Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/ADT/SparseBitVector.h - Efficient Sparse BitVector --*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the SparseBitVector class. See the doxygen comment for |
| 10 | // SparseBitVector for more details on the algorithm used. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_SPARSEBITVECTOR_H |
| 15 | #define LLVM_ADT_SPARSEBITVECTOR_H |
| 16 | |
| 17 | #include "llvm/Support/ErrorHandling.h" |
| 18 | #include "llvm/Support/MathExtras.h" |
| 19 | #include "llvm/Support/raw_ostream.h" |
| 20 | #include <cassert> |
| 21 | #include <climits> |
| 22 | #include <cstring> |
| 23 | #include <iterator> |
| 24 | #include <list> |
| 25 | |
| 26 | namespace llvm { |
| 27 | |
| 28 | /// SparseBitVector is an implementation of a bitvector that is sparse by only |
| 29 | /// storing the elements that have non-zero bits set. In order to make this |
| 30 | /// fast for the most common cases, SparseBitVector is implemented as a linked |
| 31 | /// list of SparseBitVectorElements. We maintain a pointer to the last |
| 32 | /// SparseBitVectorElement accessed (in the form of a list iterator), in order |
| 33 | /// to make multiple in-order test/set constant time after the first one is |
| 34 | /// executed. Note that using vectors to store SparseBitVectorElement's does |
| 35 | /// not work out very well because it causes insertion in the middle to take |
| 36 | /// enormous amounts of time with a large amount of bits. Other structures that |
| 37 | /// have better worst cases for insertion in the middle (various balanced trees, |
| 38 | /// etc) do not perform as well in practice as a linked list with this iterator |
| 39 | /// kept up to date. They are also significantly more memory intensive. |
| 40 | |
| 41 | template <unsigned ElementSize = 128> struct SparseBitVectorElement { |
| 42 | public: |
| 43 | using BitWord = unsigned long; |
| 44 | using size_type = unsigned; |
| 45 | enum { |
| 46 | BITWORD_SIZE = sizeof(BitWord) * CHAR_BIT, |
| 47 | BITWORDS_PER_ELEMENT = (ElementSize + BITWORD_SIZE - 1) / BITWORD_SIZE, |
| 48 | BITS_PER_ELEMENT = ElementSize |
| 49 | }; |
| 50 | |
| 51 | private: |
| 52 | // Index of Element in terms of where first bit starts. |
| 53 | unsigned ElementIndex; |
| 54 | BitWord Bits[BITWORDS_PER_ELEMENT]; |
| 55 | |
| 56 | SparseBitVectorElement() { |
| 57 | ElementIndex = ~0U; |
| 58 | memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); |
| 59 | } |
| 60 | |
| 61 | public: |
| 62 | explicit SparseBitVectorElement(unsigned Idx) { |
| 63 | ElementIndex = Idx; |
| 64 | memset(&Bits[0], 0, sizeof (BitWord) * BITWORDS_PER_ELEMENT); |
| 65 | } |
| 66 | |
| 67 | // Comparison. |
| 68 | bool operator==(const SparseBitVectorElement &RHS) const { |
| 69 | if (ElementIndex != RHS.ElementIndex) |
| 70 | return false; |
| 71 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
| 72 | if (Bits[i] != RHS.Bits[i]) |
| 73 | return false; |
| 74 | return true; |
| 75 | } |
| 76 | |
| 77 | bool operator!=(const SparseBitVectorElement &RHS) const { |
| 78 | return !(*this == RHS); |
| 79 | } |
| 80 | |
| 81 | // Return the bits that make up word Idx in our element. |
| 82 | BitWord word(unsigned Idx) const { |
| 83 | assert(Idx < BITWORDS_PER_ELEMENT); |
| 84 | return Bits[Idx]; |
| 85 | } |
| 86 | |
| 87 | unsigned index() const { |
| 88 | return ElementIndex; |
| 89 | } |
| 90 | |
| 91 | bool empty() const { |
| 92 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
| 93 | if (Bits[i]) |
| 94 | return false; |
| 95 | return true; |
| 96 | } |
| 97 | |
| 98 | void set(unsigned Idx) { |
| 99 | Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE); |
| 100 | } |
| 101 | |
| 102 | bool test_and_set(unsigned Idx) { |
| 103 | bool old = test(Idx); |
| 104 | if (!old) { |
| 105 | set(Idx); |
| 106 | return true; |
| 107 | } |
| 108 | return false; |
| 109 | } |
| 110 | |
| 111 | void reset(unsigned Idx) { |
| 112 | Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE)); |
| 113 | } |
| 114 | |
| 115 | bool test(unsigned Idx) const { |
| 116 | return Bits[Idx / BITWORD_SIZE] & (1L << (Idx % BITWORD_SIZE)); |
| 117 | } |
| 118 | |
| 119 | size_type count() const { |
| 120 | unsigned NumBits = 0; |
| 121 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
| 122 | NumBits += countPopulation(Bits[i]); |
| 123 | return NumBits; |
| 124 | } |
| 125 | |
| 126 | /// find_first - Returns the index of the first set bit. |
| 127 | int find_first() const { |
| 128 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) |
| 129 | if (Bits[i] != 0) |
| 130 | return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); |
| 131 | llvm_unreachable("Illegal empty element"); |
| 132 | } |
| 133 | |
| 134 | /// find_last - Returns the index of the last set bit. |
| 135 | int find_last() const { |
| 136 | for (unsigned I = 0; I < BITWORDS_PER_ELEMENT; ++I) { |
| 137 | unsigned Idx = BITWORDS_PER_ELEMENT - I - 1; |
| 138 | if (Bits[Idx] != 0) |
| 139 | return Idx * BITWORD_SIZE + BITWORD_SIZE - |
| 140 | countLeadingZeros(Bits[Idx]) - 1; |
| 141 | } |
| 142 | llvm_unreachable("Illegal empty element"); |
| 143 | } |
| 144 | |
| 145 | /// find_next - Returns the index of the next set bit starting from the |
| 146 | /// "Curr" bit. Returns -1 if the next set bit is not found. |
| 147 | int find_next(unsigned Curr) const { |
| 148 | if (Curr >= BITS_PER_ELEMENT) |
| 149 | return -1; |
| 150 | |
| 151 | unsigned WordPos = Curr / BITWORD_SIZE; |
| 152 | unsigned BitPos = Curr % BITWORD_SIZE; |
| 153 | BitWord Copy = Bits[WordPos]; |
| 154 | assert(WordPos <= BITWORDS_PER_ELEMENT |
| 155 | && "Word Position outside of element"); |
| 156 | |
| 157 | // Mask off previous bits. |
| 158 | Copy &= ~0UL << BitPos; |
| 159 | |
| 160 | if (Copy != 0) |
| 161 | return WordPos * BITWORD_SIZE + countTrailingZeros(Copy); |
| 162 | |
| 163 | // Check subsequent words. |
| 164 | for (unsigned i = WordPos+1; i < BITWORDS_PER_ELEMENT; ++i) |
| 165 | if (Bits[i] != 0) |
| 166 | return i * BITWORD_SIZE + countTrailingZeros(Bits[i]); |
| 167 | return -1; |
| 168 | } |
| 169 | |
| 170 | // Union this element with RHS and return true if this one changed. |
| 171 | bool unionWith(const SparseBitVectorElement &RHS) { |
| 172 | bool changed = false; |
| 173 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
| 174 | BitWord old = changed ? 0 : Bits[i]; |
| 175 | |
| 176 | Bits[i] |= RHS.Bits[i]; |
| 177 | if (!changed && old != Bits[i]) |
| 178 | changed = true; |
| 179 | } |
| 180 | return changed; |
| 181 | } |
| 182 | |
| 183 | // Return true if we have any bits in common with RHS |
| 184 | bool intersects(const SparseBitVectorElement &RHS) const { |
| 185 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
| 186 | if (RHS.Bits[i] & Bits[i]) |
| 187 | return true; |
| 188 | } |
| 189 | return false; |
| 190 | } |
| 191 | |
| 192 | // Intersect this Element with RHS and return true if this one changed. |
| 193 | // BecameZero is set to true if this element became all-zero bits. |
| 194 | bool intersectWith(const SparseBitVectorElement &RHS, |
| 195 | bool &BecameZero) { |
| 196 | bool changed = false; |
| 197 | bool allzero = true; |
| 198 | |
| 199 | BecameZero = false; |
| 200 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
| 201 | BitWord old = changed ? 0 : Bits[i]; |
| 202 | |
| 203 | Bits[i] &= RHS.Bits[i]; |
| 204 | if (Bits[i] != 0) |
| 205 | allzero = false; |
| 206 | |
| 207 | if (!changed && old != Bits[i]) |
| 208 | changed = true; |
| 209 | } |
| 210 | BecameZero = allzero; |
| 211 | return changed; |
| 212 | } |
| 213 | |
| 214 | // Intersect this Element with the complement of RHS and return true if this |
| 215 | // one changed. BecameZero is set to true if this element became all-zero |
| 216 | // bits. |
| 217 | bool intersectWithComplement(const SparseBitVectorElement &RHS, |
| 218 | bool &BecameZero) { |
| 219 | bool changed = false; |
| 220 | bool allzero = true; |
| 221 | |
| 222 | BecameZero = false; |
| 223 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
| 224 | BitWord old = changed ? 0 : Bits[i]; |
| 225 | |
| 226 | Bits[i] &= ~RHS.Bits[i]; |
| 227 | if (Bits[i] != 0) |
| 228 | allzero = false; |
| 229 | |
| 230 | if (!changed && old != Bits[i]) |
| 231 | changed = true; |
| 232 | } |
| 233 | BecameZero = allzero; |
| 234 | return changed; |
| 235 | } |
| 236 | |
| 237 | // Three argument version of intersectWithComplement that intersects |
| 238 | // RHS1 & ~RHS2 into this element |
| 239 | void intersectWithComplement(const SparseBitVectorElement &RHS1, |
| 240 | const SparseBitVectorElement &RHS2, |
| 241 | bool &BecameZero) { |
| 242 | bool allzero = true; |
| 243 | |
| 244 | BecameZero = false; |
| 245 | for (unsigned i = 0; i < BITWORDS_PER_ELEMENT; ++i) { |
| 246 | Bits[i] = RHS1.Bits[i] & ~RHS2.Bits[i]; |
| 247 | if (Bits[i] != 0) |
| 248 | allzero = false; |
| 249 | } |
| 250 | BecameZero = allzero; |
| 251 | } |
| 252 | }; |
| 253 | |
| 254 | template <unsigned ElementSize = 128> |
| 255 | class SparseBitVector { |
| 256 | using ElementList = std::list<SparseBitVectorElement<ElementSize>>; |
| 257 | using ElementListIter = typename ElementList::iterator; |
| 258 | using ElementListConstIter = typename ElementList::const_iterator; |
| 259 | enum { |
| 260 | BITWORD_SIZE = SparseBitVectorElement<ElementSize>::BITWORD_SIZE |
| 261 | }; |
| 262 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 263 | ElementList Elements; |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 264 | // Pointer to our current Element. This has no visible effect on the external |
| 265 | // state of a SparseBitVector, it's just used to improve performance in the |
| 266 | // common case of testing/modifying bits with similar indices. |
| 267 | mutable ElementListIter CurrElementIter; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 268 | |
| 269 | // This is like std::lower_bound, except we do linear searching from the |
| 270 | // current position. |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 271 | ElementListIter FindLowerBoundImpl(unsigned ElementIndex) const { |
| 272 | |
| 273 | // We cache a non-const iterator so we're forced to resort to const_cast to |
| 274 | // get the begin/end in the case where 'this' is const. To avoid duplication |
| 275 | // of code with the only difference being whether the const cast is present |
| 276 | // 'this' is always const in this particular function and we sort out the |
| 277 | // difference in FindLowerBound and FindLowerBoundConst. |
| 278 | ElementListIter Begin = |
| 279 | const_cast<SparseBitVector<ElementSize> *>(this)->Elements.begin(); |
| 280 | ElementListIter End = |
| 281 | const_cast<SparseBitVector<ElementSize> *>(this)->Elements.end(); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 282 | |
| 283 | if (Elements.empty()) { |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 284 | CurrElementIter = Begin; |
| 285 | return CurrElementIter; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 286 | } |
| 287 | |
| 288 | // Make sure our current iterator is valid. |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 289 | if (CurrElementIter == End) |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 290 | --CurrElementIter; |
| 291 | |
| 292 | // Search from our current iterator, either backwards or forwards, |
| 293 | // depending on what element we are looking for. |
| 294 | ElementListIter ElementIter = CurrElementIter; |
| 295 | if (CurrElementIter->index() == ElementIndex) { |
| 296 | return ElementIter; |
| 297 | } else if (CurrElementIter->index() > ElementIndex) { |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 298 | while (ElementIter != Begin |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 299 | && ElementIter->index() > ElementIndex) |
| 300 | --ElementIter; |
| 301 | } else { |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 302 | while (ElementIter != End && |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 303 | ElementIter->index() < ElementIndex) |
| 304 | ++ElementIter; |
| 305 | } |
| 306 | CurrElementIter = ElementIter; |
| 307 | return ElementIter; |
| 308 | } |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 309 | ElementListConstIter FindLowerBoundConst(unsigned ElementIndex) const { |
| 310 | return FindLowerBoundImpl(ElementIndex); |
| 311 | } |
| 312 | ElementListIter FindLowerBound(unsigned ElementIndex) { |
| 313 | return FindLowerBoundImpl(ElementIndex); |
| 314 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 315 | |
| 316 | // Iterator to walk set bits in the bitmap. This iterator is a lot uglier |
| 317 | // than it would be, in order to be efficient. |
| 318 | class SparseBitVectorIterator { |
| 319 | private: |
| 320 | bool AtEnd; |
| 321 | |
| 322 | const SparseBitVector<ElementSize> *BitVector = nullptr; |
| 323 | |
| 324 | // Current element inside of bitmap. |
| 325 | ElementListConstIter Iter; |
| 326 | |
| 327 | // Current bit number inside of our bitmap. |
| 328 | unsigned BitNumber; |
| 329 | |
| 330 | // Current word number inside of our element. |
| 331 | unsigned WordNumber; |
| 332 | |
| 333 | // Current bits from the element. |
| 334 | typename SparseBitVectorElement<ElementSize>::BitWord Bits; |
| 335 | |
| 336 | // Move our iterator to the first non-zero bit in the bitmap. |
| 337 | void AdvanceToFirstNonZero() { |
| 338 | if (AtEnd) |
| 339 | return; |
| 340 | if (BitVector->Elements.empty()) { |
| 341 | AtEnd = true; |
| 342 | return; |
| 343 | } |
| 344 | Iter = BitVector->Elements.begin(); |
| 345 | BitNumber = Iter->index() * ElementSize; |
| 346 | unsigned BitPos = Iter->find_first(); |
| 347 | BitNumber += BitPos; |
| 348 | WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; |
| 349 | Bits = Iter->word(WordNumber); |
| 350 | Bits >>= BitPos % BITWORD_SIZE; |
| 351 | } |
| 352 | |
| 353 | // Move our iterator to the next non-zero bit. |
| 354 | void AdvanceToNextNonZero() { |
| 355 | if (AtEnd) |
| 356 | return; |
| 357 | |
| 358 | while (Bits && !(Bits & 1)) { |
| 359 | Bits >>= 1; |
| 360 | BitNumber += 1; |
| 361 | } |
| 362 | |
| 363 | // See if we ran out of Bits in this word. |
| 364 | if (!Bits) { |
| 365 | int NextSetBitNumber = Iter->find_next(BitNumber % ElementSize) ; |
| 366 | // If we ran out of set bits in this element, move to next element. |
| 367 | if (NextSetBitNumber == -1 || (BitNumber % ElementSize == 0)) { |
| 368 | ++Iter; |
| 369 | WordNumber = 0; |
| 370 | |
| 371 | // We may run out of elements in the bitmap. |
| 372 | if (Iter == BitVector->Elements.end()) { |
| 373 | AtEnd = true; |
| 374 | return; |
| 375 | } |
| 376 | // Set up for next non-zero word in bitmap. |
| 377 | BitNumber = Iter->index() * ElementSize; |
| 378 | NextSetBitNumber = Iter->find_first(); |
| 379 | BitNumber += NextSetBitNumber; |
| 380 | WordNumber = (BitNumber % ElementSize) / BITWORD_SIZE; |
| 381 | Bits = Iter->word(WordNumber); |
| 382 | Bits >>= NextSetBitNumber % BITWORD_SIZE; |
| 383 | } else { |
| 384 | WordNumber = (NextSetBitNumber % ElementSize) / BITWORD_SIZE; |
| 385 | Bits = Iter->word(WordNumber); |
| 386 | Bits >>= NextSetBitNumber % BITWORD_SIZE; |
| 387 | BitNumber = Iter->index() * ElementSize; |
| 388 | BitNumber += NextSetBitNumber; |
| 389 | } |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | public: |
| 394 | SparseBitVectorIterator() = default; |
| 395 | |
| 396 | SparseBitVectorIterator(const SparseBitVector<ElementSize> *RHS, |
| 397 | bool end = false):BitVector(RHS) { |
| 398 | Iter = BitVector->Elements.begin(); |
| 399 | BitNumber = 0; |
| 400 | Bits = 0; |
| 401 | WordNumber = ~0; |
| 402 | AtEnd = end; |
| 403 | AdvanceToFirstNonZero(); |
| 404 | } |
| 405 | |
| 406 | // Preincrement. |
| 407 | inline SparseBitVectorIterator& operator++() { |
| 408 | ++BitNumber; |
| 409 | Bits >>= 1; |
| 410 | AdvanceToNextNonZero(); |
| 411 | return *this; |
| 412 | } |
| 413 | |
| 414 | // Postincrement. |
| 415 | inline SparseBitVectorIterator operator++(int) { |
| 416 | SparseBitVectorIterator tmp = *this; |
| 417 | ++*this; |
| 418 | return tmp; |
| 419 | } |
| 420 | |
| 421 | // Return the current set bit number. |
| 422 | unsigned operator*() const { |
| 423 | return BitNumber; |
| 424 | } |
| 425 | |
| 426 | bool operator==(const SparseBitVectorIterator &RHS) const { |
| 427 | // If they are both at the end, ignore the rest of the fields. |
| 428 | if (AtEnd && RHS.AtEnd) |
| 429 | return true; |
| 430 | // Otherwise they are the same if they have the same bit number and |
| 431 | // bitmap. |
| 432 | return AtEnd == RHS.AtEnd && RHS.BitNumber == BitNumber; |
| 433 | } |
| 434 | |
| 435 | bool operator!=(const SparseBitVectorIterator &RHS) const { |
| 436 | return !(*this == RHS); |
| 437 | } |
| 438 | }; |
| 439 | |
| 440 | public: |
| 441 | using iterator = SparseBitVectorIterator; |
| 442 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 443 | SparseBitVector() : Elements(), CurrElementIter(Elements.begin()) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 444 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 445 | SparseBitVector(const SparseBitVector &RHS) |
| 446 | : Elements(RHS.Elements), CurrElementIter(Elements.begin()) {} |
| 447 | SparseBitVector(SparseBitVector &&RHS) |
| 448 | : Elements(std::move(RHS.Elements)), CurrElementIter(Elements.begin()) {} |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 449 | |
| 450 | // Clear. |
| 451 | void clear() { |
| 452 | Elements.clear(); |
| 453 | } |
| 454 | |
| 455 | // Assignment |
| 456 | SparseBitVector& operator=(const SparseBitVector& RHS) { |
| 457 | if (this == &RHS) |
| 458 | return *this; |
| 459 | |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 460 | Elements = RHS.Elements; |
| 461 | CurrElementIter = Elements.begin(); |
| 462 | return *this; |
| 463 | } |
| 464 | SparseBitVector &operator=(SparseBitVector &&RHS) { |
| 465 | Elements = std::move(RHS.Elements); |
| 466 | CurrElementIter = Elements.begin(); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 467 | return *this; |
| 468 | } |
| 469 | |
| 470 | // Test, Reset, and Set a bit in the bitmap. |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 471 | bool test(unsigned Idx) const { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 472 | if (Elements.empty()) |
| 473 | return false; |
| 474 | |
| 475 | unsigned ElementIndex = Idx / ElementSize; |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 476 | ElementListConstIter ElementIter = FindLowerBoundConst(ElementIndex); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 477 | |
| 478 | // If we can't find an element that is supposed to contain this bit, there |
| 479 | // is nothing more to do. |
| 480 | if (ElementIter == Elements.end() || |
| 481 | ElementIter->index() != ElementIndex) |
| 482 | return false; |
| 483 | return ElementIter->test(Idx % ElementSize); |
| 484 | } |
| 485 | |
| 486 | void reset(unsigned Idx) { |
| 487 | if (Elements.empty()) |
| 488 | return; |
| 489 | |
| 490 | unsigned ElementIndex = Idx / ElementSize; |
| 491 | ElementListIter ElementIter = FindLowerBound(ElementIndex); |
| 492 | |
| 493 | // If we can't find an element that is supposed to contain this bit, there |
| 494 | // is nothing more to do. |
| 495 | if (ElementIter == Elements.end() || |
| 496 | ElementIter->index() != ElementIndex) |
| 497 | return; |
| 498 | ElementIter->reset(Idx % ElementSize); |
| 499 | |
| 500 | // When the element is zeroed out, delete it. |
| 501 | if (ElementIter->empty()) { |
| 502 | ++CurrElementIter; |
| 503 | Elements.erase(ElementIter); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | void set(unsigned Idx) { |
| 508 | unsigned ElementIndex = Idx / ElementSize; |
| 509 | ElementListIter ElementIter; |
| 510 | if (Elements.empty()) { |
| 511 | ElementIter = Elements.emplace(Elements.end(), ElementIndex); |
| 512 | } else { |
| 513 | ElementIter = FindLowerBound(ElementIndex); |
| 514 | |
| 515 | if (ElementIter == Elements.end() || |
| 516 | ElementIter->index() != ElementIndex) { |
| 517 | // We may have hit the beginning of our SparseBitVector, in which case, |
| 518 | // we may need to insert right after this element, which requires moving |
| 519 | // the current iterator forward one, because insert does insert before. |
| 520 | if (ElementIter != Elements.end() && |
| 521 | ElementIter->index() < ElementIndex) |
| 522 | ++ElementIter; |
| 523 | ElementIter = Elements.emplace(ElementIter, ElementIndex); |
| 524 | } |
| 525 | } |
| 526 | CurrElementIter = ElementIter; |
| 527 | |
| 528 | ElementIter->set(Idx % ElementSize); |
| 529 | } |
| 530 | |
| 531 | bool test_and_set(unsigned Idx) { |
| 532 | bool old = test(Idx); |
| 533 | if (!old) { |
| 534 | set(Idx); |
| 535 | return true; |
| 536 | } |
| 537 | return false; |
| 538 | } |
| 539 | |
| 540 | bool operator!=(const SparseBitVector &RHS) const { |
| 541 | return !(*this == RHS); |
| 542 | } |
| 543 | |
| 544 | bool operator==(const SparseBitVector &RHS) const { |
| 545 | ElementListConstIter Iter1 = Elements.begin(); |
| 546 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
| 547 | |
| 548 | for (; Iter1 != Elements.end() && Iter2 != RHS.Elements.end(); |
| 549 | ++Iter1, ++Iter2) { |
| 550 | if (*Iter1 != *Iter2) |
| 551 | return false; |
| 552 | } |
| 553 | return Iter1 == Elements.end() && Iter2 == RHS.Elements.end(); |
| 554 | } |
| 555 | |
| 556 | // Union our bitmap with the RHS and return true if we changed. |
| 557 | bool operator|=(const SparseBitVector &RHS) { |
| 558 | if (this == &RHS) |
| 559 | return false; |
| 560 | |
| 561 | bool changed = false; |
| 562 | ElementListIter Iter1 = Elements.begin(); |
| 563 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
| 564 | |
| 565 | // If RHS is empty, we are done |
| 566 | if (RHS.Elements.empty()) |
| 567 | return false; |
| 568 | |
| 569 | while (Iter2 != RHS.Elements.end()) { |
| 570 | if (Iter1 == Elements.end() || Iter1->index() > Iter2->index()) { |
| 571 | Elements.insert(Iter1, *Iter2); |
| 572 | ++Iter2; |
| 573 | changed = true; |
| 574 | } else if (Iter1->index() == Iter2->index()) { |
| 575 | changed |= Iter1->unionWith(*Iter2); |
| 576 | ++Iter1; |
| 577 | ++Iter2; |
| 578 | } else { |
| 579 | ++Iter1; |
| 580 | } |
| 581 | } |
| 582 | CurrElementIter = Elements.begin(); |
| 583 | return changed; |
| 584 | } |
| 585 | |
| 586 | // Intersect our bitmap with the RHS and return true if ours changed. |
| 587 | bool operator&=(const SparseBitVector &RHS) { |
| 588 | if (this == &RHS) |
| 589 | return false; |
| 590 | |
| 591 | bool changed = false; |
| 592 | ElementListIter Iter1 = Elements.begin(); |
| 593 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
| 594 | |
| 595 | // Check if both bitmaps are empty. |
| 596 | if (Elements.empty() && RHS.Elements.empty()) |
| 597 | return false; |
| 598 | |
| 599 | // Loop through, intersecting as we go, erasing elements when necessary. |
| 600 | while (Iter2 != RHS.Elements.end()) { |
| 601 | if (Iter1 == Elements.end()) { |
| 602 | CurrElementIter = Elements.begin(); |
| 603 | return changed; |
| 604 | } |
| 605 | |
| 606 | if (Iter1->index() > Iter2->index()) { |
| 607 | ++Iter2; |
| 608 | } else if (Iter1->index() == Iter2->index()) { |
| 609 | bool BecameZero; |
| 610 | changed |= Iter1->intersectWith(*Iter2, BecameZero); |
| 611 | if (BecameZero) { |
| 612 | ElementListIter IterTmp = Iter1; |
| 613 | ++Iter1; |
| 614 | Elements.erase(IterTmp); |
| 615 | } else { |
| 616 | ++Iter1; |
| 617 | } |
| 618 | ++Iter2; |
| 619 | } else { |
| 620 | ElementListIter IterTmp = Iter1; |
| 621 | ++Iter1; |
| 622 | Elements.erase(IterTmp); |
| 623 | changed = true; |
| 624 | } |
| 625 | } |
| 626 | if (Iter1 != Elements.end()) { |
| 627 | Elements.erase(Iter1, Elements.end()); |
| 628 | changed = true; |
| 629 | } |
| 630 | CurrElementIter = Elements.begin(); |
| 631 | return changed; |
| 632 | } |
| 633 | |
| 634 | // Intersect our bitmap with the complement of the RHS and return true |
| 635 | // if ours changed. |
| 636 | bool intersectWithComplement(const SparseBitVector &RHS) { |
| 637 | if (this == &RHS) { |
| 638 | if (!empty()) { |
| 639 | clear(); |
| 640 | return true; |
| 641 | } |
| 642 | return false; |
| 643 | } |
| 644 | |
| 645 | bool changed = false; |
| 646 | ElementListIter Iter1 = Elements.begin(); |
| 647 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
| 648 | |
| 649 | // If either our bitmap or RHS is empty, we are done |
| 650 | if (Elements.empty() || RHS.Elements.empty()) |
| 651 | return false; |
| 652 | |
| 653 | // Loop through, intersecting as we go, erasing elements when necessary. |
| 654 | while (Iter2 != RHS.Elements.end()) { |
| 655 | if (Iter1 == Elements.end()) { |
| 656 | CurrElementIter = Elements.begin(); |
| 657 | return changed; |
| 658 | } |
| 659 | |
| 660 | if (Iter1->index() > Iter2->index()) { |
| 661 | ++Iter2; |
| 662 | } else if (Iter1->index() == Iter2->index()) { |
| 663 | bool BecameZero; |
| 664 | changed |= Iter1->intersectWithComplement(*Iter2, BecameZero); |
| 665 | if (BecameZero) { |
| 666 | ElementListIter IterTmp = Iter1; |
| 667 | ++Iter1; |
| 668 | Elements.erase(IterTmp); |
| 669 | } else { |
| 670 | ++Iter1; |
| 671 | } |
| 672 | ++Iter2; |
| 673 | } else { |
| 674 | ++Iter1; |
| 675 | } |
| 676 | } |
| 677 | CurrElementIter = Elements.begin(); |
| 678 | return changed; |
| 679 | } |
| 680 | |
| 681 | bool intersectWithComplement(const SparseBitVector<ElementSize> *RHS) const { |
| 682 | return intersectWithComplement(*RHS); |
| 683 | } |
| 684 | |
| 685 | // Three argument version of intersectWithComplement. |
| 686 | // Result of RHS1 & ~RHS2 is stored into this bitmap. |
| 687 | void intersectWithComplement(const SparseBitVector<ElementSize> &RHS1, |
| 688 | const SparseBitVector<ElementSize> &RHS2) |
| 689 | { |
| 690 | if (this == &RHS1) { |
| 691 | intersectWithComplement(RHS2); |
| 692 | return; |
| 693 | } else if (this == &RHS2) { |
| 694 | SparseBitVector RHS2Copy(RHS2); |
| 695 | intersectWithComplement(RHS1, RHS2Copy); |
| 696 | return; |
| 697 | } |
| 698 | |
| 699 | Elements.clear(); |
| 700 | CurrElementIter = Elements.begin(); |
| 701 | ElementListConstIter Iter1 = RHS1.Elements.begin(); |
| 702 | ElementListConstIter Iter2 = RHS2.Elements.begin(); |
| 703 | |
| 704 | // If RHS1 is empty, we are done |
| 705 | // If RHS2 is empty, we still have to copy RHS1 |
| 706 | if (RHS1.Elements.empty()) |
| 707 | return; |
| 708 | |
| 709 | // Loop through, intersecting as we go, erasing elements when necessary. |
| 710 | while (Iter2 != RHS2.Elements.end()) { |
| 711 | if (Iter1 == RHS1.Elements.end()) |
| 712 | return; |
| 713 | |
| 714 | if (Iter1->index() > Iter2->index()) { |
| 715 | ++Iter2; |
| 716 | } else if (Iter1->index() == Iter2->index()) { |
| 717 | bool BecameZero = false; |
| 718 | Elements.emplace_back(Iter1->index()); |
| 719 | Elements.back().intersectWithComplement(*Iter1, *Iter2, BecameZero); |
| 720 | if (BecameZero) |
| 721 | Elements.pop_back(); |
| 722 | ++Iter1; |
| 723 | ++Iter2; |
| 724 | } else { |
| 725 | Elements.push_back(*Iter1++); |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | // copy the remaining elements |
| 730 | std::copy(Iter1, RHS1.Elements.end(), std::back_inserter(Elements)); |
| 731 | } |
| 732 | |
| 733 | void intersectWithComplement(const SparseBitVector<ElementSize> *RHS1, |
| 734 | const SparseBitVector<ElementSize> *RHS2) { |
| 735 | intersectWithComplement(*RHS1, *RHS2); |
| 736 | } |
| 737 | |
| 738 | bool intersects(const SparseBitVector<ElementSize> *RHS) const { |
| 739 | return intersects(*RHS); |
| 740 | } |
| 741 | |
| 742 | // Return true if we share any bits in common with RHS |
| 743 | bool intersects(const SparseBitVector<ElementSize> &RHS) const { |
| 744 | ElementListConstIter Iter1 = Elements.begin(); |
| 745 | ElementListConstIter Iter2 = RHS.Elements.begin(); |
| 746 | |
| 747 | // Check if both bitmaps are empty. |
| 748 | if (Elements.empty() && RHS.Elements.empty()) |
| 749 | return false; |
| 750 | |
| 751 | // Loop through, intersecting stopping when we hit bits in common. |
| 752 | while (Iter2 != RHS.Elements.end()) { |
| 753 | if (Iter1 == Elements.end()) |
| 754 | return false; |
| 755 | |
| 756 | if (Iter1->index() > Iter2->index()) { |
| 757 | ++Iter2; |
| 758 | } else if (Iter1->index() == Iter2->index()) { |
| 759 | if (Iter1->intersects(*Iter2)) |
| 760 | return true; |
| 761 | ++Iter1; |
| 762 | ++Iter2; |
| 763 | } else { |
| 764 | ++Iter1; |
| 765 | } |
| 766 | } |
| 767 | return false; |
| 768 | } |
| 769 | |
| 770 | // Return true iff all bits set in this SparseBitVector are |
| 771 | // also set in RHS. |
| 772 | bool contains(const SparseBitVector<ElementSize> &RHS) const { |
| 773 | SparseBitVector<ElementSize> Result(*this); |
| 774 | Result &= RHS; |
| 775 | return (Result == RHS); |
| 776 | } |
| 777 | |
| 778 | // Return the first set bit in the bitmap. Return -1 if no bits are set. |
| 779 | int find_first() const { |
| 780 | if (Elements.empty()) |
| 781 | return -1; |
| 782 | const SparseBitVectorElement<ElementSize> &First = *(Elements.begin()); |
| 783 | return (First.index() * ElementSize) + First.find_first(); |
| 784 | } |
| 785 | |
| 786 | // Return the last set bit in the bitmap. Return -1 if no bits are set. |
| 787 | int find_last() const { |
| 788 | if (Elements.empty()) |
| 789 | return -1; |
| 790 | const SparseBitVectorElement<ElementSize> &Last = *(Elements.rbegin()); |
| 791 | return (Last.index() * ElementSize) + Last.find_last(); |
| 792 | } |
| 793 | |
| 794 | // Return true if the SparseBitVector is empty |
| 795 | bool empty() const { |
| 796 | return Elements.empty(); |
| 797 | } |
| 798 | |
| 799 | unsigned count() const { |
| 800 | unsigned BitCount = 0; |
| 801 | for (ElementListConstIter Iter = Elements.begin(); |
| 802 | Iter != Elements.end(); |
| 803 | ++Iter) |
| 804 | BitCount += Iter->count(); |
| 805 | |
| 806 | return BitCount; |
| 807 | } |
| 808 | |
| 809 | iterator begin() const { |
| 810 | return iterator(this); |
| 811 | } |
| 812 | |
| 813 | iterator end() const { |
| 814 | return iterator(this, true); |
| 815 | } |
| 816 | }; |
| 817 | |
| 818 | // Convenience functions to allow Or and And without dereferencing in the user |
| 819 | // code. |
| 820 | |
| 821 | template <unsigned ElementSize> |
| 822 | inline bool operator |=(SparseBitVector<ElementSize> &LHS, |
| 823 | const SparseBitVector<ElementSize> *RHS) { |
| 824 | return LHS |= *RHS; |
| 825 | } |
| 826 | |
| 827 | template <unsigned ElementSize> |
| 828 | inline bool operator |=(SparseBitVector<ElementSize> *LHS, |
| 829 | const SparseBitVector<ElementSize> &RHS) { |
| 830 | return LHS->operator|=(RHS); |
| 831 | } |
| 832 | |
| 833 | template <unsigned ElementSize> |
| 834 | inline bool operator &=(SparseBitVector<ElementSize> *LHS, |
| 835 | const SparseBitVector<ElementSize> &RHS) { |
| 836 | return LHS->operator&=(RHS); |
| 837 | } |
| 838 | |
| 839 | template <unsigned ElementSize> |
| 840 | inline bool operator &=(SparseBitVector<ElementSize> &LHS, |
| 841 | const SparseBitVector<ElementSize> *RHS) { |
| 842 | return LHS &= *RHS; |
| 843 | } |
| 844 | |
| 845 | // Convenience functions for infix union, intersection, difference operators. |
| 846 | |
| 847 | template <unsigned ElementSize> |
| 848 | inline SparseBitVector<ElementSize> |
| 849 | operator|(const SparseBitVector<ElementSize> &LHS, |
| 850 | const SparseBitVector<ElementSize> &RHS) { |
| 851 | SparseBitVector<ElementSize> Result(LHS); |
| 852 | Result |= RHS; |
| 853 | return Result; |
| 854 | } |
| 855 | |
| 856 | template <unsigned ElementSize> |
| 857 | inline SparseBitVector<ElementSize> |
| 858 | operator&(const SparseBitVector<ElementSize> &LHS, |
| 859 | const SparseBitVector<ElementSize> &RHS) { |
| 860 | SparseBitVector<ElementSize> Result(LHS); |
| 861 | Result &= RHS; |
| 862 | return Result; |
| 863 | } |
| 864 | |
| 865 | template <unsigned ElementSize> |
| 866 | inline SparseBitVector<ElementSize> |
| 867 | operator-(const SparseBitVector<ElementSize> &LHS, |
| 868 | const SparseBitVector<ElementSize> &RHS) { |
| 869 | SparseBitVector<ElementSize> Result; |
| 870 | Result.intersectWithComplement(LHS, RHS); |
| 871 | return Result; |
| 872 | } |
| 873 | |
| 874 | // Dump a SparseBitVector to a stream |
| 875 | template <unsigned ElementSize> |
| 876 | void dump(const SparseBitVector<ElementSize> &LHS, raw_ostream &out) { |
| 877 | out << "["; |
| 878 | |
| 879 | typename SparseBitVector<ElementSize>::iterator bi = LHS.begin(), |
| 880 | be = LHS.end(); |
| 881 | if (bi != be) { |
| 882 | out << *bi; |
| 883 | for (++bi; bi != be; ++bi) { |
| 884 | out << " " << *bi; |
| 885 | } |
| 886 | } |
| 887 | out << "]\n"; |
| 888 | } |
| 889 | |
| 890 | } // end namespace llvm |
| 891 | |
| 892 | #endif // LLVM_ADT_SPARSEBITVECTOR_H |