Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame^] | 1 | //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains some templates that are useful if you are working with the |
| 11 | // STL at all. |
| 12 | // |
| 13 | // No library is required when using these functions. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | #ifndef LLVM_ADT_STLEXTRAS_H |
| 18 | #define LLVM_ADT_STLEXTRAS_H |
| 19 | |
| 20 | #include "llvm/ADT/Optional.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/iterator.h" |
| 23 | #include "llvm/ADT/iterator_range.h" |
| 24 | #include "llvm/Support/ErrorHandling.h" |
| 25 | #include <algorithm> |
| 26 | #include <cassert> |
| 27 | #include <cstddef> |
| 28 | #include <cstdint> |
| 29 | #include <cstdlib> |
| 30 | #include <functional> |
| 31 | #include <initializer_list> |
| 32 | #include <iterator> |
| 33 | #include <limits> |
| 34 | #include <memory> |
| 35 | #include <tuple> |
| 36 | #include <type_traits> |
| 37 | #include <utility> |
| 38 | |
| 39 | #ifdef EXPENSIVE_CHECKS |
| 40 | #include <random> // for std::mt19937 |
| 41 | #endif |
| 42 | |
| 43 | namespace llvm { |
| 44 | |
| 45 | // Only used by compiler if both template types are the same. Useful when |
| 46 | // using SFINAE to test for the existence of member functions. |
| 47 | template <typename T, T> struct SameType; |
| 48 | |
| 49 | namespace detail { |
| 50 | |
| 51 | template <typename RangeT> |
| 52 | using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); |
| 53 | |
| 54 | template <typename RangeT> |
| 55 | using ValueOfRange = typename std::remove_reference<decltype( |
| 56 | *std::begin(std::declval<RangeT &>()))>::type; |
| 57 | |
| 58 | } // end namespace detail |
| 59 | |
| 60 | //===----------------------------------------------------------------------===// |
| 61 | // Extra additions to <functional> |
| 62 | //===----------------------------------------------------------------------===// |
| 63 | |
| 64 | template <class Ty> struct identity { |
| 65 | using argument_type = Ty; |
| 66 | |
| 67 | Ty &operator()(Ty &self) const { |
| 68 | return self; |
| 69 | } |
| 70 | const Ty &operator()(const Ty &self) const { |
| 71 | return self; |
| 72 | } |
| 73 | }; |
| 74 | |
| 75 | template <class Ty> struct less_ptr { |
| 76 | bool operator()(const Ty* left, const Ty* right) const { |
| 77 | return *left < *right; |
| 78 | } |
| 79 | }; |
| 80 | |
| 81 | template <class Ty> struct greater_ptr { |
| 82 | bool operator()(const Ty* left, const Ty* right) const { |
| 83 | return *right < *left; |
| 84 | } |
| 85 | }; |
| 86 | |
| 87 | /// An efficient, type-erasing, non-owning reference to a callable. This is |
| 88 | /// intended for use as the type of a function parameter that is not used |
| 89 | /// after the function in question returns. |
| 90 | /// |
| 91 | /// This class does not own the callable, so it is not in general safe to store |
| 92 | /// a function_ref. |
| 93 | template<typename Fn> class function_ref; |
| 94 | |
| 95 | template<typename Ret, typename ...Params> |
| 96 | class function_ref<Ret(Params...)> { |
| 97 | Ret (*callback)(intptr_t callable, Params ...params) = nullptr; |
| 98 | intptr_t callable; |
| 99 | |
| 100 | template<typename Callable> |
| 101 | static Ret callback_fn(intptr_t callable, Params ...params) { |
| 102 | return (*reinterpret_cast<Callable*>(callable))( |
| 103 | std::forward<Params>(params)...); |
| 104 | } |
| 105 | |
| 106 | public: |
| 107 | function_ref() = default; |
| 108 | function_ref(std::nullptr_t) {} |
| 109 | |
| 110 | template <typename Callable> |
| 111 | function_ref(Callable &&callable, |
| 112 | typename std::enable_if< |
| 113 | !std::is_same<typename std::remove_reference<Callable>::type, |
| 114 | function_ref>::value>::type * = nullptr) |
| 115 | : callback(callback_fn<typename std::remove_reference<Callable>::type>), |
| 116 | callable(reinterpret_cast<intptr_t>(&callable)) {} |
| 117 | |
| 118 | Ret operator()(Params ...params) const { |
| 119 | return callback(callable, std::forward<Params>(params)...); |
| 120 | } |
| 121 | |
| 122 | operator bool() const { return callback; } |
| 123 | }; |
| 124 | |
| 125 | // deleter - Very very very simple method that is used to invoke operator |
| 126 | // delete on something. It is used like this: |
| 127 | // |
| 128 | // for_each(V.begin(), B.end(), deleter<Interval>); |
| 129 | template <class T> |
| 130 | inline void deleter(T *Ptr) { |
| 131 | delete Ptr; |
| 132 | } |
| 133 | |
| 134 | //===----------------------------------------------------------------------===// |
| 135 | // Extra additions to <iterator> |
| 136 | //===----------------------------------------------------------------------===// |
| 137 | |
| 138 | namespace adl_detail { |
| 139 | |
| 140 | using std::begin; |
| 141 | |
| 142 | template <typename ContainerTy> |
| 143 | auto adl_begin(ContainerTy &&container) |
| 144 | -> decltype(begin(std::forward<ContainerTy>(container))) { |
| 145 | return begin(std::forward<ContainerTy>(container)); |
| 146 | } |
| 147 | |
| 148 | using std::end; |
| 149 | |
| 150 | template <typename ContainerTy> |
| 151 | auto adl_end(ContainerTy &&container) |
| 152 | -> decltype(end(std::forward<ContainerTy>(container))) { |
| 153 | return end(std::forward<ContainerTy>(container)); |
| 154 | } |
| 155 | |
| 156 | using std::swap; |
| 157 | |
| 158 | template <typename T> |
| 159 | void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), |
| 160 | std::declval<T>()))) { |
| 161 | swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
| 162 | } |
| 163 | |
| 164 | } // end namespace adl_detail |
| 165 | |
| 166 | template <typename ContainerTy> |
| 167 | auto adl_begin(ContainerTy &&container) |
| 168 | -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) { |
| 169 | return adl_detail::adl_begin(std::forward<ContainerTy>(container)); |
| 170 | } |
| 171 | |
| 172 | template <typename ContainerTy> |
| 173 | auto adl_end(ContainerTy &&container) |
| 174 | -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) { |
| 175 | return adl_detail::adl_end(std::forward<ContainerTy>(container)); |
| 176 | } |
| 177 | |
| 178 | template <typename T> |
| 179 | void adl_swap(T &&lhs, T &&rhs) noexcept( |
| 180 | noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { |
| 181 | adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); |
| 182 | } |
| 183 | |
| 184 | // mapped_iterator - This is a simple iterator adapter that causes a function to |
| 185 | // be applied whenever operator* is invoked on the iterator. |
| 186 | |
| 187 | template <typename ItTy, typename FuncTy, |
| 188 | typename FuncReturnTy = |
| 189 | decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> |
| 190 | class mapped_iterator |
| 191 | : public iterator_adaptor_base< |
| 192 | mapped_iterator<ItTy, FuncTy>, ItTy, |
| 193 | typename std::iterator_traits<ItTy>::iterator_category, |
| 194 | typename std::remove_reference<FuncReturnTy>::type> { |
| 195 | public: |
| 196 | mapped_iterator(ItTy U, FuncTy F) |
| 197 | : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} |
| 198 | |
| 199 | ItTy getCurrent() { return this->I; } |
| 200 | |
| 201 | FuncReturnTy operator*() { return F(*this->I); } |
| 202 | |
| 203 | private: |
| 204 | FuncTy F; |
| 205 | }; |
| 206 | |
| 207 | // map_iterator - Provide a convenient way to create mapped_iterators, just like |
| 208 | // make_pair is useful for creating pairs... |
| 209 | template <class ItTy, class FuncTy> |
| 210 | inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { |
| 211 | return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); |
| 212 | } |
| 213 | |
| 214 | /// Helper to determine if type T has a member called rbegin(). |
| 215 | template <typename Ty> class has_rbegin_impl { |
| 216 | using yes = char[1]; |
| 217 | using no = char[2]; |
| 218 | |
| 219 | template <typename Inner> |
| 220 | static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); |
| 221 | |
| 222 | template <typename> |
| 223 | static no& test(...); |
| 224 | |
| 225 | public: |
| 226 | static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); |
| 227 | }; |
| 228 | |
| 229 | /// Metafunction to determine if T& or T has a member called rbegin(). |
| 230 | template <typename Ty> |
| 231 | struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { |
| 232 | }; |
| 233 | |
| 234 | // Returns an iterator_range over the given container which iterates in reverse. |
| 235 | // Note that the container must have rbegin()/rend() methods for this to work. |
| 236 | template <typename ContainerTy> |
| 237 | auto reverse(ContainerTy &&C, |
| 238 | typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = |
| 239 | nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { |
| 240 | return make_range(C.rbegin(), C.rend()); |
| 241 | } |
| 242 | |
| 243 | // Returns a std::reverse_iterator wrapped around the given iterator. |
| 244 | template <typename IteratorTy> |
| 245 | std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { |
| 246 | return std::reverse_iterator<IteratorTy>(It); |
| 247 | } |
| 248 | |
| 249 | // Returns an iterator_range over the given container which iterates in reverse. |
| 250 | // Note that the container must have begin()/end() methods which return |
| 251 | // bidirectional iterators for this to work. |
| 252 | template <typename ContainerTy> |
| 253 | auto reverse( |
| 254 | ContainerTy &&C, |
| 255 | typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr) |
| 256 | -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), |
| 257 | llvm::make_reverse_iterator(std::begin(C)))) { |
| 258 | return make_range(llvm::make_reverse_iterator(std::end(C)), |
| 259 | llvm::make_reverse_iterator(std::begin(C))); |
| 260 | } |
| 261 | |
| 262 | /// An iterator adaptor that filters the elements of given inner iterators. |
| 263 | /// |
| 264 | /// The predicate parameter should be a callable object that accepts the wrapped |
| 265 | /// iterator's reference type and returns a bool. When incrementing or |
| 266 | /// decrementing the iterator, it will call the predicate on each element and |
| 267 | /// skip any where it returns false. |
| 268 | /// |
| 269 | /// \code |
| 270 | /// int A[] = { 1, 2, 3, 4 }; |
| 271 | /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); |
| 272 | /// // R contains { 1, 3 }. |
| 273 | /// \endcode |
| 274 | template <typename WrappedIteratorT, typename PredicateT> |
| 275 | class filter_iterator |
| 276 | : public iterator_adaptor_base< |
| 277 | filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT, |
| 278 | typename std::common_type< |
| 279 | std::forward_iterator_tag, |
| 280 | typename std::iterator_traits< |
| 281 | WrappedIteratorT>::iterator_category>::type> { |
| 282 | using BaseT = iterator_adaptor_base< |
| 283 | filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT, |
| 284 | typename std::common_type< |
| 285 | std::forward_iterator_tag, |
| 286 | typename std::iterator_traits<WrappedIteratorT>::iterator_category>:: |
| 287 | type>; |
| 288 | |
| 289 | struct PayloadType { |
| 290 | WrappedIteratorT End; |
| 291 | PredicateT Pred; |
| 292 | }; |
| 293 | |
| 294 | Optional<PayloadType> Payload; |
| 295 | |
| 296 | void findNextValid() { |
| 297 | assert(Payload && "Payload should be engaged when findNextValid is called"); |
| 298 | while (this->I != Payload->End && !Payload->Pred(*this->I)) |
| 299 | BaseT::operator++(); |
| 300 | } |
| 301 | |
| 302 | // Construct the begin iterator. The begin iterator requires to know where end |
| 303 | // is, so that it can properly stop when it hits end. |
| 304 | filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred) |
| 305 | : BaseT(std::move(Begin)), |
| 306 | Payload(PayloadType{std::move(End), std::move(Pred)}) { |
| 307 | findNextValid(); |
| 308 | } |
| 309 | |
| 310 | // Construct the end iterator. It's not incrementable, so Payload doesn't |
| 311 | // have to be engaged. |
| 312 | filter_iterator(WrappedIteratorT End) : BaseT(End) {} |
| 313 | |
| 314 | public: |
| 315 | using BaseT::operator++; |
| 316 | |
| 317 | filter_iterator &operator++() { |
| 318 | BaseT::operator++(); |
| 319 | findNextValid(); |
| 320 | return *this; |
| 321 | } |
| 322 | |
| 323 | template <typename RT, typename PT> |
| 324 | friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>> |
| 325 | make_filter_range(RT &&, PT); |
| 326 | }; |
| 327 | |
| 328 | /// Convenience function that takes a range of elements and a predicate, |
| 329 | /// and return a new filter_iterator range. |
| 330 | /// |
| 331 | /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the |
| 332 | /// lifetime of that temporary is not kept by the returned range object, and the |
| 333 | /// temporary is going to be dropped on the floor after the make_iterator_range |
| 334 | /// full expression that contains this function call. |
| 335 | template <typename RangeT, typename PredicateT> |
| 336 | iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> |
| 337 | make_filter_range(RangeT &&Range, PredicateT Pred) { |
| 338 | using FilterIteratorT = |
| 339 | filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; |
| 340 | return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)), |
| 341 | std::end(std::forward<RangeT>(Range)), |
| 342 | std::move(Pred)), |
| 343 | FilterIteratorT(std::end(std::forward<RangeT>(Range)))); |
| 344 | } |
| 345 | |
| 346 | // forward declarations required by zip_shortest/zip_first |
| 347 | template <typename R, typename UnaryPredicate> |
| 348 | bool all_of(R &&range, UnaryPredicate P); |
| 349 | |
| 350 | template <size_t... I> struct index_sequence; |
| 351 | |
| 352 | template <class... Ts> struct index_sequence_for; |
| 353 | |
| 354 | namespace detail { |
| 355 | |
| 356 | using std::declval; |
| 357 | |
| 358 | // We have to alias this since inlining the actual type at the usage site |
| 359 | // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. |
| 360 | template<typename... Iters> struct ZipTupleType { |
| 361 | using type = std::tuple<decltype(*declval<Iters>())...>; |
| 362 | }; |
| 363 | |
| 364 | template <typename ZipType, typename... Iters> |
| 365 | using zip_traits = iterator_facade_base< |
| 366 | ZipType, typename std::common_type<std::bidirectional_iterator_tag, |
| 367 | typename std::iterator_traits< |
| 368 | Iters>::iterator_category...>::type, |
| 369 | // ^ TODO: Implement random access methods. |
| 370 | typename ZipTupleType<Iters...>::type, |
| 371 | typename std::iterator_traits<typename std::tuple_element< |
| 372 | 0, std::tuple<Iters...>>::type>::difference_type, |
| 373 | // ^ FIXME: This follows boost::make_zip_iterator's assumption that all |
| 374 | // inner iterators have the same difference_type. It would fail if, for |
| 375 | // instance, the second field's difference_type were non-numeric while the |
| 376 | // first is. |
| 377 | typename ZipTupleType<Iters...>::type *, |
| 378 | typename ZipTupleType<Iters...>::type>; |
| 379 | |
| 380 | template <typename ZipType, typename... Iters> |
| 381 | struct zip_common : public zip_traits<ZipType, Iters...> { |
| 382 | using Base = zip_traits<ZipType, Iters...>; |
| 383 | using value_type = typename Base::value_type; |
| 384 | |
| 385 | std::tuple<Iters...> iterators; |
| 386 | |
| 387 | protected: |
| 388 | template <size_t... Ns> value_type deref(index_sequence<Ns...>) const { |
| 389 | return value_type(*std::get<Ns>(iterators)...); |
| 390 | } |
| 391 | |
| 392 | template <size_t... Ns> |
| 393 | decltype(iterators) tup_inc(index_sequence<Ns...>) const { |
| 394 | return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); |
| 395 | } |
| 396 | |
| 397 | template <size_t... Ns> |
| 398 | decltype(iterators) tup_dec(index_sequence<Ns...>) const { |
| 399 | return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); |
| 400 | } |
| 401 | |
| 402 | public: |
| 403 | zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} |
| 404 | |
| 405 | value_type operator*() { return deref(index_sequence_for<Iters...>{}); } |
| 406 | |
| 407 | const value_type operator*() const { |
| 408 | return deref(index_sequence_for<Iters...>{}); |
| 409 | } |
| 410 | |
| 411 | ZipType &operator++() { |
| 412 | iterators = tup_inc(index_sequence_for<Iters...>{}); |
| 413 | return *reinterpret_cast<ZipType *>(this); |
| 414 | } |
| 415 | |
| 416 | ZipType &operator--() { |
| 417 | static_assert(Base::IsBidirectional, |
| 418 | "All inner iterators must be at least bidirectional."); |
| 419 | iterators = tup_dec(index_sequence_for<Iters...>{}); |
| 420 | return *reinterpret_cast<ZipType *>(this); |
| 421 | } |
| 422 | }; |
| 423 | |
| 424 | template <typename... Iters> |
| 425 | struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { |
| 426 | using Base = zip_common<zip_first<Iters...>, Iters...>; |
| 427 | |
| 428 | bool operator==(const zip_first<Iters...> &other) const { |
| 429 | return std::get<0>(this->iterators) == std::get<0>(other.iterators); |
| 430 | } |
| 431 | |
| 432 | zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
| 433 | }; |
| 434 | |
| 435 | template <typename... Iters> |
| 436 | class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { |
| 437 | template <size_t... Ns> |
| 438 | bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const { |
| 439 | return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != |
| 440 | std::get<Ns>(other.iterators)...}, |
| 441 | identity<bool>{}); |
| 442 | } |
| 443 | |
| 444 | public: |
| 445 | using Base = zip_common<zip_shortest<Iters...>, Iters...>; |
| 446 | |
| 447 | zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} |
| 448 | |
| 449 | bool operator==(const zip_shortest<Iters...> &other) const { |
| 450 | return !test(other, index_sequence_for<Iters...>{}); |
| 451 | } |
| 452 | }; |
| 453 | |
| 454 | template <template <typename...> class ItType, typename... Args> class zippy { |
| 455 | public: |
| 456 | using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; |
| 457 | using iterator_category = typename iterator::iterator_category; |
| 458 | using value_type = typename iterator::value_type; |
| 459 | using difference_type = typename iterator::difference_type; |
| 460 | using pointer = typename iterator::pointer; |
| 461 | using reference = typename iterator::reference; |
| 462 | |
| 463 | private: |
| 464 | std::tuple<Args...> ts; |
| 465 | |
| 466 | template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const { |
| 467 | return iterator(std::begin(std::get<Ns>(ts))...); |
| 468 | } |
| 469 | template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const { |
| 470 | return iterator(std::end(std::get<Ns>(ts))...); |
| 471 | } |
| 472 | |
| 473 | public: |
| 474 | zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} |
| 475 | |
| 476 | iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); } |
| 477 | iterator end() const { return end_impl(index_sequence_for<Args...>{}); } |
| 478 | }; |
| 479 | |
| 480 | } // end namespace detail |
| 481 | |
| 482 | /// zip iterator for two or more iteratable types. |
| 483 | template <typename T, typename U, typename... Args> |
| 484 | detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, |
| 485 | Args &&... args) { |
| 486 | return detail::zippy<detail::zip_shortest, T, U, Args...>( |
| 487 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 488 | } |
| 489 | |
| 490 | /// zip iterator that, for the sake of efficiency, assumes the first iteratee to |
| 491 | /// be the shortest. |
| 492 | template <typename T, typename U, typename... Args> |
| 493 | detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, |
| 494 | Args &&... args) { |
| 495 | return detail::zippy<detail::zip_first, T, U, Args...>( |
| 496 | std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); |
| 497 | } |
| 498 | |
| 499 | /// Iterator wrapper that concatenates sequences together. |
| 500 | /// |
| 501 | /// This can concatenate different iterators, even with different types, into |
| 502 | /// a single iterator provided the value types of all the concatenated |
| 503 | /// iterators expose `reference` and `pointer` types that can be converted to |
| 504 | /// `ValueT &` and `ValueT *` respectively. It doesn't support more |
| 505 | /// interesting/customized pointer or reference types. |
| 506 | /// |
| 507 | /// Currently this only supports forward or higher iterator categories as |
| 508 | /// inputs and always exposes a forward iterator interface. |
| 509 | template <typename ValueT, typename... IterTs> |
| 510 | class concat_iterator |
| 511 | : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, |
| 512 | std::forward_iterator_tag, ValueT> { |
| 513 | using BaseT = typename concat_iterator::iterator_facade_base; |
| 514 | |
| 515 | /// We store both the current and end iterators for each concatenated |
| 516 | /// sequence in a tuple of pairs. |
| 517 | /// |
| 518 | /// Note that something like iterator_range seems nice at first here, but the |
| 519 | /// range properties are of little benefit and end up getting in the way |
| 520 | /// because we need to do mutation on the current iterators. |
| 521 | std::tuple<std::pair<IterTs, IterTs>...> IterPairs; |
| 522 | |
| 523 | /// Attempts to increment a specific iterator. |
| 524 | /// |
| 525 | /// Returns true if it was able to increment the iterator. Returns false if |
| 526 | /// the iterator is already at the end iterator. |
| 527 | template <size_t Index> bool incrementHelper() { |
| 528 | auto &IterPair = std::get<Index>(IterPairs); |
| 529 | if (IterPair.first == IterPair.second) |
| 530 | return false; |
| 531 | |
| 532 | ++IterPair.first; |
| 533 | return true; |
| 534 | } |
| 535 | |
| 536 | /// Increments the first non-end iterator. |
| 537 | /// |
| 538 | /// It is an error to call this with all iterators at the end. |
| 539 | template <size_t... Ns> void increment(index_sequence<Ns...>) { |
| 540 | // Build a sequence of functions to increment each iterator if possible. |
| 541 | bool (concat_iterator::*IncrementHelperFns[])() = { |
| 542 | &concat_iterator::incrementHelper<Ns>...}; |
| 543 | |
| 544 | // Loop over them, and stop as soon as we succeed at incrementing one. |
| 545 | for (auto &IncrementHelperFn : IncrementHelperFns) |
| 546 | if ((this->*IncrementHelperFn)()) |
| 547 | return; |
| 548 | |
| 549 | llvm_unreachable("Attempted to increment an end concat iterator!"); |
| 550 | } |
| 551 | |
| 552 | /// Returns null if the specified iterator is at the end. Otherwise, |
| 553 | /// dereferences the iterator and returns the address of the resulting |
| 554 | /// reference. |
| 555 | template <size_t Index> ValueT *getHelper() const { |
| 556 | auto &IterPair = std::get<Index>(IterPairs); |
| 557 | if (IterPair.first == IterPair.second) |
| 558 | return nullptr; |
| 559 | |
| 560 | return &*IterPair.first; |
| 561 | } |
| 562 | |
| 563 | /// Finds the first non-end iterator, dereferences, and returns the resulting |
| 564 | /// reference. |
| 565 | /// |
| 566 | /// It is an error to call this with all iterators at the end. |
| 567 | template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const { |
| 568 | // Build a sequence of functions to get from iterator if possible. |
| 569 | ValueT *(concat_iterator::*GetHelperFns[])() const = { |
| 570 | &concat_iterator::getHelper<Ns>...}; |
| 571 | |
| 572 | // Loop over them, and return the first result we find. |
| 573 | for (auto &GetHelperFn : GetHelperFns) |
| 574 | if (ValueT *P = (this->*GetHelperFn)()) |
| 575 | return *P; |
| 576 | |
| 577 | llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); |
| 578 | } |
| 579 | |
| 580 | public: |
| 581 | /// Constructs an iterator from a squence of ranges. |
| 582 | /// |
| 583 | /// We need the full range to know how to switch between each of the |
| 584 | /// iterators. |
| 585 | template <typename... RangeTs> |
| 586 | explicit concat_iterator(RangeTs &&... Ranges) |
| 587 | : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {} |
| 588 | |
| 589 | using BaseT::operator++; |
| 590 | |
| 591 | concat_iterator &operator++() { |
| 592 | increment(index_sequence_for<IterTs...>()); |
| 593 | return *this; |
| 594 | } |
| 595 | |
| 596 | ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); } |
| 597 | |
| 598 | bool operator==(const concat_iterator &RHS) const { |
| 599 | return IterPairs == RHS.IterPairs; |
| 600 | } |
| 601 | }; |
| 602 | |
| 603 | namespace detail { |
| 604 | |
| 605 | /// Helper to store a sequence of ranges being concatenated and access them. |
| 606 | /// |
| 607 | /// This is designed to facilitate providing actual storage when temporaries |
| 608 | /// are passed into the constructor such that we can use it as part of range |
| 609 | /// based for loops. |
| 610 | template <typename ValueT, typename... RangeTs> class concat_range { |
| 611 | public: |
| 612 | using iterator = |
| 613 | concat_iterator<ValueT, |
| 614 | decltype(std::begin(std::declval<RangeTs &>()))...>; |
| 615 | |
| 616 | private: |
| 617 | std::tuple<RangeTs...> Ranges; |
| 618 | |
| 619 | template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) { |
| 620 | return iterator(std::get<Ns>(Ranges)...); |
| 621 | } |
| 622 | template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) { |
| 623 | return iterator(make_range(std::end(std::get<Ns>(Ranges)), |
| 624 | std::end(std::get<Ns>(Ranges)))...); |
| 625 | } |
| 626 | |
| 627 | public: |
| 628 | concat_range(RangeTs &&... Ranges) |
| 629 | : Ranges(std::forward<RangeTs>(Ranges)...) {} |
| 630 | |
| 631 | iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); } |
| 632 | iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); } |
| 633 | }; |
| 634 | |
| 635 | } // end namespace detail |
| 636 | |
| 637 | /// Concatenated range across two or more ranges. |
| 638 | /// |
| 639 | /// The desired value type must be explicitly specified. |
| 640 | template <typename ValueT, typename... RangeTs> |
| 641 | detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { |
| 642 | static_assert(sizeof...(RangeTs) > 1, |
| 643 | "Need more than one range to concatenate!"); |
| 644 | return detail::concat_range<ValueT, RangeTs...>( |
| 645 | std::forward<RangeTs>(Ranges)...); |
| 646 | } |
| 647 | |
| 648 | //===----------------------------------------------------------------------===// |
| 649 | // Extra additions to <utility> |
| 650 | //===----------------------------------------------------------------------===// |
| 651 | |
| 652 | /// \brief Function object to check whether the first component of a std::pair |
| 653 | /// compares less than the first component of another std::pair. |
| 654 | struct less_first { |
| 655 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
| 656 | return lhs.first < rhs.first; |
| 657 | } |
| 658 | }; |
| 659 | |
| 660 | /// \brief Function object to check whether the second component of a std::pair |
| 661 | /// compares less than the second component of another std::pair. |
| 662 | struct less_second { |
| 663 | template <typename T> bool operator()(const T &lhs, const T &rhs) const { |
| 664 | return lhs.second < rhs.second; |
| 665 | } |
| 666 | }; |
| 667 | |
| 668 | // A subset of N3658. More stuff can be added as-needed. |
| 669 | |
| 670 | /// \brief Represents a compile-time sequence of integers. |
| 671 | template <class T, T... I> struct integer_sequence { |
| 672 | using value_type = T; |
| 673 | |
| 674 | static constexpr size_t size() { return sizeof...(I); } |
| 675 | }; |
| 676 | |
| 677 | /// \brief Alias for the common case of a sequence of size_ts. |
| 678 | template <size_t... I> |
| 679 | struct index_sequence : integer_sequence<std::size_t, I...> {}; |
| 680 | |
| 681 | template <std::size_t N, std::size_t... I> |
| 682 | struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {}; |
| 683 | template <std::size_t... I> |
| 684 | struct build_index_impl<0, I...> : index_sequence<I...> {}; |
| 685 | |
| 686 | /// \brief Creates a compile-time integer sequence for a parameter pack. |
| 687 | template <class... Ts> |
| 688 | struct index_sequence_for : build_index_impl<sizeof...(Ts)> {}; |
| 689 | |
| 690 | /// Utility type to build an inheritance chain that makes it easy to rank |
| 691 | /// overload candidates. |
| 692 | template <int N> struct rank : rank<N - 1> {}; |
| 693 | template <> struct rank<0> {}; |
| 694 | |
| 695 | /// \brief traits class for checking whether type T is one of any of the given |
| 696 | /// types in the variadic list. |
| 697 | template <typename T, typename... Ts> struct is_one_of { |
| 698 | static const bool value = false; |
| 699 | }; |
| 700 | |
| 701 | template <typename T, typename U, typename... Ts> |
| 702 | struct is_one_of<T, U, Ts...> { |
| 703 | static const bool value = |
| 704 | std::is_same<T, U>::value || is_one_of<T, Ts...>::value; |
| 705 | }; |
| 706 | |
| 707 | /// \brief traits class for checking whether type T is a base class for all |
| 708 | /// the given types in the variadic list. |
| 709 | template <typename T, typename... Ts> struct are_base_of { |
| 710 | static const bool value = true; |
| 711 | }; |
| 712 | |
| 713 | template <typename T, typename U, typename... Ts> |
| 714 | struct are_base_of<T, U, Ts...> { |
| 715 | static const bool value = |
| 716 | std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value; |
| 717 | }; |
| 718 | |
| 719 | //===----------------------------------------------------------------------===// |
| 720 | // Extra additions for arrays |
| 721 | //===----------------------------------------------------------------------===// |
| 722 | |
| 723 | /// Find the length of an array. |
| 724 | template <class T, std::size_t N> |
| 725 | constexpr inline size_t array_lengthof(T (&)[N]) { |
| 726 | return N; |
| 727 | } |
| 728 | |
| 729 | /// Adapt std::less<T> for array_pod_sort. |
| 730 | template<typename T> |
| 731 | inline int array_pod_sort_comparator(const void *P1, const void *P2) { |
| 732 | if (std::less<T>()(*reinterpret_cast<const T*>(P1), |
| 733 | *reinterpret_cast<const T*>(P2))) |
| 734 | return -1; |
| 735 | if (std::less<T>()(*reinterpret_cast<const T*>(P2), |
| 736 | *reinterpret_cast<const T*>(P1))) |
| 737 | return 1; |
| 738 | return 0; |
| 739 | } |
| 740 | |
| 741 | /// get_array_pod_sort_comparator - This is an internal helper function used to |
| 742 | /// get type deduction of T right. |
| 743 | template<typename T> |
| 744 | inline int (*get_array_pod_sort_comparator(const T &)) |
| 745 | (const void*, const void*) { |
| 746 | return array_pod_sort_comparator<T>; |
| 747 | } |
| 748 | |
| 749 | /// array_pod_sort - This sorts an array with the specified start and end |
| 750 | /// extent. This is just like std::sort, except that it calls qsort instead of |
| 751 | /// using an inlined template. qsort is slightly slower than std::sort, but |
| 752 | /// most sorts are not performance critical in LLVM and std::sort has to be |
| 753 | /// template instantiated for each type, leading to significant measured code |
| 754 | /// bloat. This function should generally be used instead of std::sort where |
| 755 | /// possible. |
| 756 | /// |
| 757 | /// This function assumes that you have simple POD-like types that can be |
| 758 | /// compared with std::less and can be moved with memcpy. If this isn't true, |
| 759 | /// you should use std::sort. |
| 760 | /// |
| 761 | /// NOTE: If qsort_r were portable, we could allow a custom comparator and |
| 762 | /// default to std::less. |
| 763 | template<class IteratorTy> |
| 764 | inline void array_pod_sort(IteratorTy Start, IteratorTy End) { |
| 765 | // Don't inefficiently call qsort with one element or trigger undefined |
| 766 | // behavior with an empty sequence. |
| 767 | auto NElts = End - Start; |
| 768 | if (NElts <= 1) return; |
| 769 | #ifdef EXPENSIVE_CHECKS |
| 770 | std::mt19937 Generator(std::random_device{}()); |
| 771 | std::shuffle(Start, End, Generator); |
| 772 | #endif |
| 773 | qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); |
| 774 | } |
| 775 | |
| 776 | template <class IteratorTy> |
| 777 | inline void array_pod_sort( |
| 778 | IteratorTy Start, IteratorTy End, |
| 779 | int (*Compare)( |
| 780 | const typename std::iterator_traits<IteratorTy>::value_type *, |
| 781 | const typename std::iterator_traits<IteratorTy>::value_type *)) { |
| 782 | // Don't inefficiently call qsort with one element or trigger undefined |
| 783 | // behavior with an empty sequence. |
| 784 | auto NElts = End - Start; |
| 785 | if (NElts <= 1) return; |
| 786 | #ifdef EXPENSIVE_CHECKS |
| 787 | std::mt19937 Generator(std::random_device{}()); |
| 788 | std::shuffle(Start, End, Generator); |
| 789 | #endif |
| 790 | qsort(&*Start, NElts, sizeof(*Start), |
| 791 | reinterpret_cast<int (*)(const void *, const void *)>(Compare)); |
| 792 | } |
| 793 | |
| 794 | // Provide wrappers to std::sort which shuffle the elements before sorting |
| 795 | // to help uncover non-deterministic behavior (PR35135). |
| 796 | template <typename IteratorTy> |
| 797 | inline void sort(IteratorTy Start, IteratorTy End) { |
| 798 | #ifdef EXPENSIVE_CHECKS |
| 799 | std::mt19937 Generator(std::random_device{}()); |
| 800 | std::shuffle(Start, End, Generator); |
| 801 | #endif |
| 802 | std::sort(Start, End); |
| 803 | } |
| 804 | |
| 805 | template <typename IteratorTy, typename Compare> |
| 806 | inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { |
| 807 | #ifdef EXPENSIVE_CHECKS |
| 808 | std::mt19937 Generator(std::random_device{}()); |
| 809 | std::shuffle(Start, End, Generator); |
| 810 | #endif |
| 811 | std::sort(Start, End, Comp); |
| 812 | } |
| 813 | |
| 814 | //===----------------------------------------------------------------------===// |
| 815 | // Extra additions to <algorithm> |
| 816 | //===----------------------------------------------------------------------===// |
| 817 | |
| 818 | /// For a container of pointers, deletes the pointers and then clears the |
| 819 | /// container. |
| 820 | template<typename Container> |
| 821 | void DeleteContainerPointers(Container &C) { |
| 822 | for (auto V : C) |
| 823 | delete V; |
| 824 | C.clear(); |
| 825 | } |
| 826 | |
| 827 | /// In a container of pairs (usually a map) whose second element is a pointer, |
| 828 | /// deletes the second elements and then clears the container. |
| 829 | template<typename Container> |
| 830 | void DeleteContainerSeconds(Container &C) { |
| 831 | for (auto &V : C) |
| 832 | delete V.second; |
| 833 | C.clear(); |
| 834 | } |
| 835 | |
| 836 | /// Provide wrappers to std::for_each which take ranges instead of having to |
| 837 | /// pass begin/end explicitly. |
| 838 | template <typename R, typename UnaryPredicate> |
| 839 | UnaryPredicate for_each(R &&Range, UnaryPredicate P) { |
| 840 | return std::for_each(adl_begin(Range), adl_end(Range), P); |
| 841 | } |
| 842 | |
| 843 | /// Provide wrappers to std::all_of which take ranges instead of having to pass |
| 844 | /// begin/end explicitly. |
| 845 | template <typename R, typename UnaryPredicate> |
| 846 | bool all_of(R &&Range, UnaryPredicate P) { |
| 847 | return std::all_of(adl_begin(Range), adl_end(Range), P); |
| 848 | } |
| 849 | |
| 850 | /// Provide wrappers to std::any_of which take ranges instead of having to pass |
| 851 | /// begin/end explicitly. |
| 852 | template <typename R, typename UnaryPredicate> |
| 853 | bool any_of(R &&Range, UnaryPredicate P) { |
| 854 | return std::any_of(adl_begin(Range), adl_end(Range), P); |
| 855 | } |
| 856 | |
| 857 | /// Provide wrappers to std::none_of which take ranges instead of having to pass |
| 858 | /// begin/end explicitly. |
| 859 | template <typename R, typename UnaryPredicate> |
| 860 | bool none_of(R &&Range, UnaryPredicate P) { |
| 861 | return std::none_of(adl_begin(Range), adl_end(Range), P); |
| 862 | } |
| 863 | |
| 864 | /// Provide wrappers to std::find which take ranges instead of having to pass |
| 865 | /// begin/end explicitly. |
| 866 | template <typename R, typename T> |
| 867 | auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) { |
| 868 | return std::find(adl_begin(Range), adl_end(Range), Val); |
| 869 | } |
| 870 | |
| 871 | /// Provide wrappers to std::find_if which take ranges instead of having to pass |
| 872 | /// begin/end explicitly. |
| 873 | template <typename R, typename UnaryPredicate> |
| 874 | auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
| 875 | return std::find_if(adl_begin(Range), adl_end(Range), P); |
| 876 | } |
| 877 | |
| 878 | template <typename R, typename UnaryPredicate> |
| 879 | auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
| 880 | return std::find_if_not(adl_begin(Range), adl_end(Range), P); |
| 881 | } |
| 882 | |
| 883 | /// Provide wrappers to std::remove_if which take ranges instead of having to |
| 884 | /// pass begin/end explicitly. |
| 885 | template <typename R, typename UnaryPredicate> |
| 886 | auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
| 887 | return std::remove_if(adl_begin(Range), adl_end(Range), P); |
| 888 | } |
| 889 | |
| 890 | /// Provide wrappers to std::copy_if which take ranges instead of having to |
| 891 | /// pass begin/end explicitly. |
| 892 | template <typename R, typename OutputIt, typename UnaryPredicate> |
| 893 | OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { |
| 894 | return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); |
| 895 | } |
| 896 | |
| 897 | template <typename R, typename OutputIt> |
| 898 | OutputIt copy(R &&Range, OutputIt Out) { |
| 899 | return std::copy(adl_begin(Range), adl_end(Range), Out); |
| 900 | } |
| 901 | |
| 902 | /// Wrapper function around std::find to detect if an element exists |
| 903 | /// in a container. |
| 904 | template <typename R, typename E> |
| 905 | bool is_contained(R &&Range, const E &Element) { |
| 906 | return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); |
| 907 | } |
| 908 | |
| 909 | /// Wrapper function around std::count to count the number of times an element |
| 910 | /// \p Element occurs in the given range \p Range. |
| 911 | template <typename R, typename E> |
| 912 | auto count(R &&Range, const E &Element) -> |
| 913 | typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { |
| 914 | return std::count(adl_begin(Range), adl_end(Range), Element); |
| 915 | } |
| 916 | |
| 917 | /// Wrapper function around std::count_if to count the number of times an |
| 918 | /// element satisfying a given predicate occurs in a range. |
| 919 | template <typename R, typename UnaryPredicate> |
| 920 | auto count_if(R &&Range, UnaryPredicate P) -> |
| 921 | typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { |
| 922 | return std::count_if(adl_begin(Range), adl_end(Range), P); |
| 923 | } |
| 924 | |
| 925 | /// Wrapper function around std::transform to apply a function to a range and |
| 926 | /// store the result elsewhere. |
| 927 | template <typename R, typename OutputIt, typename UnaryPredicate> |
| 928 | OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) { |
| 929 | return std::transform(adl_begin(Range), adl_end(Range), d_first, P); |
| 930 | } |
| 931 | |
| 932 | /// Provide wrappers to std::partition which take ranges instead of having to |
| 933 | /// pass begin/end explicitly. |
| 934 | template <typename R, typename UnaryPredicate> |
| 935 | auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { |
| 936 | return std::partition(adl_begin(Range), adl_end(Range), P); |
| 937 | } |
| 938 | |
| 939 | /// Provide wrappers to std::lower_bound which take ranges instead of having to |
| 940 | /// pass begin/end explicitly. |
| 941 | template <typename R, typename ForwardIt> |
| 942 | auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) { |
| 943 | return std::lower_bound(adl_begin(Range), adl_end(Range), I); |
| 944 | } |
| 945 | |
| 946 | /// \brief Given a range of type R, iterate the entire range and return a |
| 947 | /// SmallVector with elements of the vector. This is useful, for example, |
| 948 | /// when you want to iterate a range and then sort the results. |
| 949 | template <unsigned Size, typename R> |
| 950 | SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size> |
| 951 | to_vector(R &&Range) { |
| 952 | return {adl_begin(Range), adl_end(Range)}; |
| 953 | } |
| 954 | |
| 955 | /// Provide a container algorithm similar to C++ Library Fundamentals v2's |
| 956 | /// `erase_if` which is equivalent to: |
| 957 | /// |
| 958 | /// C.erase(remove_if(C, pred), C.end()); |
| 959 | /// |
| 960 | /// This version works for any container with an erase method call accepting |
| 961 | /// two iterators. |
| 962 | template <typename Container, typename UnaryPredicate> |
| 963 | void erase_if(Container &C, UnaryPredicate P) { |
| 964 | C.erase(remove_if(C, P), C.end()); |
| 965 | } |
| 966 | |
| 967 | //===----------------------------------------------------------------------===// |
| 968 | // Extra additions to <memory> |
| 969 | //===----------------------------------------------------------------------===// |
| 970 | |
| 971 | // Implement make_unique according to N3656. |
| 972 | |
| 973 | /// \brief Constructs a `new T()` with the given args and returns a |
| 974 | /// `unique_ptr<T>` which owns the object. |
| 975 | /// |
| 976 | /// Example: |
| 977 | /// |
| 978 | /// auto p = make_unique<int>(); |
| 979 | /// auto p = make_unique<std::tuple<int, int>>(0, 1); |
| 980 | template <class T, class... Args> |
| 981 | typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type |
| 982 | make_unique(Args &&... args) { |
| 983 | return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); |
| 984 | } |
| 985 | |
| 986 | /// \brief Constructs a `new T[n]` with the given args and returns a |
| 987 | /// `unique_ptr<T[]>` which owns the object. |
| 988 | /// |
| 989 | /// \param n size of the new array. |
| 990 | /// |
| 991 | /// Example: |
| 992 | /// |
| 993 | /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's. |
| 994 | template <class T> |
| 995 | typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0, |
| 996 | std::unique_ptr<T>>::type |
| 997 | make_unique(size_t n) { |
| 998 | return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]()); |
| 999 | } |
| 1000 | |
| 1001 | /// This function isn't used and is only here to provide better compile errors. |
| 1002 | template <class T, class... Args> |
| 1003 | typename std::enable_if<std::extent<T>::value != 0>::type |
| 1004 | make_unique(Args &&...) = delete; |
| 1005 | |
| 1006 | struct FreeDeleter { |
| 1007 | void operator()(void* v) { |
| 1008 | ::free(v); |
| 1009 | } |
| 1010 | }; |
| 1011 | |
| 1012 | template<typename First, typename Second> |
| 1013 | struct pair_hash { |
| 1014 | size_t operator()(const std::pair<First, Second> &P) const { |
| 1015 | return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); |
| 1016 | } |
| 1017 | }; |
| 1018 | |
| 1019 | /// A functor like C++14's std::less<void> in its absence. |
| 1020 | struct less { |
| 1021 | template <typename A, typename B> bool operator()(A &&a, B &&b) const { |
| 1022 | return std::forward<A>(a) < std::forward<B>(b); |
| 1023 | } |
| 1024 | }; |
| 1025 | |
| 1026 | /// A functor like C++14's std::equal<void> in its absence. |
| 1027 | struct equal { |
| 1028 | template <typename A, typename B> bool operator()(A &&a, B &&b) const { |
| 1029 | return std::forward<A>(a) == std::forward<B>(b); |
| 1030 | } |
| 1031 | }; |
| 1032 | |
| 1033 | /// Binary functor that adapts to any other binary functor after dereferencing |
| 1034 | /// operands. |
| 1035 | template <typename T> struct deref { |
| 1036 | T func; |
| 1037 | |
| 1038 | // Could be further improved to cope with non-derivable functors and |
| 1039 | // non-binary functors (should be a variadic template member function |
| 1040 | // operator()). |
| 1041 | template <typename A, typename B> |
| 1042 | auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { |
| 1043 | assert(lhs); |
| 1044 | assert(rhs); |
| 1045 | return func(*lhs, *rhs); |
| 1046 | } |
| 1047 | }; |
| 1048 | |
| 1049 | namespace detail { |
| 1050 | |
| 1051 | template <typename R> class enumerator_iter; |
| 1052 | |
| 1053 | template <typename R> struct result_pair { |
| 1054 | friend class enumerator_iter<R>; |
| 1055 | |
| 1056 | result_pair() = default; |
| 1057 | result_pair(std::size_t Index, IterOfRange<R> Iter) |
| 1058 | : Index(Index), Iter(Iter) {} |
| 1059 | |
| 1060 | result_pair<R> &operator=(const result_pair<R> &Other) { |
| 1061 | Index = Other.Index; |
| 1062 | Iter = Other.Iter; |
| 1063 | return *this; |
| 1064 | } |
| 1065 | |
| 1066 | std::size_t index() const { return Index; } |
| 1067 | const ValueOfRange<R> &value() const { return *Iter; } |
| 1068 | ValueOfRange<R> &value() { return *Iter; } |
| 1069 | |
| 1070 | private: |
| 1071 | std::size_t Index = std::numeric_limits<std::size_t>::max(); |
| 1072 | IterOfRange<R> Iter; |
| 1073 | }; |
| 1074 | |
| 1075 | template <typename R> |
| 1076 | class enumerator_iter |
| 1077 | : public iterator_facade_base< |
| 1078 | enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, |
| 1079 | typename std::iterator_traits<IterOfRange<R>>::difference_type, |
| 1080 | typename std::iterator_traits<IterOfRange<R>>::pointer, |
| 1081 | typename std::iterator_traits<IterOfRange<R>>::reference> { |
| 1082 | using result_type = result_pair<R>; |
| 1083 | |
| 1084 | public: |
| 1085 | explicit enumerator_iter(IterOfRange<R> EndIter) |
| 1086 | : Result(std::numeric_limits<size_t>::max(), EndIter) {} |
| 1087 | |
| 1088 | enumerator_iter(std::size_t Index, IterOfRange<R> Iter) |
| 1089 | : Result(Index, Iter) {} |
| 1090 | |
| 1091 | result_type &operator*() { return Result; } |
| 1092 | const result_type &operator*() const { return Result; } |
| 1093 | |
| 1094 | enumerator_iter<R> &operator++() { |
| 1095 | assert(Result.Index != std::numeric_limits<size_t>::max()); |
| 1096 | ++Result.Iter; |
| 1097 | ++Result.Index; |
| 1098 | return *this; |
| 1099 | } |
| 1100 | |
| 1101 | bool operator==(const enumerator_iter<R> &RHS) const { |
| 1102 | // Don't compare indices here, only iterators. It's possible for an end |
| 1103 | // iterator to have different indices depending on whether it was created |
| 1104 | // by calling std::end() versus incrementing a valid iterator. |
| 1105 | return Result.Iter == RHS.Result.Iter; |
| 1106 | } |
| 1107 | |
| 1108 | enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) { |
| 1109 | Result = Other.Result; |
| 1110 | return *this; |
| 1111 | } |
| 1112 | |
| 1113 | private: |
| 1114 | result_type Result; |
| 1115 | }; |
| 1116 | |
| 1117 | template <typename R> class enumerator { |
| 1118 | public: |
| 1119 | explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} |
| 1120 | |
| 1121 | enumerator_iter<R> begin() { |
| 1122 | return enumerator_iter<R>(0, std::begin(TheRange)); |
| 1123 | } |
| 1124 | |
| 1125 | enumerator_iter<R> end() { |
| 1126 | return enumerator_iter<R>(std::end(TheRange)); |
| 1127 | } |
| 1128 | |
| 1129 | private: |
| 1130 | R TheRange; |
| 1131 | }; |
| 1132 | |
| 1133 | } // end namespace detail |
| 1134 | |
| 1135 | /// Given an input range, returns a new range whose values are are pair (A,B) |
| 1136 | /// such that A is the 0-based index of the item in the sequence, and B is |
| 1137 | /// the value from the original sequence. Example: |
| 1138 | /// |
| 1139 | /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; |
| 1140 | /// for (auto X : enumerate(Items)) { |
| 1141 | /// printf("Item %d - %c\n", X.index(), X.value()); |
| 1142 | /// } |
| 1143 | /// |
| 1144 | /// Output: |
| 1145 | /// Item 0 - A |
| 1146 | /// Item 1 - B |
| 1147 | /// Item 2 - C |
| 1148 | /// Item 3 - D |
| 1149 | /// |
| 1150 | template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { |
| 1151 | return detail::enumerator<R>(std::forward<R>(TheRange)); |
| 1152 | } |
| 1153 | |
| 1154 | namespace detail { |
| 1155 | |
| 1156 | template <typename F, typename Tuple, std::size_t... I> |
| 1157 | auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>) |
| 1158 | -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) { |
| 1159 | return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); |
| 1160 | } |
| 1161 | |
| 1162 | } // end namespace detail |
| 1163 | |
| 1164 | /// Given an input tuple (a1, a2, ..., an), pass the arguments of the |
| 1165 | /// tuple variadically to f as if by calling f(a1, a2, ..., an) and |
| 1166 | /// return the result. |
| 1167 | template <typename F, typename Tuple> |
| 1168 | auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl( |
| 1169 | std::forward<F>(f), std::forward<Tuple>(t), |
| 1170 | build_index_impl< |
| 1171 | std::tuple_size<typename std::decay<Tuple>::type>::value>{})) { |
| 1172 | using Indices = build_index_impl< |
| 1173 | std::tuple_size<typename std::decay<Tuple>::type>::value>; |
| 1174 | |
| 1175 | return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), |
| 1176 | Indices{}); |
| 1177 | } |
| 1178 | |
| 1179 | } // end namespace llvm |
| 1180 | |
| 1181 | #endif // LLVM_ADT_STLEXTRAS_H |