Olivier Deprez | f4ef2d0 | 2021-04-20 13:36:24 +0200 | [diff] [blame] | 1 | //===- APFixedPoint.h - Fixed point constant handling -----------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file |
| 10 | /// Defines the fixed point number interface. |
| 11 | /// This is a class for abstracting various operations performed on fixed point |
| 12 | /// types. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #ifndef LLVM_ADT_APFIXEDPOINT_H |
| 17 | #define LLVM_ADT_APFIXEDPOINT_H |
| 18 | |
| 19 | #include "llvm/ADT/APSInt.h" |
| 20 | #include "llvm/ADT/SmallString.h" |
| 21 | #include "llvm/Support/raw_ostream.h" |
| 22 | |
| 23 | namespace llvm { |
| 24 | |
| 25 | class APFloat; |
| 26 | struct fltSemantics; |
| 27 | |
| 28 | /// The fixed point semantics work similarly to fltSemantics. The width |
| 29 | /// specifies the whole bit width of the underlying scaled integer (with padding |
| 30 | /// if any). The scale represents the number of fractional bits in this type. |
| 31 | /// When HasUnsignedPadding is true and this type is unsigned, the first bit |
| 32 | /// in the value this represents is treated as padding. |
| 33 | class FixedPointSemantics { |
| 34 | public: |
| 35 | FixedPointSemantics(unsigned Width, unsigned Scale, bool IsSigned, |
| 36 | bool IsSaturated, bool HasUnsignedPadding) |
| 37 | : Width(Width), Scale(Scale), IsSigned(IsSigned), |
| 38 | IsSaturated(IsSaturated), HasUnsignedPadding(HasUnsignedPadding) { |
| 39 | assert(Width >= Scale && "Not enough room for the scale"); |
| 40 | assert(!(IsSigned && HasUnsignedPadding) && |
| 41 | "Cannot have unsigned padding on a signed type."); |
| 42 | } |
| 43 | |
| 44 | unsigned getWidth() const { return Width; } |
| 45 | unsigned getScale() const { return Scale; } |
| 46 | bool isSigned() const { return IsSigned; } |
| 47 | bool isSaturated() const { return IsSaturated; } |
| 48 | bool hasUnsignedPadding() const { return HasUnsignedPadding; } |
| 49 | |
| 50 | void setSaturated(bool Saturated) { IsSaturated = Saturated; } |
| 51 | |
| 52 | /// Return the number of integral bits represented by these semantics. These |
| 53 | /// are separate from the fractional bits and do not include the sign or |
| 54 | /// padding bit. |
| 55 | unsigned getIntegralBits() const { |
| 56 | if (IsSigned || (!IsSigned && HasUnsignedPadding)) |
| 57 | return Width - Scale - 1; |
| 58 | else |
| 59 | return Width - Scale; |
| 60 | } |
| 61 | |
| 62 | /// Return the FixedPointSemantics that allows for calculating the full |
| 63 | /// precision semantic that can precisely represent the precision and ranges |
| 64 | /// of both input values. This does not compute the resulting semantics for a |
| 65 | /// given binary operation. |
| 66 | FixedPointSemantics |
| 67 | getCommonSemantics(const FixedPointSemantics &Other) const; |
| 68 | |
| 69 | /// Returns true if this fixed-point semantic with its value bits interpreted |
| 70 | /// as an integer can fit in the given floating point semantic without |
| 71 | /// overflowing to infinity. |
| 72 | /// For example, a signed 8-bit fixed-point semantic has a maximum and |
| 73 | /// minimum integer representation of 127 and -128, respectively. If both of |
| 74 | /// these values can be represented (possibly inexactly) in the floating |
| 75 | /// point semantic without overflowing, this returns true. |
| 76 | bool fitsInFloatSemantics(const fltSemantics &FloatSema) const; |
| 77 | |
| 78 | /// Return the FixedPointSemantics for an integer type. |
| 79 | static FixedPointSemantics GetIntegerSemantics(unsigned Width, |
| 80 | bool IsSigned) { |
| 81 | return FixedPointSemantics(Width, /*Scale=*/0, IsSigned, |
| 82 | /*IsSaturated=*/false, |
| 83 | /*HasUnsignedPadding=*/false); |
| 84 | } |
| 85 | |
| 86 | private: |
| 87 | unsigned Width : 16; |
| 88 | unsigned Scale : 13; |
| 89 | unsigned IsSigned : 1; |
| 90 | unsigned IsSaturated : 1; |
| 91 | unsigned HasUnsignedPadding : 1; |
| 92 | }; |
| 93 | |
| 94 | /// The APFixedPoint class works similarly to APInt/APSInt in that it is a |
| 95 | /// functional replacement for a scaled integer. It is meant to replicate the |
| 96 | /// fixed point types proposed in ISO/IEC JTC1 SC22 WG14 N1169. The class carries |
| 97 | /// info about the fixed point type's width, sign, scale, and saturation, and |
| 98 | /// provides different operations that would normally be performed on fixed point |
| 99 | /// types. |
| 100 | class APFixedPoint { |
| 101 | public: |
| 102 | APFixedPoint(const APInt &Val, const FixedPointSemantics &Sema) |
| 103 | : Val(Val, !Sema.isSigned()), Sema(Sema) { |
| 104 | assert(Val.getBitWidth() == Sema.getWidth() && |
| 105 | "The value should have a bit width that matches the Sema width"); |
| 106 | } |
| 107 | |
| 108 | APFixedPoint(uint64_t Val, const FixedPointSemantics &Sema) |
| 109 | : APFixedPoint(APInt(Sema.getWidth(), Val, Sema.isSigned()), Sema) {} |
| 110 | |
| 111 | // Zero initialization. |
| 112 | APFixedPoint(const FixedPointSemantics &Sema) : APFixedPoint(0, Sema) {} |
| 113 | |
| 114 | APSInt getValue() const { return APSInt(Val, !Sema.isSigned()); } |
| 115 | inline unsigned getWidth() const { return Sema.getWidth(); } |
| 116 | inline unsigned getScale() const { return Sema.getScale(); } |
| 117 | inline bool isSaturated() const { return Sema.isSaturated(); } |
| 118 | inline bool isSigned() const { return Sema.isSigned(); } |
| 119 | inline bool hasPadding() const { return Sema.hasUnsignedPadding(); } |
| 120 | FixedPointSemantics getSemantics() const { return Sema; } |
| 121 | |
| 122 | bool getBoolValue() const { return Val.getBoolValue(); } |
| 123 | |
| 124 | // Convert this number to match the semantics provided. If the overflow |
| 125 | // parameter is provided, set this value to true or false to indicate if this |
| 126 | // operation results in an overflow. |
| 127 | APFixedPoint convert(const FixedPointSemantics &DstSema, |
| 128 | bool *Overflow = nullptr) const; |
| 129 | |
| 130 | // Perform binary operations on a fixed point type. The resulting fixed point |
| 131 | // value will be in the common, full precision semantics that can represent |
| 132 | // the precision and ranges of both input values. See convert() for an |
| 133 | // explanation of the Overflow parameter. |
| 134 | APFixedPoint add(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
| 135 | APFixedPoint sub(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
| 136 | APFixedPoint mul(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
| 137 | APFixedPoint div(const APFixedPoint &Other, bool *Overflow = nullptr) const; |
| 138 | |
| 139 | // Perform shift operations on a fixed point type. Unlike the other binary |
| 140 | // operations, the resulting fixed point value will be in the original |
| 141 | // semantic. |
| 142 | APFixedPoint shl(unsigned Amt, bool *Overflow = nullptr) const; |
| 143 | APFixedPoint shr(unsigned Amt, bool *Overflow = nullptr) const { |
| 144 | // Right shift cannot overflow. |
| 145 | if (Overflow) |
| 146 | *Overflow = false; |
| 147 | return APFixedPoint(Val >> Amt, Sema); |
| 148 | } |
| 149 | |
| 150 | /// Perform a unary negation (-X) on this fixed point type, taking into |
| 151 | /// account saturation if applicable. |
| 152 | APFixedPoint negate(bool *Overflow = nullptr) const; |
| 153 | |
| 154 | /// Return the integral part of this fixed point number, rounded towards |
| 155 | /// zero. (-2.5k -> -2) |
| 156 | APSInt getIntPart() const { |
| 157 | if (Val < 0 && Val != -Val) // Cover the case when we have the min val |
| 158 | return -(-Val >> getScale()); |
| 159 | else |
| 160 | return Val >> getScale(); |
| 161 | } |
| 162 | |
| 163 | /// Return the integral part of this fixed point number, rounded towards |
| 164 | /// zero. The value is stored into an APSInt with the provided width and sign. |
| 165 | /// If the overflow parameter is provided, and the integral value is not able |
| 166 | /// to be fully stored in the provided width and sign, the overflow parameter |
| 167 | /// is set to true. |
| 168 | APSInt convertToInt(unsigned DstWidth, bool DstSign, |
| 169 | bool *Overflow = nullptr) const; |
| 170 | |
| 171 | /// Convert this fixed point number to a floating point value with the |
| 172 | /// provided semantics. |
| 173 | APFloat convertToFloat(const fltSemantics &FloatSema) const; |
| 174 | |
| 175 | void toString(SmallVectorImpl<char> &Str) const; |
| 176 | std::string toString() const { |
| 177 | SmallString<40> S; |
| 178 | toString(S); |
| 179 | return std::string(S.str()); |
| 180 | } |
| 181 | |
| 182 | // If LHS > RHS, return 1. If LHS == RHS, return 0. If LHS < RHS, return -1. |
| 183 | int compare(const APFixedPoint &Other) const; |
| 184 | bool operator==(const APFixedPoint &Other) const { |
| 185 | return compare(Other) == 0; |
| 186 | } |
| 187 | bool operator!=(const APFixedPoint &Other) const { |
| 188 | return compare(Other) != 0; |
| 189 | } |
| 190 | bool operator>(const APFixedPoint &Other) const { return compare(Other) > 0; } |
| 191 | bool operator<(const APFixedPoint &Other) const { return compare(Other) < 0; } |
| 192 | bool operator>=(const APFixedPoint &Other) const { |
| 193 | return compare(Other) >= 0; |
| 194 | } |
| 195 | bool operator<=(const APFixedPoint &Other) const { |
| 196 | return compare(Other) <= 0; |
| 197 | } |
| 198 | |
| 199 | static APFixedPoint getMax(const FixedPointSemantics &Sema); |
| 200 | static APFixedPoint getMin(const FixedPointSemantics &Sema); |
| 201 | |
| 202 | /// Given a floating point semantic, return the next floating point semantic |
| 203 | /// with a larger exponent and larger or equal mantissa. |
| 204 | static const fltSemantics *promoteFloatSemantics(const fltSemantics *S); |
| 205 | |
| 206 | /// Create an APFixedPoint with a value equal to that of the provided integer, |
| 207 | /// and in the same semantics as the provided target semantics. If the value |
| 208 | /// is not able to fit in the specified fixed point semantics, and the |
| 209 | /// overflow parameter is provided, it is set to true. |
| 210 | static APFixedPoint getFromIntValue(const APSInt &Value, |
| 211 | const FixedPointSemantics &DstFXSema, |
| 212 | bool *Overflow = nullptr); |
| 213 | |
| 214 | /// Create an APFixedPoint with a value equal to that of the provided |
| 215 | /// floating point value, in the provided target semantics. If the value is |
| 216 | /// not able to fit in the specified fixed point semantics and the overflow |
| 217 | /// parameter is specified, it is set to true. |
| 218 | /// For NaN, the Overflow flag is always set. For +inf and -inf, if the |
| 219 | /// semantic is saturating, the value saturates. Otherwise, the Overflow flag |
| 220 | /// is set. |
| 221 | static APFixedPoint getFromFloatValue(const APFloat &Value, |
| 222 | const FixedPointSemantics &DstFXSema, |
| 223 | bool *Overflow = nullptr); |
| 224 | |
| 225 | private: |
| 226 | APSInt Val; |
| 227 | FixedPointSemantics Sema; |
| 228 | }; |
| 229 | |
| 230 | inline raw_ostream &operator<<(raw_ostream &OS, const APFixedPoint &FX) { |
| 231 | OS << FX.toString(); |
| 232 | return OS; |
| 233 | } |
| 234 | |
| 235 | } // namespace llvm |
| 236 | |
| 237 | #endif |