Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines the ImutAVLTree and ImmutableSet classes. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_IMMUTABLESET_H |
| 15 | #define LLVM_ADT_IMMUTABLESET_H |
| 16 | |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/FoldingSet.h" |
| 19 | #include "llvm/ADT/SmallVector.h" |
| 20 | #include "llvm/ADT/iterator.h" |
| 21 | #include "llvm/Support/Allocator.h" |
| 22 | #include "llvm/Support/ErrorHandling.h" |
| 23 | #include <cassert> |
| 24 | #include <cstdint> |
| 25 | #include <functional> |
| 26 | #include <iterator> |
| 27 | #include <new> |
| 28 | #include <vector> |
| 29 | |
| 30 | namespace llvm { |
| 31 | |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | // Immutable AVL-Tree Definition. |
| 34 | //===----------------------------------------------------------------------===// |
| 35 | |
| 36 | template <typename ImutInfo> class ImutAVLFactory; |
| 37 | template <typename ImutInfo> class ImutIntervalAVLFactory; |
| 38 | template <typename ImutInfo> class ImutAVLTreeInOrderIterator; |
| 39 | template <typename ImutInfo> class ImutAVLTreeGenericIterator; |
| 40 | |
| 41 | template <typename ImutInfo > |
| 42 | class ImutAVLTree { |
| 43 | public: |
| 44 | using key_type_ref = typename ImutInfo::key_type_ref; |
| 45 | using value_type = typename ImutInfo::value_type; |
| 46 | using value_type_ref = typename ImutInfo::value_type_ref; |
| 47 | using Factory = ImutAVLFactory<ImutInfo>; |
| 48 | using iterator = ImutAVLTreeInOrderIterator<ImutInfo>; |
| 49 | |
| 50 | friend class ImutAVLFactory<ImutInfo>; |
| 51 | friend class ImutIntervalAVLFactory<ImutInfo>; |
| 52 | friend class ImutAVLTreeGenericIterator<ImutInfo>; |
| 53 | |
| 54 | //===----------------------------------------------------===// |
| 55 | // Public Interface. |
| 56 | //===----------------------------------------------------===// |
| 57 | |
| 58 | /// Return a pointer to the left subtree. This value |
| 59 | /// is NULL if there is no left subtree. |
| 60 | ImutAVLTree *getLeft() const { return left; } |
| 61 | |
| 62 | /// Return a pointer to the right subtree. This value is |
| 63 | /// NULL if there is no right subtree. |
| 64 | ImutAVLTree *getRight() const { return right; } |
| 65 | |
| 66 | /// getHeight - Returns the height of the tree. A tree with no subtrees |
| 67 | /// has a height of 1. |
| 68 | unsigned getHeight() const { return height; } |
| 69 | |
| 70 | /// getValue - Returns the data value associated with the tree node. |
| 71 | const value_type& getValue() const { return value; } |
| 72 | |
| 73 | /// find - Finds the subtree associated with the specified key value. |
| 74 | /// This method returns NULL if no matching subtree is found. |
| 75 | ImutAVLTree* find(key_type_ref K) { |
| 76 | ImutAVLTree *T = this; |
| 77 | while (T) { |
| 78 | key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue()); |
| 79 | if (ImutInfo::isEqual(K,CurrentKey)) |
| 80 | return T; |
| 81 | else if (ImutInfo::isLess(K,CurrentKey)) |
| 82 | T = T->getLeft(); |
| 83 | else |
| 84 | T = T->getRight(); |
| 85 | } |
| 86 | return nullptr; |
| 87 | } |
| 88 | |
| 89 | /// getMaxElement - Find the subtree associated with the highest ranged |
| 90 | /// key value. |
| 91 | ImutAVLTree* getMaxElement() { |
| 92 | ImutAVLTree *T = this; |
| 93 | ImutAVLTree *Right = T->getRight(); |
| 94 | while (Right) { T = Right; Right = T->getRight(); } |
| 95 | return T; |
| 96 | } |
| 97 | |
| 98 | /// size - Returns the number of nodes in the tree, which includes |
| 99 | /// both leaves and non-leaf nodes. |
| 100 | unsigned size() const { |
| 101 | unsigned n = 1; |
| 102 | if (const ImutAVLTree* L = getLeft()) |
| 103 | n += L->size(); |
| 104 | if (const ImutAVLTree* R = getRight()) |
| 105 | n += R->size(); |
| 106 | return n; |
| 107 | } |
| 108 | |
| 109 | /// begin - Returns an iterator that iterates over the nodes of the tree |
| 110 | /// in an inorder traversal. The returned iterator thus refers to the |
| 111 | /// the tree node with the minimum data element. |
| 112 | iterator begin() const { return iterator(this); } |
| 113 | |
| 114 | /// end - Returns an iterator for the tree that denotes the end of an |
| 115 | /// inorder traversal. |
| 116 | iterator end() const { return iterator(); } |
| 117 | |
| 118 | bool isElementEqual(value_type_ref V) const { |
| 119 | // Compare the keys. |
| 120 | if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()), |
| 121 | ImutInfo::KeyOfValue(V))) |
| 122 | return false; |
| 123 | |
| 124 | // Also compare the data values. |
| 125 | if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()), |
| 126 | ImutInfo::DataOfValue(V))) |
| 127 | return false; |
| 128 | |
| 129 | return true; |
| 130 | } |
| 131 | |
| 132 | bool isElementEqual(const ImutAVLTree* RHS) const { |
| 133 | return isElementEqual(RHS->getValue()); |
| 134 | } |
| 135 | |
| 136 | /// isEqual - Compares two trees for structural equality and returns true |
| 137 | /// if they are equal. This worst case performance of this operation is |
| 138 | // linear in the sizes of the trees. |
| 139 | bool isEqual(const ImutAVLTree& RHS) const { |
| 140 | if (&RHS == this) |
| 141 | return true; |
| 142 | |
| 143 | iterator LItr = begin(), LEnd = end(); |
| 144 | iterator RItr = RHS.begin(), REnd = RHS.end(); |
| 145 | |
| 146 | while (LItr != LEnd && RItr != REnd) { |
| 147 | if (&*LItr == &*RItr) { |
| 148 | LItr.skipSubTree(); |
| 149 | RItr.skipSubTree(); |
| 150 | continue; |
| 151 | } |
| 152 | |
| 153 | if (!LItr->isElementEqual(&*RItr)) |
| 154 | return false; |
| 155 | |
| 156 | ++LItr; |
| 157 | ++RItr; |
| 158 | } |
| 159 | |
| 160 | return LItr == LEnd && RItr == REnd; |
| 161 | } |
| 162 | |
| 163 | /// isNotEqual - Compares two trees for structural inequality. Performance |
| 164 | /// is the same is isEqual. |
| 165 | bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); } |
| 166 | |
| 167 | /// contains - Returns true if this tree contains a subtree (node) that |
| 168 | /// has an data element that matches the specified key. Complexity |
| 169 | /// is logarithmic in the size of the tree. |
| 170 | bool contains(key_type_ref K) { return (bool) find(K); } |
| 171 | |
| 172 | /// foreach - A member template the accepts invokes operator() on a functor |
| 173 | /// object (specifed by Callback) for every node/subtree in the tree. |
| 174 | /// Nodes are visited using an inorder traversal. |
| 175 | template <typename Callback> |
| 176 | void foreach(Callback& C) { |
| 177 | if (ImutAVLTree* L = getLeft()) |
| 178 | L->foreach(C); |
| 179 | |
| 180 | C(value); |
| 181 | |
| 182 | if (ImutAVLTree* R = getRight()) |
| 183 | R->foreach(C); |
| 184 | } |
| 185 | |
| 186 | /// validateTree - A utility method that checks that the balancing and |
| 187 | /// ordering invariants of the tree are satisifed. It is a recursive |
| 188 | /// method that returns the height of the tree, which is then consumed |
| 189 | /// by the enclosing validateTree call. External callers should ignore the |
| 190 | /// return value. An invalid tree will cause an assertion to fire in |
| 191 | /// a debug build. |
| 192 | unsigned validateTree() const { |
| 193 | unsigned HL = getLeft() ? getLeft()->validateTree() : 0; |
| 194 | unsigned HR = getRight() ? getRight()->validateTree() : 0; |
| 195 | (void) HL; |
| 196 | (void) HR; |
| 197 | |
| 198 | assert(getHeight() == ( HL > HR ? HL : HR ) + 1 |
| 199 | && "Height calculation wrong"); |
| 200 | |
| 201 | assert((HL > HR ? HL-HR : HR-HL) <= 2 |
| 202 | && "Balancing invariant violated"); |
| 203 | |
| 204 | assert((!getLeft() || |
| 205 | ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()), |
| 206 | ImutInfo::KeyOfValue(getValue()))) && |
| 207 | "Value in left child is not less that current value"); |
| 208 | |
| 209 | |
| 210 | assert(!(getRight() || |
| 211 | ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()), |
| 212 | ImutInfo::KeyOfValue(getRight()->getValue()))) && |
| 213 | "Current value is not less that value of right child"); |
| 214 | |
| 215 | return getHeight(); |
| 216 | } |
| 217 | |
| 218 | //===----------------------------------------------------===// |
| 219 | // Internal values. |
| 220 | //===----------------------------------------------------===// |
| 221 | |
| 222 | private: |
| 223 | Factory *factory; |
| 224 | ImutAVLTree *left; |
| 225 | ImutAVLTree *right; |
| 226 | ImutAVLTree *prev = nullptr; |
| 227 | ImutAVLTree *next = nullptr; |
| 228 | |
| 229 | unsigned height : 28; |
| 230 | bool IsMutable : 1; |
| 231 | bool IsDigestCached : 1; |
| 232 | bool IsCanonicalized : 1; |
| 233 | |
| 234 | value_type value; |
| 235 | uint32_t digest = 0; |
| 236 | uint32_t refCount = 0; |
| 237 | |
| 238 | //===----------------------------------------------------===// |
| 239 | // Internal methods (node manipulation; used by Factory). |
| 240 | //===----------------------------------------------------===// |
| 241 | |
| 242 | private: |
| 243 | /// ImutAVLTree - Internal constructor that is only called by |
| 244 | /// ImutAVLFactory. |
| 245 | ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v, |
| 246 | unsigned height) |
| 247 | : factory(f), left(l), right(r), height(height), IsMutable(true), |
| 248 | IsDigestCached(false), IsCanonicalized(false), value(v) |
| 249 | { |
| 250 | if (left) left->retain(); |
| 251 | if (right) right->retain(); |
| 252 | } |
| 253 | |
| 254 | /// isMutable - Returns true if the left and right subtree references |
| 255 | /// (as well as height) can be changed. If this method returns false, |
| 256 | /// the tree is truly immutable. Trees returned from an ImutAVLFactory |
| 257 | /// object should always have this method return true. Further, if this |
| 258 | /// method returns false for an instance of ImutAVLTree, all subtrees |
| 259 | /// will also have this method return false. The converse is not true. |
| 260 | bool isMutable() const { return IsMutable; } |
| 261 | |
| 262 | /// hasCachedDigest - Returns true if the digest for this tree is cached. |
| 263 | /// This can only be true if the tree is immutable. |
| 264 | bool hasCachedDigest() const { return IsDigestCached; } |
| 265 | |
| 266 | //===----------------------------------------------------===// |
| 267 | // Mutating operations. A tree root can be manipulated as |
| 268 | // long as its reference has not "escaped" from internal |
| 269 | // methods of a factory object (see below). When a tree |
| 270 | // pointer is externally viewable by client code, the |
| 271 | // internal "mutable bit" is cleared to mark the tree |
| 272 | // immutable. Note that a tree that still has its mutable |
| 273 | // bit set may have children (subtrees) that are themselves |
| 274 | // immutable. |
| 275 | //===----------------------------------------------------===// |
| 276 | |
| 277 | /// markImmutable - Clears the mutable flag for a tree. After this happens, |
| 278 | /// it is an error to call setLeft(), setRight(), and setHeight(). |
| 279 | void markImmutable() { |
| 280 | assert(isMutable() && "Mutable flag already removed."); |
| 281 | IsMutable = false; |
| 282 | } |
| 283 | |
| 284 | /// markedCachedDigest - Clears the NoCachedDigest flag for a tree. |
| 285 | void markedCachedDigest() { |
| 286 | assert(!hasCachedDigest() && "NoCachedDigest flag already removed."); |
| 287 | IsDigestCached = true; |
| 288 | } |
| 289 | |
| 290 | /// setHeight - Changes the height of the tree. Used internally by |
| 291 | /// ImutAVLFactory. |
| 292 | void setHeight(unsigned h) { |
| 293 | assert(isMutable() && "Only a mutable tree can have its height changed."); |
| 294 | height = h; |
| 295 | } |
| 296 | |
| 297 | static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R, |
| 298 | value_type_ref V) { |
| 299 | uint32_t digest = 0; |
| 300 | |
| 301 | if (L) |
| 302 | digest += L->computeDigest(); |
| 303 | |
| 304 | // Compute digest of stored data. |
| 305 | FoldingSetNodeID ID; |
| 306 | ImutInfo::Profile(ID,V); |
| 307 | digest += ID.ComputeHash(); |
| 308 | |
| 309 | if (R) |
| 310 | digest += R->computeDigest(); |
| 311 | |
| 312 | return digest; |
| 313 | } |
| 314 | |
| 315 | uint32_t computeDigest() { |
| 316 | // Check the lowest bit to determine if digest has actually been |
| 317 | // pre-computed. |
| 318 | if (hasCachedDigest()) |
| 319 | return digest; |
| 320 | |
| 321 | uint32_t X = computeDigest(getLeft(), getRight(), getValue()); |
| 322 | digest = X; |
| 323 | markedCachedDigest(); |
| 324 | return X; |
| 325 | } |
| 326 | |
| 327 | //===----------------------------------------------------===// |
| 328 | // Reference count operations. |
| 329 | //===----------------------------------------------------===// |
| 330 | |
| 331 | public: |
| 332 | void retain() { ++refCount; } |
| 333 | |
| 334 | void release() { |
| 335 | assert(refCount > 0); |
| 336 | if (--refCount == 0) |
| 337 | destroy(); |
| 338 | } |
| 339 | |
| 340 | void destroy() { |
| 341 | if (left) |
| 342 | left->release(); |
| 343 | if (right) |
| 344 | right->release(); |
| 345 | if (IsCanonicalized) { |
| 346 | if (next) |
| 347 | next->prev = prev; |
| 348 | |
| 349 | if (prev) |
| 350 | prev->next = next; |
| 351 | else |
| 352 | factory->Cache[factory->maskCacheIndex(computeDigest())] = next; |
| 353 | } |
| 354 | |
| 355 | // We need to clear the mutability bit in case we are |
| 356 | // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes(). |
| 357 | IsMutable = false; |
| 358 | factory->freeNodes.push_back(this); |
| 359 | } |
| 360 | }; |
| 361 | |
| 362 | //===----------------------------------------------------------------------===// |
| 363 | // Immutable AVL-Tree Factory class. |
| 364 | //===----------------------------------------------------------------------===// |
| 365 | |
| 366 | template <typename ImutInfo > |
| 367 | class ImutAVLFactory { |
| 368 | friend class ImutAVLTree<ImutInfo>; |
| 369 | |
| 370 | using TreeTy = ImutAVLTree<ImutInfo>; |
| 371 | using value_type_ref = typename TreeTy::value_type_ref; |
| 372 | using key_type_ref = typename TreeTy::key_type_ref; |
| 373 | using CacheTy = DenseMap<unsigned, TreeTy*>; |
| 374 | |
| 375 | CacheTy Cache; |
| 376 | uintptr_t Allocator; |
| 377 | std::vector<TreeTy*> createdNodes; |
| 378 | std::vector<TreeTy*> freeNodes; |
| 379 | |
| 380 | bool ownsAllocator() const { |
| 381 | return (Allocator & 0x1) == 0; |
| 382 | } |
| 383 | |
| 384 | BumpPtrAllocator& getAllocator() const { |
| 385 | return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1); |
| 386 | } |
| 387 | |
| 388 | //===--------------------------------------------------===// |
| 389 | // Public interface. |
| 390 | //===--------------------------------------------------===// |
| 391 | |
| 392 | public: |
| 393 | ImutAVLFactory() |
| 394 | : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {} |
| 395 | |
| 396 | ImutAVLFactory(BumpPtrAllocator& Alloc) |
| 397 | : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {} |
| 398 | |
| 399 | ~ImutAVLFactory() { |
| 400 | if (ownsAllocator()) delete &getAllocator(); |
| 401 | } |
| 402 | |
| 403 | TreeTy* add(TreeTy* T, value_type_ref V) { |
| 404 | T = add_internal(V,T); |
| 405 | markImmutable(T); |
| 406 | recoverNodes(); |
| 407 | return T; |
| 408 | } |
| 409 | |
| 410 | TreeTy* remove(TreeTy* T, key_type_ref V) { |
| 411 | T = remove_internal(V,T); |
| 412 | markImmutable(T); |
| 413 | recoverNodes(); |
| 414 | return T; |
| 415 | } |
| 416 | |
| 417 | TreeTy* getEmptyTree() const { return nullptr; } |
| 418 | |
| 419 | protected: |
| 420 | //===--------------------------------------------------===// |
| 421 | // A bunch of quick helper functions used for reasoning |
| 422 | // about the properties of trees and their children. |
| 423 | // These have succinct names so that the balancing code |
| 424 | // is as terse (and readable) as possible. |
| 425 | //===--------------------------------------------------===// |
| 426 | |
| 427 | bool isEmpty(TreeTy* T) const { return !T; } |
| 428 | unsigned getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; } |
| 429 | TreeTy* getLeft(TreeTy* T) const { return T->getLeft(); } |
| 430 | TreeTy* getRight(TreeTy* T) const { return T->getRight(); } |
| 431 | value_type_ref getValue(TreeTy* T) const { return T->value; } |
| 432 | |
| 433 | // Make sure the index is not the Tombstone or Entry key of the DenseMap. |
| 434 | static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); } |
| 435 | |
| 436 | unsigned incrementHeight(TreeTy* L, TreeTy* R) const { |
| 437 | unsigned hl = getHeight(L); |
| 438 | unsigned hr = getHeight(R); |
| 439 | return (hl > hr ? hl : hr) + 1; |
| 440 | } |
| 441 | |
| 442 | static bool compareTreeWithSection(TreeTy* T, |
| 443 | typename TreeTy::iterator& TI, |
| 444 | typename TreeTy::iterator& TE) { |
| 445 | typename TreeTy::iterator I = T->begin(), E = T->end(); |
| 446 | for ( ; I!=E ; ++I, ++TI) { |
| 447 | if (TI == TE || !I->isElementEqual(&*TI)) |
| 448 | return false; |
| 449 | } |
| 450 | return true; |
| 451 | } |
| 452 | |
| 453 | //===--------------------------------------------------===// |
| 454 | // "createNode" is used to generate new tree roots that link |
| 455 | // to other trees. The functon may also simply move links |
| 456 | // in an existing root if that root is still marked mutable. |
| 457 | // This is necessary because otherwise our balancing code |
| 458 | // would leak memory as it would create nodes that are |
| 459 | // then discarded later before the finished tree is |
| 460 | // returned to the caller. |
| 461 | //===--------------------------------------------------===// |
| 462 | |
| 463 | TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) { |
| 464 | BumpPtrAllocator& A = getAllocator(); |
| 465 | TreeTy* T; |
| 466 | if (!freeNodes.empty()) { |
| 467 | T = freeNodes.back(); |
| 468 | freeNodes.pop_back(); |
| 469 | assert(T != L); |
| 470 | assert(T != R); |
| 471 | } else { |
| 472 | T = (TreeTy*) A.Allocate<TreeTy>(); |
| 473 | } |
| 474 | new (T) TreeTy(this, L, R, V, incrementHeight(L,R)); |
| 475 | createdNodes.push_back(T); |
| 476 | return T; |
| 477 | } |
| 478 | |
| 479 | TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) { |
| 480 | return createNode(newLeft, getValue(oldTree), newRight); |
| 481 | } |
| 482 | |
| 483 | void recoverNodes() { |
| 484 | for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) { |
| 485 | TreeTy *N = createdNodes[i]; |
| 486 | if (N->isMutable() && N->refCount == 0) |
| 487 | N->destroy(); |
| 488 | } |
| 489 | createdNodes.clear(); |
| 490 | } |
| 491 | |
| 492 | /// balanceTree - Used by add_internal and remove_internal to |
| 493 | /// balance a newly created tree. |
| 494 | TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) { |
| 495 | unsigned hl = getHeight(L); |
| 496 | unsigned hr = getHeight(R); |
| 497 | |
| 498 | if (hl > hr + 2) { |
| 499 | assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2"); |
| 500 | |
| 501 | TreeTy *LL = getLeft(L); |
| 502 | TreeTy *LR = getRight(L); |
| 503 | |
| 504 | if (getHeight(LL) >= getHeight(LR)) |
| 505 | return createNode(LL, L, createNode(LR,V,R)); |
| 506 | |
| 507 | assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1"); |
| 508 | |
| 509 | TreeTy *LRL = getLeft(LR); |
| 510 | TreeTy *LRR = getRight(LR); |
| 511 | |
| 512 | return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R)); |
| 513 | } |
| 514 | |
| 515 | if (hr > hl + 2) { |
| 516 | assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2"); |
| 517 | |
| 518 | TreeTy *RL = getLeft(R); |
| 519 | TreeTy *RR = getRight(R); |
| 520 | |
| 521 | if (getHeight(RR) >= getHeight(RL)) |
| 522 | return createNode(createNode(L,V,RL), R, RR); |
| 523 | |
| 524 | assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1"); |
| 525 | |
| 526 | TreeTy *RLL = getLeft(RL); |
| 527 | TreeTy *RLR = getRight(RL); |
| 528 | |
| 529 | return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR)); |
| 530 | } |
| 531 | |
| 532 | return createNode(L,V,R); |
| 533 | } |
| 534 | |
| 535 | /// add_internal - Creates a new tree that includes the specified |
| 536 | /// data and the data from the original tree. If the original tree |
| 537 | /// already contained the data item, the original tree is returned. |
| 538 | TreeTy* add_internal(value_type_ref V, TreeTy* T) { |
| 539 | if (isEmpty(T)) |
| 540 | return createNode(T, V, T); |
| 541 | assert(!T->isMutable()); |
| 542 | |
| 543 | key_type_ref K = ImutInfo::KeyOfValue(V); |
| 544 | key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); |
| 545 | |
| 546 | if (ImutInfo::isEqual(K,KCurrent)) |
| 547 | return createNode(getLeft(T), V, getRight(T)); |
| 548 | else if (ImutInfo::isLess(K,KCurrent)) |
| 549 | return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T)); |
| 550 | else |
| 551 | return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T))); |
| 552 | } |
| 553 | |
| 554 | /// remove_internal - Creates a new tree that includes all the data |
| 555 | /// from the original tree except the specified data. If the |
| 556 | /// specified data did not exist in the original tree, the original |
| 557 | /// tree is returned. |
| 558 | TreeTy* remove_internal(key_type_ref K, TreeTy* T) { |
| 559 | if (isEmpty(T)) |
| 560 | return T; |
| 561 | |
| 562 | assert(!T->isMutable()); |
| 563 | |
| 564 | key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T)); |
| 565 | |
| 566 | if (ImutInfo::isEqual(K,KCurrent)) { |
| 567 | return combineTrees(getLeft(T), getRight(T)); |
| 568 | } else if (ImutInfo::isLess(K,KCurrent)) { |
| 569 | return balanceTree(remove_internal(K, getLeft(T)), |
| 570 | getValue(T), getRight(T)); |
| 571 | } else { |
| 572 | return balanceTree(getLeft(T), getValue(T), |
| 573 | remove_internal(K, getRight(T))); |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | TreeTy* combineTrees(TreeTy* L, TreeTy* R) { |
| 578 | if (isEmpty(L)) |
| 579 | return R; |
| 580 | if (isEmpty(R)) |
| 581 | return L; |
| 582 | TreeTy* OldNode; |
| 583 | TreeTy* newRight = removeMinBinding(R,OldNode); |
| 584 | return balanceTree(L, getValue(OldNode), newRight); |
| 585 | } |
| 586 | |
| 587 | TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) { |
| 588 | assert(!isEmpty(T)); |
| 589 | if (isEmpty(getLeft(T))) { |
| 590 | Noderemoved = T; |
| 591 | return getRight(T); |
| 592 | } |
| 593 | return balanceTree(removeMinBinding(getLeft(T), Noderemoved), |
| 594 | getValue(T), getRight(T)); |
| 595 | } |
| 596 | |
| 597 | /// markImmutable - Clears the mutable bits of a root and all of its |
| 598 | /// descendants. |
| 599 | void markImmutable(TreeTy* T) { |
| 600 | if (!T || !T->isMutable()) |
| 601 | return; |
| 602 | T->markImmutable(); |
| 603 | markImmutable(getLeft(T)); |
| 604 | markImmutable(getRight(T)); |
| 605 | } |
| 606 | |
| 607 | public: |
| 608 | TreeTy *getCanonicalTree(TreeTy *TNew) { |
| 609 | if (!TNew) |
| 610 | return nullptr; |
| 611 | |
| 612 | if (TNew->IsCanonicalized) |
| 613 | return TNew; |
| 614 | |
| 615 | // Search the hashtable for another tree with the same digest, and |
| 616 | // if find a collision compare those trees by their contents. |
| 617 | unsigned digest = TNew->computeDigest(); |
| 618 | TreeTy *&entry = Cache[maskCacheIndex(digest)]; |
| 619 | do { |
| 620 | if (!entry) |
| 621 | break; |
| 622 | for (TreeTy *T = entry ; T != nullptr; T = T->next) { |
| 623 | // Compare the Contents('T') with Contents('TNew') |
| 624 | typename TreeTy::iterator TI = T->begin(), TE = T->end(); |
| 625 | if (!compareTreeWithSection(TNew, TI, TE)) |
| 626 | continue; |
| 627 | if (TI != TE) |
| 628 | continue; // T has more contents than TNew. |
| 629 | // Trees did match! Return 'T'. |
| 630 | if (TNew->refCount == 0) |
| 631 | TNew->destroy(); |
| 632 | return T; |
| 633 | } |
| 634 | entry->prev = TNew; |
| 635 | TNew->next = entry; |
| 636 | } |
| 637 | while (false); |
| 638 | |
| 639 | entry = TNew; |
| 640 | TNew->IsCanonicalized = true; |
| 641 | return TNew; |
| 642 | } |
| 643 | }; |
| 644 | |
| 645 | //===----------------------------------------------------------------------===// |
| 646 | // Immutable AVL-Tree Iterators. |
| 647 | //===----------------------------------------------------------------------===// |
| 648 | |
| 649 | template <typename ImutInfo> |
| 650 | class ImutAVLTreeGenericIterator |
| 651 | : public std::iterator<std::bidirectional_iterator_tag, |
| 652 | ImutAVLTree<ImutInfo>> { |
| 653 | SmallVector<uintptr_t,20> stack; |
| 654 | |
| 655 | public: |
| 656 | enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3, |
| 657 | Flags=0x3 }; |
| 658 | |
| 659 | using TreeTy = ImutAVLTree<ImutInfo>; |
| 660 | |
| 661 | ImutAVLTreeGenericIterator() = default; |
| 662 | ImutAVLTreeGenericIterator(const TreeTy *Root) { |
| 663 | if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root)); |
| 664 | } |
| 665 | |
| 666 | TreeTy &operator*() const { |
| 667 | assert(!stack.empty()); |
| 668 | return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags); |
| 669 | } |
| 670 | TreeTy *operator->() const { return &*this; } |
| 671 | |
| 672 | uintptr_t getVisitState() const { |
| 673 | assert(!stack.empty()); |
| 674 | return stack.back() & Flags; |
| 675 | } |
| 676 | |
| 677 | bool atEnd() const { return stack.empty(); } |
| 678 | |
| 679 | bool atBeginning() const { |
| 680 | return stack.size() == 1 && getVisitState() == VisitedNone; |
| 681 | } |
| 682 | |
| 683 | void skipToParent() { |
| 684 | assert(!stack.empty()); |
| 685 | stack.pop_back(); |
| 686 | if (stack.empty()) |
| 687 | return; |
| 688 | switch (getVisitState()) { |
| 689 | case VisitedNone: |
| 690 | stack.back() |= VisitedLeft; |
| 691 | break; |
| 692 | case VisitedLeft: |
| 693 | stack.back() |= VisitedRight; |
| 694 | break; |
| 695 | default: |
| 696 | llvm_unreachable("Unreachable."); |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | bool operator==(const ImutAVLTreeGenericIterator &x) const { |
| 701 | return stack == x.stack; |
| 702 | } |
| 703 | |
| 704 | bool operator!=(const ImutAVLTreeGenericIterator &x) const { |
| 705 | return !(*this == x); |
| 706 | } |
| 707 | |
| 708 | ImutAVLTreeGenericIterator &operator++() { |
| 709 | assert(!stack.empty()); |
| 710 | TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); |
| 711 | assert(Current); |
| 712 | switch (getVisitState()) { |
| 713 | case VisitedNone: |
| 714 | if (TreeTy* L = Current->getLeft()) |
| 715 | stack.push_back(reinterpret_cast<uintptr_t>(L)); |
| 716 | else |
| 717 | stack.back() |= VisitedLeft; |
| 718 | break; |
| 719 | case VisitedLeft: |
| 720 | if (TreeTy* R = Current->getRight()) |
| 721 | stack.push_back(reinterpret_cast<uintptr_t>(R)); |
| 722 | else |
| 723 | stack.back() |= VisitedRight; |
| 724 | break; |
| 725 | case VisitedRight: |
| 726 | skipToParent(); |
| 727 | break; |
| 728 | default: |
| 729 | llvm_unreachable("Unreachable."); |
| 730 | } |
| 731 | return *this; |
| 732 | } |
| 733 | |
| 734 | ImutAVLTreeGenericIterator &operator--() { |
| 735 | assert(!stack.empty()); |
| 736 | TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags); |
| 737 | assert(Current); |
| 738 | switch (getVisitState()) { |
| 739 | case VisitedNone: |
| 740 | stack.pop_back(); |
| 741 | break; |
| 742 | case VisitedLeft: |
| 743 | stack.back() &= ~Flags; // Set state to "VisitedNone." |
| 744 | if (TreeTy* L = Current->getLeft()) |
| 745 | stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight); |
| 746 | break; |
| 747 | case VisitedRight: |
| 748 | stack.back() &= ~Flags; |
| 749 | stack.back() |= VisitedLeft; |
| 750 | if (TreeTy* R = Current->getRight()) |
| 751 | stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight); |
| 752 | break; |
| 753 | default: |
| 754 | llvm_unreachable("Unreachable."); |
| 755 | } |
| 756 | return *this; |
| 757 | } |
| 758 | }; |
| 759 | |
| 760 | template <typename ImutInfo> |
| 761 | class ImutAVLTreeInOrderIterator |
| 762 | : public std::iterator<std::bidirectional_iterator_tag, |
| 763 | ImutAVLTree<ImutInfo>> { |
| 764 | using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>; |
| 765 | |
| 766 | InternalIteratorTy InternalItr; |
| 767 | |
| 768 | public: |
| 769 | using TreeTy = ImutAVLTree<ImutInfo>; |
| 770 | |
| 771 | ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) { |
| 772 | if (Root) |
| 773 | ++*this; // Advance to first element. |
| 774 | } |
| 775 | |
| 776 | ImutAVLTreeInOrderIterator() : InternalItr() {} |
| 777 | |
| 778 | bool operator==(const ImutAVLTreeInOrderIterator &x) const { |
| 779 | return InternalItr == x.InternalItr; |
| 780 | } |
| 781 | |
| 782 | bool operator!=(const ImutAVLTreeInOrderIterator &x) const { |
| 783 | return !(*this == x); |
| 784 | } |
| 785 | |
| 786 | TreeTy &operator*() const { return *InternalItr; } |
| 787 | TreeTy *operator->() const { return &*InternalItr; } |
| 788 | |
| 789 | ImutAVLTreeInOrderIterator &operator++() { |
| 790 | do ++InternalItr; |
| 791 | while (!InternalItr.atEnd() && |
| 792 | InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); |
| 793 | |
| 794 | return *this; |
| 795 | } |
| 796 | |
| 797 | ImutAVLTreeInOrderIterator &operator--() { |
| 798 | do --InternalItr; |
| 799 | while (!InternalItr.atBeginning() && |
| 800 | InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft); |
| 801 | |
| 802 | return *this; |
| 803 | } |
| 804 | |
| 805 | void skipSubTree() { |
| 806 | InternalItr.skipToParent(); |
| 807 | |
| 808 | while (!InternalItr.atEnd() && |
| 809 | InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft) |
| 810 | ++InternalItr; |
| 811 | } |
| 812 | }; |
| 813 | |
| 814 | /// Generic iterator that wraps a T::TreeTy::iterator and exposes |
| 815 | /// iterator::getValue() on dereference. |
| 816 | template <typename T> |
| 817 | struct ImutAVLValueIterator |
| 818 | : iterator_adaptor_base< |
| 819 | ImutAVLValueIterator<T>, typename T::TreeTy::iterator, |
| 820 | typename std::iterator_traits< |
| 821 | typename T::TreeTy::iterator>::iterator_category, |
| 822 | const typename T::value_type> { |
| 823 | ImutAVLValueIterator() = default; |
| 824 | explicit ImutAVLValueIterator(typename T::TreeTy *Tree) |
| 825 | : ImutAVLValueIterator::iterator_adaptor_base(Tree) {} |
| 826 | |
| 827 | typename ImutAVLValueIterator::reference operator*() const { |
| 828 | return this->I->getValue(); |
| 829 | } |
| 830 | }; |
| 831 | |
| 832 | //===----------------------------------------------------------------------===// |
| 833 | // Trait classes for Profile information. |
| 834 | //===----------------------------------------------------------------------===// |
| 835 | |
| 836 | /// Generic profile template. The default behavior is to invoke the |
| 837 | /// profile method of an object. Specializations for primitive integers |
| 838 | /// and generic handling of pointers is done below. |
| 839 | template <typename T> |
| 840 | struct ImutProfileInfo { |
| 841 | using value_type = const T; |
| 842 | using value_type_ref = const T&; |
| 843 | |
| 844 | static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| 845 | FoldingSetTrait<T>::Profile(X,ID); |
| 846 | } |
| 847 | }; |
| 848 | |
| 849 | /// Profile traits for integers. |
| 850 | template <typename T> |
| 851 | struct ImutProfileInteger { |
| 852 | using value_type = const T; |
| 853 | using value_type_ref = const T&; |
| 854 | |
| 855 | static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| 856 | ID.AddInteger(X); |
| 857 | } |
| 858 | }; |
| 859 | |
| 860 | #define PROFILE_INTEGER_INFO(X)\ |
| 861 | template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {}; |
| 862 | |
| 863 | PROFILE_INTEGER_INFO(char) |
| 864 | PROFILE_INTEGER_INFO(unsigned char) |
| 865 | PROFILE_INTEGER_INFO(short) |
| 866 | PROFILE_INTEGER_INFO(unsigned short) |
| 867 | PROFILE_INTEGER_INFO(unsigned) |
| 868 | PROFILE_INTEGER_INFO(signed) |
| 869 | PROFILE_INTEGER_INFO(long) |
| 870 | PROFILE_INTEGER_INFO(unsigned long) |
| 871 | PROFILE_INTEGER_INFO(long long) |
| 872 | PROFILE_INTEGER_INFO(unsigned long long) |
| 873 | |
| 874 | #undef PROFILE_INTEGER_INFO |
| 875 | |
| 876 | /// Profile traits for booleans. |
| 877 | template <> |
| 878 | struct ImutProfileInfo<bool> { |
| 879 | using value_type = const bool; |
| 880 | using value_type_ref = const bool&; |
| 881 | |
| 882 | static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| 883 | ID.AddBoolean(X); |
| 884 | } |
| 885 | }; |
| 886 | |
| 887 | /// Generic profile trait for pointer types. We treat pointers as |
| 888 | /// references to unique objects. |
| 889 | template <typename T> |
| 890 | struct ImutProfileInfo<T*> { |
| 891 | using value_type = const T*; |
| 892 | using value_type_ref = value_type; |
| 893 | |
| 894 | static void Profile(FoldingSetNodeID &ID, value_type_ref X) { |
| 895 | ID.AddPointer(X); |
| 896 | } |
| 897 | }; |
| 898 | |
| 899 | //===----------------------------------------------------------------------===// |
| 900 | // Trait classes that contain element comparison operators and type |
| 901 | // definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap. These |
| 902 | // inherit from the profile traits (ImutProfileInfo) to include operations |
| 903 | // for element profiling. |
| 904 | //===----------------------------------------------------------------------===// |
| 905 | |
| 906 | /// ImutContainerInfo - Generic definition of comparison operations for |
| 907 | /// elements of immutable containers that defaults to using |
| 908 | /// std::equal_to<> and std::less<> to perform comparison of elements. |
| 909 | template <typename T> |
| 910 | struct ImutContainerInfo : public ImutProfileInfo<T> { |
| 911 | using value_type = typename ImutProfileInfo<T>::value_type; |
| 912 | using value_type_ref = typename ImutProfileInfo<T>::value_type_ref; |
| 913 | using key_type = value_type; |
| 914 | using key_type_ref = value_type_ref; |
| 915 | using data_type = bool; |
| 916 | using data_type_ref = bool; |
| 917 | |
| 918 | static key_type_ref KeyOfValue(value_type_ref D) { return D; } |
| 919 | static data_type_ref DataOfValue(value_type_ref) { return true; } |
| 920 | |
| 921 | static bool isEqual(key_type_ref LHS, key_type_ref RHS) { |
| 922 | return std::equal_to<key_type>()(LHS,RHS); |
| 923 | } |
| 924 | |
| 925 | static bool isLess(key_type_ref LHS, key_type_ref RHS) { |
| 926 | return std::less<key_type>()(LHS,RHS); |
| 927 | } |
| 928 | |
| 929 | static bool isDataEqual(data_type_ref, data_type_ref) { return true; } |
| 930 | }; |
| 931 | |
| 932 | /// ImutContainerInfo - Specialization for pointer values to treat pointers |
| 933 | /// as references to unique objects. Pointers are thus compared by |
| 934 | /// their addresses. |
| 935 | template <typename T> |
| 936 | struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> { |
| 937 | using value_type = typename ImutProfileInfo<T*>::value_type; |
| 938 | using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref; |
| 939 | using key_type = value_type; |
| 940 | using key_type_ref = value_type_ref; |
| 941 | using data_type = bool; |
| 942 | using data_type_ref = bool; |
| 943 | |
| 944 | static key_type_ref KeyOfValue(value_type_ref D) { return D; } |
| 945 | static data_type_ref DataOfValue(value_type_ref) { return true; } |
| 946 | |
| 947 | static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; } |
| 948 | |
| 949 | static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; } |
| 950 | |
| 951 | static bool isDataEqual(data_type_ref, data_type_ref) { return true; } |
| 952 | }; |
| 953 | |
| 954 | //===----------------------------------------------------------------------===// |
| 955 | // Immutable Set |
| 956 | //===----------------------------------------------------------------------===// |
| 957 | |
| 958 | template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> |
| 959 | class ImmutableSet { |
| 960 | public: |
| 961 | using value_type = typename ValInfo::value_type; |
| 962 | using value_type_ref = typename ValInfo::value_type_ref; |
| 963 | using TreeTy = ImutAVLTree<ValInfo>; |
| 964 | |
| 965 | private: |
| 966 | TreeTy *Root; |
| 967 | |
| 968 | public: |
| 969 | /// Constructs a set from a pointer to a tree root. In general one |
| 970 | /// should use a Factory object to create sets instead of directly |
| 971 | /// invoking the constructor, but there are cases where make this |
| 972 | /// constructor public is useful. |
| 973 | explicit ImmutableSet(TreeTy* R) : Root(R) { |
| 974 | if (Root) { Root->retain(); } |
| 975 | } |
| 976 | |
| 977 | ImmutableSet(const ImmutableSet &X) : Root(X.Root) { |
| 978 | if (Root) { Root->retain(); } |
| 979 | } |
| 980 | |
| 981 | ~ImmutableSet() { |
| 982 | if (Root) { Root->release(); } |
| 983 | } |
| 984 | |
| 985 | ImmutableSet &operator=(const ImmutableSet &X) { |
| 986 | if (Root != X.Root) { |
| 987 | if (X.Root) { X.Root->retain(); } |
| 988 | if (Root) { Root->release(); } |
| 989 | Root = X.Root; |
| 990 | } |
| 991 | return *this; |
| 992 | } |
| 993 | |
| 994 | class Factory { |
| 995 | typename TreeTy::Factory F; |
| 996 | const bool Canonicalize; |
| 997 | |
| 998 | public: |
| 999 | Factory(bool canonicalize = true) |
| 1000 | : Canonicalize(canonicalize) {} |
| 1001 | |
| 1002 | Factory(BumpPtrAllocator& Alloc, bool canonicalize = true) |
| 1003 | : F(Alloc), Canonicalize(canonicalize) {} |
| 1004 | |
| 1005 | Factory(const Factory& RHS) = delete; |
| 1006 | void operator=(const Factory& RHS) = delete; |
| 1007 | |
| 1008 | /// getEmptySet - Returns an immutable set that contains no elements. |
| 1009 | ImmutableSet getEmptySet() { |
| 1010 | return ImmutableSet(F.getEmptyTree()); |
| 1011 | } |
| 1012 | |
| 1013 | /// add - Creates a new immutable set that contains all of the values |
| 1014 | /// of the original set with the addition of the specified value. If |
| 1015 | /// the original set already included the value, then the original set is |
| 1016 | /// returned and no memory is allocated. The time and space complexity |
| 1017 | /// of this operation is logarithmic in the size of the original set. |
| 1018 | /// The memory allocated to represent the set is released when the |
| 1019 | /// factory object that created the set is destroyed. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1020 | LLVM_NODISCARD ImmutableSet add(ImmutableSet Old, value_type_ref V) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1021 | TreeTy *NewT = F.add(Old.Root, V); |
| 1022 | return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); |
| 1023 | } |
| 1024 | |
| 1025 | /// remove - Creates a new immutable set that contains all of the values |
| 1026 | /// of the original set with the exception of the specified value. If |
| 1027 | /// the original set did not contain the value, the original set is |
| 1028 | /// returned and no memory is allocated. The time and space complexity |
| 1029 | /// of this operation is logarithmic in the size of the original set. |
| 1030 | /// The memory allocated to represent the set is released when the |
| 1031 | /// factory object that created the set is destroyed. |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 1032 | LLVM_NODISCARD ImmutableSet remove(ImmutableSet Old, value_type_ref V) { |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1033 | TreeTy *NewT = F.remove(Old.Root, V); |
| 1034 | return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT); |
| 1035 | } |
| 1036 | |
| 1037 | BumpPtrAllocator& getAllocator() { return F.getAllocator(); } |
| 1038 | |
| 1039 | typename TreeTy::Factory *getTreeFactory() const { |
| 1040 | return const_cast<typename TreeTy::Factory *>(&F); |
| 1041 | } |
| 1042 | }; |
| 1043 | |
| 1044 | friend class Factory; |
| 1045 | |
| 1046 | /// Returns true if the set contains the specified value. |
| 1047 | bool contains(value_type_ref V) const { |
| 1048 | return Root ? Root->contains(V) : false; |
| 1049 | } |
| 1050 | |
| 1051 | bool operator==(const ImmutableSet &RHS) const { |
| 1052 | return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; |
| 1053 | } |
| 1054 | |
| 1055 | bool operator!=(const ImmutableSet &RHS) const { |
| 1056 | return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; |
| 1057 | } |
| 1058 | |
| 1059 | TreeTy *getRoot() { |
| 1060 | if (Root) { Root->retain(); } |
| 1061 | return Root; |
| 1062 | } |
| 1063 | |
| 1064 | TreeTy *getRootWithoutRetain() const { |
| 1065 | return Root; |
| 1066 | } |
| 1067 | |
| 1068 | /// isEmpty - Return true if the set contains no elements. |
| 1069 | bool isEmpty() const { return !Root; } |
| 1070 | |
| 1071 | /// isSingleton - Return true if the set contains exactly one element. |
| 1072 | /// This method runs in constant time. |
| 1073 | bool isSingleton() const { return getHeight() == 1; } |
| 1074 | |
| 1075 | template <typename Callback> |
| 1076 | void foreach(Callback& C) { if (Root) Root->foreach(C); } |
| 1077 | |
| 1078 | template <typename Callback> |
| 1079 | void foreach() { if (Root) { Callback C; Root->foreach(C); } } |
| 1080 | |
| 1081 | //===--------------------------------------------------===// |
| 1082 | // Iterators. |
| 1083 | //===--------------------------------------------------===// |
| 1084 | |
| 1085 | using iterator = ImutAVLValueIterator<ImmutableSet>; |
| 1086 | |
| 1087 | iterator begin() const { return iterator(Root); } |
| 1088 | iterator end() const { return iterator(); } |
| 1089 | |
| 1090 | //===--------------------------------------------------===// |
| 1091 | // Utility methods. |
| 1092 | //===--------------------------------------------------===// |
| 1093 | |
| 1094 | unsigned getHeight() const { return Root ? Root->getHeight() : 0; } |
| 1095 | |
| 1096 | static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) { |
| 1097 | ID.AddPointer(S.Root); |
| 1098 | } |
| 1099 | |
| 1100 | void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } |
| 1101 | |
| 1102 | //===--------------------------------------------------===// |
| 1103 | // For testing. |
| 1104 | //===--------------------------------------------------===// |
| 1105 | |
| 1106 | void validateTree() const { if (Root) Root->validateTree(); } |
| 1107 | }; |
| 1108 | |
| 1109 | // NOTE: This may some day replace the current ImmutableSet. |
| 1110 | template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>> |
| 1111 | class ImmutableSetRef { |
| 1112 | public: |
| 1113 | using value_type = typename ValInfo::value_type; |
| 1114 | using value_type_ref = typename ValInfo::value_type_ref; |
| 1115 | using TreeTy = ImutAVLTree<ValInfo>; |
| 1116 | using FactoryTy = typename TreeTy::Factory; |
| 1117 | |
| 1118 | private: |
| 1119 | TreeTy *Root; |
| 1120 | FactoryTy *Factory; |
| 1121 | |
| 1122 | public: |
| 1123 | /// Constructs a set from a pointer to a tree root. In general one |
| 1124 | /// should use a Factory object to create sets instead of directly |
| 1125 | /// invoking the constructor, but there are cases where make this |
| 1126 | /// constructor public is useful. |
| 1127 | explicit ImmutableSetRef(TreeTy* R, FactoryTy *F) |
| 1128 | : Root(R), |
| 1129 | Factory(F) { |
| 1130 | if (Root) { Root->retain(); } |
| 1131 | } |
| 1132 | |
| 1133 | ImmutableSetRef(const ImmutableSetRef &X) |
| 1134 | : Root(X.Root), |
| 1135 | Factory(X.Factory) { |
| 1136 | if (Root) { Root->retain(); } |
| 1137 | } |
| 1138 | |
| 1139 | ~ImmutableSetRef() { |
| 1140 | if (Root) { Root->release(); } |
| 1141 | } |
| 1142 | |
| 1143 | ImmutableSetRef &operator=(const ImmutableSetRef &X) { |
| 1144 | if (Root != X.Root) { |
| 1145 | if (X.Root) { X.Root->retain(); } |
| 1146 | if (Root) { Root->release(); } |
| 1147 | Root = X.Root; |
| 1148 | Factory = X.Factory; |
| 1149 | } |
| 1150 | return *this; |
| 1151 | } |
| 1152 | |
| 1153 | static ImmutableSetRef getEmptySet(FactoryTy *F) { |
| 1154 | return ImmutableSetRef(0, F); |
| 1155 | } |
| 1156 | |
| 1157 | ImmutableSetRef add(value_type_ref V) { |
| 1158 | return ImmutableSetRef(Factory->add(Root, V), Factory); |
| 1159 | } |
| 1160 | |
| 1161 | ImmutableSetRef remove(value_type_ref V) { |
| 1162 | return ImmutableSetRef(Factory->remove(Root, V), Factory); |
| 1163 | } |
| 1164 | |
| 1165 | /// Returns true if the set contains the specified value. |
| 1166 | bool contains(value_type_ref V) const { |
| 1167 | return Root ? Root->contains(V) : false; |
| 1168 | } |
| 1169 | |
| 1170 | ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const { |
| 1171 | return ImmutableSet<ValT>(canonicalize ? |
| 1172 | Factory->getCanonicalTree(Root) : Root); |
| 1173 | } |
| 1174 | |
| 1175 | TreeTy *getRootWithoutRetain() const { |
| 1176 | return Root; |
| 1177 | } |
| 1178 | |
| 1179 | bool operator==(const ImmutableSetRef &RHS) const { |
| 1180 | return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root; |
| 1181 | } |
| 1182 | |
| 1183 | bool operator!=(const ImmutableSetRef &RHS) const { |
| 1184 | return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root; |
| 1185 | } |
| 1186 | |
| 1187 | /// isEmpty - Return true if the set contains no elements. |
| 1188 | bool isEmpty() const { return !Root; } |
| 1189 | |
| 1190 | /// isSingleton - Return true if the set contains exactly one element. |
| 1191 | /// This method runs in constant time. |
| 1192 | bool isSingleton() const { return getHeight() == 1; } |
| 1193 | |
| 1194 | //===--------------------------------------------------===// |
| 1195 | // Iterators. |
| 1196 | //===--------------------------------------------------===// |
| 1197 | |
| 1198 | using iterator = ImutAVLValueIterator<ImmutableSetRef>; |
| 1199 | |
| 1200 | iterator begin() const { return iterator(Root); } |
| 1201 | iterator end() const { return iterator(); } |
| 1202 | |
| 1203 | //===--------------------------------------------------===// |
| 1204 | // Utility methods. |
| 1205 | //===--------------------------------------------------===// |
| 1206 | |
| 1207 | unsigned getHeight() const { return Root ? Root->getHeight() : 0; } |
| 1208 | |
| 1209 | static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) { |
| 1210 | ID.AddPointer(S.Root); |
| 1211 | } |
| 1212 | |
| 1213 | void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); } |
| 1214 | |
| 1215 | //===--------------------------------------------------===// |
| 1216 | // For testing. |
| 1217 | //===--------------------------------------------------===// |
| 1218 | |
| 1219 | void validateTree() const { if (Root) Root->validateTree(); } |
| 1220 | }; |
| 1221 | |
| 1222 | } // end namespace llvm |
| 1223 | |
| 1224 | #endif // LLVM_ADT_IMMUTABLESET_H |