blob: ea6bc2cf19ee6fccafcd586c10a7444e22faac7a [file] [log] [blame]
Olivier Deprezf4ef2d02021-04-20 13:36:24 +02001//===- TFUtils.h - utilities for tensorflow C API ---------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9#ifndef LLVM_ANALYSIS_UTILS_TFUTILS_H
10#define LLVM_ANALYSIS_UTILS_TFUTILS_H
11
12#include "llvm/Config/llvm-config.h"
13
14#ifdef LLVM_HAVE_TF_API
15#include "llvm/IR/LLVMContext.h"
16#include "llvm/Support/JSON.h"
17
18#include <memory>
19#include <vector>
20
21namespace llvm {
22
23/// Load a SavedModel, find the given inputs and outputs, and setup storage
24/// for input tensors. The user is responsible for correctly dimensioning the
25/// input tensors and setting their values before calling evaluate().
26/// To initialize:
27/// - construct the object
28/// - initialize the input tensors using initInput. Indices must correspond to
29/// indices in the InputNames used at construction.
30/// To use:
31/// - set input values by using getInput to get each input tensor, and then
32/// setting internal scalars, for all dimensions (tensors are row-major:
33/// https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/c/c_api.h#L205)
34/// - call evaluate. The input tensors' values are not consumed after this, and
35/// may still be read.
36/// - use the outputs in the output vector
37class TFModelEvaluatorImpl;
38class EvaluationResultImpl;
39
40/// TensorSpec encapsulates the specification of a tensor: its dimensions, or
41/// "shape" (row-major), its type (see TensorSpec::getDataType specializations
42/// for supported types), its name and port (see "TensorFlow: Large-Scale
43/// Machine Learning on Heterogeneous Distributed Systems", section 4.2, para 2:
44/// https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf)
45///
46/// TensorSpec is used to set up a TFModelEvaluator by describing the expected
47/// inputs and outputs.
48class TensorSpec final {
49public:
50 template <typename T>
51 static TensorSpec createSpec(const std::string &Name,
52 const std::vector<int64_t> &Shape,
53 int Port = 0) {
54 return TensorSpec(Name, Port, getDataType<T>(), Shape);
55 }
56
57 const std::string &name() const { return Name; }
58 int port() const { return Port; }
59 int typeIndex() const { return TypeIndex; }
60 const std::vector<int64_t> &shape() const { return Shape; }
61
62 bool operator==(const TensorSpec &Other) const {
63 return Name == Other.Name && Port == Other.Port &&
64 TypeIndex == Other.TypeIndex && Shape == Other.Shape;
65 }
66
67 bool operator!=(const TensorSpec &Other) const { return !(*this == Other); }
68
69 /// Get the number of elements in a tensor with this shape.
70 size_t getElementCount() const { return ElementCount; }
71 /// Get the size, in bytes, of one element.
72 size_t getElementByteSize() const;
73
74 template <typename T> bool isElementType() const {
75 return getDataType<T>() == TypeIndex;
76 }
77
78private:
79 TensorSpec(const std::string &Name, int Port, int TypeIndex,
80 const std::vector<int64_t> &Shape);
81
82 template <typename T> static int getDataType() {
83 llvm_unreachable("Undefined tensor type");
84 }
85
86 std::string Name;
87 int Port = 0;
88 int TypeIndex = 0;
89 std::vector<int64_t> Shape;
90 size_t ElementCount = 0;
91};
92
93/// Construct a TensorSpec from a JSON dictionary of the form:
94/// { "name": <string>,
95/// "port": <int>,
96/// "type": <string. Use LLVM's types, e.g. float, double, int64_t>,
97/// "shape": <array of ints> }
98/// For the "type" field, see the C++ primitive types used in
99/// TFUTILS_SUPPORTED_TYPES.
100Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
101 const json::Value &Value);
102
103struct LoggedFeatureSpec {
104 TensorSpec Spec;
105 Optional<std::string> LoggingName;
106};
107
108/// Load the output specs. If SpecFileOverride is not empty, that path is used.
109/// Otherwise, the file is assumed to be called 'output_spec.json' and be found
110/// under ModelPath (the model directory).
111/// The first output tensor name must match ExpectedDecisionName.
112/// In case of error, the return is None and the error is logged.
113Optional<std::vector<LoggedFeatureSpec>>
114loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
115 StringRef ModelPath, StringRef SpecFileOverride = StringRef());
116
117/// Logging utility - given an ordered specification of features, and assuming
118/// a scalar reward, allow logging feature values and rewards, and then print
119/// as tf.train.SequenceExample text protobuf.
120/// The assumption is that, for an event to be logged (i.e. a set of feature
121/// values and a reward), the user calls the log* API for each feature exactly
122/// once, providing the index matching the position in the feature spec list
123/// provided at construction:
124/// event 0:
125/// logTensorValue(0, ...)
126/// logTensorValue(1, ...)
127/// ...
128/// logReward(...)
129/// event 1:
130/// logTensorValue(0, ...)
131/// logTensorValue(1, ...)
132/// ...
133/// logReward(...)
134///
135/// At the end, call print to generate the protobuf.
136class Logger final {
137public:
138 /// Construct a Logger. If IncludeReward is false, then logReward shouldn't
139 /// be called, and the reward feature won't be printed out.
140 Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
141 const TensorSpec &RewardSpec, bool IncludeReward)
142 : FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
143 RawLogData(FeatureSpecs.size() + IncludeReward),
144 IncludeReward(IncludeReward) {}
145
146 template <typename T> void logReward(T Value) {
147 assert(IncludeReward);
148 logTensorValue(RawLogData.size() - 1, &Value);
149 }
150
151 template <typename T> void logFinalReward(T Value) {
152 assert(RawLogData.back().empty());
153 logReward(Value);
154 }
155
156 template <typename T>
157 void logTensorValue(size_t FeatureID, const T *Value, size_t Size = 1) {
158 const char *Start = reinterpret_cast<const char *>(Value);
159 const char *End = Start + sizeof(T) * Size;
160 RawLogData[FeatureID].insert(RawLogData[FeatureID].end(), Start, End);
161 }
162
163 void print(raw_ostream &OS);
164
165private:
166 std::vector<LoggedFeatureSpec> FeatureSpecs;
167 TensorSpec RewardSpec;
168 /// RawData has one entry per feature, plus one more for the reward.
169 /// Each feature's values are then stored in a vector, in succession.
170 /// This means the ith event is stored at [*][i]
171 std::vector<std::vector<char>> RawLogData;
172 const bool IncludeReward;
173};
174
175class TFModelEvaluator final {
176public:
177 /// The result of a model evaluation. Handles the lifetime of the output
178 /// tensors, which means that their values need to be used before
179 /// the EvaluationResult's dtor is called.
180 class EvaluationResult {
181 public:
182 EvaluationResult(const EvaluationResult &) = delete;
183 EvaluationResult &operator=(const EvaluationResult &Other) = delete;
184
185 EvaluationResult(EvaluationResult &&Other);
186 EvaluationResult &operator=(EvaluationResult &&Other);
187
188 ~EvaluationResult();
189
190 /// Get a (const) pointer to the first element of the tensor at Index.
191 template <typename T> T *getTensorValue(size_t Index) {
192 return static_cast<T *>(getUntypedTensorValue(Index));
193 }
194
195 template <typename T> const T *getTensorValue(size_t Index) const {
196 return static_cast<T *>(getUntypedTensorValue(Index));
197 }
198
199 /// Get a (const) pointer to the untyped data of the tensor.
200 void *getUntypedTensorValue(size_t Index);
201 const void *getUntypedTensorValue(size_t Index) const;
202
203 private:
204 friend class TFModelEvaluator;
205 EvaluationResult(std::unique_ptr<EvaluationResultImpl> Impl);
206 std::unique_ptr<EvaluationResultImpl> Impl;
207 };
208
209 TFModelEvaluator(StringRef SavedModelPath,
210 const std::vector<TensorSpec> &InputSpecs,
211 const std::vector<TensorSpec> &OutputSpecs,
212 const char *Tags = "serve");
213 TFModelEvaluator(StringRef SavedModelPath,
214 const std::vector<TensorSpec> &InputSpecs,
215 function_ref<TensorSpec(size_t)> GetOutputSpecs,
216 size_t OutputSpecsSize, const char *Tags = "serve");
217
218 ~TFModelEvaluator();
219 TFModelEvaluator(const TFModelEvaluator &) = delete;
220 TFModelEvaluator(TFModelEvaluator &&) = delete;
221
222 /// Evaluate the model, assuming it is valid. Returns None if the evaluation
223 /// fails or the model is invalid, or an EvaluationResult otherwise. The
224 /// inputs are assumed to have been already provided via getInput(). When
225 /// returning None, it also invalidates this object.
226 Optional<EvaluationResult> evaluate();
227
228 /// Provides access to the input vector.
229 template <typename T> T *getInput(size_t Index) {
230 return static_cast<T *>(getUntypedInput(Index));
231 }
232
233 /// Returns true if the tensorflow model was loaded successfully, false
234 /// otherwise.
235 bool isValid() const { return !!Impl; }
236
237private:
238 void *getUntypedInput(size_t Index);
239 std::unique_ptr<TFModelEvaluatorImpl> Impl;
240};
241
242/// List of supported types, as a pair:
243/// - C++ type
244/// - enum name (implementation-specific)
245#define TFUTILS_SUPPORTED_TYPES(M) \
246 M(float, TF_FLOAT) \
247 M(double, TF_DOUBLE) \
248 M(int8_t, TF_INT8) \
249 M(uint8_t, TF_UINT8) \
250 M(int16_t, TF_INT16) \
251 M(uint16_t, TF_UINT16) \
252 M(int32_t, TF_INT32) \
253 M(uint32_t, TF_UINT32) \
254 M(int64_t, TF_INT64) \
255 M(uint64_t, TF_UINT64)
256
257#define TFUTILS_GETDATATYPE_DEF(T, E) \
258 template <> int TensorSpec::getDataType<T>();
259
260TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_DEF)
261
262#undef TFUTILS_GETDATATYPE_DEF
263} // namespace llvm
264
265#endif // LLVM_HAVE_TF_API
266#endif // LLVM_ANALYSIS_UTILS_TFUTILS_H