blob: 73573d65e2b39d7bccfde400b6cdeab69ff2c9f8 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#ifndef LLVM_ADT_TINYPTRVECTOR_H
11#define LLVM_ADT_TINYPTRVECTOR_H
12
13#include "llvm/ADT/ArrayRef.h"
14#include "llvm/ADT/None.h"
15#include "llvm/ADT/PointerUnion.h"
16#include "llvm/ADT/SmallVector.h"
17#include <cassert>
18#include <cstddef>
19#include <iterator>
20#include <type_traits>
21
22namespace llvm {
23
24/// TinyPtrVector - This class is specialized for cases where there are
25/// normally 0 or 1 element in a vector, but is general enough to go beyond that
26/// when required.
27///
28/// NOTE: This container doesn't allow you to store a null pointer into it.
29///
30template <typename EltTy>
31class TinyPtrVector {
32public:
33 using VecTy = SmallVector<EltTy, 4>;
34 using value_type = typename VecTy::value_type;
35 using PtrUnion = PointerUnion<EltTy, VecTy *>;
36
37private:
38 PtrUnion Val;
39
40public:
41 TinyPtrVector() = default;
42
43 ~TinyPtrVector() {
44 if (VecTy *V = Val.template dyn_cast<VecTy*>())
45 delete V;
46 }
47
48 TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
49 if (VecTy *V = Val.template dyn_cast<VecTy*>())
50 Val = new VecTy(*V);
51 }
52
53 TinyPtrVector &operator=(const TinyPtrVector &RHS) {
54 if (this == &RHS)
55 return *this;
56 if (RHS.empty()) {
57 this->clear();
58 return *this;
59 }
60
61 // Try to squeeze into the single slot. If it won't fit, allocate a copied
62 // vector.
63 if (Val.template is<EltTy>()) {
64 if (RHS.size() == 1)
65 Val = RHS.front();
66 else
67 Val = new VecTy(*RHS.Val.template get<VecTy*>());
68 return *this;
69 }
70
71 // If we have a full vector allocated, try to re-use it.
72 if (RHS.Val.template is<EltTy>()) {
73 Val.template get<VecTy*>()->clear();
74 Val.template get<VecTy*>()->push_back(RHS.front());
75 } else {
76 *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
77 }
78 return *this;
79 }
80
81 TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
82 RHS.Val = (EltTy)nullptr;
83 }
84
85 TinyPtrVector &operator=(TinyPtrVector &&RHS) {
86 if (this == &RHS)
87 return *this;
88 if (RHS.empty()) {
89 this->clear();
90 return *this;
91 }
92
93 // If this vector has been allocated on the heap, re-use it if cheap. If it
94 // would require more copying, just delete it and we'll steal the other
95 // side.
96 if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
97 if (RHS.Val.template is<EltTy>()) {
98 V->clear();
99 V->push_back(RHS.front());
100 RHS.Val = (EltTy)nullptr;
101 return *this;
102 }
103 delete V;
104 }
105
106 Val = RHS.Val;
107 RHS.Val = (EltTy)nullptr;
108 return *this;
109 }
110
111 /// Constructor from an ArrayRef.
112 ///
113 /// This also is a constructor for individual array elements due to the single
114 /// element constructor for ArrayRef.
115 explicit TinyPtrVector(ArrayRef<EltTy> Elts)
116 : Val(Elts.empty()
117 ? PtrUnion()
118 : Elts.size() == 1
119 ? PtrUnion(Elts[0])
120 : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
121
122 TinyPtrVector(size_t Count, EltTy Value)
123 : Val(Count == 0 ? PtrUnion()
124 : Count == 1 ? PtrUnion(Value)
125 : PtrUnion(new VecTy(Count, Value))) {}
126
127 // implicit conversion operator to ArrayRef.
128 operator ArrayRef<EltTy>() const {
129 if (Val.isNull())
130 return None;
131 if (Val.template is<EltTy>())
132 return *Val.getAddrOfPtr1();
133 return *Val.template get<VecTy*>();
134 }
135
136 // implicit conversion operator to MutableArrayRef.
137 operator MutableArrayRef<EltTy>() {
138 if (Val.isNull())
139 return None;
140 if (Val.template is<EltTy>())
141 return *Val.getAddrOfPtr1();
142 return *Val.template get<VecTy*>();
143 }
144
145 // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
146 template<typename U,
147 typename std::enable_if<
148 std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
149 bool>::type = false>
150 operator ArrayRef<U>() const {
151 return operator ArrayRef<EltTy>();
152 }
153
154 bool empty() const {
155 // This vector can be empty if it contains no element, or if it
156 // contains a pointer to an empty vector.
157 if (Val.isNull()) return true;
158 if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
159 return Vec->empty();
160 return false;
161 }
162
163 unsigned size() const {
164 if (empty())
165 return 0;
166 if (Val.template is<EltTy>())
167 return 1;
168 return Val.template get<VecTy*>()->size();
169 }
170
171 using iterator = EltTy *;
172 using const_iterator = const EltTy *;
173 using reverse_iterator = std::reverse_iterator<iterator>;
174 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
175
176 iterator begin() {
177 if (Val.template is<EltTy>())
178 return Val.getAddrOfPtr1();
179
180 return Val.template get<VecTy *>()->begin();
181 }
182
183 iterator end() {
184 if (Val.template is<EltTy>())
185 return begin() + (Val.isNull() ? 0 : 1);
186
187 return Val.template get<VecTy *>()->end();
188 }
189
190 const_iterator begin() const {
191 return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
192 }
193
194 const_iterator end() const {
195 return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
196 }
197
198 reverse_iterator rbegin() { return reverse_iterator(end()); }
199 reverse_iterator rend() { return reverse_iterator(begin()); }
200
201 const_reverse_iterator rbegin() const {
202 return const_reverse_iterator(end());
203 }
204
205 const_reverse_iterator rend() const {
206 return const_reverse_iterator(begin());
207 }
208
209 EltTy operator[](unsigned i) const {
210 assert(!Val.isNull() && "can't index into an empty vector");
211 if (EltTy V = Val.template dyn_cast<EltTy>()) {
212 assert(i == 0 && "tinyvector index out of range");
213 return V;
214 }
215
216 assert(i < Val.template get<VecTy*>()->size() &&
217 "tinyvector index out of range");
218 return (*Val.template get<VecTy*>())[i];
219 }
220
221 EltTy front() const {
222 assert(!empty() && "vector empty");
223 if (EltTy V = Val.template dyn_cast<EltTy>())
224 return V;
225 return Val.template get<VecTy*>()->front();
226 }
227
228 EltTy back() const {
229 assert(!empty() && "vector empty");
230 if (EltTy V = Val.template dyn_cast<EltTy>())
231 return V;
232 return Val.template get<VecTy*>()->back();
233 }
234
235 void push_back(EltTy NewVal) {
236 assert(NewVal && "Can't add a null value");
237
238 // If we have nothing, add something.
239 if (Val.isNull()) {
240 Val = NewVal;
241 return;
242 }
243
244 // If we have a single value, convert to a vector.
245 if (EltTy V = Val.template dyn_cast<EltTy>()) {
246 Val = new VecTy();
247 Val.template get<VecTy*>()->push_back(V);
248 }
249
250 // Add the new value, we know we have a vector.
251 Val.template get<VecTy*>()->push_back(NewVal);
252 }
253
254 void pop_back() {
255 // If we have a single value, convert to empty.
256 if (Val.template is<EltTy>())
257 Val = (EltTy)nullptr;
258 else if (VecTy *Vec = Val.template get<VecTy*>())
259 Vec->pop_back();
260 }
261
262 void clear() {
263 // If we have a single value, convert to empty.
264 if (Val.template is<EltTy>()) {
265 Val = (EltTy)nullptr;
266 } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
267 // If we have a vector form, just clear it.
268 Vec->clear();
269 }
270 // Otherwise, we're already empty.
271 }
272
273 iterator erase(iterator I) {
274 assert(I >= begin() && "Iterator to erase is out of bounds.");
275 assert(I < end() && "Erasing at past-the-end iterator.");
276
277 // If we have a single value, convert to empty.
278 if (Val.template is<EltTy>()) {
279 if (I == begin())
280 Val = (EltTy)nullptr;
281 } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
282 // multiple items in a vector; just do the erase, there is no
283 // benefit to collapsing back to a pointer
284 return Vec->erase(I);
285 }
286 return end();
287 }
288
289 iterator erase(iterator S, iterator E) {
290 assert(S >= begin() && "Range to erase is out of bounds.");
291 assert(S <= E && "Trying to erase invalid range.");
292 assert(E <= end() && "Trying to erase past the end.");
293
294 if (Val.template is<EltTy>()) {
295 if (S == begin() && S != E)
296 Val = (EltTy)nullptr;
297 } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
298 return Vec->erase(S, E);
299 }
300 return end();
301 }
302
303 iterator insert(iterator I, const EltTy &Elt) {
304 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
305 assert(I <= this->end() && "Inserting past the end of the vector.");
306 if (I == end()) {
307 push_back(Elt);
308 return std::prev(end());
309 }
310 assert(!Val.isNull() && "Null value with non-end insert iterator.");
311 if (EltTy V = Val.template dyn_cast<EltTy>()) {
312 assert(I == begin());
313 Val = Elt;
314 push_back(V);
315 return begin();
316 }
317
318 return Val.template get<VecTy*>()->insert(I, Elt);
319 }
320
321 template<typename ItTy>
322 iterator insert(iterator I, ItTy From, ItTy To) {
323 assert(I >= this->begin() && "Insertion iterator is out of bounds.");
324 assert(I <= this->end() && "Inserting past the end of the vector.");
325 if (From == To)
326 return I;
327
328 // If we have a single value, convert to a vector.
329 ptrdiff_t Offset = I - begin();
330 if (Val.isNull()) {
331 if (std::next(From) == To) {
332 Val = *From;
333 return begin();
334 }
335
336 Val = new VecTy();
337 } else if (EltTy V = Val.template dyn_cast<EltTy>()) {
338 Val = new VecTy();
339 Val.template get<VecTy*>()->push_back(V);
340 }
341 return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
342 }
343};
344
345} // end namespace llvm
346
347#endif // LLVM_ADT_TINYPTRVECTOR_H