Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This is the generic implementation of LoopInfo used for both Loops and |
| 11 | // MachineLoops. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H |
| 16 | #define LLVM_ANALYSIS_LOOPINFOIMPL_H |
| 17 | |
| 18 | #include "llvm/ADT/DepthFirstIterator.h" |
| 19 | #include "llvm/ADT/PostOrderIterator.h" |
| 20 | #include "llvm/ADT/STLExtras.h" |
| 21 | #include "llvm/ADT/SetVector.h" |
| 22 | #include "llvm/Analysis/LoopInfo.h" |
| 23 | #include "llvm/IR/Dominators.h" |
| 24 | |
| 25 | namespace llvm { |
| 26 | |
| 27 | //===----------------------------------------------------------------------===// |
| 28 | // APIs for simple analysis of the loop. See header notes. |
| 29 | |
| 30 | /// getExitingBlocks - Return all blocks inside the loop that have successors |
| 31 | /// outside of the loop. These are the blocks _inside of the current loop_ |
| 32 | /// which branch out. The returned list is always unique. |
| 33 | /// |
| 34 | template <class BlockT, class LoopT> |
| 35 | void LoopBase<BlockT, LoopT>::getExitingBlocks( |
| 36 | SmallVectorImpl<BlockT *> &ExitingBlocks) const { |
| 37 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 38 | for (const auto BB : blocks()) |
| 39 | for (const auto &Succ : children<BlockT *>(BB)) |
| 40 | if (!contains(Succ)) { |
| 41 | // Not in current loop? It must be an exit block. |
| 42 | ExitingBlocks.push_back(BB); |
| 43 | break; |
| 44 | } |
| 45 | } |
| 46 | |
| 47 | /// getExitingBlock - If getExitingBlocks would return exactly one block, |
| 48 | /// return that block. Otherwise return null. |
| 49 | template <class BlockT, class LoopT> |
| 50 | BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const { |
| 51 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 52 | SmallVector<BlockT *, 8> ExitingBlocks; |
| 53 | getExitingBlocks(ExitingBlocks); |
| 54 | if (ExitingBlocks.size() == 1) |
| 55 | return ExitingBlocks[0]; |
| 56 | return nullptr; |
| 57 | } |
| 58 | |
| 59 | /// getExitBlocks - Return all of the successor blocks of this loop. These |
| 60 | /// are the blocks _outside of the current loop_ which are branched to. |
| 61 | /// |
| 62 | template <class BlockT, class LoopT> |
| 63 | void LoopBase<BlockT, LoopT>::getExitBlocks( |
| 64 | SmallVectorImpl<BlockT *> &ExitBlocks) const { |
| 65 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 66 | for (const auto BB : blocks()) |
| 67 | for (const auto &Succ : children<BlockT *>(BB)) |
| 68 | if (!contains(Succ)) |
| 69 | // Not in current loop? It must be an exit block. |
| 70 | ExitBlocks.push_back(Succ); |
| 71 | } |
| 72 | |
| 73 | /// getExitBlock - If getExitBlocks would return exactly one block, |
| 74 | /// return that block. Otherwise return null. |
| 75 | template <class BlockT, class LoopT> |
| 76 | BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const { |
| 77 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 78 | SmallVector<BlockT *, 8> ExitBlocks; |
| 79 | getExitBlocks(ExitBlocks); |
| 80 | if (ExitBlocks.size() == 1) |
| 81 | return ExitBlocks[0]; |
| 82 | return nullptr; |
| 83 | } |
| 84 | |
| 85 | /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). |
| 86 | template <class BlockT, class LoopT> |
| 87 | void LoopBase<BlockT, LoopT>::getExitEdges( |
| 88 | SmallVectorImpl<Edge> &ExitEdges) const { |
| 89 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 90 | for (const auto BB : blocks()) |
| 91 | for (const auto &Succ : children<BlockT *>(BB)) |
| 92 | if (!contains(Succ)) |
| 93 | // Not in current loop? It must be an exit block. |
| 94 | ExitEdges.emplace_back(BB, Succ); |
| 95 | } |
| 96 | |
| 97 | /// getLoopPreheader - If there is a preheader for this loop, return it. A |
| 98 | /// loop has a preheader if there is only one edge to the header of the loop |
| 99 | /// from outside of the loop and it is legal to hoist instructions into the |
| 100 | /// predecessor. If this is the case, the block branching to the header of the |
| 101 | /// loop is the preheader node. |
| 102 | /// |
| 103 | /// This method returns null if there is no preheader for the loop. |
| 104 | /// |
| 105 | template <class BlockT, class LoopT> |
| 106 | BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const { |
| 107 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 108 | // Keep track of nodes outside the loop branching to the header... |
| 109 | BlockT *Out = getLoopPredecessor(); |
| 110 | if (!Out) |
| 111 | return nullptr; |
| 112 | |
| 113 | // Make sure we are allowed to hoist instructions into the predecessor. |
| 114 | if (!Out->isLegalToHoistInto()) |
| 115 | return nullptr; |
| 116 | |
| 117 | // Make sure there is only one exit out of the preheader. |
| 118 | typedef GraphTraits<BlockT *> BlockTraits; |
| 119 | typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); |
| 120 | ++SI; |
| 121 | if (SI != BlockTraits::child_end(Out)) |
| 122 | return nullptr; // Multiple exits from the block, must not be a preheader. |
| 123 | |
| 124 | // The predecessor has exactly one successor, so it is a preheader. |
| 125 | return Out; |
| 126 | } |
| 127 | |
| 128 | /// getLoopPredecessor - If the given loop's header has exactly one unique |
| 129 | /// predecessor outside the loop, return it. Otherwise return null. |
| 130 | /// This is less strict that the loop "preheader" concept, which requires |
| 131 | /// the predecessor to have exactly one successor. |
| 132 | /// |
| 133 | template <class BlockT, class LoopT> |
| 134 | BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const { |
| 135 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 136 | // Keep track of nodes outside the loop branching to the header... |
| 137 | BlockT *Out = nullptr; |
| 138 | |
| 139 | // Loop over the predecessors of the header node... |
| 140 | BlockT *Header = getHeader(); |
| 141 | for (const auto Pred : children<Inverse<BlockT *>>(Header)) { |
| 142 | if (!contains(Pred)) { // If the block is not in the loop... |
| 143 | if (Out && Out != Pred) |
| 144 | return nullptr; // Multiple predecessors outside the loop |
| 145 | Out = Pred; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | // Make sure there is only one exit out of the preheader. |
| 150 | assert(Out && "Header of loop has no predecessors from outside loop?"); |
| 151 | return Out; |
| 152 | } |
| 153 | |
| 154 | /// getLoopLatch - If there is a single latch block for this loop, return it. |
| 155 | /// A latch block is a block that contains a branch back to the header. |
| 156 | template <class BlockT, class LoopT> |
| 157 | BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const { |
| 158 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 159 | BlockT *Header = getHeader(); |
| 160 | BlockT *Latch = nullptr; |
| 161 | for (const auto Pred : children<Inverse<BlockT *>>(Header)) { |
| 162 | if (contains(Pred)) { |
| 163 | if (Latch) |
| 164 | return nullptr; |
| 165 | Latch = Pred; |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | return Latch; |
| 170 | } |
| 171 | |
| 172 | //===----------------------------------------------------------------------===// |
| 173 | // APIs for updating loop information after changing the CFG |
| 174 | // |
| 175 | |
| 176 | /// addBasicBlockToLoop - This method is used by other analyses to update loop |
| 177 | /// information. NewBB is set to be a new member of the current loop. |
| 178 | /// Because of this, it is added as a member of all parent loops, and is added |
| 179 | /// to the specified LoopInfo object as being in the current basic block. It |
| 180 | /// is not valid to replace the loop header with this method. |
| 181 | /// |
| 182 | template <class BlockT, class LoopT> |
| 183 | void LoopBase<BlockT, LoopT>::addBasicBlockToLoop( |
| 184 | BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) { |
| 185 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 186 | #ifndef NDEBUG |
| 187 | if (!Blocks.empty()) { |
| 188 | auto SameHeader = LIB[getHeader()]; |
| 189 | assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() && |
| 190 | "Incorrect LI specified for this loop!"); |
| 191 | } |
| 192 | #endif |
| 193 | assert(NewBB && "Cannot add a null basic block to the loop!"); |
| 194 | assert(!LIB[NewBB] && "BasicBlock already in the loop!"); |
| 195 | |
| 196 | LoopT *L = static_cast<LoopT *>(this); |
| 197 | |
| 198 | // Add the loop mapping to the LoopInfo object... |
| 199 | LIB.BBMap[NewBB] = L; |
| 200 | |
| 201 | // Add the basic block to this loop and all parent loops... |
| 202 | while (L) { |
| 203 | L->addBlockEntry(NewBB); |
| 204 | L = L->getParentLoop(); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | /// replaceChildLoopWith - This is used when splitting loops up. It replaces |
| 209 | /// the OldChild entry in our children list with NewChild, and updates the |
| 210 | /// parent pointer of OldChild to be null and the NewChild to be this loop. |
| 211 | /// This updates the loop depth of the new child. |
| 212 | template <class BlockT, class LoopT> |
| 213 | void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild, |
| 214 | LoopT *NewChild) { |
| 215 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 216 | assert(OldChild->ParentLoop == this && "This loop is already broken!"); |
| 217 | assert(!NewChild->ParentLoop && "NewChild already has a parent!"); |
| 218 | typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild); |
| 219 | assert(I != SubLoops.end() && "OldChild not in loop!"); |
| 220 | *I = NewChild; |
| 221 | OldChild->ParentLoop = nullptr; |
| 222 | NewChild->ParentLoop = static_cast<LoopT *>(this); |
| 223 | } |
| 224 | |
| 225 | /// verifyLoop - Verify loop structure |
| 226 | template <class BlockT, class LoopT> |
| 227 | void LoopBase<BlockT, LoopT>::verifyLoop() const { |
| 228 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 229 | #ifndef NDEBUG |
| 230 | assert(!Blocks.empty() && "Loop header is missing"); |
| 231 | |
| 232 | // Setup for using a depth-first iterator to visit every block in the loop. |
| 233 | SmallVector<BlockT *, 8> ExitBBs; |
| 234 | getExitBlocks(ExitBBs); |
| 235 | df_iterator_default_set<BlockT *> VisitSet; |
| 236 | VisitSet.insert(ExitBBs.begin(), ExitBBs.end()); |
| 237 | df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>> |
| 238 | BI = df_ext_begin(getHeader(), VisitSet), |
| 239 | BE = df_ext_end(getHeader(), VisitSet); |
| 240 | |
| 241 | // Keep track of the BBs visited. |
| 242 | SmallPtrSet<BlockT *, 8> VisitedBBs; |
| 243 | |
| 244 | // Check the individual blocks. |
| 245 | for (; BI != BE; ++BI) { |
| 246 | BlockT *BB = *BI; |
| 247 | |
| 248 | assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB), |
| 249 | GraphTraits<BlockT *>::child_end(BB), |
| 250 | [&](BlockT *B) { return contains(B); }) && |
| 251 | "Loop block has no in-loop successors!"); |
| 252 | |
| 253 | assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB), |
| 254 | GraphTraits<Inverse<BlockT *>>::child_end(BB), |
| 255 | [&](BlockT *B) { return contains(B); }) && |
| 256 | "Loop block has no in-loop predecessors!"); |
| 257 | |
| 258 | SmallVector<BlockT *, 2> OutsideLoopPreds; |
| 259 | std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB), |
| 260 | GraphTraits<Inverse<BlockT *>>::child_end(BB), |
| 261 | [&](BlockT *B) { |
| 262 | if (!contains(B)) |
| 263 | OutsideLoopPreds.push_back(B); |
| 264 | }); |
| 265 | |
| 266 | if (BB == getHeader()) { |
| 267 | assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); |
| 268 | } else if (!OutsideLoopPreds.empty()) { |
| 269 | // A non-header loop shouldn't be reachable from outside the loop, |
| 270 | // though it is permitted if the predecessor is not itself actually |
| 271 | // reachable. |
| 272 | BlockT *EntryBB = &BB->getParent()->front(); |
| 273 | for (BlockT *CB : depth_first(EntryBB)) |
| 274 | for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) |
| 275 | assert(CB != OutsideLoopPreds[i] && |
| 276 | "Loop has multiple entry points!"); |
| 277 | } |
| 278 | assert(BB != &getHeader()->getParent()->front() && |
| 279 | "Loop contains function entry block!"); |
| 280 | |
| 281 | VisitedBBs.insert(BB); |
| 282 | } |
| 283 | |
| 284 | if (VisitedBBs.size() != getNumBlocks()) { |
| 285 | dbgs() << "The following blocks are unreachable in the loop: "; |
| 286 | for (auto BB : Blocks) { |
| 287 | if (!VisitedBBs.count(BB)) { |
| 288 | dbgs() << *BB << "\n"; |
| 289 | } |
| 290 | } |
| 291 | assert(false && "Unreachable block in loop"); |
| 292 | } |
| 293 | |
| 294 | // Check the subloops. |
| 295 | for (iterator I = begin(), E = end(); I != E; ++I) |
| 296 | // Each block in each subloop should be contained within this loop. |
| 297 | for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); |
| 298 | BI != BE; ++BI) { |
| 299 | assert(contains(*BI) && |
| 300 | "Loop does not contain all the blocks of a subloop!"); |
| 301 | } |
| 302 | |
| 303 | // Check the parent loop pointer. |
| 304 | if (ParentLoop) { |
| 305 | assert(is_contained(*ParentLoop, this) && |
| 306 | "Loop is not a subloop of its parent!"); |
| 307 | } |
| 308 | #endif |
| 309 | } |
| 310 | |
| 311 | /// verifyLoop - Verify loop structure of this loop and all nested loops. |
| 312 | template <class BlockT, class LoopT> |
| 313 | void LoopBase<BlockT, LoopT>::verifyLoopNest( |
| 314 | DenseSet<const LoopT *> *Loops) const { |
| 315 | assert(!isInvalid() && "Loop not in a valid state!"); |
| 316 | Loops->insert(static_cast<const LoopT *>(this)); |
| 317 | // Verify this loop. |
| 318 | verifyLoop(); |
| 319 | // Verify the subloops. |
| 320 | for (iterator I = begin(), E = end(); I != E; ++I) |
| 321 | (*I)->verifyLoopNest(Loops); |
| 322 | } |
| 323 | |
| 324 | template <class BlockT, class LoopT> |
| 325 | void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth, |
| 326 | bool Verbose) const { |
| 327 | OS.indent(Depth * 2) << "Loop at depth " << getLoopDepth() << " containing: "; |
| 328 | |
| 329 | BlockT *H = getHeader(); |
| 330 | for (unsigned i = 0; i < getBlocks().size(); ++i) { |
| 331 | BlockT *BB = getBlocks()[i]; |
| 332 | if (!Verbose) { |
| 333 | if (i) |
| 334 | OS << ","; |
| 335 | BB->printAsOperand(OS, false); |
| 336 | } else |
| 337 | OS << "\n"; |
| 338 | |
| 339 | if (BB == H) |
| 340 | OS << "<header>"; |
| 341 | if (isLoopLatch(BB)) |
| 342 | OS << "<latch>"; |
| 343 | if (isLoopExiting(BB)) |
| 344 | OS << "<exiting>"; |
| 345 | if (Verbose) |
| 346 | BB->print(OS); |
| 347 | } |
| 348 | OS << "\n"; |
| 349 | |
| 350 | for (iterator I = begin(), E = end(); I != E; ++I) |
| 351 | (*I)->print(OS, Depth + 2); |
| 352 | } |
| 353 | |
| 354 | //===----------------------------------------------------------------------===// |
| 355 | /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the |
| 356 | /// result does / not depend on use list (block predecessor) order. |
| 357 | /// |
| 358 | |
| 359 | /// Discover a subloop with the specified backedges such that: All blocks within |
| 360 | /// this loop are mapped to this loop or a subloop. And all subloops within this |
| 361 | /// loop have their parent loop set to this loop or a subloop. |
| 362 | template <class BlockT, class LoopT> |
| 363 | static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges, |
| 364 | LoopInfoBase<BlockT, LoopT> *LI, |
| 365 | const DomTreeBase<BlockT> &DomTree) { |
| 366 | typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits; |
| 367 | |
| 368 | unsigned NumBlocks = 0; |
| 369 | unsigned NumSubloops = 0; |
| 370 | |
| 371 | // Perform a backward CFG traversal using a worklist. |
| 372 | std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end()); |
| 373 | while (!ReverseCFGWorklist.empty()) { |
| 374 | BlockT *PredBB = ReverseCFGWorklist.back(); |
| 375 | ReverseCFGWorklist.pop_back(); |
| 376 | |
| 377 | LoopT *Subloop = LI->getLoopFor(PredBB); |
| 378 | if (!Subloop) { |
| 379 | if (!DomTree.isReachableFromEntry(PredBB)) |
| 380 | continue; |
| 381 | |
| 382 | // This is an undiscovered block. Map it to the current loop. |
| 383 | LI->changeLoopFor(PredBB, L); |
| 384 | ++NumBlocks; |
| 385 | if (PredBB == L->getHeader()) |
| 386 | continue; |
| 387 | // Push all block predecessors on the worklist. |
| 388 | ReverseCFGWorklist.insert(ReverseCFGWorklist.end(), |
| 389 | InvBlockTraits::child_begin(PredBB), |
| 390 | InvBlockTraits::child_end(PredBB)); |
| 391 | } else { |
| 392 | // This is a discovered block. Find its outermost discovered loop. |
| 393 | while (LoopT *Parent = Subloop->getParentLoop()) |
| 394 | Subloop = Parent; |
| 395 | |
| 396 | // If it is already discovered to be a subloop of this loop, continue. |
| 397 | if (Subloop == L) |
| 398 | continue; |
| 399 | |
| 400 | // Discover a subloop of this loop. |
| 401 | Subloop->setParentLoop(L); |
| 402 | ++NumSubloops; |
| 403 | NumBlocks += Subloop->getBlocksVector().capacity(); |
| 404 | PredBB = Subloop->getHeader(); |
| 405 | // Continue traversal along predecessors that are not loop-back edges from |
| 406 | // within this subloop tree itself. Note that a predecessor may directly |
| 407 | // reach another subloop that is not yet discovered to be a subloop of |
| 408 | // this loop, which we must traverse. |
| 409 | for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) { |
| 410 | if (LI->getLoopFor(Pred) != Subloop) |
| 411 | ReverseCFGWorklist.push_back(Pred); |
| 412 | } |
| 413 | } |
| 414 | } |
| 415 | L->getSubLoopsVector().reserve(NumSubloops); |
| 416 | L->reserveBlocks(NumBlocks); |
| 417 | } |
| 418 | |
| 419 | /// Populate all loop data in a stable order during a single forward DFS. |
| 420 | template <class BlockT, class LoopT> class PopulateLoopsDFS { |
| 421 | typedef GraphTraits<BlockT *> BlockTraits; |
| 422 | typedef typename BlockTraits::ChildIteratorType SuccIterTy; |
| 423 | |
| 424 | LoopInfoBase<BlockT, LoopT> *LI; |
| 425 | |
| 426 | public: |
| 427 | PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {} |
| 428 | |
| 429 | void traverse(BlockT *EntryBlock); |
| 430 | |
| 431 | protected: |
| 432 | void insertIntoLoop(BlockT *Block); |
| 433 | }; |
| 434 | |
| 435 | /// Top-level driver for the forward DFS within the loop. |
| 436 | template <class BlockT, class LoopT> |
| 437 | void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) { |
| 438 | for (BlockT *BB : post_order(EntryBlock)) |
| 439 | insertIntoLoop(BB); |
| 440 | } |
| 441 | |
| 442 | /// Add a single Block to its ancestor loops in PostOrder. If the block is a |
| 443 | /// subloop header, add the subloop to its parent in PostOrder, then reverse the |
| 444 | /// Block and Subloop vectors of the now complete subloop to achieve RPO. |
| 445 | template <class BlockT, class LoopT> |
| 446 | void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) { |
| 447 | LoopT *Subloop = LI->getLoopFor(Block); |
| 448 | if (Subloop && Block == Subloop->getHeader()) { |
| 449 | // We reach this point once per subloop after processing all the blocks in |
| 450 | // the subloop. |
| 451 | if (Subloop->getParentLoop()) |
| 452 | Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop); |
| 453 | else |
| 454 | LI->addTopLevelLoop(Subloop); |
| 455 | |
| 456 | // For convenience, Blocks and Subloops are inserted in postorder. Reverse |
| 457 | // the lists, except for the loop header, which is always at the beginning. |
| 458 | Subloop->reverseBlock(1); |
| 459 | std::reverse(Subloop->getSubLoopsVector().begin(), |
| 460 | Subloop->getSubLoopsVector().end()); |
| 461 | |
| 462 | Subloop = Subloop->getParentLoop(); |
| 463 | } |
| 464 | for (; Subloop; Subloop = Subloop->getParentLoop()) |
| 465 | Subloop->addBlockEntry(Block); |
| 466 | } |
| 467 | |
| 468 | /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal |
| 469 | /// interleaved with backward CFG traversals within each subloop |
| 470 | /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so |
| 471 | /// this part of the algorithm is linear in the number of CFG edges. Subloop and |
| 472 | /// Block vectors are then populated during a single forward CFG traversal |
| 473 | /// (PopulateLoopDFS). |
| 474 | /// |
| 475 | /// During the two CFG traversals each block is seen three times: |
| 476 | /// 1) Discovered and mapped by a reverse CFG traversal. |
| 477 | /// 2) Visited during a forward DFS CFG traversal. |
| 478 | /// 3) Reverse-inserted in the loop in postorder following forward DFS. |
| 479 | /// |
| 480 | /// The Block vectors are inclusive, so step 3 requires loop-depth number of |
| 481 | /// insertions per block. |
| 482 | template <class BlockT, class LoopT> |
| 483 | void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) { |
| 484 | // Postorder traversal of the dominator tree. |
| 485 | const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode(); |
| 486 | for (auto DomNode : post_order(DomRoot)) { |
| 487 | |
| 488 | BlockT *Header = DomNode->getBlock(); |
| 489 | SmallVector<BlockT *, 4> Backedges; |
| 490 | |
| 491 | // Check each predecessor of the potential loop header. |
| 492 | for (const auto Backedge : children<Inverse<BlockT *>>(Header)) { |
| 493 | // If Header dominates predBB, this is a new loop. Collect the backedges. |
| 494 | if (DomTree.dominates(Header, Backedge) && |
| 495 | DomTree.isReachableFromEntry(Backedge)) { |
| 496 | Backedges.push_back(Backedge); |
| 497 | } |
| 498 | } |
| 499 | // Perform a backward CFG traversal to discover and map blocks in this loop. |
| 500 | if (!Backedges.empty()) { |
| 501 | LoopT *L = AllocateLoop(Header); |
| 502 | discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree); |
| 503 | } |
| 504 | } |
| 505 | // Perform a single forward CFG traversal to populate block and subloop |
| 506 | // vectors for all loops. |
| 507 | PopulateLoopsDFS<BlockT, LoopT> DFS(this); |
| 508 | DFS.traverse(DomRoot->getBlock()); |
| 509 | } |
| 510 | |
| 511 | template <class BlockT, class LoopT> |
| 512 | SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() { |
| 513 | SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; |
| 514 | // The outer-most loop actually goes into the result in the same relative |
| 515 | // order as we walk it. But LoopInfo stores the top level loops in reverse |
| 516 | // program order so for here we reverse it to get forward program order. |
| 517 | // FIXME: If we change the order of LoopInfo we will want to remove the |
| 518 | // reverse here. |
| 519 | for (LoopT *RootL : reverse(*this)) { |
| 520 | assert(PreOrderWorklist.empty() && |
| 521 | "Must start with an empty preorder walk worklist."); |
| 522 | PreOrderWorklist.push_back(RootL); |
| 523 | do { |
| 524 | LoopT *L = PreOrderWorklist.pop_back_val(); |
| 525 | // Sub-loops are stored in forward program order, but will process the |
| 526 | // worklist backwards so append them in reverse order. |
| 527 | PreOrderWorklist.append(L->rbegin(), L->rend()); |
| 528 | PreOrderLoops.push_back(L); |
| 529 | } while (!PreOrderWorklist.empty()); |
| 530 | } |
| 531 | |
| 532 | return PreOrderLoops; |
| 533 | } |
| 534 | |
| 535 | template <class BlockT, class LoopT> |
| 536 | SmallVector<LoopT *, 4> |
| 537 | LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() { |
| 538 | SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; |
| 539 | // The outer-most loop actually goes into the result in the same relative |
| 540 | // order as we walk it. LoopInfo stores the top level loops in reverse |
| 541 | // program order so we walk in order here. |
| 542 | // FIXME: If we change the order of LoopInfo we will want to add a reverse |
| 543 | // here. |
| 544 | for (LoopT *RootL : *this) { |
| 545 | assert(PreOrderWorklist.empty() && |
| 546 | "Must start with an empty preorder walk worklist."); |
| 547 | PreOrderWorklist.push_back(RootL); |
| 548 | do { |
| 549 | LoopT *L = PreOrderWorklist.pop_back_val(); |
| 550 | // Sub-loops are stored in forward program order, but will process the |
| 551 | // worklist backwards so we can just append them in order. |
| 552 | PreOrderWorklist.append(L->begin(), L->end()); |
| 553 | PreOrderLoops.push_back(L); |
| 554 | } while (!PreOrderWorklist.empty()); |
| 555 | } |
| 556 | |
| 557 | return PreOrderLoops; |
| 558 | } |
| 559 | |
| 560 | // Debugging |
| 561 | template <class BlockT, class LoopT> |
| 562 | void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const { |
| 563 | for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
| 564 | TopLevelLoops[i]->print(OS); |
| 565 | #if 0 |
| 566 | for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(), |
| 567 | E = BBMap.end(); I != E; ++I) |
| 568 | OS << "BB '" << I->first->getName() << "' level = " |
| 569 | << I->second->getLoopDepth() << "\n"; |
| 570 | #endif |
| 571 | } |
| 572 | |
| 573 | template <typename T> |
| 574 | bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) { |
| 575 | std::sort(BB1.begin(), BB1.end()); |
| 576 | std::sort(BB2.begin(), BB2.end()); |
| 577 | return BB1 == BB2; |
| 578 | } |
| 579 | |
| 580 | template <class BlockT, class LoopT> |
| 581 | void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders, |
| 582 | const LoopInfoBase<BlockT, LoopT> &LI, |
| 583 | const LoopT &L) { |
| 584 | LoopHeaders[L.getHeader()] = &L; |
| 585 | for (LoopT *SL : L) |
| 586 | addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL); |
| 587 | } |
| 588 | |
| 589 | #ifndef NDEBUG |
| 590 | template <class BlockT, class LoopT> |
| 591 | static void compareLoops(const LoopT *L, const LoopT *OtherL, |
| 592 | DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) { |
| 593 | BlockT *H = L->getHeader(); |
| 594 | BlockT *OtherH = OtherL->getHeader(); |
| 595 | assert(H == OtherH && |
| 596 | "Mismatched headers even though found in the same map entry!"); |
| 597 | |
| 598 | assert(L->getLoopDepth() == OtherL->getLoopDepth() && |
| 599 | "Mismatched loop depth!"); |
| 600 | const LoopT *ParentL = L, *OtherParentL = OtherL; |
| 601 | do { |
| 602 | assert(ParentL->getHeader() == OtherParentL->getHeader() && |
| 603 | "Mismatched parent loop headers!"); |
| 604 | ParentL = ParentL->getParentLoop(); |
| 605 | OtherParentL = OtherParentL->getParentLoop(); |
| 606 | } while (ParentL); |
| 607 | |
| 608 | for (const LoopT *SubL : *L) { |
| 609 | BlockT *SubH = SubL->getHeader(); |
| 610 | const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH); |
| 611 | assert(OtherSubL && "Inner loop is missing in computed loop info!"); |
| 612 | OtherLoopHeaders.erase(SubH); |
| 613 | compareLoops(SubL, OtherSubL, OtherLoopHeaders); |
| 614 | } |
| 615 | |
| 616 | std::vector<BlockT *> BBs = L->getBlocks(); |
| 617 | std::vector<BlockT *> OtherBBs = OtherL->getBlocks(); |
| 618 | assert(compareVectors(BBs, OtherBBs) && |
| 619 | "Mismatched basic blocks in the loops!"); |
| 620 | } |
| 621 | #endif |
| 622 | |
| 623 | template <class BlockT, class LoopT> |
| 624 | void LoopInfoBase<BlockT, LoopT>::verify( |
| 625 | const DomTreeBase<BlockT> &DomTree) const { |
| 626 | DenseSet<const LoopT *> Loops; |
| 627 | for (iterator I = begin(), E = end(); I != E; ++I) { |
| 628 | assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); |
| 629 | (*I)->verifyLoopNest(&Loops); |
| 630 | } |
| 631 | |
| 632 | // Verify that blocks are mapped to valid loops. |
| 633 | #ifndef NDEBUG |
| 634 | for (auto &Entry : BBMap) { |
| 635 | const BlockT *BB = Entry.first; |
| 636 | LoopT *L = Entry.second; |
| 637 | assert(Loops.count(L) && "orphaned loop"); |
| 638 | assert(L->contains(BB) && "orphaned block"); |
| 639 | } |
| 640 | |
| 641 | // Recompute LoopInfo to verify loops structure. |
| 642 | LoopInfoBase<BlockT, LoopT> OtherLI; |
| 643 | OtherLI.analyze(DomTree); |
| 644 | |
| 645 | // Build a map we can use to move from our LI to the computed one. This |
| 646 | // allows us to ignore the particular order in any layer of the loop forest |
| 647 | // while still comparing the structure. |
| 648 | DenseMap<BlockT *, const LoopT *> OtherLoopHeaders; |
| 649 | for (LoopT *L : OtherLI) |
| 650 | addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L); |
| 651 | |
| 652 | // Walk the top level loops and ensure there is a corresponding top-level |
| 653 | // loop in the computed version and then recursively compare those loop |
| 654 | // nests. |
| 655 | for (LoopT *L : *this) { |
| 656 | BlockT *Header = L->getHeader(); |
| 657 | const LoopT *OtherL = OtherLoopHeaders.lookup(Header); |
| 658 | assert(OtherL && "Top level loop is missing in computed loop info!"); |
| 659 | // Now that we've matched this loop, erase its header from the map. |
| 660 | OtherLoopHeaders.erase(Header); |
| 661 | // And recursively compare these loops. |
| 662 | compareLoops(L, OtherL, OtherLoopHeaders); |
| 663 | } |
| 664 | |
| 665 | // Any remaining entries in the map are loops which were found when computing |
| 666 | // a fresh LoopInfo but not present in the current one. |
| 667 | if (!OtherLoopHeaders.empty()) { |
| 668 | for (const auto &HeaderAndLoop : OtherLoopHeaders) |
| 669 | dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n"; |
| 670 | llvm_unreachable("Found new loops when recomputing LoopInfo!"); |
| 671 | } |
| 672 | #endif |
| 673 | } |
| 674 | |
| 675 | } // End llvm namespace |
| 676 | |
| 677 | #endif |