Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the SmallBitVector class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_SMALLBITVECTOR_H |
| 15 | #define LLVM_ADT_SMALLBITVECTOR_H |
| 16 | |
| 17 | #include "llvm/ADT/BitVector.h" |
| 18 | #include "llvm/ADT/iterator_range.h" |
| 19 | #include "llvm/Support/MathExtras.h" |
| 20 | #include <algorithm> |
| 21 | #include <cassert> |
| 22 | #include <climits> |
| 23 | #include <cstddef> |
| 24 | #include <cstdint> |
| 25 | #include <limits> |
| 26 | #include <utility> |
| 27 | |
| 28 | namespace llvm { |
| 29 | |
| 30 | /// This is a 'bitvector' (really, a variable-sized bit array), optimized for |
| 31 | /// the case when the array is small. It contains one pointer-sized field, which |
| 32 | /// is directly used as a plain collection of bits when possible, or as a |
| 33 | /// pointer to a larger heap-allocated array when necessary. This allows normal |
| 34 | /// "small" cases to be fast without losing generality for large inputs. |
| 35 | class SmallBitVector { |
| 36 | // TODO: In "large" mode, a pointer to a BitVector is used, leading to an |
| 37 | // unnecessary level of indirection. It would be more efficient to use a |
| 38 | // pointer to memory containing size, allocation size, and the array of bits. |
| 39 | uintptr_t X = 1; |
| 40 | |
| 41 | enum { |
| 42 | // The number of bits in this class. |
| 43 | NumBaseBits = sizeof(uintptr_t) * CHAR_BIT, |
| 44 | |
| 45 | // One bit is used to discriminate between small and large mode. The |
| 46 | // remaining bits are used for the small-mode representation. |
| 47 | SmallNumRawBits = NumBaseBits - 1, |
| 48 | |
| 49 | // A few more bits are used to store the size of the bit set in small mode. |
| 50 | // Theoretically this is a ceil-log2. These bits are encoded in the most |
| 51 | // significant bits of the raw bits. |
| 52 | SmallNumSizeBits = (NumBaseBits == 32 ? 5 : |
| 53 | NumBaseBits == 64 ? 6 : |
| 54 | SmallNumRawBits), |
| 55 | |
| 56 | // The remaining bits are used to store the actual set in small mode. |
| 57 | SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits |
| 58 | }; |
| 59 | |
| 60 | static_assert(NumBaseBits == 64 || NumBaseBits == 32, |
| 61 | "Unsupported word size"); |
| 62 | |
| 63 | public: |
| 64 | using size_type = unsigned; |
| 65 | |
| 66 | // Encapsulation of a single bit. |
| 67 | class reference { |
| 68 | SmallBitVector &TheVector; |
| 69 | unsigned BitPos; |
| 70 | |
| 71 | public: |
| 72 | reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {} |
| 73 | |
| 74 | reference(const reference&) = default; |
| 75 | |
| 76 | reference& operator=(reference t) { |
| 77 | *this = bool(t); |
| 78 | return *this; |
| 79 | } |
| 80 | |
| 81 | reference& operator=(bool t) { |
| 82 | if (t) |
| 83 | TheVector.set(BitPos); |
| 84 | else |
| 85 | TheVector.reset(BitPos); |
| 86 | return *this; |
| 87 | } |
| 88 | |
| 89 | operator bool() const { |
| 90 | return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos); |
| 91 | } |
| 92 | }; |
| 93 | |
| 94 | private: |
| 95 | bool isSmall() const { |
| 96 | return X & uintptr_t(1); |
| 97 | } |
| 98 | |
| 99 | BitVector *getPointer() const { |
| 100 | assert(!isSmall()); |
| 101 | return reinterpret_cast<BitVector *>(X); |
| 102 | } |
| 103 | |
| 104 | void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) { |
| 105 | X = 1; |
| 106 | setSmallSize(NewSize); |
| 107 | setSmallBits(NewSmallBits); |
| 108 | } |
| 109 | |
| 110 | void switchToLarge(BitVector *BV) { |
| 111 | X = reinterpret_cast<uintptr_t>(BV); |
| 112 | assert(!isSmall() && "Tried to use an unaligned pointer"); |
| 113 | } |
| 114 | |
| 115 | // Return all the bits used for the "small" representation; this includes |
| 116 | // bits for the size as well as the element bits. |
| 117 | uintptr_t getSmallRawBits() const { |
| 118 | assert(isSmall()); |
| 119 | return X >> 1; |
| 120 | } |
| 121 | |
| 122 | void setSmallRawBits(uintptr_t NewRawBits) { |
| 123 | assert(isSmall()); |
| 124 | X = (NewRawBits << 1) | uintptr_t(1); |
| 125 | } |
| 126 | |
| 127 | // Return the size. |
| 128 | size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; } |
| 129 | |
| 130 | void setSmallSize(size_t Size) { |
| 131 | setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits)); |
| 132 | } |
| 133 | |
| 134 | // Return the element bits. |
| 135 | uintptr_t getSmallBits() const { |
| 136 | return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize()); |
| 137 | } |
| 138 | |
| 139 | void setSmallBits(uintptr_t NewBits) { |
| 140 | setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) | |
| 141 | (getSmallSize() << SmallNumDataBits)); |
| 142 | } |
| 143 | |
| 144 | public: |
| 145 | /// Creates an empty bitvector. |
| 146 | SmallBitVector() = default; |
| 147 | |
| 148 | /// Creates a bitvector of specified number of bits. All bits are initialized |
| 149 | /// to the specified value. |
| 150 | explicit SmallBitVector(unsigned s, bool t = false) { |
| 151 | if (s <= SmallNumDataBits) |
| 152 | switchToSmall(t ? ~uintptr_t(0) : 0, s); |
| 153 | else |
| 154 | switchToLarge(new BitVector(s, t)); |
| 155 | } |
| 156 | |
| 157 | /// SmallBitVector copy ctor. |
| 158 | SmallBitVector(const SmallBitVector &RHS) { |
| 159 | if (RHS.isSmall()) |
| 160 | X = RHS.X; |
| 161 | else |
| 162 | switchToLarge(new BitVector(*RHS.getPointer())); |
| 163 | } |
| 164 | |
| 165 | SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) { |
| 166 | RHS.X = 1; |
| 167 | } |
| 168 | |
| 169 | ~SmallBitVector() { |
| 170 | if (!isSmall()) |
| 171 | delete getPointer(); |
| 172 | } |
| 173 | |
| 174 | using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>; |
| 175 | using set_iterator = const_set_bits_iterator; |
| 176 | |
| 177 | const_set_bits_iterator set_bits_begin() const { |
| 178 | return const_set_bits_iterator(*this); |
| 179 | } |
| 180 | |
| 181 | const_set_bits_iterator set_bits_end() const { |
| 182 | return const_set_bits_iterator(*this, -1); |
| 183 | } |
| 184 | |
| 185 | iterator_range<const_set_bits_iterator> set_bits() const { |
| 186 | return make_range(set_bits_begin(), set_bits_end()); |
| 187 | } |
| 188 | |
| 189 | /// Tests whether there are no bits in this bitvector. |
| 190 | bool empty() const { |
| 191 | return isSmall() ? getSmallSize() == 0 : getPointer()->empty(); |
| 192 | } |
| 193 | |
| 194 | /// Returns the number of bits in this bitvector. |
| 195 | size_t size() const { |
| 196 | return isSmall() ? getSmallSize() : getPointer()->size(); |
| 197 | } |
| 198 | |
| 199 | /// Returns the number of bits which are set. |
| 200 | size_type count() const { |
| 201 | if (isSmall()) { |
| 202 | uintptr_t Bits = getSmallBits(); |
| 203 | return countPopulation(Bits); |
| 204 | } |
| 205 | return getPointer()->count(); |
| 206 | } |
| 207 | |
| 208 | /// Returns true if any bit is set. |
| 209 | bool any() const { |
| 210 | if (isSmall()) |
| 211 | return getSmallBits() != 0; |
| 212 | return getPointer()->any(); |
| 213 | } |
| 214 | |
| 215 | /// Returns true if all bits are set. |
| 216 | bool all() const { |
| 217 | if (isSmall()) |
| 218 | return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1; |
| 219 | return getPointer()->all(); |
| 220 | } |
| 221 | |
| 222 | /// Returns true if none of the bits are set. |
| 223 | bool none() const { |
| 224 | if (isSmall()) |
| 225 | return getSmallBits() == 0; |
| 226 | return getPointer()->none(); |
| 227 | } |
| 228 | |
| 229 | /// Returns the index of the first set bit, -1 if none of the bits are set. |
| 230 | int find_first() const { |
| 231 | if (isSmall()) { |
| 232 | uintptr_t Bits = getSmallBits(); |
| 233 | if (Bits == 0) |
| 234 | return -1; |
| 235 | return countTrailingZeros(Bits); |
| 236 | } |
| 237 | return getPointer()->find_first(); |
| 238 | } |
| 239 | |
| 240 | int find_last() const { |
| 241 | if (isSmall()) { |
| 242 | uintptr_t Bits = getSmallBits(); |
| 243 | if (Bits == 0) |
| 244 | return -1; |
| 245 | return NumBaseBits - countLeadingZeros(Bits); |
| 246 | } |
| 247 | return getPointer()->find_last(); |
| 248 | } |
| 249 | |
| 250 | /// Returns the index of the first unset bit, -1 if all of the bits are set. |
| 251 | int find_first_unset() const { |
| 252 | if (isSmall()) { |
| 253 | if (count() == getSmallSize()) |
| 254 | return -1; |
| 255 | |
| 256 | uintptr_t Bits = getSmallBits(); |
| 257 | return countTrailingOnes(Bits); |
| 258 | } |
| 259 | return getPointer()->find_first_unset(); |
| 260 | } |
| 261 | |
| 262 | int find_last_unset() const { |
| 263 | if (isSmall()) { |
| 264 | if (count() == getSmallSize()) |
| 265 | return -1; |
| 266 | |
| 267 | uintptr_t Bits = getSmallBits(); |
| 268 | return NumBaseBits - countLeadingOnes(Bits); |
| 269 | } |
| 270 | return getPointer()->find_last_unset(); |
| 271 | } |
| 272 | |
| 273 | /// Returns the index of the next set bit following the "Prev" bit. |
| 274 | /// Returns -1 if the next set bit is not found. |
| 275 | int find_next(unsigned Prev) const { |
| 276 | if (isSmall()) { |
| 277 | uintptr_t Bits = getSmallBits(); |
| 278 | // Mask off previous bits. |
| 279 | Bits &= ~uintptr_t(0) << (Prev + 1); |
| 280 | if (Bits == 0 || Prev + 1 >= getSmallSize()) |
| 281 | return -1; |
| 282 | return countTrailingZeros(Bits); |
| 283 | } |
| 284 | return getPointer()->find_next(Prev); |
| 285 | } |
| 286 | |
| 287 | /// Returns the index of the next unset bit following the "Prev" bit. |
| 288 | /// Returns -1 if the next unset bit is not found. |
| 289 | int find_next_unset(unsigned Prev) const { |
| 290 | if (isSmall()) { |
| 291 | ++Prev; |
| 292 | uintptr_t Bits = getSmallBits(); |
| 293 | // Mask in previous bits. |
| 294 | uintptr_t Mask = (1 << Prev) - 1; |
| 295 | Bits |= Mask; |
| 296 | |
| 297 | if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize()) |
| 298 | return -1; |
| 299 | return countTrailingOnes(Bits); |
| 300 | } |
| 301 | return getPointer()->find_next_unset(Prev); |
| 302 | } |
| 303 | |
| 304 | /// find_prev - Returns the index of the first set bit that precedes the |
| 305 | /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. |
| 306 | int find_prev(unsigned PriorTo) const { |
| 307 | if (isSmall()) { |
| 308 | if (PriorTo == 0) |
| 309 | return -1; |
| 310 | |
| 311 | --PriorTo; |
| 312 | uintptr_t Bits = getSmallBits(); |
| 313 | Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1); |
| 314 | if (Bits == 0) |
| 315 | return -1; |
| 316 | |
| 317 | return NumBaseBits - countLeadingZeros(Bits) - 1; |
| 318 | } |
| 319 | return getPointer()->find_prev(PriorTo); |
| 320 | } |
| 321 | |
| 322 | /// Clear all bits. |
| 323 | void clear() { |
| 324 | if (!isSmall()) |
| 325 | delete getPointer(); |
| 326 | switchToSmall(0, 0); |
| 327 | } |
| 328 | |
| 329 | /// Grow or shrink the bitvector. |
| 330 | void resize(unsigned N, bool t = false) { |
| 331 | if (!isSmall()) { |
| 332 | getPointer()->resize(N, t); |
| 333 | } else if (SmallNumDataBits >= N) { |
| 334 | uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0; |
| 335 | setSmallSize(N); |
| 336 | setSmallBits(NewBits | getSmallBits()); |
| 337 | } else { |
| 338 | BitVector *BV = new BitVector(N, t); |
| 339 | uintptr_t OldBits = getSmallBits(); |
| 340 | for (size_t i = 0, e = getSmallSize(); i != e; ++i) |
| 341 | (*BV)[i] = (OldBits >> i) & 1; |
| 342 | switchToLarge(BV); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | void reserve(unsigned N) { |
| 347 | if (isSmall()) { |
| 348 | if (N > SmallNumDataBits) { |
| 349 | uintptr_t OldBits = getSmallRawBits(); |
| 350 | size_t SmallSize = getSmallSize(); |
| 351 | BitVector *BV = new BitVector(SmallSize); |
| 352 | for (size_t i = 0; i < SmallSize; ++i) |
| 353 | if ((OldBits >> i) & 1) |
| 354 | BV->set(i); |
| 355 | BV->reserve(N); |
| 356 | switchToLarge(BV); |
| 357 | } |
| 358 | } else { |
| 359 | getPointer()->reserve(N); |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | // Set, reset, flip |
| 364 | SmallBitVector &set() { |
| 365 | if (isSmall()) |
| 366 | setSmallBits(~uintptr_t(0)); |
| 367 | else |
| 368 | getPointer()->set(); |
| 369 | return *this; |
| 370 | } |
| 371 | |
| 372 | SmallBitVector &set(unsigned Idx) { |
| 373 | if (isSmall()) { |
| 374 | assert(Idx <= static_cast<unsigned>( |
| 375 | std::numeric_limits<uintptr_t>::digits) && |
| 376 | "undefined behavior"); |
| 377 | setSmallBits(getSmallBits() | (uintptr_t(1) << Idx)); |
| 378 | } |
| 379 | else |
| 380 | getPointer()->set(Idx); |
| 381 | return *this; |
| 382 | } |
| 383 | |
| 384 | /// Efficiently set a range of bits in [I, E) |
| 385 | SmallBitVector &set(unsigned I, unsigned E) { |
| 386 | assert(I <= E && "Attempted to set backwards range!"); |
| 387 | assert(E <= size() && "Attempted to set out-of-bounds range!"); |
| 388 | if (I == E) return *this; |
| 389 | if (isSmall()) { |
| 390 | uintptr_t EMask = ((uintptr_t)1) << E; |
| 391 | uintptr_t IMask = ((uintptr_t)1) << I; |
| 392 | uintptr_t Mask = EMask - IMask; |
| 393 | setSmallBits(getSmallBits() | Mask); |
| 394 | } else |
| 395 | getPointer()->set(I, E); |
| 396 | return *this; |
| 397 | } |
| 398 | |
| 399 | SmallBitVector &reset() { |
| 400 | if (isSmall()) |
| 401 | setSmallBits(0); |
| 402 | else |
| 403 | getPointer()->reset(); |
| 404 | return *this; |
| 405 | } |
| 406 | |
| 407 | SmallBitVector &reset(unsigned Idx) { |
| 408 | if (isSmall()) |
| 409 | setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx)); |
| 410 | else |
| 411 | getPointer()->reset(Idx); |
| 412 | return *this; |
| 413 | } |
| 414 | |
| 415 | /// Efficiently reset a range of bits in [I, E) |
| 416 | SmallBitVector &reset(unsigned I, unsigned E) { |
| 417 | assert(I <= E && "Attempted to reset backwards range!"); |
| 418 | assert(E <= size() && "Attempted to reset out-of-bounds range!"); |
| 419 | if (I == E) return *this; |
| 420 | if (isSmall()) { |
| 421 | uintptr_t EMask = ((uintptr_t)1) << E; |
| 422 | uintptr_t IMask = ((uintptr_t)1) << I; |
| 423 | uintptr_t Mask = EMask - IMask; |
| 424 | setSmallBits(getSmallBits() & ~Mask); |
| 425 | } else |
| 426 | getPointer()->reset(I, E); |
| 427 | return *this; |
| 428 | } |
| 429 | |
| 430 | SmallBitVector &flip() { |
| 431 | if (isSmall()) |
| 432 | setSmallBits(~getSmallBits()); |
| 433 | else |
| 434 | getPointer()->flip(); |
| 435 | return *this; |
| 436 | } |
| 437 | |
| 438 | SmallBitVector &flip(unsigned Idx) { |
| 439 | if (isSmall()) |
| 440 | setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx)); |
| 441 | else |
| 442 | getPointer()->flip(Idx); |
| 443 | return *this; |
| 444 | } |
| 445 | |
| 446 | // No argument flip. |
| 447 | SmallBitVector operator~() const { |
| 448 | return SmallBitVector(*this).flip(); |
| 449 | } |
| 450 | |
| 451 | // Indexing. |
| 452 | reference operator[](unsigned Idx) { |
| 453 | assert(Idx < size() && "Out-of-bounds Bit access."); |
| 454 | return reference(*this, Idx); |
| 455 | } |
| 456 | |
| 457 | bool operator[](unsigned Idx) const { |
| 458 | assert(Idx < size() && "Out-of-bounds Bit access."); |
| 459 | if (isSmall()) |
| 460 | return ((getSmallBits() >> Idx) & 1) != 0; |
| 461 | return getPointer()->operator[](Idx); |
| 462 | } |
| 463 | |
| 464 | bool test(unsigned Idx) const { |
| 465 | return (*this)[Idx]; |
| 466 | } |
| 467 | |
| 468 | /// Test if any common bits are set. |
| 469 | bool anyCommon(const SmallBitVector &RHS) const { |
| 470 | if (isSmall() && RHS.isSmall()) |
| 471 | return (getSmallBits() & RHS.getSmallBits()) != 0; |
| 472 | if (!isSmall() && !RHS.isSmall()) |
| 473 | return getPointer()->anyCommon(*RHS.getPointer()); |
| 474 | |
| 475 | for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) |
| 476 | if (test(i) && RHS.test(i)) |
| 477 | return true; |
| 478 | return false; |
| 479 | } |
| 480 | |
| 481 | // Comparison operators. |
| 482 | bool operator==(const SmallBitVector &RHS) const { |
| 483 | if (size() != RHS.size()) |
| 484 | return false; |
| 485 | if (isSmall()) |
| 486 | return getSmallBits() == RHS.getSmallBits(); |
| 487 | else |
| 488 | return *getPointer() == *RHS.getPointer(); |
| 489 | } |
| 490 | |
| 491 | bool operator!=(const SmallBitVector &RHS) const { |
| 492 | return !(*this == RHS); |
| 493 | } |
| 494 | |
| 495 | // Intersection, union, disjoint union. |
| 496 | SmallBitVector &operator&=(const SmallBitVector &RHS) { |
| 497 | resize(std::max(size(), RHS.size())); |
| 498 | if (isSmall()) |
| 499 | setSmallBits(getSmallBits() & RHS.getSmallBits()); |
| 500 | else if (!RHS.isSmall()) |
| 501 | getPointer()->operator&=(*RHS.getPointer()); |
| 502 | else { |
| 503 | SmallBitVector Copy = RHS; |
| 504 | Copy.resize(size()); |
| 505 | getPointer()->operator&=(*Copy.getPointer()); |
| 506 | } |
| 507 | return *this; |
| 508 | } |
| 509 | |
| 510 | /// Reset bits that are set in RHS. Same as *this &= ~RHS. |
| 511 | SmallBitVector &reset(const SmallBitVector &RHS) { |
| 512 | if (isSmall() && RHS.isSmall()) |
| 513 | setSmallBits(getSmallBits() & ~RHS.getSmallBits()); |
| 514 | else if (!isSmall() && !RHS.isSmall()) |
| 515 | getPointer()->reset(*RHS.getPointer()); |
| 516 | else |
| 517 | for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i) |
| 518 | if (RHS.test(i)) |
| 519 | reset(i); |
| 520 | |
| 521 | return *this; |
| 522 | } |
| 523 | |
| 524 | /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any(). |
| 525 | bool test(const SmallBitVector &RHS) const { |
| 526 | if (isSmall() && RHS.isSmall()) |
| 527 | return (getSmallBits() & ~RHS.getSmallBits()) != 0; |
| 528 | if (!isSmall() && !RHS.isSmall()) |
| 529 | return getPointer()->test(*RHS.getPointer()); |
| 530 | |
| 531 | unsigned i, e; |
| 532 | for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i) |
| 533 | if (test(i) && !RHS.test(i)) |
| 534 | return true; |
| 535 | |
| 536 | for (e = size(); i != e; ++i) |
| 537 | if (test(i)) |
| 538 | return true; |
| 539 | |
| 540 | return false; |
| 541 | } |
| 542 | |
| 543 | SmallBitVector &operator|=(const SmallBitVector &RHS) { |
| 544 | resize(std::max(size(), RHS.size())); |
| 545 | if (isSmall()) |
| 546 | setSmallBits(getSmallBits() | RHS.getSmallBits()); |
| 547 | else if (!RHS.isSmall()) |
| 548 | getPointer()->operator|=(*RHS.getPointer()); |
| 549 | else { |
| 550 | SmallBitVector Copy = RHS; |
| 551 | Copy.resize(size()); |
| 552 | getPointer()->operator|=(*Copy.getPointer()); |
| 553 | } |
| 554 | return *this; |
| 555 | } |
| 556 | |
| 557 | SmallBitVector &operator^=(const SmallBitVector &RHS) { |
| 558 | resize(std::max(size(), RHS.size())); |
| 559 | if (isSmall()) |
| 560 | setSmallBits(getSmallBits() ^ RHS.getSmallBits()); |
| 561 | else if (!RHS.isSmall()) |
| 562 | getPointer()->operator^=(*RHS.getPointer()); |
| 563 | else { |
| 564 | SmallBitVector Copy = RHS; |
| 565 | Copy.resize(size()); |
| 566 | getPointer()->operator^=(*Copy.getPointer()); |
| 567 | } |
| 568 | return *this; |
| 569 | } |
| 570 | |
| 571 | SmallBitVector &operator<<=(unsigned N) { |
| 572 | if (isSmall()) |
| 573 | setSmallBits(getSmallBits() << N); |
| 574 | else |
| 575 | getPointer()->operator<<=(N); |
| 576 | return *this; |
| 577 | } |
| 578 | |
| 579 | SmallBitVector &operator>>=(unsigned N) { |
| 580 | if (isSmall()) |
| 581 | setSmallBits(getSmallBits() >> N); |
| 582 | else |
| 583 | getPointer()->operator>>=(N); |
| 584 | return *this; |
| 585 | } |
| 586 | |
| 587 | // Assignment operator. |
| 588 | const SmallBitVector &operator=(const SmallBitVector &RHS) { |
| 589 | if (isSmall()) { |
| 590 | if (RHS.isSmall()) |
| 591 | X = RHS.X; |
| 592 | else |
| 593 | switchToLarge(new BitVector(*RHS.getPointer())); |
| 594 | } else { |
| 595 | if (!RHS.isSmall()) |
| 596 | *getPointer() = *RHS.getPointer(); |
| 597 | else { |
| 598 | delete getPointer(); |
| 599 | X = RHS.X; |
| 600 | } |
| 601 | } |
| 602 | return *this; |
| 603 | } |
| 604 | |
| 605 | const SmallBitVector &operator=(SmallBitVector &&RHS) { |
| 606 | if (this != &RHS) { |
| 607 | clear(); |
| 608 | swap(RHS); |
| 609 | } |
| 610 | return *this; |
| 611 | } |
| 612 | |
| 613 | void swap(SmallBitVector &RHS) { |
| 614 | std::swap(X, RHS.X); |
| 615 | } |
| 616 | |
| 617 | /// Add '1' bits from Mask to this vector. Don't resize. |
| 618 | /// This computes "*this |= Mask". |
| 619 | void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 620 | if (isSmall()) |
| 621 | applyMask<true, false>(Mask, MaskWords); |
| 622 | else |
| 623 | getPointer()->setBitsInMask(Mask, MaskWords); |
| 624 | } |
| 625 | |
| 626 | /// Clear any bits in this vector that are set in Mask. Don't resize. |
| 627 | /// This computes "*this &= ~Mask". |
| 628 | void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 629 | if (isSmall()) |
| 630 | applyMask<false, false>(Mask, MaskWords); |
| 631 | else |
| 632 | getPointer()->clearBitsInMask(Mask, MaskWords); |
| 633 | } |
| 634 | |
| 635 | /// Add a bit to this vector for every '0' bit in Mask. Don't resize. |
| 636 | /// This computes "*this |= ~Mask". |
| 637 | void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 638 | if (isSmall()) |
| 639 | applyMask<true, true>(Mask, MaskWords); |
| 640 | else |
| 641 | getPointer()->setBitsNotInMask(Mask, MaskWords); |
| 642 | } |
| 643 | |
| 644 | /// Clear a bit in this vector for every '0' bit in Mask. Don't resize. |
| 645 | /// This computes "*this &= Mask". |
| 646 | void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 647 | if (isSmall()) |
| 648 | applyMask<false, true>(Mask, MaskWords); |
| 649 | else |
| 650 | getPointer()->clearBitsNotInMask(Mask, MaskWords); |
| 651 | } |
| 652 | |
| 653 | private: |
| 654 | template <bool AddBits, bool InvertMask> |
| 655 | void applyMask(const uint32_t *Mask, unsigned MaskWords) { |
| 656 | assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!"); |
| 657 | uintptr_t M = Mask[0]; |
| 658 | if (NumBaseBits == 64) |
| 659 | M |= uint64_t(Mask[1]) << 32; |
| 660 | if (InvertMask) |
| 661 | M = ~M; |
| 662 | if (AddBits) |
| 663 | setSmallBits(getSmallBits() | M); |
| 664 | else |
| 665 | setSmallBits(getSmallBits() & ~M); |
| 666 | } |
| 667 | }; |
| 668 | |
| 669 | inline SmallBitVector |
| 670 | operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) { |
| 671 | SmallBitVector Result(LHS); |
| 672 | Result &= RHS; |
| 673 | return Result; |
| 674 | } |
| 675 | |
| 676 | inline SmallBitVector |
| 677 | operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) { |
| 678 | SmallBitVector Result(LHS); |
| 679 | Result |= RHS; |
| 680 | return Result; |
| 681 | } |
| 682 | |
| 683 | inline SmallBitVector |
| 684 | operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) { |
| 685 | SmallBitVector Result(LHS); |
| 686 | Result ^= RHS; |
| 687 | return Result; |
| 688 | } |
| 689 | |
| 690 | } // end namespace llvm |
| 691 | |
| 692 | namespace std { |
| 693 | |
| 694 | /// Implement std::swap in terms of BitVector swap. |
| 695 | inline void |
| 696 | swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) { |
| 697 | LHS.swap(RHS); |
| 698 | } |
| 699 | |
| 700 | } // end namespace std |
| 701 | |
| 702 | #endif // LLVM_ADT_SMALLBITVECTOR_H |