blob: 3c8637621510e68c966847f6401ee995cfe5e414 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/ADT/SparseMultiSet.h - Sparse multiset --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the SparseMultiSet class, which adds multiset behavior to
11// the SparseSet.
12//
13// A sparse multiset holds a small number of objects identified by integer keys
14// from a moderately sized universe. The sparse multiset uses more memory than
15// other containers in order to provide faster operations. Any key can map to
16// multiple values. A SparseMultiSetNode class is provided, which serves as a
17// convenient base class for the contents of a SparseMultiSet.
18//
19//===----------------------------------------------------------------------===//
20
21#ifndef LLVM_ADT_SPARSEMULTISET_H
22#define LLVM_ADT_SPARSEMULTISET_H
23
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/ADT/SparseSet.h"
27#include <cassert>
28#include <cstdint>
29#include <cstdlib>
30#include <iterator>
31#include <limits>
32#include <utility>
33
34namespace llvm {
35
36/// Fast multiset implementation for objects that can be identified by small
37/// unsigned keys.
38///
39/// SparseMultiSet allocates memory proportional to the size of the key
40/// universe, so it is not recommended for building composite data structures.
41/// It is useful for algorithms that require a single set with fast operations.
42///
43/// Compared to DenseSet and DenseMap, SparseMultiSet provides constant-time
44/// fast clear() as fast as a vector. The find(), insert(), and erase()
45/// operations are all constant time, and typically faster than a hash table.
46/// The iteration order doesn't depend on numerical key values, it only depends
47/// on the order of insert() and erase() operations. Iteration order is the
48/// insertion order. Iteration is only provided over elements of equivalent
49/// keys, but iterators are bidirectional.
50///
51/// Compared to BitVector, SparseMultiSet<unsigned> uses 8x-40x more memory, but
52/// offers constant-time clear() and size() operations as well as fast iteration
53/// independent on the size of the universe.
54///
55/// SparseMultiSet contains a dense vector holding all the objects and a sparse
56/// array holding indexes into the dense vector. Most of the memory is used by
57/// the sparse array which is the size of the key universe. The SparseT template
58/// parameter provides a space/speed tradeoff for sets holding many elements.
59///
60/// When SparseT is uint32_t, find() only touches up to 3 cache lines, but the
61/// sparse array uses 4 x Universe bytes.
62///
63/// When SparseT is uint8_t (the default), find() touches up to 3+[N/256] cache
64/// lines, but the sparse array is 4x smaller. N is the number of elements in
65/// the set.
66///
67/// For sets that may grow to thousands of elements, SparseT should be set to
68/// uint16_t or uint32_t.
69///
70/// Multiset behavior is provided by providing doubly linked lists for values
71/// that are inlined in the dense vector. SparseMultiSet is a good choice when
72/// one desires a growable number of entries per key, as it will retain the
73/// SparseSet algorithmic properties despite being growable. Thus, it is often a
74/// better choice than a SparseSet of growable containers or a vector of
75/// vectors. SparseMultiSet also keeps iterators valid after erasure (provided
76/// the iterators don't point to the element erased), allowing for more
77/// intuitive and fast removal.
78///
79/// @tparam ValueT The type of objects in the set.
80/// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
81/// @tparam SparseT An unsigned integer type. See above.
82///
83template<typename ValueT,
84 typename KeyFunctorT = identity<unsigned>,
85 typename SparseT = uint8_t>
86class SparseMultiSet {
87 static_assert(std::numeric_limits<SparseT>::is_integer &&
88 !std::numeric_limits<SparseT>::is_signed,
89 "SparseT must be an unsigned integer type");
90
91 /// The actual data that's stored, as a doubly-linked list implemented via
92 /// indices into the DenseVector. The doubly linked list is implemented
93 /// circular in Prev indices, and INVALID-terminated in Next indices. This
94 /// provides efficient access to list tails. These nodes can also be
95 /// tombstones, in which case they are actually nodes in a single-linked
96 /// freelist of recyclable slots.
97 struct SMSNode {
98 static const unsigned INVALID = ~0U;
99
100 ValueT Data;
101 unsigned Prev;
102 unsigned Next;
103
104 SMSNode(ValueT D, unsigned P, unsigned N) : Data(D), Prev(P), Next(N) {}
105
106 /// List tails have invalid Nexts.
107 bool isTail() const {
108 return Next == INVALID;
109 }
110
111 /// Whether this node is a tombstone node, and thus is in our freelist.
112 bool isTombstone() const {
113 return Prev == INVALID;
114 }
115
116 /// Since the list is circular in Prev, all non-tombstone nodes have a valid
117 /// Prev.
118 bool isValid() const { return Prev != INVALID; }
119 };
120
121 using KeyT = typename KeyFunctorT::argument_type;
122 using DenseT = SmallVector<SMSNode, 8>;
123 DenseT Dense;
124 SparseT *Sparse = nullptr;
125 unsigned Universe = 0;
126 KeyFunctorT KeyIndexOf;
127 SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
128
129 /// We have a built-in recycler for reusing tombstone slots. This recycler
130 /// puts a singly-linked free list into tombstone slots, allowing us quick
131 /// erasure, iterator preservation, and dense size.
132 unsigned FreelistIdx = SMSNode::INVALID;
133 unsigned NumFree = 0;
134
135 unsigned sparseIndex(const ValueT &Val) const {
136 assert(ValIndexOf(Val) < Universe &&
137 "Invalid key in set. Did object mutate?");
138 return ValIndexOf(Val);
139 }
140 unsigned sparseIndex(const SMSNode &N) const { return sparseIndex(N.Data); }
141
142 /// Whether the given entry is the head of the list. List heads's previous
143 /// pointers are to the tail of the list, allowing for efficient access to the
144 /// list tail. D must be a valid entry node.
145 bool isHead(const SMSNode &D) const {
146 assert(D.isValid() && "Invalid node for head");
147 return Dense[D.Prev].isTail();
148 }
149
150 /// Whether the given entry is a singleton entry, i.e. the only entry with
151 /// that key.
152 bool isSingleton(const SMSNode &N) const {
153 assert(N.isValid() && "Invalid node for singleton");
154 // Is N its own predecessor?
155 return &Dense[N.Prev] == &N;
156 }
157
158 /// Add in the given SMSNode. Uses a free entry in our freelist if
159 /// available. Returns the index of the added node.
160 unsigned addValue(const ValueT& V, unsigned Prev, unsigned Next) {
161 if (NumFree == 0) {
162 Dense.push_back(SMSNode(V, Prev, Next));
163 return Dense.size() - 1;
164 }
165
166 // Peel off a free slot
167 unsigned Idx = FreelistIdx;
168 unsigned NextFree = Dense[Idx].Next;
169 assert(Dense[Idx].isTombstone() && "Non-tombstone free?");
170
171 Dense[Idx] = SMSNode(V, Prev, Next);
172 FreelistIdx = NextFree;
173 --NumFree;
174 return Idx;
175 }
176
177 /// Make the current index a new tombstone. Pushes it onto the freelist.
178 void makeTombstone(unsigned Idx) {
179 Dense[Idx].Prev = SMSNode::INVALID;
180 Dense[Idx].Next = FreelistIdx;
181 FreelistIdx = Idx;
182 ++NumFree;
183 }
184
185public:
186 using value_type = ValueT;
187 using reference = ValueT &;
188 using const_reference = const ValueT &;
189 using pointer = ValueT *;
190 using const_pointer = const ValueT *;
191 using size_type = unsigned;
192
193 SparseMultiSet() = default;
194 SparseMultiSet(const SparseMultiSet &) = delete;
195 SparseMultiSet &operator=(const SparseMultiSet &) = delete;
196 ~SparseMultiSet() { free(Sparse); }
197
198 /// Set the universe size which determines the largest key the set can hold.
199 /// The universe must be sized before any elements can be added.
200 ///
201 /// @param U Universe size. All object keys must be less than U.
202 ///
203 void setUniverse(unsigned U) {
204 // It's not hard to resize the universe on a non-empty set, but it doesn't
205 // seem like a likely use case, so we can add that code when we need it.
206 assert(empty() && "Can only resize universe on an empty map");
207 // Hysteresis prevents needless reallocations.
208 if (U >= Universe/4 && U <= Universe)
209 return;
210 free(Sparse);
211 // The Sparse array doesn't actually need to be initialized, so malloc
212 // would be enough here, but that will cause tools like valgrind to
213 // complain about branching on uninitialized data.
214 Sparse = static_cast<SparseT*>(safe_calloc(U, sizeof(SparseT)));
215 Universe = U;
216 }
217
218 /// Our iterators are iterators over the collection of objects that share a
219 /// key.
220 template<typename SMSPtrTy>
221 class iterator_base : public std::iterator<std::bidirectional_iterator_tag,
222 ValueT> {
223 friend class SparseMultiSet;
224
225 SMSPtrTy SMS;
226 unsigned Idx;
227 unsigned SparseIdx;
228
229 iterator_base(SMSPtrTy P, unsigned I, unsigned SI)
230 : SMS(P), Idx(I), SparseIdx(SI) {}
231
232 /// Whether our iterator has fallen outside our dense vector.
233 bool isEnd() const {
234 if (Idx == SMSNode::INVALID)
235 return true;
236
237 assert(Idx < SMS->Dense.size() && "Out of range, non-INVALID Idx?");
238 return false;
239 }
240
241 /// Whether our iterator is properly keyed, i.e. the SparseIdx is valid
242 bool isKeyed() const { return SparseIdx < SMS->Universe; }
243
244 unsigned Prev() const { return SMS->Dense[Idx].Prev; }
245 unsigned Next() const { return SMS->Dense[Idx].Next; }
246
247 void setPrev(unsigned P) { SMS->Dense[Idx].Prev = P; }
248 void setNext(unsigned N) { SMS->Dense[Idx].Next = N; }
249
250 public:
251 using super = std::iterator<std::bidirectional_iterator_tag, ValueT>;
252 using value_type = typename super::value_type;
253 using difference_type = typename super::difference_type;
254 using pointer = typename super::pointer;
255 using reference = typename super::reference;
256
257 reference operator*() const {
258 assert(isKeyed() && SMS->sparseIndex(SMS->Dense[Idx].Data) == SparseIdx &&
259 "Dereferencing iterator of invalid key or index");
260
261 return SMS->Dense[Idx].Data;
262 }
263 pointer operator->() const { return &operator*(); }
264
265 /// Comparison operators
266 bool operator==(const iterator_base &RHS) const {
267 // end compares equal
268 if (SMS == RHS.SMS && Idx == RHS.Idx) {
269 assert((isEnd() || SparseIdx == RHS.SparseIdx) &&
270 "Same dense entry, but different keys?");
271 return true;
272 }
273
274 return false;
275 }
276
277 bool operator!=(const iterator_base &RHS) const {
278 return !operator==(RHS);
279 }
280
281 /// Increment and decrement operators
282 iterator_base &operator--() { // predecrement - Back up
283 assert(isKeyed() && "Decrementing an invalid iterator");
284 assert((isEnd() || !SMS->isHead(SMS->Dense[Idx])) &&
285 "Decrementing head of list");
286
287 // If we're at the end, then issue a new find()
288 if (isEnd())
289 Idx = SMS->findIndex(SparseIdx).Prev();
290 else
291 Idx = Prev();
292
293 return *this;
294 }
295 iterator_base &operator++() { // preincrement - Advance
296 assert(!isEnd() && isKeyed() && "Incrementing an invalid/end iterator");
297 Idx = Next();
298 return *this;
299 }
300 iterator_base operator--(int) { // postdecrement
301 iterator_base I(*this);
302 --*this;
303 return I;
304 }
305 iterator_base operator++(int) { // postincrement
306 iterator_base I(*this);
307 ++*this;
308 return I;
309 }
310 };
311
312 using iterator = iterator_base<SparseMultiSet *>;
313 using const_iterator = iterator_base<const SparseMultiSet *>;
314
315 // Convenience types
316 using RangePair = std::pair<iterator, iterator>;
317
318 /// Returns an iterator past this container. Note that such an iterator cannot
319 /// be decremented, but will compare equal to other end iterators.
320 iterator end() { return iterator(this, SMSNode::INVALID, SMSNode::INVALID); }
321 const_iterator end() const {
322 return const_iterator(this, SMSNode::INVALID, SMSNode::INVALID);
323 }
324
325 /// Returns true if the set is empty.
326 ///
327 /// This is not the same as BitVector::empty().
328 ///
329 bool empty() const { return size() == 0; }
330
331 /// Returns the number of elements in the set.
332 ///
333 /// This is not the same as BitVector::size() which returns the size of the
334 /// universe.
335 ///
336 size_type size() const {
337 assert(NumFree <= Dense.size() && "Out-of-bounds free entries");
338 return Dense.size() - NumFree;
339 }
340
341 /// Clears the set. This is a very fast constant time operation.
342 ///
343 void clear() {
344 // Sparse does not need to be cleared, see find().
345 Dense.clear();
346 NumFree = 0;
347 FreelistIdx = SMSNode::INVALID;
348 }
349
350 /// Find an element by its index.
351 ///
352 /// @param Idx A valid index to find.
353 /// @returns An iterator to the element identified by key, or end().
354 ///
355 iterator findIndex(unsigned Idx) {
356 assert(Idx < Universe && "Key out of range");
357 const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
358 for (unsigned i = Sparse[Idx], e = Dense.size(); i < e; i += Stride) {
359 const unsigned FoundIdx = sparseIndex(Dense[i]);
360 // Check that we're pointing at the correct entry and that it is the head
361 // of a valid list.
362 if (Idx == FoundIdx && Dense[i].isValid() && isHead(Dense[i]))
363 return iterator(this, i, Idx);
364 // Stride is 0 when SparseT >= unsigned. We don't need to loop.
365 if (!Stride)
366 break;
367 }
368 return end();
369 }
370
371 /// Find an element by its key.
372 ///
373 /// @param Key A valid key to find.
374 /// @returns An iterator to the element identified by key, or end().
375 ///
376 iterator find(const KeyT &Key) {
377 return findIndex(KeyIndexOf(Key));
378 }
379
380 const_iterator find(const KeyT &Key) const {
381 iterator I = const_cast<SparseMultiSet*>(this)->findIndex(KeyIndexOf(Key));
382 return const_iterator(I.SMS, I.Idx, KeyIndexOf(Key));
383 }
384
385 /// Returns the number of elements identified by Key. This will be linear in
386 /// the number of elements of that key.
387 size_type count(const KeyT &Key) const {
388 unsigned Ret = 0;
389 for (const_iterator It = find(Key); It != end(); ++It)
390 ++Ret;
391
392 return Ret;
393 }
394
395 /// Returns true if this set contains an element identified by Key.
396 bool contains(const KeyT &Key) const {
397 return find(Key) != end();
398 }
399
400 /// Return the head and tail of the subset's list, otherwise returns end().
401 iterator getHead(const KeyT &Key) { return find(Key); }
402 iterator getTail(const KeyT &Key) {
403 iterator I = find(Key);
404 if (I != end())
405 I = iterator(this, I.Prev(), KeyIndexOf(Key));
406 return I;
407 }
408
409 /// The bounds of the range of items sharing Key K. First member is the head
410 /// of the list, and the second member is a decrementable end iterator for
411 /// that key.
412 RangePair equal_range(const KeyT &K) {
413 iterator B = find(K);
414 iterator E = iterator(this, SMSNode::INVALID, B.SparseIdx);
415 return make_pair(B, E);
416 }
417
418 /// Insert a new element at the tail of the subset list. Returns an iterator
419 /// to the newly added entry.
420 iterator insert(const ValueT &Val) {
421 unsigned Idx = sparseIndex(Val);
422 iterator I = findIndex(Idx);
423
424 unsigned NodeIdx = addValue(Val, SMSNode::INVALID, SMSNode::INVALID);
425
426 if (I == end()) {
427 // Make a singleton list
428 Sparse[Idx] = NodeIdx;
429 Dense[NodeIdx].Prev = NodeIdx;
430 return iterator(this, NodeIdx, Idx);
431 }
432
433 // Stick it at the end.
434 unsigned HeadIdx = I.Idx;
435 unsigned TailIdx = I.Prev();
436 Dense[TailIdx].Next = NodeIdx;
437 Dense[HeadIdx].Prev = NodeIdx;
438 Dense[NodeIdx].Prev = TailIdx;
439
440 return iterator(this, NodeIdx, Idx);
441 }
442
443 /// Erases an existing element identified by a valid iterator.
444 ///
445 /// This invalidates iterators pointing at the same entry, but erase() returns
446 /// an iterator pointing to the next element in the subset's list. This makes
447 /// it possible to erase selected elements while iterating over the subset:
448 ///
449 /// tie(I, E) = Set.equal_range(Key);
450 /// while (I != E)
451 /// if (test(*I))
452 /// I = Set.erase(I);
453 /// else
454 /// ++I;
455 ///
456 /// Note that if the last element in the subset list is erased, this will
457 /// return an end iterator which can be decremented to get the new tail (if it
458 /// exists):
459 ///
460 /// tie(B, I) = Set.equal_range(Key);
461 /// for (bool isBegin = B == I; !isBegin; /* empty */) {
462 /// isBegin = (--I) == B;
463 /// if (test(I))
464 /// break;
465 /// I = erase(I);
466 /// }
467 iterator erase(iterator I) {
468 assert(I.isKeyed() && !I.isEnd() && !Dense[I.Idx].isTombstone() &&
469 "erasing invalid/end/tombstone iterator");
470
471 // First, unlink the node from its list. Then swap the node out with the
472 // dense vector's last entry
473 iterator NextI = unlink(Dense[I.Idx]);
474
475 // Put in a tombstone.
476 makeTombstone(I.Idx);
477
478 return NextI;
479 }
480
481 /// Erase all elements with the given key. This invalidates all
482 /// iterators of that key.
483 void eraseAll(const KeyT &K) {
484 for (iterator I = find(K); I != end(); /* empty */)
485 I = erase(I);
486 }
487
488private:
489 /// Unlink the node from its list. Returns the next node in the list.
490 iterator unlink(const SMSNode &N) {
491 if (isSingleton(N)) {
492 // Singleton is already unlinked
493 assert(N.Next == SMSNode::INVALID && "Singleton has next?");
494 return iterator(this, SMSNode::INVALID, ValIndexOf(N.Data));
495 }
496
497 if (isHead(N)) {
498 // If we're the head, then update the sparse array and our next.
499 Sparse[sparseIndex(N)] = N.Next;
500 Dense[N.Next].Prev = N.Prev;
501 return iterator(this, N.Next, ValIndexOf(N.Data));
502 }
503
504 if (N.isTail()) {
505 // If we're the tail, then update our head and our previous.
506 findIndex(sparseIndex(N)).setPrev(N.Prev);
507 Dense[N.Prev].Next = N.Next;
508
509 // Give back an end iterator that can be decremented
510 iterator I(this, N.Prev, ValIndexOf(N.Data));
511 return ++I;
512 }
513
514 // Otherwise, just drop us
515 Dense[N.Next].Prev = N.Prev;
516 Dense[N.Prev].Next = N.Next;
517 return iterator(this, N.Next, ValIndexOf(N.Data));
518 }
519};
520
521} // end namespace llvm
522
523#endif // LLVM_ADT_SPARSEMULTISET_H