blob: acfacbd6c74e6d7bea9c94b5d46d9cec05dbfff1 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various classes for working with Instructions and
10// ConstantExprs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_OPERATOR_H
15#define LLVM_IR_OPERATOR_H
16
17#include "llvm/ADT/None.h"
18#include "llvm/ADT/Optional.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Instruction.h"
21#include "llvm/IR/Type.h"
22#include "llvm/IR/Value.h"
23#include "llvm/Support/Casting.h"
24#include <cstddef>
25
26namespace llvm {
27
28/// This is a utility class that provides an abstraction for the common
29/// functionality between Instructions and ConstantExprs.
30class Operator : public User {
31public:
32 // The Operator class is intended to be used as a utility, and is never itself
33 // instantiated.
34 Operator() = delete;
35 ~Operator() = delete;
36
37 void *operator new(size_t s) = delete;
38
39 /// Return the opcode for this Instruction or ConstantExpr.
40 unsigned getOpcode() const {
41 if (const Instruction *I = dyn_cast<Instruction>(this))
42 return I->getOpcode();
43 return cast<ConstantExpr>(this)->getOpcode();
44 }
45
46 /// If V is an Instruction or ConstantExpr, return its opcode.
47 /// Otherwise return UserOp1.
48 static unsigned getOpcode(const Value *V) {
49 if (const Instruction *I = dyn_cast<Instruction>(V))
50 return I->getOpcode();
51 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
52 return CE->getOpcode();
53 return Instruction::UserOp1;
54 }
55
56 static bool classof(const Instruction *) { return true; }
57 static bool classof(const ConstantExpr *) { return true; }
58 static bool classof(const Value *V) {
59 return isa<Instruction>(V) || isa<ConstantExpr>(V);
60 }
61};
62
63/// Utility class for integer operators which may exhibit overflow - Add, Sub,
64/// Mul, and Shl. It does not include SDiv, despite that operator having the
65/// potential for overflow.
66class OverflowingBinaryOperator : public Operator {
67public:
68 enum {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +020069 AnyWrap = 0,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +010070 NoUnsignedWrap = (1 << 0),
71 NoSignedWrap = (1 << 1)
72 };
73
74private:
75 friend class Instruction;
76 friend class ConstantExpr;
77
78 void setHasNoUnsignedWrap(bool B) {
79 SubclassOptionalData =
80 (SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
81 }
82 void setHasNoSignedWrap(bool B) {
83 SubclassOptionalData =
84 (SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
85 }
86
87public:
88 /// Test whether this operation is known to never
89 /// undergo unsigned overflow, aka the nuw property.
90 bool hasNoUnsignedWrap() const {
91 return SubclassOptionalData & NoUnsignedWrap;
92 }
93
94 /// Test whether this operation is known to never
95 /// undergo signed overflow, aka the nsw property.
96 bool hasNoSignedWrap() const {
97 return (SubclassOptionalData & NoSignedWrap) != 0;
98 }
99
100 static bool classof(const Instruction *I) {
101 return I->getOpcode() == Instruction::Add ||
102 I->getOpcode() == Instruction::Sub ||
103 I->getOpcode() == Instruction::Mul ||
104 I->getOpcode() == Instruction::Shl;
105 }
106 static bool classof(const ConstantExpr *CE) {
107 return CE->getOpcode() == Instruction::Add ||
108 CE->getOpcode() == Instruction::Sub ||
109 CE->getOpcode() == Instruction::Mul ||
110 CE->getOpcode() == Instruction::Shl;
111 }
112 static bool classof(const Value *V) {
113 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
114 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
115 }
116};
117
118/// A udiv or sdiv instruction, which can be marked as "exact",
119/// indicating that no bits are destroyed.
120class PossiblyExactOperator : public Operator {
121public:
122 enum {
123 IsExact = (1 << 0)
124 };
125
126private:
127 friend class Instruction;
128 friend class ConstantExpr;
129
130 void setIsExact(bool B) {
131 SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
132 }
133
134public:
135 /// Test whether this division is known to be exact, with zero remainder.
136 bool isExact() const {
137 return SubclassOptionalData & IsExact;
138 }
139
140 static bool isPossiblyExactOpcode(unsigned OpC) {
141 return OpC == Instruction::SDiv ||
142 OpC == Instruction::UDiv ||
143 OpC == Instruction::AShr ||
144 OpC == Instruction::LShr;
145 }
146
147 static bool classof(const ConstantExpr *CE) {
148 return isPossiblyExactOpcode(CE->getOpcode());
149 }
150 static bool classof(const Instruction *I) {
151 return isPossiblyExactOpcode(I->getOpcode());
152 }
153 static bool classof(const Value *V) {
154 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
155 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
156 }
157};
158
159/// Convenience struct for specifying and reasoning about fast-math flags.
160class FastMathFlags {
161private:
162 friend class FPMathOperator;
163
164 unsigned Flags = 0;
165
166 FastMathFlags(unsigned F) {
167 // If all 7 bits are set, turn this into -1. If the number of bits grows,
168 // this must be updated. This is intended to provide some forward binary
169 // compatibility insurance for the meaning of 'fast' in case bits are added.
170 if (F == 0x7F) Flags = ~0U;
171 else Flags = F;
172 }
173
174public:
175 // This is how the bits are used in Value::SubclassOptionalData so they
176 // should fit there too.
177 // WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
178 // functionality will require a change in how this information is stored.
179 enum {
180 AllowReassoc = (1 << 0),
181 NoNaNs = (1 << 1),
182 NoInfs = (1 << 2),
183 NoSignedZeros = (1 << 3),
184 AllowReciprocal = (1 << 4),
185 AllowContract = (1 << 5),
186 ApproxFunc = (1 << 6)
187 };
188
189 FastMathFlags() = default;
190
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100191 static FastMathFlags getFast() {
192 FastMathFlags FMF;
193 FMF.setFast();
194 return FMF;
195 }
196
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100197 bool any() const { return Flags != 0; }
198 bool none() const { return Flags == 0; }
199 bool all() const { return Flags == ~0U; }
200
201 void clear() { Flags = 0; }
202 void set() { Flags = ~0U; }
203
204 /// Flag queries
205 bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
206 bool noNaNs() const { return 0 != (Flags & NoNaNs); }
207 bool noInfs() const { return 0 != (Flags & NoInfs); }
208 bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
209 bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
210 bool allowContract() const { return 0 != (Flags & AllowContract); }
211 bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
212 /// 'Fast' means all bits are set.
213 bool isFast() const { return all(); }
214
215 /// Flag setters
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100216 void setAllowReassoc(bool B = true) {
217 Flags = (Flags & ~AllowReassoc) | B * AllowReassoc;
218 }
219 void setNoNaNs(bool B = true) {
220 Flags = (Flags & ~NoNaNs) | B * NoNaNs;
221 }
222 void setNoInfs(bool B = true) {
223 Flags = (Flags & ~NoInfs) | B * NoInfs;
224 }
225 void setNoSignedZeros(bool B = true) {
226 Flags = (Flags & ~NoSignedZeros) | B * NoSignedZeros;
227 }
228 void setAllowReciprocal(bool B = true) {
229 Flags = (Flags & ~AllowReciprocal) | B * AllowReciprocal;
230 }
231 void setAllowContract(bool B = true) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100232 Flags = (Flags & ~AllowContract) | B * AllowContract;
233 }
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100234 void setApproxFunc(bool B = true) {
235 Flags = (Flags & ~ApproxFunc) | B * ApproxFunc;
236 }
237 void setFast(bool B = true) { B ? set() : clear(); }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100238
239 void operator&=(const FastMathFlags &OtherFlags) {
240 Flags &= OtherFlags.Flags;
241 }
242};
243
244/// Utility class for floating point operations which can have
245/// information about relaxed accuracy requirements attached to them.
246class FPMathOperator : public Operator {
247private:
248 friend class Instruction;
249
250 /// 'Fast' means all bits are set.
251 void setFast(bool B) {
252 setHasAllowReassoc(B);
253 setHasNoNaNs(B);
254 setHasNoInfs(B);
255 setHasNoSignedZeros(B);
256 setHasAllowReciprocal(B);
257 setHasAllowContract(B);
258 setHasApproxFunc(B);
259 }
260
261 void setHasAllowReassoc(bool B) {
262 SubclassOptionalData =
263 (SubclassOptionalData & ~FastMathFlags::AllowReassoc) |
264 (B * FastMathFlags::AllowReassoc);
265 }
266
267 void setHasNoNaNs(bool B) {
268 SubclassOptionalData =
269 (SubclassOptionalData & ~FastMathFlags::NoNaNs) |
270 (B * FastMathFlags::NoNaNs);
271 }
272
273 void setHasNoInfs(bool B) {
274 SubclassOptionalData =
275 (SubclassOptionalData & ~FastMathFlags::NoInfs) |
276 (B * FastMathFlags::NoInfs);
277 }
278
279 void setHasNoSignedZeros(bool B) {
280 SubclassOptionalData =
281 (SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
282 (B * FastMathFlags::NoSignedZeros);
283 }
284
285 void setHasAllowReciprocal(bool B) {
286 SubclassOptionalData =
287 (SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
288 (B * FastMathFlags::AllowReciprocal);
289 }
290
291 void setHasAllowContract(bool B) {
292 SubclassOptionalData =
293 (SubclassOptionalData & ~FastMathFlags::AllowContract) |
294 (B * FastMathFlags::AllowContract);
295 }
296
297 void setHasApproxFunc(bool B) {
298 SubclassOptionalData =
299 (SubclassOptionalData & ~FastMathFlags::ApproxFunc) |
300 (B * FastMathFlags::ApproxFunc);
301 }
302
303 /// Convenience function for setting multiple fast-math flags.
304 /// FMF is a mask of the bits to set.
305 void setFastMathFlags(FastMathFlags FMF) {
306 SubclassOptionalData |= FMF.Flags;
307 }
308
309 /// Convenience function for copying all fast-math flags.
310 /// All values in FMF are transferred to this operator.
311 void copyFastMathFlags(FastMathFlags FMF) {
312 SubclassOptionalData = FMF.Flags;
313 }
314
315public:
316 /// Test if this operation allows all non-strict floating-point transforms.
317 bool isFast() const {
318 return ((SubclassOptionalData & FastMathFlags::AllowReassoc) != 0 &&
319 (SubclassOptionalData & FastMathFlags::NoNaNs) != 0 &&
320 (SubclassOptionalData & FastMathFlags::NoInfs) != 0 &&
321 (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0 &&
322 (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0 &&
323 (SubclassOptionalData & FastMathFlags::AllowContract) != 0 &&
324 (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0);
325 }
326
327 /// Test if this operation may be simplified with reassociative transforms.
328 bool hasAllowReassoc() const {
329 return (SubclassOptionalData & FastMathFlags::AllowReassoc) != 0;
330 }
331
332 /// Test if this operation's arguments and results are assumed not-NaN.
333 bool hasNoNaNs() const {
334 return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
335 }
336
337 /// Test if this operation's arguments and results are assumed not-infinite.
338 bool hasNoInfs() const {
339 return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
340 }
341
342 /// Test if this operation can ignore the sign of zero.
343 bool hasNoSignedZeros() const {
344 return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
345 }
346
347 /// Test if this operation can use reciprocal multiply instead of division.
348 bool hasAllowReciprocal() const {
349 return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
350 }
351
352 /// Test if this operation can be floating-point contracted (FMA).
353 bool hasAllowContract() const {
354 return (SubclassOptionalData & FastMathFlags::AllowContract) != 0;
355 }
356
357 /// Test if this operation allows approximations of math library functions or
358 /// intrinsics.
359 bool hasApproxFunc() const {
360 return (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0;
361 }
362
363 /// Convenience function for getting all the fast-math flags
364 FastMathFlags getFastMathFlags() const {
365 return FastMathFlags(SubclassOptionalData);
366 }
367
368 /// Get the maximum error permitted by this operation in ULPs. An accuracy of
369 /// 0.0 means that the operation should be performed with the default
370 /// precision.
371 float getFPAccuracy() const;
372
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100373 static bool classof(const Value *V) {
Andrew Scull0372a572018-11-16 15:47:06 +0000374 unsigned Opcode;
375 if (auto *I = dyn_cast<Instruction>(V))
376 Opcode = I->getOpcode();
377 else if (auto *CE = dyn_cast<ConstantExpr>(V))
378 Opcode = CE->getOpcode();
379 else
380 return false;
381
382 switch (Opcode) {
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200383 case Instruction::FNeg:
384 case Instruction::FAdd:
385 case Instruction::FSub:
386 case Instruction::FMul:
387 case Instruction::FDiv:
388 case Instruction::FRem:
389 // FIXME: To clean up and correct the semantics of fast-math-flags, FCmp
390 // should not be treated as a math op, but the other opcodes should.
391 // This would make things consistent with Select/PHI (FP value type
392 // determines whether they are math ops and, therefore, capable of
393 // having fast-math-flags).
Andrew Scull0372a572018-11-16 15:47:06 +0000394 case Instruction::FCmp:
395 return true;
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100396 case Instruction::PHI:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200397 case Instruction::Select:
398 case Instruction::Call: {
399 Type *Ty = V->getType();
400 while (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty))
401 Ty = ArrTy->getElementType();
402 return Ty->isFPOrFPVectorTy();
403 }
Andrew Scull0372a572018-11-16 15:47:06 +0000404 default:
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200405 return false;
Andrew Scull0372a572018-11-16 15:47:06 +0000406 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100407 }
408};
409
410/// A helper template for defining operators for individual opcodes.
411template<typename SuperClass, unsigned Opc>
412class ConcreteOperator : public SuperClass {
413public:
414 static bool classof(const Instruction *I) {
415 return I->getOpcode() == Opc;
416 }
417 static bool classof(const ConstantExpr *CE) {
418 return CE->getOpcode() == Opc;
419 }
420 static bool classof(const Value *V) {
421 return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
422 (isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
423 }
424};
425
426class AddOperator
427 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
428};
429class SubOperator
430 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
431};
432class MulOperator
433 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
434};
435class ShlOperator
436 : public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
437};
438
439class SDivOperator
440 : public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
441};
442class UDivOperator
443 : public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
444};
445class AShrOperator
446 : public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
447};
448class LShrOperator
449 : public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
450};
451
452class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
453
454class GEPOperator
455 : public ConcreteOperator<Operator, Instruction::GetElementPtr> {
456 friend class GetElementPtrInst;
457 friend class ConstantExpr;
458
459 enum {
460 IsInBounds = (1 << 0),
461 // InRangeIndex: bits 1-6
462 };
463
464 void setIsInBounds(bool B) {
465 SubclassOptionalData =
466 (SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
467 }
468
469public:
470 /// Test whether this is an inbounds GEP, as defined by LangRef.html.
471 bool isInBounds() const {
472 return SubclassOptionalData & IsInBounds;
473 }
474
475 /// Returns the offset of the index with an inrange attachment, or None if
476 /// none.
477 Optional<unsigned> getInRangeIndex() const {
478 if (SubclassOptionalData >> 1 == 0) return None;
479 return (SubclassOptionalData >> 1) - 1;
480 }
481
482 inline op_iterator idx_begin() { return op_begin()+1; }
483 inline const_op_iterator idx_begin() const { return op_begin()+1; }
484 inline op_iterator idx_end() { return op_end(); }
485 inline const_op_iterator idx_end() const { return op_end(); }
486
487 Value *getPointerOperand() {
488 return getOperand(0);
489 }
490 const Value *getPointerOperand() const {
491 return getOperand(0);
492 }
493 static unsigned getPointerOperandIndex() {
494 return 0U; // get index for modifying correct operand
495 }
496
497 /// Method to return the pointer operand as a PointerType.
498 Type *getPointerOperandType() const {
499 return getPointerOperand()->getType();
500 }
501
502 Type *getSourceElementType() const;
503 Type *getResultElementType() const;
504
505 /// Method to return the address space of the pointer operand.
506 unsigned getPointerAddressSpace() const {
507 return getPointerOperandType()->getPointerAddressSpace();
508 }
509
510 unsigned getNumIndices() const { // Note: always non-negative
511 return getNumOperands() - 1;
512 }
513
514 bool hasIndices() const {
515 return getNumOperands() > 1;
516 }
517
518 /// Return true if all of the indices of this GEP are zeros.
519 /// If so, the result pointer and the first operand have the same
520 /// value, just potentially different types.
521 bool hasAllZeroIndices() const {
522 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
523 if (ConstantInt *C = dyn_cast<ConstantInt>(I))
524 if (C->isZero())
525 continue;
526 return false;
527 }
528 return true;
529 }
530
531 /// Return true if all of the indices of this GEP are constant integers.
532 /// If so, the result pointer and the first operand have
533 /// a constant offset between them.
534 bool hasAllConstantIndices() const {
535 for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
536 if (!isa<ConstantInt>(I))
537 return false;
538 }
539 return true;
540 }
541
542 unsigned countNonConstantIndices() const {
543 return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
544 return !isa<ConstantInt>(*use);
545 });
546 }
547
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200548 /// Compute the maximum alignment that this GEP is garranteed to preserve.
549 Align getMaxPreservedAlignment(const DataLayout &DL) const;
550
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100551 /// Accumulate the constant address offset of this GEP if possible.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100552 ///
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200553 /// This routine accepts an APInt into which it will try to accumulate the
554 /// constant offset of this GEP.
555 ///
556 /// If \p ExternalAnalysis is provided it will be used to calculate a offset
557 /// when a operand of GEP is not constant.
558 /// For example, for a value \p ExternalAnalysis might try to calculate a
559 /// lower bound. If \p ExternalAnalysis is successful, it should return true.
560 ///
561 /// If the \p ExternalAnalysis returns false or the value returned by \p
562 /// ExternalAnalysis results in a overflow/underflow, this routine returns
563 /// false and the value of the offset APInt is undefined (it is *not*
564 /// preserved!).
565 ///
566 /// The APInt passed into this routine must be at exactly as wide as the
567 /// IntPtr type for the address space of the base GEP pointer.
568 bool accumulateConstantOffset(
569 const DataLayout &DL, APInt &Offset,
570 function_ref<bool(Value &, APInt &)> ExternalAnalysis = nullptr) const;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100571};
572
573class PtrToIntOperator
574 : public ConcreteOperator<Operator, Instruction::PtrToInt> {
575 friend class PtrToInt;
576 friend class ConstantExpr;
577
578public:
579 Value *getPointerOperand() {
580 return getOperand(0);
581 }
582 const Value *getPointerOperand() const {
583 return getOperand(0);
584 }
585
586 static unsigned getPointerOperandIndex() {
587 return 0U; // get index for modifying correct operand
588 }
589
590 /// Method to return the pointer operand as a PointerType.
591 Type *getPointerOperandType() const {
592 return getPointerOperand()->getType();
593 }
594
595 /// Method to return the address space of the pointer operand.
596 unsigned getPointerAddressSpace() const {
597 return cast<PointerType>(getPointerOperandType())->getAddressSpace();
598 }
599};
600
601class BitCastOperator
602 : public ConcreteOperator<Operator, Instruction::BitCast> {
603 friend class BitCastInst;
604 friend class ConstantExpr;
605
606public:
607 Type *getSrcTy() const {
608 return getOperand(0)->getType();
609 }
610
611 Type *getDestTy() const {
612 return getType();
613 }
614};
615
Olivier Deprezf4ef2d02021-04-20 13:36:24 +0200616class AddrSpaceCastOperator
617 : public ConcreteOperator<Operator, Instruction::AddrSpaceCast> {
618 friend class AddrSpaceCastInst;
619 friend class ConstantExpr;
620
621public:
622 Value *getPointerOperand() { return getOperand(0); }
623
624 const Value *getPointerOperand() const { return getOperand(0); }
625
626 unsigned getSrcAddressSpace() const {
627 return getPointerOperand()->getType()->getPointerAddressSpace();
628 }
629
630 unsigned getDestAddressSpace() const {
631 return getType()->getPointerAddressSpace();
632 }
633};
634
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100635} // end namespace llvm
636
637#endif // LLVM_IR_OPERATOR_H