blob: b3a16b5369f7b3d94b82c10c8d94eb3415256edd [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the generic implementation of LoopInfo used for both Loops and
11// MachineLoops.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16#define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18#include "llvm/ADT/DepthFirstIterator.h"
19#include "llvm/ADT/PostOrderIterator.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/IR/Dominators.h"
24
25namespace llvm {
26
27//===----------------------------------------------------------------------===//
28// APIs for simple analysis of the loop. See header notes.
29
30/// getExitingBlocks - Return all blocks inside the loop that have successors
31/// outside of the loop. These are the blocks _inside of the current loop_
32/// which branch out. The returned list is always unique.
33///
34template <class BlockT, class LoopT>
35void LoopBase<BlockT, LoopT>::getExitingBlocks(
36 SmallVectorImpl<BlockT *> &ExitingBlocks) const {
37 assert(!isInvalid() && "Loop not in a valid state!");
38 for (const auto BB : blocks())
39 for (const auto &Succ : children<BlockT *>(BB))
40 if (!contains(Succ)) {
41 // Not in current loop? It must be an exit block.
42 ExitingBlocks.push_back(BB);
43 break;
44 }
45}
46
47/// getExitingBlock - If getExitingBlocks would return exactly one block,
48/// return that block. Otherwise return null.
49template <class BlockT, class LoopT>
50BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
51 assert(!isInvalid() && "Loop not in a valid state!");
52 SmallVector<BlockT *, 8> ExitingBlocks;
53 getExitingBlocks(ExitingBlocks);
54 if (ExitingBlocks.size() == 1)
55 return ExitingBlocks[0];
56 return nullptr;
57}
58
59/// getExitBlocks - Return all of the successor blocks of this loop. These
60/// are the blocks _outside of the current loop_ which are branched to.
61///
62template <class BlockT, class LoopT>
63void LoopBase<BlockT, LoopT>::getExitBlocks(
64 SmallVectorImpl<BlockT *> &ExitBlocks) const {
65 assert(!isInvalid() && "Loop not in a valid state!");
66 for (const auto BB : blocks())
67 for (const auto &Succ : children<BlockT *>(BB))
68 if (!contains(Succ))
69 // Not in current loop? It must be an exit block.
70 ExitBlocks.push_back(Succ);
71}
72
73/// getExitBlock - If getExitBlocks would return exactly one block,
74/// return that block. Otherwise return null.
75template <class BlockT, class LoopT>
76BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
77 assert(!isInvalid() && "Loop not in a valid state!");
78 SmallVector<BlockT *, 8> ExitBlocks;
79 getExitBlocks(ExitBlocks);
80 if (ExitBlocks.size() == 1)
81 return ExitBlocks[0];
82 return nullptr;
83}
84
85/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
86template <class BlockT, class LoopT>
87void LoopBase<BlockT, LoopT>::getExitEdges(
88 SmallVectorImpl<Edge> &ExitEdges) const {
89 assert(!isInvalid() && "Loop not in a valid state!");
90 for (const auto BB : blocks())
91 for (const auto &Succ : children<BlockT *>(BB))
92 if (!contains(Succ))
93 // Not in current loop? It must be an exit block.
94 ExitEdges.emplace_back(BB, Succ);
95}
96
97/// getLoopPreheader - If there is a preheader for this loop, return it. A
98/// loop has a preheader if there is only one edge to the header of the loop
99/// from outside of the loop and it is legal to hoist instructions into the
100/// predecessor. If this is the case, the block branching to the header of the
101/// loop is the preheader node.
102///
103/// This method returns null if there is no preheader for the loop.
104///
105template <class BlockT, class LoopT>
106BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
107 assert(!isInvalid() && "Loop not in a valid state!");
108 // Keep track of nodes outside the loop branching to the header...
109 BlockT *Out = getLoopPredecessor();
110 if (!Out)
111 return nullptr;
112
113 // Make sure we are allowed to hoist instructions into the predecessor.
114 if (!Out->isLegalToHoistInto())
115 return nullptr;
116
117 // Make sure there is only one exit out of the preheader.
118 typedef GraphTraits<BlockT *> BlockTraits;
119 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
120 ++SI;
121 if (SI != BlockTraits::child_end(Out))
122 return nullptr; // Multiple exits from the block, must not be a preheader.
123
124 // The predecessor has exactly one successor, so it is a preheader.
125 return Out;
126}
127
128/// getLoopPredecessor - If the given loop's header has exactly one unique
129/// predecessor outside the loop, return it. Otherwise return null.
130/// This is less strict that the loop "preheader" concept, which requires
131/// the predecessor to have exactly one successor.
132///
133template <class BlockT, class LoopT>
134BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
135 assert(!isInvalid() && "Loop not in a valid state!");
136 // Keep track of nodes outside the loop branching to the header...
137 BlockT *Out = nullptr;
138
139 // Loop over the predecessors of the header node...
140 BlockT *Header = getHeader();
141 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
142 if (!contains(Pred)) { // If the block is not in the loop...
143 if (Out && Out != Pred)
144 return nullptr; // Multiple predecessors outside the loop
145 Out = Pred;
146 }
147 }
148
149 // Make sure there is only one exit out of the preheader.
150 assert(Out && "Header of loop has no predecessors from outside loop?");
151 return Out;
152}
153
154/// getLoopLatch - If there is a single latch block for this loop, return it.
155/// A latch block is a block that contains a branch back to the header.
156template <class BlockT, class LoopT>
157BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
158 assert(!isInvalid() && "Loop not in a valid state!");
159 BlockT *Header = getHeader();
160 BlockT *Latch = nullptr;
161 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
162 if (contains(Pred)) {
163 if (Latch)
164 return nullptr;
165 Latch = Pred;
166 }
167 }
168
169 return Latch;
170}
171
172//===----------------------------------------------------------------------===//
173// APIs for updating loop information after changing the CFG
174//
175
176/// addBasicBlockToLoop - This method is used by other analyses to update loop
177/// information. NewBB is set to be a new member of the current loop.
178/// Because of this, it is added as a member of all parent loops, and is added
179/// to the specified LoopInfo object as being in the current basic block. It
180/// is not valid to replace the loop header with this method.
181///
182template <class BlockT, class LoopT>
183void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
184 BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
185 assert(!isInvalid() && "Loop not in a valid state!");
186#ifndef NDEBUG
187 if (!Blocks.empty()) {
188 auto SameHeader = LIB[getHeader()];
189 assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
190 "Incorrect LI specified for this loop!");
191 }
192#endif
193 assert(NewBB && "Cannot add a null basic block to the loop!");
194 assert(!LIB[NewBB] && "BasicBlock already in the loop!");
195
196 LoopT *L = static_cast<LoopT *>(this);
197
198 // Add the loop mapping to the LoopInfo object...
199 LIB.BBMap[NewBB] = L;
200
201 // Add the basic block to this loop and all parent loops...
202 while (L) {
203 L->addBlockEntry(NewBB);
204 L = L->getParentLoop();
205 }
206}
207
208/// replaceChildLoopWith - This is used when splitting loops up. It replaces
209/// the OldChild entry in our children list with NewChild, and updates the
210/// parent pointer of OldChild to be null and the NewChild to be this loop.
211/// This updates the loop depth of the new child.
212template <class BlockT, class LoopT>
213void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
214 LoopT *NewChild) {
215 assert(!isInvalid() && "Loop not in a valid state!");
216 assert(OldChild->ParentLoop == this && "This loop is already broken!");
217 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
218 typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
219 assert(I != SubLoops.end() && "OldChild not in loop!");
220 *I = NewChild;
221 OldChild->ParentLoop = nullptr;
222 NewChild->ParentLoop = static_cast<LoopT *>(this);
223}
224
225/// verifyLoop - Verify loop structure
226template <class BlockT, class LoopT>
227void LoopBase<BlockT, LoopT>::verifyLoop() const {
228 assert(!isInvalid() && "Loop not in a valid state!");
229#ifndef NDEBUG
230 assert(!Blocks.empty() && "Loop header is missing");
231
232 // Setup for using a depth-first iterator to visit every block in the loop.
233 SmallVector<BlockT *, 8> ExitBBs;
234 getExitBlocks(ExitBBs);
235 df_iterator_default_set<BlockT *> VisitSet;
236 VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
237 df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
238 BI = df_ext_begin(getHeader(), VisitSet),
239 BE = df_ext_end(getHeader(), VisitSet);
240
241 // Keep track of the BBs visited.
242 SmallPtrSet<BlockT *, 8> VisitedBBs;
243
244 // Check the individual blocks.
245 for (; BI != BE; ++BI) {
246 BlockT *BB = *BI;
247
248 assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
249 GraphTraits<BlockT *>::child_end(BB),
250 [&](BlockT *B) { return contains(B); }) &&
251 "Loop block has no in-loop successors!");
252
253 assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
254 GraphTraits<Inverse<BlockT *>>::child_end(BB),
255 [&](BlockT *B) { return contains(B); }) &&
256 "Loop block has no in-loop predecessors!");
257
258 SmallVector<BlockT *, 2> OutsideLoopPreds;
259 std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
260 GraphTraits<Inverse<BlockT *>>::child_end(BB),
261 [&](BlockT *B) {
262 if (!contains(B))
263 OutsideLoopPreds.push_back(B);
264 });
265
266 if (BB == getHeader()) {
267 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
268 } else if (!OutsideLoopPreds.empty()) {
269 // A non-header loop shouldn't be reachable from outside the loop,
270 // though it is permitted if the predecessor is not itself actually
271 // reachable.
272 BlockT *EntryBB = &BB->getParent()->front();
273 for (BlockT *CB : depth_first(EntryBB))
274 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
275 assert(CB != OutsideLoopPreds[i] &&
276 "Loop has multiple entry points!");
277 }
278 assert(BB != &getHeader()->getParent()->front() &&
279 "Loop contains function entry block!");
280
281 VisitedBBs.insert(BB);
282 }
283
284 if (VisitedBBs.size() != getNumBlocks()) {
285 dbgs() << "The following blocks are unreachable in the loop: ";
286 for (auto BB : Blocks) {
287 if (!VisitedBBs.count(BB)) {
288 dbgs() << *BB << "\n";
289 }
290 }
291 assert(false && "Unreachable block in loop");
292 }
293
294 // Check the subloops.
295 for (iterator I = begin(), E = end(); I != E; ++I)
296 // Each block in each subloop should be contained within this loop.
297 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
298 BI != BE; ++BI) {
299 assert(contains(*BI) &&
300 "Loop does not contain all the blocks of a subloop!");
301 }
302
303 // Check the parent loop pointer.
304 if (ParentLoop) {
305 assert(is_contained(*ParentLoop, this) &&
306 "Loop is not a subloop of its parent!");
307 }
308#endif
309}
310
311/// verifyLoop - Verify loop structure of this loop and all nested loops.
312template <class BlockT, class LoopT>
313void LoopBase<BlockT, LoopT>::verifyLoopNest(
314 DenseSet<const LoopT *> *Loops) const {
315 assert(!isInvalid() && "Loop not in a valid state!");
316 Loops->insert(static_cast<const LoopT *>(this));
317 // Verify this loop.
318 verifyLoop();
319 // Verify the subloops.
320 for (iterator I = begin(), E = end(); I != E; ++I)
321 (*I)->verifyLoopNest(Loops);
322}
323
324template <class BlockT, class LoopT>
325void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
326 bool Verbose) const {
327 OS.indent(Depth * 2) << "Loop at depth " << getLoopDepth() << " containing: ";
328
329 BlockT *H = getHeader();
330 for (unsigned i = 0; i < getBlocks().size(); ++i) {
331 BlockT *BB = getBlocks()[i];
332 if (!Verbose) {
333 if (i)
334 OS << ",";
335 BB->printAsOperand(OS, false);
336 } else
337 OS << "\n";
338
339 if (BB == H)
340 OS << "<header>";
341 if (isLoopLatch(BB))
342 OS << "<latch>";
343 if (isLoopExiting(BB))
344 OS << "<exiting>";
345 if (Verbose)
346 BB->print(OS);
347 }
348 OS << "\n";
349
350 for (iterator I = begin(), E = end(); I != E; ++I)
351 (*I)->print(OS, Depth + 2);
352}
353
354//===----------------------------------------------------------------------===//
355/// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
356/// result does / not depend on use list (block predecessor) order.
357///
358
359/// Discover a subloop with the specified backedges such that: All blocks within
360/// this loop are mapped to this loop or a subloop. And all subloops within this
361/// loop have their parent loop set to this loop or a subloop.
362template <class BlockT, class LoopT>
363static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
364 LoopInfoBase<BlockT, LoopT> *LI,
365 const DomTreeBase<BlockT> &DomTree) {
366 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
367
368 unsigned NumBlocks = 0;
369 unsigned NumSubloops = 0;
370
371 // Perform a backward CFG traversal using a worklist.
372 std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
373 while (!ReverseCFGWorklist.empty()) {
374 BlockT *PredBB = ReverseCFGWorklist.back();
375 ReverseCFGWorklist.pop_back();
376
377 LoopT *Subloop = LI->getLoopFor(PredBB);
378 if (!Subloop) {
379 if (!DomTree.isReachableFromEntry(PredBB))
380 continue;
381
382 // This is an undiscovered block. Map it to the current loop.
383 LI->changeLoopFor(PredBB, L);
384 ++NumBlocks;
385 if (PredBB == L->getHeader())
386 continue;
387 // Push all block predecessors on the worklist.
388 ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
389 InvBlockTraits::child_begin(PredBB),
390 InvBlockTraits::child_end(PredBB));
391 } else {
392 // This is a discovered block. Find its outermost discovered loop.
393 while (LoopT *Parent = Subloop->getParentLoop())
394 Subloop = Parent;
395
396 // If it is already discovered to be a subloop of this loop, continue.
397 if (Subloop == L)
398 continue;
399
400 // Discover a subloop of this loop.
401 Subloop->setParentLoop(L);
402 ++NumSubloops;
403 NumBlocks += Subloop->getBlocksVector().capacity();
404 PredBB = Subloop->getHeader();
405 // Continue traversal along predecessors that are not loop-back edges from
406 // within this subloop tree itself. Note that a predecessor may directly
407 // reach another subloop that is not yet discovered to be a subloop of
408 // this loop, which we must traverse.
409 for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
410 if (LI->getLoopFor(Pred) != Subloop)
411 ReverseCFGWorklist.push_back(Pred);
412 }
413 }
414 }
415 L->getSubLoopsVector().reserve(NumSubloops);
416 L->reserveBlocks(NumBlocks);
417}
418
419/// Populate all loop data in a stable order during a single forward DFS.
420template <class BlockT, class LoopT> class PopulateLoopsDFS {
421 typedef GraphTraits<BlockT *> BlockTraits;
422 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
423
424 LoopInfoBase<BlockT, LoopT> *LI;
425
426public:
427 PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
428
429 void traverse(BlockT *EntryBlock);
430
431protected:
432 void insertIntoLoop(BlockT *Block);
433};
434
435/// Top-level driver for the forward DFS within the loop.
436template <class BlockT, class LoopT>
437void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
438 for (BlockT *BB : post_order(EntryBlock))
439 insertIntoLoop(BB);
440}
441
442/// Add a single Block to its ancestor loops in PostOrder. If the block is a
443/// subloop header, add the subloop to its parent in PostOrder, then reverse the
444/// Block and Subloop vectors of the now complete subloop to achieve RPO.
445template <class BlockT, class LoopT>
446void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
447 LoopT *Subloop = LI->getLoopFor(Block);
448 if (Subloop && Block == Subloop->getHeader()) {
449 // We reach this point once per subloop after processing all the blocks in
450 // the subloop.
451 if (Subloop->getParentLoop())
452 Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
453 else
454 LI->addTopLevelLoop(Subloop);
455
456 // For convenience, Blocks and Subloops are inserted in postorder. Reverse
457 // the lists, except for the loop header, which is always at the beginning.
458 Subloop->reverseBlock(1);
459 std::reverse(Subloop->getSubLoopsVector().begin(),
460 Subloop->getSubLoopsVector().end());
461
462 Subloop = Subloop->getParentLoop();
463 }
464 for (; Subloop; Subloop = Subloop->getParentLoop())
465 Subloop->addBlockEntry(Block);
466}
467
468/// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
469/// interleaved with backward CFG traversals within each subloop
470/// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
471/// this part of the algorithm is linear in the number of CFG edges. Subloop and
472/// Block vectors are then populated during a single forward CFG traversal
473/// (PopulateLoopDFS).
474///
475/// During the two CFG traversals each block is seen three times:
476/// 1) Discovered and mapped by a reverse CFG traversal.
477/// 2) Visited during a forward DFS CFG traversal.
478/// 3) Reverse-inserted in the loop in postorder following forward DFS.
479///
480/// The Block vectors are inclusive, so step 3 requires loop-depth number of
481/// insertions per block.
482template <class BlockT, class LoopT>
483void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
484 // Postorder traversal of the dominator tree.
485 const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
486 for (auto DomNode : post_order(DomRoot)) {
487
488 BlockT *Header = DomNode->getBlock();
489 SmallVector<BlockT *, 4> Backedges;
490
491 // Check each predecessor of the potential loop header.
492 for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
493 // If Header dominates predBB, this is a new loop. Collect the backedges.
494 if (DomTree.dominates(Header, Backedge) &&
495 DomTree.isReachableFromEntry(Backedge)) {
496 Backedges.push_back(Backedge);
497 }
498 }
499 // Perform a backward CFG traversal to discover and map blocks in this loop.
500 if (!Backedges.empty()) {
501 LoopT *L = AllocateLoop(Header);
502 discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
503 }
504 }
505 // Perform a single forward CFG traversal to populate block and subloop
506 // vectors for all loops.
507 PopulateLoopsDFS<BlockT, LoopT> DFS(this);
508 DFS.traverse(DomRoot->getBlock());
509}
510
511template <class BlockT, class LoopT>
512SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
513 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
514 // The outer-most loop actually goes into the result in the same relative
515 // order as we walk it. But LoopInfo stores the top level loops in reverse
516 // program order so for here we reverse it to get forward program order.
517 // FIXME: If we change the order of LoopInfo we will want to remove the
518 // reverse here.
519 for (LoopT *RootL : reverse(*this)) {
520 assert(PreOrderWorklist.empty() &&
521 "Must start with an empty preorder walk worklist.");
522 PreOrderWorklist.push_back(RootL);
523 do {
524 LoopT *L = PreOrderWorklist.pop_back_val();
525 // Sub-loops are stored in forward program order, but will process the
526 // worklist backwards so append them in reverse order.
527 PreOrderWorklist.append(L->rbegin(), L->rend());
528 PreOrderLoops.push_back(L);
529 } while (!PreOrderWorklist.empty());
530 }
531
532 return PreOrderLoops;
533}
534
535template <class BlockT, class LoopT>
536SmallVector<LoopT *, 4>
537LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
538 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
539 // The outer-most loop actually goes into the result in the same relative
540 // order as we walk it. LoopInfo stores the top level loops in reverse
541 // program order so we walk in order here.
542 // FIXME: If we change the order of LoopInfo we will want to add a reverse
543 // here.
544 for (LoopT *RootL : *this) {
545 assert(PreOrderWorklist.empty() &&
546 "Must start with an empty preorder walk worklist.");
547 PreOrderWorklist.push_back(RootL);
548 do {
549 LoopT *L = PreOrderWorklist.pop_back_val();
550 // Sub-loops are stored in forward program order, but will process the
551 // worklist backwards so we can just append them in order.
552 PreOrderWorklist.append(L->begin(), L->end());
553 PreOrderLoops.push_back(L);
554 } while (!PreOrderWorklist.empty());
555 }
556
557 return PreOrderLoops;
558}
559
560// Debugging
561template <class BlockT, class LoopT>
562void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
563 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
564 TopLevelLoops[i]->print(OS);
565#if 0
566 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
567 E = BBMap.end(); I != E; ++I)
568 OS << "BB '" << I->first->getName() << "' level = "
569 << I->second->getLoopDepth() << "\n";
570#endif
571}
572
573template <typename T>
574bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
575 std::sort(BB1.begin(), BB1.end());
576 std::sort(BB2.begin(), BB2.end());
577 return BB1 == BB2;
578}
579
580template <class BlockT, class LoopT>
581void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
582 const LoopInfoBase<BlockT, LoopT> &LI,
583 const LoopT &L) {
584 LoopHeaders[L.getHeader()] = &L;
585 for (LoopT *SL : L)
586 addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
587}
588
589#ifndef NDEBUG
590template <class BlockT, class LoopT>
591static void compareLoops(const LoopT *L, const LoopT *OtherL,
592 DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
593 BlockT *H = L->getHeader();
594 BlockT *OtherH = OtherL->getHeader();
595 assert(H == OtherH &&
596 "Mismatched headers even though found in the same map entry!");
597
598 assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
599 "Mismatched loop depth!");
600 const LoopT *ParentL = L, *OtherParentL = OtherL;
601 do {
602 assert(ParentL->getHeader() == OtherParentL->getHeader() &&
603 "Mismatched parent loop headers!");
604 ParentL = ParentL->getParentLoop();
605 OtherParentL = OtherParentL->getParentLoop();
606 } while (ParentL);
607
608 for (const LoopT *SubL : *L) {
609 BlockT *SubH = SubL->getHeader();
610 const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
611 assert(OtherSubL && "Inner loop is missing in computed loop info!");
612 OtherLoopHeaders.erase(SubH);
613 compareLoops(SubL, OtherSubL, OtherLoopHeaders);
614 }
615
616 std::vector<BlockT *> BBs = L->getBlocks();
617 std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
618 assert(compareVectors(BBs, OtherBBs) &&
619 "Mismatched basic blocks in the loops!");
620}
621#endif
622
623template <class BlockT, class LoopT>
624void LoopInfoBase<BlockT, LoopT>::verify(
625 const DomTreeBase<BlockT> &DomTree) const {
626 DenseSet<const LoopT *> Loops;
627 for (iterator I = begin(), E = end(); I != E; ++I) {
628 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
629 (*I)->verifyLoopNest(&Loops);
630 }
631
632// Verify that blocks are mapped to valid loops.
633#ifndef NDEBUG
634 for (auto &Entry : BBMap) {
635 const BlockT *BB = Entry.first;
636 LoopT *L = Entry.second;
637 assert(Loops.count(L) && "orphaned loop");
638 assert(L->contains(BB) && "orphaned block");
639 }
640
641 // Recompute LoopInfo to verify loops structure.
642 LoopInfoBase<BlockT, LoopT> OtherLI;
643 OtherLI.analyze(DomTree);
644
645 // Build a map we can use to move from our LI to the computed one. This
646 // allows us to ignore the particular order in any layer of the loop forest
647 // while still comparing the structure.
648 DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
649 for (LoopT *L : OtherLI)
650 addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
651
652 // Walk the top level loops and ensure there is a corresponding top-level
653 // loop in the computed version and then recursively compare those loop
654 // nests.
655 for (LoopT *L : *this) {
656 BlockT *Header = L->getHeader();
657 const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
658 assert(OtherL && "Top level loop is missing in computed loop info!");
659 // Now that we've matched this loop, erase its header from the map.
660 OtherLoopHeaders.erase(Header);
661 // And recursively compare these loops.
662 compareLoops(L, OtherL, OtherLoopHeaders);
663 }
664
665 // Any remaining entries in the map are loops which were found when computing
666 // a fresh LoopInfo but not present in the current one.
667 if (!OtherLoopHeaders.empty()) {
668 for (const auto &HeaderAndLoop : OtherLoopHeaders)
669 dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
670 llvm_unreachable("Found new loops when recomputing LoopInfo!");
671 }
672#endif
673}
674
675} // End llvm namespace
676
677#endif