blob: f69f8fd1b1e0d2b1b1dacd582ea40e4be7ab64bc [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a map that provides insertion order iteration. The
11// interface is purposefully minimal. The key is assumed to be cheap to copy
12// and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
13// a std::vector.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_MAPVECTOR_H
18#define LLVM_ADT_MAPVECTOR_H
19
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/SmallVector.h"
22#include <algorithm>
23#include <cassert>
24#include <cstddef>
25#include <iterator>
26#include <type_traits>
27#include <utility>
28#include <vector>
29
30namespace llvm {
31
32/// This class implements a map that also provides access to all stored values
33/// in a deterministic order. The values are kept in a std::vector and the
34/// mapping is done with DenseMap from Keys to indexes in that vector.
35template<typename KeyT, typename ValueT,
36 typename MapType = DenseMap<KeyT, unsigned>,
37 typename VectorType = std::vector<std::pair<KeyT, ValueT>>>
38class MapVector {
39 MapType Map;
40 VectorType Vector;
41
42public:
43 using value_type = typename VectorType::value_type;
44 using size_type = typename VectorType::size_type;
45
46 using iterator = typename VectorType::iterator;
47 using const_iterator = typename VectorType::const_iterator;
48 using reverse_iterator = typename VectorType::reverse_iterator;
49 using const_reverse_iterator = typename VectorType::const_reverse_iterator;
50
51 /// Clear the MapVector and return the underlying vector.
52 VectorType takeVector() {
53 Map.clear();
54 return std::move(Vector);
55 }
56
57 size_type size() const { return Vector.size(); }
58
59 /// Grow the MapVector so that it can contain at least \p NumEntries items
60 /// before resizing again.
61 void reserve(size_type NumEntries) {
62 Map.reserve(NumEntries);
63 Vector.reserve(NumEntries);
64 }
65
66 iterator begin() { return Vector.begin(); }
67 const_iterator begin() const { return Vector.begin(); }
68 iterator end() { return Vector.end(); }
69 const_iterator end() const { return Vector.end(); }
70
71 reverse_iterator rbegin() { return Vector.rbegin(); }
72 const_reverse_iterator rbegin() const { return Vector.rbegin(); }
73 reverse_iterator rend() { return Vector.rend(); }
74 const_reverse_iterator rend() const { return Vector.rend(); }
75
76 bool empty() const {
77 return Vector.empty();
78 }
79
80 std::pair<KeyT, ValueT> &front() { return Vector.front(); }
81 const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
82 std::pair<KeyT, ValueT> &back() { return Vector.back(); }
83 const std::pair<KeyT, ValueT> &back() const { return Vector.back(); }
84
85 void clear() {
86 Map.clear();
87 Vector.clear();
88 }
89
90 void swap(MapVector &RHS) {
91 std::swap(Map, RHS.Map);
92 std::swap(Vector, RHS.Vector);
93 }
94
95 ValueT &operator[](const KeyT &Key) {
96 std::pair<KeyT, unsigned> Pair = std::make_pair(Key, 0);
97 std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
98 unsigned &I = Result.first->second;
99 if (Result.second) {
100 Vector.push_back(std::make_pair(Key, ValueT()));
101 I = Vector.size() - 1;
102 }
103 return Vector[I].second;
104 }
105
106 // Returns a copy of the value. Only allowed if ValueT is copyable.
107 ValueT lookup(const KeyT &Key) const {
108 static_assert(std::is_copy_constructible<ValueT>::value,
109 "Cannot call lookup() if ValueT is not copyable.");
110 typename MapType::const_iterator Pos = Map.find(Key);
111 return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
112 }
113
114 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
115 std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
116 std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
117 unsigned &I = Result.first->second;
118 if (Result.second) {
119 Vector.push_back(std::make_pair(KV.first, KV.second));
120 I = Vector.size() - 1;
121 return std::make_pair(std::prev(end()), true);
122 }
123 return std::make_pair(begin() + I, false);
124 }
125
126 std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
127 // Copy KV.first into the map, then move it into the vector.
128 std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
129 std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
130 unsigned &I = Result.first->second;
131 if (Result.second) {
132 Vector.push_back(std::move(KV));
133 I = Vector.size() - 1;
134 return std::make_pair(std::prev(end()), true);
135 }
136 return std::make_pair(begin() + I, false);
137 }
138
139 size_type count(const KeyT &Key) const {
140 typename MapType::const_iterator Pos = Map.find(Key);
141 return Pos == Map.end()? 0 : 1;
142 }
143
144 iterator find(const KeyT &Key) {
145 typename MapType::const_iterator Pos = Map.find(Key);
146 return Pos == Map.end()? Vector.end() :
147 (Vector.begin() + Pos->second);
148 }
149
150 const_iterator find(const KeyT &Key) const {
151 typename MapType::const_iterator Pos = Map.find(Key);
152 return Pos == Map.end()? Vector.end() :
153 (Vector.begin() + Pos->second);
154 }
155
156 /// \brief Remove the last element from the vector.
157 void pop_back() {
158 typename MapType::iterator Pos = Map.find(Vector.back().first);
159 Map.erase(Pos);
160 Vector.pop_back();
161 }
162
163 /// \brief Remove the element given by Iterator.
164 ///
165 /// Returns an iterator to the element following the one which was removed,
166 /// which may be end().
167 ///
168 /// \note This is a deceivingly expensive operation (linear time). It's
169 /// usually better to use \a remove_if() if possible.
170 typename VectorType::iterator erase(typename VectorType::iterator Iterator) {
171 Map.erase(Iterator->first);
172 auto Next = Vector.erase(Iterator);
173 if (Next == Vector.end())
174 return Next;
175
176 // Update indices in the map.
177 size_t Index = Next - Vector.begin();
178 for (auto &I : Map) {
179 assert(I.second != Index && "Index was already erased!");
180 if (I.second > Index)
181 --I.second;
182 }
183 return Next;
184 }
185
186 /// \brief Remove all elements with the key value Key.
187 ///
188 /// Returns the number of elements removed.
189 size_type erase(const KeyT &Key) {
190 auto Iterator = find(Key);
191 if (Iterator == end())
192 return 0;
193 erase(Iterator);
194 return 1;
195 }
196
197 /// \brief Remove the elements that match the predicate.
198 ///
199 /// Erase all elements that match \c Pred in a single pass. Takes linear
200 /// time.
201 template <class Predicate> void remove_if(Predicate Pred);
202};
203
204template <typename KeyT, typename ValueT, typename MapType, typename VectorType>
205template <class Function>
206void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) {
207 auto O = Vector.begin();
208 for (auto I = O, E = Vector.end(); I != E; ++I) {
209 if (Pred(*I)) {
210 // Erase from the map.
211 Map.erase(I->first);
212 continue;
213 }
214
215 if (I != O) {
216 // Move the value and update the index in the map.
217 *O = std::move(*I);
218 Map[O->first] = O - Vector.begin();
219 }
220 ++O;
221 }
222 // Erase trailing entries in the vector.
223 Vector.erase(O, Vector.end());
224}
225
226/// \brief A MapVector that performs no allocations if smaller than a certain
227/// size.
228template <typename KeyT, typename ValueT, unsigned N>
229struct SmallMapVector
230 : MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>,
231 SmallVector<std::pair<KeyT, ValueT>, N>> {
232};
233
234} // end namespace llvm
235
236#endif // LLVM_ADT_MAPVECTOR_H