Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines specializations of GraphTraits that allow Function and |
| 11 | // BasicBlock graphs to be treated as proper graphs for generic algorithms. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_IR_CFG_H |
| 16 | #define LLVM_IR_CFG_H |
| 17 | |
| 18 | #include "llvm/ADT/GraphTraits.h" |
| 19 | #include "llvm/ADT/iterator.h" |
| 20 | #include "llvm/ADT/iterator_range.h" |
| 21 | #include "llvm/IR/BasicBlock.h" |
| 22 | #include "llvm/IR/Function.h" |
| 23 | #include "llvm/IR/InstrTypes.h" |
| 24 | #include "llvm/IR/Value.h" |
| 25 | #include "llvm/Support/Casting.h" |
| 26 | #include "llvm/Support/type_traits.h" |
| 27 | #include <cassert> |
| 28 | #include <cstddef> |
| 29 | #include <iterator> |
| 30 | |
| 31 | namespace llvm { |
| 32 | |
| 33 | //===----------------------------------------------------------------------===// |
| 34 | // BasicBlock pred_iterator definition |
| 35 | //===----------------------------------------------------------------------===// |
| 36 | |
| 37 | template <class Ptr, class USE_iterator> // Predecessor Iterator |
| 38 | class PredIterator : public std::iterator<std::forward_iterator_tag, |
| 39 | Ptr, ptrdiff_t, Ptr*, Ptr*> { |
| 40 | using super = |
| 41 | std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, Ptr*>; |
| 42 | using Self = PredIterator<Ptr, USE_iterator>; |
| 43 | USE_iterator It; |
| 44 | |
| 45 | inline void advancePastNonTerminators() { |
| 46 | // Loop to ignore non-terminator uses (for example BlockAddresses). |
| 47 | while (!It.atEnd() && !isa<TerminatorInst>(*It)) |
| 48 | ++It; |
| 49 | } |
| 50 | |
| 51 | public: |
| 52 | using pointer = typename super::pointer; |
| 53 | using reference = typename super::reference; |
| 54 | |
| 55 | PredIterator() = default; |
| 56 | explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) { |
| 57 | advancePastNonTerminators(); |
| 58 | } |
| 59 | inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {} |
| 60 | |
| 61 | inline bool operator==(const Self& x) const { return It == x.It; } |
| 62 | inline bool operator!=(const Self& x) const { return !operator==(x); } |
| 63 | |
| 64 | inline reference operator*() const { |
| 65 | assert(!It.atEnd() && "pred_iterator out of range!"); |
| 66 | return cast<TerminatorInst>(*It)->getParent(); |
| 67 | } |
| 68 | inline pointer *operator->() const { return &operator*(); } |
| 69 | |
| 70 | inline Self& operator++() { // Preincrement |
| 71 | assert(!It.atEnd() && "pred_iterator out of range!"); |
| 72 | ++It; advancePastNonTerminators(); |
| 73 | return *this; |
| 74 | } |
| 75 | |
| 76 | inline Self operator++(int) { // Postincrement |
| 77 | Self tmp = *this; ++*this; return tmp; |
| 78 | } |
| 79 | |
| 80 | /// getOperandNo - Return the operand number in the predecessor's |
| 81 | /// terminator of the successor. |
| 82 | unsigned getOperandNo() const { |
| 83 | return It.getOperandNo(); |
| 84 | } |
| 85 | |
| 86 | /// getUse - Return the operand Use in the predecessor's terminator |
| 87 | /// of the successor. |
| 88 | Use &getUse() const { |
| 89 | return It.getUse(); |
| 90 | } |
| 91 | }; |
| 92 | |
| 93 | using pred_iterator = PredIterator<BasicBlock, Value::user_iterator>; |
| 94 | using const_pred_iterator = |
| 95 | PredIterator<const BasicBlock, Value::const_user_iterator>; |
| 96 | using pred_range = iterator_range<pred_iterator>; |
| 97 | using pred_const_range = iterator_range<const_pred_iterator>; |
| 98 | |
| 99 | inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); } |
| 100 | inline const_pred_iterator pred_begin(const BasicBlock *BB) { |
| 101 | return const_pred_iterator(BB); |
| 102 | } |
| 103 | inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);} |
| 104 | inline const_pred_iterator pred_end(const BasicBlock *BB) { |
| 105 | return const_pred_iterator(BB, true); |
| 106 | } |
| 107 | inline bool pred_empty(const BasicBlock *BB) { |
| 108 | return pred_begin(BB) == pred_end(BB); |
| 109 | } |
| 110 | inline pred_range predecessors(BasicBlock *BB) { |
| 111 | return pred_range(pred_begin(BB), pred_end(BB)); |
| 112 | } |
| 113 | inline pred_const_range predecessors(const BasicBlock *BB) { |
| 114 | return pred_const_range(pred_begin(BB), pred_end(BB)); |
| 115 | } |
| 116 | |
| 117 | //===----------------------------------------------------------------------===// |
| 118 | // BasicBlock succ_iterator helpers |
| 119 | //===----------------------------------------------------------------------===// |
| 120 | |
| 121 | using succ_iterator = |
| 122 | TerminatorInst::SuccIterator<TerminatorInst *, BasicBlock>; |
| 123 | using succ_const_iterator = |
| 124 | TerminatorInst::SuccIterator<const TerminatorInst *, const BasicBlock>; |
| 125 | using succ_range = iterator_range<succ_iterator>; |
| 126 | using succ_const_range = iterator_range<succ_const_iterator>; |
| 127 | |
| 128 | inline succ_iterator succ_begin(BasicBlock *BB) { |
| 129 | return succ_iterator(BB->getTerminator()); |
| 130 | } |
| 131 | inline succ_const_iterator succ_begin(const BasicBlock *BB) { |
| 132 | return succ_const_iterator(BB->getTerminator()); |
| 133 | } |
| 134 | inline succ_iterator succ_end(BasicBlock *BB) { |
| 135 | return succ_iterator(BB->getTerminator(), true); |
| 136 | } |
| 137 | inline succ_const_iterator succ_end(const BasicBlock *BB) { |
| 138 | return succ_const_iterator(BB->getTerminator(), true); |
| 139 | } |
| 140 | inline bool succ_empty(const BasicBlock *BB) { |
| 141 | return succ_begin(BB) == succ_end(BB); |
| 142 | } |
| 143 | inline succ_range successors(BasicBlock *BB) { |
| 144 | return succ_range(succ_begin(BB), succ_end(BB)); |
| 145 | } |
| 146 | inline succ_const_range successors(const BasicBlock *BB) { |
| 147 | return succ_const_range(succ_begin(BB), succ_end(BB)); |
| 148 | } |
| 149 | |
| 150 | template <typename T, typename U> |
| 151 | struct isPodLike<TerminatorInst::SuccIterator<T, U>> { |
| 152 | static const bool value = isPodLike<T>::value; |
| 153 | }; |
| 154 | |
| 155 | //===--------------------------------------------------------------------===// |
| 156 | // GraphTraits specializations for basic block graphs (CFGs) |
| 157 | //===--------------------------------------------------------------------===// |
| 158 | |
| 159 | // Provide specializations of GraphTraits to be able to treat a function as a |
| 160 | // graph of basic blocks... |
| 161 | |
| 162 | template <> struct GraphTraits<BasicBlock*> { |
| 163 | using NodeRef = BasicBlock *; |
| 164 | using ChildIteratorType = succ_iterator; |
| 165 | |
| 166 | static NodeRef getEntryNode(BasicBlock *BB) { return BB; } |
| 167 | static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); } |
| 168 | static ChildIteratorType child_end(NodeRef N) { return succ_end(N); } |
| 169 | }; |
| 170 | |
| 171 | template <> struct GraphTraits<const BasicBlock*> { |
| 172 | using NodeRef = const BasicBlock *; |
| 173 | using ChildIteratorType = succ_const_iterator; |
| 174 | |
| 175 | static NodeRef getEntryNode(const BasicBlock *BB) { return BB; } |
| 176 | |
| 177 | static ChildIteratorType child_begin(NodeRef N) { return succ_begin(N); } |
| 178 | static ChildIteratorType child_end(NodeRef N) { return succ_end(N); } |
| 179 | }; |
| 180 | |
| 181 | // Provide specializations of GraphTraits to be able to treat a function as a |
| 182 | // graph of basic blocks... and to walk it in inverse order. Inverse order for |
| 183 | // a function is considered to be when traversing the predecessor edges of a BB |
| 184 | // instead of the successor edges. |
| 185 | // |
| 186 | template <> struct GraphTraits<Inverse<BasicBlock*>> { |
| 187 | using NodeRef = BasicBlock *; |
| 188 | using ChildIteratorType = pred_iterator; |
| 189 | |
| 190 | static NodeRef getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; } |
| 191 | static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); } |
| 192 | static ChildIteratorType child_end(NodeRef N) { return pred_end(N); } |
| 193 | }; |
| 194 | |
| 195 | template <> struct GraphTraits<Inverse<const BasicBlock*>> { |
| 196 | using NodeRef = const BasicBlock *; |
| 197 | using ChildIteratorType = const_pred_iterator; |
| 198 | |
| 199 | static NodeRef getEntryNode(Inverse<const BasicBlock *> G) { return G.Graph; } |
| 200 | static ChildIteratorType child_begin(NodeRef N) { return pred_begin(N); } |
| 201 | static ChildIteratorType child_end(NodeRef N) { return pred_end(N); } |
| 202 | }; |
| 203 | |
| 204 | //===--------------------------------------------------------------------===// |
| 205 | // GraphTraits specializations for function basic block graphs (CFGs) |
| 206 | //===--------------------------------------------------------------------===// |
| 207 | |
| 208 | // Provide specializations of GraphTraits to be able to treat a function as a |
| 209 | // graph of basic blocks... these are the same as the basic block iterators, |
| 210 | // except that the root node is implicitly the first node of the function. |
| 211 | // |
| 212 | template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> { |
| 213 | static NodeRef getEntryNode(Function *F) { return &F->getEntryBlock(); } |
| 214 | |
| 215 | // nodes_iterator/begin/end - Allow iteration over all nodes in the graph |
| 216 | using nodes_iterator = pointer_iterator<Function::iterator>; |
| 217 | |
| 218 | static nodes_iterator nodes_begin(Function *F) { |
| 219 | return nodes_iterator(F->begin()); |
| 220 | } |
| 221 | |
| 222 | static nodes_iterator nodes_end(Function *F) { |
| 223 | return nodes_iterator(F->end()); |
| 224 | } |
| 225 | |
| 226 | static size_t size(Function *F) { return F->size(); } |
| 227 | }; |
| 228 | template <> struct GraphTraits<const Function*> : |
| 229 | public GraphTraits<const BasicBlock*> { |
| 230 | static NodeRef getEntryNode(const Function *F) { return &F->getEntryBlock(); } |
| 231 | |
| 232 | // nodes_iterator/begin/end - Allow iteration over all nodes in the graph |
| 233 | using nodes_iterator = pointer_iterator<Function::const_iterator>; |
| 234 | |
| 235 | static nodes_iterator nodes_begin(const Function *F) { |
| 236 | return nodes_iterator(F->begin()); |
| 237 | } |
| 238 | |
| 239 | static nodes_iterator nodes_end(const Function *F) { |
| 240 | return nodes_iterator(F->end()); |
| 241 | } |
| 242 | |
| 243 | static size_t size(const Function *F) { return F->size(); } |
| 244 | }; |
| 245 | |
| 246 | // Provide specializations of GraphTraits to be able to treat a function as a |
| 247 | // graph of basic blocks... and to walk it in inverse order. Inverse order for |
| 248 | // a function is considered to be when traversing the predecessor edges of a BB |
| 249 | // instead of the successor edges. |
| 250 | // |
| 251 | template <> struct GraphTraits<Inverse<Function*>> : |
| 252 | public GraphTraits<Inverse<BasicBlock*>> { |
| 253 | static NodeRef getEntryNode(Inverse<Function *> G) { |
| 254 | return &G.Graph->getEntryBlock(); |
| 255 | } |
| 256 | }; |
| 257 | template <> struct GraphTraits<Inverse<const Function*>> : |
| 258 | public GraphTraits<Inverse<const BasicBlock*>> { |
| 259 | static NodeRef getEntryNode(Inverse<const Function *> G) { |
| 260 | return &G.Graph->getEntryBlock(); |
| 261 | } |
| 262 | }; |
| 263 | |
| 264 | } // end namespace llvm |
| 265 | |
| 266 | #endif // LLVM_IR_CFG_H |