Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- DWARFDebugFrame.h - Parsing of .debug_frame --------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #ifndef LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H |
| 11 | #define LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H |
| 12 | |
| 13 | #include "llvm/ADT/ArrayRef.h" |
| 14 | #include "llvm/ADT/iterator.h" |
| 15 | #include "llvm/ADT/SmallString.h" |
| 16 | #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" |
| 17 | #include "llvm/DebugInfo/DWARF/DWARFExpression.h" |
| 18 | #include "llvm/Support/Error.h" |
| 19 | #include <memory> |
| 20 | #include <vector> |
| 21 | |
| 22 | namespace llvm { |
| 23 | |
| 24 | class raw_ostream; |
| 25 | |
| 26 | namespace dwarf { |
| 27 | |
| 28 | /// Represent a sequence of Call Frame Information instructions that, when read |
| 29 | /// in order, construct a table mapping PC to frame state. This can also be |
| 30 | /// referred to as "CFI rules" in DWARF literature to avoid confusion with |
| 31 | /// computer programs in the broader sense, and in this context each instruction |
| 32 | /// would be a rule to establish the mapping. Refer to pg. 172 in the DWARF5 |
| 33 | /// manual, "6.4.1 Structure of Call Frame Information". |
| 34 | class CFIProgram { |
| 35 | public: |
| 36 | typedef SmallVector<uint64_t, 2> Operands; |
| 37 | |
| 38 | /// An instruction consists of a DWARF CFI opcode and an optional sequence of |
| 39 | /// operands. If it refers to an expression, then this expression has its own |
| 40 | /// sequence of operations and operands handled separately by DWARFExpression. |
| 41 | struct Instruction { |
| 42 | Instruction(uint8_t Opcode) : Opcode(Opcode) {} |
| 43 | |
| 44 | uint8_t Opcode; |
| 45 | Operands Ops; |
| 46 | // Associated DWARF expression in case this instruction refers to one |
| 47 | Optional<DWARFExpression> Expression; |
| 48 | }; |
| 49 | |
| 50 | using InstrList = std::vector<Instruction>; |
| 51 | using iterator = InstrList::iterator; |
| 52 | using const_iterator = InstrList::const_iterator; |
| 53 | |
| 54 | iterator begin() { return Instructions.begin(); } |
| 55 | const_iterator begin() const { return Instructions.begin(); } |
| 56 | iterator end() { return Instructions.end(); } |
| 57 | const_iterator end() const { return Instructions.end(); } |
| 58 | |
| 59 | unsigned size() const { return (unsigned)Instructions.size(); } |
| 60 | bool empty() const { return Instructions.empty(); } |
| 61 | |
| 62 | CFIProgram(uint64_t CodeAlignmentFactor, int64_t DataAlignmentFactor) |
| 63 | : CodeAlignmentFactor(CodeAlignmentFactor), |
| 64 | DataAlignmentFactor(DataAlignmentFactor) {} |
| 65 | |
| 66 | /// Parse and store a sequence of CFI instructions from Data, |
| 67 | /// starting at *Offset and ending at EndOffset. *Offset is updated |
| 68 | /// to EndOffset upon successful parsing, or indicates the offset |
| 69 | /// where a problem occurred in case an error is returned. |
| 70 | Error parse(DataExtractor Data, uint32_t *Offset, uint32_t EndOffset); |
| 71 | |
| 72 | void dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, |
| 73 | unsigned IndentLevel = 1) const; |
| 74 | |
| 75 | private: |
| 76 | std::vector<Instruction> Instructions; |
| 77 | const uint64_t CodeAlignmentFactor; |
| 78 | const int64_t DataAlignmentFactor; |
| 79 | |
| 80 | /// Convenience method to add a new instruction with the given opcode. |
| 81 | void addInstruction(uint8_t Opcode) { |
| 82 | Instructions.push_back(Instruction(Opcode)); |
| 83 | } |
| 84 | |
| 85 | /// Add a new single-operand instruction. |
| 86 | void addInstruction(uint8_t Opcode, uint64_t Operand1) { |
| 87 | Instructions.push_back(Instruction(Opcode)); |
| 88 | Instructions.back().Ops.push_back(Operand1); |
| 89 | } |
| 90 | |
| 91 | /// Add a new instruction that has two operands. |
| 92 | void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) { |
| 93 | Instructions.push_back(Instruction(Opcode)); |
| 94 | Instructions.back().Ops.push_back(Operand1); |
| 95 | Instructions.back().Ops.push_back(Operand2); |
| 96 | } |
| 97 | |
| 98 | /// Types of operands to CFI instructions |
| 99 | /// In DWARF, this type is implicitly tied to a CFI instruction opcode and |
| 100 | /// thus this type doesn't need to be explictly written to the file (this is |
| 101 | /// not a DWARF encoding). The relationship of instrs to operand types can |
| 102 | /// be obtained from getOperandTypes() and is only used to simplify |
| 103 | /// instruction printing. |
| 104 | enum OperandType { |
| 105 | OT_Unset, |
| 106 | OT_None, |
| 107 | OT_Address, |
| 108 | OT_Offset, |
| 109 | OT_FactoredCodeOffset, |
| 110 | OT_SignedFactDataOffset, |
| 111 | OT_UnsignedFactDataOffset, |
| 112 | OT_Register, |
| 113 | OT_Expression |
| 114 | }; |
| 115 | |
| 116 | /// Retrieve the array describing the types of operands according to the enum |
| 117 | /// above. This is indexed by opcode. |
| 118 | static ArrayRef<OperandType[2]> getOperandTypes(); |
| 119 | |
| 120 | /// Print \p Opcode's operand number \p OperandIdx which has value \p Operand. |
| 121 | void printOperand(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, |
| 122 | const Instruction &Instr, unsigned OperandIdx, |
| 123 | uint64_t Operand) const; |
| 124 | }; |
| 125 | |
| 126 | /// An entry in either debug_frame or eh_frame. This entry can be a CIE or an |
| 127 | /// FDE. |
| 128 | class FrameEntry { |
| 129 | public: |
| 130 | enum FrameKind { FK_CIE, FK_FDE }; |
| 131 | |
| 132 | FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length, uint64_t CodeAlign, |
| 133 | int64_t DataAlign) |
| 134 | : Kind(K), Offset(Offset), Length(Length), CFIs(CodeAlign, DataAlign) {} |
| 135 | |
| 136 | virtual ~FrameEntry() {} |
| 137 | |
| 138 | FrameKind getKind() const { return Kind; } |
| 139 | uint64_t getOffset() const { return Offset; } |
| 140 | uint64_t getLength() const { return Length; } |
| 141 | const CFIProgram &cfis() const { return CFIs; } |
| 142 | CFIProgram &cfis() { return CFIs; } |
| 143 | |
| 144 | /// Dump the instructions in this CFI fragment |
| 145 | virtual void dump(raw_ostream &OS, const MCRegisterInfo *MRI, |
| 146 | bool IsEH) const = 0; |
| 147 | |
| 148 | protected: |
| 149 | const FrameKind Kind; |
| 150 | |
| 151 | /// Offset of this entry in the section. |
| 152 | const uint64_t Offset; |
| 153 | |
| 154 | /// Entry length as specified in DWARF. |
| 155 | const uint64_t Length; |
| 156 | |
| 157 | CFIProgram CFIs; |
| 158 | }; |
| 159 | |
| 160 | /// DWARF Common Information Entry (CIE) |
| 161 | class CIE : public FrameEntry { |
| 162 | public: |
| 163 | // CIEs (and FDEs) are simply container classes, so the only sensible way to |
| 164 | // create them is by providing the full parsed contents in the constructor. |
| 165 | CIE(uint64_t Offset, uint64_t Length, uint8_t Version, |
| 166 | SmallString<8> Augmentation, uint8_t AddressSize, |
| 167 | uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor, |
| 168 | int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister, |
| 169 | SmallString<8> AugmentationData, uint32_t FDEPointerEncoding, |
| 170 | uint32_t LSDAPointerEncoding, Optional<uint64_t> Personality, |
| 171 | Optional<uint32_t> PersonalityEnc) |
| 172 | : FrameEntry(FK_CIE, Offset, Length, CodeAlignmentFactor, |
| 173 | DataAlignmentFactor), |
| 174 | Version(Version), Augmentation(std::move(Augmentation)), |
| 175 | AddressSize(AddressSize), SegmentDescriptorSize(SegmentDescriptorSize), |
| 176 | CodeAlignmentFactor(CodeAlignmentFactor), |
| 177 | DataAlignmentFactor(DataAlignmentFactor), |
| 178 | ReturnAddressRegister(ReturnAddressRegister), |
| 179 | AugmentationData(std::move(AugmentationData)), |
| 180 | FDEPointerEncoding(FDEPointerEncoding), |
| 181 | LSDAPointerEncoding(LSDAPointerEncoding), Personality(Personality), |
| 182 | PersonalityEnc(PersonalityEnc) {} |
| 183 | |
| 184 | static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_CIE; } |
| 185 | |
| 186 | StringRef getAugmentationString() const { return Augmentation; } |
| 187 | uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; } |
| 188 | int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; } |
| 189 | uint8_t getVersion() const { return Version; } |
| 190 | uint64_t getReturnAddressRegister() const { return ReturnAddressRegister; } |
| 191 | Optional<uint64_t> getPersonalityAddress() const { return Personality; } |
| 192 | Optional<uint32_t> getPersonalityEncoding() const { return PersonalityEnc; } |
| 193 | |
| 194 | uint32_t getFDEPointerEncoding() const { return FDEPointerEncoding; } |
| 195 | |
| 196 | uint32_t getLSDAPointerEncoding() const { return LSDAPointerEncoding; } |
| 197 | |
| 198 | void dump(raw_ostream &OS, const MCRegisterInfo *MRI, |
| 199 | bool IsEH) const override; |
| 200 | |
| 201 | private: |
| 202 | /// The following fields are defined in section 6.4.1 of the DWARF standard v4 |
| 203 | const uint8_t Version; |
| 204 | const SmallString<8> Augmentation; |
| 205 | const uint8_t AddressSize; |
| 206 | const uint8_t SegmentDescriptorSize; |
| 207 | const uint64_t CodeAlignmentFactor; |
| 208 | const int64_t DataAlignmentFactor; |
| 209 | const uint64_t ReturnAddressRegister; |
| 210 | |
| 211 | // The following are used when the CIE represents an EH frame entry. |
| 212 | const SmallString<8> AugmentationData; |
| 213 | const uint32_t FDEPointerEncoding; |
| 214 | const uint32_t LSDAPointerEncoding; |
| 215 | const Optional<uint64_t> Personality; |
| 216 | const Optional<uint32_t> PersonalityEnc; |
| 217 | }; |
| 218 | |
| 219 | /// DWARF Frame Description Entry (FDE) |
| 220 | class FDE : public FrameEntry { |
| 221 | public: |
| 222 | // Each FDE has a CIE it's "linked to". Our FDE contains is constructed with |
| 223 | // an offset to the CIE (provided by parsing the FDE header). The CIE itself |
| 224 | // is obtained lazily once it's actually required. |
| 225 | FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset, |
| 226 | uint64_t InitialLocation, uint64_t AddressRange, CIE *Cie, |
| 227 | Optional<uint64_t> LSDAAddress) |
| 228 | : FrameEntry(FK_FDE, Offset, Length, |
| 229 | Cie ? Cie->getCodeAlignmentFactor() : 0, |
| 230 | Cie ? Cie->getDataAlignmentFactor() : 0), |
| 231 | LinkedCIEOffset(LinkedCIEOffset), InitialLocation(InitialLocation), |
| 232 | AddressRange(AddressRange), LinkedCIE(Cie), LSDAAddress(LSDAAddress) {} |
| 233 | |
| 234 | ~FDE() override = default; |
| 235 | |
| 236 | const CIE *getLinkedCIE() const { return LinkedCIE; } |
| 237 | uint64_t getInitialLocation() const { return InitialLocation; } |
| 238 | uint64_t getAddressRange() const { return AddressRange; } |
| 239 | Optional<uint64_t> getLSDAAddress() const { return LSDAAddress; } |
| 240 | |
| 241 | void dump(raw_ostream &OS, const MCRegisterInfo *MRI, |
| 242 | bool IsEH) const override; |
| 243 | |
| 244 | static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_FDE; } |
| 245 | |
| 246 | private: |
| 247 | /// The following fields are defined in section 6.4.1 of the DWARF standard v3 |
| 248 | const uint64_t LinkedCIEOffset; |
| 249 | const uint64_t InitialLocation; |
| 250 | const uint64_t AddressRange; |
| 251 | const CIE *LinkedCIE; |
| 252 | const Optional<uint64_t> LSDAAddress; |
| 253 | }; |
| 254 | |
| 255 | } // end namespace dwarf |
| 256 | |
| 257 | /// A parsed .debug_frame or .eh_frame section |
| 258 | class DWARFDebugFrame { |
| 259 | // True if this is parsing an eh_frame section. |
| 260 | const bool IsEH; |
| 261 | // Not zero for sane pointer values coming out of eh_frame |
| 262 | const uint64_t EHFrameAddress; |
| 263 | |
| 264 | std::vector<std::unique_ptr<dwarf::FrameEntry>> Entries; |
| 265 | using iterator = pointee_iterator<decltype(Entries)::const_iterator>; |
| 266 | |
| 267 | /// Return the entry at the given offset or nullptr. |
| 268 | dwarf::FrameEntry *getEntryAtOffset(uint64_t Offset) const; |
| 269 | |
| 270 | public: |
| 271 | // If IsEH is true, assume it is a .eh_frame section. Otherwise, |
| 272 | // it is a .debug_frame section. EHFrameAddress should be different |
| 273 | // than zero for correct parsing of .eh_frame addresses when they |
| 274 | // use a PC-relative encoding. |
| 275 | DWARFDebugFrame(bool IsEH = false, uint64_t EHFrameAddress = 0); |
| 276 | ~DWARFDebugFrame(); |
| 277 | |
| 278 | /// Dump the section data into the given stream. |
| 279 | void dump(raw_ostream &OS, const MCRegisterInfo *MRI, |
| 280 | Optional<uint64_t> Offset) const; |
| 281 | |
| 282 | /// Parse the section from raw data. \p Data is assumed to contain the whole |
| 283 | /// frame section contents to be parsed. |
| 284 | void parse(DWARFDataExtractor Data); |
| 285 | |
| 286 | /// Return whether the section has any entries. |
| 287 | bool empty() const { return Entries.empty(); } |
| 288 | |
| 289 | /// DWARF Frame entries accessors |
| 290 | iterator begin() const { return Entries.begin(); } |
| 291 | iterator end() const { return Entries.end(); } |
| 292 | iterator_range<iterator> entries() const { |
| 293 | return iterator_range<iterator>(Entries.begin(), Entries.end()); |
| 294 | } |
| 295 | |
| 296 | uint64_t getEHFrameAddress() const { return EHFrameAddress; } |
| 297 | }; |
| 298 | |
| 299 | } // end namespace llvm |
| 300 | |
| 301 | #endif // LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H |