blob: b75c4920a8221aa3f960669b19a70f51cc3f243c [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a coalescing interval map for small objects.
11//
12// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13// same value are represented in a compressed form.
14//
15// Iterators provide ordered access to the compressed intervals rather than the
16// individual keys, and insert and erase operations use key intervals as well.
17//
18// Like SmallVector, IntervalMap will store the first N intervals in the map
19// object itself without any allocations. When space is exhausted it switches to
20// a B+-tree representation with very small overhead for small key and value
21// objects.
22//
23// A Traits class specifies how keys are compared. It also allows IntervalMap to
24// work with both closed and half-open intervals.
25//
26// Keys and values are not stored next to each other in a std::pair, so we don't
27// provide such a value_type. Dereferencing iterators only returns the mapped
28// value. The interval bounds are accessible through the start() and stop()
29// iterator methods.
30//
31// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32// is the optimal size. For large objects use std::map instead.
33//
34//===----------------------------------------------------------------------===//
35//
36// Synopsis:
37//
38// template <typename KeyT, typename ValT, unsigned N, typename Traits>
39// class IntervalMap {
40// public:
41// typedef KeyT key_type;
42// typedef ValT mapped_type;
43// typedef RecyclingAllocator<...> Allocator;
44// class iterator;
45// class const_iterator;
46//
47// explicit IntervalMap(Allocator&);
48// ~IntervalMap():
49//
50// bool empty() const;
51// KeyT start() const;
52// KeyT stop() const;
53// ValT lookup(KeyT x, Value NotFound = Value()) const;
54//
55// const_iterator begin() const;
56// const_iterator end() const;
57// iterator begin();
58// iterator end();
59// const_iterator find(KeyT x) const;
60// iterator find(KeyT x);
61//
62// void insert(KeyT a, KeyT b, ValT y);
63// void clear();
64// };
65//
66// template <typename KeyT, typename ValT, unsigned N, typename Traits>
67// class IntervalMap::const_iterator :
68// public std::iterator<std::bidirectional_iterator_tag, ValT> {
69// public:
70// bool operator==(const const_iterator &) const;
71// bool operator!=(const const_iterator &) const;
72// bool valid() const;
73//
74// const KeyT &start() const;
75// const KeyT &stop() const;
76// const ValT &value() const;
77// const ValT &operator*() const;
78// const ValT *operator->() const;
79//
80// const_iterator &operator++();
81// const_iterator &operator++(int);
82// const_iterator &operator--();
83// const_iterator &operator--(int);
84// void goToBegin();
85// void goToEnd();
86// void find(KeyT x);
87// void advanceTo(KeyT x);
88// };
89//
90// template <typename KeyT, typename ValT, unsigned N, typename Traits>
91// class IntervalMap::iterator : public const_iterator {
92// public:
93// void insert(KeyT a, KeyT b, Value y);
94// void erase();
95// };
96//
97//===----------------------------------------------------------------------===//
98
99#ifndef LLVM_ADT_INTERVALMAP_H
100#define LLVM_ADT_INTERVALMAP_H
101
102#include "llvm/ADT/PointerIntPair.h"
103#include "llvm/ADT/SmallVector.h"
Andrew Scull0372a572018-11-16 15:47:06 +0000104#include "llvm/ADT/bit.h"
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100105#include "llvm/Support/AlignOf.h"
106#include "llvm/Support/Allocator.h"
107#include "llvm/Support/RecyclingAllocator.h"
108#include <algorithm>
109#include <cassert>
110#include <cstdint>
111#include <iterator>
112#include <new>
113#include <utility>
114
115namespace llvm {
116
117//===----------------------------------------------------------------------===//
118//--- Key traits ---//
119//===----------------------------------------------------------------------===//
120//
121// The IntervalMap works with closed or half-open intervals.
122// Adjacent intervals that map to the same value are coalesced.
123//
124// The IntervalMapInfo traits class is used to determine if a key is contained
125// in an interval, and if two intervals are adjacent so they can be coalesced.
126// The provided implementation works for closed integer intervals, other keys
127// probably need a specialized version.
128//
129// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
130//
131// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
132// allowed. This is so that stopLess(a, b) can be used to determine if two
133// intervals overlap.
134//
135//===----------------------------------------------------------------------===//
136
137template <typename T>
138struct IntervalMapInfo {
139 /// startLess - Return true if x is not in [a;b].
140 /// This is x < a both for closed intervals and for [a;b) half-open intervals.
141 static inline bool startLess(const T &x, const T &a) {
142 return x < a;
143 }
144
145 /// stopLess - Return true if x is not in [a;b].
146 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
147 static inline bool stopLess(const T &b, const T &x) {
148 return b < x;
149 }
150
151 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
152 /// This is a+1 == b for closed intervals, a == b for half-open intervals.
153 static inline bool adjacent(const T &a, const T &b) {
154 return a+1 == b;
155 }
156
157 /// nonEmpty - Return true if [a;b] is non-empty.
158 /// This is a <= b for a closed interval, a < b for [a;b) half-open intervals.
159 static inline bool nonEmpty(const T &a, const T &b) {
160 return a <= b;
161 }
162};
163
164template <typename T>
165struct IntervalMapHalfOpenInfo {
166 /// startLess - Return true if x is not in [a;b).
167 static inline bool startLess(const T &x, const T &a) {
168 return x < a;
169 }
170
171 /// stopLess - Return true if x is not in [a;b).
172 static inline bool stopLess(const T &b, const T &x) {
173 return b <= x;
174 }
175
176 /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
177 static inline bool adjacent(const T &a, const T &b) {
178 return a == b;
179 }
180
181 /// nonEmpty - Return true if [a;b) is non-empty.
182 static inline bool nonEmpty(const T &a, const T &b) {
183 return a < b;
184 }
185};
186
187/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
188/// It should be considered private to the implementation.
189namespace IntervalMapImpl {
190
191using IdxPair = std::pair<unsigned,unsigned>;
192
193//===----------------------------------------------------------------------===//
194//--- IntervalMapImpl::NodeBase ---//
195//===----------------------------------------------------------------------===//
196//
197// Both leaf and branch nodes store vectors of pairs.
198// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
199//
200// Keys and values are stored in separate arrays to avoid padding caused by
201// different object alignments. This also helps improve locality of reference
202// when searching the keys.
203//
204// The nodes don't know how many elements they contain - that information is
205// stored elsewhere. Omitting the size field prevents padding and allows a node
206// to fill the allocated cache lines completely.
207//
208// These are typical key and value sizes, the node branching factor (N), and
209// wasted space when nodes are sized to fit in three cache lines (192 bytes):
210//
211// T1 T2 N Waste Used by
212// 4 4 24 0 Branch<4> (32-bit pointers)
213// 8 4 16 0 Leaf<4,4>, Branch<4>
214// 8 8 12 0 Leaf<4,8>, Branch<8>
215// 16 4 9 12 Leaf<8,4>
216// 16 8 8 0 Leaf<8,8>
217//
218//===----------------------------------------------------------------------===//
219
220template <typename T1, typename T2, unsigned N>
221class NodeBase {
222public:
223 enum { Capacity = N };
224
225 T1 first[N];
226 T2 second[N];
227
228 /// copy - Copy elements from another node.
229 /// @param Other Node elements are copied from.
230 /// @param i Beginning of the source range in other.
231 /// @param j Beginning of the destination range in this.
232 /// @param Count Number of elements to copy.
233 template <unsigned M>
234 void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
235 unsigned j, unsigned Count) {
236 assert(i + Count <= M && "Invalid source range");
237 assert(j + Count <= N && "Invalid dest range");
238 for (unsigned e = i + Count; i != e; ++i, ++j) {
239 first[j] = Other.first[i];
240 second[j] = Other.second[i];
241 }
242 }
243
244 /// moveLeft - Move elements to the left.
245 /// @param i Beginning of the source range.
246 /// @param j Beginning of the destination range.
247 /// @param Count Number of elements to copy.
248 void moveLeft(unsigned i, unsigned j, unsigned Count) {
249 assert(j <= i && "Use moveRight shift elements right");
250 copy(*this, i, j, Count);
251 }
252
253 /// moveRight - Move elements to the right.
254 /// @param i Beginning of the source range.
255 /// @param j Beginning of the destination range.
256 /// @param Count Number of elements to copy.
257 void moveRight(unsigned i, unsigned j, unsigned Count) {
258 assert(i <= j && "Use moveLeft shift elements left");
259 assert(j + Count <= N && "Invalid range");
260 while (Count--) {
261 first[j + Count] = first[i + Count];
262 second[j + Count] = second[i + Count];
263 }
264 }
265
266 /// erase - Erase elements [i;j).
267 /// @param i Beginning of the range to erase.
268 /// @param j End of the range. (Exclusive).
269 /// @param Size Number of elements in node.
270 void erase(unsigned i, unsigned j, unsigned Size) {
271 moveLeft(j, i, Size - j);
272 }
273
274 /// erase - Erase element at i.
275 /// @param i Index of element to erase.
276 /// @param Size Number of elements in node.
277 void erase(unsigned i, unsigned Size) {
278 erase(i, i+1, Size);
279 }
280
281 /// shift - Shift elements [i;size) 1 position to the right.
282 /// @param i Beginning of the range to move.
283 /// @param Size Number of elements in node.
284 void shift(unsigned i, unsigned Size) {
285 moveRight(i, i + 1, Size - i);
286 }
287
288 /// transferToLeftSib - Transfer elements to a left sibling node.
289 /// @param Size Number of elements in this.
290 /// @param Sib Left sibling node.
291 /// @param SSize Number of elements in sib.
292 /// @param Count Number of elements to transfer.
293 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
294 unsigned Count) {
295 Sib.copy(*this, 0, SSize, Count);
296 erase(0, Count, Size);
297 }
298
299 /// transferToRightSib - Transfer elements to a right sibling node.
300 /// @param Size Number of elements in this.
301 /// @param Sib Right sibling node.
302 /// @param SSize Number of elements in sib.
303 /// @param Count Number of elements to transfer.
304 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
305 unsigned Count) {
306 Sib.moveRight(0, Count, SSize);
307 Sib.copy(*this, Size-Count, 0, Count);
308 }
309
310 /// adjustFromLeftSib - Adjust the number if elements in this node by moving
311 /// elements to or from a left sibling node.
312 /// @param Size Number of elements in this.
313 /// @param Sib Right sibling node.
314 /// @param SSize Number of elements in sib.
315 /// @param Add The number of elements to add to this node, possibly < 0.
316 /// @return Number of elements added to this node, possibly negative.
317 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
318 if (Add > 0) {
319 // We want to grow, copy from sib.
320 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
321 Sib.transferToRightSib(SSize, *this, Size, Count);
322 return Count;
323 } else {
324 // We want to shrink, copy to sib.
325 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
326 transferToLeftSib(Size, Sib, SSize, Count);
327 return -Count;
328 }
329 }
330};
331
332/// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
333/// @param Node Array of pointers to sibling nodes.
334/// @param Nodes Number of nodes.
335/// @param CurSize Array of current node sizes, will be overwritten.
336/// @param NewSize Array of desired node sizes.
337template <typename NodeT>
338void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
339 unsigned CurSize[], const unsigned NewSize[]) {
340 // Move elements right.
341 for (int n = Nodes - 1; n; --n) {
342 if (CurSize[n] == NewSize[n])
343 continue;
344 for (int m = n - 1; m != -1; --m) {
345 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
346 NewSize[n] - CurSize[n]);
347 CurSize[m] -= d;
348 CurSize[n] += d;
349 // Keep going if the current node was exhausted.
350 if (CurSize[n] >= NewSize[n])
351 break;
352 }
353 }
354
355 if (Nodes == 0)
356 return;
357
358 // Move elements left.
359 for (unsigned n = 0; n != Nodes - 1; ++n) {
360 if (CurSize[n] == NewSize[n])
361 continue;
362 for (unsigned m = n + 1; m != Nodes; ++m) {
363 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
364 CurSize[n] - NewSize[n]);
365 CurSize[m] += d;
366 CurSize[n] -= d;
367 // Keep going if the current node was exhausted.
368 if (CurSize[n] >= NewSize[n])
369 break;
370 }
371 }
372
373#ifndef NDEBUG
374 for (unsigned n = 0; n != Nodes; n++)
375 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
376#endif
377}
378
379/// IntervalMapImpl::distribute - Compute a new distribution of node elements
380/// after an overflow or underflow. Reserve space for a new element at Position,
381/// and compute the node that will hold Position after redistributing node
382/// elements.
383///
384/// It is required that
385///
386/// Elements == sum(CurSize), and
387/// Elements + Grow <= Nodes * Capacity.
388///
389/// NewSize[] will be filled in such that:
390///
391/// sum(NewSize) == Elements, and
392/// NewSize[i] <= Capacity.
393///
394/// The returned index is the node where Position will go, so:
395///
396/// sum(NewSize[0..idx-1]) <= Position
397/// sum(NewSize[0..idx]) >= Position
398///
399/// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
400/// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
401/// before the one holding the Position'th element where there is room for an
402/// insertion.
403///
404/// @param Nodes The number of nodes.
405/// @param Elements Total elements in all nodes.
406/// @param Capacity The capacity of each node.
407/// @param CurSize Array[Nodes] of current node sizes, or NULL.
408/// @param NewSize Array[Nodes] to receive the new node sizes.
409/// @param Position Insert position.
410/// @param Grow Reserve space for a new element at Position.
411/// @return (node, offset) for Position.
412IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
413 const unsigned *CurSize, unsigned NewSize[],
414 unsigned Position, bool Grow);
415
416//===----------------------------------------------------------------------===//
417//--- IntervalMapImpl::NodeSizer ---//
418//===----------------------------------------------------------------------===//
419//
420// Compute node sizes from key and value types.
421//
422// The branching factors are chosen to make nodes fit in three cache lines.
423// This may not be possible if keys or values are very large. Such large objects
424// are handled correctly, but a std::map would probably give better performance.
425//
426//===----------------------------------------------------------------------===//
427
428enum {
429 // Cache line size. Most architectures have 32 or 64 byte cache lines.
430 // We use 64 bytes here because it provides good branching factors.
431 Log2CacheLine = 6,
432 CacheLineBytes = 1 << Log2CacheLine,
433 DesiredNodeBytes = 3 * CacheLineBytes
434};
435
436template <typename KeyT, typename ValT>
437struct NodeSizer {
438 enum {
439 // Compute the leaf node branching factor that makes a node fit in three
440 // cache lines. The branching factor must be at least 3, or some B+-tree
441 // balancing algorithms won't work.
442 // LeafSize can't be larger than CacheLineBytes. This is required by the
443 // PointerIntPair used by NodeRef.
444 DesiredLeafSize = DesiredNodeBytes /
445 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
446 MinLeafSize = 3,
447 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
448 };
449
450 using LeafBase = NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>;
451
452 enum {
453 // Now that we have the leaf branching factor, compute the actual allocation
454 // unit size by rounding up to a whole number of cache lines.
455 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
456
457 // Determine the branching factor for branch nodes.
458 BranchSize = AllocBytes /
459 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
460 };
461
462 /// Allocator - The recycling allocator used for both branch and leaf nodes.
463 /// This typedef is very likely to be identical for all IntervalMaps with
464 /// reasonably sized entries, so the same allocator can be shared among
465 /// different kinds of maps.
466 using Allocator =
467 RecyclingAllocator<BumpPtrAllocator, char, AllocBytes, CacheLineBytes>;
468};
469
470//===----------------------------------------------------------------------===//
471//--- IntervalMapImpl::NodeRef ---//
472//===----------------------------------------------------------------------===//
473//
474// B+-tree nodes can be leaves or branches, so we need a polymorphic node
475// pointer that can point to both kinds.
476//
477// All nodes are cache line aligned and the low 6 bits of a node pointer are
478// always 0. These bits are used to store the number of elements in the
479// referenced node. Besides saving space, placing node sizes in the parents
480// allow tree balancing algorithms to run without faulting cache lines for nodes
481// that may not need to be modified.
482//
483// A NodeRef doesn't know whether it references a leaf node or a branch node.
484// It is the responsibility of the caller to use the correct types.
485//
486// Nodes are never supposed to be empty, and it is invalid to store a node size
487// of 0 in a NodeRef. The valid range of sizes is 1-64.
488//
489//===----------------------------------------------------------------------===//
490
491class NodeRef {
492 struct CacheAlignedPointerTraits {
493 static inline void *getAsVoidPointer(void *P) { return P; }
494 static inline void *getFromVoidPointer(void *P) { return P; }
495 enum { NumLowBitsAvailable = Log2CacheLine };
496 };
497 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
498
499public:
500 /// NodeRef - Create a null ref.
501 NodeRef() = default;
502
503 /// operator bool - Detect a null ref.
504 explicit operator bool() const { return pip.getOpaqueValue(); }
505
506 /// NodeRef - Create a reference to the node p with n elements.
507 template <typename NodeT>
508 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
509 assert(n <= NodeT::Capacity && "Size too big for node");
510 }
511
512 /// size - Return the number of elements in the referenced node.
513 unsigned size() const { return pip.getInt() + 1; }
514
515 /// setSize - Update the node size.
516 void setSize(unsigned n) { pip.setInt(n - 1); }
517
518 /// subtree - Access the i'th subtree reference in a branch node.
519 /// This depends on branch nodes storing the NodeRef array as their first
520 /// member.
521 NodeRef &subtree(unsigned i) const {
522 return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
523 }
524
525 /// get - Dereference as a NodeT reference.
526 template <typename NodeT>
527 NodeT &get() const {
528 return *reinterpret_cast<NodeT*>(pip.getPointer());
529 }
530
531 bool operator==(const NodeRef &RHS) const {
532 if (pip == RHS.pip)
533 return true;
534 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
535 return false;
536 }
537
538 bool operator!=(const NodeRef &RHS) const {
539 return !operator==(RHS);
540 }
541};
542
543//===----------------------------------------------------------------------===//
544//--- IntervalMapImpl::LeafNode ---//
545//===----------------------------------------------------------------------===//
546//
547// Leaf nodes store up to N disjoint intervals with corresponding values.
548//
549// The intervals are kept sorted and fully coalesced so there are no adjacent
550// intervals mapping to the same value.
551//
552// These constraints are always satisfied:
553//
554// - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
555//
556// - Traits::stopLess(stop(i), start(i + 1) - Sorted.
557//
558// - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
559// - Fully coalesced.
560//
561//===----------------------------------------------------------------------===//
562
563template <typename KeyT, typename ValT, unsigned N, typename Traits>
564class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
565public:
566 const KeyT &start(unsigned i) const { return this->first[i].first; }
567 const KeyT &stop(unsigned i) const { return this->first[i].second; }
568 const ValT &value(unsigned i) const { return this->second[i]; }
569
570 KeyT &start(unsigned i) { return this->first[i].first; }
571 KeyT &stop(unsigned i) { return this->first[i].second; }
572 ValT &value(unsigned i) { return this->second[i]; }
573
574 /// findFrom - Find the first interval after i that may contain x.
575 /// @param i Starting index for the search.
576 /// @param Size Number of elements in node.
577 /// @param x Key to search for.
578 /// @return First index with !stopLess(key[i].stop, x), or size.
579 /// This is the first interval that can possibly contain x.
580 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
581 assert(i <= Size && Size <= N && "Bad indices");
582 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
583 "Index is past the needed point");
584 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
585 return i;
586 }
587
588 /// safeFind - Find an interval that is known to exist. This is the same as
589 /// findFrom except is it assumed that x is at least within range of the last
590 /// interval.
591 /// @param i Starting index for the search.
592 /// @param x Key to search for.
593 /// @return First index with !stopLess(key[i].stop, x), never size.
594 /// This is the first interval that can possibly contain x.
595 unsigned safeFind(unsigned i, KeyT x) const {
596 assert(i < N && "Bad index");
597 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
598 "Index is past the needed point");
599 while (Traits::stopLess(stop(i), x)) ++i;
600 assert(i < N && "Unsafe intervals");
601 return i;
602 }
603
604 /// safeLookup - Lookup mapped value for a safe key.
605 /// It is assumed that x is within range of the last entry.
606 /// @param x Key to search for.
607 /// @param NotFound Value to return if x is not in any interval.
608 /// @return The mapped value at x or NotFound.
609 ValT safeLookup(KeyT x, ValT NotFound) const {
610 unsigned i = safeFind(0, x);
611 return Traits::startLess(x, start(i)) ? NotFound : value(i);
612 }
613
614 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
615};
616
617/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
618/// possible. This may cause the node to grow by 1, or it may cause the node
619/// to shrink because of coalescing.
620/// @param Pos Starting index = insertFrom(0, size, a)
621/// @param Size Number of elements in node.
622/// @param a Interval start.
623/// @param b Interval stop.
624/// @param y Value be mapped.
625/// @return (insert position, new size), or (i, Capacity+1) on overflow.
626template <typename KeyT, typename ValT, unsigned N, typename Traits>
627unsigned LeafNode<KeyT, ValT, N, Traits>::
628insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
629 unsigned i = Pos;
630 assert(i <= Size && Size <= N && "Invalid index");
631 assert(!Traits::stopLess(b, a) && "Invalid interval");
632
633 // Verify the findFrom invariant.
634 assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
635 assert((i == Size || !Traits::stopLess(stop(i), a)));
636 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
637
638 // Coalesce with previous interval.
639 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
640 Pos = i - 1;
641 // Also coalesce with next interval?
642 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
643 stop(i - 1) = stop(i);
644 this->erase(i, Size);
645 return Size - 1;
646 }
647 stop(i - 1) = b;
648 return Size;
649 }
650
651 // Detect overflow.
652 if (i == N)
653 return N + 1;
654
655 // Add new interval at end.
656 if (i == Size) {
657 start(i) = a;
658 stop(i) = b;
659 value(i) = y;
660 return Size + 1;
661 }
662
663 // Try to coalesce with following interval.
664 if (value(i) == y && Traits::adjacent(b, start(i))) {
665 start(i) = a;
666 return Size;
667 }
668
669 // We must insert before i. Detect overflow.
670 if (Size == N)
671 return N + 1;
672
673 // Insert before i.
674 this->shift(i, Size);
675 start(i) = a;
676 stop(i) = b;
677 value(i) = y;
678 return Size + 1;
679}
680
681//===----------------------------------------------------------------------===//
682//--- IntervalMapImpl::BranchNode ---//
683//===----------------------------------------------------------------------===//
684//
685// A branch node stores references to 1--N subtrees all of the same height.
686//
687// The key array in a branch node holds the rightmost stop key of each subtree.
688// It is redundant to store the last stop key since it can be found in the
689// parent node, but doing so makes tree balancing a lot simpler.
690//
691// It is unusual for a branch node to only have one subtree, but it can happen
692// in the root node if it is smaller than the normal nodes.
693//
694// When all of the leaf nodes from all the subtrees are concatenated, they must
695// satisfy the same constraints as a single leaf node. They must be sorted,
696// sane, and fully coalesced.
697//
698//===----------------------------------------------------------------------===//
699
700template <typename KeyT, typename ValT, unsigned N, typename Traits>
701class BranchNode : public NodeBase<NodeRef, KeyT, N> {
702public:
703 const KeyT &stop(unsigned i) const { return this->second[i]; }
704 const NodeRef &subtree(unsigned i) const { return this->first[i]; }
705
706 KeyT &stop(unsigned i) { return this->second[i]; }
707 NodeRef &subtree(unsigned i) { return this->first[i]; }
708
709 /// findFrom - Find the first subtree after i that may contain x.
710 /// @param i Starting index for the search.
711 /// @param Size Number of elements in node.
712 /// @param x Key to search for.
713 /// @return First index with !stopLess(key[i], x), or size.
714 /// This is the first subtree that can possibly contain x.
715 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
716 assert(i <= Size && Size <= N && "Bad indices");
717 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
718 "Index to findFrom is past the needed point");
719 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
720 return i;
721 }
722
723 /// safeFind - Find a subtree that is known to exist. This is the same as
724 /// findFrom except is it assumed that x is in range.
725 /// @param i Starting index for the search.
726 /// @param x Key to search for.
727 /// @return First index with !stopLess(key[i], x), never size.
728 /// This is the first subtree that can possibly contain x.
729 unsigned safeFind(unsigned i, KeyT x) const {
730 assert(i < N && "Bad index");
731 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
732 "Index is past the needed point");
733 while (Traits::stopLess(stop(i), x)) ++i;
734 assert(i < N && "Unsafe intervals");
735 return i;
736 }
737
738 /// safeLookup - Get the subtree containing x, Assuming that x is in range.
739 /// @param x Key to search for.
740 /// @return Subtree containing x
741 NodeRef safeLookup(KeyT x) const {
742 return subtree(safeFind(0, x));
743 }
744
745 /// insert - Insert a new (subtree, stop) pair.
746 /// @param i Insert position, following entries will be shifted.
747 /// @param Size Number of elements in node.
748 /// @param Node Subtree to insert.
749 /// @param Stop Last key in subtree.
750 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
751 assert(Size < N && "branch node overflow");
752 assert(i <= Size && "Bad insert position");
753 this->shift(i, Size);
754 subtree(i) = Node;
755 stop(i) = Stop;
756 }
757};
758
759//===----------------------------------------------------------------------===//
760//--- IntervalMapImpl::Path ---//
761//===----------------------------------------------------------------------===//
762//
763// A Path is used by iterators to represent a position in a B+-tree, and the
764// path to get there from the root.
765//
766// The Path class also contains the tree navigation code that doesn't have to
767// be templatized.
768//
769//===----------------------------------------------------------------------===//
770
771class Path {
772 /// Entry - Each step in the path is a node pointer and an offset into that
773 /// node.
774 struct Entry {
775 void *node;
776 unsigned size;
777 unsigned offset;
778
779 Entry(void *Node, unsigned Size, unsigned Offset)
780 : node(Node), size(Size), offset(Offset) {}
781
782 Entry(NodeRef Node, unsigned Offset)
783 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
784
785 NodeRef &subtree(unsigned i) const {
786 return reinterpret_cast<NodeRef*>(node)[i];
787 }
788 };
789
790 /// path - The path entries, path[0] is the root node, path.back() is a leaf.
791 SmallVector<Entry, 4> path;
792
793public:
794 // Node accessors.
795 template <typename NodeT> NodeT &node(unsigned Level) const {
796 return *reinterpret_cast<NodeT*>(path[Level].node);
797 }
798 unsigned size(unsigned Level) const { return path[Level].size; }
799 unsigned offset(unsigned Level) const { return path[Level].offset; }
800 unsigned &offset(unsigned Level) { return path[Level].offset; }
801
802 // Leaf accessors.
803 template <typename NodeT> NodeT &leaf() const {
804 return *reinterpret_cast<NodeT*>(path.back().node);
805 }
806 unsigned leafSize() const { return path.back().size; }
807 unsigned leafOffset() const { return path.back().offset; }
808 unsigned &leafOffset() { return path.back().offset; }
809
810 /// valid - Return true if path is at a valid node, not at end().
811 bool valid() const {
812 return !path.empty() && path.front().offset < path.front().size;
813 }
814
815 /// height - Return the height of the tree corresponding to this path.
816 /// This matches map->height in a full path.
817 unsigned height() const { return path.size() - 1; }
818
819 /// subtree - Get the subtree referenced from Level. When the path is
820 /// consistent, node(Level + 1) == subtree(Level).
821 /// @param Level 0..height-1. The leaves have no subtrees.
822 NodeRef &subtree(unsigned Level) const {
823 return path[Level].subtree(path[Level].offset);
824 }
825
826 /// reset - Reset cached information about node(Level) from subtree(Level -1).
827 /// @param Level 1..height. THe node to update after parent node changed.
828 void reset(unsigned Level) {
829 path[Level] = Entry(subtree(Level - 1), offset(Level));
830 }
831
832 /// push - Add entry to path.
833 /// @param Node Node to add, should be subtree(path.size()-1).
834 /// @param Offset Offset into Node.
835 void push(NodeRef Node, unsigned Offset) {
836 path.push_back(Entry(Node, Offset));
837 }
838
839 /// pop - Remove the last path entry.
840 void pop() {
841 path.pop_back();
842 }
843
844 /// setSize - Set the size of a node both in the path and in the tree.
845 /// @param Level 0..height. Note that setting the root size won't change
846 /// map->rootSize.
847 /// @param Size New node size.
848 void setSize(unsigned Level, unsigned Size) {
849 path[Level].size = Size;
850 if (Level)
851 subtree(Level - 1).setSize(Size);
852 }
853
854 /// setRoot - Clear the path and set a new root node.
855 /// @param Node New root node.
856 /// @param Size New root size.
857 /// @param Offset Offset into root node.
858 void setRoot(void *Node, unsigned Size, unsigned Offset) {
859 path.clear();
860 path.push_back(Entry(Node, Size, Offset));
861 }
862
863 /// replaceRoot - Replace the current root node with two new entries after the
864 /// tree height has increased.
865 /// @param Root The new root node.
866 /// @param Size Number of entries in the new root.
867 /// @param Offsets Offsets into the root and first branch nodes.
868 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
869
870 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
871 /// @param Level Get the sibling to node(Level).
872 /// @return Left sibling, or NodeRef().
873 NodeRef getLeftSibling(unsigned Level) const;
874
875 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
876 /// unaltered.
877 /// @param Level Move node(Level).
878 void moveLeft(unsigned Level);
879
880 /// fillLeft - Grow path to Height by taking leftmost branches.
881 /// @param Height The target height.
882 void fillLeft(unsigned Height) {
883 while (height() < Height)
884 push(subtree(height()), 0);
885 }
886
887 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
888 /// @param Level Get the sinbling to node(Level).
889 /// @return Left sibling, or NodeRef().
890 NodeRef getRightSibling(unsigned Level) const;
891
892 /// moveRight - Move path to the left sibling at Level. Leave nodes below
893 /// Level unaltered.
894 /// @param Level Move node(Level).
895 void moveRight(unsigned Level);
896
897 /// atBegin - Return true if path is at begin().
898 bool atBegin() const {
899 for (unsigned i = 0, e = path.size(); i != e; ++i)
900 if (path[i].offset != 0)
901 return false;
902 return true;
903 }
904
905 /// atLastEntry - Return true if the path is at the last entry of the node at
906 /// Level.
907 /// @param Level Node to examine.
908 bool atLastEntry(unsigned Level) const {
909 return path[Level].offset == path[Level].size - 1;
910 }
911
912 /// legalizeForInsert - Prepare the path for an insertion at Level. When the
913 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
914 /// ensures that node(Level) is real by moving back to the last node at Level,
915 /// and setting offset(Level) to size(Level) if required.
916 /// @param Level The level where an insertion is about to take place.
917 void legalizeForInsert(unsigned Level) {
918 if (valid())
919 return;
920 moveLeft(Level);
921 ++path[Level].offset;
922 }
923};
924
925} // end namespace IntervalMapImpl
926
927//===----------------------------------------------------------------------===//
928//--- IntervalMap ----//
929//===----------------------------------------------------------------------===//
930
931template <typename KeyT, typename ValT,
932 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
933 typename Traits = IntervalMapInfo<KeyT>>
934class IntervalMap {
935 using Sizer = IntervalMapImpl::NodeSizer<KeyT, ValT>;
936 using Leaf = IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits>;
937 using Branch =
938 IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>;
939 using RootLeaf = IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits>;
940 using IdxPair = IntervalMapImpl::IdxPair;
941
942 // The RootLeaf capacity is given as a template parameter. We must compute the
943 // corresponding RootBranch capacity.
944 enum {
945 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
946 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
947 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
948 };
949
950 using RootBranch =
951 IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>;
952
953 // When branched, we store a global start key as well as the branch node.
954 struct RootBranchData {
955 KeyT start;
956 RootBranch node;
957 };
958
959public:
960 using Allocator = typename Sizer::Allocator;
961 using KeyType = KeyT;
962 using ValueType = ValT;
963 using KeyTraits = Traits;
964
965private:
966 // The root data is either a RootLeaf or a RootBranchData instance.
Andrew Scull0372a572018-11-16 15:47:06 +0000967 LLVM_ALIGNAS(RootLeaf) LLVM_ALIGNAS(RootBranchData)
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100968 AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
969
970 // Tree height.
971 // 0: Leaves in root.
972 // 1: Root points to leaf.
973 // 2: root->branch->leaf ...
974 unsigned height;
975
976 // Number of entries in the root node.
977 unsigned rootSize;
978
979 // Allocator used for creating external nodes.
980 Allocator &allocator;
981
Andrew Scull0372a572018-11-16 15:47:06 +0000982 /// Represent data as a node type without breaking aliasing rules.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100983 template <typename T>
984 T &dataAs() const {
Andrew Scull0372a572018-11-16 15:47:06 +0000985 return *bit_cast<T *>(const_cast<char *>(data.buffer));
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100986 }
987
988 const RootLeaf &rootLeaf() const {
989 assert(!branched() && "Cannot acces leaf data in branched root");
990 return dataAs<RootLeaf>();
991 }
992 RootLeaf &rootLeaf() {
993 assert(!branched() && "Cannot acces leaf data in branched root");
994 return dataAs<RootLeaf>();
995 }
996
997 RootBranchData &rootBranchData() const {
998 assert(branched() && "Cannot access branch data in non-branched root");
999 return dataAs<RootBranchData>();
1000 }
1001 RootBranchData &rootBranchData() {
1002 assert(branched() && "Cannot access branch data in non-branched root");
1003 return dataAs<RootBranchData>();
1004 }
1005
1006 const RootBranch &rootBranch() const { return rootBranchData().node; }
1007 RootBranch &rootBranch() { return rootBranchData().node; }
1008 KeyT rootBranchStart() const { return rootBranchData().start; }
1009 KeyT &rootBranchStart() { return rootBranchData().start; }
1010
1011 template <typename NodeT> NodeT *newNode() {
1012 return new(allocator.template Allocate<NodeT>()) NodeT();
1013 }
1014
1015 template <typename NodeT> void deleteNode(NodeT *P) {
1016 P->~NodeT();
1017 allocator.Deallocate(P);
1018 }
1019
1020 IdxPair branchRoot(unsigned Position);
1021 IdxPair splitRoot(unsigned Position);
1022
1023 void switchRootToBranch() {
1024 rootLeaf().~RootLeaf();
1025 height = 1;
1026 new (&rootBranchData()) RootBranchData();
1027 }
1028
1029 void switchRootToLeaf() {
1030 rootBranchData().~RootBranchData();
1031 height = 0;
1032 new(&rootLeaf()) RootLeaf();
1033 }
1034
1035 bool branched() const { return height > 0; }
1036
1037 ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1038 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1039 unsigned Level));
1040 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1041
1042public:
1043 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1044 assert((uintptr_t(data.buffer) & (alignof(RootLeaf) - 1)) == 0 &&
1045 "Insufficient alignment");
1046 new(&rootLeaf()) RootLeaf();
1047 }
1048
1049 ~IntervalMap() {
1050 clear();
1051 rootLeaf().~RootLeaf();
1052 }
1053
1054 /// empty - Return true when no intervals are mapped.
1055 bool empty() const {
1056 return rootSize == 0;
1057 }
1058
1059 /// start - Return the smallest mapped key in a non-empty map.
1060 KeyT start() const {
1061 assert(!empty() && "Empty IntervalMap has no start");
1062 return !branched() ? rootLeaf().start(0) : rootBranchStart();
1063 }
1064
1065 /// stop - Return the largest mapped key in a non-empty map.
1066 KeyT stop() const {
1067 assert(!empty() && "Empty IntervalMap has no stop");
1068 return !branched() ? rootLeaf().stop(rootSize - 1) :
1069 rootBranch().stop(rootSize - 1);
1070 }
1071
1072 /// lookup - Return the mapped value at x or NotFound.
1073 ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1074 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1075 return NotFound;
1076 return branched() ? treeSafeLookup(x, NotFound) :
1077 rootLeaf().safeLookup(x, NotFound);
1078 }
1079
1080 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1081 /// It is assumed that no key in the interval is mapped to another value, but
1082 /// overlapping intervals already mapped to y will be coalesced.
1083 void insert(KeyT a, KeyT b, ValT y) {
1084 if (branched() || rootSize == RootLeaf::Capacity)
1085 return find(a).insert(a, b, y);
1086
1087 // Easy insert into root leaf.
1088 unsigned p = rootLeaf().findFrom(0, rootSize, a);
1089 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1090 }
1091
1092 /// clear - Remove all entries.
1093 void clear();
1094
1095 class const_iterator;
1096 class iterator;
1097 friend class const_iterator;
1098 friend class iterator;
1099
1100 const_iterator begin() const {
1101 const_iterator I(*this);
1102 I.goToBegin();
1103 return I;
1104 }
1105
1106 iterator begin() {
1107 iterator I(*this);
1108 I.goToBegin();
1109 return I;
1110 }
1111
1112 const_iterator end() const {
1113 const_iterator I(*this);
1114 I.goToEnd();
1115 return I;
1116 }
1117
1118 iterator end() {
1119 iterator I(*this);
1120 I.goToEnd();
1121 return I;
1122 }
1123
1124 /// find - Return an iterator pointing to the first interval ending at or
1125 /// after x, or end().
1126 const_iterator find(KeyT x) const {
1127 const_iterator I(*this);
1128 I.find(x);
1129 return I;
1130 }
1131
1132 iterator find(KeyT x) {
1133 iterator I(*this);
1134 I.find(x);
1135 return I;
1136 }
1137};
1138
1139/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1140/// branched root.
1141template <typename KeyT, typename ValT, unsigned N, typename Traits>
1142ValT IntervalMap<KeyT, ValT, N, Traits>::
1143treeSafeLookup(KeyT x, ValT NotFound) const {
1144 assert(branched() && "treeLookup assumes a branched root");
1145
1146 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1147 for (unsigned h = height-1; h; --h)
1148 NR = NR.get<Branch>().safeLookup(x);
1149 return NR.get<Leaf>().safeLookup(x, NotFound);
1150}
1151
1152// branchRoot - Switch from a leaf root to a branched root.
1153// Return the new (root offset, node offset) corresponding to Position.
1154template <typename KeyT, typename ValT, unsigned N, typename Traits>
1155IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1156branchRoot(unsigned Position) {
1157 using namespace IntervalMapImpl;
1158 // How many external leaf nodes to hold RootLeaf+1?
1159 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1160
1161 // Compute element distribution among new nodes.
1162 unsigned size[Nodes];
1163 IdxPair NewOffset(0, Position);
1164
1165 // Is is very common for the root node to be smaller than external nodes.
1166 if (Nodes == 1)
1167 size[0] = rootSize;
1168 else
1169 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size,
1170 Position, true);
1171
1172 // Allocate new nodes.
1173 unsigned pos = 0;
1174 NodeRef node[Nodes];
1175 for (unsigned n = 0; n != Nodes; ++n) {
1176 Leaf *L = newNode<Leaf>();
1177 L->copy(rootLeaf(), pos, 0, size[n]);
1178 node[n] = NodeRef(L, size[n]);
1179 pos += size[n];
1180 }
1181
1182 // Destroy the old leaf node, construct branch node instead.
1183 switchRootToBranch();
1184 for (unsigned n = 0; n != Nodes; ++n) {
1185 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1186 rootBranch().subtree(n) = node[n];
1187 }
1188 rootBranchStart() = node[0].template get<Leaf>().start(0);
1189 rootSize = Nodes;
1190 return NewOffset;
1191}
1192
1193// splitRoot - Split the current BranchRoot into multiple Branch nodes.
1194// Return the new (root offset, node offset) corresponding to Position.
1195template <typename KeyT, typename ValT, unsigned N, typename Traits>
1196IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1197splitRoot(unsigned Position) {
1198 using namespace IntervalMapImpl;
1199 // How many external leaf nodes to hold RootBranch+1?
1200 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1201
1202 // Compute element distribution among new nodes.
1203 unsigned Size[Nodes];
1204 IdxPair NewOffset(0, Position);
1205
1206 // Is is very common for the root node to be smaller than external nodes.
1207 if (Nodes == 1)
1208 Size[0] = rootSize;
1209 else
1210 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size,
1211 Position, true);
1212
1213 // Allocate new nodes.
1214 unsigned Pos = 0;
1215 NodeRef Node[Nodes];
1216 for (unsigned n = 0; n != Nodes; ++n) {
1217 Branch *B = newNode<Branch>();
1218 B->copy(rootBranch(), Pos, 0, Size[n]);
1219 Node[n] = NodeRef(B, Size[n]);
1220 Pos += Size[n];
1221 }
1222
1223 for (unsigned n = 0; n != Nodes; ++n) {
1224 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1225 rootBranch().subtree(n) = Node[n];
1226 }
1227 rootSize = Nodes;
1228 ++height;
1229 return NewOffset;
1230}
1231
1232/// visitNodes - Visit each external node.
1233template <typename KeyT, typename ValT, unsigned N, typename Traits>
1234void IntervalMap<KeyT, ValT, N, Traits>::
1235visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1236 if (!branched())
1237 return;
1238 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1239
1240 // Collect level 0 nodes from the root.
1241 for (unsigned i = 0; i != rootSize; ++i)
1242 Refs.push_back(rootBranch().subtree(i));
1243
1244 // Visit all branch nodes.
1245 for (unsigned h = height - 1; h; --h) {
1246 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1247 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1248 NextRefs.push_back(Refs[i].subtree(j));
1249 (this->*f)(Refs[i], h);
1250 }
1251 Refs.clear();
1252 Refs.swap(NextRefs);
1253 }
1254
1255 // Visit all leaf nodes.
1256 for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1257 (this->*f)(Refs[i], 0);
1258}
1259
1260template <typename KeyT, typename ValT, unsigned N, typename Traits>
1261void IntervalMap<KeyT, ValT, N, Traits>::
1262deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1263 if (Level)
1264 deleteNode(&Node.get<Branch>());
1265 else
1266 deleteNode(&Node.get<Leaf>());
1267}
1268
1269template <typename KeyT, typename ValT, unsigned N, typename Traits>
1270void IntervalMap<KeyT, ValT, N, Traits>::
1271clear() {
1272 if (branched()) {
1273 visitNodes(&IntervalMap::deleteNode);
1274 switchRootToLeaf();
1275 }
1276 rootSize = 0;
1277}
1278
1279//===----------------------------------------------------------------------===//
1280//--- IntervalMap::const_iterator ----//
1281//===----------------------------------------------------------------------===//
1282
1283template <typename KeyT, typename ValT, unsigned N, typename Traits>
1284class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1285 public std::iterator<std::bidirectional_iterator_tag, ValT> {
1286
1287protected:
1288 friend class IntervalMap;
1289
1290 // The map referred to.
1291 IntervalMap *map = nullptr;
1292
1293 // We store a full path from the root to the current position.
1294 // The path may be partially filled, but never between iterator calls.
1295 IntervalMapImpl::Path path;
1296
1297 explicit const_iterator(const IntervalMap &map) :
1298 map(const_cast<IntervalMap*>(&map)) {}
1299
1300 bool branched() const {
1301 assert(map && "Invalid iterator");
1302 return map->branched();
1303 }
1304
1305 void setRoot(unsigned Offset) {
1306 if (branched())
1307 path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1308 else
1309 path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1310 }
1311
1312 void pathFillFind(KeyT x);
1313 void treeFind(KeyT x);
1314 void treeAdvanceTo(KeyT x);
1315
1316 /// unsafeStart - Writable access to start() for iterator.
1317 KeyT &unsafeStart() const {
1318 assert(valid() && "Cannot access invalid iterator");
1319 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1320 path.leaf<RootLeaf>().start(path.leafOffset());
1321 }
1322
1323 /// unsafeStop - Writable access to stop() for iterator.
1324 KeyT &unsafeStop() const {
1325 assert(valid() && "Cannot access invalid iterator");
1326 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1327 path.leaf<RootLeaf>().stop(path.leafOffset());
1328 }
1329
1330 /// unsafeValue - Writable access to value() for iterator.
1331 ValT &unsafeValue() const {
1332 assert(valid() && "Cannot access invalid iterator");
1333 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1334 path.leaf<RootLeaf>().value(path.leafOffset());
1335 }
1336
1337public:
1338 /// const_iterator - Create an iterator that isn't pointing anywhere.
1339 const_iterator() = default;
1340
1341 /// setMap - Change the map iterated over. This call must be followed by a
1342 /// call to goToBegin(), goToEnd(), or find()
1343 void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1344
1345 /// valid - Return true if the current position is valid, false for end().
1346 bool valid() const { return path.valid(); }
1347
1348 /// atBegin - Return true if the current position is the first map entry.
1349 bool atBegin() const { return path.atBegin(); }
1350
1351 /// start - Return the beginning of the current interval.
1352 const KeyT &start() const { return unsafeStart(); }
1353
1354 /// stop - Return the end of the current interval.
1355 const KeyT &stop() const { return unsafeStop(); }
1356
1357 /// value - Return the mapped value at the current interval.
1358 const ValT &value() const { return unsafeValue(); }
1359
1360 const ValT &operator*() const { return value(); }
1361
1362 bool operator==(const const_iterator &RHS) const {
1363 assert(map == RHS.map && "Cannot compare iterators from different maps");
1364 if (!valid())
1365 return !RHS.valid();
1366 if (path.leafOffset() != RHS.path.leafOffset())
1367 return false;
1368 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1369 }
1370
1371 bool operator!=(const const_iterator &RHS) const {
1372 return !operator==(RHS);
1373 }
1374
1375 /// goToBegin - Move to the first interval in map.
1376 void goToBegin() {
1377 setRoot(0);
1378 if (branched())
1379 path.fillLeft(map->height);
1380 }
1381
1382 /// goToEnd - Move beyond the last interval in map.
1383 void goToEnd() {
1384 setRoot(map->rootSize);
1385 }
1386
1387 /// preincrement - move to the next interval.
1388 const_iterator &operator++() {
1389 assert(valid() && "Cannot increment end()");
1390 if (++path.leafOffset() == path.leafSize() && branched())
1391 path.moveRight(map->height);
1392 return *this;
1393 }
1394
1395 /// postincrement - Dont do that!
1396 const_iterator operator++(int) {
1397 const_iterator tmp = *this;
1398 operator++();
1399 return tmp;
1400 }
1401
1402 /// predecrement - move to the previous interval.
1403 const_iterator &operator--() {
1404 if (path.leafOffset() && (valid() || !branched()))
1405 --path.leafOffset();
1406 else
1407 path.moveLeft(map->height);
1408 return *this;
1409 }
1410
1411 /// postdecrement - Dont do that!
1412 const_iterator operator--(int) {
1413 const_iterator tmp = *this;
1414 operator--();
1415 return tmp;
1416 }
1417
1418 /// find - Move to the first interval with stop >= x, or end().
1419 /// This is a full search from the root, the current position is ignored.
1420 void find(KeyT x) {
1421 if (branched())
1422 treeFind(x);
1423 else
1424 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1425 }
1426
1427 /// advanceTo - Move to the first interval with stop >= x, or end().
1428 /// The search is started from the current position, and no earlier positions
1429 /// can be found. This is much faster than find() for small moves.
1430 void advanceTo(KeyT x) {
1431 if (!valid())
1432 return;
1433 if (branched())
1434 treeAdvanceTo(x);
1435 else
1436 path.leafOffset() =
1437 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1438 }
1439};
1440
1441/// pathFillFind - Complete path by searching for x.
1442/// @param x Key to search for.
1443template <typename KeyT, typename ValT, unsigned N, typename Traits>
1444void IntervalMap<KeyT, ValT, N, Traits>::
1445const_iterator::pathFillFind(KeyT x) {
1446 IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1447 for (unsigned i = map->height - path.height() - 1; i; --i) {
1448 unsigned p = NR.get<Branch>().safeFind(0, x);
1449 path.push(NR, p);
1450 NR = NR.subtree(p);
1451 }
1452 path.push(NR, NR.get<Leaf>().safeFind(0, x));
1453}
1454
1455/// treeFind - Find in a branched tree.
1456/// @param x Key to search for.
1457template <typename KeyT, typename ValT, unsigned N, typename Traits>
1458void IntervalMap<KeyT, ValT, N, Traits>::
1459const_iterator::treeFind(KeyT x) {
1460 setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1461 if (valid())
1462 pathFillFind(x);
1463}
1464
1465/// treeAdvanceTo - Find position after the current one.
1466/// @param x Key to search for.
1467template <typename KeyT, typename ValT, unsigned N, typename Traits>
1468void IntervalMap<KeyT, ValT, N, Traits>::
1469const_iterator::treeAdvanceTo(KeyT x) {
1470 // Can we stay on the same leaf node?
1471 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1472 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1473 return;
1474 }
1475
1476 // Drop the current leaf.
1477 path.pop();
1478
1479 // Search towards the root for a usable subtree.
1480 if (path.height()) {
1481 for (unsigned l = path.height() - 1; l; --l) {
1482 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1483 // The branch node at l+1 is usable
1484 path.offset(l + 1) =
1485 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1486 return pathFillFind(x);
1487 }
1488 path.pop();
1489 }
1490 // Is the level-1 Branch usable?
1491 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1492 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1493 return pathFillFind(x);
1494 }
1495 }
1496
1497 // We reached the root.
1498 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1499 if (valid())
1500 pathFillFind(x);
1501}
1502
1503//===----------------------------------------------------------------------===//
1504//--- IntervalMap::iterator ----//
1505//===----------------------------------------------------------------------===//
1506
1507template <typename KeyT, typename ValT, unsigned N, typename Traits>
1508class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1509 friend class IntervalMap;
1510
1511 using IdxPair = IntervalMapImpl::IdxPair;
1512
1513 explicit iterator(IntervalMap &map) : const_iterator(map) {}
1514
1515 void setNodeStop(unsigned Level, KeyT Stop);
1516 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1517 template <typename NodeT> bool overflow(unsigned Level);
1518 void treeInsert(KeyT a, KeyT b, ValT y);
1519 void eraseNode(unsigned Level);
1520 void treeErase(bool UpdateRoot = true);
1521 bool canCoalesceLeft(KeyT Start, ValT x);
1522 bool canCoalesceRight(KeyT Stop, ValT x);
1523
1524public:
1525 /// iterator - Create null iterator.
1526 iterator() = default;
1527
1528 /// setStart - Move the start of the current interval.
1529 /// This may cause coalescing with the previous interval.
1530 /// @param a New start key, must not overlap the previous interval.
1531 void setStart(KeyT a);
1532
1533 /// setStop - Move the end of the current interval.
1534 /// This may cause coalescing with the following interval.
1535 /// @param b New stop key, must not overlap the following interval.
1536 void setStop(KeyT b);
1537
1538 /// setValue - Change the mapped value of the current interval.
1539 /// This may cause coalescing with the previous and following intervals.
1540 /// @param x New value.
1541 void setValue(ValT x);
1542
1543 /// setStartUnchecked - Move the start of the current interval without
1544 /// checking for coalescing or overlaps.
1545 /// This should only be used when it is known that coalescing is not required.
1546 /// @param a New start key.
1547 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1548
1549 /// setStopUnchecked - Move the end of the current interval without checking
1550 /// for coalescing or overlaps.
1551 /// This should only be used when it is known that coalescing is not required.
1552 /// @param b New stop key.
1553 void setStopUnchecked(KeyT b) {
1554 this->unsafeStop() = b;
1555 // Update keys in branch nodes as well.
1556 if (this->path.atLastEntry(this->path.height()))
1557 setNodeStop(this->path.height(), b);
1558 }
1559
1560 /// setValueUnchecked - Change the mapped value of the current interval
1561 /// without checking for coalescing.
1562 /// @param x New value.
1563 void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1564
1565 /// insert - Insert mapping [a;b] -> y before the current position.
1566 void insert(KeyT a, KeyT b, ValT y);
1567
1568 /// erase - Erase the current interval.
1569 void erase();
1570
1571 iterator &operator++() {
1572 const_iterator::operator++();
1573 return *this;
1574 }
1575
1576 iterator operator++(int) {
1577 iterator tmp = *this;
1578 operator++();
1579 return tmp;
1580 }
1581
1582 iterator &operator--() {
1583 const_iterator::operator--();
1584 return *this;
1585 }
1586
1587 iterator operator--(int) {
1588 iterator tmp = *this;
1589 operator--();
1590 return tmp;
1591 }
1592};
1593
1594/// canCoalesceLeft - Can the current interval coalesce to the left after
1595/// changing start or value?
1596/// @param Start New start of current interval.
1597/// @param Value New value for current interval.
1598/// @return True when updating the current interval would enable coalescing.
1599template <typename KeyT, typename ValT, unsigned N, typename Traits>
1600bool IntervalMap<KeyT, ValT, N, Traits>::
1601iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1602 using namespace IntervalMapImpl;
1603 Path &P = this->path;
1604 if (!this->branched()) {
1605 unsigned i = P.leafOffset();
1606 RootLeaf &Node = P.leaf<RootLeaf>();
1607 return i && Node.value(i-1) == Value &&
1608 Traits::adjacent(Node.stop(i-1), Start);
1609 }
1610 // Branched.
1611 if (unsigned i = P.leafOffset()) {
1612 Leaf &Node = P.leaf<Leaf>();
1613 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1614 } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1615 unsigned i = NR.size() - 1;
1616 Leaf &Node = NR.get<Leaf>();
1617 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1618 }
1619 return false;
1620}
1621
1622/// canCoalesceRight - Can the current interval coalesce to the right after
1623/// changing stop or value?
1624/// @param Stop New stop of current interval.
1625/// @param Value New value for current interval.
1626/// @return True when updating the current interval would enable coalescing.
1627template <typename KeyT, typename ValT, unsigned N, typename Traits>
1628bool IntervalMap<KeyT, ValT, N, Traits>::
1629iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1630 using namespace IntervalMapImpl;
1631 Path &P = this->path;
1632 unsigned i = P.leafOffset() + 1;
1633 if (!this->branched()) {
1634 if (i >= P.leafSize())
1635 return false;
1636 RootLeaf &Node = P.leaf<RootLeaf>();
1637 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1638 }
1639 // Branched.
1640 if (i < P.leafSize()) {
1641 Leaf &Node = P.leaf<Leaf>();
1642 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1643 } else if (NodeRef NR = P.getRightSibling(P.height())) {
1644 Leaf &Node = NR.get<Leaf>();
1645 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1646 }
1647 return false;
1648}
1649
1650/// setNodeStop - Update the stop key of the current node at level and above.
1651template <typename KeyT, typename ValT, unsigned N, typename Traits>
1652void IntervalMap<KeyT, ValT, N, Traits>::
1653iterator::setNodeStop(unsigned Level, KeyT Stop) {
1654 // There are no references to the root node, so nothing to update.
1655 if (!Level)
1656 return;
1657 IntervalMapImpl::Path &P = this->path;
1658 // Update nodes pointing to the current node.
1659 while (--Level) {
1660 P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1661 if (!P.atLastEntry(Level))
1662 return;
1663 }
1664 // Update root separately since it has a different layout.
1665 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1666}
1667
1668template <typename KeyT, typename ValT, unsigned N, typename Traits>
1669void IntervalMap<KeyT, ValT, N, Traits>::
1670iterator::setStart(KeyT a) {
1671 assert(Traits::nonEmpty(a, this->stop()) && "Cannot move start beyond stop");
1672 KeyT &CurStart = this->unsafeStart();
1673 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1674 CurStart = a;
1675 return;
1676 }
1677 // Coalesce with the interval to the left.
1678 --*this;
1679 a = this->start();
1680 erase();
1681 setStartUnchecked(a);
1682}
1683
1684template <typename KeyT, typename ValT, unsigned N, typename Traits>
1685void IntervalMap<KeyT, ValT, N, Traits>::
1686iterator::setStop(KeyT b) {
1687 assert(Traits::nonEmpty(this->start(), b) && "Cannot move stop beyond start");
1688 if (Traits::startLess(b, this->stop()) ||
1689 !canCoalesceRight(b, this->value())) {
1690 setStopUnchecked(b);
1691 return;
1692 }
1693 // Coalesce with interval to the right.
1694 KeyT a = this->start();
1695 erase();
1696 setStartUnchecked(a);
1697}
1698
1699template <typename KeyT, typename ValT, unsigned N, typename Traits>
1700void IntervalMap<KeyT, ValT, N, Traits>::
1701iterator::setValue(ValT x) {
1702 setValueUnchecked(x);
1703 if (canCoalesceRight(this->stop(), x)) {
1704 KeyT a = this->start();
1705 erase();
1706 setStartUnchecked(a);
1707 }
1708 if (canCoalesceLeft(this->start(), x)) {
1709 --*this;
1710 KeyT a = this->start();
1711 erase();
1712 setStartUnchecked(a);
1713 }
1714}
1715
1716/// insertNode - insert a node before the current path at level.
1717/// Leave the current path pointing at the new node.
1718/// @param Level path index of the node to be inserted.
1719/// @param Node The node to be inserted.
1720/// @param Stop The last index in the new node.
1721/// @return True if the tree height was increased.
1722template <typename KeyT, typename ValT, unsigned N, typename Traits>
1723bool IntervalMap<KeyT, ValT, N, Traits>::
1724iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1725 assert(Level && "Cannot insert next to the root");
1726 bool SplitRoot = false;
1727 IntervalMap &IM = *this->map;
1728 IntervalMapImpl::Path &P = this->path;
1729
1730 if (Level == 1) {
1731 // Insert into the root branch node.
1732 if (IM.rootSize < RootBranch::Capacity) {
1733 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1734 P.setSize(0, ++IM.rootSize);
1735 P.reset(Level);
1736 return SplitRoot;
1737 }
1738
1739 // We need to split the root while keeping our position.
1740 SplitRoot = true;
1741 IdxPair Offset = IM.splitRoot(P.offset(0));
1742 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1743
1744 // Fall through to insert at the new higher level.
1745 ++Level;
1746 }
1747
1748 // When inserting before end(), make sure we have a valid path.
1749 P.legalizeForInsert(--Level);
1750
1751 // Insert into the branch node at Level-1.
1752 if (P.size(Level) == Branch::Capacity) {
1753 // Branch node is full, handle handle the overflow.
1754 assert(!SplitRoot && "Cannot overflow after splitting the root");
1755 SplitRoot = overflow<Branch>(Level);
1756 Level += SplitRoot;
1757 }
1758 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1759 P.setSize(Level, P.size(Level) + 1);
1760 if (P.atLastEntry(Level))
1761 setNodeStop(Level, Stop);
1762 P.reset(Level + 1);
1763 return SplitRoot;
1764}
1765
1766// insert
1767template <typename KeyT, typename ValT, unsigned N, typename Traits>
1768void IntervalMap<KeyT, ValT, N, Traits>::
1769iterator::insert(KeyT a, KeyT b, ValT y) {
1770 if (this->branched())
1771 return treeInsert(a, b, y);
1772 IntervalMap &IM = *this->map;
1773 IntervalMapImpl::Path &P = this->path;
1774
1775 // Try simple root leaf insert.
1776 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1777
1778 // Was the root node insert successful?
1779 if (Size <= RootLeaf::Capacity) {
1780 P.setSize(0, IM.rootSize = Size);
1781 return;
1782 }
1783
1784 // Root leaf node is full, we must branch.
1785 IdxPair Offset = IM.branchRoot(P.leafOffset());
1786 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1787
1788 // Now it fits in the new leaf.
1789 treeInsert(a, b, y);
1790}
1791
1792template <typename KeyT, typename ValT, unsigned N, typename Traits>
1793void IntervalMap<KeyT, ValT, N, Traits>::
1794iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1795 using namespace IntervalMapImpl;
1796 Path &P = this->path;
1797
1798 if (!P.valid())
1799 P.legalizeForInsert(this->map->height);
1800
1801 // Check if this insertion will extend the node to the left.
1802 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1803 // Node is growing to the left, will it affect a left sibling node?
1804 if (NodeRef Sib = P.getLeftSibling(P.height())) {
1805 Leaf &SibLeaf = Sib.get<Leaf>();
1806 unsigned SibOfs = Sib.size() - 1;
1807 if (SibLeaf.value(SibOfs) == y &&
1808 Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1809 // This insertion will coalesce with the last entry in SibLeaf. We can
1810 // handle it in two ways:
1811 // 1. Extend SibLeaf.stop to b and be done, or
1812 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1813 // We prefer 1., but need 2 when coalescing to the right as well.
1814 Leaf &CurLeaf = P.leaf<Leaf>();
1815 P.moveLeft(P.height());
1816 if (Traits::stopLess(b, CurLeaf.start(0)) &&
1817 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1818 // Easy, just extend SibLeaf and we're done.
1819 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1820 return;
1821 } else {
1822 // We have both left and right coalescing. Erase the old SibLeaf entry
1823 // and continue inserting the larger interval.
1824 a = SibLeaf.start(SibOfs);
1825 treeErase(/* UpdateRoot= */false);
1826 }
1827 }
1828 } else {
1829 // No left sibling means we are at begin(). Update cached bound.
1830 this->map->rootBranchStart() = a;
1831 }
1832 }
1833
1834 // When we are inserting at the end of a leaf node, we must update stops.
1835 unsigned Size = P.leafSize();
1836 bool Grow = P.leafOffset() == Size;
1837 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1838
1839 // Leaf insertion unsuccessful? Overflow and try again.
1840 if (Size > Leaf::Capacity) {
1841 overflow<Leaf>(P.height());
1842 Grow = P.leafOffset() == P.leafSize();
1843 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1844 assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1845 }
1846
1847 // Inserted, update offset and leaf size.
1848 P.setSize(P.height(), Size);
1849
1850 // Insert was the last node entry, update stops.
1851 if (Grow)
1852 setNodeStop(P.height(), b);
1853}
1854
1855/// erase - erase the current interval and move to the next position.
1856template <typename KeyT, typename ValT, unsigned N, typename Traits>
1857void IntervalMap<KeyT, ValT, N, Traits>::
1858iterator::erase() {
1859 IntervalMap &IM = *this->map;
1860 IntervalMapImpl::Path &P = this->path;
1861 assert(P.valid() && "Cannot erase end()");
1862 if (this->branched())
1863 return treeErase();
1864 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1865 P.setSize(0, --IM.rootSize);
1866}
1867
1868/// treeErase - erase() for a branched tree.
1869template <typename KeyT, typename ValT, unsigned N, typename Traits>
1870void IntervalMap<KeyT, ValT, N, Traits>::
1871iterator::treeErase(bool UpdateRoot) {
1872 IntervalMap &IM = *this->map;
1873 IntervalMapImpl::Path &P = this->path;
1874 Leaf &Node = P.leaf<Leaf>();
1875
1876 // Nodes are not allowed to become empty.
1877 if (P.leafSize() == 1) {
1878 IM.deleteNode(&Node);
1879 eraseNode(IM.height);
1880 // Update rootBranchStart if we erased begin().
1881 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1882 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1883 return;
1884 }
1885
1886 // Erase current entry.
1887 Node.erase(P.leafOffset(), P.leafSize());
1888 unsigned NewSize = P.leafSize() - 1;
1889 P.setSize(IM.height, NewSize);
1890 // When we erase the last entry, update stop and move to a legal position.
1891 if (P.leafOffset() == NewSize) {
1892 setNodeStop(IM.height, Node.stop(NewSize - 1));
1893 P.moveRight(IM.height);
1894 } else if (UpdateRoot && P.atBegin())
1895 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1896}
1897
1898/// eraseNode - Erase the current node at Level from its parent and move path to
1899/// the first entry of the next sibling node.
1900/// The node must be deallocated by the caller.
1901/// @param Level 1..height, the root node cannot be erased.
1902template <typename KeyT, typename ValT, unsigned N, typename Traits>
1903void IntervalMap<KeyT, ValT, N, Traits>::
1904iterator::eraseNode(unsigned Level) {
1905 assert(Level && "Cannot erase root node");
1906 IntervalMap &IM = *this->map;
1907 IntervalMapImpl::Path &P = this->path;
1908
1909 if (--Level == 0) {
1910 IM.rootBranch().erase(P.offset(0), IM.rootSize);
1911 P.setSize(0, --IM.rootSize);
1912 // If this cleared the root, switch to height=0.
1913 if (IM.empty()) {
1914 IM.switchRootToLeaf();
1915 this->setRoot(0);
1916 return;
1917 }
1918 } else {
1919 // Remove node ref from branch node at Level.
1920 Branch &Parent = P.node<Branch>(Level);
1921 if (P.size(Level) == 1) {
1922 // Branch node became empty, remove it recursively.
1923 IM.deleteNode(&Parent);
1924 eraseNode(Level);
1925 } else {
1926 // Branch node won't become empty.
1927 Parent.erase(P.offset(Level), P.size(Level));
1928 unsigned NewSize = P.size(Level) - 1;
1929 P.setSize(Level, NewSize);
1930 // If we removed the last branch, update stop and move to a legal pos.
1931 if (P.offset(Level) == NewSize) {
1932 setNodeStop(Level, Parent.stop(NewSize - 1));
1933 P.moveRight(Level);
1934 }
1935 }
1936 }
1937 // Update path cache for the new right sibling position.
1938 if (P.valid()) {
1939 P.reset(Level + 1);
1940 P.offset(Level + 1) = 0;
1941 }
1942}
1943
1944/// overflow - Distribute entries of the current node evenly among
1945/// its siblings and ensure that the current node is not full.
1946/// This may require allocating a new node.
1947/// @tparam NodeT The type of node at Level (Leaf or Branch).
1948/// @param Level path index of the overflowing node.
1949/// @return True when the tree height was changed.
1950template <typename KeyT, typename ValT, unsigned N, typename Traits>
1951template <typename NodeT>
1952bool IntervalMap<KeyT, ValT, N, Traits>::
1953iterator::overflow(unsigned Level) {
1954 using namespace IntervalMapImpl;
1955 Path &P = this->path;
1956 unsigned CurSize[4];
1957 NodeT *Node[4];
1958 unsigned Nodes = 0;
1959 unsigned Elements = 0;
1960 unsigned Offset = P.offset(Level);
1961
1962 // Do we have a left sibling?
1963 NodeRef LeftSib = P.getLeftSibling(Level);
1964 if (LeftSib) {
1965 Offset += Elements = CurSize[Nodes] = LeftSib.size();
1966 Node[Nodes++] = &LeftSib.get<NodeT>();
1967 }
1968
1969 // Current node.
1970 Elements += CurSize[Nodes] = P.size(Level);
1971 Node[Nodes++] = &P.node<NodeT>(Level);
1972
1973 // Do we have a right sibling?
1974 NodeRef RightSib = P.getRightSibling(Level);
1975 if (RightSib) {
1976 Elements += CurSize[Nodes] = RightSib.size();
1977 Node[Nodes++] = &RightSib.get<NodeT>();
1978 }
1979
1980 // Do we need to allocate a new node?
1981 unsigned NewNode = 0;
1982 if (Elements + 1 > Nodes * NodeT::Capacity) {
1983 // Insert NewNode at the penultimate position, or after a single node.
1984 NewNode = Nodes == 1 ? 1 : Nodes - 1;
1985 CurSize[Nodes] = CurSize[NewNode];
1986 Node[Nodes] = Node[NewNode];
1987 CurSize[NewNode] = 0;
1988 Node[NewNode] = this->map->template newNode<NodeT>();
1989 ++Nodes;
1990 }
1991
1992 // Compute the new element distribution.
1993 unsigned NewSize[4];
1994 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1995 CurSize, NewSize, Offset, true);
1996 adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1997
1998 // Move current location to the leftmost node.
1999 if (LeftSib)
2000 P.moveLeft(Level);
2001
2002 // Elements have been rearranged, now update node sizes and stops.
2003 bool SplitRoot = false;
2004 unsigned Pos = 0;
2005 while (true) {
2006 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2007 if (NewNode && Pos == NewNode) {
2008 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2009 Level += SplitRoot;
2010 } else {
2011 P.setSize(Level, NewSize[Pos]);
2012 setNodeStop(Level, Stop);
2013 }
2014 if (Pos + 1 == Nodes)
2015 break;
2016 P.moveRight(Level);
2017 ++Pos;
2018 }
2019
2020 // Where was I? Find NewOffset.
2021 while(Pos != NewOffset.first) {
2022 P.moveLeft(Level);
2023 --Pos;
2024 }
2025 P.offset(Level) = NewOffset.second;
2026 return SplitRoot;
2027}
2028
2029//===----------------------------------------------------------------------===//
2030//--- IntervalMapOverlaps ----//
2031//===----------------------------------------------------------------------===//
2032
2033/// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2034/// IntervalMaps. The maps may be different, but the KeyT and Traits types
2035/// should be the same.
2036///
2037/// Typical uses:
2038///
2039/// 1. Test for overlap:
2040/// bool overlap = IntervalMapOverlaps(a, b).valid();
2041///
2042/// 2. Enumerate overlaps:
2043/// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2044///
2045template <typename MapA, typename MapB>
2046class IntervalMapOverlaps {
2047 using KeyType = typename MapA::KeyType;
2048 using Traits = typename MapA::KeyTraits;
2049
2050 typename MapA::const_iterator posA;
2051 typename MapB::const_iterator posB;
2052
2053 /// advance - Move posA and posB forward until reaching an overlap, or until
2054 /// either meets end.
2055 /// Don't move the iterators if they are already overlapping.
2056 void advance() {
2057 if (!valid())
2058 return;
2059
2060 if (Traits::stopLess(posA.stop(), posB.start())) {
2061 // A ends before B begins. Catch up.
2062 posA.advanceTo(posB.start());
2063 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2064 return;
2065 } else if (Traits::stopLess(posB.stop(), posA.start())) {
2066 // B ends before A begins. Catch up.
2067 posB.advanceTo(posA.start());
2068 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2069 return;
2070 } else
2071 // Already overlapping.
2072 return;
2073
2074 while (true) {
2075 // Make a.end > b.start.
2076 posA.advanceTo(posB.start());
2077 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2078 return;
2079 // Make b.end > a.start.
2080 posB.advanceTo(posA.start());
2081 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2082 return;
2083 }
2084 }
2085
2086public:
2087 /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2088 IntervalMapOverlaps(const MapA &a, const MapB &b)
2089 : posA(b.empty() ? a.end() : a.find(b.start())),
2090 posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2091
2092 /// valid - Return true if iterator is at an overlap.
2093 bool valid() const {
2094 return posA.valid() && posB.valid();
2095 }
2096
2097 /// a - access the left hand side in the overlap.
2098 const typename MapA::const_iterator &a() const { return posA; }
2099
2100 /// b - access the right hand side in the overlap.
2101 const typename MapB::const_iterator &b() const { return posB; }
2102
2103 /// start - Beginning of the overlapping interval.
2104 KeyType start() const {
2105 KeyType ak = a().start();
2106 KeyType bk = b().start();
2107 return Traits::startLess(ak, bk) ? bk : ak;
2108 }
2109
2110 /// stop - End of the overlapping interval.
2111 KeyType stop() const {
2112 KeyType ak = a().stop();
2113 KeyType bk = b().stop();
2114 return Traits::startLess(ak, bk) ? ak : bk;
2115 }
2116
2117 /// skipA - Move to the next overlap that doesn't involve a().
2118 void skipA() {
2119 ++posA;
2120 advance();
2121 }
2122
2123 /// skipB - Move to the next overlap that doesn't involve b().
2124 void skipB() {
2125 ++posB;
2126 advance();
2127 }
2128
2129 /// Preincrement - Move to the next overlap.
2130 IntervalMapOverlaps &operator++() {
2131 // Bump the iterator that ends first. The other one may have more overlaps.
2132 if (Traits::startLess(posB.stop(), posA.stop()))
2133 skipB();
2134 else
2135 skipA();
2136 return *this;
2137 }
2138
2139 /// advanceTo - Move to the first overlapping interval with
2140 /// stopLess(x, stop()).
2141 void advanceTo(KeyType x) {
2142 if (!valid())
2143 return;
2144 // Make sure advanceTo sees monotonic keys.
2145 if (Traits::stopLess(posA.stop(), x))
2146 posA.advanceTo(x);
2147 if (Traits::stopLess(posB.stop(), x))
2148 posB.advanceTo(x);
2149 advance();
2150 }
2151};
2152
2153} // end namespace llvm
2154
2155#endif // LLVM_ADT_INTERVALMAP_H