Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Generic implementation of equivalence classes through the use Tarjan's |
| 10 | // efficient union-find algorithm. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_EQUIVALENCECLASSES_H |
| 15 | #define LLVM_ADT_EQUIVALENCECLASSES_H |
| 16 | |
| 17 | #include <cassert> |
| 18 | #include <cstddef> |
| 19 | #include <cstdint> |
| 20 | #include <iterator> |
| 21 | #include <set> |
| 22 | |
| 23 | namespace llvm { |
| 24 | |
| 25 | /// EquivalenceClasses - This represents a collection of equivalence classes and |
| 26 | /// supports three efficient operations: insert an element into a class of its |
| 27 | /// own, union two classes, and find the class for a given element. In |
| 28 | /// addition to these modification methods, it is possible to iterate over all |
| 29 | /// of the equivalence classes and all of the elements in a class. |
| 30 | /// |
| 31 | /// This implementation is an efficient implementation that only stores one copy |
| 32 | /// of the element being indexed per entry in the set, and allows any arbitrary |
| 33 | /// type to be indexed (as long as it can be ordered with operator<). |
| 34 | /// |
| 35 | /// Here is a simple example using integers: |
| 36 | /// |
| 37 | /// \code |
| 38 | /// EquivalenceClasses<int> EC; |
| 39 | /// EC.unionSets(1, 2); // insert 1, 2 into the same set |
| 40 | /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets |
| 41 | /// EC.unionSets(5, 1); // merge the set for 1 with 5's set. |
| 42 | /// |
| 43 | /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end(); |
| 44 | /// I != E; ++I) { // Iterate over all of the equivalence sets. |
| 45 | /// if (!I->isLeader()) continue; // Ignore non-leader sets. |
| 46 | /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I); |
| 47 | /// MI != EC.member_end(); ++MI) // Loop over members in this set. |
| 48 | /// cerr << *MI << " "; // Print member. |
| 49 | /// cerr << "\n"; // Finish set. |
| 50 | /// } |
| 51 | /// \endcode |
| 52 | /// |
| 53 | /// This example prints: |
| 54 | /// 4 |
| 55 | /// 5 1 2 |
| 56 | /// |
| 57 | template <class ElemTy> |
| 58 | class EquivalenceClasses { |
| 59 | /// ECValue - The EquivalenceClasses data structure is just a set of these. |
| 60 | /// Each of these represents a relation for a value. First it stores the |
| 61 | /// value itself, which provides the ordering that the set queries. Next, it |
| 62 | /// provides a "next pointer", which is used to enumerate all of the elements |
| 63 | /// in the unioned set. Finally, it defines either a "end of list pointer" or |
| 64 | /// "leader pointer" depending on whether the value itself is a leader. A |
| 65 | /// "leader pointer" points to the node that is the leader for this element, |
| 66 | /// if the node is not a leader. A "end of list pointer" points to the last |
| 67 | /// node in the list of members of this list. Whether or not a node is a |
| 68 | /// leader is determined by a bit stolen from one of the pointers. |
| 69 | class ECValue { |
| 70 | friend class EquivalenceClasses; |
| 71 | |
| 72 | mutable const ECValue *Leader, *Next; |
| 73 | ElemTy Data; |
| 74 | |
| 75 | // ECValue ctor - Start out with EndOfList pointing to this node, Next is |
| 76 | // Null, isLeader = true. |
| 77 | ECValue(const ElemTy &Elt) |
| 78 | : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {} |
| 79 | |
| 80 | const ECValue *getLeader() const { |
| 81 | if (isLeader()) return this; |
| 82 | if (Leader->isLeader()) return Leader; |
| 83 | // Path compression. |
| 84 | return Leader = Leader->getLeader(); |
| 85 | } |
| 86 | |
| 87 | const ECValue *getEndOfList() const { |
| 88 | assert(isLeader() && "Cannot get the end of a list for a non-leader!"); |
| 89 | return Leader; |
| 90 | } |
| 91 | |
| 92 | void setNext(const ECValue *NewNext) const { |
| 93 | assert(getNext() == nullptr && "Already has a next pointer!"); |
| 94 | Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader()); |
| 95 | } |
| 96 | |
| 97 | public: |
| 98 | ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1), |
| 99 | Data(RHS.Data) { |
| 100 | // Only support copying of singleton nodes. |
| 101 | assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!"); |
| 102 | } |
| 103 | |
| 104 | bool operator<(const ECValue &UFN) const { return Data < UFN.Data; } |
| 105 | |
| 106 | bool isLeader() const { return (intptr_t)Next & 1; } |
| 107 | const ElemTy &getData() const { return Data; } |
| 108 | |
| 109 | const ECValue *getNext() const { |
| 110 | return (ECValue*)((intptr_t)Next & ~(intptr_t)1); |
| 111 | } |
| 112 | |
| 113 | template<typename T> |
| 114 | bool operator<(const T &Val) const { return Data < Val; } |
| 115 | }; |
| 116 | |
| 117 | /// TheMapping - This implicitly provides a mapping from ElemTy values to the |
| 118 | /// ECValues, it just keeps the key as part of the value. |
| 119 | std::set<ECValue> TheMapping; |
| 120 | |
| 121 | public: |
| 122 | EquivalenceClasses() = default; |
| 123 | EquivalenceClasses(const EquivalenceClasses &RHS) { |
| 124 | operator=(RHS); |
| 125 | } |
| 126 | |
| 127 | const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) { |
| 128 | TheMapping.clear(); |
| 129 | for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) |
| 130 | if (I->isLeader()) { |
| 131 | member_iterator MI = RHS.member_begin(I); |
| 132 | member_iterator LeaderIt = member_begin(insert(*MI)); |
| 133 | for (++MI; MI != member_end(); ++MI) |
| 134 | unionSets(LeaderIt, member_begin(insert(*MI))); |
| 135 | } |
| 136 | return *this; |
| 137 | } |
| 138 | |
| 139 | //===--------------------------------------------------------------------===// |
| 140 | // Inspection methods |
| 141 | // |
| 142 | |
| 143 | /// iterator* - Provides a way to iterate over all values in the set. |
| 144 | using iterator = typename std::set<ECValue>::const_iterator; |
| 145 | |
| 146 | iterator begin() const { return TheMapping.begin(); } |
| 147 | iterator end() const { return TheMapping.end(); } |
| 148 | |
| 149 | bool empty() const { return TheMapping.empty(); } |
| 150 | |
| 151 | /// member_* Iterate over the members of an equivalence class. |
| 152 | class member_iterator; |
| 153 | member_iterator member_begin(iterator I) const { |
| 154 | // Only leaders provide anything to iterate over. |
| 155 | return member_iterator(I->isLeader() ? &*I : nullptr); |
| 156 | } |
| 157 | member_iterator member_end() const { |
| 158 | return member_iterator(nullptr); |
| 159 | } |
| 160 | |
| 161 | /// findValue - Return an iterator to the specified value. If it does not |
| 162 | /// exist, end() is returned. |
| 163 | iterator findValue(const ElemTy &V) const { |
| 164 | return TheMapping.find(V); |
| 165 | } |
| 166 | |
| 167 | /// getLeaderValue - Return the leader for the specified value that is in the |
| 168 | /// set. It is an error to call this method for a value that is not yet in |
| 169 | /// the set. For that, call getOrInsertLeaderValue(V). |
| 170 | const ElemTy &getLeaderValue(const ElemTy &V) const { |
| 171 | member_iterator MI = findLeader(V); |
| 172 | assert(MI != member_end() && "Value is not in the set!"); |
| 173 | return *MI; |
| 174 | } |
| 175 | |
| 176 | /// getOrInsertLeaderValue - Return the leader for the specified value that is |
| 177 | /// in the set. If the member is not in the set, it is inserted, then |
| 178 | /// returned. |
| 179 | const ElemTy &getOrInsertLeaderValue(const ElemTy &V) { |
| 180 | member_iterator MI = findLeader(insert(V)); |
| 181 | assert(MI != member_end() && "Value is not in the set!"); |
| 182 | return *MI; |
| 183 | } |
| 184 | |
| 185 | /// getNumClasses - Return the number of equivalence classes in this set. |
| 186 | /// Note that this is a linear time operation. |
| 187 | unsigned getNumClasses() const { |
| 188 | unsigned NC = 0; |
| 189 | for (iterator I = begin(), E = end(); I != E; ++I) |
| 190 | if (I->isLeader()) ++NC; |
| 191 | return NC; |
| 192 | } |
| 193 | |
| 194 | //===--------------------------------------------------------------------===// |
| 195 | // Mutation methods |
| 196 | |
| 197 | /// insert - Insert a new value into the union/find set, ignoring the request |
| 198 | /// if the value already exists. |
| 199 | iterator insert(const ElemTy &Data) { |
| 200 | return TheMapping.insert(ECValue(Data)).first; |
| 201 | } |
| 202 | |
| 203 | /// findLeader - Given a value in the set, return a member iterator for the |
| 204 | /// equivalence class it is in. This does the path-compression part that |
| 205 | /// makes union-find "union findy". This returns an end iterator if the value |
| 206 | /// is not in the equivalence class. |
| 207 | member_iterator findLeader(iterator I) const { |
| 208 | if (I == TheMapping.end()) return member_end(); |
| 209 | return member_iterator(I->getLeader()); |
| 210 | } |
| 211 | member_iterator findLeader(const ElemTy &V) const { |
| 212 | return findLeader(TheMapping.find(V)); |
| 213 | } |
| 214 | |
| 215 | /// union - Merge the two equivalence sets for the specified values, inserting |
| 216 | /// them if they do not already exist in the equivalence set. |
| 217 | member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) { |
| 218 | iterator V1I = insert(V1), V2I = insert(V2); |
| 219 | return unionSets(findLeader(V1I), findLeader(V2I)); |
| 220 | } |
| 221 | member_iterator unionSets(member_iterator L1, member_iterator L2) { |
| 222 | assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!"); |
| 223 | if (L1 == L2) return L1; // Unifying the same two sets, noop. |
| 224 | |
| 225 | // Otherwise, this is a real union operation. Set the end of the L1 list to |
| 226 | // point to the L2 leader node. |
| 227 | const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node; |
| 228 | L1LV.getEndOfList()->setNext(&L2LV); |
| 229 | |
| 230 | // Update L1LV's end of list pointer. |
| 231 | L1LV.Leader = L2LV.getEndOfList(); |
| 232 | |
| 233 | // Clear L2's leader flag: |
| 234 | L2LV.Next = L2LV.getNext(); |
| 235 | |
| 236 | // L2's leader is now L1. |
| 237 | L2LV.Leader = &L1LV; |
| 238 | return L1; |
| 239 | } |
| 240 | |
| 241 | // isEquivalent - Return true if V1 is equivalent to V2. This can happen if |
| 242 | // V1 is equal to V2 or if they belong to one equivalence class. |
| 243 | bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const { |
| 244 | // Fast path: any element is equivalent to itself. |
| 245 | if (V1 == V2) |
| 246 | return true; |
| 247 | auto It = findLeader(V1); |
| 248 | return It != member_end() && It == findLeader(V2); |
| 249 | } |
| 250 | |
| 251 | class member_iterator : public std::iterator<std::forward_iterator_tag, |
| 252 | const ElemTy, ptrdiff_t> { |
| 253 | friend class EquivalenceClasses; |
| 254 | |
| 255 | using super = std::iterator<std::forward_iterator_tag, |
| 256 | const ElemTy, ptrdiff_t>; |
| 257 | |
| 258 | const ECValue *Node; |
| 259 | |
| 260 | public: |
| 261 | using size_type = size_t; |
| 262 | using pointer = typename super::pointer; |
| 263 | using reference = typename super::reference; |
| 264 | |
| 265 | explicit member_iterator() = default; |
| 266 | explicit member_iterator(const ECValue *N) : Node(N) {} |
| 267 | |
| 268 | reference operator*() const { |
| 269 | assert(Node != nullptr && "Dereferencing end()!"); |
| 270 | return Node->getData(); |
| 271 | } |
| 272 | pointer operator->() const { return &operator*(); } |
| 273 | |
| 274 | member_iterator &operator++() { |
| 275 | assert(Node != nullptr && "++'d off the end of the list!"); |
| 276 | Node = Node->getNext(); |
| 277 | return *this; |
| 278 | } |
| 279 | |
| 280 | member_iterator operator++(int) { // postincrement operators. |
| 281 | member_iterator tmp = *this; |
| 282 | ++*this; |
| 283 | return tmp; |
| 284 | } |
| 285 | |
| 286 | bool operator==(const member_iterator &RHS) const { |
| 287 | return Node == RHS.Node; |
| 288 | } |
| 289 | bool operator!=(const member_iterator &RHS) const { |
| 290 | return Node != RHS.Node; |
| 291 | } |
| 292 | }; |
| 293 | }; |
| 294 | |
| 295 | } // end namespace llvm |
| 296 | |
| 297 | #endif // LLVM_ADT_EQUIVALENCECLASSES_H |