires 0 < B < 64. |
| 778 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
| 779 | static_assert(B > 0, "Bit width can't be 0."); |
| 780 | static_assert(B <= 64, "Bit width out of range."); |
| 781 | return int64_t(x << (64 - B)) >> (64 - B); |
| 782 | } |
| 783 | |
| 784 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 785 | /// Requires 0 < B < 64. |
| 786 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
| 787 | assert(B > 0 && "Bit width can't be 0."); |
| 788 | assert(B <= 64 && "Bit width out of range."); |
| 789 | return int64_t(X << (64 - B)) >> (64 - B); |
| 790 | } |
| 791 | |
| 792 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
| 793 | /// value of the result. |
| 794 | template <typename T> |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 795 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 796 | return std::max(X, Y) - std::min(X, Y); |
| 797 | } |
| 798 | |
| 799 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
| 800 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 801 | /// the result is larger than the maximum representable value of type T. |
| 802 | template <typename T> |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 803 | std::enable_if_t<std::is_unsigned<T>::value, T> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 804 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 805 | bool Dummy; |
| 806 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 807 | // Hacker's Delight, p. 29 |
| 808 | T Z = X + Y; |
| 809 | Overflowed = (Z < X || Z < Y); |
| 810 | if (Overflowed) |
| 811 | return std::numeric_limits<T>::max(); |
| 812 | else |
| 813 | return Z; |
| 814 | } |
| 815 | |
| 816 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
| 817 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 818 | /// the result is larger than the maximum representable value of type T. |
| 819 | template <typename T> |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 820 | std::enable_if_t<std::is_unsigned<T>::value, T> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 821 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 822 | bool Dummy; |
| 823 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 824 | |
| 825 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
| 826 | // because it fails for uint16_t (where multiplication can have undefined |
| 827 | // behavior due to promotion to int), and requires a division in addition |
| 828 | // to the multiplication. |
| 829 | |
| 830 | Overflowed = false; |
| 831 | |
| 832 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
| 833 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
| 834 | // will necessarily be less than Log2Max as desired. |
| 835 | int Log2Z = Log2_64(X) + Log2_64(Y); |
| 836 | const T Max = std::numeric_limits<T>::max(); |
| 837 | int Log2Max = Log2_64(Max); |
| 838 | if (Log2Z < Log2Max) { |
| 839 | return X * Y; |
| 840 | } |
| 841 | if (Log2Z > Log2Max) { |
| 842 | Overflowed = true; |
| 843 | return Max; |
| 844 | } |
| 845 | |
| 846 | // We're going to use the top bit, and maybe overflow one |
| 847 | // bit past it. Multiply all but the bottom bit then add |
| 848 | // that on at the end. |
| 849 | T Z = (X >> 1) * Y; |
| 850 | if (Z & ~(Max >> 1)) { |
| 851 | Overflowed = true; |
| 852 | return Max; |
| 853 | } |
| 854 | Z <<= 1; |
| 855 | if (X & 1) |
| 856 | return SaturatingAdd(Z, Y, ResultOverflowed); |
| 857 | |
| 858 | return Z; |
| 859 | } |
| 860 | |
| 861 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
| 862 | /// the product. Clamp the result to the maximum representable value of T on |
| 863 | /// overflow. ResultOverflowed indicates if the result is larger than the |
| 864 | /// maximum representable value of type T. |
| 865 | template <typename T> |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 866 | std::enable_if_t<std::is_unsigned<T>::value, T> |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 867 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
| 868 | bool Dummy; |
| 869 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 870 | |
| 871 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
| 872 | if (Overflowed) |
| 873 | return Product; |
| 874 | |
| 875 | return SaturatingAdd(A, Product, &Overflowed); |
| 876 | } |
| 877 | |
| 878 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
| 879 | extern const float huge_valf; |
Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 880 | |
| 881 | |
| 882 | /// Add two signed integers, computing the two's complement truncated result, |
| 883 | /// returning true if overflow occured. |
| 884 | template <typename T> |
| 885 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { |
| 886 | #if __has_builtin(__builtin_add_overflow) |
| 887 | return __builtin_add_overflow(X, Y, &Result); |
| 888 | #else |
| 889 | // Perform the unsigned addition. |
| 890 | using U = std::make_unsigned_t<T>; |
| 891 | const U UX = static_cast<U>(X); |
| 892 | const U UY = static_cast<U>(Y); |
| 893 | const U UResult = UX + UY; |
| 894 | |
| 895 | // Convert to signed. |
| 896 | Result = static_cast<T>(UResult); |
| 897 | |
| 898 | // Adding two positive numbers should result in a positive number. |
| 899 | if (X > 0 && Y > 0) |
| 900 | return Result <= 0; |
| 901 | // Adding two negatives should result in a negative number. |
| 902 | if (X < 0 && Y < 0) |
| 903 | return Result >= 0; |
| 904 | return false; |
| 905 | #endif |
| 906 | } |
| 907 | |
| 908 | /// Subtract two signed integers, computing the two's complement truncated |
| 909 | /// result, returning true if an overflow ocurred. |
| 910 | template <typename T> |
| 911 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { |
| 912 | #if __has_builtin(__builtin_sub_overflow) |
| 913 | return __builtin_sub_overflow(X, Y, &Result); |
| 914 | #else |
| 915 | // Perform the unsigned addition. |
| 916 | using U = std::make_unsigned_t<T>; |
| 917 | const U UX = static_cast<U>(X); |
| 918 | const U UY = static_cast<U>(Y); |
| 919 | const U UResult = UX - UY; |
| 920 | |
| 921 | // Convert to signed. |
| 922 | Result = static_cast<T>(UResult); |
| 923 | |
| 924 | // Subtracting a positive number from a negative results in a negative number. |
| 925 | if (X <= 0 && Y > 0) |
| 926 | return Result >= 0; |
| 927 | // Subtracting a negative number from a positive results in a positive number. |
| 928 | if (X >= 0 && Y < 0) |
| 929 | return Result <= 0; |
| 930 | return false; |
| 931 | #endif |
| 932 | } |
| 933 | |
| 934 | /// Multiply two signed integers, computing the two's complement truncated |
| 935 | /// result, returning true if an overflow ocurred. |
| 936 | template <typename T> |
| 937 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { |
| 938 | // Perform the unsigned multiplication on absolute values. |
| 939 | using U = std::make_unsigned_t<T>; |
| 940 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
| 941 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
| 942 | const U UResult = UX * UY; |
| 943 | |
| 944 | // Convert to signed. |
| 945 | const bool IsNegative = (X < 0) ^ (Y < 0); |
| 946 | Result = IsNegative ? (0 - UResult) : UResult; |
| 947 | |
| 948 | // If any of the args was 0, result is 0 and no overflow occurs. |
| 949 | if (UX == 0 || UY == 0) |
| 950 | return false; |
| 951 | |
| 952 | // UX and UY are in [1, 2^n], where n is the number of digits. |
| 953 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
| 954 | // positive) divided by an argument compares to the other. |
| 955 | if (IsNegative) |
| 956 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
| 957 | else |
| 958 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
| 959 | } |
| 960 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 961 | } // End llvm namespace |
| 962 | |
| 963 | #endif |