Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // PBQP Graph class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_CODEGEN_PBQP_GRAPH_H |
| 15 | #define LLVM_CODEGEN_PBQP_GRAPH_H |
| 16 | |
| 17 | #include "llvm/ADT/STLExtras.h" |
| 18 | #include <algorithm> |
| 19 | #include <cassert> |
| 20 | #include <iterator> |
| 21 | #include <limits> |
| 22 | #include <vector> |
| 23 | |
| 24 | namespace llvm { |
| 25 | namespace PBQP { |
| 26 | |
| 27 | class GraphBase { |
| 28 | public: |
| 29 | using NodeId = unsigned; |
| 30 | using EdgeId = unsigned; |
| 31 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 32 | /// Returns a value representing an invalid (non-existent) node. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 33 | static NodeId invalidNodeId() { |
| 34 | return std::numeric_limits<NodeId>::max(); |
| 35 | } |
| 36 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 37 | /// Returns a value representing an invalid (non-existent) edge. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 38 | static EdgeId invalidEdgeId() { |
| 39 | return std::numeric_limits<EdgeId>::max(); |
| 40 | } |
| 41 | }; |
| 42 | |
| 43 | /// PBQP Graph class. |
| 44 | /// Instances of this class describe PBQP problems. |
| 45 | /// |
| 46 | template <typename SolverT> |
| 47 | class Graph : public GraphBase { |
| 48 | private: |
| 49 | using CostAllocator = typename SolverT::CostAllocator; |
| 50 | |
| 51 | public: |
| 52 | using RawVector = typename SolverT::RawVector; |
| 53 | using RawMatrix = typename SolverT::RawMatrix; |
| 54 | using Vector = typename SolverT::Vector; |
| 55 | using Matrix = typename SolverT::Matrix; |
| 56 | using VectorPtr = typename CostAllocator::VectorPtr; |
| 57 | using MatrixPtr = typename CostAllocator::MatrixPtr; |
| 58 | using NodeMetadata = typename SolverT::NodeMetadata; |
| 59 | using EdgeMetadata = typename SolverT::EdgeMetadata; |
| 60 | using GraphMetadata = typename SolverT::GraphMetadata; |
| 61 | |
| 62 | private: |
| 63 | class NodeEntry { |
| 64 | public: |
| 65 | using AdjEdgeList = std::vector<EdgeId>; |
| 66 | using AdjEdgeIdx = AdjEdgeList::size_type; |
| 67 | using AdjEdgeItr = AdjEdgeList::const_iterator; |
| 68 | |
| 69 | NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} |
| 70 | |
| 71 | static AdjEdgeIdx getInvalidAdjEdgeIdx() { |
| 72 | return std::numeric_limits<AdjEdgeIdx>::max(); |
| 73 | } |
| 74 | |
| 75 | AdjEdgeIdx addAdjEdgeId(EdgeId EId) { |
| 76 | AdjEdgeIdx Idx = AdjEdgeIds.size(); |
| 77 | AdjEdgeIds.push_back(EId); |
| 78 | return Idx; |
| 79 | } |
| 80 | |
| 81 | void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { |
| 82 | // Swap-and-pop for fast removal. |
| 83 | // 1) Update the adj index of the edge currently at back(). |
| 84 | // 2) Move last Edge down to Idx. |
| 85 | // 3) pop_back() |
| 86 | // If Idx == size() - 1 then the setAdjEdgeIdx and swap are |
| 87 | // redundant, but both operations are cheap. |
| 88 | G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); |
| 89 | AdjEdgeIds[Idx] = AdjEdgeIds.back(); |
| 90 | AdjEdgeIds.pop_back(); |
| 91 | } |
| 92 | |
| 93 | const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } |
| 94 | |
| 95 | VectorPtr Costs; |
| 96 | NodeMetadata Metadata; |
| 97 | |
| 98 | private: |
| 99 | AdjEdgeList AdjEdgeIds; |
| 100 | }; |
| 101 | |
| 102 | class EdgeEntry { |
| 103 | public: |
| 104 | EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) |
| 105 | : Costs(std::move(Costs)) { |
| 106 | NIds[0] = N1Id; |
| 107 | NIds[1] = N2Id; |
| 108 | ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); |
| 109 | ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); |
| 110 | } |
| 111 | |
| 112 | void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { |
| 113 | assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && |
| 114 | "Edge already connected to NIds[NIdx]."); |
| 115 | NodeEntry &N = G.getNode(NIds[NIdx]); |
| 116 | ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); |
| 117 | } |
| 118 | |
| 119 | void connect(Graph &G, EdgeId ThisEdgeId) { |
| 120 | connectToN(G, ThisEdgeId, 0); |
| 121 | connectToN(G, ThisEdgeId, 1); |
| 122 | } |
| 123 | |
| 124 | void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { |
| 125 | if (NId == NIds[0]) |
| 126 | ThisEdgeAdjIdxs[0] = NewIdx; |
| 127 | else { |
| 128 | assert(NId == NIds[1] && "Edge not connected to NId"); |
| 129 | ThisEdgeAdjIdxs[1] = NewIdx; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | void disconnectFromN(Graph &G, unsigned NIdx) { |
| 134 | assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && |
| 135 | "Edge not connected to NIds[NIdx]."); |
| 136 | NodeEntry &N = G.getNode(NIds[NIdx]); |
| 137 | N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); |
| 138 | ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); |
| 139 | } |
| 140 | |
| 141 | void disconnectFrom(Graph &G, NodeId NId) { |
| 142 | if (NId == NIds[0]) |
| 143 | disconnectFromN(G, 0); |
| 144 | else { |
| 145 | assert(NId == NIds[1] && "Edge does not connect NId"); |
| 146 | disconnectFromN(G, 1); |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | NodeId getN1Id() const { return NIds[0]; } |
| 151 | NodeId getN2Id() const { return NIds[1]; } |
| 152 | |
| 153 | MatrixPtr Costs; |
| 154 | EdgeMetadata Metadata; |
| 155 | |
| 156 | private: |
| 157 | NodeId NIds[2]; |
| 158 | typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; |
| 159 | }; |
| 160 | |
| 161 | // ----- MEMBERS ----- |
| 162 | |
| 163 | GraphMetadata Metadata; |
| 164 | CostAllocator CostAlloc; |
| 165 | SolverT *Solver = nullptr; |
| 166 | |
| 167 | using NodeVector = std::vector<NodeEntry>; |
| 168 | using FreeNodeVector = std::vector<NodeId>; |
| 169 | NodeVector Nodes; |
| 170 | FreeNodeVector FreeNodeIds; |
| 171 | |
| 172 | using EdgeVector = std::vector<EdgeEntry>; |
| 173 | using FreeEdgeVector = std::vector<EdgeId>; |
| 174 | EdgeVector Edges; |
| 175 | FreeEdgeVector FreeEdgeIds; |
| 176 | |
| 177 | Graph(const Graph &Other) {} |
| 178 | |
| 179 | // ----- INTERNAL METHODS ----- |
| 180 | |
| 181 | NodeEntry &getNode(NodeId NId) { |
| 182 | assert(NId < Nodes.size() && "Out of bound NodeId"); |
| 183 | return Nodes[NId]; |
| 184 | } |
| 185 | const NodeEntry &getNode(NodeId NId) const { |
| 186 | assert(NId < Nodes.size() && "Out of bound NodeId"); |
| 187 | return Nodes[NId]; |
| 188 | } |
| 189 | |
| 190 | EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } |
| 191 | const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } |
| 192 | |
| 193 | NodeId addConstructedNode(NodeEntry N) { |
| 194 | NodeId NId = 0; |
| 195 | if (!FreeNodeIds.empty()) { |
| 196 | NId = FreeNodeIds.back(); |
| 197 | FreeNodeIds.pop_back(); |
| 198 | Nodes[NId] = std::move(N); |
| 199 | } else { |
| 200 | NId = Nodes.size(); |
| 201 | Nodes.push_back(std::move(N)); |
| 202 | } |
| 203 | return NId; |
| 204 | } |
| 205 | |
| 206 | EdgeId addConstructedEdge(EdgeEntry E) { |
| 207 | assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && |
| 208 | "Attempt to add duplicate edge."); |
| 209 | EdgeId EId = 0; |
| 210 | if (!FreeEdgeIds.empty()) { |
| 211 | EId = FreeEdgeIds.back(); |
| 212 | FreeEdgeIds.pop_back(); |
| 213 | Edges[EId] = std::move(E); |
| 214 | } else { |
| 215 | EId = Edges.size(); |
| 216 | Edges.push_back(std::move(E)); |
| 217 | } |
| 218 | |
| 219 | EdgeEntry &NE = getEdge(EId); |
| 220 | |
| 221 | // Add the edge to the adjacency sets of its nodes. |
| 222 | NE.connect(*this, EId); |
| 223 | return EId; |
| 224 | } |
| 225 | |
| 226 | void operator=(const Graph &Other) {} |
| 227 | |
| 228 | public: |
| 229 | using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; |
| 230 | |
| 231 | class NodeItr { |
| 232 | public: |
| 233 | using iterator_category = std::forward_iterator_tag; |
| 234 | using value_type = NodeId; |
| 235 | using difference_type = int; |
| 236 | using pointer = NodeId *; |
| 237 | using reference = NodeId &; |
| 238 | |
| 239 | NodeItr(NodeId CurNId, const Graph &G) |
| 240 | : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { |
| 241 | this->CurNId = findNextInUse(CurNId); // Move to first in-use node id |
| 242 | } |
| 243 | |
| 244 | bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } |
| 245 | bool operator!=(const NodeItr &O) const { return !(*this == O); } |
| 246 | NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } |
| 247 | NodeId operator*() const { return CurNId; } |
| 248 | |
| 249 | private: |
| 250 | NodeId findNextInUse(NodeId NId) const { |
| 251 | while (NId < EndNId && is_contained(FreeNodeIds, NId)) { |
| 252 | ++NId; |
| 253 | } |
| 254 | return NId; |
| 255 | } |
| 256 | |
| 257 | NodeId CurNId, EndNId; |
| 258 | const FreeNodeVector &FreeNodeIds; |
| 259 | }; |
| 260 | |
| 261 | class EdgeItr { |
| 262 | public: |
| 263 | EdgeItr(EdgeId CurEId, const Graph &G) |
| 264 | : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { |
| 265 | this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id |
| 266 | } |
| 267 | |
| 268 | bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } |
| 269 | bool operator!=(const EdgeItr &O) const { return !(*this == O); } |
| 270 | EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } |
| 271 | EdgeId operator*() const { return CurEId; } |
| 272 | |
| 273 | private: |
| 274 | EdgeId findNextInUse(EdgeId EId) const { |
| 275 | while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { |
| 276 | ++EId; |
| 277 | } |
| 278 | return EId; |
| 279 | } |
| 280 | |
| 281 | EdgeId CurEId, EndEId; |
| 282 | const FreeEdgeVector &FreeEdgeIds; |
| 283 | }; |
| 284 | |
| 285 | class NodeIdSet { |
| 286 | public: |
| 287 | NodeIdSet(const Graph &G) : G(G) {} |
| 288 | |
| 289 | NodeItr begin() const { return NodeItr(0, G); } |
| 290 | NodeItr end() const { return NodeItr(G.Nodes.size(), G); } |
| 291 | |
| 292 | bool empty() const { return G.Nodes.empty(); } |
| 293 | |
| 294 | typename NodeVector::size_type size() const { |
| 295 | return G.Nodes.size() - G.FreeNodeIds.size(); |
| 296 | } |
| 297 | |
| 298 | private: |
| 299 | const Graph& G; |
| 300 | }; |
| 301 | |
| 302 | class EdgeIdSet { |
| 303 | public: |
| 304 | EdgeIdSet(const Graph &G) : G(G) {} |
| 305 | |
| 306 | EdgeItr begin() const { return EdgeItr(0, G); } |
| 307 | EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } |
| 308 | |
| 309 | bool empty() const { return G.Edges.empty(); } |
| 310 | |
| 311 | typename NodeVector::size_type size() const { |
| 312 | return G.Edges.size() - G.FreeEdgeIds.size(); |
| 313 | } |
| 314 | |
| 315 | private: |
| 316 | const Graph& G; |
| 317 | }; |
| 318 | |
| 319 | class AdjEdgeIdSet { |
| 320 | public: |
| 321 | AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} |
| 322 | |
| 323 | typename NodeEntry::AdjEdgeItr begin() const { |
| 324 | return NE.getAdjEdgeIds().begin(); |
| 325 | } |
| 326 | |
| 327 | typename NodeEntry::AdjEdgeItr end() const { |
| 328 | return NE.getAdjEdgeIds().end(); |
| 329 | } |
| 330 | |
| 331 | bool empty() const { return NE.getAdjEdgeIds().empty(); } |
| 332 | |
| 333 | typename NodeEntry::AdjEdgeList::size_type size() const { |
| 334 | return NE.getAdjEdgeIds().size(); |
| 335 | } |
| 336 | |
| 337 | private: |
| 338 | const NodeEntry &NE; |
| 339 | }; |
| 340 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 341 | /// Construct an empty PBQP graph. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 342 | Graph() = default; |
| 343 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 344 | /// Construct an empty PBQP graph with the given graph metadata. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 345 | Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} |
| 346 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 347 | /// Get a reference to the graph metadata. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 348 | GraphMetadata& getMetadata() { return Metadata; } |
| 349 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 350 | /// Get a const-reference to the graph metadata. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 351 | const GraphMetadata& getMetadata() const { return Metadata; } |
| 352 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 353 | /// Lock this graph to the given solver instance in preparation |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 354 | /// for running the solver. This method will call solver.handleAddNode for |
| 355 | /// each node in the graph, and handleAddEdge for each edge, to give the |
| 356 | /// solver an opportunity to set up any requried metadata. |
| 357 | void setSolver(SolverT &S) { |
| 358 | assert(!Solver && "Solver already set. Call unsetSolver()."); |
| 359 | Solver = &S; |
| 360 | for (auto NId : nodeIds()) |
| 361 | Solver->handleAddNode(NId); |
| 362 | for (auto EId : edgeIds()) |
| 363 | Solver->handleAddEdge(EId); |
| 364 | } |
| 365 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 366 | /// Release from solver instance. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 367 | void unsetSolver() { |
| 368 | assert(Solver && "Solver not set."); |
| 369 | Solver = nullptr; |
| 370 | } |
| 371 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 372 | /// Add a node with the given costs. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 373 | /// @param Costs Cost vector for the new node. |
| 374 | /// @return Node iterator for the added node. |
| 375 | template <typename OtherVectorT> |
| 376 | NodeId addNode(OtherVectorT Costs) { |
| 377 | // Get cost vector from the problem domain |
| 378 | VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); |
| 379 | NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); |
| 380 | if (Solver) |
| 381 | Solver->handleAddNode(NId); |
| 382 | return NId; |
| 383 | } |
| 384 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 385 | /// Add a node bypassing the cost allocator. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 386 | /// @param Costs Cost vector ptr for the new node (must be convertible to |
| 387 | /// VectorPtr). |
| 388 | /// @return Node iterator for the added node. |
| 389 | /// |
| 390 | /// This method allows for fast addition of a node whose costs don't need |
| 391 | /// to be passed through the cost allocator. The most common use case for |
| 392 | /// this is when duplicating costs from an existing node (when using a |
| 393 | /// pooling allocator). These have already been uniqued, so we can avoid |
| 394 | /// re-constructing and re-uniquing them by attaching them directly to the |
| 395 | /// new node. |
| 396 | template <typename OtherVectorPtrT> |
| 397 | NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { |
| 398 | NodeId NId = addConstructedNode(NodeEntry(Costs)); |
| 399 | if (Solver) |
| 400 | Solver->handleAddNode(NId); |
| 401 | return NId; |
| 402 | } |
| 403 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 404 | /// Add an edge between the given nodes with the given costs. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 405 | /// @param N1Id First node. |
| 406 | /// @param N2Id Second node. |
| 407 | /// @param Costs Cost matrix for new edge. |
| 408 | /// @return Edge iterator for the added edge. |
| 409 | template <typename OtherVectorT> |
| 410 | EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { |
| 411 | assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && |
| 412 | getNodeCosts(N2Id).getLength() == Costs.getCols() && |
| 413 | "Matrix dimensions mismatch."); |
| 414 | // Get cost matrix from the problem domain. |
| 415 | MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); |
| 416 | EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); |
| 417 | if (Solver) |
| 418 | Solver->handleAddEdge(EId); |
| 419 | return EId; |
| 420 | } |
| 421 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 422 | /// Add an edge bypassing the cost allocator. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 423 | /// @param N1Id First node. |
| 424 | /// @param N2Id Second node. |
| 425 | /// @param Costs Cost matrix for new edge. |
| 426 | /// @return Edge iterator for the added edge. |
| 427 | /// |
| 428 | /// This method allows for fast addition of an edge whose costs don't need |
| 429 | /// to be passed through the cost allocator. The most common use case for |
| 430 | /// this is when duplicating costs from an existing edge (when using a |
| 431 | /// pooling allocator). These have already been uniqued, so we can avoid |
| 432 | /// re-constructing and re-uniquing them by attaching them directly to the |
| 433 | /// new edge. |
| 434 | template <typename OtherMatrixPtrT> |
| 435 | NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, |
| 436 | OtherMatrixPtrT Costs) { |
| 437 | assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && |
| 438 | getNodeCosts(N2Id).getLength() == Costs->getCols() && |
| 439 | "Matrix dimensions mismatch."); |
| 440 | // Get cost matrix from the problem domain. |
| 441 | EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); |
| 442 | if (Solver) |
| 443 | Solver->handleAddEdge(EId); |
| 444 | return EId; |
| 445 | } |
| 446 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 447 | /// Returns true if the graph is empty. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 448 | bool empty() const { return NodeIdSet(*this).empty(); } |
| 449 | |
| 450 | NodeIdSet nodeIds() const { return NodeIdSet(*this); } |
| 451 | EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } |
| 452 | |
| 453 | AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } |
| 454 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 455 | /// Get the number of nodes in the graph. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 456 | /// @return Number of nodes in the graph. |
| 457 | unsigned getNumNodes() const { return NodeIdSet(*this).size(); } |
| 458 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 459 | /// Get the number of edges in the graph. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 460 | /// @return Number of edges in the graph. |
| 461 | unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } |
| 462 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 463 | /// Set a node's cost vector. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 464 | /// @param NId Node to update. |
| 465 | /// @param Costs New costs to set. |
| 466 | template <typename OtherVectorT> |
| 467 | void setNodeCosts(NodeId NId, OtherVectorT Costs) { |
| 468 | VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); |
| 469 | if (Solver) |
| 470 | Solver->handleSetNodeCosts(NId, *AllocatedCosts); |
| 471 | getNode(NId).Costs = AllocatedCosts; |
| 472 | } |
| 473 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 474 | /// Get a VectorPtr to a node's cost vector. Rarely useful - use |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 475 | /// getNodeCosts where possible. |
| 476 | /// @param NId Node id. |
| 477 | /// @return VectorPtr to node cost vector. |
| 478 | /// |
| 479 | /// This method is primarily useful for duplicating costs quickly by |
| 480 | /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer |
| 481 | /// getNodeCosts when dealing with node cost values. |
| 482 | const VectorPtr& getNodeCostsPtr(NodeId NId) const { |
| 483 | return getNode(NId).Costs; |
| 484 | } |
| 485 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 486 | /// Get a node's cost vector. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 487 | /// @param NId Node id. |
| 488 | /// @return Node cost vector. |
| 489 | const Vector& getNodeCosts(NodeId NId) const { |
| 490 | return *getNodeCostsPtr(NId); |
| 491 | } |
| 492 | |
| 493 | NodeMetadata& getNodeMetadata(NodeId NId) { |
| 494 | return getNode(NId).Metadata; |
| 495 | } |
| 496 | |
| 497 | const NodeMetadata& getNodeMetadata(NodeId NId) const { |
| 498 | return getNode(NId).Metadata; |
| 499 | } |
| 500 | |
| 501 | typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { |
| 502 | return getNode(NId).getAdjEdgeIds().size(); |
| 503 | } |
| 504 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 505 | /// Update an edge's cost matrix. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 506 | /// @param EId Edge id. |
| 507 | /// @param Costs New cost matrix. |
| 508 | template <typename OtherMatrixT> |
| 509 | void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { |
| 510 | MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); |
| 511 | if (Solver) |
| 512 | Solver->handleUpdateCosts(EId, *AllocatedCosts); |
| 513 | getEdge(EId).Costs = AllocatedCosts; |
| 514 | } |
| 515 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 516 | /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 517 | /// getEdgeCosts where possible. |
| 518 | /// @param EId Edge id. |
| 519 | /// @return MatrixPtr to edge cost matrix. |
| 520 | /// |
| 521 | /// This method is primarily useful for duplicating costs quickly by |
| 522 | /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer |
| 523 | /// getEdgeCosts when dealing with edge cost values. |
| 524 | const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { |
| 525 | return getEdge(EId).Costs; |
| 526 | } |
| 527 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 528 | /// Get an edge's cost matrix. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 529 | /// @param EId Edge id. |
| 530 | /// @return Edge cost matrix. |
| 531 | const Matrix& getEdgeCosts(EdgeId EId) const { |
| 532 | return *getEdge(EId).Costs; |
| 533 | } |
| 534 | |
| 535 | EdgeMetadata& getEdgeMetadata(EdgeId EId) { |
| 536 | return getEdge(EId).Metadata; |
| 537 | } |
| 538 | |
| 539 | const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { |
| 540 | return getEdge(EId).Metadata; |
| 541 | } |
| 542 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 543 | /// Get the first node connected to this edge. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 544 | /// @param EId Edge id. |
| 545 | /// @return The first node connected to the given edge. |
| 546 | NodeId getEdgeNode1Id(EdgeId EId) const { |
| 547 | return getEdge(EId).getN1Id(); |
| 548 | } |
| 549 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 550 | /// Get the second node connected to this edge. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 551 | /// @param EId Edge id. |
| 552 | /// @return The second node connected to the given edge. |
| 553 | NodeId getEdgeNode2Id(EdgeId EId) const { |
| 554 | return getEdge(EId).getN2Id(); |
| 555 | } |
| 556 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 557 | /// Get the "other" node connected to this edge. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 558 | /// @param EId Edge id. |
| 559 | /// @param NId Node id for the "given" node. |
| 560 | /// @return The iterator for the "other" node connected to this edge. |
| 561 | NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { |
| 562 | EdgeEntry &E = getEdge(EId); |
| 563 | if (E.getN1Id() == NId) { |
| 564 | return E.getN2Id(); |
| 565 | } // else |
| 566 | return E.getN1Id(); |
| 567 | } |
| 568 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 569 | /// Get the edge connecting two nodes. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 570 | /// @param N1Id First node id. |
| 571 | /// @param N2Id Second node id. |
| 572 | /// @return An id for edge (N1Id, N2Id) if such an edge exists, |
| 573 | /// otherwise returns an invalid edge id. |
| 574 | EdgeId findEdge(NodeId N1Id, NodeId N2Id) { |
| 575 | for (auto AEId : adjEdgeIds(N1Id)) { |
| 576 | if ((getEdgeNode1Id(AEId) == N2Id) || |
| 577 | (getEdgeNode2Id(AEId) == N2Id)) { |
| 578 | return AEId; |
| 579 | } |
| 580 | } |
| 581 | return invalidEdgeId(); |
| 582 | } |
| 583 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 584 | /// Remove a node from the graph. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 585 | /// @param NId Node id. |
| 586 | void removeNode(NodeId NId) { |
| 587 | if (Solver) |
| 588 | Solver->handleRemoveNode(NId); |
| 589 | NodeEntry &N = getNode(NId); |
| 590 | // TODO: Can this be for-each'd? |
| 591 | for (AdjEdgeItr AEItr = N.adjEdgesBegin(), |
| 592 | AEEnd = N.adjEdgesEnd(); |
| 593 | AEItr != AEEnd;) { |
| 594 | EdgeId EId = *AEItr; |
| 595 | ++AEItr; |
| 596 | removeEdge(EId); |
| 597 | } |
| 598 | FreeNodeIds.push_back(NId); |
| 599 | } |
| 600 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 601 | /// Disconnect an edge from the given node. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 602 | /// |
| 603 | /// Removes the given edge from the adjacency list of the given node. |
| 604 | /// This operation leaves the edge in an 'asymmetric' state: It will no |
| 605 | /// longer appear in an iteration over the given node's (NId's) edges, but |
| 606 | /// will appear in an iteration over the 'other', unnamed node's edges. |
| 607 | /// |
| 608 | /// This does not correspond to any normal graph operation, but exists to |
| 609 | /// support efficient PBQP graph-reduction based solvers. It is used to |
| 610 | /// 'effectively' remove the unnamed node from the graph while the solver |
| 611 | /// is performing the reduction. The solver will later call reconnectNode |
| 612 | /// to restore the edge in the named node's adjacency list. |
| 613 | /// |
| 614 | /// Since the degree of a node is the number of connected edges, |
| 615 | /// disconnecting an edge from a node 'u' will cause the degree of 'u' to |
| 616 | /// drop by 1. |
| 617 | /// |
| 618 | /// A disconnected edge WILL still appear in an iteration over the graph |
| 619 | /// edges. |
| 620 | /// |
| 621 | /// A disconnected edge should not be removed from the graph, it should be |
| 622 | /// reconnected first. |
| 623 | /// |
| 624 | /// A disconnected edge can be reconnected by calling the reconnectEdge |
| 625 | /// method. |
| 626 | void disconnectEdge(EdgeId EId, NodeId NId) { |
| 627 | if (Solver) |
| 628 | Solver->handleDisconnectEdge(EId, NId); |
| 629 | |
| 630 | EdgeEntry &E = getEdge(EId); |
| 631 | E.disconnectFrom(*this, NId); |
| 632 | } |
| 633 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 634 | /// Convenience method to disconnect all neighbours from the given |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 635 | /// node. |
| 636 | void disconnectAllNeighborsFromNode(NodeId NId) { |
| 637 | for (auto AEId : adjEdgeIds(NId)) |
| 638 | disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); |
| 639 | } |
| 640 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 641 | /// Re-attach an edge to its nodes. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 642 | /// |
| 643 | /// Adds an edge that had been previously disconnected back into the |
| 644 | /// adjacency set of the nodes that the edge connects. |
| 645 | void reconnectEdge(EdgeId EId, NodeId NId) { |
| 646 | EdgeEntry &E = getEdge(EId); |
| 647 | E.connectTo(*this, EId, NId); |
| 648 | if (Solver) |
| 649 | Solver->handleReconnectEdge(EId, NId); |
| 650 | } |
| 651 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 652 | /// Remove an edge from the graph. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 653 | /// @param EId Edge id. |
| 654 | void removeEdge(EdgeId EId) { |
| 655 | if (Solver) |
| 656 | Solver->handleRemoveEdge(EId); |
| 657 | EdgeEntry &E = getEdge(EId); |
| 658 | E.disconnect(); |
| 659 | FreeEdgeIds.push_back(EId); |
| 660 | Edges[EId].invalidate(); |
| 661 | } |
| 662 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 663 | /// Remove all nodes and edges from the graph. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 664 | void clear() { |
| 665 | Nodes.clear(); |
| 666 | FreeNodeIds.clear(); |
| 667 | Edges.clear(); |
| 668 | FreeEdgeIds.clear(); |
| 669 | } |
| 670 | }; |
| 671 | |
| 672 | } // end namespace PBQP |
| 673 | } // end namespace llvm |
| 674 | |
| 675 | #endif // LLVM_CODEGEN_PBQP_GRAPH_HPP |