blob: 538605a57ab4dc58fbe27b1025c41d94395f9846 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/IR/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24class HwMode<string FS> {
25 // A string representing subtarget features that turn on this HW mode.
26 // For example, "+feat1,-feat2" will indicate that the mode is active
27 // when "feat1" is enabled and "feat2" is disabled at the same time.
28 // Any other features are not checked.
29 // When multiple modes are used, they should be mutually exclusive,
30 // otherwise the results are unpredictable.
31 string Features = FS;
32}
33
34// A special mode recognized by tablegen. This mode is considered active
35// when no other mode is active. For targets that do not use specific hw
36// modes, this is the only mode.
37def DefaultMode : HwMode<"">;
38
39// A class used to associate objects with HW modes. It is only intended to
40// be used as a base class, where the derived class should contain a member
41// "Objects", which is a list of the same length as the list of modes.
42// The n-th element on the Objects list will be associated with the n-th
43// element on the Modes list.
44class HwModeSelect<list<HwMode> Ms> {
45 list<HwMode> Modes = Ms;
46}
47
48// A common class that implements a counterpart of ValueType, which is
49// dependent on a HW mode. This class inherits from ValueType itself,
50// which makes it possible to use objects of this class where ValueType
51// objects could be used. This is specifically applicable to selection
52// patterns.
53class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
54 : HwModeSelect<Ms>, ValueType<0, 0> {
55 // The length of this list must be the same as the length of Ms.
56 list<ValueType> Objects = Ts;
57}
58
59// A class representing the register size, spill size and spill alignment
60// in bits of a register.
61class RegInfo<int RS, int SS, int SA> {
62 int RegSize = RS; // Register size in bits.
63 int SpillSize = SS; // Spill slot size in bits.
64 int SpillAlignment = SA; // Spill slot alignment in bits.
65}
66
67// The register size/alignment information, parameterized by a HW mode.
68class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
69 : HwModeSelect<Ms> {
70 // The length of this list must be the same as the length of Ms.
71 list<RegInfo> Objects = Ts;
72}
73
74// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
75class SubRegIndex<int size, int offset = 0> {
76 string Namespace = "";
77
78 // Size - Size (in bits) of the sub-registers represented by this index.
79 int Size = size;
80
81 // Offset - Offset of the first bit that is part of this sub-register index.
82 // Set it to -1 if the same index is used to represent sub-registers that can
83 // be at different offsets (for example when using an index to access an
84 // element in a register tuple).
85 int Offset = offset;
86
87 // ComposedOf - A list of two SubRegIndex instances, [A, B].
88 // This indicates that this SubRegIndex is the result of composing A and B.
89 // See ComposedSubRegIndex.
90 list<SubRegIndex> ComposedOf = [];
91
92 // CoveringSubRegIndices - A list of two or more sub-register indexes that
93 // cover this sub-register.
94 //
95 // This field should normally be left blank as TableGen can infer it.
96 //
97 // TableGen automatically detects sub-registers that straddle the registers
98 // in the SubRegs field of a Register definition. For example:
99 //
100 // Q0 = dsub_0 -> D0, dsub_1 -> D1
101 // Q1 = dsub_0 -> D2, dsub_1 -> D3
102 // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
103 // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
104 //
105 // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
106 // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
107 // CoveringSubRegIndices = [dsub_1, dsub_2].
108 list<SubRegIndex> CoveringSubRegIndices = [];
109}
110
111// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
112// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
113class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
114 : SubRegIndex<B.Size, !if(!eq(A.Offset, -1), -1,
115 !if(!eq(B.Offset, -1), -1,
116 !add(A.Offset, B.Offset)))> {
117 // See SubRegIndex.
118 let ComposedOf = [A, B];
119}
120
121// RegAltNameIndex - The alternate name set to use for register operands of
122// this register class when printing.
123class RegAltNameIndex {
124 string Namespace = "";
125}
126def NoRegAltName : RegAltNameIndex;
127
128// Register - You should define one instance of this class for each register
129// in the target machine. String n will become the "name" of the register.
130class Register<string n, list<string> altNames = []> {
131 string Namespace = "";
132 string AsmName = n;
133 list<string> AltNames = altNames;
134
135 // Aliases - A list of registers that this register overlaps with. A read or
136 // modification of this register can potentially read or modify the aliased
137 // registers.
138 list<Register> Aliases = [];
139
140 // SubRegs - A list of registers that are parts of this register. Note these
141 // are "immediate" sub-registers and the registers within the list do not
142 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
143 // not [AX, AH, AL].
144 list<Register> SubRegs = [];
145
146 // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
147 // to address it. Sub-sub-register indices are automatically inherited from
148 // SubRegs.
149 list<SubRegIndex> SubRegIndices = [];
150
151 // RegAltNameIndices - The alternate name indices which are valid for this
152 // register.
153 list<RegAltNameIndex> RegAltNameIndices = [];
154
155 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
156 // These values can be determined by locating the <target>.h file in the
157 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
158 // order of these names correspond to the enumeration used by gcc. A value of
159 // -1 indicates that the gcc number is undefined and -2 that register number
160 // is invalid for this mode/flavour.
161 list<int> DwarfNumbers = [];
162
163 // CostPerUse - Additional cost of instructions using this register compared
164 // to other registers in its class. The register allocator will try to
165 // minimize the number of instructions using a register with a CostPerUse.
166 // This is used by the x86-64 and ARM Thumb targets where some registers
167 // require larger instruction encodings.
168 int CostPerUse = 0;
169
170 // CoveredBySubRegs - When this bit is set, the value of this register is
171 // completely determined by the value of its sub-registers. For example, the
172 // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
173 // covered by its sub-register AX.
174 bit CoveredBySubRegs = 0;
175
176 // HWEncoding - The target specific hardware encoding for this register.
177 bits<16> HWEncoding = 0;
178
179 bit isArtificial = 0;
180}
181
182// RegisterWithSubRegs - This can be used to define instances of Register which
183// need to specify sub-registers.
184// List "subregs" specifies which registers are sub-registers to this one. This
185// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
186// This allows the code generator to be careful not to put two values with
187// overlapping live ranges into registers which alias.
188class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
189 let SubRegs = subregs;
190}
191
192// DAGOperand - An empty base class that unifies RegisterClass's and other forms
193// of Operand's that are legal as type qualifiers in DAG patterns. This should
194// only ever be used for defining multiclasses that are polymorphic over both
195// RegisterClass's and other Operand's.
196class DAGOperand {
197 string OperandNamespace = "MCOI";
198 string DecoderMethod = "";
199}
200
201// RegisterClass - Now that all of the registers are defined, and aliases
202// between registers are defined, specify which registers belong to which
203// register classes. This also defines the default allocation order of
204// registers by register allocators.
205//
206class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
207 dag regList, RegAltNameIndex idx = NoRegAltName>
208 : DAGOperand {
209 string Namespace = namespace;
210
211 // The register size/alignment information, parameterized by a HW mode.
212 RegInfoByHwMode RegInfos;
213
214 // RegType - Specify the list ValueType of the registers in this register
215 // class. Note that all registers in a register class must have the same
216 // ValueTypes. This is a list because some targets permit storing different
217 // types in same register, for example vector values with 128-bit total size,
218 // but different count/size of items, like SSE on x86.
219 //
220 list<ValueType> RegTypes = regTypes;
221
222 // Size - Specify the spill size in bits of the registers. A default value of
223 // zero lets tablgen pick an appropriate size.
224 int Size = 0;
225
226 // Alignment - Specify the alignment required of the registers when they are
227 // stored or loaded to memory.
228 //
229 int Alignment = alignment;
230
231 // CopyCost - This value is used to specify the cost of copying a value
232 // between two registers in this register class. The default value is one
233 // meaning it takes a single instruction to perform the copying. A negative
234 // value means copying is extremely expensive or impossible.
235 int CopyCost = 1;
236
237 // MemberList - Specify which registers are in this class. If the
238 // allocation_order_* method are not specified, this also defines the order of
239 // allocation used by the register allocator.
240 //
241 dag MemberList = regList;
242
243 // AltNameIndex - The alternate register name to use when printing operands
244 // of this register class. Every register in the register class must have
245 // a valid alternate name for the given index.
246 RegAltNameIndex altNameIndex = idx;
247
248 // isAllocatable - Specify that the register class can be used for virtual
249 // registers and register allocation. Some register classes are only used to
250 // model instruction operand constraints, and should have isAllocatable = 0.
251 bit isAllocatable = 1;
252
253 // AltOrders - List of alternative allocation orders. The default order is
254 // MemberList itself, and that is good enough for most targets since the
255 // register allocators automatically remove reserved registers and move
256 // callee-saved registers to the end.
257 list<dag> AltOrders = [];
258
259 // AltOrderSelect - The body of a function that selects the allocation order
260 // to use in a given machine function. The code will be inserted in a
261 // function like this:
262 //
263 // static inline unsigned f(const MachineFunction &MF) { ... }
264 //
265 // The function should return 0 to select the default order defined by
266 // MemberList, 1 to select the first AltOrders entry and so on.
267 code AltOrderSelect = [{}];
268
269 // Specify allocation priority for register allocators using a greedy
270 // heuristic. Classes with higher priority values are assigned first. This is
271 // useful as it is sometimes beneficial to assign registers to highly
272 // constrained classes first. The value has to be in the range [0,63].
273 int AllocationPriority = 0;
274
275 // The diagnostic type to present when referencing this operand in a match
276 // failure error message. If this is empty, the default Match_InvalidOperand
277 // diagnostic type will be used. If this is "<name>", a Match_<name> enum
278 // value will be generated and used for this operand type. The target
279 // assembly parser is responsible for converting this into a user-facing
280 // diagnostic message.
281 string DiagnosticType = "";
282
283 // A diagnostic message to emit when an invalid value is provided for this
284 // register class when it is being used an an assembly operand. If this is
285 // non-empty, an anonymous diagnostic type enum value will be generated, and
286 // the assembly matcher will provide a function to map from diagnostic types
287 // to message strings.
288 string DiagnosticString = "";
289}
290
291// The memberList in a RegisterClass is a dag of set operations. TableGen
292// evaluates these set operations and expand them into register lists. These
293// are the most common operation, see test/TableGen/SetTheory.td for more
294// examples of what is possible:
295//
296// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
297// register class, or a sub-expression. This is also the way to simply list
298// registers.
299//
300// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
301//
302// (and GPR, CSR) - Set intersection. All registers from the first set that are
303// also in the second set.
304//
305// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
306// numbered registers. Takes an optional 4th operand which is a stride to use
307// when generating the sequence.
308//
309// (shl GPR, 4) - Remove the first N elements.
310//
311// (trunc GPR, 4) - Truncate after the first N elements.
312//
313// (rotl GPR, 1) - Rotate N places to the left.
314//
315// (rotr GPR, 1) - Rotate N places to the right.
316//
317// (decimate GPR, 2) - Pick every N'th element, starting with the first.
318//
319// (interleave A, B, ...) - Interleave the elements from each argument list.
320//
321// All of these operators work on ordered sets, not lists. That means
322// duplicates are removed from sub-expressions.
323
324// Set operators. The rest is defined in TargetSelectionDAG.td.
325def sequence;
326def decimate;
327def interleave;
328
329// RegisterTuples - Automatically generate super-registers by forming tuples of
330// sub-registers. This is useful for modeling register sequence constraints
331// with pseudo-registers that are larger than the architectural registers.
332//
333// The sub-register lists are zipped together:
334//
335// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
336//
337// Generates the same registers as:
338//
339// let SubRegIndices = [sube, subo] in {
340// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
341// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
342// }
343//
344// The generated pseudo-registers inherit super-classes and fields from their
345// first sub-register. Most fields from the Register class are inferred, and
346// the AsmName and Dwarf numbers are cleared.
347//
348// RegisterTuples instances can be used in other set operations to form
349// register classes and so on. This is the only way of using the generated
350// registers.
351class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs> {
352 // SubRegs - N lists of registers to be zipped up. Super-registers are
353 // synthesized from the first element of each SubRegs list, the second
354 // element and so on.
355 list<dag> SubRegs = Regs;
356
357 // SubRegIndices - N SubRegIndex instances. This provides the names of the
358 // sub-registers in the synthesized super-registers.
359 list<SubRegIndex> SubRegIndices = Indices;
360}
361
362
363//===----------------------------------------------------------------------===//
364// DwarfRegNum - This class provides a mapping of the llvm register enumeration
365// to the register numbering used by gcc and gdb. These values are used by a
366// debug information writer to describe where values may be located during
367// execution.
368class DwarfRegNum<list<int> Numbers> {
369 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
370 // These values can be determined by locating the <target>.h file in the
371 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
372 // order of these names correspond to the enumeration used by gcc. A value of
373 // -1 indicates that the gcc number is undefined and -2 that register number
374 // is invalid for this mode/flavour.
375 list<int> DwarfNumbers = Numbers;
376}
377
378// DwarfRegAlias - This class declares that a given register uses the same dwarf
379// numbers as another one. This is useful for making it clear that the two
380// registers do have the same number. It also lets us build a mapping
381// from dwarf register number to llvm register.
382class DwarfRegAlias<Register reg> {
383 Register DwarfAlias = reg;
384}
385
386//===----------------------------------------------------------------------===//
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100387// Pull in the common support for MCPredicate (portable scheduling predicates).
388//
389include "llvm/Target/TargetInstrPredicate.td"
390
391//===----------------------------------------------------------------------===//
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100392// Pull in the common support for scheduling
393//
394include "llvm/Target/TargetSchedule.td"
395
396class Predicate; // Forward def
397
398//===----------------------------------------------------------------------===//
399// Instruction set description - These classes correspond to the C++ classes in
400// the Target/TargetInstrInfo.h file.
401//
402class Instruction {
403 string Namespace = "";
404
405 dag OutOperandList; // An dag containing the MI def operand list.
406 dag InOperandList; // An dag containing the MI use operand list.
407 string AsmString = ""; // The .s format to print the instruction with.
408
409 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
410 // otherwise, uninitialized.
411 list<dag> Pattern;
412
413 // The follow state will eventually be inferred automatically from the
414 // instruction pattern.
415
416 list<Register> Uses = []; // Default to using no non-operand registers
417 list<Register> Defs = []; // Default to modifying no non-operand registers
418
419 // Predicates - List of predicates which will be turned into isel matching
420 // code.
421 list<Predicate> Predicates = [];
422
423 // Size - Size of encoded instruction, or zero if the size cannot be determined
424 // from the opcode.
425 int Size = 0;
426
427 // DecoderNamespace - The "namespace" in which this instruction exists, on
428 // targets like ARM which multiple ISA namespaces exist.
429 string DecoderNamespace = "";
430
431 // Code size, for instruction selection.
432 // FIXME: What does this actually mean?
433 int CodeSize = 0;
434
435 // Added complexity passed onto matching pattern.
436 int AddedComplexity = 0;
437
438 // These bits capture information about the high-level semantics of the
439 // instruction.
440 bit isReturn = 0; // Is this instruction a return instruction?
441 bit isBranch = 0; // Is this instruction a branch instruction?
Andrew Scull0372a572018-11-16 15:47:06 +0000442 bit isEHScopeReturn = 0; // Does this instruction end an EH scope?
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100443 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
444 bit isCompare = 0; // Is this instruction a comparison instruction?
445 bit isMoveImm = 0; // Is this instruction a move immediate instruction?
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100446 bit isMoveReg = 0; // Is this instruction a move register instruction?
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100447 bit isBitcast = 0; // Is this instruction a bitcast instruction?
448 bit isSelect = 0; // Is this instruction a select instruction?
449 bit isBarrier = 0; // Can control flow fall through this instruction?
450 bit isCall = 0; // Is this instruction a call instruction?
451 bit isAdd = 0; // Is this instruction an add instruction?
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100452 bit isTrap = 0; // Is this instruction a trap instruction?
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100453 bit canFoldAsLoad = 0; // Can this be folded as a simple memory operand?
454 bit mayLoad = ?; // Is it possible for this inst to read memory?
455 bit mayStore = ?; // Is it possible for this inst to write memory?
456 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
457 bit isCommutable = 0; // Is this 3 operand instruction commutable?
458 bit isTerminator = 0; // Is this part of the terminator for a basic block?
459 bit isReMaterializable = 0; // Is this instruction re-materializable?
460 bit isPredicable = 0; // Is this instruction predicable?
461 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
462 bit usesCustomInserter = 0; // Pseudo instr needing special help.
463 bit hasPostISelHook = 0; // To be *adjusted* after isel by target hook.
464 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
465 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
466 bit isConvergent = 0; // Is this instruction convergent?
467 bit isAsCheapAsAMove = 0; // As cheap (or cheaper) than a move instruction.
468 bit hasExtraSrcRegAllocReq = 0; // Sources have special regalloc requirement?
469 bit hasExtraDefRegAllocReq = 0; // Defs have special regalloc requirement?
470 bit isRegSequence = 0; // Is this instruction a kind of reg sequence?
471 // If so, make sure to override
472 // TargetInstrInfo::getRegSequenceLikeInputs.
473 bit isPseudo = 0; // Is this instruction a pseudo-instruction?
474 // If so, won't have encoding information for
475 // the [MC]CodeEmitter stuff.
476 bit isExtractSubreg = 0; // Is this instruction a kind of extract subreg?
477 // If so, make sure to override
478 // TargetInstrInfo::getExtractSubregLikeInputs.
479 bit isInsertSubreg = 0; // Is this instruction a kind of insert subreg?
480 // If so, make sure to override
481 // TargetInstrInfo::getInsertSubregLikeInputs.
482
483 // Does the instruction have side effects that are not captured by any
484 // operands of the instruction or other flags?
485 bit hasSideEffects = ?;
486
487 // Is this instruction a "real" instruction (with a distinct machine
488 // encoding), or is it a pseudo instruction used for codegen modeling
489 // purposes.
490 // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
491 // instructions can (and often do) still have encoding information
492 // associated with them. Once we've migrated all of them over to true
493 // pseudo-instructions that are lowered to real instructions prior to
494 // the printer/emitter, we can remove this attribute and just use isPseudo.
495 //
496 // The intended use is:
497 // isPseudo: Does not have encoding information and should be expanded,
498 // at the latest, during lowering to MCInst.
499 //
500 // isCodeGenOnly: Does have encoding information and can go through to the
501 // CodeEmitter unchanged, but duplicates a canonical instruction
502 // definition's encoding and should be ignored when constructing the
503 // assembler match tables.
504 bit isCodeGenOnly = 0;
505
506 // Is this instruction a pseudo instruction for use by the assembler parser.
507 bit isAsmParserOnly = 0;
508
509 // This instruction is not expected to be queried for scheduling latencies
510 // and therefore needs no scheduling information even for a complete
511 // scheduling model.
512 bit hasNoSchedulingInfo = 0;
513
514 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
515
516 // Scheduling information from TargetSchedule.td.
517 list<SchedReadWrite> SchedRW;
518
519 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
520
521 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
522 /// be encoded into the output machineinstr.
523 string DisableEncoding = "";
524
525 string PostEncoderMethod = "";
526 string DecoderMethod = "";
527
528 // Is the instruction decoder method able to completely determine if the
529 // given instruction is valid or not. If the TableGen definition of the
530 // instruction specifies bitpattern A??B where A and B are static bits, the
531 // hasCompleteDecoder flag says whether the decoder method fully handles the
532 // ?? space, i.e. if it is a final arbiter for the instruction validity.
533 // If not then the decoder attempts to continue decoding when the decoder
534 // method fails.
535 //
536 // This allows to handle situations where the encoding is not fully
537 // orthogonal. Example:
538 // * InstA with bitpattern 0b0000????,
539 // * InstB with bitpattern 0b000000?? but the associated decoder method
540 // DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
541 //
542 // The decoder tries to decode a bitpattern that matches both InstA and
543 // InstB bitpatterns first as InstB (because it is the most specific
544 // encoding). In the default case (hasCompleteDecoder = 1), when
545 // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
546 // hasCompleteDecoder = 0 in InstB, the decoder is informed that
547 // DecodeInstB() is not able to determine if all possible values of ?? are
548 // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
549 // decode the bitpattern as InstA too.
550 bit hasCompleteDecoder = 1;
551
552 /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
553 bits<64> TSFlags = 0;
554
555 ///@name Assembler Parser Support
556 ///@{
557
558 string AsmMatchConverter = "";
559
560 /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
561 /// two-operand matcher inst-alias for a three operand instruction.
562 /// For example, the arm instruction "add r3, r3, r5" can be written
563 /// as "add r3, r5". The constraint is of the same form as a tied-operand
564 /// constraint. For example, "$Rn = $Rd".
565 string TwoOperandAliasConstraint = "";
566
567 /// Assembler variant name to use for this instruction. If specified then
568 /// instruction will be presented only in MatchTable for this variant. If
569 /// not specified then assembler variants will be determined based on
570 /// AsmString
571 string AsmVariantName = "";
572
573 ///@}
574
575 /// UseNamedOperandTable - If set, the operand indices of this instruction
576 /// can be queried via the getNamedOperandIdx() function which is generated
577 /// by TableGen.
578 bit UseNamedOperandTable = 0;
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100579
580 /// Should FastISel ignore this instruction. For certain ISAs, they have
581 /// instructions which map to the same ISD Opcode, value type operands and
582 /// instruction selection predicates. FastISel cannot handle such cases, but
583 /// SelectionDAG can.
584 bit FastISelShouldIgnore = 0;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100585}
586
587/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
588/// Which instruction it expands to and how the operands map from the
589/// pseudo.
590class PseudoInstExpansion<dag Result> {
591 dag ResultInst = Result; // The instruction to generate.
592 bit isPseudo = 1;
593}
594
595/// Predicates - These are extra conditionals which are turned into instruction
596/// selector matching code. Currently each predicate is just a string.
597class Predicate<string cond> {
598 string CondString = cond;
599
600 /// AssemblerMatcherPredicate - If this feature can be used by the assembler
601 /// matcher, this is true. Targets should set this by inheriting their
602 /// feature from the AssemblerPredicate class in addition to Predicate.
603 bit AssemblerMatcherPredicate = 0;
604
605 /// AssemblerCondString - Name of the subtarget feature being tested used
606 /// as alternative condition string used for assembler matcher.
607 /// e.g. "ModeThumb" is translated to "(Bits & ModeThumb) != 0".
608 /// "!ModeThumb" is translated to "(Bits & ModeThumb) == 0".
609 /// It can also list multiple features separated by ",".
610 /// e.g. "ModeThumb,FeatureThumb2" is translated to
611 /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
612 string AssemblerCondString = "";
613
614 /// PredicateName - User-level name to use for the predicate. Mainly for use
615 /// in diagnostics such as missing feature errors in the asm matcher.
616 string PredicateName = "";
617
618 /// Setting this to '1' indicates that the predicate must be recomputed on
619 /// every function change. Most predicates can leave this at '0'.
620 ///
621 /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
622 bit RecomputePerFunction = 0;
623}
624
625/// NoHonorSignDependentRounding - This predicate is true if support for
626/// sign-dependent-rounding is not enabled.
627def NoHonorSignDependentRounding
628 : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
629
630class Requires<list<Predicate> preds> {
631 list<Predicate> Predicates = preds;
632}
633
634/// ops definition - This is just a simple marker used to identify the operand
635/// list for an instruction. outs and ins are identical both syntactically and
636/// semantically; they are used to define def operands and use operands to
637/// improve readibility. This should be used like this:
638/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
639def ops;
640def outs;
641def ins;
642
643/// variable_ops definition - Mark this instruction as taking a variable number
644/// of operands.
645def variable_ops;
646
647
648/// PointerLikeRegClass - Values that are designed to have pointer width are
649/// derived from this. TableGen treats the register class as having a symbolic
650/// type that it doesn't know, and resolves the actual regclass to use by using
651/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
652class PointerLikeRegClass<int Kind> {
653 int RegClassKind = Kind;
654}
655
656
657/// ptr_rc definition - Mark this operand as being a pointer value whose
658/// register class is resolved dynamically via a callback to TargetInstrInfo.
659/// FIXME: We should probably change this to a class which contain a list of
660/// flags. But currently we have but one flag.
661def ptr_rc : PointerLikeRegClass<0>;
662
663/// unknown definition - Mark this operand as being of unknown type, causing
664/// it to be resolved by inference in the context it is used.
665class unknown_class;
666def unknown : unknown_class;
667
668/// AsmOperandClass - Representation for the kinds of operands which the target
669/// specific parser can create and the assembly matcher may need to distinguish.
670///
671/// Operand classes are used to define the order in which instructions are
672/// matched, to ensure that the instruction which gets matched for any
673/// particular list of operands is deterministic.
674///
675/// The target specific parser must be able to classify a parsed operand into a
676/// unique class which does not partially overlap with any other classes. It can
677/// match a subset of some other class, in which case the super class field
678/// should be defined.
679class AsmOperandClass {
680 /// The name to use for this class, which should be usable as an enum value.
681 string Name = ?;
682
683 /// The super classes of this operand.
684 list<AsmOperandClass> SuperClasses = [];
685
686 /// The name of the method on the target specific operand to call to test
687 /// whether the operand is an instance of this class. If not set, this will
688 /// default to "isFoo", where Foo is the AsmOperandClass name. The method
689 /// signature should be:
690 /// bool isFoo() const;
691 string PredicateMethod = ?;
692
693 /// The name of the method on the target specific operand to call to add the
694 /// target specific operand to an MCInst. If not set, this will default to
695 /// "addFooOperands", where Foo is the AsmOperandClass name. The method
696 /// signature should be:
697 /// void addFooOperands(MCInst &Inst, unsigned N) const;
698 string RenderMethod = ?;
699
700 /// The name of the method on the target specific operand to call to custom
701 /// handle the operand parsing. This is useful when the operands do not relate
702 /// to immediates or registers and are very instruction specific (as flags to
703 /// set in a processor register, coprocessor number, ...).
704 string ParserMethod = ?;
705
706 // The diagnostic type to present when referencing this operand in a
707 // match failure error message. By default, use a generic "invalid operand"
708 // diagnostic. The target AsmParser maps these codes to text.
709 string DiagnosticType = "";
710
711 /// A diagnostic message to emit when an invalid value is provided for this
712 /// operand.
713 string DiagnosticString = "";
714
715 /// Set to 1 if this operand is optional and not always required. Typically,
716 /// the AsmParser will emit an error when it finishes parsing an
717 /// instruction if it hasn't matched all the operands yet. However, this
718 /// error will be suppressed if all of the remaining unmatched operands are
719 /// marked as IsOptional.
720 ///
721 /// Optional arguments must be at the end of the operand list.
722 bit IsOptional = 0;
723
724 /// The name of the method on the target specific asm parser that returns the
725 /// default operand for this optional operand. This method is only used if
726 /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
727 /// where Foo is the AsmOperandClass name. The method signature should be:
728 /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
729 string DefaultMethod = ?;
730}
731
732def ImmAsmOperand : AsmOperandClass {
733 let Name = "Imm";
734}
735
736/// Operand Types - These provide the built-in operand types that may be used
737/// by a target. Targets can optionally provide their own operand types as
738/// needed, though this should not be needed for RISC targets.
739class Operand<ValueType ty> : DAGOperand {
740 ValueType Type = ty;
741 string PrintMethod = "printOperand";
742 string EncoderMethod = "";
743 bit hasCompleteDecoder = 1;
744 string OperandType = "OPERAND_UNKNOWN";
745 dag MIOperandInfo = (ops);
746
747 // MCOperandPredicate - Optionally, a code fragment operating on
748 // const MCOperand &MCOp, and returning a bool, to indicate if
749 // the value of MCOp is valid for the specific subclass of Operand
750 code MCOperandPredicate;
751
752 // ParserMatchClass - The "match class" that operands of this type fit
753 // in. Match classes are used to define the order in which instructions are
754 // match, to ensure that which instructions gets matched is deterministic.
755 //
756 // The target specific parser must be able to classify an parsed operand into
757 // a unique class, which does not partially overlap with any other classes. It
758 // can match a subset of some other class, in which case the AsmOperandClass
759 // should declare the other operand as one of its super classes.
760 AsmOperandClass ParserMatchClass = ImmAsmOperand;
761}
762
763class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
764 : DAGOperand {
765 // RegClass - The register class of the operand.
766 RegisterClass RegClass = regclass;
767 // PrintMethod - The target method to call to print register operands of
768 // this type. The method normally will just use an alt-name index to look
769 // up the name to print. Default to the generic printOperand().
770 string PrintMethod = pm;
771
772 // EncoderMethod - The target method name to call to encode this register
773 // operand.
774 string EncoderMethod = "";
775
776 // ParserMatchClass - The "match class" that operands of this type fit
777 // in. Match classes are used to define the order in which instructions are
778 // match, to ensure that which instructions gets matched is deterministic.
779 //
780 // The target specific parser must be able to classify an parsed operand into
781 // a unique class, which does not partially overlap with any other classes. It
782 // can match a subset of some other class, in which case the AsmOperandClass
783 // should declare the other operand as one of its super classes.
784 AsmOperandClass ParserMatchClass;
785
786 string OperandType = "OPERAND_REGISTER";
787
788 // When referenced in the result of a CodeGen pattern, GlobalISel will
789 // normally copy the matched operand to the result. When this is set, it will
790 // emit a special copy that will replace zero-immediates with the specified
791 // zero-register.
792 Register GIZeroRegister = ?;
793}
794
795let OperandType = "OPERAND_IMMEDIATE" in {
796def i1imm : Operand<i1>;
797def i8imm : Operand<i8>;
798def i16imm : Operand<i16>;
799def i32imm : Operand<i32>;
800def i64imm : Operand<i64>;
801
802def f32imm : Operand<f32>;
803def f64imm : Operand<f64>;
804}
805
806// Register operands for generic instructions don't have an MVT, but do have
807// constraints linking the operands (e.g. all operands of a G_ADD must
808// have the same LLT).
809class TypedOperand<string Ty> : Operand<untyped> {
810 let OperandType = Ty;
811 bit IsPointer = 0;
812}
813
814def type0 : TypedOperand<"OPERAND_GENERIC_0">;
815def type1 : TypedOperand<"OPERAND_GENERIC_1">;
816def type2 : TypedOperand<"OPERAND_GENERIC_2">;
817def type3 : TypedOperand<"OPERAND_GENERIC_3">;
818def type4 : TypedOperand<"OPERAND_GENERIC_4">;
819def type5 : TypedOperand<"OPERAND_GENERIC_5">;
820
821let IsPointer = 1 in {
822 def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
823 def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
824 def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
825 def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
826 def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
827 def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
828}
829
830/// zero_reg definition - Special node to stand for the zero register.
831///
832def zero_reg;
833
834/// All operands which the MC layer classifies as predicates should inherit from
835/// this class in some manner. This is already handled for the most commonly
836/// used PredicateOperand, but may be useful in other circumstances.
837class PredicateOp;
838
839/// OperandWithDefaultOps - This Operand class can be used as the parent class
840/// for an Operand that needs to be initialized with a default value if
841/// no value is supplied in a pattern. This class can be used to simplify the
842/// pattern definitions for instructions that have target specific flags
843/// encoded as immediate operands.
844class OperandWithDefaultOps<ValueType ty, dag defaultops>
845 : Operand<ty> {
846 dag DefaultOps = defaultops;
847}
848
849/// PredicateOperand - This can be used to define a predicate operand for an
850/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
851/// AlwaysVal specifies the value of this predicate when set to "always
852/// execute".
853class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
854 : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
855 let MIOperandInfo = OpTypes;
856}
857
858/// OptionalDefOperand - This is used to define a optional definition operand
859/// for an instruction. DefaultOps is the register the operand represents if
860/// none is supplied, e.g. zero_reg.
861class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
862 : OperandWithDefaultOps<ty, defaultops> {
863 let MIOperandInfo = OpTypes;
864}
865
866
867// InstrInfo - This class should only be instantiated once to provide parameters
868// which are global to the target machine.
869//
870class InstrInfo {
871 // Target can specify its instructions in either big or little-endian formats.
872 // For instance, while both Sparc and PowerPC are big-endian platforms, the
873 // Sparc manual specifies its instructions in the format [31..0] (big), while
874 // PowerPC specifies them using the format [0..31] (little).
875 bit isLittleEndianEncoding = 0;
876
877 // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
878 // by default, and TableGen will infer their value from the instruction
879 // pattern when possible.
880 //
881 // Normally, TableGen will issue an error it it can't infer the value of a
882 // property that hasn't been set explicitly. When guessInstructionProperties
883 // is set, it will guess a safe value instead.
884 //
885 // This option is a temporary migration help. It will go away.
886 bit guessInstructionProperties = 1;
887
888 // TableGen's instruction encoder generator has support for matching operands
889 // to bit-field variables both by name and by position. While matching by
890 // name is preferred, this is currently not possible for complex operands,
891 // and some targets still reply on the positional encoding rules. When
892 // generating a decoder for such targets, the positional encoding rules must
893 // be used by the decoder generator as well.
894 //
895 // This option is temporary; it will go away once the TableGen decoder
896 // generator has better support for complex operands and targets have
897 // migrated away from using positionally encoded operands.
898 bit decodePositionallyEncodedOperands = 0;
899
900 // When set, this indicates that there will be no overlap between those
901 // operands that are matched by ordering (positional operands) and those
902 // matched by name.
903 //
904 // This option is temporary; it will go away once the TableGen decoder
905 // generator has better support for complex operands and targets have
906 // migrated away from using positionally encoded operands.
907 bit noNamedPositionallyEncodedOperands = 0;
908}
909
910// Standard Pseudo Instructions.
911// This list must match TargetOpcodes.h and CodeGenTarget.cpp.
912// Only these instructions are allowed in the TargetOpcode namespace.
913// Ensure mayLoad and mayStore have a default value, so as not to break
914// targets that set guessInstructionProperties=0. Any local definition of
915// mayLoad/mayStore takes precedence over these default values.
916class StandardPseudoInstruction : Instruction {
917 let mayLoad = 0;
918 let mayStore = 0;
919 let isCodeGenOnly = 1;
920 let isPseudo = 1;
921 let hasNoSchedulingInfo = 1;
922 let Namespace = "TargetOpcode";
923}
924def PHI : StandardPseudoInstruction {
925 let OutOperandList = (outs unknown:$dst);
926 let InOperandList = (ins variable_ops);
927 let AsmString = "PHINODE";
928 let hasSideEffects = 0;
929}
930def INLINEASM : StandardPseudoInstruction {
931 let OutOperandList = (outs);
932 let InOperandList = (ins variable_ops);
933 let AsmString = "";
934 let hasSideEffects = 0; // Note side effect is encoded in an operand.
935}
936def CFI_INSTRUCTION : StandardPseudoInstruction {
937 let OutOperandList = (outs);
938 let InOperandList = (ins i32imm:$id);
939 let AsmString = "";
940 let hasCtrlDep = 1;
941 let hasSideEffects = 0;
942 let isNotDuplicable = 1;
943}
944def EH_LABEL : StandardPseudoInstruction {
945 let OutOperandList = (outs);
946 let InOperandList = (ins i32imm:$id);
947 let AsmString = "";
948 let hasCtrlDep = 1;
949 let hasSideEffects = 0;
950 let isNotDuplicable = 1;
951}
952def GC_LABEL : StandardPseudoInstruction {
953 let OutOperandList = (outs);
954 let InOperandList = (ins i32imm:$id);
955 let AsmString = "";
956 let hasCtrlDep = 1;
957 let hasSideEffects = 0;
958 let isNotDuplicable = 1;
959}
960def ANNOTATION_LABEL : StandardPseudoInstruction {
961 let OutOperandList = (outs);
962 let InOperandList = (ins i32imm:$id);
963 let AsmString = "";
964 let hasCtrlDep = 1;
965 let hasSideEffects = 0;
966 let isNotDuplicable = 1;
967}
968def KILL : StandardPseudoInstruction {
969 let OutOperandList = (outs);
970 let InOperandList = (ins variable_ops);
971 let AsmString = "";
972 let hasSideEffects = 0;
973}
974def EXTRACT_SUBREG : StandardPseudoInstruction {
975 let OutOperandList = (outs unknown:$dst);
976 let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
977 let AsmString = "";
978 let hasSideEffects = 0;
979}
980def INSERT_SUBREG : StandardPseudoInstruction {
981 let OutOperandList = (outs unknown:$dst);
982 let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
983 let AsmString = "";
984 let hasSideEffects = 0;
985 let Constraints = "$supersrc = $dst";
986}
987def IMPLICIT_DEF : StandardPseudoInstruction {
988 let OutOperandList = (outs unknown:$dst);
989 let InOperandList = (ins);
990 let AsmString = "";
991 let hasSideEffects = 0;
992 let isReMaterializable = 1;
993 let isAsCheapAsAMove = 1;
994}
995def SUBREG_TO_REG : StandardPseudoInstruction {
996 let OutOperandList = (outs unknown:$dst);
997 let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
998 let AsmString = "";
999 let hasSideEffects = 0;
1000}
1001def COPY_TO_REGCLASS : StandardPseudoInstruction {
1002 let OutOperandList = (outs unknown:$dst);
1003 let InOperandList = (ins unknown:$src, i32imm:$regclass);
1004 let AsmString = "";
1005 let hasSideEffects = 0;
1006 let isAsCheapAsAMove = 1;
1007}
1008def DBG_VALUE : StandardPseudoInstruction {
1009 let OutOperandList = (outs);
1010 let InOperandList = (ins variable_ops);
1011 let AsmString = "DBG_VALUE";
1012 let hasSideEffects = 0;
1013}
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001014def DBG_LABEL : StandardPseudoInstruction {
1015 let OutOperandList = (outs);
1016 let InOperandList = (ins unknown:$label);
1017 let AsmString = "DBG_LABEL";
1018 let hasSideEffects = 0;
1019}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001020def REG_SEQUENCE : StandardPseudoInstruction {
1021 let OutOperandList = (outs unknown:$dst);
1022 let InOperandList = (ins unknown:$supersrc, variable_ops);
1023 let AsmString = "";
1024 let hasSideEffects = 0;
1025 let isAsCheapAsAMove = 1;
1026}
1027def COPY : StandardPseudoInstruction {
1028 let OutOperandList = (outs unknown:$dst);
1029 let InOperandList = (ins unknown:$src);
1030 let AsmString = "";
1031 let hasSideEffects = 0;
1032 let isAsCheapAsAMove = 1;
1033 let hasNoSchedulingInfo = 0;
1034}
1035def BUNDLE : StandardPseudoInstruction {
1036 let OutOperandList = (outs);
1037 let InOperandList = (ins variable_ops);
1038 let AsmString = "BUNDLE";
1039 let hasSideEffects = 1;
1040}
1041def LIFETIME_START : StandardPseudoInstruction {
1042 let OutOperandList = (outs);
1043 let InOperandList = (ins i32imm:$id);
1044 let AsmString = "LIFETIME_START";
1045 let hasSideEffects = 0;
1046}
1047def LIFETIME_END : StandardPseudoInstruction {
1048 let OutOperandList = (outs);
1049 let InOperandList = (ins i32imm:$id);
1050 let AsmString = "LIFETIME_END";
1051 let hasSideEffects = 0;
1052}
1053def STACKMAP : StandardPseudoInstruction {
1054 let OutOperandList = (outs);
1055 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
1056 let hasSideEffects = 1;
1057 let isCall = 1;
1058 let mayLoad = 1;
1059 let usesCustomInserter = 1;
1060}
1061def PATCHPOINT : StandardPseudoInstruction {
1062 let OutOperandList = (outs unknown:$dst);
1063 let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
1064 i32imm:$nargs, i32imm:$cc, variable_ops);
1065 let hasSideEffects = 1;
1066 let isCall = 1;
1067 let mayLoad = 1;
1068 let usesCustomInserter = 1;
1069}
1070def STATEPOINT : StandardPseudoInstruction {
1071 let OutOperandList = (outs);
1072 let InOperandList = (ins variable_ops);
1073 let usesCustomInserter = 1;
1074 let mayLoad = 1;
1075 let mayStore = 1;
1076 let hasSideEffects = 1;
1077 let isCall = 1;
1078}
1079def LOAD_STACK_GUARD : StandardPseudoInstruction {
1080 let OutOperandList = (outs ptr_rc:$dst);
1081 let InOperandList = (ins);
1082 let mayLoad = 1;
1083 bit isReMaterializable = 1;
1084 let hasSideEffects = 0;
1085 bit isPseudo = 1;
1086}
1087def LOCAL_ESCAPE : StandardPseudoInstruction {
1088 // This instruction is really just a label. It has to be part of the chain so
1089 // that it doesn't get dropped from the DAG, but it produces nothing and has
1090 // no side effects.
1091 let OutOperandList = (outs);
1092 let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
1093 let hasSideEffects = 0;
1094 let hasCtrlDep = 1;
1095}
1096def FAULTING_OP : StandardPseudoInstruction {
1097 let OutOperandList = (outs unknown:$dst);
1098 let InOperandList = (ins variable_ops);
1099 let usesCustomInserter = 1;
1100 let hasSideEffects = 1;
1101 let mayLoad = 1;
1102 let mayStore = 1;
1103 let isTerminator = 1;
1104 let isBranch = 1;
1105}
1106def PATCHABLE_OP : StandardPseudoInstruction {
1107 let OutOperandList = (outs unknown:$dst);
1108 let InOperandList = (ins variable_ops);
1109 let usesCustomInserter = 1;
1110 let mayLoad = 1;
1111 let mayStore = 1;
1112 let hasSideEffects = 1;
1113}
1114def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
1115 let OutOperandList = (outs);
1116 let InOperandList = (ins);
1117 let AsmString = "# XRay Function Enter.";
1118 let usesCustomInserter = 1;
1119 let hasSideEffects = 0;
1120}
1121def PATCHABLE_RET : StandardPseudoInstruction {
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001122 let OutOperandList = (outs);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001123 let InOperandList = (ins variable_ops);
1124 let AsmString = "# XRay Function Patchable RET.";
1125 let usesCustomInserter = 1;
1126 let hasSideEffects = 1;
1127 let isTerminator = 1;
1128 let isReturn = 1;
1129}
1130def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
1131 let OutOperandList = (outs);
1132 let InOperandList = (ins);
1133 let AsmString = "# XRay Function Exit.";
1134 let usesCustomInserter = 1;
1135 let hasSideEffects = 0; // FIXME: is this correct?
1136 let isReturn = 0; // Original return instruction will follow
1137}
1138def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001139 let OutOperandList = (outs);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001140 let InOperandList = (ins variable_ops);
1141 let AsmString = "# XRay Tail Call Exit.";
1142 let usesCustomInserter = 1;
1143 let hasSideEffects = 1;
1144 let isReturn = 1;
1145}
1146def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
1147 let OutOperandList = (outs);
1148 let InOperandList = (ins ptr_rc:$event, i8imm:$size);
1149 let AsmString = "# XRay Custom Event Log.";
1150 let usesCustomInserter = 1;
1151 let isCall = 1;
1152 let mayLoad = 1;
1153 let mayStore = 1;
1154 let hasSideEffects = 1;
1155}
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001156def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
1157 let OutOperandList = (outs);
1158 let InOperandList = (ins i16imm:$type, ptr_rc:$event, i32imm:$size);
1159 let AsmString = "# XRay Typed Event Log.";
1160 let usesCustomInserter = 1;
1161 let isCall = 1;
1162 let mayLoad = 1;
1163 let mayStore = 1;
1164 let hasSideEffects = 1;
1165}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001166def FENTRY_CALL : StandardPseudoInstruction {
1167 let OutOperandList = (outs unknown:$dst);
1168 let InOperandList = (ins variable_ops);
1169 let AsmString = "# FEntry call";
1170 let usesCustomInserter = 1;
1171 let mayLoad = 1;
1172 let mayStore = 1;
1173 let hasSideEffects = 1;
1174}
1175def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
1176 let OutOperandList = (outs unknown:$dst);
1177 let InOperandList = (ins variable_ops);
1178 let AsmString = "";
1179 let hasSideEffects = 1;
1180}
1181
1182// Generic opcodes used in GlobalISel.
1183include "llvm/Target/GenericOpcodes.td"
1184
1185//===----------------------------------------------------------------------===//
1186// AsmParser - This class can be implemented by targets that wish to implement
1187// .s file parsing.
1188//
1189// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
1190// syntax on X86 for example).
1191//
1192class AsmParser {
1193 // AsmParserClassName - This specifies the suffix to use for the asmparser
1194 // class. Generated AsmParser classes are always prefixed with the target
1195 // name.
1196 string AsmParserClassName = "AsmParser";
1197
1198 // AsmParserInstCleanup - If non-empty, this is the name of a custom member
1199 // function of the AsmParser class to call on every matched instruction.
1200 // This can be used to perform target specific instruction post-processing.
1201 string AsmParserInstCleanup = "";
1202
1203 // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
1204 // written register name matcher
1205 bit ShouldEmitMatchRegisterName = 1;
1206
1207 // Set to true if the target needs a generated 'alternative register name'
1208 // matcher.
1209 //
1210 // This generates a function which can be used to lookup registers from
1211 // their aliases. This function will fail when called on targets where
1212 // several registers share the same alias (i.e. not a 1:1 mapping).
1213 bit ShouldEmitMatchRegisterAltName = 0;
1214
1215 // Set to true if MatchRegisterName and MatchRegisterAltName functions
1216 // should be generated even if there are duplicate register names. The
1217 // target is responsible for coercing aliased registers as necessary
1218 // (e.g. in validateTargetOperandClass), and there are no guarantees about
1219 // which numeric register identifier will be returned in the case of
1220 // multiple matches.
1221 bit AllowDuplicateRegisterNames = 0;
1222
1223 // HasMnemonicFirst - Set to false if target instructions don't always
1224 // start with a mnemonic as the first token.
1225 bit HasMnemonicFirst = 1;
1226
1227 // ReportMultipleNearMisses -
1228 // When 0, the assembly matcher reports an error for one encoding or operand
1229 // that did not match the parsed instruction.
1230 // When 1, the assmebly matcher returns a list of encodings that were close
1231 // to matching the parsed instruction, so to allow more detailed error
1232 // messages.
1233 bit ReportMultipleNearMisses = 0;
1234}
1235def DefaultAsmParser : AsmParser;
1236
1237//===----------------------------------------------------------------------===//
1238// AsmParserVariant - Subtargets can have multiple different assembly parsers
1239// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
1240// implemented by targets to describe such variants.
1241//
1242class AsmParserVariant {
1243 // Variant - AsmParsers can be of multiple different variants. Variants are
1244 // used to support targets that need to parser multiple formats for the
1245 // assembly language.
1246 int Variant = 0;
1247
1248 // Name - The AsmParser variant name (e.g., AT&T vs Intel).
1249 string Name = "";
1250
1251 // CommentDelimiter - If given, the delimiter string used to recognize
1252 // comments which are hard coded in the .td assembler strings for individual
1253 // instructions.
1254 string CommentDelimiter = "";
1255
1256 // RegisterPrefix - If given, the token prefix which indicates a register
1257 // token. This is used by the matcher to automatically recognize hard coded
1258 // register tokens as constrained registers, instead of tokens, for the
1259 // purposes of matching.
1260 string RegisterPrefix = "";
1261
1262 // TokenizingCharacters - Characters that are standalone tokens
1263 string TokenizingCharacters = "[]*!";
1264
1265 // SeparatorCharacters - Characters that are not tokens
1266 string SeparatorCharacters = " \t,";
1267
1268 // BreakCharacters - Characters that start new identifiers
1269 string BreakCharacters = "";
1270}
1271def DefaultAsmParserVariant : AsmParserVariant;
1272
1273/// AssemblerPredicate - This is a Predicate that can be used when the assembler
1274/// matches instructions and aliases.
1275class AssemblerPredicate<string cond, string name = ""> {
1276 bit AssemblerMatcherPredicate = 1;
1277 string AssemblerCondString = cond;
1278 string PredicateName = name;
1279}
1280
1281/// TokenAlias - This class allows targets to define assembler token
1282/// operand aliases. That is, a token literal operand which is equivalent
1283/// to another, canonical, token literal. For example, ARM allows:
1284/// vmov.u32 s4, #0 -> vmov.i32, #0
1285/// 'u32' is a more specific designator for the 32-bit integer type specifier
1286/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
1287/// def : TokenAlias<".u32", ".i32">;
1288///
1289/// This works by marking the match class of 'From' as a subclass of the
1290/// match class of 'To'.
1291class TokenAlias<string From, string To> {
1292 string FromToken = From;
1293 string ToToken = To;
1294}
1295
1296/// MnemonicAlias - This class allows targets to define assembler mnemonic
1297/// aliases. This should be used when all forms of one mnemonic are accepted
1298/// with a different mnemonic. For example, X86 allows:
1299/// sal %al, 1 -> shl %al, 1
1300/// sal %ax, %cl -> shl %ax, %cl
1301/// sal %eax, %cl -> shl %eax, %cl
1302/// etc. Though "sal" is accepted with many forms, all of them are directly
1303/// translated to a shl, so it can be handled with (in the case of X86, it
1304/// actually has one for each suffix as well):
1305/// def : MnemonicAlias<"sal", "shl">;
1306///
1307/// Mnemonic aliases are mapped before any other translation in the match phase,
1308/// and do allow Requires predicates, e.g.:
1309///
1310/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
1311/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
1312///
1313/// Mnemonic aliases can also be constrained to specific variants, e.g.:
1314///
1315/// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
1316///
1317/// If no variant (e.g., "att" or "intel") is specified then the alias is
1318/// applied unconditionally.
1319class MnemonicAlias<string From, string To, string VariantName = ""> {
1320 string FromMnemonic = From;
1321 string ToMnemonic = To;
1322 string AsmVariantName = VariantName;
1323
1324 // Predicates - Predicates that must be true for this remapping to happen.
1325 list<Predicate> Predicates = [];
1326}
1327
1328/// InstAlias - This defines an alternate assembly syntax that is allowed to
1329/// match an instruction that has a different (more canonical) assembly
1330/// representation.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001331class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001332 string AsmString = Asm; // The .s format to match the instruction with.
1333 dag ResultInst = Result; // The MCInst to generate.
1334
1335 // This determines which order the InstPrinter detects aliases for
1336 // printing. A larger value makes the alias more likely to be
1337 // emitted. The Instruction's own definition is notionally 0.5, so 0
1338 // disables printing and 1 enables it if there are no conflicting aliases.
1339 int EmitPriority = Emit;
1340
1341 // Predicates - Predicates that must be true for this to match.
1342 list<Predicate> Predicates = [];
1343
1344 // If the instruction specified in Result has defined an AsmMatchConverter
1345 // then setting this to 1 will cause the alias to use the AsmMatchConverter
1346 // function when converting the OperandVector into an MCInst instead of the
1347 // function that is generated by the dag Result.
1348 // Setting this to 0 will cause the alias to ignore the Result instruction's
1349 // defined AsmMatchConverter and instead use the function generated by the
1350 // dag Result.
1351 bit UseInstAsmMatchConverter = 1;
1352
1353 // Assembler variant name to use for this alias. If not specified then
1354 // assembler variants will be determined based on AsmString
Andrew Scullcdfcccc2018-10-05 20:58:37 +01001355 string AsmVariantName = VariantName;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001356}
1357
1358//===----------------------------------------------------------------------===//
1359// AsmWriter - This class can be implemented by targets that need to customize
1360// the format of the .s file writer.
1361//
1362// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
1363// on X86 for example).
1364//
1365class AsmWriter {
1366 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
1367 // class. Generated AsmWriter classes are always prefixed with the target
1368 // name.
1369 string AsmWriterClassName = "InstPrinter";
1370
1371 // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
1372 // the various print methods.
1373 // FIXME: Remove after all ports are updated.
1374 int PassSubtarget = 0;
1375
1376 // Variant - AsmWriters can be of multiple different variants. Variants are
1377 // used to support targets that need to emit assembly code in ways that are
1378 // mostly the same for different targets, but have minor differences in
1379 // syntax. If the asmstring contains {|} characters in them, this integer
1380 // will specify which alternative to use. For example "{x|y|z}" with Variant
1381 // == 1, will expand to "y".
1382 int Variant = 0;
1383}
1384def DefaultAsmWriter : AsmWriter;
1385
1386
1387//===----------------------------------------------------------------------===//
1388// Target - This class contains the "global" target information
1389//
1390class Target {
1391 // InstructionSet - Instruction set description for this target.
1392 InstrInfo InstructionSet;
1393
1394 // AssemblyParsers - The AsmParser instances available for this target.
1395 list<AsmParser> AssemblyParsers = [DefaultAsmParser];
1396
1397 /// AssemblyParserVariants - The AsmParserVariant instances available for
1398 /// this target.
1399 list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
1400
1401 // AssemblyWriters - The AsmWriter instances available for this target.
1402 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
1403
1404 // AllowRegisterRenaming - Controls whether this target allows
1405 // post-register-allocation renaming of registers. This is done by
1406 // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
1407 // for all opcodes if this flag is set to 0.
1408 int AllowRegisterRenaming = 0;
1409}
1410
1411//===----------------------------------------------------------------------===//
1412// SubtargetFeature - A characteristic of the chip set.
1413//
1414class SubtargetFeature<string n, string a, string v, string d,
1415 list<SubtargetFeature> i = []> {
1416 // Name - Feature name. Used by command line (-mattr=) to determine the
1417 // appropriate target chip.
1418 //
1419 string Name = n;
1420
1421 // Attribute - Attribute to be set by feature.
1422 //
1423 string Attribute = a;
1424
1425 // Value - Value the attribute to be set to by feature.
1426 //
1427 string Value = v;
1428
1429 // Desc - Feature description. Used by command line (-mattr=) to display help
1430 // information.
1431 //
1432 string Desc = d;
1433
1434 // Implies - Features that this feature implies are present. If one of those
1435 // features isn't set, then this one shouldn't be set either.
1436 //
1437 list<SubtargetFeature> Implies = i;
1438}
1439
1440/// Specifies a Subtarget feature that this instruction is deprecated on.
1441class Deprecated<SubtargetFeature dep> {
1442 SubtargetFeature DeprecatedFeatureMask = dep;
1443}
1444
1445/// A custom predicate used to determine if an instruction is
1446/// deprecated or not.
1447class ComplexDeprecationPredicate<string dep> {
1448 string ComplexDeprecationPredicate = dep;
1449}
1450
1451//===----------------------------------------------------------------------===//
1452// Processor chip sets - These values represent each of the chip sets supported
1453// by the scheduler. Each Processor definition requires corresponding
1454// instruction itineraries.
1455//
1456class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
1457 // Name - Chip set name. Used by command line (-mcpu=) to determine the
1458 // appropriate target chip.
1459 //
1460 string Name = n;
1461
1462 // SchedModel - The machine model for scheduling and instruction cost.
1463 //
1464 SchedMachineModel SchedModel = NoSchedModel;
1465
1466 // ProcItin - The scheduling information for the target processor.
1467 //
1468 ProcessorItineraries ProcItin = pi;
1469
1470 // Features - list of
1471 list<SubtargetFeature> Features = f;
1472}
1473
1474// ProcessorModel allows subtargets to specify the more general
1475// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
1476// gradually move to this newer form.
1477//
1478// Although this class always passes NoItineraries to the Processor
1479// class, the SchedMachineModel may still define valid Itineraries.
1480class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f>
1481 : Processor<n, NoItineraries, f> {
1482 let SchedModel = m;
1483}
1484
1485//===----------------------------------------------------------------------===//
1486// InstrMapping - This class is used to create mapping tables to relate
1487// instructions with each other based on the values specified in RowFields,
1488// ColFields, KeyCol and ValueCols.
1489//
1490class InstrMapping {
1491 // FilterClass - Used to limit search space only to the instructions that
1492 // define the relationship modeled by this InstrMapping record.
1493 string FilterClass;
1494
1495 // RowFields - List of fields/attributes that should be same for all the
1496 // instructions in a row of the relation table. Think of this as a set of
1497 // properties shared by all the instructions related by this relationship
1498 // model and is used to categorize instructions into subgroups. For instance,
1499 // if we want to define a relation that maps 'Add' instruction to its
1500 // predicated forms, we can define RowFields like this:
1501 //
1502 // let RowFields = BaseOp
1503 // All add instruction predicated/non-predicated will have to set their BaseOp
1504 // to the same value.
1505 //
1506 // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
1507 // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
1508 // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
1509 list<string> RowFields = [];
1510
1511 // List of fields/attributes that are same for all the instructions
1512 // in a column of the relation table.
1513 // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
1514 // based on the 'predSense' values. All the instruction in a specific
1515 // column have the same value and it is fixed for the column according
1516 // to the values set in 'ValueCols'.
1517 list<string> ColFields = [];
1518
1519 // Values for the fields/attributes listed in 'ColFields'.
1520 // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
1521 // that models this relation) should be non-predicated.
1522 // In the example above, 'Add' is the key instruction.
1523 list<string> KeyCol = [];
1524
1525 // List of values for the fields/attributes listed in 'ColFields', one for
1526 // each column in the relation table.
1527 //
1528 // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
1529 // table. First column requires all the instructions to have predSense
1530 // set to 'true' and second column requires it to be 'false'.
1531 list<list<string> > ValueCols = [];
1532}
1533
1534//===----------------------------------------------------------------------===//
1535// Pull in the common support for calling conventions.
1536//
1537include "llvm/Target/TargetCallingConv.td"
1538
1539//===----------------------------------------------------------------------===//
1540// Pull in the common support for DAG isel generation.
1541//
1542include "llvm/Target/TargetSelectionDAG.td"
1543
1544//===----------------------------------------------------------------------===//
1545// Pull in the common support for Global ISel register bank info generation.
1546//
1547include "llvm/Target/GlobalISel/RegisterBank.td"
1548
1549//===----------------------------------------------------------------------===//
1550// Pull in the common support for DAG isel generation.
1551//
1552include "llvm/Target/GlobalISel/Target.td"
1553
1554//===----------------------------------------------------------------------===//
1555// Pull in the common support for the Global ISel DAG-based selector generation.
1556//
1557include "llvm/Target/GlobalISel/SelectionDAGCompat.td"