Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the target-independent interfaces which should be |
| 11 | // implemented by each target which is using a TableGen based code generator. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | // Include all information about LLVM intrinsics. |
| 16 | include "llvm/IR/Intrinsics.td" |
| 17 | |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | // Register file description - These classes are used to fill in the target |
| 20 | // description classes. |
| 21 | |
| 22 | class RegisterClass; // Forward def |
| 23 | |
| 24 | class HwMode<string FS> { |
| 25 | // A string representing subtarget features that turn on this HW mode. |
| 26 | // For example, "+feat1,-feat2" will indicate that the mode is active |
| 27 | // when "feat1" is enabled and "feat2" is disabled at the same time. |
| 28 | // Any other features are not checked. |
| 29 | // When multiple modes are used, they should be mutually exclusive, |
| 30 | // otherwise the results are unpredictable. |
| 31 | string Features = FS; |
| 32 | } |
| 33 | |
| 34 | // A special mode recognized by tablegen. This mode is considered active |
| 35 | // when no other mode is active. For targets that do not use specific hw |
| 36 | // modes, this is the only mode. |
| 37 | def DefaultMode : HwMode<"">; |
| 38 | |
| 39 | // A class used to associate objects with HW modes. It is only intended to |
| 40 | // be used as a base class, where the derived class should contain a member |
| 41 | // "Objects", which is a list of the same length as the list of modes. |
| 42 | // The n-th element on the Objects list will be associated with the n-th |
| 43 | // element on the Modes list. |
| 44 | class HwModeSelect<list<HwMode> Ms> { |
| 45 | list<HwMode> Modes = Ms; |
| 46 | } |
| 47 | |
| 48 | // A common class that implements a counterpart of ValueType, which is |
| 49 | // dependent on a HW mode. This class inherits from ValueType itself, |
| 50 | // which makes it possible to use objects of this class where ValueType |
| 51 | // objects could be used. This is specifically applicable to selection |
| 52 | // patterns. |
| 53 | class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts> |
| 54 | : HwModeSelect<Ms>, ValueType<0, 0> { |
| 55 | // The length of this list must be the same as the length of Ms. |
| 56 | list<ValueType> Objects = Ts; |
| 57 | } |
| 58 | |
| 59 | // A class representing the register size, spill size and spill alignment |
| 60 | // in bits of a register. |
| 61 | class RegInfo<int RS, int SS, int SA> { |
| 62 | int RegSize = RS; // Register size in bits. |
| 63 | int SpillSize = SS; // Spill slot size in bits. |
| 64 | int SpillAlignment = SA; // Spill slot alignment in bits. |
| 65 | } |
| 66 | |
| 67 | // The register size/alignment information, parameterized by a HW mode. |
| 68 | class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []> |
| 69 | : HwModeSelect<Ms> { |
| 70 | // The length of this list must be the same as the length of Ms. |
| 71 | list<RegInfo> Objects = Ts; |
| 72 | } |
| 73 | |
| 74 | // SubRegIndex - Use instances of SubRegIndex to identify subregisters. |
| 75 | class SubRegIndex<int size, int offset = 0> { |
| 76 | string Namespace = ""; |
| 77 | |
| 78 | // Size - Size (in bits) of the sub-registers represented by this index. |
| 79 | int Size = size; |
| 80 | |
| 81 | // Offset - Offset of the first bit that is part of this sub-register index. |
| 82 | // Set it to -1 if the same index is used to represent sub-registers that can |
| 83 | // be at different offsets (for example when using an index to access an |
| 84 | // element in a register tuple). |
| 85 | int Offset = offset; |
| 86 | |
| 87 | // ComposedOf - A list of two SubRegIndex instances, [A, B]. |
| 88 | // This indicates that this SubRegIndex is the result of composing A and B. |
| 89 | // See ComposedSubRegIndex. |
| 90 | list<SubRegIndex> ComposedOf = []; |
| 91 | |
| 92 | // CoveringSubRegIndices - A list of two or more sub-register indexes that |
| 93 | // cover this sub-register. |
| 94 | // |
| 95 | // This field should normally be left blank as TableGen can infer it. |
| 96 | // |
| 97 | // TableGen automatically detects sub-registers that straddle the registers |
| 98 | // in the SubRegs field of a Register definition. For example: |
| 99 | // |
| 100 | // Q0 = dsub_0 -> D0, dsub_1 -> D1 |
| 101 | // Q1 = dsub_0 -> D2, dsub_1 -> D3 |
| 102 | // D1_D2 = dsub_0 -> D1, dsub_1 -> D2 |
| 103 | // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1 |
| 104 | // |
| 105 | // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given |
| 106 | // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with |
| 107 | // CoveringSubRegIndices = [dsub_1, dsub_2]. |
| 108 | list<SubRegIndex> CoveringSubRegIndices = []; |
| 109 | } |
| 110 | |
| 111 | // ComposedSubRegIndex - A sub-register that is the result of composing A and B. |
| 112 | // Offset is set to the sum of A and B's Offsets. Size is set to B's Size. |
| 113 | class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B> |
| 114 | : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1, |
| 115 | !if(!eq(B.Offset, -1), -1, |
| 116 | !add(A.Offset, B.Offset)))> { |
| 117 | // See SubRegIndex. |
| 118 | let ComposedOf = [A, B]; |
| 119 | } |
| 120 | |
| 121 | // RegAltNameIndex - The alternate name set to use for register operands of |
| 122 | // this register class when printing. |
| 123 | class RegAltNameIndex { |
| 124 | string Namespace = ""; |
| 125 | } |
| 126 | def NoRegAltName : RegAltNameIndex; |
| 127 | |
| 128 | // Register - You should define one instance of this class for each register |
| 129 | // in the target machine. String n will become the "name" of the register. |
| 130 | class Register<string n, list<string> altNames = []> { |
| 131 | string Namespace = ""; |
| 132 | string AsmName = n; |
| 133 | list<string> AltNames = altNames; |
| 134 | |
| 135 | // Aliases - A list of registers that this register overlaps with. A read or |
| 136 | // modification of this register can potentially read or modify the aliased |
| 137 | // registers. |
| 138 | list<Register> Aliases = []; |
| 139 | |
| 140 | // SubRegs - A list of registers that are parts of this register. Note these |
| 141 | // are "immediate" sub-registers and the registers within the list do not |
| 142 | // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], |
| 143 | // not [AX, AH, AL]. |
| 144 | list<Register> SubRegs = []; |
| 145 | |
| 146 | // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used |
| 147 | // to address it. Sub-sub-register indices are automatically inherited from |
| 148 | // SubRegs. |
| 149 | list<SubRegIndex> SubRegIndices = []; |
| 150 | |
| 151 | // RegAltNameIndices - The alternate name indices which are valid for this |
| 152 | // register. |
| 153 | list<RegAltNameIndex> RegAltNameIndices = []; |
| 154 | |
| 155 | // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
| 156 | // These values can be determined by locating the <target>.h file in the |
| 157 | // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
| 158 | // order of these names correspond to the enumeration used by gcc. A value of |
| 159 | // -1 indicates that the gcc number is undefined and -2 that register number |
| 160 | // is invalid for this mode/flavour. |
| 161 | list<int> DwarfNumbers = []; |
| 162 | |
| 163 | // CostPerUse - Additional cost of instructions using this register compared |
| 164 | // to other registers in its class. The register allocator will try to |
| 165 | // minimize the number of instructions using a register with a CostPerUse. |
| 166 | // This is used by the x86-64 and ARM Thumb targets where some registers |
| 167 | // require larger instruction encodings. |
| 168 | int CostPerUse = 0; |
| 169 | |
| 170 | // CoveredBySubRegs - When this bit is set, the value of this register is |
| 171 | // completely determined by the value of its sub-registers. For example, the |
| 172 | // x86 register AX is covered by its sub-registers AL and AH, but EAX is not |
| 173 | // covered by its sub-register AX. |
| 174 | bit CoveredBySubRegs = 0; |
| 175 | |
| 176 | // HWEncoding - The target specific hardware encoding for this register. |
| 177 | bits<16> HWEncoding = 0; |
| 178 | |
| 179 | bit isArtificial = 0; |
| 180 | } |
| 181 | |
| 182 | // RegisterWithSubRegs - This can be used to define instances of Register which |
| 183 | // need to specify sub-registers. |
| 184 | // List "subregs" specifies which registers are sub-registers to this one. This |
| 185 | // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. |
| 186 | // This allows the code generator to be careful not to put two values with |
| 187 | // overlapping live ranges into registers which alias. |
| 188 | class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { |
| 189 | let SubRegs = subregs; |
| 190 | } |
| 191 | |
| 192 | // DAGOperand - An empty base class that unifies RegisterClass's and other forms |
| 193 | // of Operand's that are legal as type qualifiers in DAG patterns. This should |
| 194 | // only ever be used for defining multiclasses that are polymorphic over both |
| 195 | // RegisterClass's and other Operand's. |
| 196 | class DAGOperand { |
| 197 | string OperandNamespace = "MCOI"; |
| 198 | string DecoderMethod = ""; |
| 199 | } |
| 200 | |
| 201 | // RegisterClass - Now that all of the registers are defined, and aliases |
| 202 | // between registers are defined, specify which registers belong to which |
| 203 | // register classes. This also defines the default allocation order of |
| 204 | // registers by register allocators. |
| 205 | // |
| 206 | class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, |
| 207 | dag regList, RegAltNameIndex idx = NoRegAltName> |
| 208 | : DAGOperand { |
| 209 | string Namespace = namespace; |
| 210 | |
| 211 | // The register size/alignment information, parameterized by a HW mode. |
| 212 | RegInfoByHwMode RegInfos; |
| 213 | |
| 214 | // RegType - Specify the list ValueType of the registers in this register |
| 215 | // class. Note that all registers in a register class must have the same |
| 216 | // ValueTypes. This is a list because some targets permit storing different |
| 217 | // types in same register, for example vector values with 128-bit total size, |
| 218 | // but different count/size of items, like SSE on x86. |
| 219 | // |
| 220 | list<ValueType> RegTypes = regTypes; |
| 221 | |
| 222 | // Size - Specify the spill size in bits of the registers. A default value of |
| 223 | // zero lets tablgen pick an appropriate size. |
| 224 | int Size = 0; |
| 225 | |
| 226 | // Alignment - Specify the alignment required of the registers when they are |
| 227 | // stored or loaded to memory. |
| 228 | // |
| 229 | int Alignment = alignment; |
| 230 | |
| 231 | // CopyCost - This value is used to specify the cost of copying a value |
| 232 | // between two registers in this register class. The default value is one |
| 233 | // meaning it takes a single instruction to perform the copying. A negative |
| 234 | // value means copying is extremely expensive or impossible. |
| 235 | int CopyCost = 1; |
| 236 | |
| 237 | // MemberList - Specify which registers are in this class. If the |
| 238 | // allocation_order_* method are not specified, this also defines the order of |
| 239 | // allocation used by the register allocator. |
| 240 | // |
| 241 | dag MemberList = regList; |
| 242 | |
| 243 | // AltNameIndex - The alternate register name to use when printing operands |
| 244 | // of this register class. Every register in the register class must have |
| 245 | // a valid alternate name for the given index. |
| 246 | RegAltNameIndex altNameIndex = idx; |
| 247 | |
| 248 | // isAllocatable - Specify that the register class can be used for virtual |
| 249 | // registers and register allocation. Some register classes are only used to |
| 250 | // model instruction operand constraints, and should have isAllocatable = 0. |
| 251 | bit isAllocatable = 1; |
| 252 | |
| 253 | // AltOrders - List of alternative allocation orders. The default order is |
| 254 | // MemberList itself, and that is good enough for most targets since the |
| 255 | // register allocators automatically remove reserved registers and move |
| 256 | // callee-saved registers to the end. |
| 257 | list<dag> AltOrders = []; |
| 258 | |
| 259 | // AltOrderSelect - The body of a function that selects the allocation order |
| 260 | // to use in a given machine function. The code will be inserted in a |
| 261 | // function like this: |
| 262 | // |
| 263 | // static inline unsigned f(const MachineFunction &MF) { ... } |
| 264 | // |
| 265 | // The function should return 0 to select the default order defined by |
| 266 | // MemberList, 1 to select the first AltOrders entry and so on. |
| 267 | code AltOrderSelect = [{}]; |
| 268 | |
| 269 | // Specify allocation priority for register allocators using a greedy |
| 270 | // heuristic. Classes with higher priority values are assigned first. This is |
| 271 | // useful as it is sometimes beneficial to assign registers to highly |
| 272 | // constrained classes first. The value has to be in the range [0,63]. |
| 273 | int AllocationPriority = 0; |
| 274 | |
| 275 | // The diagnostic type to present when referencing this operand in a match |
| 276 | // failure error message. If this is empty, the default Match_InvalidOperand |
| 277 | // diagnostic type will be used. If this is "<name>", a Match_<name> enum |
| 278 | // value will be generated and used for this operand type. The target |
| 279 | // assembly parser is responsible for converting this into a user-facing |
| 280 | // diagnostic message. |
| 281 | string DiagnosticType = ""; |
| 282 | |
| 283 | // A diagnostic message to emit when an invalid value is provided for this |
| 284 | // register class when it is being used an an assembly operand. If this is |
| 285 | // non-empty, an anonymous diagnostic type enum value will be generated, and |
| 286 | // the assembly matcher will provide a function to map from diagnostic types |
| 287 | // to message strings. |
| 288 | string DiagnosticString = ""; |
| 289 | } |
| 290 | |
| 291 | // The memberList in a RegisterClass is a dag of set operations. TableGen |
| 292 | // evaluates these set operations and expand them into register lists. These |
| 293 | // are the most common operation, see test/TableGen/SetTheory.td for more |
| 294 | // examples of what is possible: |
| 295 | // |
| 296 | // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a |
| 297 | // register class, or a sub-expression. This is also the way to simply list |
| 298 | // registers. |
| 299 | // |
| 300 | // (sub GPR, SP) - Set difference. Subtract the last arguments from the first. |
| 301 | // |
| 302 | // (and GPR, CSR) - Set intersection. All registers from the first set that are |
| 303 | // also in the second set. |
| 304 | // |
| 305 | // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of |
| 306 | // numbered registers. Takes an optional 4th operand which is a stride to use |
| 307 | // when generating the sequence. |
| 308 | // |
| 309 | // (shl GPR, 4) - Remove the first N elements. |
| 310 | // |
| 311 | // (trunc GPR, 4) - Truncate after the first N elements. |
| 312 | // |
| 313 | // (rotl GPR, 1) - Rotate N places to the left. |
| 314 | // |
| 315 | // (rotr GPR, 1) - Rotate N places to the right. |
| 316 | // |
| 317 | // (decimate GPR, 2) - Pick every N'th element, starting with the first. |
| 318 | // |
| 319 | // (interleave A, B, ...) - Interleave the elements from each argument list. |
| 320 | // |
| 321 | // All of these operators work on ordered sets, not lists. That means |
| 322 | // duplicates are removed from sub-expressions. |
| 323 | |
| 324 | // Set operators. The rest is defined in TargetSelectionDAG.td. |
| 325 | def sequence; |
| 326 | def decimate; |
| 327 | def interleave; |
| 328 | |
| 329 | // RegisterTuples - Automatically generate super-registers by forming tuples of |
| 330 | // sub-registers. This is useful for modeling register sequence constraints |
| 331 | // with pseudo-registers that are larger than the architectural registers. |
| 332 | // |
| 333 | // The sub-register lists are zipped together: |
| 334 | // |
| 335 | // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>; |
| 336 | // |
| 337 | // Generates the same registers as: |
| 338 | // |
| 339 | // let SubRegIndices = [sube, subo] in { |
| 340 | // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>; |
| 341 | // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>; |
| 342 | // } |
| 343 | // |
| 344 | // The generated pseudo-registers inherit super-classes and fields from their |
| 345 | // first sub-register. Most fields from the Register class are inferred, and |
| 346 | // the AsmName and Dwarf numbers are cleared. |
| 347 | // |
| 348 | // RegisterTuples instances can be used in other set operations to form |
| 349 | // register classes and so on. This is the only way of using the generated |
| 350 | // registers. |
| 351 | class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> { |
| 352 | // SubRegs - N lists of registers to be zipped up. Super-registers are |
| 353 | // synthesized from the first element of each SubRegs list, the second |
| 354 | // element and so on. |
| 355 | list<dag> SubRegs = Regs; |
| 356 | |
| 357 | // SubRegIndices - N SubRegIndex instances. This provides the names of the |
| 358 | // sub-registers in the synthesized super-registers. |
| 359 | list<SubRegIndex> SubRegIndices = Indices; |
| 360 | } |
| 361 | |
| 362 | |
| 363 | //===----------------------------------------------------------------------===// |
| 364 | // DwarfRegNum - This class provides a mapping of the llvm register enumeration |
| 365 | // to the register numbering used by gcc and gdb. These values are used by a |
| 366 | // debug information writer to describe where values may be located during |
| 367 | // execution. |
| 368 | class DwarfRegNum<list<int> Numbers> { |
| 369 | // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
| 370 | // These values can be determined by locating the <target>.h file in the |
| 371 | // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
| 372 | // order of these names correspond to the enumeration used by gcc. A value of |
| 373 | // -1 indicates that the gcc number is undefined and -2 that register number |
| 374 | // is invalid for this mode/flavour. |
| 375 | list<int> DwarfNumbers = Numbers; |
| 376 | } |
| 377 | |
| 378 | // DwarfRegAlias - This class declares that a given register uses the same dwarf |
| 379 | // numbers as another one. This is useful for making it clear that the two |
| 380 | // registers do have the same number. It also lets us build a mapping |
| 381 | // from dwarf register number to llvm register. |
| 382 | class DwarfRegAlias<Register reg> { |
| 383 | Register DwarfAlias = reg; |
| 384 | } |
| 385 | |
| 386 | //===----------------------------------------------------------------------===// |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 387 | // Pull in the common support for MCPredicate (portable scheduling predicates). |
| 388 | // |
| 389 | include "llvm/Target/TargetInstrPredicate.td" |
| 390 | |
| 391 | //===----------------------------------------------------------------------===// |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 392 | // Pull in the common support for scheduling |
| 393 | // |
| 394 | include "llvm/Target/TargetSchedule.td" |
| 395 | |
| 396 | class Predicate; // Forward def |
| 397 | |
| 398 | //===----------------------------------------------------------------------===// |
| 399 | // Instruction set description - These classes correspond to the C++ classes in |
| 400 | // the Target/TargetInstrInfo.h file. |
| 401 | // |
| 402 | class Instruction { |
| 403 | string Namespace = ""; |
| 404 | |
| 405 | dag OutOperandList; // An dag containing the MI def operand list. |
| 406 | dag InOperandList; // An dag containing the MI use operand list. |
| 407 | string AsmString = ""; // The .s format to print the instruction with. |
| 408 | |
| 409 | // Pattern - Set to the DAG pattern for this instruction, if we know of one, |
| 410 | // otherwise, uninitialized. |
| 411 | list<dag> Pattern; |
| 412 | |
| 413 | // The follow state will eventually be inferred automatically from the |
| 414 | // instruction pattern. |
| 415 | |
| 416 | list<Register> Uses = []; // Default to using no non-operand registers |
| 417 | list<Register> Defs = []; // Default to modifying no non-operand registers |
| 418 | |
| 419 | // Predicates - List of predicates which will be turned into isel matching |
| 420 | // code. |
| 421 | list<Predicate> Predicates = []; |
| 422 | |
| 423 | // Size - Size of encoded instruction, or zero if the size cannot be determined |
| 424 | // from the opcode. |
| 425 | int Size = 0; |
| 426 | |
| 427 | // DecoderNamespace - The "namespace" in which this instruction exists, on |
| 428 | // targets like ARM which multiple ISA namespaces exist. |
| 429 | string DecoderNamespace = ""; |
| 430 | |
| 431 | // Code size, for instruction selection. |
| 432 | // FIXME: What does this actually mean? |
| 433 | int CodeSize = 0; |
| 434 | |
| 435 | // Added complexity passed onto matching pattern. |
| 436 | int AddedComplexity = 0; |
| 437 | |
| 438 | // These bits capture information about the high-level semantics of the |
| 439 | // instruction. |
| 440 | bit isReturn = 0; // Is this instruction a return instruction? |
| 441 | bit isBranch = 0; // Is this instruction a branch instruction? |
Andrew Scull | 0372a57 | 2018-11-16 15:47:06 +0000 | [diff] [blame] | 442 | bit isEHScopeReturn = 0; // Does this instruction end an EH scope? |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 443 | bit isIndirectBranch = 0; // Is this instruction an indirect branch? |
| 444 | bit isCompare = 0; // Is this instruction a comparison instruction? |
| 445 | bit isMoveImm = 0; // Is this instruction a move immediate instruction? |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 446 | bit isMoveReg = 0; // Is this instruction a move register instruction? |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 447 | bit isBitcast = 0; // Is this instruction a bitcast instruction? |
| 448 | bit isSelect = 0; // Is this instruction a select instruction? |
| 449 | bit isBarrier = 0; // Can control flow fall through this instruction? |
| 450 | bit isCall = 0; // Is this instruction a call instruction? |
| 451 | bit isAdd = 0; // Is this instruction an add instruction? |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 452 | bit isTrap = 0; // Is this instruction a trap instruction? |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 453 | bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand? |
| 454 | bit mayLoad = ?; // Is it possible for this inst to read memory? |
| 455 | bit mayStore = ?; // Is it possible for this inst to write memory? |
| 456 | bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote? |
| 457 | bit isCommutable = 0; // Is this 3 operand instruction commutable? |
| 458 | bit isTerminator = 0; // Is this part of the terminator for a basic block? |
| 459 | bit isReMaterializable = 0; // Is this instruction re-materializable? |
| 460 | bit isPredicable = 0; // Is this instruction predicable? |
| 461 | bit hasDelaySlot = 0; // Does this instruction have an delay slot? |
| 462 | bit usesCustomInserter = 0; // Pseudo instr needing special help. |
| 463 | bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook. |
| 464 | bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains? |
| 465 | bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction? |
| 466 | bit isConvergent = 0; // Is this instruction convergent? |
| 467 | bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction. |
| 468 | bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement? |
| 469 | bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement? |
| 470 | bit isRegSequence = 0; // Is this instruction a kind of reg sequence? |
| 471 | // If so, make sure to override |
| 472 | // TargetInstrInfo::getRegSequenceLikeInputs. |
| 473 | bit isPseudo = 0; // Is this instruction a pseudo-instruction? |
| 474 | // If so, won't have encoding information for |
| 475 | // the [MC]CodeEmitter stuff. |
| 476 | bit isExtractSubreg = 0; // Is this instruction a kind of extract subreg? |
| 477 | // If so, make sure to override |
| 478 | // TargetInstrInfo::getExtractSubregLikeInputs. |
| 479 | bit isInsertSubreg = 0; // Is this instruction a kind of insert subreg? |
| 480 | // If so, make sure to override |
| 481 | // TargetInstrInfo::getInsertSubregLikeInputs. |
| 482 | |
| 483 | // Does the instruction have side effects that are not captured by any |
| 484 | // operands of the instruction or other flags? |
| 485 | bit hasSideEffects = ?; |
| 486 | |
| 487 | // Is this instruction a "real" instruction (with a distinct machine |
| 488 | // encoding), or is it a pseudo instruction used for codegen modeling |
| 489 | // purposes. |
| 490 | // FIXME: For now this is distinct from isPseudo, above, as code-gen-only |
| 491 | // instructions can (and often do) still have encoding information |
| 492 | // associated with them. Once we've migrated all of them over to true |
| 493 | // pseudo-instructions that are lowered to real instructions prior to |
| 494 | // the printer/emitter, we can remove this attribute and just use isPseudo. |
| 495 | // |
| 496 | // The intended use is: |
| 497 | // isPseudo: Does not have encoding information and should be expanded, |
| 498 | // at the latest, during lowering to MCInst. |
| 499 | // |
| 500 | // isCodeGenOnly: Does have encoding information and can go through to the |
| 501 | // CodeEmitter unchanged, but duplicates a canonical instruction |
| 502 | // definition's encoding and should be ignored when constructing the |
| 503 | // assembler match tables. |
| 504 | bit isCodeGenOnly = 0; |
| 505 | |
| 506 | // Is this instruction a pseudo instruction for use by the assembler parser. |
| 507 | bit isAsmParserOnly = 0; |
| 508 | |
| 509 | // This instruction is not expected to be queried for scheduling latencies |
| 510 | // and therefore needs no scheduling information even for a complete |
| 511 | // scheduling model. |
| 512 | bit hasNoSchedulingInfo = 0; |
| 513 | |
| 514 | InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. |
| 515 | |
| 516 | // Scheduling information from TargetSchedule.td. |
| 517 | list<SchedReadWrite> SchedRW; |
| 518 | |
| 519 | string Constraints = ""; // OperandConstraint, e.g. $src = $dst. |
| 520 | |
| 521 | /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not |
| 522 | /// be encoded into the output machineinstr. |
| 523 | string DisableEncoding = ""; |
| 524 | |
| 525 | string PostEncoderMethod = ""; |
| 526 | string DecoderMethod = ""; |
| 527 | |
| 528 | // Is the instruction decoder method able to completely determine if the |
| 529 | // given instruction is valid or not. If the TableGen definition of the |
| 530 | // instruction specifies bitpattern A??B where A and B are static bits, the |
| 531 | // hasCompleteDecoder flag says whether the decoder method fully handles the |
| 532 | // ?? space, i.e. if it is a final arbiter for the instruction validity. |
| 533 | // If not then the decoder attempts to continue decoding when the decoder |
| 534 | // method fails. |
| 535 | // |
| 536 | // This allows to handle situations where the encoding is not fully |
| 537 | // orthogonal. Example: |
| 538 | // * InstA with bitpattern 0b0000????, |
| 539 | // * InstB with bitpattern 0b000000?? but the associated decoder method |
| 540 | // DecodeInstB() returns Fail when ?? is 0b00 or 0b11. |
| 541 | // |
| 542 | // The decoder tries to decode a bitpattern that matches both InstA and |
| 543 | // InstB bitpatterns first as InstB (because it is the most specific |
| 544 | // encoding). In the default case (hasCompleteDecoder = 1), when |
| 545 | // DecodeInstB() returns Fail the bitpattern gets rejected. By setting |
| 546 | // hasCompleteDecoder = 0 in InstB, the decoder is informed that |
| 547 | // DecodeInstB() is not able to determine if all possible values of ?? are |
| 548 | // valid or not. If DecodeInstB() returns Fail the decoder will attempt to |
| 549 | // decode the bitpattern as InstA too. |
| 550 | bit hasCompleteDecoder = 1; |
| 551 | |
| 552 | /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc. |
| 553 | bits<64> TSFlags = 0; |
| 554 | |
| 555 | ///@name Assembler Parser Support |
| 556 | ///@{ |
| 557 | |
| 558 | string AsmMatchConverter = ""; |
| 559 | |
| 560 | /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a |
| 561 | /// two-operand matcher inst-alias for a three operand instruction. |
| 562 | /// For example, the arm instruction "add r3, r3, r5" can be written |
| 563 | /// as "add r3, r5". The constraint is of the same form as a tied-operand |
| 564 | /// constraint. For example, "$Rn = $Rd". |
| 565 | string TwoOperandAliasConstraint = ""; |
| 566 | |
| 567 | /// Assembler variant name to use for this instruction. If specified then |
| 568 | /// instruction will be presented only in MatchTable for this variant. If |
| 569 | /// not specified then assembler variants will be determined based on |
| 570 | /// AsmString |
| 571 | string AsmVariantName = ""; |
| 572 | |
| 573 | ///@} |
| 574 | |
| 575 | /// UseNamedOperandTable - If set, the operand indices of this instruction |
| 576 | /// can be queried via the getNamedOperandIdx() function which is generated |
| 577 | /// by TableGen. |
| 578 | bit UseNamedOperandTable = 0; |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 579 | |
| 580 | /// Should FastISel ignore this instruction. For certain ISAs, they have |
| 581 | /// instructions which map to the same ISD Opcode, value type operands and |
| 582 | /// instruction selection predicates. FastISel cannot handle such cases, but |
| 583 | /// SelectionDAG can. |
| 584 | bit FastISelShouldIgnore = 0; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 585 | } |
| 586 | |
| 587 | /// PseudoInstExpansion - Expansion information for a pseudo-instruction. |
| 588 | /// Which instruction it expands to and how the operands map from the |
| 589 | /// pseudo. |
| 590 | class PseudoInstExpansion<dag Result> { |
| 591 | dag ResultInst = Result; // The instruction to generate. |
| 592 | bit isPseudo = 1; |
| 593 | } |
| 594 | |
| 595 | /// Predicates - These are extra conditionals which are turned into instruction |
| 596 | /// selector matching code. Currently each predicate is just a string. |
| 597 | class Predicate<string cond> { |
| 598 | string CondString = cond; |
| 599 | |
| 600 | /// AssemblerMatcherPredicate - If this feature can be used by the assembler |
| 601 | /// matcher, this is true. Targets should set this by inheriting their |
| 602 | /// feature from the AssemblerPredicate class in addition to Predicate. |
| 603 | bit AssemblerMatcherPredicate = 0; |
| 604 | |
| 605 | /// AssemblerCondString - Name of the subtarget feature being tested used |
| 606 | /// as alternative condition string used for assembler matcher. |
| 607 | /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0". |
| 608 | /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0". |
| 609 | /// It can also list multiple features separated by ",". |
| 610 | /// e.g. "ModeThumb,FeatureThumb2" is translated to |
| 611 | /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0". |
| 612 | string AssemblerCondString = ""; |
| 613 | |
| 614 | /// PredicateName - User-level name to use for the predicate. Mainly for use |
| 615 | /// in diagnostics such as missing feature errors in the asm matcher. |
| 616 | string PredicateName = ""; |
| 617 | |
| 618 | /// Setting this to '1' indicates that the predicate must be recomputed on |
| 619 | /// every function change. Most predicates can leave this at '0'. |
| 620 | /// |
| 621 | /// Ignored by SelectionDAG, it always recomputes the predicate on every use. |
| 622 | bit RecomputePerFunction = 0; |
| 623 | } |
| 624 | |
| 625 | /// NoHonorSignDependentRounding - This predicate is true if support for |
| 626 | /// sign-dependent-rounding is not enabled. |
| 627 | def NoHonorSignDependentRounding |
| 628 | : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">; |
| 629 | |
| 630 | class Requires<list<Predicate> preds> { |
| 631 | list<Predicate> Predicates = preds; |
| 632 | } |
| 633 | |
| 634 | /// ops definition - This is just a simple marker used to identify the operand |
| 635 | /// list for an instruction. outs and ins are identical both syntactically and |
| 636 | /// semantically; they are used to define def operands and use operands to |
| 637 | /// improve readibility. This should be used like this: |
| 638 | /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. |
| 639 | def ops; |
| 640 | def outs; |
| 641 | def ins; |
| 642 | |
| 643 | /// variable_ops definition - Mark this instruction as taking a variable number |
| 644 | /// of operands. |
| 645 | def variable_ops; |
| 646 | |
| 647 | |
| 648 | /// PointerLikeRegClass - Values that are designed to have pointer width are |
| 649 | /// derived from this. TableGen treats the register class as having a symbolic |
| 650 | /// type that it doesn't know, and resolves the actual regclass to use by using |
| 651 | /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time. |
| 652 | class PointerLikeRegClass<int Kind> { |
| 653 | int RegClassKind = Kind; |
| 654 | } |
| 655 | |
| 656 | |
| 657 | /// ptr_rc definition - Mark this operand as being a pointer value whose |
| 658 | /// register class is resolved dynamically via a callback to TargetInstrInfo. |
| 659 | /// FIXME: We should probably change this to a class which contain a list of |
| 660 | /// flags. But currently we have but one flag. |
| 661 | def ptr_rc : PointerLikeRegClass<0>; |
| 662 | |
| 663 | /// unknown definition - Mark this operand as being of unknown type, causing |
| 664 | /// it to be resolved by inference in the context it is used. |
| 665 | class unknown_class; |
| 666 | def unknown : unknown_class; |
| 667 | |
| 668 | /// AsmOperandClass - Representation for the kinds of operands which the target |
| 669 | /// specific parser can create and the assembly matcher may need to distinguish. |
| 670 | /// |
| 671 | /// Operand classes are used to define the order in which instructions are |
| 672 | /// matched, to ensure that the instruction which gets matched for any |
| 673 | /// particular list of operands is deterministic. |
| 674 | /// |
| 675 | /// The target specific parser must be able to classify a parsed operand into a |
| 676 | /// unique class which does not partially overlap with any other classes. It can |
| 677 | /// match a subset of some other class, in which case the super class field |
| 678 | /// should be defined. |
| 679 | class AsmOperandClass { |
| 680 | /// The name to use for this class, which should be usable as an enum value. |
| 681 | string Name = ?; |
| 682 | |
| 683 | /// The super classes of this operand. |
| 684 | list<AsmOperandClass> SuperClasses = []; |
| 685 | |
| 686 | /// The name of the method on the target specific operand to call to test |
| 687 | /// whether the operand is an instance of this class. If not set, this will |
| 688 | /// default to "isFoo", where Foo is the AsmOperandClass name. The method |
| 689 | /// signature should be: |
| 690 | /// bool isFoo() const; |
| 691 | string PredicateMethod = ?; |
| 692 | |
| 693 | /// The name of the method on the target specific operand to call to add the |
| 694 | /// target specific operand to an MCInst. If not set, this will default to |
| 695 | /// "addFooOperands", where Foo is the AsmOperandClass name. The method |
| 696 | /// signature should be: |
| 697 | /// void addFooOperands(MCInst &Inst, unsigned N) const; |
| 698 | string RenderMethod = ?; |
| 699 | |
| 700 | /// The name of the method on the target specific operand to call to custom |
| 701 | /// handle the operand parsing. This is useful when the operands do not relate |
| 702 | /// to immediates or registers and are very instruction specific (as flags to |
| 703 | /// set in a processor register, coprocessor number, ...). |
| 704 | string ParserMethod = ?; |
| 705 | |
| 706 | // The diagnostic type to present when referencing this operand in a |
| 707 | // match failure error message. By default, use a generic "invalid operand" |
| 708 | // diagnostic. The target AsmParser maps these codes to text. |
| 709 | string DiagnosticType = ""; |
| 710 | |
| 711 | /// A diagnostic message to emit when an invalid value is provided for this |
| 712 | /// operand. |
| 713 | string DiagnosticString = ""; |
| 714 | |
| 715 | /// Set to 1 if this operand is optional and not always required. Typically, |
| 716 | /// the AsmParser will emit an error when it finishes parsing an |
| 717 | /// instruction if it hasn't matched all the operands yet. However, this |
| 718 | /// error will be suppressed if all of the remaining unmatched operands are |
| 719 | /// marked as IsOptional. |
| 720 | /// |
| 721 | /// Optional arguments must be at the end of the operand list. |
| 722 | bit IsOptional = 0; |
| 723 | |
| 724 | /// The name of the method on the target specific asm parser that returns the |
| 725 | /// default operand for this optional operand. This method is only used if |
| 726 | /// IsOptional == 1. If not set, this will default to "defaultFooOperands", |
| 727 | /// where Foo is the AsmOperandClass name. The method signature should be: |
| 728 | /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const; |
| 729 | string DefaultMethod = ?; |
| 730 | } |
| 731 | |
| 732 | def ImmAsmOperand : AsmOperandClass { |
| 733 | let Name = "Imm"; |
| 734 | } |
| 735 | |
| 736 | /// Operand Types - These provide the built-in operand types that may be used |
| 737 | /// by a target. Targets can optionally provide their own operand types as |
| 738 | /// needed, though this should not be needed for RISC targets. |
| 739 | class Operand<ValueType ty> : DAGOperand { |
| 740 | ValueType Type = ty; |
| 741 | string PrintMethod = "printOperand"; |
| 742 | string EncoderMethod = ""; |
| 743 | bit hasCompleteDecoder = 1; |
| 744 | string OperandType = "OPERAND_UNKNOWN"; |
| 745 | dag MIOperandInfo = (ops); |
| 746 | |
| 747 | // MCOperandPredicate - Optionally, a code fragment operating on |
| 748 | // const MCOperand &MCOp, and returning a bool, to indicate if |
| 749 | // the value of MCOp is valid for the specific subclass of Operand |
| 750 | code MCOperandPredicate; |
| 751 | |
| 752 | // ParserMatchClass - The "match class" that operands of this type fit |
| 753 | // in. Match classes are used to define the order in which instructions are |
| 754 | // match, to ensure that which instructions gets matched is deterministic. |
| 755 | // |
| 756 | // The target specific parser must be able to classify an parsed operand into |
| 757 | // a unique class, which does not partially overlap with any other classes. It |
| 758 | // can match a subset of some other class, in which case the AsmOperandClass |
| 759 | // should declare the other operand as one of its super classes. |
| 760 | AsmOperandClass ParserMatchClass = ImmAsmOperand; |
| 761 | } |
| 762 | |
| 763 | class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> |
| 764 | : DAGOperand { |
| 765 | // RegClass - The register class of the operand. |
| 766 | RegisterClass RegClass = regclass; |
| 767 | // PrintMethod - The target method to call to print register operands of |
| 768 | // this type. The method normally will just use an alt-name index to look |
| 769 | // up the name to print. Default to the generic printOperand(). |
| 770 | string PrintMethod = pm; |
| 771 | |
| 772 | // EncoderMethod - The target method name to call to encode this register |
| 773 | // operand. |
| 774 | string EncoderMethod = ""; |
| 775 | |
| 776 | // ParserMatchClass - The "match class" that operands of this type fit |
| 777 | // in. Match classes are used to define the order in which instructions are |
| 778 | // match, to ensure that which instructions gets matched is deterministic. |
| 779 | // |
| 780 | // The target specific parser must be able to classify an parsed operand into |
| 781 | // a unique class, which does not partially overlap with any other classes. It |
| 782 | // can match a subset of some other class, in which case the AsmOperandClass |
| 783 | // should declare the other operand as one of its super classes. |
| 784 | AsmOperandClass ParserMatchClass; |
| 785 | |
| 786 | string OperandType = "OPERAND_REGISTER"; |
| 787 | |
| 788 | // When referenced in the result of a CodeGen pattern, GlobalISel will |
| 789 | // normally copy the matched operand to the result. When this is set, it will |
| 790 | // emit a special copy that will replace zero-immediates with the specified |
| 791 | // zero-register. |
| 792 | Register GIZeroRegister = ?; |
| 793 | } |
| 794 | |
| 795 | let OperandType = "OPERAND_IMMEDIATE" in { |
| 796 | def i1imm : Operand<i1>; |
| 797 | def i8imm : Operand<i8>; |
| 798 | def i16imm : Operand<i16>; |
| 799 | def i32imm : Operand<i32>; |
| 800 | def i64imm : Operand<i64>; |
| 801 | |
| 802 | def f32imm : Operand<f32>; |
| 803 | def f64imm : Operand<f64>; |
| 804 | } |
| 805 | |
| 806 | // Register operands for generic instructions don't have an MVT, but do have |
| 807 | // constraints linking the operands (e.g. all operands of a G_ADD must |
| 808 | // have the same LLT). |
| 809 | class TypedOperand<string Ty> : Operand<untyped> { |
| 810 | let OperandType = Ty; |
| 811 | bit IsPointer = 0; |
| 812 | } |
| 813 | |
| 814 | def type0 : TypedOperand<"OPERAND_GENERIC_0">; |
| 815 | def type1 : TypedOperand<"OPERAND_GENERIC_1">; |
| 816 | def type2 : TypedOperand<"OPERAND_GENERIC_2">; |
| 817 | def type3 : TypedOperand<"OPERAND_GENERIC_3">; |
| 818 | def type4 : TypedOperand<"OPERAND_GENERIC_4">; |
| 819 | def type5 : TypedOperand<"OPERAND_GENERIC_5">; |
| 820 | |
| 821 | let IsPointer = 1 in { |
| 822 | def ptype0 : TypedOperand<"OPERAND_GENERIC_0">; |
| 823 | def ptype1 : TypedOperand<"OPERAND_GENERIC_1">; |
| 824 | def ptype2 : TypedOperand<"OPERAND_GENERIC_2">; |
| 825 | def ptype3 : TypedOperand<"OPERAND_GENERIC_3">; |
| 826 | def ptype4 : TypedOperand<"OPERAND_GENERIC_4">; |
| 827 | def ptype5 : TypedOperand<"OPERAND_GENERIC_5">; |
| 828 | } |
| 829 | |
| 830 | /// zero_reg definition - Special node to stand for the zero register. |
| 831 | /// |
| 832 | def zero_reg; |
| 833 | |
| 834 | /// All operands which the MC layer classifies as predicates should inherit from |
| 835 | /// this class in some manner. This is already handled for the most commonly |
| 836 | /// used PredicateOperand, but may be useful in other circumstances. |
| 837 | class PredicateOp; |
| 838 | |
| 839 | /// OperandWithDefaultOps - This Operand class can be used as the parent class |
| 840 | /// for an Operand that needs to be initialized with a default value if |
| 841 | /// no value is supplied in a pattern. This class can be used to simplify the |
| 842 | /// pattern definitions for instructions that have target specific flags |
| 843 | /// encoded as immediate operands. |
| 844 | class OperandWithDefaultOps<ValueType ty, dag defaultops> |
| 845 | : Operand<ty> { |
| 846 | dag DefaultOps = defaultops; |
| 847 | } |
| 848 | |
| 849 | /// PredicateOperand - This can be used to define a predicate operand for an |
| 850 | /// instruction. OpTypes specifies the MIOperandInfo for the operand, and |
| 851 | /// AlwaysVal specifies the value of this predicate when set to "always |
| 852 | /// execute". |
| 853 | class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> |
| 854 | : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp { |
| 855 | let MIOperandInfo = OpTypes; |
| 856 | } |
| 857 | |
| 858 | /// OptionalDefOperand - This is used to define a optional definition operand |
| 859 | /// for an instruction. DefaultOps is the register the operand represents if |
| 860 | /// none is supplied, e.g. zero_reg. |
| 861 | class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> |
| 862 | : OperandWithDefaultOps<ty, defaultops> { |
| 863 | let MIOperandInfo = OpTypes; |
| 864 | } |
| 865 | |
| 866 | |
| 867 | // InstrInfo - This class should only be instantiated once to provide parameters |
| 868 | // which are global to the target machine. |
| 869 | // |
| 870 | class InstrInfo { |
| 871 | // Target can specify its instructions in either big or little-endian formats. |
| 872 | // For instance, while both Sparc and PowerPC are big-endian platforms, the |
| 873 | // Sparc manual specifies its instructions in the format [31..0] (big), while |
| 874 | // PowerPC specifies them using the format [0..31] (little). |
| 875 | bit isLittleEndianEncoding = 0; |
| 876 | |
| 877 | // The instruction properties mayLoad, mayStore, and hasSideEffects are unset |
| 878 | // by default, and TableGen will infer their value from the instruction |
| 879 | // pattern when possible. |
| 880 | // |
| 881 | // Normally, TableGen will issue an error it it can't infer the value of a |
| 882 | // property that hasn't been set explicitly. When guessInstructionProperties |
| 883 | // is set, it will guess a safe value instead. |
| 884 | // |
| 885 | // This option is a temporary migration help. It will go away. |
| 886 | bit guessInstructionProperties = 1; |
| 887 | |
| 888 | // TableGen's instruction encoder generator has support for matching operands |
| 889 | // to bit-field variables both by name and by position. While matching by |
| 890 | // name is preferred, this is currently not possible for complex operands, |
| 891 | // and some targets still reply on the positional encoding rules. When |
| 892 | // generating a decoder for such targets, the positional encoding rules must |
| 893 | // be used by the decoder generator as well. |
| 894 | // |
| 895 | // This option is temporary; it will go away once the TableGen decoder |
| 896 | // generator has better support for complex operands and targets have |
| 897 | // migrated away from using positionally encoded operands. |
| 898 | bit decodePositionallyEncodedOperands = 0; |
| 899 | |
| 900 | // When set, this indicates that there will be no overlap between those |
| 901 | // operands that are matched by ordering (positional operands) and those |
| 902 | // matched by name. |
| 903 | // |
| 904 | // This option is temporary; it will go away once the TableGen decoder |
| 905 | // generator has better support for complex operands and targets have |
| 906 | // migrated away from using positionally encoded operands. |
| 907 | bit noNamedPositionallyEncodedOperands = 0; |
| 908 | } |
| 909 | |
| 910 | // Standard Pseudo Instructions. |
| 911 | // This list must match TargetOpcodes.h and CodeGenTarget.cpp. |
| 912 | // Only these instructions are allowed in the TargetOpcode namespace. |
| 913 | // Ensure mayLoad and mayStore have a default value, so as not to break |
| 914 | // targets that set guessInstructionProperties=0. Any local definition of |
| 915 | // mayLoad/mayStore takes precedence over these default values. |
| 916 | class StandardPseudoInstruction : Instruction { |
| 917 | let mayLoad = 0; |
| 918 | let mayStore = 0; |
| 919 | let isCodeGenOnly = 1; |
| 920 | let isPseudo = 1; |
| 921 | let hasNoSchedulingInfo = 1; |
| 922 | let Namespace = "TargetOpcode"; |
| 923 | } |
| 924 | def PHI : StandardPseudoInstruction { |
| 925 | let OutOperandList = (outs unknown:$dst); |
| 926 | let InOperandList = (ins variable_ops); |
| 927 | let AsmString = "PHINODE"; |
| 928 | let hasSideEffects = 0; |
| 929 | } |
| 930 | def INLINEASM : StandardPseudoInstruction { |
| 931 | let OutOperandList = (outs); |
| 932 | let InOperandList = (ins variable_ops); |
| 933 | let AsmString = ""; |
| 934 | let hasSideEffects = 0; // Note side effect is encoded in an operand. |
| 935 | } |
| 936 | def CFI_INSTRUCTION : StandardPseudoInstruction { |
| 937 | let OutOperandList = (outs); |
| 938 | let InOperandList = (ins i32imm:$id); |
| 939 | let AsmString = ""; |
| 940 | let hasCtrlDep = 1; |
| 941 | let hasSideEffects = 0; |
| 942 | let isNotDuplicable = 1; |
| 943 | } |
| 944 | def EH_LABEL : StandardPseudoInstruction { |
| 945 | let OutOperandList = (outs); |
| 946 | let InOperandList = (ins i32imm:$id); |
| 947 | let AsmString = ""; |
| 948 | let hasCtrlDep = 1; |
| 949 | let hasSideEffects = 0; |
| 950 | let isNotDuplicable = 1; |
| 951 | } |
| 952 | def GC_LABEL : StandardPseudoInstruction { |
| 953 | let OutOperandList = (outs); |
| 954 | let InOperandList = (ins i32imm:$id); |
| 955 | let AsmString = ""; |
| 956 | let hasCtrlDep = 1; |
| 957 | let hasSideEffects = 0; |
| 958 | let isNotDuplicable = 1; |
| 959 | } |
| 960 | def ANNOTATION_LABEL : StandardPseudoInstruction { |
| 961 | let OutOperandList = (outs); |
| 962 | let InOperandList = (ins i32imm:$id); |
| 963 | let AsmString = ""; |
| 964 | let hasCtrlDep = 1; |
| 965 | let hasSideEffects = 0; |
| 966 | let isNotDuplicable = 1; |
| 967 | } |
| 968 | def KILL : StandardPseudoInstruction { |
| 969 | let OutOperandList = (outs); |
| 970 | let InOperandList = (ins variable_ops); |
| 971 | let AsmString = ""; |
| 972 | let hasSideEffects = 0; |
| 973 | } |
| 974 | def EXTRACT_SUBREG : StandardPseudoInstruction { |
| 975 | let OutOperandList = (outs unknown:$dst); |
| 976 | let InOperandList = (ins unknown:$supersrc, i32imm:$subidx); |
| 977 | let AsmString = ""; |
| 978 | let hasSideEffects = 0; |
| 979 | } |
| 980 | def INSERT_SUBREG : StandardPseudoInstruction { |
| 981 | let OutOperandList = (outs unknown:$dst); |
| 982 | let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); |
| 983 | let AsmString = ""; |
| 984 | let hasSideEffects = 0; |
| 985 | let Constraints = "$supersrc = $dst"; |
| 986 | } |
| 987 | def IMPLICIT_DEF : StandardPseudoInstruction { |
| 988 | let OutOperandList = (outs unknown:$dst); |
| 989 | let InOperandList = (ins); |
| 990 | let AsmString = ""; |
| 991 | let hasSideEffects = 0; |
| 992 | let isReMaterializable = 1; |
| 993 | let isAsCheapAsAMove = 1; |
| 994 | } |
| 995 | def SUBREG_TO_REG : StandardPseudoInstruction { |
| 996 | let OutOperandList = (outs unknown:$dst); |
| 997 | let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); |
| 998 | let AsmString = ""; |
| 999 | let hasSideEffects = 0; |
| 1000 | } |
| 1001 | def COPY_TO_REGCLASS : StandardPseudoInstruction { |
| 1002 | let OutOperandList = (outs unknown:$dst); |
| 1003 | let InOperandList = (ins unknown:$src, i32imm:$regclass); |
| 1004 | let AsmString = ""; |
| 1005 | let hasSideEffects = 0; |
| 1006 | let isAsCheapAsAMove = 1; |
| 1007 | } |
| 1008 | def DBG_VALUE : StandardPseudoInstruction { |
| 1009 | let OutOperandList = (outs); |
| 1010 | let InOperandList = (ins variable_ops); |
| 1011 | let AsmString = "DBG_VALUE"; |
| 1012 | let hasSideEffects = 0; |
| 1013 | } |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1014 | def DBG_LABEL : StandardPseudoInstruction { |
| 1015 | let OutOperandList = (outs); |
| 1016 | let InOperandList = (ins unknown:$label); |
| 1017 | let AsmString = "DBG_LABEL"; |
| 1018 | let hasSideEffects = 0; |
| 1019 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1020 | def REG_SEQUENCE : StandardPseudoInstruction { |
| 1021 | let OutOperandList = (outs unknown:$dst); |
| 1022 | let InOperandList = (ins unknown:$supersrc, variable_ops); |
| 1023 | let AsmString = ""; |
| 1024 | let hasSideEffects = 0; |
| 1025 | let isAsCheapAsAMove = 1; |
| 1026 | } |
| 1027 | def COPY : StandardPseudoInstruction { |
| 1028 | let OutOperandList = (outs unknown:$dst); |
| 1029 | let InOperandList = (ins unknown:$src); |
| 1030 | let AsmString = ""; |
| 1031 | let hasSideEffects = 0; |
| 1032 | let isAsCheapAsAMove = 1; |
| 1033 | let hasNoSchedulingInfo = 0; |
| 1034 | } |
| 1035 | def BUNDLE : StandardPseudoInstruction { |
| 1036 | let OutOperandList = (outs); |
| 1037 | let InOperandList = (ins variable_ops); |
| 1038 | let AsmString = "BUNDLE"; |
| 1039 | let hasSideEffects = 1; |
| 1040 | } |
| 1041 | def LIFETIME_START : StandardPseudoInstruction { |
| 1042 | let OutOperandList = (outs); |
| 1043 | let InOperandList = (ins i32imm:$id); |
| 1044 | let AsmString = "LIFETIME_START"; |
| 1045 | let hasSideEffects = 0; |
| 1046 | } |
| 1047 | def LIFETIME_END : StandardPseudoInstruction { |
| 1048 | let OutOperandList = (outs); |
| 1049 | let InOperandList = (ins i32imm:$id); |
| 1050 | let AsmString = "LIFETIME_END"; |
| 1051 | let hasSideEffects = 0; |
| 1052 | } |
| 1053 | def STACKMAP : StandardPseudoInstruction { |
| 1054 | let OutOperandList = (outs); |
| 1055 | let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops); |
| 1056 | let hasSideEffects = 1; |
| 1057 | let isCall = 1; |
| 1058 | let mayLoad = 1; |
| 1059 | let usesCustomInserter = 1; |
| 1060 | } |
| 1061 | def PATCHPOINT : StandardPseudoInstruction { |
| 1062 | let OutOperandList = (outs unknown:$dst); |
| 1063 | let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee, |
| 1064 | i32imm:$nargs, i32imm:$cc, variable_ops); |
| 1065 | let hasSideEffects = 1; |
| 1066 | let isCall = 1; |
| 1067 | let mayLoad = 1; |
| 1068 | let usesCustomInserter = 1; |
| 1069 | } |
| 1070 | def STATEPOINT : StandardPseudoInstruction { |
| 1071 | let OutOperandList = (outs); |
| 1072 | let InOperandList = (ins variable_ops); |
| 1073 | let usesCustomInserter = 1; |
| 1074 | let mayLoad = 1; |
| 1075 | let mayStore = 1; |
| 1076 | let hasSideEffects = 1; |
| 1077 | let isCall = 1; |
| 1078 | } |
| 1079 | def LOAD_STACK_GUARD : StandardPseudoInstruction { |
| 1080 | let OutOperandList = (outs ptr_rc:$dst); |
| 1081 | let InOperandList = (ins); |
| 1082 | let mayLoad = 1; |
| 1083 | bit isReMaterializable = 1; |
| 1084 | let hasSideEffects = 0; |
| 1085 | bit isPseudo = 1; |
| 1086 | } |
| 1087 | def LOCAL_ESCAPE : StandardPseudoInstruction { |
| 1088 | // This instruction is really just a label. It has to be part of the chain so |
| 1089 | // that it doesn't get dropped from the DAG, but it produces nothing and has |
| 1090 | // no side effects. |
| 1091 | let OutOperandList = (outs); |
| 1092 | let InOperandList = (ins ptr_rc:$symbol, i32imm:$id); |
| 1093 | let hasSideEffects = 0; |
| 1094 | let hasCtrlDep = 1; |
| 1095 | } |
| 1096 | def FAULTING_OP : StandardPseudoInstruction { |
| 1097 | let OutOperandList = (outs unknown:$dst); |
| 1098 | let InOperandList = (ins variable_ops); |
| 1099 | let usesCustomInserter = 1; |
| 1100 | let hasSideEffects = 1; |
| 1101 | let mayLoad = 1; |
| 1102 | let mayStore = 1; |
| 1103 | let isTerminator = 1; |
| 1104 | let isBranch = 1; |
| 1105 | } |
| 1106 | def PATCHABLE_OP : StandardPseudoInstruction { |
| 1107 | let OutOperandList = (outs unknown:$dst); |
| 1108 | let InOperandList = (ins variable_ops); |
| 1109 | let usesCustomInserter = 1; |
| 1110 | let mayLoad = 1; |
| 1111 | let mayStore = 1; |
| 1112 | let hasSideEffects = 1; |
| 1113 | } |
| 1114 | def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction { |
| 1115 | let OutOperandList = (outs); |
| 1116 | let InOperandList = (ins); |
| 1117 | let AsmString = "# XRay Function Enter."; |
| 1118 | let usesCustomInserter = 1; |
| 1119 | let hasSideEffects = 0; |
| 1120 | } |
| 1121 | def PATCHABLE_RET : StandardPseudoInstruction { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1122 | let OutOperandList = (outs); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1123 | let InOperandList = (ins variable_ops); |
| 1124 | let AsmString = "# XRay Function Patchable RET."; |
| 1125 | let usesCustomInserter = 1; |
| 1126 | let hasSideEffects = 1; |
| 1127 | let isTerminator = 1; |
| 1128 | let isReturn = 1; |
| 1129 | } |
| 1130 | def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction { |
| 1131 | let OutOperandList = (outs); |
| 1132 | let InOperandList = (ins); |
| 1133 | let AsmString = "# XRay Function Exit."; |
| 1134 | let usesCustomInserter = 1; |
| 1135 | let hasSideEffects = 0; // FIXME: is this correct? |
| 1136 | let isReturn = 0; // Original return instruction will follow |
| 1137 | } |
| 1138 | def PATCHABLE_TAIL_CALL : StandardPseudoInstruction { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1139 | let OutOperandList = (outs); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1140 | let InOperandList = (ins variable_ops); |
| 1141 | let AsmString = "# XRay Tail Call Exit."; |
| 1142 | let usesCustomInserter = 1; |
| 1143 | let hasSideEffects = 1; |
| 1144 | let isReturn = 1; |
| 1145 | } |
| 1146 | def PATCHABLE_EVENT_CALL : StandardPseudoInstruction { |
| 1147 | let OutOperandList = (outs); |
| 1148 | let InOperandList = (ins ptr_rc:$event, i8imm:$size); |
| 1149 | let AsmString = "# XRay Custom Event Log."; |
| 1150 | let usesCustomInserter = 1; |
| 1151 | let isCall = 1; |
| 1152 | let mayLoad = 1; |
| 1153 | let mayStore = 1; |
| 1154 | let hasSideEffects = 1; |
| 1155 | } |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1156 | def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction { |
| 1157 | let OutOperandList = (outs); |
| 1158 | let InOperandList = (ins i16imm:$type, ptr_rc:$event, i32imm:$size); |
| 1159 | let AsmString = "# XRay Typed Event Log."; |
| 1160 | let usesCustomInserter = 1; |
| 1161 | let isCall = 1; |
| 1162 | let mayLoad = 1; |
| 1163 | let mayStore = 1; |
| 1164 | let hasSideEffects = 1; |
| 1165 | } |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1166 | def FENTRY_CALL : StandardPseudoInstruction { |
| 1167 | let OutOperandList = (outs unknown:$dst); |
| 1168 | let InOperandList = (ins variable_ops); |
| 1169 | let AsmString = "# FEntry call"; |
| 1170 | let usesCustomInserter = 1; |
| 1171 | let mayLoad = 1; |
| 1172 | let mayStore = 1; |
| 1173 | let hasSideEffects = 1; |
| 1174 | } |
| 1175 | def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction { |
| 1176 | let OutOperandList = (outs unknown:$dst); |
| 1177 | let InOperandList = (ins variable_ops); |
| 1178 | let AsmString = ""; |
| 1179 | let hasSideEffects = 1; |
| 1180 | } |
| 1181 | |
| 1182 | // Generic opcodes used in GlobalISel. |
| 1183 | include "llvm/Target/GenericOpcodes.td" |
| 1184 | |
| 1185 | //===----------------------------------------------------------------------===// |
| 1186 | // AsmParser - This class can be implemented by targets that wish to implement |
| 1187 | // .s file parsing. |
| 1188 | // |
| 1189 | // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel |
| 1190 | // syntax on X86 for example). |
| 1191 | // |
| 1192 | class AsmParser { |
| 1193 | // AsmParserClassName - This specifies the suffix to use for the asmparser |
| 1194 | // class. Generated AsmParser classes are always prefixed with the target |
| 1195 | // name. |
| 1196 | string AsmParserClassName = "AsmParser"; |
| 1197 | |
| 1198 | // AsmParserInstCleanup - If non-empty, this is the name of a custom member |
| 1199 | // function of the AsmParser class to call on every matched instruction. |
| 1200 | // This can be used to perform target specific instruction post-processing. |
| 1201 | string AsmParserInstCleanup = ""; |
| 1202 | |
| 1203 | // ShouldEmitMatchRegisterName - Set to false if the target needs a hand |
| 1204 | // written register name matcher |
| 1205 | bit ShouldEmitMatchRegisterName = 1; |
| 1206 | |
| 1207 | // Set to true if the target needs a generated 'alternative register name' |
| 1208 | // matcher. |
| 1209 | // |
| 1210 | // This generates a function which can be used to lookup registers from |
| 1211 | // their aliases. This function will fail when called on targets where |
| 1212 | // several registers share the same alias (i.e. not a 1:1 mapping). |
| 1213 | bit ShouldEmitMatchRegisterAltName = 0; |
| 1214 | |
| 1215 | // Set to true if MatchRegisterName and MatchRegisterAltName functions |
| 1216 | // should be generated even if there are duplicate register names. The |
| 1217 | // target is responsible for coercing aliased registers as necessary |
| 1218 | // (e.g. in validateTargetOperandClass), and there are no guarantees about |
| 1219 | // which numeric register identifier will be returned in the case of |
| 1220 | // multiple matches. |
| 1221 | bit AllowDuplicateRegisterNames = 0; |
| 1222 | |
| 1223 | // HasMnemonicFirst - Set to false if target instructions don't always |
| 1224 | // start with a mnemonic as the first token. |
| 1225 | bit HasMnemonicFirst = 1; |
| 1226 | |
| 1227 | // ReportMultipleNearMisses - |
| 1228 | // When 0, the assembly matcher reports an error for one encoding or operand |
| 1229 | // that did not match the parsed instruction. |
| 1230 | // When 1, the assmebly matcher returns a list of encodings that were close |
| 1231 | // to matching the parsed instruction, so to allow more detailed error |
| 1232 | // messages. |
| 1233 | bit ReportMultipleNearMisses = 0; |
| 1234 | } |
| 1235 | def DefaultAsmParser : AsmParser; |
| 1236 | |
| 1237 | //===----------------------------------------------------------------------===// |
| 1238 | // AsmParserVariant - Subtargets can have multiple different assembly parsers |
| 1239 | // (e.g. AT&T vs Intel syntax on X86 for example). This class can be |
| 1240 | // implemented by targets to describe such variants. |
| 1241 | // |
| 1242 | class AsmParserVariant { |
| 1243 | // Variant - AsmParsers can be of multiple different variants. Variants are |
| 1244 | // used to support targets that need to parser multiple formats for the |
| 1245 | // assembly language. |
| 1246 | int Variant = 0; |
| 1247 | |
| 1248 | // Name - The AsmParser variant name (e.g., AT&T vs Intel). |
| 1249 | string Name = ""; |
| 1250 | |
| 1251 | // CommentDelimiter - If given, the delimiter string used to recognize |
| 1252 | // comments which are hard coded in the .td assembler strings for individual |
| 1253 | // instructions. |
| 1254 | string CommentDelimiter = ""; |
| 1255 | |
| 1256 | // RegisterPrefix - If given, the token prefix which indicates a register |
| 1257 | // token. This is used by the matcher to automatically recognize hard coded |
| 1258 | // register tokens as constrained registers, instead of tokens, for the |
| 1259 | // purposes of matching. |
| 1260 | string RegisterPrefix = ""; |
| 1261 | |
| 1262 | // TokenizingCharacters - Characters that are standalone tokens |
| 1263 | string TokenizingCharacters = "[]*!"; |
| 1264 | |
| 1265 | // SeparatorCharacters - Characters that are not tokens |
| 1266 | string SeparatorCharacters = " \t,"; |
| 1267 | |
| 1268 | // BreakCharacters - Characters that start new identifiers |
| 1269 | string BreakCharacters = ""; |
| 1270 | } |
| 1271 | def DefaultAsmParserVariant : AsmParserVariant; |
| 1272 | |
| 1273 | /// AssemblerPredicate - This is a Predicate that can be used when the assembler |
| 1274 | /// matches instructions and aliases. |
| 1275 | class AssemblerPredicate<string cond, string name = ""> { |
| 1276 | bit AssemblerMatcherPredicate = 1; |
| 1277 | string AssemblerCondString = cond; |
| 1278 | string PredicateName = name; |
| 1279 | } |
| 1280 | |
| 1281 | /// TokenAlias - This class allows targets to define assembler token |
| 1282 | /// operand aliases. That is, a token literal operand which is equivalent |
| 1283 | /// to another, canonical, token literal. For example, ARM allows: |
| 1284 | /// vmov.u32 s4, #0 -> vmov.i32, #0 |
| 1285 | /// 'u32' is a more specific designator for the 32-bit integer type specifier |
| 1286 | /// and is legal for any instruction which accepts 'i32' as a datatype suffix. |
| 1287 | /// def : TokenAlias<".u32", ".i32">; |
| 1288 | /// |
| 1289 | /// This works by marking the match class of 'From' as a subclass of the |
| 1290 | /// match class of 'To'. |
| 1291 | class TokenAlias<string From, string To> { |
| 1292 | string FromToken = From; |
| 1293 | string ToToken = To; |
| 1294 | } |
| 1295 | |
| 1296 | /// MnemonicAlias - This class allows targets to define assembler mnemonic |
| 1297 | /// aliases. This should be used when all forms of one mnemonic are accepted |
| 1298 | /// with a different mnemonic. For example, X86 allows: |
| 1299 | /// sal %al, 1 -> shl %al, 1 |
| 1300 | /// sal %ax, %cl -> shl %ax, %cl |
| 1301 | /// sal %eax, %cl -> shl %eax, %cl |
| 1302 | /// etc. Though "sal" is accepted with many forms, all of them are directly |
| 1303 | /// translated to a shl, so it can be handled with (in the case of X86, it |
| 1304 | /// actually has one for each suffix as well): |
| 1305 | /// def : MnemonicAlias<"sal", "shl">; |
| 1306 | /// |
| 1307 | /// Mnemonic aliases are mapped before any other translation in the match phase, |
| 1308 | /// and do allow Requires predicates, e.g.: |
| 1309 | /// |
| 1310 | /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; |
| 1311 | /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; |
| 1312 | /// |
| 1313 | /// Mnemonic aliases can also be constrained to specific variants, e.g.: |
| 1314 | /// |
| 1315 | /// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>; |
| 1316 | /// |
| 1317 | /// If no variant (e.g., "att" or "intel") is specified then the alias is |
| 1318 | /// applied unconditionally. |
| 1319 | class MnemonicAlias<string From, string To, string VariantName = ""> { |
| 1320 | string FromMnemonic = From; |
| 1321 | string ToMnemonic = To; |
| 1322 | string AsmVariantName = VariantName; |
| 1323 | |
| 1324 | // Predicates - Predicates that must be true for this remapping to happen. |
| 1325 | list<Predicate> Predicates = []; |
| 1326 | } |
| 1327 | |
| 1328 | /// InstAlias - This defines an alternate assembly syntax that is allowed to |
| 1329 | /// match an instruction that has a different (more canonical) assembly |
| 1330 | /// representation. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1331 | class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1332 | string AsmString = Asm; // The .s format to match the instruction with. |
| 1333 | dag ResultInst = Result; // The MCInst to generate. |
| 1334 | |
| 1335 | // This determines which order the InstPrinter detects aliases for |
| 1336 | // printing. A larger value makes the alias more likely to be |
| 1337 | // emitted. The Instruction's own definition is notionally 0.5, so 0 |
| 1338 | // disables printing and 1 enables it if there are no conflicting aliases. |
| 1339 | int EmitPriority = Emit; |
| 1340 | |
| 1341 | // Predicates - Predicates that must be true for this to match. |
| 1342 | list<Predicate> Predicates = []; |
| 1343 | |
| 1344 | // If the instruction specified in Result has defined an AsmMatchConverter |
| 1345 | // then setting this to 1 will cause the alias to use the AsmMatchConverter |
| 1346 | // function when converting the OperandVector into an MCInst instead of the |
| 1347 | // function that is generated by the dag Result. |
| 1348 | // Setting this to 0 will cause the alias to ignore the Result instruction's |
| 1349 | // defined AsmMatchConverter and instead use the function generated by the |
| 1350 | // dag Result. |
| 1351 | bit UseInstAsmMatchConverter = 1; |
| 1352 | |
| 1353 | // Assembler variant name to use for this alias. If not specified then |
| 1354 | // assembler variants will be determined based on AsmString |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1355 | string AsmVariantName = VariantName; |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1356 | } |
| 1357 | |
| 1358 | //===----------------------------------------------------------------------===// |
| 1359 | // AsmWriter - This class can be implemented by targets that need to customize |
| 1360 | // the format of the .s file writer. |
| 1361 | // |
| 1362 | // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax |
| 1363 | // on X86 for example). |
| 1364 | // |
| 1365 | class AsmWriter { |
| 1366 | // AsmWriterClassName - This specifies the suffix to use for the asmwriter |
| 1367 | // class. Generated AsmWriter classes are always prefixed with the target |
| 1368 | // name. |
| 1369 | string AsmWriterClassName = "InstPrinter"; |
| 1370 | |
| 1371 | // PassSubtarget - Determines whether MCSubtargetInfo should be passed to |
| 1372 | // the various print methods. |
| 1373 | // FIXME: Remove after all ports are updated. |
| 1374 | int PassSubtarget = 0; |
| 1375 | |
| 1376 | // Variant - AsmWriters can be of multiple different variants. Variants are |
| 1377 | // used to support targets that need to emit assembly code in ways that are |
| 1378 | // mostly the same for different targets, but have minor differences in |
| 1379 | // syntax. If the asmstring contains {|} characters in them, this integer |
| 1380 | // will specify which alternative to use. For example "{x|y|z}" with Variant |
| 1381 | // == 1, will expand to "y". |
| 1382 | int Variant = 0; |
| 1383 | } |
| 1384 | def DefaultAsmWriter : AsmWriter; |
| 1385 | |
| 1386 | |
| 1387 | //===----------------------------------------------------------------------===// |
| 1388 | // Target - This class contains the "global" target information |
| 1389 | // |
| 1390 | class Target { |
| 1391 | // InstructionSet - Instruction set description for this target. |
| 1392 | InstrInfo InstructionSet; |
| 1393 | |
| 1394 | // AssemblyParsers - The AsmParser instances available for this target. |
| 1395 | list<AsmParser> AssemblyParsers = [DefaultAsmParser]; |
| 1396 | |
| 1397 | /// AssemblyParserVariants - The AsmParserVariant instances available for |
| 1398 | /// this target. |
| 1399 | list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant]; |
| 1400 | |
| 1401 | // AssemblyWriters - The AsmWriter instances available for this target. |
| 1402 | list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; |
| 1403 | |
| 1404 | // AllowRegisterRenaming - Controls whether this target allows |
| 1405 | // post-register-allocation renaming of registers. This is done by |
| 1406 | // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1 |
| 1407 | // for all opcodes if this flag is set to 0. |
| 1408 | int AllowRegisterRenaming = 0; |
| 1409 | } |
| 1410 | |
| 1411 | //===----------------------------------------------------------------------===// |
| 1412 | // SubtargetFeature - A characteristic of the chip set. |
| 1413 | // |
| 1414 | class SubtargetFeature<string n, string a, string v, string d, |
| 1415 | list<SubtargetFeature> i = []> { |
| 1416 | // Name - Feature name. Used by command line (-mattr=) to determine the |
| 1417 | // appropriate target chip. |
| 1418 | // |
| 1419 | string Name = n; |
| 1420 | |
| 1421 | // Attribute - Attribute to be set by feature. |
| 1422 | // |
| 1423 | string Attribute = a; |
| 1424 | |
| 1425 | // Value - Value the attribute to be set to by feature. |
| 1426 | // |
| 1427 | string Value = v; |
| 1428 | |
| 1429 | // Desc - Feature description. Used by command line (-mattr=) to display help |
| 1430 | // information. |
| 1431 | // |
| 1432 | string Desc = d; |
| 1433 | |
| 1434 | // Implies - Features that this feature implies are present. If one of those |
| 1435 | // features isn't set, then this one shouldn't be set either. |
| 1436 | // |
| 1437 | list<SubtargetFeature> Implies = i; |
| 1438 | } |
| 1439 | |
| 1440 | /// Specifies a Subtarget feature that this instruction is deprecated on. |
| 1441 | class Deprecated<SubtargetFeature dep> { |
| 1442 | SubtargetFeature DeprecatedFeatureMask = dep; |
| 1443 | } |
| 1444 | |
| 1445 | /// A custom predicate used to determine if an instruction is |
| 1446 | /// deprecated or not. |
| 1447 | class ComplexDeprecationPredicate<string dep> { |
| 1448 | string ComplexDeprecationPredicate = dep; |
| 1449 | } |
| 1450 | |
| 1451 | //===----------------------------------------------------------------------===// |
| 1452 | // Processor chip sets - These values represent each of the chip sets supported |
| 1453 | // by the scheduler. Each Processor definition requires corresponding |
| 1454 | // instruction itineraries. |
| 1455 | // |
| 1456 | class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> { |
| 1457 | // Name - Chip set name. Used by command line (-mcpu=) to determine the |
| 1458 | // appropriate target chip. |
| 1459 | // |
| 1460 | string Name = n; |
| 1461 | |
| 1462 | // SchedModel - The machine model for scheduling and instruction cost. |
| 1463 | // |
| 1464 | SchedMachineModel SchedModel = NoSchedModel; |
| 1465 | |
| 1466 | // ProcItin - The scheduling information for the target processor. |
| 1467 | // |
| 1468 | ProcessorItineraries ProcItin = pi; |
| 1469 | |
| 1470 | // Features - list of |
| 1471 | list<SubtargetFeature> Features = f; |
| 1472 | } |
| 1473 | |
| 1474 | // ProcessorModel allows subtargets to specify the more general |
| 1475 | // SchedMachineModel instead if a ProcessorItinerary. Subtargets will |
| 1476 | // gradually move to this newer form. |
| 1477 | // |
| 1478 | // Although this class always passes NoItineraries to the Processor |
| 1479 | // class, the SchedMachineModel may still define valid Itineraries. |
| 1480 | class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f> |
| 1481 | : Processor<n, NoItineraries, f> { |
| 1482 | let SchedModel = m; |
| 1483 | } |
| 1484 | |
| 1485 | //===----------------------------------------------------------------------===// |
| 1486 | // InstrMapping - This class is used to create mapping tables to relate |
| 1487 | // instructions with each other based on the values specified in RowFields, |
| 1488 | // ColFields, KeyCol and ValueCols. |
| 1489 | // |
| 1490 | class InstrMapping { |
| 1491 | // FilterClass - Used to limit search space only to the instructions that |
| 1492 | // define the relationship modeled by this InstrMapping record. |
| 1493 | string FilterClass; |
| 1494 | |
| 1495 | // RowFields - List of fields/attributes that should be same for all the |
| 1496 | // instructions in a row of the relation table. Think of this as a set of |
| 1497 | // properties shared by all the instructions related by this relationship |
| 1498 | // model and is used to categorize instructions into subgroups. For instance, |
| 1499 | // if we want to define a relation that maps 'Add' instruction to its |
| 1500 | // predicated forms, we can define RowFields like this: |
| 1501 | // |
| 1502 | // let RowFields = BaseOp |
| 1503 | // All add instruction predicated/non-predicated will have to set their BaseOp |
| 1504 | // to the same value. |
| 1505 | // |
| 1506 | // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' } |
| 1507 | // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' } |
| 1508 | // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' } |
| 1509 | list<string> RowFields = []; |
| 1510 | |
| 1511 | // List of fields/attributes that are same for all the instructions |
| 1512 | // in a column of the relation table. |
| 1513 | // Ex: let ColFields = 'predSense' -- It means that the columns are arranged |
| 1514 | // based on the 'predSense' values. All the instruction in a specific |
| 1515 | // column have the same value and it is fixed for the column according |
| 1516 | // to the values set in 'ValueCols'. |
| 1517 | list<string> ColFields = []; |
| 1518 | |
| 1519 | // Values for the fields/attributes listed in 'ColFields'. |
| 1520 | // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction |
| 1521 | // that models this relation) should be non-predicated. |
| 1522 | // In the example above, 'Add' is the key instruction. |
| 1523 | list<string> KeyCol = []; |
| 1524 | |
| 1525 | // List of values for the fields/attributes listed in 'ColFields', one for |
| 1526 | // each column in the relation table. |
| 1527 | // |
| 1528 | // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the |
| 1529 | // table. First column requires all the instructions to have predSense |
| 1530 | // set to 'true' and second column requires it to be 'false'. |
| 1531 | list<list<string> > ValueCols = []; |
| 1532 | } |
| 1533 | |
| 1534 | //===----------------------------------------------------------------------===// |
| 1535 | // Pull in the common support for calling conventions. |
| 1536 | // |
| 1537 | include "llvm/Target/TargetCallingConv.td" |
| 1538 | |
| 1539 | //===----------------------------------------------------------------------===// |
| 1540 | // Pull in the common support for DAG isel generation. |
| 1541 | // |
| 1542 | include "llvm/Target/TargetSelectionDAG.td" |
| 1543 | |
| 1544 | //===----------------------------------------------------------------------===// |
| 1545 | // Pull in the common support for Global ISel register bank info generation. |
| 1546 | // |
| 1547 | include "llvm/Target/GlobalISel/RegisterBank.td" |
| 1548 | |
| 1549 | //===----------------------------------------------------------------------===// |
| 1550 | // Pull in the common support for DAG isel generation. |
| 1551 | // |
| 1552 | include "llvm/Target/GlobalISel/Target.td" |
| 1553 | |
| 1554 | //===----------------------------------------------------------------------===// |
| 1555 | // Pull in the common support for the Global ISel DAG-based selector generation. |
| 1556 | // |
| 1557 | include "llvm/Target/GlobalISel/SelectionDAGCompat.td" |