Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements an abstract sparse conditional propagation algorithm, |
| 10 | // modeled after SCCP, but with a customizable lattice function. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H |
| 15 | #define LLVM_ANALYSIS_SPARSEPROPAGATION_H |
| 16 | |
| 17 | #include "llvm/IR/Instructions.h" |
| 18 | #include "llvm/Support/Debug.h" |
| 19 | #include <set> |
| 20 | |
| 21 | #define DEBUG_TYPE "sparseprop" |
| 22 | |
| 23 | namespace llvm { |
| 24 | |
| 25 | /// A template for translating between LLVM Values and LatticeKeys. Clients must |
| 26 | /// provide a specialization of LatticeKeyInfo for their LatticeKey type. |
| 27 | template <class LatticeKey> struct LatticeKeyInfo { |
| 28 | // static inline Value *getValueFromLatticeKey(LatticeKey Key); |
| 29 | // static inline LatticeKey getLatticeKeyFromValue(Value *V); |
| 30 | }; |
| 31 | |
| 32 | template <class LatticeKey, class LatticeVal, |
| 33 | class KeyInfo = LatticeKeyInfo<LatticeKey>> |
| 34 | class SparseSolver; |
| 35 | |
| 36 | /// AbstractLatticeFunction - This class is implemented by the dataflow instance |
| 37 | /// to specify what the lattice values are and how they handle merges etc. This |
| 38 | /// gives the client the power to compute lattice values from instructions, |
| 39 | /// constants, etc. The current requirement is that lattice values must be |
| 40 | /// copyable. At the moment, nothing tries to avoid copying. Additionally, |
| 41 | /// lattice keys must be able to be used as keys of a mapping data structure. |
| 42 | /// Internally, the generic solver currently uses a DenseMap to map lattice keys |
| 43 | /// to lattice values. If the lattice key is a non-standard type, a |
| 44 | /// specialization of DenseMapInfo must be provided. |
| 45 | template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction { |
| 46 | private: |
| 47 | LatticeVal UndefVal, OverdefinedVal, UntrackedVal; |
| 48 | |
| 49 | public: |
| 50 | AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal, |
| 51 | LatticeVal untrackedVal) { |
| 52 | UndefVal = undefVal; |
| 53 | OverdefinedVal = overdefinedVal; |
| 54 | UntrackedVal = untrackedVal; |
| 55 | } |
| 56 | |
| 57 | virtual ~AbstractLatticeFunction() = default; |
| 58 | |
| 59 | LatticeVal getUndefVal() const { return UndefVal; } |
| 60 | LatticeVal getOverdefinedVal() const { return OverdefinedVal; } |
| 61 | LatticeVal getUntrackedVal() const { return UntrackedVal; } |
| 62 | |
| 63 | /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting |
| 64 | /// to the analysis (i.e., it would always return UntrackedVal), this |
| 65 | /// function can return true to avoid pointless work. |
| 66 | virtual bool IsUntrackedValue(LatticeKey Key) { return false; } |
| 67 | |
| 68 | /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the |
| 69 | /// given LatticeKey. |
| 70 | virtual LatticeVal ComputeLatticeVal(LatticeKey Key) { |
| 71 | return getOverdefinedVal(); |
| 72 | } |
| 73 | |
| 74 | /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is |
| 75 | /// one that the we want to handle through ComputeInstructionState. |
| 76 | virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; } |
| 77 | |
| 78 | /// MergeValues - Compute and return the merge of the two specified lattice |
| 79 | /// values. Merging should only move one direction down the lattice to |
| 80 | /// guarantee convergence (toward overdefined). |
| 81 | virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) { |
| 82 | return getOverdefinedVal(); // always safe, never useful. |
| 83 | } |
| 84 | |
| 85 | /// ComputeInstructionState - Compute the LatticeKeys that change as a result |
| 86 | /// of executing instruction \p I. Their associated LatticeVals are store in |
| 87 | /// \p ChangedValues. |
| 88 | virtual void |
| 89 | ComputeInstructionState(Instruction &I, |
| 90 | DenseMap<LatticeKey, LatticeVal> &ChangedValues, |
| 91 | SparseSolver<LatticeKey, LatticeVal> &SS) = 0; |
| 92 | |
| 93 | /// PrintLatticeVal - Render the given LatticeVal to the specified stream. |
| 94 | virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS); |
| 95 | |
| 96 | /// PrintLatticeKey - Render the given LatticeKey to the specified stream. |
| 97 | virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS); |
| 98 | |
| 99 | /// GetValueFromLatticeVal - If the given LatticeVal is representable as an |
| 100 | /// LLVM value, return it; otherwise, return nullptr. If a type is given, the |
| 101 | /// returned value must have the same type. This function is used by the |
| 102 | /// generic solver in attempting to resolve branch and switch conditions. |
| 103 | virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) { |
| 104 | return nullptr; |
| 105 | } |
| 106 | }; |
| 107 | |
| 108 | /// SparseSolver - This class is a general purpose solver for Sparse Conditional |
| 109 | /// Propagation with a programmable lattice function. |
| 110 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 111 | class SparseSolver { |
| 112 | |
| 113 | /// LatticeFunc - This is the object that knows the lattice and how to |
| 114 | /// compute transfer functions. |
| 115 | AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc; |
| 116 | |
| 117 | /// ValueState - Holds the LatticeVals associated with LatticeKeys. |
| 118 | DenseMap<LatticeKey, LatticeVal> ValueState; |
| 119 | |
| 120 | /// BBExecutable - Holds the basic blocks that are executable. |
| 121 | SmallPtrSet<BasicBlock *, 16> BBExecutable; |
| 122 | |
| 123 | /// ValueWorkList - Holds values that should be processed. |
| 124 | SmallVector<Value *, 64> ValueWorkList; |
| 125 | |
| 126 | /// BBWorkList - Holds basic blocks that should be processed. |
| 127 | SmallVector<BasicBlock *, 64> BBWorkList; |
| 128 | |
| 129 | using Edge = std::pair<BasicBlock *, BasicBlock *>; |
| 130 | |
| 131 | /// KnownFeasibleEdges - Entries in this set are edges which have already had |
| 132 | /// PHI nodes retriggered. |
| 133 | std::set<Edge> KnownFeasibleEdges; |
| 134 | |
| 135 | public: |
| 136 | explicit SparseSolver( |
| 137 | AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice) |
| 138 | : LatticeFunc(Lattice) {} |
| 139 | SparseSolver(const SparseSolver &) = delete; |
| 140 | SparseSolver &operator=(const SparseSolver &) = delete; |
| 141 | |
| 142 | /// Solve - Solve for constants and executable blocks. |
| 143 | void Solve(); |
| 144 | |
| 145 | void Print(raw_ostream &OS) const; |
| 146 | |
| 147 | /// getExistingValueState - Return the LatticeVal object corresponding to the |
| 148 | /// given value from the ValueState map. If the value is not in the map, |
| 149 | /// UntrackedVal is returned, unlike the getValueState method. |
| 150 | LatticeVal getExistingValueState(LatticeKey Key) const { |
| 151 | auto I = ValueState.find(Key); |
| 152 | return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal(); |
| 153 | } |
| 154 | |
| 155 | /// getValueState - Return the LatticeVal object corresponding to the given |
| 156 | /// value from the ValueState map. If the value is not in the map, its state |
| 157 | /// is initialized. |
| 158 | LatticeVal getValueState(LatticeKey Key); |
| 159 | |
| 160 | /// isEdgeFeasible - Return true if the control flow edge from the 'From' |
| 161 | /// basic block to the 'To' basic block is currently feasible. If |
| 162 | /// AggressiveUndef is true, then this treats values with unknown lattice |
| 163 | /// values as undefined. This is generally only useful when solving the |
| 164 | /// lattice, not when querying it. |
| 165 | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, |
| 166 | bool AggressiveUndef = false); |
| 167 | |
| 168 | /// isBlockExecutable - Return true if there are any known feasible |
| 169 | /// edges into the basic block. This is generally only useful when |
| 170 | /// querying the lattice. |
| 171 | bool isBlockExecutable(BasicBlock *BB) const { |
| 172 | return BBExecutable.count(BB); |
| 173 | } |
| 174 | |
| 175 | /// MarkBlockExecutable - This method can be used by clients to mark all of |
| 176 | /// the blocks that are known to be intrinsically live in the processed unit. |
| 177 | void MarkBlockExecutable(BasicBlock *BB); |
| 178 | |
| 179 | private: |
| 180 | /// UpdateState - When the state of some LatticeKey is potentially updated to |
| 181 | /// the given LatticeVal, this function notices and adds the LLVM value |
| 182 | /// corresponding the key to the work list, if needed. |
| 183 | void UpdateState(LatticeKey Key, LatticeVal LV); |
| 184 | |
| 185 | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB |
| 186 | /// work list if it is not already executable. |
| 187 | void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest); |
| 188 | |
| 189 | /// getFeasibleSuccessors - Return a vector of booleans to indicate which |
| 190 | /// successors are reachable from a given terminator instruction. |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 191 | void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs, |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 192 | bool AggressiveUndef); |
| 193 | |
| 194 | void visitInst(Instruction &I); |
| 195 | void visitPHINode(PHINode &I); |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 196 | void visitTerminator(Instruction &TI); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 197 | }; |
| 198 | |
| 199 | //===----------------------------------------------------------------------===// |
| 200 | // AbstractLatticeFunction Implementation |
| 201 | //===----------------------------------------------------------------------===// |
| 202 | |
| 203 | template <class LatticeKey, class LatticeVal> |
| 204 | void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal( |
| 205 | LatticeVal V, raw_ostream &OS) { |
| 206 | if (V == UndefVal) |
| 207 | OS << "undefined"; |
| 208 | else if (V == OverdefinedVal) |
| 209 | OS << "overdefined"; |
| 210 | else if (V == UntrackedVal) |
| 211 | OS << "untracked"; |
| 212 | else |
| 213 | OS << "unknown lattice value"; |
| 214 | } |
| 215 | |
| 216 | template <class LatticeKey, class LatticeVal> |
| 217 | void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey( |
| 218 | LatticeKey Key, raw_ostream &OS) { |
| 219 | OS << "unknown lattice key"; |
| 220 | } |
| 221 | |
| 222 | //===----------------------------------------------------------------------===// |
| 223 | // SparseSolver Implementation |
| 224 | //===----------------------------------------------------------------------===// |
| 225 | |
| 226 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 227 | LatticeVal |
| 228 | SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) { |
| 229 | auto I = ValueState.find(Key); |
| 230 | if (I != ValueState.end()) |
| 231 | return I->second; // Common case, in the map |
| 232 | |
| 233 | if (LatticeFunc->IsUntrackedValue(Key)) |
| 234 | return LatticeFunc->getUntrackedVal(); |
| 235 | LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key); |
| 236 | |
| 237 | // If this value is untracked, don't add it to the map. |
| 238 | if (LV == LatticeFunc->getUntrackedVal()) |
| 239 | return LV; |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 240 | return ValueState[Key] = std::move(LV); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 241 | } |
| 242 | |
| 243 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 244 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key, |
| 245 | LatticeVal LV) { |
| 246 | auto I = ValueState.find(Key); |
| 247 | if (I != ValueState.end() && I->second == LV) |
| 248 | return; // No change. |
| 249 | |
| 250 | // Update the state of the given LatticeKey and add its corresponding LLVM |
| 251 | // value to the work list. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 252 | ValueState[Key] = std::move(LV); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 253 | if (Value *V = KeyInfo::getValueFromLatticeKey(Key)) |
| 254 | ValueWorkList.push_back(V); |
| 255 | } |
| 256 | |
| 257 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 258 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable( |
| 259 | BasicBlock *BB) { |
| 260 | if (!BBExecutable.insert(BB).second) |
| 261 | return; |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 262 | LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 263 | BBWorkList.push_back(BB); // Add the block to the work list! |
| 264 | } |
| 265 | |
| 266 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 267 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable( |
| 268 | BasicBlock *Source, BasicBlock *Dest) { |
| 269 | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) |
| 270 | return; // This edge is already known to be executable! |
| 271 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 272 | LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() |
| 273 | << " -> " << Dest->getName() << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 274 | |
| 275 | if (BBExecutable.count(Dest)) { |
| 276 | // The destination is already executable, but we just made an edge |
| 277 | // feasible that wasn't before. Revisit the PHI nodes in the block |
| 278 | // because they have potentially new operands. |
| 279 | for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I) |
| 280 | visitPHINode(*cast<PHINode>(I)); |
| 281 | } else { |
| 282 | MarkBlockExecutable(Dest); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 287 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors( |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 288 | Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 289 | Succs.resize(TI.getNumSuccessors()); |
| 290 | if (TI.getNumSuccessors() == 0) |
| 291 | return; |
| 292 | |
| 293 | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { |
| 294 | if (BI->isUnconditional()) { |
| 295 | Succs[0] = true; |
| 296 | return; |
| 297 | } |
| 298 | |
| 299 | LatticeVal BCValue; |
| 300 | if (AggressiveUndef) |
| 301 | BCValue = |
| 302 | getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition())); |
| 303 | else |
| 304 | BCValue = getExistingValueState( |
| 305 | KeyInfo::getLatticeKeyFromValue(BI->getCondition())); |
| 306 | |
| 307 | if (BCValue == LatticeFunc->getOverdefinedVal() || |
| 308 | BCValue == LatticeFunc->getUntrackedVal()) { |
| 309 | // Overdefined condition variables can branch either way. |
| 310 | Succs[0] = Succs[1] = true; |
| 311 | return; |
| 312 | } |
| 313 | |
| 314 | // If undefined, neither is feasible yet. |
| 315 | if (BCValue == LatticeFunc->getUndefVal()) |
| 316 | return; |
| 317 | |
| 318 | Constant *C = |
| 319 | dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 320 | std::move(BCValue), BI->getCondition()->getType())); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 321 | if (!C || !isa<ConstantInt>(C)) { |
| 322 | // Non-constant values can go either way. |
| 323 | Succs[0] = Succs[1] = true; |
| 324 | return; |
| 325 | } |
| 326 | |
| 327 | // Constant condition variables mean the branch can only go a single way |
| 328 | Succs[C->isNullValue()] = true; |
| 329 | return; |
| 330 | } |
| 331 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 332 | if (TI.isExceptionalTerminator() || |
| 333 | TI.isIndirectTerminator()) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 334 | Succs.assign(Succs.size(), true); |
| 335 | return; |
| 336 | } |
| 337 | |
| 338 | SwitchInst &SI = cast<SwitchInst>(TI); |
| 339 | LatticeVal SCValue; |
| 340 | if (AggressiveUndef) |
| 341 | SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition())); |
| 342 | else |
| 343 | SCValue = getExistingValueState( |
| 344 | KeyInfo::getLatticeKeyFromValue(SI.getCondition())); |
| 345 | |
| 346 | if (SCValue == LatticeFunc->getOverdefinedVal() || |
| 347 | SCValue == LatticeFunc->getUntrackedVal()) { |
| 348 | // All destinations are executable! |
| 349 | Succs.assign(TI.getNumSuccessors(), true); |
| 350 | return; |
| 351 | } |
| 352 | |
| 353 | // If undefined, neither is feasible yet. |
| 354 | if (SCValue == LatticeFunc->getUndefVal()) |
| 355 | return; |
| 356 | |
| 357 | Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal( |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 358 | std::move(SCValue), SI.getCondition()->getType())); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 359 | if (!C || !isa<ConstantInt>(C)) { |
| 360 | // All destinations are executable! |
| 361 | Succs.assign(TI.getNumSuccessors(), true); |
| 362 | return; |
| 363 | } |
| 364 | SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C)); |
| 365 | Succs[Case.getSuccessorIndex()] = true; |
| 366 | } |
| 367 | |
| 368 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 369 | bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible( |
| 370 | BasicBlock *From, BasicBlock *To, bool AggressiveUndef) { |
| 371 | SmallVector<bool, 16> SuccFeasible; |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 372 | Instruction *TI = From->getTerminator(); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 373 | getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef); |
| 374 | |
| 375 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| 376 | if (TI->getSuccessor(i) == To && SuccFeasible[i]) |
| 377 | return true; |
| 378 | |
| 379 | return false; |
| 380 | } |
| 381 | |
| 382 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 383 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator( |
| 384 | Instruction &TI) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 385 | SmallVector<bool, 16> SuccFeasible; |
| 386 | getFeasibleSuccessors(TI, SuccFeasible, true); |
| 387 | |
| 388 | BasicBlock *BB = TI.getParent(); |
| 389 | |
| 390 | // Mark all feasible successors executable... |
| 391 | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) |
| 392 | if (SuccFeasible[i]) |
| 393 | markEdgeExecutable(BB, TI.getSuccessor(i)); |
| 394 | } |
| 395 | |
| 396 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 397 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) { |
| 398 | // The lattice function may store more information on a PHINode than could be |
| 399 | // computed from its incoming values. For example, SSI form stores its sigma |
| 400 | // functions as PHINodes with a single incoming value. |
| 401 | if (LatticeFunc->IsSpecialCasedPHI(&PN)) { |
| 402 | DenseMap<LatticeKey, LatticeVal> ChangedValues; |
| 403 | LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this); |
| 404 | for (auto &ChangedValue : ChangedValues) |
| 405 | if (ChangedValue.second != LatticeFunc->getUntrackedVal()) |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 406 | UpdateState(std::move(ChangedValue.first), |
| 407 | std::move(ChangedValue.second)); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 408 | return; |
| 409 | } |
| 410 | |
| 411 | LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN); |
| 412 | LatticeVal PNIV = getValueState(Key); |
| 413 | LatticeVal Overdefined = LatticeFunc->getOverdefinedVal(); |
| 414 | |
| 415 | // If this value is already overdefined (common) just return. |
| 416 | if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal()) |
| 417 | return; // Quick exit |
| 418 | |
| 419 | // Super-extra-high-degree PHI nodes are unlikely to ever be interesting, |
| 420 | // and slow us down a lot. Just mark them overdefined. |
| 421 | if (PN.getNumIncomingValues() > 64) { |
| 422 | UpdateState(Key, Overdefined); |
| 423 | return; |
| 424 | } |
| 425 | |
| 426 | // Look at all of the executable operands of the PHI node. If any of them |
| 427 | // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the |
| 428 | // transfer function to give us the merge of the incoming values. |
| 429 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| 430 | // If the edge is not yet known to be feasible, it doesn't impact the PHI. |
| 431 | if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true)) |
| 432 | continue; |
| 433 | |
| 434 | // Merge in this value. |
| 435 | LatticeVal OpVal = |
| 436 | getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i))); |
| 437 | if (OpVal != PNIV) |
| 438 | PNIV = LatticeFunc->MergeValues(PNIV, OpVal); |
| 439 | |
| 440 | if (PNIV == Overdefined) |
| 441 | break; // Rest of input values don't matter. |
| 442 | } |
| 443 | |
| 444 | // Update the PHI with the compute value, which is the merge of the inputs. |
| 445 | UpdateState(Key, PNIV); |
| 446 | } |
| 447 | |
| 448 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 449 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) { |
| 450 | // PHIs are handled by the propagation logic, they are never passed into the |
| 451 | // transfer functions. |
| 452 | if (PHINode *PN = dyn_cast<PHINode>(&I)) |
| 453 | return visitPHINode(*PN); |
| 454 | |
| 455 | // Otherwise, ask the transfer function what the result is. If this is |
| 456 | // something that we care about, remember it. |
| 457 | DenseMap<LatticeKey, LatticeVal> ChangedValues; |
| 458 | LatticeFunc->ComputeInstructionState(I, ChangedValues, *this); |
| 459 | for (auto &ChangedValue : ChangedValues) |
| 460 | if (ChangedValue.second != LatticeFunc->getUntrackedVal()) |
| 461 | UpdateState(ChangedValue.first, ChangedValue.second); |
| 462 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 463 | if (I.isTerminator()) |
| 464 | visitTerminator(I); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 465 | } |
| 466 | |
| 467 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 468 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() { |
| 469 | // Process the work lists until they are empty! |
| 470 | while (!BBWorkList.empty() || !ValueWorkList.empty()) { |
| 471 | // Process the value work list. |
| 472 | while (!ValueWorkList.empty()) { |
| 473 | Value *V = ValueWorkList.back(); |
| 474 | ValueWorkList.pop_back(); |
| 475 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 476 | LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n"); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 477 | |
| 478 | // "V" got into the work list because it made a transition. See if any |
| 479 | // users are both live and in need of updating. |
| 480 | for (User *U : V->users()) |
| 481 | if (Instruction *Inst = dyn_cast<Instruction>(U)) |
| 482 | if (BBExecutable.count(Inst->getParent())) // Inst is executable? |
| 483 | visitInst(*Inst); |
| 484 | } |
| 485 | |
| 486 | // Process the basic block work list. |
| 487 | while (!BBWorkList.empty()) { |
| 488 | BasicBlock *BB = BBWorkList.back(); |
| 489 | BBWorkList.pop_back(); |
| 490 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 491 | LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 492 | |
| 493 | // Notify all instructions in this basic block that they are newly |
| 494 | // executable. |
| 495 | for (Instruction &I : *BB) |
| 496 | visitInst(I); |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | template <class LatticeKey, class LatticeVal, class KeyInfo> |
| 502 | void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print( |
| 503 | raw_ostream &OS) const { |
| 504 | if (ValueState.empty()) |
| 505 | return; |
| 506 | |
| 507 | LatticeKey Key; |
| 508 | LatticeVal LV; |
| 509 | |
| 510 | OS << "ValueState:\n"; |
| 511 | for (auto &Entry : ValueState) { |
| 512 | std::tie(Key, LV) = Entry; |
| 513 | if (LV == LatticeFunc->getUntrackedVal()) |
| 514 | continue; |
| 515 | OS << "\t"; |
| 516 | LatticeFunc->PrintLatticeVal(LV, OS); |
| 517 | OS << ": "; |
| 518 | LatticeFunc->PrintLatticeKey(Key, OS); |
| 519 | OS << "\n"; |
| 520 | } |
| 521 | } |
| 522 | } // end namespace llvm |
| 523 | |
| 524 | #undef DEBUG_TYPE |
| 525 | |
| 526 | #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H |