blob: 4651e518c4bc2af218211d8f8958490b92cb0193 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/BinaryFormat/ELF.h - ELF constants and structures ---*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header contains common, non-processor-specific data structures and
11// constants for the ELF file format.
12//
13// The details of the ELF32 bits in this file are largely based on the Tool
14// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
15// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
16// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_BINARYFORMAT_ELF_H
21#define LLVM_BINARYFORMAT_ELF_H
22
23#include <cstdint>
24#include <cstring>
25
26namespace llvm {
27namespace ELF {
28
29using Elf32_Addr = uint32_t; // Program address
30using Elf32_Off = uint32_t; // File offset
31using Elf32_Half = uint16_t;
32using Elf32_Word = uint32_t;
33using Elf32_Sword = int32_t;
34
35using Elf64_Addr = uint64_t;
36using Elf64_Off = uint64_t;
37using Elf64_Half = uint16_t;
38using Elf64_Word = uint32_t;
39using Elf64_Sword = int32_t;
40using Elf64_Xword = uint64_t;
41using Elf64_Sxword = int64_t;
42
43// Object file magic string.
44static const char ElfMagic[] = {0x7f, 'E', 'L', 'F', '\0'};
45
46// e_ident size and indices.
47enum {
48 EI_MAG0 = 0, // File identification index.
49 EI_MAG1 = 1, // File identification index.
50 EI_MAG2 = 2, // File identification index.
51 EI_MAG3 = 3, // File identification index.
52 EI_CLASS = 4, // File class.
53 EI_DATA = 5, // Data encoding.
54 EI_VERSION = 6, // File version.
55 EI_OSABI = 7, // OS/ABI identification.
56 EI_ABIVERSION = 8, // ABI version.
57 EI_PAD = 9, // Start of padding bytes.
58 EI_NIDENT = 16 // Number of bytes in e_ident.
59};
60
61struct Elf32_Ehdr {
62 unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
63 Elf32_Half e_type; // Type of file (see ET_* below)
64 Elf32_Half e_machine; // Required architecture for this file (see EM_*)
65 Elf32_Word e_version; // Must be equal to 1
66 Elf32_Addr e_entry; // Address to jump to in order to start program
67 Elf32_Off e_phoff; // Program header table's file offset, in bytes
68 Elf32_Off e_shoff; // Section header table's file offset, in bytes
69 Elf32_Word e_flags; // Processor-specific flags
70 Elf32_Half e_ehsize; // Size of ELF header, in bytes
71 Elf32_Half e_phentsize; // Size of an entry in the program header table
72 Elf32_Half e_phnum; // Number of entries in the program header table
73 Elf32_Half e_shentsize; // Size of an entry in the section header table
74 Elf32_Half e_shnum; // Number of entries in the section header table
75 Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
76
77 bool checkMagic() const {
78 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
79 }
80
81 unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
82 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
83};
84
85// 64-bit ELF header. Fields are the same as for ELF32, but with different
86// types (see above).
87struct Elf64_Ehdr {
88 unsigned char e_ident[EI_NIDENT];
89 Elf64_Half e_type;
90 Elf64_Half e_machine;
91 Elf64_Word e_version;
92 Elf64_Addr e_entry;
93 Elf64_Off e_phoff;
94 Elf64_Off e_shoff;
95 Elf64_Word e_flags;
96 Elf64_Half e_ehsize;
97 Elf64_Half e_phentsize;
98 Elf64_Half e_phnum;
99 Elf64_Half e_shentsize;
100 Elf64_Half e_shnum;
101 Elf64_Half e_shstrndx;
102
103 bool checkMagic() const {
104 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
105 }
106
107 unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
108 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
109};
110
111// File types
112enum {
113 ET_NONE = 0, // No file type
114 ET_REL = 1, // Relocatable file
115 ET_EXEC = 2, // Executable file
116 ET_DYN = 3, // Shared object file
117 ET_CORE = 4, // Core file
118 ET_LOPROC = 0xff00, // Beginning of processor-specific codes
119 ET_HIPROC = 0xffff // Processor-specific
120};
121
122// Versioning
123enum { EV_NONE = 0, EV_CURRENT = 1 };
124
125// Machine architectures
126// See current registered ELF machine architectures at:
127// http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html
128enum {
129 EM_NONE = 0, // No machine
130 EM_M32 = 1, // AT&T WE 32100
131 EM_SPARC = 2, // SPARC
132 EM_386 = 3, // Intel 386
133 EM_68K = 4, // Motorola 68000
134 EM_88K = 5, // Motorola 88000
135 EM_IAMCU = 6, // Intel MCU
136 EM_860 = 7, // Intel 80860
137 EM_MIPS = 8, // MIPS R3000
138 EM_S370 = 9, // IBM System/370
139 EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
140 EM_PARISC = 15, // Hewlett-Packard PA-RISC
141 EM_VPP500 = 17, // Fujitsu VPP500
142 EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
143 EM_960 = 19, // Intel 80960
144 EM_PPC = 20, // PowerPC
145 EM_PPC64 = 21, // PowerPC64
146 EM_S390 = 22, // IBM System/390
147 EM_SPU = 23, // IBM SPU/SPC
148 EM_V800 = 36, // NEC V800
149 EM_FR20 = 37, // Fujitsu FR20
150 EM_RH32 = 38, // TRW RH-32
151 EM_RCE = 39, // Motorola RCE
152 EM_ARM = 40, // ARM
153 EM_ALPHA = 41, // DEC Alpha
154 EM_SH = 42, // Hitachi SH
155 EM_SPARCV9 = 43, // SPARC V9
156 EM_TRICORE = 44, // Siemens TriCore
157 EM_ARC = 45, // Argonaut RISC Core
158 EM_H8_300 = 46, // Hitachi H8/300
159 EM_H8_300H = 47, // Hitachi H8/300H
160 EM_H8S = 48, // Hitachi H8S
161 EM_H8_500 = 49, // Hitachi H8/500
162 EM_IA_64 = 50, // Intel IA-64 processor architecture
163 EM_MIPS_X = 51, // Stanford MIPS-X
164 EM_COLDFIRE = 52, // Motorola ColdFire
165 EM_68HC12 = 53, // Motorola M68HC12
166 EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
167 EM_PCP = 55, // Siemens PCP
168 EM_NCPU = 56, // Sony nCPU embedded RISC processor
169 EM_NDR1 = 57, // Denso NDR1 microprocessor
170 EM_STARCORE = 58, // Motorola Star*Core processor
171 EM_ME16 = 59, // Toyota ME16 processor
172 EM_ST100 = 60, // STMicroelectronics ST100 processor
173 EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
174 EM_X86_64 = 62, // AMD x86-64 architecture
175 EM_PDSP = 63, // Sony DSP Processor
176 EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
177 EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
178 EM_FX66 = 66, // Siemens FX66 microcontroller
179 EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
180 EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
181 EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
182 EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
183 EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
184 EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
185 EM_SVX = 73, // Silicon Graphics SVx
186 EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
187 EM_VAX = 75, // Digital VAX
188 EM_CRIS = 76, // Axis Communications 32-bit embedded processor
189 EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
190 EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
191 EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
192 EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
193 EM_HUANY = 81, // Harvard University machine-independent object files
194 EM_PRISM = 82, // SiTera Prism
195 EM_AVR = 83, // Atmel AVR 8-bit microcontroller
196 EM_FR30 = 84, // Fujitsu FR30
197 EM_D10V = 85, // Mitsubishi D10V
198 EM_D30V = 86, // Mitsubishi D30V
199 EM_V850 = 87, // NEC v850
200 EM_M32R = 88, // Mitsubishi M32R
201 EM_MN10300 = 89, // Matsushita MN10300
202 EM_MN10200 = 90, // Matsushita MN10200
203 EM_PJ = 91, // picoJava
204 EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
205 EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
206 // spelling/synonym: EM_ARC_A5)
207 EM_XTENSA = 94, // Tensilica Xtensa Architecture
208 EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
209 EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
210 EM_NS32K = 97, // National Semiconductor 32000 series
211 EM_TPC = 98, // Tenor Network TPC processor
212 EM_SNP1K = 99, // Trebia SNP 1000 processor
213 EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
214 EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
215 EM_MAX = 102, // MAX Processor
216 EM_CR = 103, // National Semiconductor CompactRISC microprocessor
217 EM_F2MC16 = 104, // Fujitsu F2MC16
218 EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
219 EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
220 EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
221 EM_SEP = 108, // Sharp embedded microprocessor
222 EM_ARCA = 109, // Arca RISC Microprocessor
223 EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
224 // of Peking University
225 EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
226 EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
227 EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
228 EM_CRX = 114, // National Semiconductor CompactRISC CRX
229 EM_XGATE = 115, // Motorola XGATE embedded processor
230 EM_C166 = 116, // Infineon C16x/XC16x processor
231 EM_M16C = 117, // Renesas M16C series microprocessors
232 EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
233 // Controller
234 EM_CE = 119, // Freescale Communication Engine RISC core
235 EM_M32C = 120, // Renesas M32C series microprocessors
236 EM_TSK3000 = 131, // Altium TSK3000 core
237 EM_RS08 = 132, // Freescale RS08 embedded processor
238 EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
239 // processors
240 EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
241 EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
242 EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
243 EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
244 EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
245 EM_SE_C17 = 139, // Seiko Epson C17 family
246 EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
247 EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
248 EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
249 EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
250 EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
251 EM_R32C = 162, // Renesas R32C series microprocessors
252 EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
253 EM_HEXAGON = 164, // Qualcomm Hexagon processor
254 EM_8051 = 165, // Intel 8051 and variants
255 EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
256 // and extensible RISC processors
257 EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
258 // processor family
259 EM_ECOG1 = 168, // Cyan Technology eCOG1X family
260 EM_ECOG1X = 168, // Cyan Technology eCOG1X family
261 EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
262 EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
263 EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
264 EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
265 EM_RX = 173, // Renesas RX family
266 EM_METAG = 174, // Imagination Technologies META processor
267 // architecture
268 EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
269 EM_ECOG16 = 176, // Cyan Technology eCOG16 family
270 EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
271 // microprocessor
272 EM_ETPU = 178, // Freescale Extended Time Processing Unit
273 EM_SLE9X = 179, // Infineon Technologies SLE9X core
274 EM_L10M = 180, // Intel L10M
275 EM_K10M = 181, // Intel K10M
276 EM_AARCH64 = 183, // ARM AArch64
277 EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
278 EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
279 EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
280 EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
281 EM_CUDA = 190, // NVIDIA CUDA architecture
282 EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
283 EM_CLOUDSHIELD = 192, // CloudShield architecture family
284 EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
285 EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
286 EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
287 EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
288 EM_RL78 = 197, // Renesas RL78 family
289 EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
290 EM_78KOR = 199, // Renesas 78KOR family
291 EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC)
292 EM_BA1 = 201, // Beyond BA1 CPU architecture
293 EM_BA2 = 202, // Beyond BA2 CPU architecture
294 EM_XCORE = 203, // XMOS xCORE processor family
295 EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family
296 EM_INTEL205 = 205, // Reserved by Intel
297 EM_INTEL206 = 206, // Reserved by Intel
298 EM_INTEL207 = 207, // Reserved by Intel
299 EM_INTEL208 = 208, // Reserved by Intel
300 EM_INTEL209 = 209, // Reserved by Intel
301 EM_KM32 = 210, // KM211 KM32 32-bit processor
302 EM_KMX32 = 211, // KM211 KMX32 32-bit processor
303 EM_KMX16 = 212, // KM211 KMX16 16-bit processor
304 EM_KMX8 = 213, // KM211 KMX8 8-bit processor
305 EM_KVARC = 214, // KM211 KVARC processor
306 EM_CDP = 215, // Paneve CDP architecture family
307 EM_COGE = 216, // Cognitive Smart Memory Processor
308 EM_COOL = 217, // iCelero CoolEngine
309 EM_NORC = 218, // Nanoradio Optimized RISC
310 EM_CSR_KALIMBA = 219, // CSR Kalimba architecture family
311 EM_AMDGPU = 224, // AMD GPU architecture
312 EM_RISCV = 243, // RISC-V
313 EM_LANAI = 244, // Lanai 32-bit processor
314 EM_BPF = 247, // Linux kernel bpf virtual machine
315
316 // A request has been made to the maintainer of the official registry for
317 // such numbers for an official value for WebAssembly. As soon as one is
318 // allocated, this enum will be updated to use it.
319 EM_WEBASSEMBLY = 0x4157, // WebAssembly architecture
320};
321
322// Object file classes.
323enum {
324 ELFCLASSNONE = 0,
325 ELFCLASS32 = 1, // 32-bit object file
326 ELFCLASS64 = 2 // 64-bit object file
327};
328
329// Object file byte orderings.
330enum {
331 ELFDATANONE = 0, // Invalid data encoding.
332 ELFDATA2LSB = 1, // Little-endian object file
333 ELFDATA2MSB = 2 // Big-endian object file
334};
335
336// OS ABI identification.
337enum {
338 ELFOSABI_NONE = 0, // UNIX System V ABI
339 ELFOSABI_HPUX = 1, // HP-UX operating system
340 ELFOSABI_NETBSD = 2, // NetBSD
341 ELFOSABI_GNU = 3, // GNU/Linux
342 ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU.
343 ELFOSABI_HURD = 4, // GNU/Hurd
344 ELFOSABI_SOLARIS = 6, // Solaris
345 ELFOSABI_AIX = 7, // AIX
346 ELFOSABI_IRIX = 8, // IRIX
347 ELFOSABI_FREEBSD = 9, // FreeBSD
348 ELFOSABI_TRU64 = 10, // TRU64 UNIX
349 ELFOSABI_MODESTO = 11, // Novell Modesto
350 ELFOSABI_OPENBSD = 12, // OpenBSD
351 ELFOSABI_OPENVMS = 13, // OpenVMS
352 ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
353 ELFOSABI_AROS = 15, // AROS
354 ELFOSABI_FENIXOS = 16, // FenixOS
355 ELFOSABI_CLOUDABI = 17, // Nuxi CloudABI
356 ELFOSABI_FIRST_ARCH = 64, // First architecture-specific OS ABI
357 ELFOSABI_AMDGPU_HSA = 64, // AMD HSA runtime
358 ELFOSABI_AMDGPU_PAL = 65, // AMD PAL runtime
359 ELFOSABI_AMDGPU_MESA3D = 66, // AMD GCN GPUs (GFX6+) for MESA runtime
360 ELFOSABI_ARM = 97, // ARM
361 ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
362 ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
363 ELFOSABI_STANDALONE = 255, // Standalone (embedded) application
364 ELFOSABI_LAST_ARCH = 255 // Last Architecture-specific OS ABI
365};
366
367#define ELF_RELOC(name, value) name = value,
368
369// X86_64 relocations.
370enum {
371#include "ELFRelocs/x86_64.def"
372};
373
374// i386 relocations.
375enum {
376#include "ELFRelocs/i386.def"
377};
378
379// ELF Relocation types for PPC32
380enum {
381#include "ELFRelocs/PowerPC.def"
382};
383
384// Specific e_flags for PPC64
385enum {
386 // e_flags bits specifying ABI:
387 // 1 for original ABI using function descriptors,
388 // 2 for revised ABI without function descriptors,
389 // 0 for unspecified or not using any features affected by the differences.
390 EF_PPC64_ABI = 3
391};
392
393// Special values for the st_other field in the symbol table entry for PPC64.
394enum {
395 STO_PPC64_LOCAL_BIT = 5,
396 STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT)
397};
398static inline int64_t decodePPC64LocalEntryOffset(unsigned Other) {
399 unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT;
400 return ((1 << Val) >> 2) << 2;
401}
402static inline unsigned encodePPC64LocalEntryOffset(int64_t Offset) {
403 unsigned Val =
404 (Offset >= 4 * 4 ? (Offset >= 8 * 4 ? (Offset >= 16 * 4 ? 6 : 5) : 4)
405 : (Offset >= 2 * 4 ? 3 : (Offset >= 1 * 4 ? 2 : 0)));
406 return Val << STO_PPC64_LOCAL_BIT;
407}
408
409// ELF Relocation types for PPC64
410enum {
411#include "ELFRelocs/PowerPC64.def"
412};
413
414// ELF Relocation types for AArch64
415enum {
416#include "ELFRelocs/AArch64.def"
417};
418
419// ARM Specific e_flags
420enum : unsigned {
421 EF_ARM_SOFT_FLOAT = 0x00000200U,
422 EF_ARM_VFP_FLOAT = 0x00000400U,
423 EF_ARM_EABI_UNKNOWN = 0x00000000U,
424 EF_ARM_EABI_VER1 = 0x01000000U,
425 EF_ARM_EABI_VER2 = 0x02000000U,
426 EF_ARM_EABI_VER3 = 0x03000000U,
427 EF_ARM_EABI_VER4 = 0x04000000U,
428 EF_ARM_EABI_VER5 = 0x05000000U,
429 EF_ARM_EABIMASK = 0xFF000000U
430};
431
432// ELF Relocation types for ARM
433enum {
434#include "ELFRelocs/ARM.def"
435};
436
437// ARC Specific e_flags
438enum : unsigned {
439 EF_ARC_MACH_MSK = 0x000000ff,
440 EF_ARC_OSABI_MSK = 0x00000f00,
441 E_ARC_MACH_ARC600 = 0x00000002,
442 E_ARC_MACH_ARC601 = 0x00000004,
443 E_ARC_MACH_ARC700 = 0x00000003,
444 EF_ARC_CPU_ARCV2EM = 0x00000005,
445 EF_ARC_CPU_ARCV2HS = 0x00000006,
446 E_ARC_OSABI_ORIG = 0x00000000,
447 E_ARC_OSABI_V2 = 0x00000200,
448 E_ARC_OSABI_V3 = 0x00000300,
449 E_ARC_OSABI_V4 = 0x00000400,
450 EF_ARC_PIC = 0x00000100
451};
452
453// ELF Relocation types for ARC
454enum {
455#include "ELFRelocs/ARC.def"
456};
457
458// AVR specific e_flags
459enum : unsigned {
460 EF_AVR_ARCH_AVR1 = 1,
461 EF_AVR_ARCH_AVR2 = 2,
462 EF_AVR_ARCH_AVR25 = 25,
463 EF_AVR_ARCH_AVR3 = 3,
464 EF_AVR_ARCH_AVR31 = 31,
465 EF_AVR_ARCH_AVR35 = 35,
466 EF_AVR_ARCH_AVR4 = 4,
467 EF_AVR_ARCH_AVR5 = 5,
468 EF_AVR_ARCH_AVR51 = 51,
469 EF_AVR_ARCH_AVR6 = 6,
470 EF_AVR_ARCH_AVRTINY = 100,
471 EF_AVR_ARCH_XMEGA1 = 101,
472 EF_AVR_ARCH_XMEGA2 = 102,
473 EF_AVR_ARCH_XMEGA3 = 103,
474 EF_AVR_ARCH_XMEGA4 = 104,
475 EF_AVR_ARCH_XMEGA5 = 105,
476 EF_AVR_ARCH_XMEGA6 = 106,
477 EF_AVR_ARCH_XMEGA7 = 107
478};
479
480// ELF Relocation types for AVR
481enum {
482#include "ELFRelocs/AVR.def"
483};
484
485// Mips Specific e_flags
486enum : unsigned {
487 EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
488 EF_MIPS_PIC = 0x00000002, // Position independent code
489 EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
490 EF_MIPS_ABI2 = 0x00000020, // File uses N32 ABI
491 EF_MIPS_32BITMODE = 0x00000100, // Code compiled for a 64-bit machine
492 // in 32-bit mode
493 EF_MIPS_FP64 = 0x00000200, // Code compiled for a 32-bit machine
494 // but uses 64-bit FP registers
495 EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding
496
497 // ABI flags
498 EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI
499 EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture.
500 EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode.
501 EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode.
502 EF_MIPS_ABI = 0x0000f000, // Mask for selecting EF_MIPS_ABI_ variant.
503
504 // MIPS machine variant
505 EF_MIPS_MACH_NONE = 0x00000000, // A standard MIPS implementation.
506 EF_MIPS_MACH_3900 = 0x00810000, // Toshiba R3900
507 EF_MIPS_MACH_4010 = 0x00820000, // LSI R4010
508 EF_MIPS_MACH_4100 = 0x00830000, // NEC VR4100
509 EF_MIPS_MACH_4650 = 0x00850000, // MIPS R4650
510 EF_MIPS_MACH_4120 = 0x00870000, // NEC VR4120
511 EF_MIPS_MACH_4111 = 0x00880000, // NEC VR4111/VR4181
512 EF_MIPS_MACH_SB1 = 0x008a0000, // Broadcom SB-1
513 EF_MIPS_MACH_OCTEON = 0x008b0000, // Cavium Networks Octeon
514 EF_MIPS_MACH_XLR = 0x008c0000, // RMI Xlr
515 EF_MIPS_MACH_OCTEON2 = 0x008d0000, // Cavium Networks Octeon2
516 EF_MIPS_MACH_OCTEON3 = 0x008e0000, // Cavium Networks Octeon3
517 EF_MIPS_MACH_5400 = 0x00910000, // NEC VR5400
518 EF_MIPS_MACH_5900 = 0x00920000, // MIPS R5900
519 EF_MIPS_MACH_5500 = 0x00980000, // NEC VR5500
520 EF_MIPS_MACH_9000 = 0x00990000, // Unknown
521 EF_MIPS_MACH_LS2E = 0x00a00000, // ST Microelectronics Loongson 2E
522 EF_MIPS_MACH_LS2F = 0x00a10000, // ST Microelectronics Loongson 2F
523 EF_MIPS_MACH_LS3A = 0x00a20000, // Loongson 3A
524 EF_MIPS_MACH = 0x00ff0000, // EF_MIPS_MACH_xxx selection mask
525
526 // ARCH_ASE
527 EF_MIPS_MICROMIPS = 0x02000000, // microMIPS
528 EF_MIPS_ARCH_ASE_M16 = 0x04000000, // Has Mips-16 ISA extensions
529 EF_MIPS_ARCH_ASE_MDMX = 0x08000000, // Has MDMX multimedia extensions
530 EF_MIPS_ARCH_ASE = 0x0f000000, // Mask for EF_MIPS_ARCH_ASE_xxx flags
531
532 // ARCH
533 EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
534 EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
535 EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
536 EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
537 EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
538 EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h
539 EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h
540 EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2, mips32r3, mips32r5
541 EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2, mips64r3, mips64r5
542 EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6
543 EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6
544 EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
545};
546
547// ELF Relocation types for Mips
548enum {
549#include "ELFRelocs/Mips.def"
550};
551
552// Special values for the st_other field in the symbol table entry for MIPS.
553enum {
554 STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional
555 STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record
556 STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC
557 STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips
558 STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16
559};
560
561// .MIPS.options section descriptor kinds
562enum {
563 ODK_NULL = 0, // Undefined
564 ODK_REGINFO = 1, // Register usage information
565 ODK_EXCEPTIONS = 2, // Exception processing options
566 ODK_PAD = 3, // Section padding options
567 ODK_HWPATCH = 4, // Hardware patches applied
568 ODK_FILL = 5, // Linker fill value
569 ODK_TAGS = 6, // Space for tool identification
570 ODK_HWAND = 7, // Hardware AND patches applied
571 ODK_HWOR = 8, // Hardware OR patches applied
572 ODK_GP_GROUP = 9, // GP group to use for text/data sections
573 ODK_IDENT = 10, // ID information
574 ODK_PAGESIZE = 11 // Page size information
575};
576
577// Hexagon-specific e_flags
578enum {
579 // Object processor version flags, bits[11:0]
580 EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2
581 EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3
582 EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4
583 EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5
584 EF_HEXAGON_MACH_V55 = 0x00000005, // Hexagon V55
585 EF_HEXAGON_MACH_V60 = 0x00000060, // Hexagon V60
586 EF_HEXAGON_MACH_V62 = 0x00000062, // Hexagon V62
587 EF_HEXAGON_MACH_V65 = 0x00000065, // Hexagon V65
588
589 // Highest ISA version flags
590 EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[11:0]
591 // of e_flags
592 EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA
593 EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA
594 EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA
595 EF_HEXAGON_ISA_V5 = 0x00000040, // Hexagon V5 ISA
596 EF_HEXAGON_ISA_V55 = 0x00000050, // Hexagon V55 ISA
597 EF_HEXAGON_ISA_V60 = 0x00000060, // Hexagon V60 ISA
598 EF_HEXAGON_ISA_V62 = 0x00000062, // Hexagon V62 ISA
599 EF_HEXAGON_ISA_V65 = 0x00000065, // Hexagon V65 ISA
600};
601
602// Hexagon-specific section indexes for common small data
603enum {
604 SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes
605 SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access
606 SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access
607 SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access
608 SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access
609};
610
611// ELF Relocation types for Hexagon
612enum {
613#include "ELFRelocs/Hexagon.def"
614};
615
616// ELF Relocation type for Lanai.
617enum {
618#include "ELFRelocs/Lanai.def"
619};
620
621// RISCV Specific e_flags
622enum : unsigned {
623 EF_RISCV_RVC = 0x0001,
624 EF_RISCV_FLOAT_ABI = 0x0006,
625 EF_RISCV_FLOAT_ABI_SOFT = 0x0000,
626 EF_RISCV_FLOAT_ABI_SINGLE = 0x0002,
627 EF_RISCV_FLOAT_ABI_DOUBLE = 0x0004,
628 EF_RISCV_FLOAT_ABI_QUAD = 0x0006,
629 EF_RISCV_RVE = 0x0008
630};
631
632// ELF Relocation types for RISC-V
633enum {
634#include "ELFRelocs/RISCV.def"
635};
636
637// ELF Relocation types for S390/zSeries
638enum {
639#include "ELFRelocs/SystemZ.def"
640};
641
642// ELF Relocation type for Sparc.
643enum {
644#include "ELFRelocs/Sparc.def"
645};
646
647// ELF Relocation types for WebAssembly
648enum {
649#include "ELFRelocs/WebAssembly.def"
650};
651
652// AMDGPU specific e_flags.
653enum : unsigned {
654 // Processor selection mask for EF_AMDGPU_MACH_* values.
655 EF_AMDGPU_MACH = 0x0ff,
656
657 // Not specified processor.
658 EF_AMDGPU_MACH_NONE = 0x000,
659
660 // R600-based processors.
661 EF_AMDGPU_MACH_R600_FIRST = 0x001,
662 EF_AMDGPU_MACH_R600_LAST = 0x010,
663 // Radeon HD 2000/3000 Series (R600).
664 EF_AMDGPU_MACH_R600_R600 = 0x001,
665 EF_AMDGPU_MACH_R600_R630 = 0x002,
666 EF_AMDGPU_MACH_R600_RS880 = 0x003,
667 EF_AMDGPU_MACH_R600_RV670 = 0x004,
668 // Radeon HD 4000 Series (R700).
669 EF_AMDGPU_MACH_R600_RV710 = 0x005,
670 EF_AMDGPU_MACH_R600_RV730 = 0x006,
671 EF_AMDGPU_MACH_R600_RV770 = 0x007,
672 // Radeon HD 5000 Series (Evergreen).
673 EF_AMDGPU_MACH_R600_CEDAR = 0x008,
674 EF_AMDGPU_MACH_R600_CYPRESS = 0x009,
675 EF_AMDGPU_MACH_R600_JUNIPER = 0x00a,
676 EF_AMDGPU_MACH_R600_REDWOOD = 0x00b,
677 EF_AMDGPU_MACH_R600_SUMO = 0x00c,
678 // Radeon HD 6000 Series (Northern Islands).
679 EF_AMDGPU_MACH_R600_BARTS = 0x00d,
680 EF_AMDGPU_MACH_R600_CAICOS = 0x00e,
681 EF_AMDGPU_MACH_R600_CAYMAN = 0x00f,
682 EF_AMDGPU_MACH_R600_TURKS = 0x010,
683
684 // Reserved for R600-based processors.
685 EF_AMDGPU_MACH_R600_RESERVED_FIRST = 0x011,
686 EF_AMDGPU_MACH_R600_RESERVED_LAST = 0x01f,
687
688 // AMDGCN-based processors.
689 EF_AMDGPU_MACH_AMDGCN_FIRST = 0x020,
690 EF_AMDGPU_MACH_AMDGCN_LAST = 0x02d,
691 // AMDGCN GFX6.
692 EF_AMDGPU_MACH_AMDGCN_GFX600 = 0x020,
693 EF_AMDGPU_MACH_AMDGCN_GFX601 = 0x021,
694 // AMDGCN GFX7.
695 EF_AMDGPU_MACH_AMDGCN_GFX700 = 0x022,
696 EF_AMDGPU_MACH_AMDGCN_GFX701 = 0x023,
697 EF_AMDGPU_MACH_AMDGCN_GFX702 = 0x024,
698 EF_AMDGPU_MACH_AMDGCN_GFX703 = 0x025,
699 EF_AMDGPU_MACH_AMDGCN_GFX704 = 0x026,
700 // AMDGCN GFX8.
701 EF_AMDGPU_MACH_AMDGCN_GFX801 = 0x028,
702 EF_AMDGPU_MACH_AMDGCN_GFX802 = 0x029,
703 EF_AMDGPU_MACH_AMDGCN_GFX803 = 0x02a,
704 EF_AMDGPU_MACH_AMDGCN_GFX810 = 0x02b,
705 // AMDGCN GFX9.
706 EF_AMDGPU_MACH_AMDGCN_GFX900 = 0x02c,
707 EF_AMDGPU_MACH_AMDGCN_GFX902 = 0x02d,
708
709 // Reserved for AMDGCN-based processors.
710 EF_AMDGPU_MACH_AMDGCN_RESERVED0 = 0x027,
711 EF_AMDGPU_MACH_AMDGCN_RESERVED1 = 0x02e,
712 EF_AMDGPU_MACH_AMDGCN_RESERVED2 = 0x02f,
713 EF_AMDGPU_MACH_AMDGCN_RESERVED3 = 0x030,
714
715 // Indicates if the xnack target feature is enabled for all code contained in
716 // the object.
717 EF_AMDGPU_XNACK = 0x100,
718};
719
720// ELF Relocation types for AMDGPU
721enum {
722#include "ELFRelocs/AMDGPU.def"
723};
724
725// ELF Relocation types for BPF
726enum {
727#include "ELFRelocs/BPF.def"
728};
729
730#undef ELF_RELOC
731
732// Section header.
733struct Elf32_Shdr {
734 Elf32_Word sh_name; // Section name (index into string table)
735 Elf32_Word sh_type; // Section type (SHT_*)
736 Elf32_Word sh_flags; // Section flags (SHF_*)
737 Elf32_Addr sh_addr; // Address where section is to be loaded
738 Elf32_Off sh_offset; // File offset of section data, in bytes
739 Elf32_Word sh_size; // Size of section, in bytes
740 Elf32_Word sh_link; // Section type-specific header table index link
741 Elf32_Word sh_info; // Section type-specific extra information
742 Elf32_Word sh_addralign; // Section address alignment
743 Elf32_Word sh_entsize; // Size of records contained within the section
744};
745
746// Section header for ELF64 - same fields as ELF32, different types.
747struct Elf64_Shdr {
748 Elf64_Word sh_name;
749 Elf64_Word sh_type;
750 Elf64_Xword sh_flags;
751 Elf64_Addr sh_addr;
752 Elf64_Off sh_offset;
753 Elf64_Xword sh_size;
754 Elf64_Word sh_link;
755 Elf64_Word sh_info;
756 Elf64_Xword sh_addralign;
757 Elf64_Xword sh_entsize;
758};
759
760// Special section indices.
761enum {
762 SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
763 SHN_LORESERVE = 0xff00, // Lowest reserved index
764 SHN_LOPROC = 0xff00, // Lowest processor-specific index
765 SHN_HIPROC = 0xff1f, // Highest processor-specific index
766 SHN_LOOS = 0xff20, // Lowest operating system-specific index
767 SHN_HIOS = 0xff3f, // Highest operating system-specific index
768 SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
769 SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
770 SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
771 SHN_HIRESERVE = 0xffff // Highest reserved index
772};
773
774// Section types.
775enum : unsigned {
776 SHT_NULL = 0, // No associated section (inactive entry).
777 SHT_PROGBITS = 1, // Program-defined contents.
778 SHT_SYMTAB = 2, // Symbol table.
779 SHT_STRTAB = 3, // String table.
780 SHT_RELA = 4, // Relocation entries; explicit addends.
781 SHT_HASH = 5, // Symbol hash table.
782 SHT_DYNAMIC = 6, // Information for dynamic linking.
783 SHT_NOTE = 7, // Information about the file.
784 SHT_NOBITS = 8, // Data occupies no space in the file.
785 SHT_REL = 9, // Relocation entries; no explicit addends.
786 SHT_SHLIB = 10, // Reserved.
787 SHT_DYNSYM = 11, // Symbol table.
788 SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
789 SHT_FINI_ARRAY = 15, // Pointers to termination functions.
790 SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
791 SHT_GROUP = 17, // Section group.
792 SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
793 SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
794 // Android packed relocation section types.
795 // https://android.googlesource.com/platform/bionic/+/6f12bfece5dcc01325e0abba56a46b1bcf991c69/tools/relocation_packer/src/elf_file.cc#37
796 SHT_ANDROID_REL = 0x60000001,
797 SHT_ANDROID_RELA = 0x60000002,
798 SHT_LLVM_ODRTAB = 0x6fff4c00, // LLVM ODR table.
799 SHT_LLVM_LINKER_OPTIONS = 0x6fff4c01, // LLVM Linker Options.
800 SHT_GNU_ATTRIBUTES = 0x6ffffff5, // Object attributes.
801 SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
802 SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
803 SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
804 SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
805 SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
806 SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
807 // Fixme: All this is duplicated in MCSectionELF. Why??
808 // Exception Index table
809 SHT_ARM_EXIDX = 0x70000001U,
810 // BPABI DLL dynamic linking pre-emption map
811 SHT_ARM_PREEMPTMAP = 0x70000002U,
812 // Object file compatibility attributes
813 SHT_ARM_ATTRIBUTES = 0x70000003U,
814 SHT_ARM_DEBUGOVERLAY = 0x70000004U,
815 SHT_ARM_OVERLAYSECTION = 0x70000005U,
816 SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in
817 // this section based on their sizes
818 SHT_X86_64_UNWIND = 0x70000001, // Unwind information
819
820 SHT_MIPS_REGINFO = 0x70000006, // Register usage information
821 SHT_MIPS_OPTIONS = 0x7000000d, // General options
822 SHT_MIPS_DWARF = 0x7000001e, // DWARF debugging section.
823 SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information.
824
825 SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
826 SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
827 SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
828};
829
830// Section flags.
831enum : unsigned {
832 // Section data should be writable during execution.
833 SHF_WRITE = 0x1,
834
835 // Section occupies memory during program execution.
836 SHF_ALLOC = 0x2,
837
838 // Section contains executable machine instructions.
839 SHF_EXECINSTR = 0x4,
840
841 // The data in this section may be merged.
842 SHF_MERGE = 0x10,
843
844 // The data in this section is null-terminated strings.
845 SHF_STRINGS = 0x20,
846
847 // A field in this section holds a section header table index.
848 SHF_INFO_LINK = 0x40U,
849
850 // Adds special ordering requirements for link editors.
851 SHF_LINK_ORDER = 0x80U,
852
853 // This section requires special OS-specific processing to avoid incorrect
854 // behavior.
855 SHF_OS_NONCONFORMING = 0x100U,
856
857 // This section is a member of a section group.
858 SHF_GROUP = 0x200U,
859
860 // This section holds Thread-Local Storage.
861 SHF_TLS = 0x400U,
862
863 // Identifies a section containing compressed data.
864 SHF_COMPRESSED = 0x800U,
865
866 // This section is excluded from the final executable or shared library.
867 SHF_EXCLUDE = 0x80000000U,
868
869 // Start of target-specific flags.
870
871 SHF_MASKOS = 0x0ff00000,
872
873 // Bits indicating processor-specific flags.
874 SHF_MASKPROC = 0xf0000000,
875
876 /// All sections with the "d" flag are grouped together by the linker to form
877 /// the data section and the dp register is set to the start of the section by
878 /// the boot code.
879 XCORE_SHF_DP_SECTION = 0x10000000,
880
881 /// All sections with the "c" flag are grouped together by the linker to form
882 /// the constant pool and the cp register is set to the start of the constant
883 /// pool by the boot code.
884 XCORE_SHF_CP_SECTION = 0x20000000,
885
886 // If an object file section does not have this flag set, then it may not hold
887 // more than 2GB and can be freely referred to in objects using smaller code
888 // models. Otherwise, only objects using larger code models can refer to them.
889 // For example, a medium code model object can refer to data in a section that
890 // sets this flag besides being able to refer to data in a section that does
891 // not set it; likewise, a small code model object can refer only to code in a
892 // section that does not set this flag.
893 SHF_X86_64_LARGE = 0x10000000,
894
895 // All sections with the GPREL flag are grouped into a global data area
896 // for faster accesses
897 SHF_HEX_GPREL = 0x10000000,
898
899 // Section contains text/data which may be replicated in other sections.
900 // Linker must retain only one copy.
901 SHF_MIPS_NODUPES = 0x01000000,
902
903 // Linker must generate implicit hidden weak names.
904 SHF_MIPS_NAMES = 0x02000000,
905
906 // Section data local to process.
907 SHF_MIPS_LOCAL = 0x04000000,
908
909 // Do not strip this section.
910 SHF_MIPS_NOSTRIP = 0x08000000,
911
912 // Section must be part of global data area.
913 SHF_MIPS_GPREL = 0x10000000,
914
915 // This section should be merged.
916 SHF_MIPS_MERGE = 0x20000000,
917
918 // Address size to be inferred from section entry size.
919 SHF_MIPS_ADDR = 0x40000000,
920
921 // Section data is string data by default.
922 SHF_MIPS_STRING = 0x80000000,
923
924 // Make code section unreadable when in execute-only mode
925 SHF_ARM_PURECODE = 0x20000000
926};
927
928// Section Group Flags
929enum : unsigned {
930 GRP_COMDAT = 0x1,
931 GRP_MASKOS = 0x0ff00000,
932 GRP_MASKPROC = 0xf0000000
933};
934
935// Symbol table entries for ELF32.
936struct Elf32_Sym {
937 Elf32_Word st_name; // Symbol name (index into string table)
938 Elf32_Addr st_value; // Value or address associated with the symbol
939 Elf32_Word st_size; // Size of the symbol
940 unsigned char st_info; // Symbol's type and binding attributes
941 unsigned char st_other; // Must be zero; reserved
942 Elf32_Half st_shndx; // Which section (header table index) it's defined in
943
944 // These accessors and mutators correspond to the ELF32_ST_BIND,
945 // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
946 unsigned char getBinding() const { return st_info >> 4; }
947 unsigned char getType() const { return st_info & 0x0f; }
948 void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
949 void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
950 void setBindingAndType(unsigned char b, unsigned char t) {
951 st_info = (b << 4) + (t & 0x0f);
952 }
953};
954
955// Symbol table entries for ELF64.
956struct Elf64_Sym {
957 Elf64_Word st_name; // Symbol name (index into string table)
958 unsigned char st_info; // Symbol's type and binding attributes
959 unsigned char st_other; // Must be zero; reserved
960 Elf64_Half st_shndx; // Which section (header tbl index) it's defined in
961 Elf64_Addr st_value; // Value or address associated with the symbol
962 Elf64_Xword st_size; // Size of the symbol
963
964 // These accessors and mutators are identical to those defined for ELF32
965 // symbol table entries.
966 unsigned char getBinding() const { return st_info >> 4; }
967 unsigned char getType() const { return st_info & 0x0f; }
968 void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
969 void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
970 void setBindingAndType(unsigned char b, unsigned char t) {
971 st_info = (b << 4) + (t & 0x0f);
972 }
973};
974
975// The size (in bytes) of symbol table entries.
976enum {
977 SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
978 SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
979};
980
981// Symbol bindings.
982enum {
983 STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
984 STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
985 STB_WEAK = 2, // Weak symbol, like global but lower-precedence
986 STB_GNU_UNIQUE = 10,
987 STB_LOOS = 10, // Lowest operating system-specific binding type
988 STB_HIOS = 12, // Highest operating system-specific binding type
989 STB_LOPROC = 13, // Lowest processor-specific binding type
990 STB_HIPROC = 15 // Highest processor-specific binding type
991};
992
993// Symbol types.
994enum {
995 STT_NOTYPE = 0, // Symbol's type is not specified
996 STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
997 STT_FUNC = 2, // Symbol is executable code (function, etc.)
998 STT_SECTION = 3, // Symbol refers to a section
999 STT_FILE = 4, // Local, absolute symbol that refers to a file
1000 STT_COMMON = 5, // An uninitialized common block
1001 STT_TLS = 6, // Thread local data object
1002 STT_GNU_IFUNC = 10, // GNU indirect function
1003 STT_LOOS = 10, // Lowest operating system-specific symbol type
1004 STT_HIOS = 12, // Highest operating system-specific symbol type
1005 STT_LOPROC = 13, // Lowest processor-specific symbol type
1006 STT_HIPROC = 15, // Highest processor-specific symbol type
1007
1008 // AMDGPU symbol types
1009 STT_AMDGPU_HSA_KERNEL = 10
1010};
1011
1012enum {
1013 STV_DEFAULT = 0, // Visibility is specified by binding type
1014 STV_INTERNAL = 1, // Defined by processor supplements
1015 STV_HIDDEN = 2, // Not visible to other components
1016 STV_PROTECTED = 3 // Visible in other components but not preemptable
1017};
1018
1019// Symbol number.
1020enum { STN_UNDEF = 0 };
1021
1022// Special relocation symbols used in the MIPS64 ELF relocation entries
1023enum {
1024 RSS_UNDEF = 0, // None
1025 RSS_GP = 1, // Value of gp
1026 RSS_GP0 = 2, // Value of gp used to create object being relocated
1027 RSS_LOC = 3 // Address of location being relocated
1028};
1029
1030// Relocation entry, without explicit addend.
1031struct Elf32_Rel {
1032 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
1033 Elf32_Word r_info; // Symbol table index and type of relocation to apply
1034
1035 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
1036 // and ELF32_R_INFO macros defined in the ELF specification:
1037 Elf32_Word getSymbol() const { return (r_info >> 8); }
1038 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); }
1039 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
1040 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
1041 void setSymbolAndType(Elf32_Word s, unsigned char t) {
1042 r_info = (s << 8) + t;
1043 }
1044};
1045
1046// Relocation entry with explicit addend.
1047struct Elf32_Rela {
1048 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
1049 Elf32_Word r_info; // Symbol table index and type of relocation to apply
1050 Elf32_Sword r_addend; // Compute value for relocatable field by adding this
1051
1052 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
1053 // and ELF32_R_INFO macros defined in the ELF specification:
1054 Elf32_Word getSymbol() const { return (r_info >> 8); }
1055 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); }
1056 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
1057 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
1058 void setSymbolAndType(Elf32_Word s, unsigned char t) {
1059 r_info = (s << 8) + t;
1060 }
1061};
1062
1063// Relocation entry, without explicit addend.
1064struct Elf64_Rel {
1065 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
1066 Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
1067
1068 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
1069 // and ELF64_R_INFO macros defined in the ELF specification:
1070 Elf64_Word getSymbol() const { return (r_info >> 32); }
1071 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); }
1072 void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
1073 void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
1074 void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
1075 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL);
1076 }
1077};
1078
1079// Relocation entry with explicit addend.
1080struct Elf64_Rela {
1081 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
1082 Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
1083 Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
1084
1085 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
1086 // and ELF64_R_INFO macros defined in the ELF specification:
1087 Elf64_Word getSymbol() const { return (r_info >> 32); }
1088 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); }
1089 void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); }
1090 void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); }
1091 void setSymbolAndType(Elf64_Word s, Elf64_Word t) {
1092 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL);
1093 }
1094};
1095
1096// Program header for ELF32.
1097struct Elf32_Phdr {
1098 Elf32_Word p_type; // Type of segment
1099 Elf32_Off p_offset; // File offset where segment is located, in bytes
1100 Elf32_Addr p_vaddr; // Virtual address of beginning of segment
1101 Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
1102 Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
1103 Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
1104 Elf32_Word p_flags; // Segment flags
1105 Elf32_Word p_align; // Segment alignment constraint
1106};
1107
1108// Program header for ELF64.
1109struct Elf64_Phdr {
1110 Elf64_Word p_type; // Type of segment
1111 Elf64_Word p_flags; // Segment flags
1112 Elf64_Off p_offset; // File offset where segment is located, in bytes
1113 Elf64_Addr p_vaddr; // Virtual address of beginning of segment
1114 Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific)
1115 Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
1116 Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
1117 Elf64_Xword p_align; // Segment alignment constraint
1118};
1119
1120// Segment types.
1121enum {
1122 PT_NULL = 0, // Unused segment.
1123 PT_LOAD = 1, // Loadable segment.
1124 PT_DYNAMIC = 2, // Dynamic linking information.
1125 PT_INTERP = 3, // Interpreter pathname.
1126 PT_NOTE = 4, // Auxiliary information.
1127 PT_SHLIB = 5, // Reserved.
1128 PT_PHDR = 6, // The program header table itself.
1129 PT_TLS = 7, // The thread-local storage template.
1130 PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
1131 PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
1132 PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
1133 PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
1134
1135 // x86-64 program header types.
1136 // These all contain stack unwind tables.
1137 PT_GNU_EH_FRAME = 0x6474e550,
1138 PT_SUNW_EH_FRAME = 0x6474e550,
1139 PT_SUNW_UNWIND = 0x6464e550,
1140
1141 PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
1142 PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
1143
1144 PT_OPENBSD_RANDOMIZE = 0x65a3dbe6, // Fill with random data.
1145 PT_OPENBSD_WXNEEDED = 0x65a3dbe7, // Program does W^X violations.
1146 PT_OPENBSD_BOOTDATA = 0x65a41be6, // Section for boot arguments.
1147
1148 // ARM program header types.
1149 PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info
1150 // These all contain stack unwind tables.
1151 PT_ARM_EXIDX = 0x70000001,
1152 PT_ARM_UNWIND = 0x70000001,
1153
1154 // MIPS program header types.
1155 PT_MIPS_REGINFO = 0x70000000, // Register usage information.
1156 PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table.
1157 PT_MIPS_OPTIONS = 0x70000002, // Options segment.
1158 PT_MIPS_ABIFLAGS = 0x70000003, // Abiflags segment.
1159
1160 // WebAssembly program header types.
1161 PT_WEBASSEMBLY_FUNCTIONS = PT_LOPROC + 0, // Function definitions.
1162};
1163
1164// Segment flag bits.
1165enum : unsigned {
1166 PF_X = 1, // Execute
1167 PF_W = 2, // Write
1168 PF_R = 4, // Read
1169 PF_MASKOS = 0x0ff00000, // Bits for operating system-specific semantics.
1170 PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
1171};
1172
1173// Dynamic table entry for ELF32.
1174struct Elf32_Dyn {
1175 Elf32_Sword d_tag; // Type of dynamic table entry.
1176 union {
1177 Elf32_Word d_val; // Integer value of entry.
1178 Elf32_Addr d_ptr; // Pointer value of entry.
1179 } d_un;
1180};
1181
1182// Dynamic table entry for ELF64.
1183struct Elf64_Dyn {
1184 Elf64_Sxword d_tag; // Type of dynamic table entry.
1185 union {
1186 Elf64_Xword d_val; // Integer value of entry.
1187 Elf64_Addr d_ptr; // Pointer value of entry.
1188 } d_un;
1189};
1190
1191// Dynamic table entry tags.
1192enum {
1193#define DYNAMIC_TAG(name, value) DT_##name = value,
1194#include "DynamicTags.def"
1195#undef DYNAMIC_TAG
1196};
1197
1198// DT_FLAGS values.
1199enum {
1200 DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
1201 DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
1202 DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
1203 DF_BIND_NOW = 0x08, // Process all relocations on load.
1204 DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
1205};
1206
1207// State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry.
1208enum {
1209 DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object.
1210 DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object.
1211 DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object.
1212 DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object.
1213 DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime.
1214 DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object.
1215 DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object.
1216 DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled.
1217 DF_1_DIRECT = 0x00000100, // Direct binding enabled.
1218 DF_1_TRANS = 0x00000200,
1219 DF_1_INTERPOSE = 0x00000400, // Object is used to interpose.
1220 DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path.
1221 DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed.
1222 DF_1_CONFALT = 0x00002000, // Configuration alternative created.
1223 DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search.
1224 DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time.
1225 DF_1_DISPRELPND = 0x00010000, // Disp reloc applied at run-time.
1226 DF_1_NODIRECT = 0x00020000, // Object has no-direct binding.
1227 DF_1_IGNMULDEF = 0x00040000,
1228 DF_1_NOKSYMS = 0x00080000,
1229 DF_1_NOHDR = 0x00100000,
1230 DF_1_EDITED = 0x00200000, // Object is modified after built.
1231 DF_1_NORELOC = 0x00400000,
1232 DF_1_SYMINTPOSE = 0x00800000, // Object has individual interposers.
1233 DF_1_GLOBAUDIT = 0x01000000, // Global auditing required.
1234 DF_1_SINGLETON = 0x02000000 // Singleton symbols are used.
1235};
1236
1237// DT_MIPS_FLAGS values.
1238enum {
1239 RHF_NONE = 0x00000000, // No flags.
1240 RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers.
1241 RHF_NOTPOT = 0x00000002, // Hash size is not a power of two.
1242 RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH.
1243 RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated.
1244 RHF_SGI_ONLY = 0x00000010, // SGI specific features.
1245 RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish
1246 // executing before any non-init
1247 // code in DSO is called.
1248 RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code.
1249 RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start
1250 // executing before any non-init
1251 // code in DSO is called.
1252 RHF_PIXIE = 0x00000100, // Generated by pixie.
1253 RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default.
1254 RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted
1255 RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted
1256 RHF_CORD = 0x00001000, // Generated by cord.
1257 RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved
1258 // undef symbols.
1259 RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order.
1260};
1261
1262// ElfXX_VerDef structure version (GNU versioning)
1263enum { VER_DEF_NONE = 0, VER_DEF_CURRENT = 1 };
1264
1265// VerDef Flags (ElfXX_VerDef::vd_flags)
1266enum { VER_FLG_BASE = 0x1, VER_FLG_WEAK = 0x2, VER_FLG_INFO = 0x4 };
1267
1268// Special constants for the version table. (SHT_GNU_versym/.gnu.version)
1269enum {
1270 VER_NDX_LOCAL = 0, // Unversioned local symbol
1271 VER_NDX_GLOBAL = 1, // Unversioned global symbol
1272 VERSYM_VERSION = 0x7fff, // Version Index mask
1273 VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version)
1274};
1275
1276// ElfXX_VerNeed structure version (GNU versioning)
1277enum { VER_NEED_NONE = 0, VER_NEED_CURRENT = 1 };
1278
1279// SHT_NOTE section types
1280enum {
1281 NT_FREEBSD_THRMISC = 7,
1282 NT_FREEBSD_PROCSTAT_PROC = 8,
1283 NT_FREEBSD_PROCSTAT_FILES = 9,
1284 NT_FREEBSD_PROCSTAT_VMMAP = 10,
1285 NT_FREEBSD_PROCSTAT_GROUPS = 11,
1286 NT_FREEBSD_PROCSTAT_UMASK = 12,
1287 NT_FREEBSD_PROCSTAT_RLIMIT = 13,
1288 NT_FREEBSD_PROCSTAT_OSREL = 14,
1289 NT_FREEBSD_PROCSTAT_PSSTRINGS = 15,
1290 NT_FREEBSD_PROCSTAT_AUXV = 16,
1291};
1292
1293enum {
1294 NT_GNU_ABI_TAG = 1,
1295 NT_GNU_HWCAP = 2,
1296 NT_GNU_BUILD_ID = 3,
1297 NT_GNU_GOLD_VERSION = 4,
1298 NT_GNU_PROPERTY_TYPE_0 = 5,
1299};
1300
1301// Property types used in GNU_PROPERTY_TYPE_0 notes.
1302enum {
1303 GNU_PROPERTY_STACK_SIZE = 1,
1304 GNU_PROPERTY_NO_COPY_ON_PROTECTED = 2,
1305};
1306
1307// AMDGPU specific notes.
1308enum {
1309 // Note types with values between 0 and 9 (inclusive) are reserved.
1310 NT_AMD_AMDGPU_HSA_METADATA = 10,
1311 NT_AMD_AMDGPU_ISA = 11,
1312 NT_AMD_AMDGPU_PAL_METADATA = 12
1313};
1314
1315enum {
1316 GNU_ABI_TAG_LINUX = 0,
1317 GNU_ABI_TAG_HURD = 1,
1318 GNU_ABI_TAG_SOLARIS = 2,
1319 GNU_ABI_TAG_FREEBSD = 3,
1320 GNU_ABI_TAG_NETBSD = 4,
1321 GNU_ABI_TAG_SYLLABLE = 5,
1322 GNU_ABI_TAG_NACL = 6,
1323};
1324
1325// Android packed relocation group flags.
1326enum {
1327 RELOCATION_GROUPED_BY_INFO_FLAG = 1,
1328 RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG = 2,
1329 RELOCATION_GROUPED_BY_ADDEND_FLAG = 4,
1330 RELOCATION_GROUP_HAS_ADDEND_FLAG = 8,
1331};
1332
1333// Compressed section header for ELF32.
1334struct Elf32_Chdr {
1335 Elf32_Word ch_type;
1336 Elf32_Word ch_size;
1337 Elf32_Word ch_addralign;
1338};
1339
1340// Compressed section header for ELF64.
1341struct Elf64_Chdr {
1342 Elf64_Word ch_type;
1343 Elf64_Word ch_reserved;
1344 Elf64_Xword ch_size;
1345 Elf64_Xword ch_addralign;
1346};
1347
1348// Node header for ELF32.
1349struct Elf32_Nhdr {
1350 Elf32_Word n_namesz;
1351 Elf32_Word n_descsz;
1352 Elf32_Word n_type;
1353};
1354
1355// Node header for ELF64.
1356struct Elf64_Nhdr {
1357 Elf64_Word n_namesz;
1358 Elf64_Word n_descsz;
1359 Elf64_Word n_type;
1360};
1361
1362// Legal values for ch_type field of compressed section header.
1363enum {
1364 ELFCOMPRESS_ZLIB = 1, // ZLIB/DEFLATE algorithm.
1365 ELFCOMPRESS_LOOS = 0x60000000, // Start of OS-specific.
1366 ELFCOMPRESS_HIOS = 0x6fffffff, // End of OS-specific.
1367 ELFCOMPRESS_LOPROC = 0x70000000, // Start of processor-specific.
1368 ELFCOMPRESS_HIPROC = 0x7fffffff // End of processor-specific.
1369};
1370
1371} // end namespace ELF
1372} // end namespace llvm
1373
1374#endif // LLVM_BINARYFORMAT_ELF_H