blob: 6773664104a377759d3f9a529ec7bf04cedcc618 [file] [log] [blame]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
Andrew Walbran16937d02019-10-22 13:54:20 +01003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01006//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/OperandTraits.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/AtomicOrdering.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <cassert>
43#include <cstddef>
44#include <cstdint>
45#include <iterator>
46
47namespace llvm {
48
49class APInt;
50class ConstantInt;
51class DataLayout;
52class LLVMContext;
53
54//===----------------------------------------------------------------------===//
55// AllocaInst Class
56//===----------------------------------------------------------------------===//
57
58/// an instruction to allocate memory on the stack
59class AllocaInst : public UnaryInstruction {
60 Type *AllocatedType;
61
62protected:
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction;
65
66 AllocaInst *cloneImpl() const;
67
68public:
69 explicit AllocaInst(Type *Ty, unsigned AddrSpace,
70 Value *ArraySize = nullptr,
71 const Twine &Name = "",
72 Instruction *InsertBefore = nullptr);
73 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
74 const Twine &Name, BasicBlock *InsertAtEnd);
75
76 AllocaInst(Type *Ty, unsigned AddrSpace,
77 const Twine &Name, Instruction *InsertBefore = nullptr);
78 AllocaInst(Type *Ty, unsigned AddrSpace,
79 const Twine &Name, BasicBlock *InsertAtEnd);
80
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
82 const Twine &Name = "", Instruction *InsertBefore = nullptr);
83 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
84 const Twine &Name, BasicBlock *InsertAtEnd);
85
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
89
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value *getArraySize() const { return getOperand(0); }
93 Value *getArraySize() { return getOperand(0); }
94
95 /// Overload to return most specific pointer type.
96 PointerType *getType() const {
97 return cast<PointerType>(Instruction::getType());
98 }
99
Andrew Scullcdfcccc2018-10-05 20:58:37 +0100100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
103
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100104 /// Return the type that is being allocated by the instruction.
105 Type *getAllocatedType() const { return AllocatedType; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
109
110 /// Return the alignment of the memory that is being allocated by the
111 /// instruction.
112 unsigned getAlignment() const {
113 return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
114 }
115 void setAlignment(unsigned Align);
116
117 /// Return true if this alloca is in the entry block of the function and is a
118 /// constant size. If so, the code generator will fold it into the
119 /// prolog/epilog code, so it is basically free.
120 bool isStaticAlloca() const;
121
122 /// Return true if this alloca is used as an inalloca argument to a call. Such
123 /// allocas are never considered static even if they are in the entry block.
124 bool isUsedWithInAlloca() const {
125 return getSubclassDataFromInstruction() & 32;
126 }
127
128 /// Specify whether this alloca is used to represent the arguments to a call.
129 void setUsedWithInAlloca(bool V) {
130 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
131 (V ? 32 : 0));
132 }
133
134 /// Return true if this alloca is used as a swifterror argument to a call.
135 bool isSwiftError() const {
136 return getSubclassDataFromInstruction() & 64;
137 }
138
139 /// Specify whether this alloca is used to represent a swifterror.
140 void setSwiftError(bool V) {
141 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
142 (V ? 64 : 0));
143 }
144
145 // Methods for support type inquiry through isa, cast, and dyn_cast:
146 static bool classof(const Instruction *I) {
147 return (I->getOpcode() == Instruction::Alloca);
148 }
149 static bool classof(const Value *V) {
150 return isa<Instruction>(V) && classof(cast<Instruction>(V));
151 }
152
153private:
154 // Shadow Instruction::setInstructionSubclassData with a private forwarding
155 // method so that subclasses cannot accidentally use it.
156 void setInstructionSubclassData(unsigned short D) {
157 Instruction::setInstructionSubclassData(D);
158 }
159};
160
161//===----------------------------------------------------------------------===//
162// LoadInst Class
163//===----------------------------------------------------------------------===//
164
165/// An instruction for reading from memory. This uses the SubclassData field in
166/// Value to store whether or not the load is volatile.
167class LoadInst : public UnaryInstruction {
168 void AssertOK();
169
170protected:
171 // Note: Instruction needs to be a friend here to call cloneImpl.
172 friend class Instruction;
173
174 LoadInst *cloneImpl() const;
175
176public:
Andrew Walbran16937d02019-10-22 13:54:20 +0100177 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100178 Instruction *InsertBefore = nullptr);
Andrew Walbran16937d02019-10-22 13:54:20 +0100179 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
180 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
181 Instruction *InsertBefore = nullptr);
182 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100183 BasicBlock *InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100184 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
185 unsigned Align, Instruction *InsertBefore = nullptr);
Andrew Walbran16937d02019-10-22 13:54:20 +0100186 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100187 unsigned Align, BasicBlock *InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100188 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189 unsigned Align, AtomicOrdering Order,
190 SyncScope::ID SSID = SyncScope::System,
191 Instruction *InsertBefore = nullptr);
Andrew Walbran16937d02019-10-22 13:54:20 +0100192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100193 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
194 BasicBlock *InsertAtEnd);
Andrew Walbran16937d02019-10-22 13:54:20 +0100195
196 // Deprecated [opaque pointer types]
197 explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100198 Instruction *InsertBefore = nullptr)
Andrew Walbran16937d02019-10-22 13:54:20 +0100199 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
200 InsertBefore) {}
201 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
202 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
203 InsertAtEnd) {}
204 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
205 Instruction *InsertBefore = nullptr)
206 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
207 isVolatile, InsertBefore) {}
208 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
209 BasicBlock *InsertAtEnd)
210 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
211 isVolatile, InsertAtEnd) {}
212 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
213 Instruction *InsertBefore = nullptr)
214 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
215 isVolatile, Align, InsertBefore) {}
216 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
217 BasicBlock *InsertAtEnd)
218 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
219 isVolatile, Align, InsertAtEnd) {}
220 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
221 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
222 Instruction *InsertBefore = nullptr)
223 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
224 isVolatile, Align, Order, SSID, InsertBefore) {}
225 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
226 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
227 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
228 isVolatile, Align, Order, SSID, InsertAtEnd) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100229
230 /// Return true if this is a load from a volatile memory location.
231 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
232
233 /// Specify whether this is a volatile load or not.
234 void setVolatile(bool V) {
235 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
236 (V ? 1 : 0));
237 }
238
239 /// Return the alignment of the access that is being performed.
240 unsigned getAlignment() const {
241 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
242 }
243
244 void setAlignment(unsigned Align);
245
246 /// Returns the ordering constraint of this load instruction.
247 AtomicOrdering getOrdering() const {
248 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
249 }
250
251 /// Sets the ordering constraint of this load instruction. May not be Release
252 /// or AcquireRelease.
253 void setOrdering(AtomicOrdering Ordering) {
254 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
255 ((unsigned)Ordering << 7));
256 }
257
258 /// Returns the synchronization scope ID of this load instruction.
259 SyncScope::ID getSyncScopeID() const {
260 return SSID;
261 }
262
263 /// Sets the synchronization scope ID of this load instruction.
264 void setSyncScopeID(SyncScope::ID SSID) {
265 this->SSID = SSID;
266 }
267
268 /// Sets the ordering constraint and the synchronization scope ID of this load
269 /// instruction.
270 void setAtomic(AtomicOrdering Ordering,
271 SyncScope::ID SSID = SyncScope::System) {
272 setOrdering(Ordering);
273 setSyncScopeID(SSID);
274 }
275
276 bool isSimple() const { return !isAtomic() && !isVolatile(); }
277
278 bool isUnordered() const {
279 return (getOrdering() == AtomicOrdering::NotAtomic ||
280 getOrdering() == AtomicOrdering::Unordered) &&
281 !isVolatile();
282 }
283
284 Value *getPointerOperand() { return getOperand(0); }
285 const Value *getPointerOperand() const { return getOperand(0); }
286 static unsigned getPointerOperandIndex() { return 0U; }
287 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
288
289 /// Returns the address space of the pointer operand.
290 unsigned getPointerAddressSpace() const {
291 return getPointerOperandType()->getPointerAddressSpace();
292 }
293
294 // Methods for support type inquiry through isa, cast, and dyn_cast:
295 static bool classof(const Instruction *I) {
296 return I->getOpcode() == Instruction::Load;
297 }
298 static bool classof(const Value *V) {
299 return isa<Instruction>(V) && classof(cast<Instruction>(V));
300 }
301
302private:
303 // Shadow Instruction::setInstructionSubclassData with a private forwarding
304 // method so that subclasses cannot accidentally use it.
305 void setInstructionSubclassData(unsigned short D) {
306 Instruction::setInstructionSubclassData(D);
307 }
308
309 /// The synchronization scope ID of this load instruction. Not quite enough
310 /// room in SubClassData for everything, so synchronization scope ID gets its
311 /// own field.
312 SyncScope::ID SSID;
313};
314
315//===----------------------------------------------------------------------===//
316// StoreInst Class
317//===----------------------------------------------------------------------===//
318
319/// An instruction for storing to memory.
320class StoreInst : public Instruction {
321 void AssertOK();
322
323protected:
324 // Note: Instruction needs to be a friend here to call cloneImpl.
325 friend class Instruction;
326
327 StoreInst *cloneImpl() const;
328
329public:
330 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
331 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
333 Instruction *InsertBefore = nullptr);
334 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
335 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
336 unsigned Align, Instruction *InsertBefore = nullptr);
337 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
338 unsigned Align, BasicBlock *InsertAtEnd);
339 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
340 unsigned Align, AtomicOrdering Order,
341 SyncScope::ID SSID = SyncScope::System,
342 Instruction *InsertBefore = nullptr);
343 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
344 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
345 BasicBlock *InsertAtEnd);
346
347 // allocate space for exactly two operands
348 void *operator new(size_t s) {
349 return User::operator new(s, 2);
350 }
351
352 /// Return true if this is a store to a volatile memory location.
353 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
354
355 /// Specify whether this is a volatile store or not.
356 void setVolatile(bool V) {
357 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
358 (V ? 1 : 0));
359 }
360
361 /// Transparently provide more efficient getOperand methods.
362 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
363
364 /// Return the alignment of the access that is being performed
365 unsigned getAlignment() const {
366 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
367 }
368
369 void setAlignment(unsigned Align);
370
371 /// Returns the ordering constraint of this store instruction.
372 AtomicOrdering getOrdering() const {
373 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
374 }
375
376 /// Sets the ordering constraint of this store instruction. May not be
377 /// Acquire or AcquireRelease.
378 void setOrdering(AtomicOrdering Ordering) {
379 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
380 ((unsigned)Ordering << 7));
381 }
382
383 /// Returns the synchronization scope ID of this store instruction.
384 SyncScope::ID getSyncScopeID() const {
385 return SSID;
386 }
387
388 /// Sets the synchronization scope ID of this store instruction.
389 void setSyncScopeID(SyncScope::ID SSID) {
390 this->SSID = SSID;
391 }
392
393 /// Sets the ordering constraint and the synchronization scope ID of this
394 /// store instruction.
395 void setAtomic(AtomicOrdering Ordering,
396 SyncScope::ID SSID = SyncScope::System) {
397 setOrdering(Ordering);
398 setSyncScopeID(SSID);
399 }
400
401 bool isSimple() const { return !isAtomic() && !isVolatile(); }
402
403 bool isUnordered() const {
404 return (getOrdering() == AtomicOrdering::NotAtomic ||
405 getOrdering() == AtomicOrdering::Unordered) &&
406 !isVolatile();
407 }
408
409 Value *getValueOperand() { return getOperand(0); }
410 const Value *getValueOperand() const { return getOperand(0); }
411
412 Value *getPointerOperand() { return getOperand(1); }
413 const Value *getPointerOperand() const { return getOperand(1); }
414 static unsigned getPointerOperandIndex() { return 1U; }
415 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
416
417 /// Returns the address space of the pointer operand.
418 unsigned getPointerAddressSpace() const {
419 return getPointerOperandType()->getPointerAddressSpace();
420 }
421
422 // Methods for support type inquiry through isa, cast, and dyn_cast:
423 static bool classof(const Instruction *I) {
424 return I->getOpcode() == Instruction::Store;
425 }
426 static bool classof(const Value *V) {
427 return isa<Instruction>(V) && classof(cast<Instruction>(V));
428 }
429
430private:
431 // Shadow Instruction::setInstructionSubclassData with a private forwarding
432 // method so that subclasses cannot accidentally use it.
433 void setInstructionSubclassData(unsigned short D) {
434 Instruction::setInstructionSubclassData(D);
435 }
436
437 /// The synchronization scope ID of this store instruction. Not quite enough
438 /// room in SubClassData for everything, so synchronization scope ID gets its
439 /// own field.
440 SyncScope::ID SSID;
441};
442
443template <>
444struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
445};
446
447DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
448
449//===----------------------------------------------------------------------===//
450// FenceInst Class
451//===----------------------------------------------------------------------===//
452
453/// An instruction for ordering other memory operations.
454class FenceInst : public Instruction {
455 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
456
457protected:
458 // Note: Instruction needs to be a friend here to call cloneImpl.
459 friend class Instruction;
460
461 FenceInst *cloneImpl() const;
462
463public:
464 // Ordering may only be Acquire, Release, AcquireRelease, or
465 // SequentiallyConsistent.
466 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
467 SyncScope::ID SSID = SyncScope::System,
468 Instruction *InsertBefore = nullptr);
469 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
470 BasicBlock *InsertAtEnd);
471
472 // allocate space for exactly zero operands
473 void *operator new(size_t s) {
474 return User::operator new(s, 0);
475 }
476
477 /// Returns the ordering constraint of this fence instruction.
478 AtomicOrdering getOrdering() const {
479 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
480 }
481
482 /// Sets the ordering constraint of this fence instruction. May only be
483 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
484 void setOrdering(AtomicOrdering Ordering) {
485 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
486 ((unsigned)Ordering << 1));
487 }
488
489 /// Returns the synchronization scope ID of this fence instruction.
490 SyncScope::ID getSyncScopeID() const {
491 return SSID;
492 }
493
494 /// Sets the synchronization scope ID of this fence instruction.
495 void setSyncScopeID(SyncScope::ID SSID) {
496 this->SSID = SSID;
497 }
498
499 // Methods for support type inquiry through isa, cast, and dyn_cast:
500 static bool classof(const Instruction *I) {
501 return I->getOpcode() == Instruction::Fence;
502 }
503 static bool classof(const Value *V) {
504 return isa<Instruction>(V) && classof(cast<Instruction>(V));
505 }
506
507private:
508 // Shadow Instruction::setInstructionSubclassData with a private forwarding
509 // method so that subclasses cannot accidentally use it.
510 void setInstructionSubclassData(unsigned short D) {
511 Instruction::setInstructionSubclassData(D);
512 }
513
514 /// The synchronization scope ID of this fence instruction. Not quite enough
515 /// room in SubClassData for everything, so synchronization scope ID gets its
516 /// own field.
517 SyncScope::ID SSID;
518};
519
520//===----------------------------------------------------------------------===//
521// AtomicCmpXchgInst Class
522//===----------------------------------------------------------------------===//
523
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100524/// An instruction that atomically checks whether a
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100525/// specified value is in a memory location, and, if it is, stores a new value
Andrew Walbran3d2c1972020-04-07 12:24:26 +0100526/// there. The value returned by this instruction is a pair containing the
527/// original value as first element, and an i1 indicating success (true) or
528/// failure (false) as second element.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100529///
530class AtomicCmpXchgInst : public Instruction {
531 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
532 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
533 SyncScope::ID SSID);
534
535protected:
536 // Note: Instruction needs to be a friend here to call cloneImpl.
537 friend class Instruction;
538
539 AtomicCmpXchgInst *cloneImpl() const;
540
541public:
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering,
545 SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
546 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
547 AtomicOrdering SuccessOrdering,
548 AtomicOrdering FailureOrdering,
549 SyncScope::ID SSID, BasicBlock *InsertAtEnd);
550
551 // allocate space for exactly three operands
552 void *operator new(size_t s) {
553 return User::operator new(s, 3);
554 }
555
556 /// Return true if this is a cmpxchg from a volatile memory
557 /// location.
558 ///
559 bool isVolatile() const {
560 return getSubclassDataFromInstruction() & 1;
561 }
562
563 /// Specify whether this is a volatile cmpxchg.
564 ///
565 void setVolatile(bool V) {
566 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
567 (unsigned)V);
568 }
569
570 /// Return true if this cmpxchg may spuriously fail.
571 bool isWeak() const {
572 return getSubclassDataFromInstruction() & 0x100;
573 }
574
575 void setWeak(bool IsWeak) {
576 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
577 (IsWeak << 8));
578 }
579
580 /// Transparently provide more efficient getOperand methods.
581 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
582
583 /// Returns the success ordering constraint of this cmpxchg instruction.
584 AtomicOrdering getSuccessOrdering() const {
585 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
586 }
587
588 /// Sets the success ordering constraint of this cmpxchg instruction.
589 void setSuccessOrdering(AtomicOrdering Ordering) {
590 assert(Ordering != AtomicOrdering::NotAtomic &&
591 "CmpXchg instructions can only be atomic.");
592 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
593 ((unsigned)Ordering << 2));
594 }
595
596 /// Returns the failure ordering constraint of this cmpxchg instruction.
597 AtomicOrdering getFailureOrdering() const {
598 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
599 }
600
601 /// Sets the failure ordering constraint of this cmpxchg instruction.
602 void setFailureOrdering(AtomicOrdering Ordering) {
603 assert(Ordering != AtomicOrdering::NotAtomic &&
604 "CmpXchg instructions can only be atomic.");
605 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
606 ((unsigned)Ordering << 5));
607 }
608
609 /// Returns the synchronization scope ID of this cmpxchg instruction.
610 SyncScope::ID getSyncScopeID() const {
611 return SSID;
612 }
613
614 /// Sets the synchronization scope ID of this cmpxchg instruction.
615 void setSyncScopeID(SyncScope::ID SSID) {
616 this->SSID = SSID;
617 }
618
619 Value *getPointerOperand() { return getOperand(0); }
620 const Value *getPointerOperand() const { return getOperand(0); }
621 static unsigned getPointerOperandIndex() { return 0U; }
622
623 Value *getCompareOperand() { return getOperand(1); }
624 const Value *getCompareOperand() const { return getOperand(1); }
625
626 Value *getNewValOperand() { return getOperand(2); }
627 const Value *getNewValOperand() const { return getOperand(2); }
628
629 /// Returns the address space of the pointer operand.
630 unsigned getPointerAddressSpace() const {
631 return getPointerOperand()->getType()->getPointerAddressSpace();
632 }
633
634 /// Returns the strongest permitted ordering on failure, given the
635 /// desired ordering on success.
636 ///
637 /// If the comparison in a cmpxchg operation fails, there is no atomic store
638 /// so release semantics cannot be provided. So this function drops explicit
639 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
640 /// operation would remain SequentiallyConsistent.
641 static AtomicOrdering
642 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
643 switch (SuccessOrdering) {
644 default:
645 llvm_unreachable("invalid cmpxchg success ordering");
646 case AtomicOrdering::Release:
647 case AtomicOrdering::Monotonic:
648 return AtomicOrdering::Monotonic;
649 case AtomicOrdering::AcquireRelease:
650 case AtomicOrdering::Acquire:
651 return AtomicOrdering::Acquire;
652 case AtomicOrdering::SequentiallyConsistent:
653 return AtomicOrdering::SequentiallyConsistent;
654 }
655 }
656
657 // Methods for support type inquiry through isa, cast, and dyn_cast:
658 static bool classof(const Instruction *I) {
659 return I->getOpcode() == Instruction::AtomicCmpXchg;
660 }
661 static bool classof(const Value *V) {
662 return isa<Instruction>(V) && classof(cast<Instruction>(V));
663 }
664
665private:
666 // Shadow Instruction::setInstructionSubclassData with a private forwarding
667 // method so that subclasses cannot accidentally use it.
668 void setInstructionSubclassData(unsigned short D) {
669 Instruction::setInstructionSubclassData(D);
670 }
671
672 /// The synchronization scope ID of this cmpxchg instruction. Not quite
673 /// enough room in SubClassData for everything, so synchronization scope ID
674 /// gets its own field.
675 SyncScope::ID SSID;
676};
677
678template <>
679struct OperandTraits<AtomicCmpXchgInst> :
680 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
681};
682
683DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
684
685//===----------------------------------------------------------------------===//
686// AtomicRMWInst Class
687//===----------------------------------------------------------------------===//
688
689/// an instruction that atomically reads a memory location,
690/// combines it with another value, and then stores the result back. Returns
691/// the old value.
692///
693class AtomicRMWInst : public Instruction {
694protected:
695 // Note: Instruction needs to be a friend here to call cloneImpl.
696 friend class Instruction;
697
698 AtomicRMWInst *cloneImpl() const;
699
700public:
701 /// This enumeration lists the possible modifications atomicrmw can make. In
702 /// the descriptions, 'p' is the pointer to the instruction's memory location,
703 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
704 /// instruction. These instructions always return 'old'.
705 enum BinOp {
706 /// *p = v
707 Xchg,
708 /// *p = old + v
709 Add,
710 /// *p = old - v
711 Sub,
712 /// *p = old & v
713 And,
714 /// *p = ~(old & v)
715 Nand,
716 /// *p = old | v
717 Or,
718 /// *p = old ^ v
719 Xor,
720 /// *p = old >signed v ? old : v
721 Max,
722 /// *p = old <signed v ? old : v
723 Min,
724 /// *p = old >unsigned v ? old : v
725 UMax,
726 /// *p = old <unsigned v ? old : v
727 UMin,
728
Andrew Walbran16937d02019-10-22 13:54:20 +0100729 /// *p = old + v
730 FAdd,
731
732 /// *p = old - v
733 FSub,
734
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100735 FIRST_BINOP = Xchg,
Andrew Walbran16937d02019-10-22 13:54:20 +0100736 LAST_BINOP = FSub,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100737 BAD_BINOP
738 };
739
740 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
741 AtomicOrdering Ordering, SyncScope::ID SSID,
742 Instruction *InsertBefore = nullptr);
743 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
744 AtomicOrdering Ordering, SyncScope::ID SSID,
745 BasicBlock *InsertAtEnd);
746
747 // allocate space for exactly two operands
748 void *operator new(size_t s) {
749 return User::operator new(s, 2);
750 }
751
752 BinOp getOperation() const {
753 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
754 }
755
Andrew Scull0372a572018-11-16 15:47:06 +0000756 static StringRef getOperationName(BinOp Op);
757
Andrew Walbran16937d02019-10-22 13:54:20 +0100758 static bool isFPOperation(BinOp Op) {
759 switch (Op) {
760 case AtomicRMWInst::FAdd:
761 case AtomicRMWInst::FSub:
762 return true;
763 default:
764 return false;
765 }
766 }
767
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100768 void setOperation(BinOp Operation) {
769 unsigned short SubclassData = getSubclassDataFromInstruction();
770 setInstructionSubclassData((SubclassData & 31) |
771 (Operation << 5));
772 }
773
774 /// Return true if this is a RMW on a volatile memory location.
775 ///
776 bool isVolatile() const {
777 return getSubclassDataFromInstruction() & 1;
778 }
779
780 /// Specify whether this is a volatile RMW or not.
781 ///
782 void setVolatile(bool V) {
783 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
784 (unsigned)V);
785 }
786
787 /// Transparently provide more efficient getOperand methods.
788 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
789
790 /// Returns the ordering constraint of this rmw instruction.
791 AtomicOrdering getOrdering() const {
792 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
793 }
794
795 /// Sets the ordering constraint of this rmw instruction.
796 void setOrdering(AtomicOrdering Ordering) {
797 assert(Ordering != AtomicOrdering::NotAtomic &&
798 "atomicrmw instructions can only be atomic.");
799 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
800 ((unsigned)Ordering << 2));
801 }
802
803 /// Returns the synchronization scope ID of this rmw instruction.
804 SyncScope::ID getSyncScopeID() const {
805 return SSID;
806 }
807
808 /// Sets the synchronization scope ID of this rmw instruction.
809 void setSyncScopeID(SyncScope::ID SSID) {
810 this->SSID = SSID;
811 }
812
813 Value *getPointerOperand() { return getOperand(0); }
814 const Value *getPointerOperand() const { return getOperand(0); }
815 static unsigned getPointerOperandIndex() { return 0U; }
816
817 Value *getValOperand() { return getOperand(1); }
818 const Value *getValOperand() const { return getOperand(1); }
819
820 /// Returns the address space of the pointer operand.
821 unsigned getPointerAddressSpace() const {
822 return getPointerOperand()->getType()->getPointerAddressSpace();
823 }
824
Andrew Walbran16937d02019-10-22 13:54:20 +0100825 bool isFloatingPointOperation() const {
826 return isFPOperation(getOperation());
827 }
828
Andrew Scull5e1ddfa2018-08-14 10:06:54 +0100829 // Methods for support type inquiry through isa, cast, and dyn_cast:
830 static bool classof(const Instruction *I) {
831 return I->getOpcode() == Instruction::AtomicRMW;
832 }
833 static bool classof(const Value *V) {
834 return isa<Instruction>(V) && classof(cast<Instruction>(V));
835 }
836
837private:
838 void Init(BinOp Operation, Value *Ptr, Value *Val,
839 AtomicOrdering Ordering, SyncScope::ID SSID);
840
841 // Shadow Instruction::setInstructionSubclassData with a private forwarding
842 // method so that subclasses cannot accidentally use it.
843 void setInstructionSubclassData(unsigned short D) {
844 Instruction::setInstructionSubclassData(D);
845 }
846
847 /// The synchronization scope ID of this rmw instruction. Not quite enough
848 /// room in SubClassData for everything, so synchronization scope ID gets its
849 /// own field.
850 SyncScope::ID SSID;
851};
852
853template <>
854struct OperandTraits<AtomicRMWInst>
855 : public FixedNumOperandTraits<AtomicRMWInst,2> {
856};
857
858DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
859
860//===----------------------------------------------------------------------===//
861// GetElementPtrInst Class
862//===----------------------------------------------------------------------===//
863
864// checkGEPType - Simple wrapper function to give a better assertion failure
865// message on bad indexes for a gep instruction.
866//
867inline Type *checkGEPType(Type *Ty) {
868 assert(Ty && "Invalid GetElementPtrInst indices for type!");
869 return Ty;
870}
871
872/// an instruction for type-safe pointer arithmetic to
873/// access elements of arrays and structs
874///
875class GetElementPtrInst : public Instruction {
876 Type *SourceElementType;
877 Type *ResultElementType;
878
879 GetElementPtrInst(const GetElementPtrInst &GEPI);
880
881 /// Constructors - Create a getelementptr instruction with a base pointer an
882 /// list of indices. The first ctor can optionally insert before an existing
883 /// instruction, the second appends the new instruction to the specified
884 /// BasicBlock.
885 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
886 ArrayRef<Value *> IdxList, unsigned Values,
887 const Twine &NameStr, Instruction *InsertBefore);
888 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
889 ArrayRef<Value *> IdxList, unsigned Values,
890 const Twine &NameStr, BasicBlock *InsertAtEnd);
891
892 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
893
894protected:
895 // Note: Instruction needs to be a friend here to call cloneImpl.
896 friend class Instruction;
897
898 GetElementPtrInst *cloneImpl() const;
899
900public:
901 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
902 ArrayRef<Value *> IdxList,
903 const Twine &NameStr = "",
904 Instruction *InsertBefore = nullptr) {
905 unsigned Values = 1 + unsigned(IdxList.size());
906 if (!PointeeType)
907 PointeeType =
908 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
909 else
910 assert(
911 PointeeType ==
912 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
913 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
914 NameStr, InsertBefore);
915 }
916
917 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
918 ArrayRef<Value *> IdxList,
919 const Twine &NameStr,
920 BasicBlock *InsertAtEnd) {
921 unsigned Values = 1 + unsigned(IdxList.size());
922 if (!PointeeType)
923 PointeeType =
924 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
925 else
926 assert(
927 PointeeType ==
928 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
929 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
930 NameStr, InsertAtEnd);
931 }
932
933 /// Create an "inbounds" getelementptr. See the documentation for the
934 /// "inbounds" flag in LangRef.html for details.
935 static GetElementPtrInst *CreateInBounds(Value *Ptr,
936 ArrayRef<Value *> IdxList,
937 const Twine &NameStr = "",
938 Instruction *InsertBefore = nullptr){
939 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
940 }
941
942 static GetElementPtrInst *
943 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
944 const Twine &NameStr = "",
945 Instruction *InsertBefore = nullptr) {
946 GetElementPtrInst *GEP =
947 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
948 GEP->setIsInBounds(true);
949 return GEP;
950 }
951
952 static GetElementPtrInst *CreateInBounds(Value *Ptr,
953 ArrayRef<Value *> IdxList,
954 const Twine &NameStr,
955 BasicBlock *InsertAtEnd) {
956 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
957 }
958
959 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
960 ArrayRef<Value *> IdxList,
961 const Twine &NameStr,
962 BasicBlock *InsertAtEnd) {
963 GetElementPtrInst *GEP =
964 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
965 GEP->setIsInBounds(true);
966 return GEP;
967 }
968
969 /// Transparently provide more efficient getOperand methods.
970 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
971
972 Type *getSourceElementType() const { return SourceElementType; }
973
974 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
975 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
976
977 Type *getResultElementType() const {
978 assert(ResultElementType ==
979 cast<PointerType>(getType()->getScalarType())->getElementType());
980 return ResultElementType;
981 }
982
983 /// Returns the address space of this instruction's pointer type.
984 unsigned getAddressSpace() const {
985 // Note that this is always the same as the pointer operand's address space
986 // and that is cheaper to compute, so cheat here.
987 return getPointerAddressSpace();
988 }
989
990 /// Returns the type of the element that would be loaded with
991 /// a load instruction with the specified parameters.
992 ///
993 /// Null is returned if the indices are invalid for the specified
994 /// pointer type.
995 ///
996 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
997 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
998 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
999
1000 inline op_iterator idx_begin() { return op_begin()+1; }
1001 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1002 inline op_iterator idx_end() { return op_end(); }
1003 inline const_op_iterator idx_end() const { return op_end(); }
1004
1005 inline iterator_range<op_iterator> indices() {
1006 return make_range(idx_begin(), idx_end());
1007 }
1008
1009 inline iterator_range<const_op_iterator> indices() const {
1010 return make_range(idx_begin(), idx_end());
1011 }
1012
1013 Value *getPointerOperand() {
1014 return getOperand(0);
1015 }
1016 const Value *getPointerOperand() const {
1017 return getOperand(0);
1018 }
1019 static unsigned getPointerOperandIndex() {
1020 return 0U; // get index for modifying correct operand.
1021 }
1022
1023 /// Method to return the pointer operand as a
1024 /// PointerType.
1025 Type *getPointerOperandType() const {
1026 return getPointerOperand()->getType();
1027 }
1028
1029 /// Returns the address space of the pointer operand.
1030 unsigned getPointerAddressSpace() const {
1031 return getPointerOperandType()->getPointerAddressSpace();
1032 }
1033
1034 /// Returns the pointer type returned by the GEP
1035 /// instruction, which may be a vector of pointers.
1036 static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
1037 return getGEPReturnType(
1038 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(),
1039 Ptr, IdxList);
1040 }
1041 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1042 ArrayRef<Value *> IdxList) {
1043 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1044 Ptr->getType()->getPointerAddressSpace());
1045 // Vector GEP
1046 if (Ptr->getType()->isVectorTy()) {
1047 unsigned NumElem = Ptr->getType()->getVectorNumElements();
1048 return VectorType::get(PtrTy, NumElem);
1049 }
1050 for (Value *Index : IdxList)
1051 if (Index->getType()->isVectorTy()) {
1052 unsigned NumElem = Index->getType()->getVectorNumElements();
1053 return VectorType::get(PtrTy, NumElem);
1054 }
1055 // Scalar GEP
1056 return PtrTy;
1057 }
1058
1059 unsigned getNumIndices() const { // Note: always non-negative
1060 return getNumOperands() - 1;
1061 }
1062
1063 bool hasIndices() const {
1064 return getNumOperands() > 1;
1065 }
1066
1067 /// Return true if all of the indices of this GEP are
1068 /// zeros. If so, the result pointer and the first operand have the same
1069 /// value, just potentially different types.
1070 bool hasAllZeroIndices() const;
1071
1072 /// Return true if all of the indices of this GEP are
1073 /// constant integers. If so, the result pointer and the first operand have
1074 /// a constant offset between them.
1075 bool hasAllConstantIndices() const;
1076
1077 /// Set or clear the inbounds flag on this GEP instruction.
1078 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1079 void setIsInBounds(bool b = true);
1080
1081 /// Determine whether the GEP has the inbounds flag.
1082 bool isInBounds() const;
1083
1084 /// Accumulate the constant address offset of this GEP if possible.
1085 ///
1086 /// This routine accepts an APInt into which it will accumulate the constant
1087 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1088 /// all-constant, it returns false and the value of the offset APInt is
1089 /// undefined (it is *not* preserved!). The APInt passed into this routine
1090 /// must be at least as wide as the IntPtr type for the address space of
1091 /// the base GEP pointer.
1092 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1093
1094 // Methods for support type inquiry through isa, cast, and dyn_cast:
1095 static bool classof(const Instruction *I) {
1096 return (I->getOpcode() == Instruction::GetElementPtr);
1097 }
1098 static bool classof(const Value *V) {
1099 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1100 }
1101};
1102
1103template <>
1104struct OperandTraits<GetElementPtrInst> :
1105 public VariadicOperandTraits<GetElementPtrInst, 1> {
1106};
1107
1108GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1109 ArrayRef<Value *> IdxList, unsigned Values,
1110 const Twine &NameStr,
1111 Instruction *InsertBefore)
1112 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1113 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1114 Values, InsertBefore),
1115 SourceElementType(PointeeType),
1116 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1117 assert(ResultElementType ==
1118 cast<PointerType>(getType()->getScalarType())->getElementType());
1119 init(Ptr, IdxList, NameStr);
1120}
1121
1122GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1123 ArrayRef<Value *> IdxList, unsigned Values,
1124 const Twine &NameStr,
1125 BasicBlock *InsertAtEnd)
1126 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1127 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1128 Values, InsertAtEnd),
1129 SourceElementType(PointeeType),
1130 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1131 assert(ResultElementType ==
1132 cast<PointerType>(getType()->getScalarType())->getElementType());
1133 init(Ptr, IdxList, NameStr);
1134}
1135
1136DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1137
1138//===----------------------------------------------------------------------===//
1139// ICmpInst Class
1140//===----------------------------------------------------------------------===//
1141
1142/// This instruction compares its operands according to the predicate given
1143/// to the constructor. It only operates on integers or pointers. The operands
1144/// must be identical types.
1145/// Represent an integer comparison operator.
1146class ICmpInst: public CmpInst {
1147 void AssertOK() {
1148 assert(isIntPredicate() &&
1149 "Invalid ICmp predicate value");
1150 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1151 "Both operands to ICmp instruction are not of the same type!");
1152 // Check that the operands are the right type
1153 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1154 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1155 "Invalid operand types for ICmp instruction");
1156 }
1157
1158protected:
1159 // Note: Instruction needs to be a friend here to call cloneImpl.
1160 friend class Instruction;
1161
1162 /// Clone an identical ICmpInst
1163 ICmpInst *cloneImpl() const;
1164
1165public:
1166 /// Constructor with insert-before-instruction semantics.
1167 ICmpInst(
1168 Instruction *InsertBefore, ///< Where to insert
1169 Predicate pred, ///< The predicate to use for the comparison
1170 Value *LHS, ///< The left-hand-side of the expression
1171 Value *RHS, ///< The right-hand-side of the expression
1172 const Twine &NameStr = "" ///< Name of the instruction
1173 ) : CmpInst(makeCmpResultType(LHS->getType()),
1174 Instruction::ICmp, pred, LHS, RHS, NameStr,
1175 InsertBefore) {
1176#ifndef NDEBUG
1177 AssertOK();
1178#endif
1179 }
1180
1181 /// Constructor with insert-at-end semantics.
1182 ICmpInst(
1183 BasicBlock &InsertAtEnd, ///< Block to insert into.
1184 Predicate pred, ///< The predicate to use for the comparison
1185 Value *LHS, ///< The left-hand-side of the expression
1186 Value *RHS, ///< The right-hand-side of the expression
1187 const Twine &NameStr = "" ///< Name of the instruction
1188 ) : CmpInst(makeCmpResultType(LHS->getType()),
1189 Instruction::ICmp, pred, LHS, RHS, NameStr,
1190 &InsertAtEnd) {
1191#ifndef NDEBUG
1192 AssertOK();
1193#endif
1194 }
1195
1196 /// Constructor with no-insertion semantics
1197 ICmpInst(
1198 Predicate pred, ///< The predicate to use for the comparison
1199 Value *LHS, ///< The left-hand-side of the expression
1200 Value *RHS, ///< The right-hand-side of the expression
1201 const Twine &NameStr = "" ///< Name of the instruction
1202 ) : CmpInst(makeCmpResultType(LHS->getType()),
1203 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1204#ifndef NDEBUG
1205 AssertOK();
1206#endif
1207 }
1208
1209 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1210 /// @returns the predicate that would be the result if the operand were
1211 /// regarded as signed.
1212 /// Return the signed version of the predicate
1213 Predicate getSignedPredicate() const {
1214 return getSignedPredicate(getPredicate());
1215 }
1216
1217 /// This is a static version that you can use without an instruction.
1218 /// Return the signed version of the predicate.
1219 static Predicate getSignedPredicate(Predicate pred);
1220
1221 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1222 /// @returns the predicate that would be the result if the operand were
1223 /// regarded as unsigned.
1224 /// Return the unsigned version of the predicate
1225 Predicate getUnsignedPredicate() const {
1226 return getUnsignedPredicate(getPredicate());
1227 }
1228
1229 /// This is a static version that you can use without an instruction.
1230 /// Return the unsigned version of the predicate.
1231 static Predicate getUnsignedPredicate(Predicate pred);
1232
1233 /// Return true if this predicate is either EQ or NE. This also
1234 /// tests for commutativity.
1235 static bool isEquality(Predicate P) {
1236 return P == ICMP_EQ || P == ICMP_NE;
1237 }
1238
1239 /// Return true if this predicate is either EQ or NE. This also
1240 /// tests for commutativity.
1241 bool isEquality() const {
1242 return isEquality(getPredicate());
1243 }
1244
1245 /// @returns true if the predicate of this ICmpInst is commutative
1246 /// Determine if this relation is commutative.
1247 bool isCommutative() const { return isEquality(); }
1248
1249 /// Return true if the predicate is relational (not EQ or NE).
1250 ///
1251 bool isRelational() const {
1252 return !isEquality();
1253 }
1254
1255 /// Return true if the predicate is relational (not EQ or NE).
1256 ///
1257 static bool isRelational(Predicate P) {
1258 return !isEquality(P);
1259 }
1260
1261 /// Exchange the two operands to this instruction in such a way that it does
1262 /// not modify the semantics of the instruction. The predicate value may be
1263 /// changed to retain the same result if the predicate is order dependent
1264 /// (e.g. ult).
1265 /// Swap operands and adjust predicate.
1266 void swapOperands() {
1267 setPredicate(getSwappedPredicate());
1268 Op<0>().swap(Op<1>());
1269 }
1270
1271 // Methods for support type inquiry through isa, cast, and dyn_cast:
1272 static bool classof(const Instruction *I) {
1273 return I->getOpcode() == Instruction::ICmp;
1274 }
1275 static bool classof(const Value *V) {
1276 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1277 }
1278};
1279
1280//===----------------------------------------------------------------------===//
1281// FCmpInst Class
1282//===----------------------------------------------------------------------===//
1283
1284/// This instruction compares its operands according to the predicate given
1285/// to the constructor. It only operates on floating point values or packed
1286/// vectors of floating point values. The operands must be identical types.
1287/// Represents a floating point comparison operator.
1288class FCmpInst: public CmpInst {
1289 void AssertOK() {
1290 assert(isFPPredicate() && "Invalid FCmp predicate value");
1291 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1292 "Both operands to FCmp instruction are not of the same type!");
1293 // Check that the operands are the right type
1294 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1295 "Invalid operand types for FCmp instruction");
1296 }
1297
1298protected:
1299 // Note: Instruction needs to be a friend here to call cloneImpl.
1300 friend class Instruction;
1301
1302 /// Clone an identical FCmpInst
1303 FCmpInst *cloneImpl() const;
1304
1305public:
1306 /// Constructor with insert-before-instruction semantics.
1307 FCmpInst(
1308 Instruction *InsertBefore, ///< Where to insert
1309 Predicate pred, ///< The predicate to use for the comparison
1310 Value *LHS, ///< The left-hand-side of the expression
1311 Value *RHS, ///< The right-hand-side of the expression
1312 const Twine &NameStr = "" ///< Name of the instruction
1313 ) : CmpInst(makeCmpResultType(LHS->getType()),
1314 Instruction::FCmp, pred, LHS, RHS, NameStr,
1315 InsertBefore) {
1316 AssertOK();
1317 }
1318
1319 /// Constructor with insert-at-end semantics.
1320 FCmpInst(
1321 BasicBlock &InsertAtEnd, ///< Block to insert into.
1322 Predicate pred, ///< The predicate to use for the comparison
1323 Value *LHS, ///< The left-hand-side of the expression
1324 Value *RHS, ///< The right-hand-side of the expression
1325 const Twine &NameStr = "" ///< Name of the instruction
1326 ) : CmpInst(makeCmpResultType(LHS->getType()),
1327 Instruction::FCmp, pred, LHS, RHS, NameStr,
1328 &InsertAtEnd) {
1329 AssertOK();
1330 }
1331
1332 /// Constructor with no-insertion semantics
1333 FCmpInst(
Andrew Walbran16937d02019-10-22 13:54:20 +01001334 Predicate Pred, ///< The predicate to use for the comparison
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001335 Value *LHS, ///< The left-hand-side of the expression
1336 Value *RHS, ///< The right-hand-side of the expression
Andrew Walbran16937d02019-10-22 13:54:20 +01001337 const Twine &NameStr = "", ///< Name of the instruction
1338 Instruction *FlagsSource = nullptr
1339 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1340 RHS, NameStr, nullptr, FlagsSource) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001341 AssertOK();
1342 }
1343
1344 /// @returns true if the predicate of this instruction is EQ or NE.
1345 /// Determine if this is an equality predicate.
1346 static bool isEquality(Predicate Pred) {
1347 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1348 Pred == FCMP_UNE;
1349 }
1350
1351 /// @returns true if the predicate of this instruction is EQ or NE.
1352 /// Determine if this is an equality predicate.
1353 bool isEquality() const { return isEquality(getPredicate()); }
1354
1355 /// @returns true if the predicate of this instruction is commutative.
1356 /// Determine if this is a commutative predicate.
1357 bool isCommutative() const {
1358 return isEquality() ||
1359 getPredicate() == FCMP_FALSE ||
1360 getPredicate() == FCMP_TRUE ||
1361 getPredicate() == FCMP_ORD ||
1362 getPredicate() == FCMP_UNO;
1363 }
1364
1365 /// @returns true if the predicate is relational (not EQ or NE).
1366 /// Determine if this a relational predicate.
1367 bool isRelational() const { return !isEquality(); }
1368
1369 /// Exchange the two operands to this instruction in such a way that it does
1370 /// not modify the semantics of the instruction. The predicate value may be
1371 /// changed to retain the same result if the predicate is order dependent
1372 /// (e.g. ult).
1373 /// Swap operands and adjust predicate.
1374 void swapOperands() {
1375 setPredicate(getSwappedPredicate());
1376 Op<0>().swap(Op<1>());
1377 }
1378
1379 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1380 static bool classof(const Instruction *I) {
1381 return I->getOpcode() == Instruction::FCmp;
1382 }
1383 static bool classof(const Value *V) {
1384 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1385 }
1386};
1387
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001388//===----------------------------------------------------------------------===//
1389/// This class represents a function call, abstracting a target
1390/// machine's calling convention. This class uses low bit of the SubClassData
1391/// field to indicate whether or not this is a tail call. The rest of the bits
1392/// hold the calling convention of the call.
1393///
Andrew Walbran16937d02019-10-22 13:54:20 +01001394class CallInst : public CallBase {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001395 CallInst(const CallInst &CI);
1396
1397 /// Construct a CallInst given a range of arguments.
1398 /// Construct a CallInst from a range of arguments
1399 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1400 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1401 Instruction *InsertBefore);
1402
Andrew Walbran16937d02019-10-22 13:54:20 +01001403 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1404 const Twine &NameStr, Instruction *InsertBefore)
1405 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001406
1407 /// Construct a CallInst given a range of arguments.
1408 /// Construct a CallInst from a range of arguments
Andrew Walbran16937d02019-10-22 13:54:20 +01001409 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001410 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1411 BasicBlock *InsertAtEnd);
1412
Andrew Walbran16937d02019-10-22 13:54:20 +01001413 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1414 Instruction *InsertBefore);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001415
Andrew Walbran16937d02019-10-22 13:54:20 +01001416 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1417 BasicBlock *InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001418
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001419 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1420 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
Andrew Walbran16937d02019-10-22 13:54:20 +01001421 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1422
1423 /// Compute the number of operands to allocate.
1424 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1425 // We need one operand for the called function, plus the input operand
1426 // counts provided.
1427 return 1 + NumArgs + NumBundleInputs;
1428 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001429
1430protected:
1431 // Note: Instruction needs to be a friend here to call cloneImpl.
1432 friend class Instruction;
1433
1434 CallInst *cloneImpl() const;
1435
1436public:
Andrew Walbran16937d02019-10-22 13:54:20 +01001437 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1438 Instruction *InsertBefore = nullptr) {
1439 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1440 }
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001441
Andrew Walbran16937d02019-10-22 13:54:20 +01001442 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1443 const Twine &NameStr,
1444 Instruction *InsertBefore = nullptr) {
1445 return new (ComputeNumOperands(Args.size()))
1446 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1447 }
1448
1449 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1450 ArrayRef<OperandBundleDef> Bundles = None,
1451 const Twine &NameStr = "",
1452 Instruction *InsertBefore = nullptr) {
1453 const int NumOperands =
1454 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1455 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1456
1457 return new (NumOperands, DescriptorBytes)
1458 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1459 }
1460
1461 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1462 BasicBlock *InsertAtEnd) {
1463 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1464 }
1465
1466 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1467 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1468 return new (ComputeNumOperands(Args.size()))
1469 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1470 }
1471
1472 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1473 ArrayRef<OperandBundleDef> Bundles,
1474 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1475 const int NumOperands =
1476 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1477 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1478
1479 return new (NumOperands, DescriptorBytes)
1480 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1481 }
1482
1483 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1484 Instruction *InsertBefore = nullptr) {
1485 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1486 InsertBefore);
1487 }
1488
1489 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1490 ArrayRef<OperandBundleDef> Bundles = None,
1491 const Twine &NameStr = "",
1492 Instruction *InsertBefore = nullptr) {
1493 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1494 NameStr, InsertBefore);
1495 }
1496
1497 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1498 const Twine &NameStr,
1499 Instruction *InsertBefore = nullptr) {
1500 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1501 InsertBefore);
1502 }
1503
1504 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1505 BasicBlock *InsertAtEnd) {
1506 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1507 InsertAtEnd);
1508 }
1509
1510 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1511 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1512 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1513 InsertAtEnd);
1514 }
1515
1516 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1517 ArrayRef<OperandBundleDef> Bundles,
1518 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1519 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1520 NameStr, InsertAtEnd);
1521 }
1522
1523 // Deprecated [opaque pointer types]
1524 static CallInst *Create(Value *Func, const Twine &NameStr = "",
1525 Instruction *InsertBefore = nullptr) {
1526 return Create(cast<FunctionType>(
1527 cast<PointerType>(Func->getType())->getElementType()),
1528 Func, NameStr, InsertBefore);
1529 }
1530
1531 // Deprecated [opaque pointer types]
1532 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1533 const Twine &NameStr,
1534 Instruction *InsertBefore = nullptr) {
1535 return Create(cast<FunctionType>(
1536 cast<PointerType>(Func->getType())->getElementType()),
1537 Func, Args, NameStr, InsertBefore);
1538 }
1539
1540 // Deprecated [opaque pointer types]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001541 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1542 ArrayRef<OperandBundleDef> Bundles = None,
1543 const Twine &NameStr = "",
1544 Instruction *InsertBefore = nullptr) {
1545 return Create(cast<FunctionType>(
1546 cast<PointerType>(Func->getType())->getElementType()),
1547 Func, Args, Bundles, NameStr, InsertBefore);
1548 }
1549
Andrew Walbran16937d02019-10-22 13:54:20 +01001550 // Deprecated [opaque pointer types]
1551 static CallInst *Create(Value *Func, const Twine &NameStr,
1552 BasicBlock *InsertAtEnd) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001553 return Create(cast<FunctionType>(
1554 cast<PointerType>(Func->getType())->getElementType()),
Andrew Walbran16937d02019-10-22 13:54:20 +01001555 Func, NameStr, InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001556 }
1557
Andrew Walbran16937d02019-10-22 13:54:20 +01001558 // Deprecated [opaque pointer types]
1559 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1560 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1561 return Create(cast<FunctionType>(
1562 cast<PointerType>(Func->getType())->getElementType()),
1563 Func, Args, NameStr, InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001564 }
1565
Andrew Walbran16937d02019-10-22 13:54:20 +01001566 // Deprecated [opaque pointer types]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001567 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1568 ArrayRef<OperandBundleDef> Bundles,
1569 const Twine &NameStr, BasicBlock *InsertAtEnd) {
Andrew Walbran16937d02019-10-22 13:54:20 +01001570 return Create(cast<FunctionType>(
1571 cast<PointerType>(Func->getType())->getElementType()),
1572 Func, Args, Bundles, NameStr, InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001573 }
1574
1575 /// Create a clone of \p CI with a different set of operand bundles and
1576 /// insert it before \p InsertPt.
1577 ///
1578 /// The returned call instruction is identical \p CI in every way except that
1579 /// the operand bundles for the new instruction are set to the operand bundles
1580 /// in \p Bundles.
1581 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1582 Instruction *InsertPt = nullptr);
1583
1584 /// Generate the IR for a call to malloc:
1585 /// 1. Compute the malloc call's argument as the specified type's size,
1586 /// possibly multiplied by the array size if the array size is not
1587 /// constant 1.
1588 /// 2. Call malloc with that argument.
1589 /// 3. Bitcast the result of the malloc call to the specified type.
1590 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1591 Type *AllocTy, Value *AllocSize,
1592 Value *ArraySize = nullptr,
1593 Function *MallocF = nullptr,
1594 const Twine &Name = "");
1595 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1596 Type *AllocTy, Value *AllocSize,
1597 Value *ArraySize = nullptr,
1598 Function *MallocF = nullptr,
1599 const Twine &Name = "");
1600 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1601 Type *AllocTy, Value *AllocSize,
1602 Value *ArraySize = nullptr,
1603 ArrayRef<OperandBundleDef> Bundles = None,
1604 Function *MallocF = nullptr,
1605 const Twine &Name = "");
1606 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1607 Type *AllocTy, Value *AllocSize,
1608 Value *ArraySize = nullptr,
1609 ArrayRef<OperandBundleDef> Bundles = None,
1610 Function *MallocF = nullptr,
1611 const Twine &Name = "");
1612 /// Generate the IR for a call to the builtin free function.
1613 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1614 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1615 static Instruction *CreateFree(Value *Source,
1616 ArrayRef<OperandBundleDef> Bundles,
1617 Instruction *InsertBefore);
1618 static Instruction *CreateFree(Value *Source,
1619 ArrayRef<OperandBundleDef> Bundles,
1620 BasicBlock *InsertAtEnd);
1621
1622 // Note that 'musttail' implies 'tail'.
1623 enum TailCallKind {
1624 TCK_None = 0,
1625 TCK_Tail = 1,
1626 TCK_MustTail = 2,
1627 TCK_NoTail = 3
1628 };
1629 TailCallKind getTailCallKind() const {
1630 return TailCallKind(getSubclassDataFromInstruction() & 3);
1631 }
1632
1633 bool isTailCall() const {
1634 unsigned Kind = getSubclassDataFromInstruction() & 3;
1635 return Kind == TCK_Tail || Kind == TCK_MustTail;
1636 }
1637
1638 bool isMustTailCall() const {
1639 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1640 }
1641
1642 bool isNoTailCall() const {
1643 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1644 }
1645
1646 void setTailCall(bool isTC = true) {
1647 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1648 unsigned(isTC ? TCK_Tail : TCK_None));
1649 }
1650
1651 void setTailCallKind(TailCallKind TCK) {
1652 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1653 unsigned(TCK));
1654 }
1655
1656 /// Return true if the call can return twice
1657 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1658 void setCanReturnTwice() {
1659 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1660 }
1661
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001662 // Methods for support type inquiry through isa, cast, and dyn_cast:
1663 static bool classof(const Instruction *I) {
1664 return I->getOpcode() == Instruction::Call;
1665 }
1666 static bool classof(const Value *V) {
1667 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1668 }
1669
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001670 /// Updates profile metadata by scaling it by \p S / \p T.
1671 void updateProfWeight(uint64_t S, uint64_t T);
1672
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001673private:
1674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1675 // method so that subclasses cannot accidentally use it.
1676 void setInstructionSubclassData(unsigned short D) {
1677 Instruction::setInstructionSubclassData(D);
1678 }
1679};
1680
Andrew Walbran16937d02019-10-22 13:54:20 +01001681CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001682 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1683 BasicBlock *InsertAtEnd)
Andrew Walbran16937d02019-10-22 13:54:20 +01001684 : CallBase(Ty->getReturnType(), Instruction::Call,
1685 OperandTraits<CallBase>::op_end(this) -
1686 (Args.size() + CountBundleInputs(Bundles) + 1),
1687 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1688 InsertAtEnd) {
1689 init(Ty, Func, Args, Bundles, NameStr);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001690}
1691
1692CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1693 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1694 Instruction *InsertBefore)
Andrew Walbran16937d02019-10-22 13:54:20 +01001695 : CallBase(Ty->getReturnType(), Instruction::Call,
1696 OperandTraits<CallBase>::op_end(this) -
1697 (Args.size() + CountBundleInputs(Bundles) + 1),
1698 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1699 InsertBefore) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001700 init(Ty, Func, Args, Bundles, NameStr);
1701}
1702
1703//===----------------------------------------------------------------------===//
1704// SelectInst Class
1705//===----------------------------------------------------------------------===//
1706
1707/// This class represents the LLVM 'select' instruction.
1708///
1709class SelectInst : public Instruction {
1710 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1711 Instruction *InsertBefore)
1712 : Instruction(S1->getType(), Instruction::Select,
1713 &Op<0>(), 3, InsertBefore) {
1714 init(C, S1, S2);
1715 setName(NameStr);
1716 }
1717
1718 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1719 BasicBlock *InsertAtEnd)
1720 : Instruction(S1->getType(), Instruction::Select,
1721 &Op<0>(), 3, InsertAtEnd) {
1722 init(C, S1, S2);
1723 setName(NameStr);
1724 }
1725
1726 void init(Value *C, Value *S1, Value *S2) {
1727 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1728 Op<0>() = C;
1729 Op<1>() = S1;
1730 Op<2>() = S2;
1731 }
1732
1733protected:
1734 // Note: Instruction needs to be a friend here to call cloneImpl.
1735 friend class Instruction;
1736
1737 SelectInst *cloneImpl() const;
1738
1739public:
1740 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1741 const Twine &NameStr = "",
1742 Instruction *InsertBefore = nullptr,
1743 Instruction *MDFrom = nullptr) {
1744 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1745 if (MDFrom)
1746 Sel->copyMetadata(*MDFrom);
1747 return Sel;
1748 }
1749
1750 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1751 const Twine &NameStr,
1752 BasicBlock *InsertAtEnd) {
1753 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1754 }
1755
1756 const Value *getCondition() const { return Op<0>(); }
1757 const Value *getTrueValue() const { return Op<1>(); }
1758 const Value *getFalseValue() const { return Op<2>(); }
1759 Value *getCondition() { return Op<0>(); }
1760 Value *getTrueValue() { return Op<1>(); }
1761 Value *getFalseValue() { return Op<2>(); }
1762
1763 void setCondition(Value *V) { Op<0>() = V; }
1764 void setTrueValue(Value *V) { Op<1>() = V; }
1765 void setFalseValue(Value *V) { Op<2>() = V; }
1766
1767 /// Return a string if the specified operands are invalid
1768 /// for a select operation, otherwise return null.
1769 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1770
1771 /// Transparently provide more efficient getOperand methods.
1772 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1773
1774 OtherOps getOpcode() const {
1775 return static_cast<OtherOps>(Instruction::getOpcode());
1776 }
1777
1778 // Methods for support type inquiry through isa, cast, and dyn_cast:
1779 static bool classof(const Instruction *I) {
1780 return I->getOpcode() == Instruction::Select;
1781 }
1782 static bool classof(const Value *V) {
1783 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1784 }
1785};
1786
1787template <>
1788struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1789};
1790
1791DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1792
1793//===----------------------------------------------------------------------===//
1794// VAArgInst Class
1795//===----------------------------------------------------------------------===//
1796
1797/// This class represents the va_arg llvm instruction, which returns
1798/// an argument of the specified type given a va_list and increments that list
1799///
1800class VAArgInst : public UnaryInstruction {
1801protected:
1802 // Note: Instruction needs to be a friend here to call cloneImpl.
1803 friend class Instruction;
1804
1805 VAArgInst *cloneImpl() const;
1806
1807public:
1808 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1809 Instruction *InsertBefore = nullptr)
1810 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1811 setName(NameStr);
1812 }
1813
1814 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1815 BasicBlock *InsertAtEnd)
1816 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1817 setName(NameStr);
1818 }
1819
1820 Value *getPointerOperand() { return getOperand(0); }
1821 const Value *getPointerOperand() const { return getOperand(0); }
1822 static unsigned getPointerOperandIndex() { return 0U; }
1823
1824 // Methods for support type inquiry through isa, cast, and dyn_cast:
1825 static bool classof(const Instruction *I) {
1826 return I->getOpcode() == VAArg;
1827 }
1828 static bool classof(const Value *V) {
1829 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1830 }
1831};
1832
1833//===----------------------------------------------------------------------===//
1834// ExtractElementInst Class
1835//===----------------------------------------------------------------------===//
1836
1837/// This instruction extracts a single (scalar)
1838/// element from a VectorType value
1839///
1840class ExtractElementInst : public Instruction {
1841 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1842 Instruction *InsertBefore = nullptr);
1843 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1844 BasicBlock *InsertAtEnd);
1845
1846protected:
1847 // Note: Instruction needs to be a friend here to call cloneImpl.
1848 friend class Instruction;
1849
1850 ExtractElementInst *cloneImpl() const;
1851
1852public:
1853 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1854 const Twine &NameStr = "",
1855 Instruction *InsertBefore = nullptr) {
1856 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1857 }
1858
1859 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1860 const Twine &NameStr,
1861 BasicBlock *InsertAtEnd) {
1862 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1863 }
1864
1865 /// Return true if an extractelement instruction can be
1866 /// formed with the specified operands.
1867 static bool isValidOperands(const Value *Vec, const Value *Idx);
1868
1869 Value *getVectorOperand() { return Op<0>(); }
1870 Value *getIndexOperand() { return Op<1>(); }
1871 const Value *getVectorOperand() const { return Op<0>(); }
1872 const Value *getIndexOperand() const { return Op<1>(); }
1873
1874 VectorType *getVectorOperandType() const {
1875 return cast<VectorType>(getVectorOperand()->getType());
1876 }
1877
1878 /// Transparently provide more efficient getOperand methods.
1879 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1880
1881 // Methods for support type inquiry through isa, cast, and dyn_cast:
1882 static bool classof(const Instruction *I) {
1883 return I->getOpcode() == Instruction::ExtractElement;
1884 }
1885 static bool classof(const Value *V) {
1886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1887 }
1888};
1889
1890template <>
1891struct OperandTraits<ExtractElementInst> :
1892 public FixedNumOperandTraits<ExtractElementInst, 2> {
1893};
1894
1895DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1896
1897//===----------------------------------------------------------------------===//
1898// InsertElementInst Class
1899//===----------------------------------------------------------------------===//
1900
1901/// This instruction inserts a single (scalar)
1902/// element into a VectorType value
1903///
1904class InsertElementInst : public Instruction {
1905 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1906 const Twine &NameStr = "",
1907 Instruction *InsertBefore = nullptr);
1908 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1909 BasicBlock *InsertAtEnd);
1910
1911protected:
1912 // Note: Instruction needs to be a friend here to call cloneImpl.
1913 friend class Instruction;
1914
1915 InsertElementInst *cloneImpl() const;
1916
1917public:
1918 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1919 const Twine &NameStr = "",
1920 Instruction *InsertBefore = nullptr) {
1921 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1922 }
1923
1924 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1925 const Twine &NameStr,
1926 BasicBlock *InsertAtEnd) {
1927 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1928 }
1929
1930 /// Return true if an insertelement instruction can be
1931 /// formed with the specified operands.
1932 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1933 const Value *Idx);
1934
1935 /// Overload to return most specific vector type.
1936 ///
1937 VectorType *getType() const {
1938 return cast<VectorType>(Instruction::getType());
1939 }
1940
1941 /// Transparently provide more efficient getOperand methods.
1942 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1943
1944 // Methods for support type inquiry through isa, cast, and dyn_cast:
1945 static bool classof(const Instruction *I) {
1946 return I->getOpcode() == Instruction::InsertElement;
1947 }
1948 static bool classof(const Value *V) {
1949 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1950 }
1951};
1952
1953template <>
1954struct OperandTraits<InsertElementInst> :
1955 public FixedNumOperandTraits<InsertElementInst, 3> {
1956};
1957
1958DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1959
1960//===----------------------------------------------------------------------===//
1961// ShuffleVectorInst Class
1962//===----------------------------------------------------------------------===//
1963
1964/// This instruction constructs a fixed permutation of two
1965/// input vectors.
1966///
1967class ShuffleVectorInst : public Instruction {
1968protected:
1969 // Note: Instruction needs to be a friend here to call cloneImpl.
1970 friend class Instruction;
1971
1972 ShuffleVectorInst *cloneImpl() const;
1973
1974public:
1975 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1976 const Twine &NameStr = "",
1977 Instruction *InsertBefor = nullptr);
1978 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1979 const Twine &NameStr, BasicBlock *InsertAtEnd);
1980
1981 // allocate space for exactly three operands
1982 void *operator new(size_t s) {
1983 return User::operator new(s, 3);
1984 }
1985
Andrew Walbran3d2c1972020-04-07 12:24:26 +01001986 /// Swap the first 2 operands and adjust the mask to preserve the semantics
1987 /// of the instruction.
1988 void commute();
1989
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01001990 /// Return true if a shufflevector instruction can be
1991 /// formed with the specified operands.
1992 static bool isValidOperands(const Value *V1, const Value *V2,
1993 const Value *Mask);
1994
1995 /// Overload to return most specific vector type.
1996 ///
1997 VectorType *getType() const {
1998 return cast<VectorType>(Instruction::getType());
1999 }
2000
2001 /// Transparently provide more efficient getOperand methods.
2002 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2003
2004 Constant *getMask() const {
2005 return cast<Constant>(getOperand(2));
2006 }
2007
2008 /// Return the shuffle mask value for the specified element of the mask.
2009 /// Return -1 if the element is undef.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002010 static int getMaskValue(const Constant *Mask, unsigned Elt);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002011
2012 /// Return the shuffle mask value of this instruction for the given element
2013 /// index. Return -1 if the element is undef.
2014 int getMaskValue(unsigned Elt) const {
2015 return getMaskValue(getMask(), Elt);
2016 }
2017
2018 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2019 /// elements of the mask are returned as -1.
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002020 static void getShuffleMask(const Constant *Mask,
2021 SmallVectorImpl<int> &Result);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002022
2023 /// Return the mask for this instruction as a vector of integers. Undefined
2024 /// elements of the mask are returned as -1.
2025 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2026 return getShuffleMask(getMask(), Result);
2027 }
2028
2029 SmallVector<int, 16> getShuffleMask() const {
2030 SmallVector<int, 16> Mask;
2031 getShuffleMask(Mask);
2032 return Mask;
2033 }
2034
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002035 /// Return true if this shuffle returns a vector with a different number of
Andrew Scull0372a572018-11-16 15:47:06 +00002036 /// elements than its source vectors.
2037 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2038 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002039 bool changesLength() const {
2040 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2041 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2042 return NumSourceElts != NumMaskElts;
2043 }
2044
Andrew Scull0372a572018-11-16 15:47:06 +00002045 /// Return true if this shuffle returns a vector with a greater number of
2046 /// elements than its source vectors.
2047 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2048 bool increasesLength() const {
2049 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2050 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2051 return NumSourceElts < NumMaskElts;
2052 }
2053
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002054 /// Return true if this shuffle mask chooses elements from exactly one source
2055 /// vector.
2056 /// Example: <7,5,undef,7>
2057 /// This assumes that vector operands are the same length as the mask.
2058 static bool isSingleSourceMask(ArrayRef<int> Mask);
2059 static bool isSingleSourceMask(const Constant *Mask) {
2060 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2061 SmallVector<int, 16> MaskAsInts;
2062 getShuffleMask(Mask, MaskAsInts);
2063 return isSingleSourceMask(MaskAsInts);
2064 }
2065
2066 /// Return true if this shuffle chooses elements from exactly one source
2067 /// vector without changing the length of that vector.
2068 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2069 /// TODO: Optionally allow length-changing shuffles.
2070 bool isSingleSource() const {
2071 return !changesLength() && isSingleSourceMask(getMask());
2072 }
2073
2074 /// Return true if this shuffle mask chooses elements from exactly one source
2075 /// vector without lane crossings. A shuffle using this mask is not
2076 /// necessarily a no-op because it may change the number of elements from its
2077 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2078 /// Example: <undef,undef,2,3>
2079 static bool isIdentityMask(ArrayRef<int> Mask);
2080 static bool isIdentityMask(const Constant *Mask) {
2081 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2082 SmallVector<int, 16> MaskAsInts;
2083 getShuffleMask(Mask, MaskAsInts);
2084 return isIdentityMask(MaskAsInts);
2085 }
2086
Andrew Scull0372a572018-11-16 15:47:06 +00002087 /// Return true if this shuffle chooses elements from exactly one source
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002088 /// vector without lane crossings and does not change the number of elements
2089 /// from its input vectors.
2090 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002091 bool isIdentity() const {
2092 return !changesLength() && isIdentityMask(getShuffleMask());
2093 }
2094
Andrew Scull0372a572018-11-16 15:47:06 +00002095 /// Return true if this shuffle lengthens exactly one source vector with
2096 /// undefs in the high elements.
2097 bool isIdentityWithPadding() const;
2098
2099 /// Return true if this shuffle extracts the first N elements of exactly one
2100 /// source vector.
2101 bool isIdentityWithExtract() const;
2102
2103 /// Return true if this shuffle concatenates its 2 source vectors. This
2104 /// returns false if either input is undefined. In that case, the shuffle is
2105 /// is better classified as an identity with padding operation.
2106 bool isConcat() const;
2107
Andrew Scullcdfcccc2018-10-05 20:58:37 +01002108 /// Return true if this shuffle mask chooses elements from its source vectors
2109 /// without lane crossings. A shuffle using this mask would be
2110 /// equivalent to a vector select with a constant condition operand.
2111 /// Example: <4,1,6,undef>
2112 /// This returns false if the mask does not choose from both input vectors.
2113 /// In that case, the shuffle is better classified as an identity shuffle.
2114 /// This assumes that vector operands are the same length as the mask
2115 /// (a length-changing shuffle can never be equivalent to a vector select).
2116 static bool isSelectMask(ArrayRef<int> Mask);
2117 static bool isSelectMask(const Constant *Mask) {
2118 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2119 SmallVector<int, 16> MaskAsInts;
2120 getShuffleMask(Mask, MaskAsInts);
2121 return isSelectMask(MaskAsInts);
2122 }
2123
2124 /// Return true if this shuffle chooses elements from its source vectors
2125 /// without lane crossings and all operands have the same number of elements.
2126 /// In other words, this shuffle is equivalent to a vector select with a
2127 /// constant condition operand.
2128 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2129 /// This returns false if the mask does not choose from both input vectors.
2130 /// In that case, the shuffle is better classified as an identity shuffle.
2131 /// TODO: Optionally allow length-changing shuffles.
2132 bool isSelect() const {
2133 return !changesLength() && isSelectMask(getMask());
2134 }
2135
2136 /// Return true if this shuffle mask swaps the order of elements from exactly
2137 /// one source vector.
2138 /// Example: <7,6,undef,4>
2139 /// This assumes that vector operands are the same length as the mask.
2140 static bool isReverseMask(ArrayRef<int> Mask);
2141 static bool isReverseMask(const Constant *Mask) {
2142 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2143 SmallVector<int, 16> MaskAsInts;
2144 getShuffleMask(Mask, MaskAsInts);
2145 return isReverseMask(MaskAsInts);
2146 }
2147
2148 /// Return true if this shuffle swaps the order of elements from exactly
2149 /// one source vector.
2150 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2151 /// TODO: Optionally allow length-changing shuffles.
2152 bool isReverse() const {
2153 return !changesLength() && isReverseMask(getMask());
2154 }
2155
2156 /// Return true if this shuffle mask chooses all elements with the same value
2157 /// as the first element of exactly one source vector.
2158 /// Example: <4,undef,undef,4>
2159 /// This assumes that vector operands are the same length as the mask.
2160 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2161 static bool isZeroEltSplatMask(const Constant *Mask) {
2162 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2163 SmallVector<int, 16> MaskAsInts;
2164 getShuffleMask(Mask, MaskAsInts);
2165 return isZeroEltSplatMask(MaskAsInts);
2166 }
2167
2168 /// Return true if all elements of this shuffle are the same value as the
2169 /// first element of exactly one source vector without changing the length
2170 /// of that vector.
2171 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2172 /// TODO: Optionally allow length-changing shuffles.
2173 /// TODO: Optionally allow splats from other elements.
2174 bool isZeroEltSplat() const {
2175 return !changesLength() && isZeroEltSplatMask(getMask());
2176 }
2177
2178 /// Return true if this shuffle mask is a transpose mask.
2179 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2180 /// even- or odd-numbered vector elements from two n-dimensional source
2181 /// vectors and write each result into consecutive elements of an
2182 /// n-dimensional destination vector. Two shuffles are necessary to complete
2183 /// the transpose, one for the even elements and another for the odd elements.
2184 /// This description closely follows how the TRN1 and TRN2 AArch64
2185 /// instructions operate.
2186 ///
2187 /// For example, a simple 2x2 matrix can be transposed with:
2188 ///
2189 /// ; Original matrix
2190 /// m0 = < a, b >
2191 /// m1 = < c, d >
2192 ///
2193 /// ; Transposed matrix
2194 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2195 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2196 ///
2197 /// For matrices having greater than n columns, the resulting nx2 transposed
2198 /// matrix is stored in two result vectors such that one vector contains
2199 /// interleaved elements from all the even-numbered rows and the other vector
2200 /// contains interleaved elements from all the odd-numbered rows. For example,
2201 /// a 2x4 matrix can be transposed with:
2202 ///
2203 /// ; Original matrix
2204 /// m0 = < a, b, c, d >
2205 /// m1 = < e, f, g, h >
2206 ///
2207 /// ; Transposed matrix
2208 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2209 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2210 static bool isTransposeMask(ArrayRef<int> Mask);
2211 static bool isTransposeMask(const Constant *Mask) {
2212 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2213 SmallVector<int, 16> MaskAsInts;
2214 getShuffleMask(Mask, MaskAsInts);
2215 return isTransposeMask(MaskAsInts);
2216 }
2217
2218 /// Return true if this shuffle transposes the elements of its inputs without
2219 /// changing the length of the vectors. This operation may also be known as a
2220 /// merge or interleave. See the description for isTransposeMask() for the
2221 /// exact specification.
2222 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2223 bool isTranspose() const {
2224 return !changesLength() && isTransposeMask(getMask());
2225 }
2226
Andrew Walbran16937d02019-10-22 13:54:20 +01002227 /// Return true if this shuffle mask is an extract subvector mask.
2228 /// A valid extract subvector mask returns a smaller vector from a single
2229 /// source operand. The base extraction index is returned as well.
2230 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2231 int &Index);
2232 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2233 int &Index) {
2234 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2235 SmallVector<int, 16> MaskAsInts;
2236 getShuffleMask(Mask, MaskAsInts);
2237 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2238 }
2239
2240 /// Return true if this shuffle mask is an extract subvector mask.
2241 bool isExtractSubvectorMask(int &Index) const {
2242 int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2243 return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2244 }
2245
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002246 /// Change values in a shuffle permute mask assuming the two vector operands
2247 /// of length InVecNumElts have swapped position.
2248 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2249 unsigned InVecNumElts) {
2250 for (int &Idx : Mask) {
2251 if (Idx == -1)
2252 continue;
2253 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2254 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2255 "shufflevector mask index out of range");
2256 }
2257 }
2258
2259 // Methods for support type inquiry through isa, cast, and dyn_cast:
2260 static bool classof(const Instruction *I) {
2261 return I->getOpcode() == Instruction::ShuffleVector;
2262 }
2263 static bool classof(const Value *V) {
2264 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2265 }
2266};
2267
2268template <>
2269struct OperandTraits<ShuffleVectorInst> :
2270 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2271};
2272
2273DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2274
2275//===----------------------------------------------------------------------===//
2276// ExtractValueInst Class
2277//===----------------------------------------------------------------------===//
2278
2279/// This instruction extracts a struct member or array
2280/// element value from an aggregate value.
2281///
2282class ExtractValueInst : public UnaryInstruction {
2283 SmallVector<unsigned, 4> Indices;
2284
2285 ExtractValueInst(const ExtractValueInst &EVI);
2286
2287 /// Constructors - Create a extractvalue instruction with a base aggregate
2288 /// value and a list of indices. The first ctor can optionally insert before
2289 /// an existing instruction, the second appends the new instruction to the
2290 /// specified BasicBlock.
2291 inline ExtractValueInst(Value *Agg,
2292 ArrayRef<unsigned> Idxs,
2293 const Twine &NameStr,
2294 Instruction *InsertBefore);
2295 inline ExtractValueInst(Value *Agg,
2296 ArrayRef<unsigned> Idxs,
2297 const Twine &NameStr, BasicBlock *InsertAtEnd);
2298
2299 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2300
2301protected:
2302 // Note: Instruction needs to be a friend here to call cloneImpl.
2303 friend class Instruction;
2304
2305 ExtractValueInst *cloneImpl() const;
2306
2307public:
2308 static ExtractValueInst *Create(Value *Agg,
2309 ArrayRef<unsigned> Idxs,
2310 const Twine &NameStr = "",
2311 Instruction *InsertBefore = nullptr) {
2312 return new
2313 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2314 }
2315
2316 static ExtractValueInst *Create(Value *Agg,
2317 ArrayRef<unsigned> Idxs,
2318 const Twine &NameStr,
2319 BasicBlock *InsertAtEnd) {
2320 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2321 }
2322
2323 /// Returns the type of the element that would be extracted
2324 /// with an extractvalue instruction with the specified parameters.
2325 ///
2326 /// Null is returned if the indices are invalid for the specified type.
2327 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2328
2329 using idx_iterator = const unsigned*;
2330
2331 inline idx_iterator idx_begin() const { return Indices.begin(); }
2332 inline idx_iterator idx_end() const { return Indices.end(); }
2333 inline iterator_range<idx_iterator> indices() const {
2334 return make_range(idx_begin(), idx_end());
2335 }
2336
2337 Value *getAggregateOperand() {
2338 return getOperand(0);
2339 }
2340 const Value *getAggregateOperand() const {
2341 return getOperand(0);
2342 }
2343 static unsigned getAggregateOperandIndex() {
2344 return 0U; // get index for modifying correct operand
2345 }
2346
2347 ArrayRef<unsigned> getIndices() const {
2348 return Indices;
2349 }
2350
2351 unsigned getNumIndices() const {
2352 return (unsigned)Indices.size();
2353 }
2354
2355 bool hasIndices() const {
2356 return true;
2357 }
2358
2359 // Methods for support type inquiry through isa, cast, and dyn_cast:
2360 static bool classof(const Instruction *I) {
2361 return I->getOpcode() == Instruction::ExtractValue;
2362 }
2363 static bool classof(const Value *V) {
2364 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2365 }
2366};
2367
2368ExtractValueInst::ExtractValueInst(Value *Agg,
2369 ArrayRef<unsigned> Idxs,
2370 const Twine &NameStr,
2371 Instruction *InsertBefore)
2372 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2373 ExtractValue, Agg, InsertBefore) {
2374 init(Idxs, NameStr);
2375}
2376
2377ExtractValueInst::ExtractValueInst(Value *Agg,
2378 ArrayRef<unsigned> Idxs,
2379 const Twine &NameStr,
2380 BasicBlock *InsertAtEnd)
2381 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2382 ExtractValue, Agg, InsertAtEnd) {
2383 init(Idxs, NameStr);
2384}
2385
2386//===----------------------------------------------------------------------===//
2387// InsertValueInst Class
2388//===----------------------------------------------------------------------===//
2389
2390/// This instruction inserts a struct field of array element
2391/// value into an aggregate value.
2392///
2393class InsertValueInst : public Instruction {
2394 SmallVector<unsigned, 4> Indices;
2395
2396 InsertValueInst(const InsertValueInst &IVI);
2397
2398 /// Constructors - Create a insertvalue instruction with a base aggregate
2399 /// value, a value to insert, and a list of indices. The first ctor can
2400 /// optionally insert before an existing instruction, the second appends
2401 /// the new instruction to the specified BasicBlock.
2402 inline InsertValueInst(Value *Agg, Value *Val,
2403 ArrayRef<unsigned> Idxs,
2404 const Twine &NameStr,
2405 Instruction *InsertBefore);
2406 inline InsertValueInst(Value *Agg, Value *Val,
2407 ArrayRef<unsigned> Idxs,
2408 const Twine &NameStr, BasicBlock *InsertAtEnd);
2409
2410 /// Constructors - These two constructors are convenience methods because one
2411 /// and two index insertvalue instructions are so common.
2412 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2413 const Twine &NameStr = "",
2414 Instruction *InsertBefore = nullptr);
2415 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2416 BasicBlock *InsertAtEnd);
2417
2418 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2419 const Twine &NameStr);
2420
2421protected:
2422 // Note: Instruction needs to be a friend here to call cloneImpl.
2423 friend class Instruction;
2424
2425 InsertValueInst *cloneImpl() const;
2426
2427public:
2428 // allocate space for exactly two operands
2429 void *operator new(size_t s) {
2430 return User::operator new(s, 2);
2431 }
2432
2433 static InsertValueInst *Create(Value *Agg, Value *Val,
2434 ArrayRef<unsigned> Idxs,
2435 const Twine &NameStr = "",
2436 Instruction *InsertBefore = nullptr) {
2437 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2438 }
2439
2440 static InsertValueInst *Create(Value *Agg, Value *Val,
2441 ArrayRef<unsigned> Idxs,
2442 const Twine &NameStr,
2443 BasicBlock *InsertAtEnd) {
2444 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2445 }
2446
2447 /// Transparently provide more efficient getOperand methods.
2448 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2449
2450 using idx_iterator = const unsigned*;
2451
2452 inline idx_iterator idx_begin() const { return Indices.begin(); }
2453 inline idx_iterator idx_end() const { return Indices.end(); }
2454 inline iterator_range<idx_iterator> indices() const {
2455 return make_range(idx_begin(), idx_end());
2456 }
2457
2458 Value *getAggregateOperand() {
2459 return getOperand(0);
2460 }
2461 const Value *getAggregateOperand() const {
2462 return getOperand(0);
2463 }
2464 static unsigned getAggregateOperandIndex() {
2465 return 0U; // get index for modifying correct operand
2466 }
2467
2468 Value *getInsertedValueOperand() {
2469 return getOperand(1);
2470 }
2471 const Value *getInsertedValueOperand() const {
2472 return getOperand(1);
2473 }
2474 static unsigned getInsertedValueOperandIndex() {
2475 return 1U; // get index for modifying correct operand
2476 }
2477
2478 ArrayRef<unsigned> getIndices() const {
2479 return Indices;
2480 }
2481
2482 unsigned getNumIndices() const {
2483 return (unsigned)Indices.size();
2484 }
2485
2486 bool hasIndices() const {
2487 return true;
2488 }
2489
2490 // Methods for support type inquiry through isa, cast, and dyn_cast:
2491 static bool classof(const Instruction *I) {
2492 return I->getOpcode() == Instruction::InsertValue;
2493 }
2494 static bool classof(const Value *V) {
2495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2496 }
2497};
2498
2499template <>
2500struct OperandTraits<InsertValueInst> :
2501 public FixedNumOperandTraits<InsertValueInst, 2> {
2502};
2503
2504InsertValueInst::InsertValueInst(Value *Agg,
2505 Value *Val,
2506 ArrayRef<unsigned> Idxs,
2507 const Twine &NameStr,
2508 Instruction *InsertBefore)
2509 : Instruction(Agg->getType(), InsertValue,
2510 OperandTraits<InsertValueInst>::op_begin(this),
2511 2, InsertBefore) {
2512 init(Agg, Val, Idxs, NameStr);
2513}
2514
2515InsertValueInst::InsertValueInst(Value *Agg,
2516 Value *Val,
2517 ArrayRef<unsigned> Idxs,
2518 const Twine &NameStr,
2519 BasicBlock *InsertAtEnd)
2520 : Instruction(Agg->getType(), InsertValue,
2521 OperandTraits<InsertValueInst>::op_begin(this),
2522 2, InsertAtEnd) {
2523 init(Agg, Val, Idxs, NameStr);
2524}
2525
2526DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2527
2528//===----------------------------------------------------------------------===//
2529// PHINode Class
2530//===----------------------------------------------------------------------===//
2531
2532// PHINode - The PHINode class is used to represent the magical mystical PHI
2533// node, that can not exist in nature, but can be synthesized in a computer
2534// scientist's overactive imagination.
2535//
2536class PHINode : public Instruction {
2537 /// The number of operands actually allocated. NumOperands is
2538 /// the number actually in use.
2539 unsigned ReservedSpace;
2540
2541 PHINode(const PHINode &PN);
2542
2543 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2544 const Twine &NameStr = "",
2545 Instruction *InsertBefore = nullptr)
2546 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2547 ReservedSpace(NumReservedValues) {
2548 setName(NameStr);
2549 allocHungoffUses(ReservedSpace);
2550 }
2551
2552 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2553 BasicBlock *InsertAtEnd)
2554 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2555 ReservedSpace(NumReservedValues) {
2556 setName(NameStr);
2557 allocHungoffUses(ReservedSpace);
2558 }
2559
2560protected:
2561 // Note: Instruction needs to be a friend here to call cloneImpl.
2562 friend class Instruction;
2563
2564 PHINode *cloneImpl() const;
2565
2566 // allocHungoffUses - this is more complicated than the generic
2567 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2568 // values and pointers to the incoming blocks, all in one allocation.
2569 void allocHungoffUses(unsigned N) {
2570 User::allocHungoffUses(N, /* IsPhi */ true);
2571 }
2572
2573public:
2574 /// Constructors - NumReservedValues is a hint for the number of incoming
2575 /// edges that this phi node will have (use 0 if you really have no idea).
2576 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2577 const Twine &NameStr = "",
2578 Instruction *InsertBefore = nullptr) {
2579 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2580 }
2581
2582 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2583 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2584 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2585 }
2586
2587 /// Provide fast operand accessors
2588 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2589
2590 // Block iterator interface. This provides access to the list of incoming
2591 // basic blocks, which parallels the list of incoming values.
2592
2593 using block_iterator = BasicBlock **;
2594 using const_block_iterator = BasicBlock * const *;
2595
2596 block_iterator block_begin() {
2597 Use::UserRef *ref =
2598 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2599 return reinterpret_cast<block_iterator>(ref + 1);
2600 }
2601
2602 const_block_iterator block_begin() const {
2603 const Use::UserRef *ref =
2604 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2605 return reinterpret_cast<const_block_iterator>(ref + 1);
2606 }
2607
2608 block_iterator block_end() {
2609 return block_begin() + getNumOperands();
2610 }
2611
2612 const_block_iterator block_end() const {
2613 return block_begin() + getNumOperands();
2614 }
2615
2616 iterator_range<block_iterator> blocks() {
2617 return make_range(block_begin(), block_end());
2618 }
2619
2620 iterator_range<const_block_iterator> blocks() const {
2621 return make_range(block_begin(), block_end());
2622 }
2623
2624 op_range incoming_values() { return operands(); }
2625
2626 const_op_range incoming_values() const { return operands(); }
2627
2628 /// Return the number of incoming edges
2629 ///
2630 unsigned getNumIncomingValues() const { return getNumOperands(); }
2631
2632 /// Return incoming value number x
2633 ///
2634 Value *getIncomingValue(unsigned i) const {
2635 return getOperand(i);
2636 }
2637 void setIncomingValue(unsigned i, Value *V) {
2638 assert(V && "PHI node got a null value!");
2639 assert(getType() == V->getType() &&
2640 "All operands to PHI node must be the same type as the PHI node!");
2641 setOperand(i, V);
2642 }
2643
2644 static unsigned getOperandNumForIncomingValue(unsigned i) {
2645 return i;
2646 }
2647
2648 static unsigned getIncomingValueNumForOperand(unsigned i) {
2649 return i;
2650 }
2651
2652 /// Return incoming basic block number @p i.
2653 ///
2654 BasicBlock *getIncomingBlock(unsigned i) const {
2655 return block_begin()[i];
2656 }
2657
2658 /// Return incoming basic block corresponding
2659 /// to an operand of the PHI.
2660 ///
2661 BasicBlock *getIncomingBlock(const Use &U) const {
2662 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2663 return getIncomingBlock(unsigned(&U - op_begin()));
2664 }
2665
2666 /// Return incoming basic block corresponding
2667 /// to value use iterator.
2668 ///
2669 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2670 return getIncomingBlock(I.getUse());
2671 }
2672
2673 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2674 assert(BB && "PHI node got a null basic block!");
2675 block_begin()[i] = BB;
2676 }
2677
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002678 /// Replace every incoming basic block \p Old to basic block \p New.
2679 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2680 assert(New && Old && "PHI node got a null basic block!");
2681 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2682 if (getIncomingBlock(Op) == Old)
2683 setIncomingBlock(Op, New);
2684 }
2685
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002686 /// Add an incoming value to the end of the PHI list
2687 ///
2688 void addIncoming(Value *V, BasicBlock *BB) {
2689 if (getNumOperands() == ReservedSpace)
2690 growOperands(); // Get more space!
2691 // Initialize some new operands.
2692 setNumHungOffUseOperands(getNumOperands() + 1);
2693 setIncomingValue(getNumOperands() - 1, V);
2694 setIncomingBlock(getNumOperands() - 1, BB);
2695 }
2696
2697 /// Remove an incoming value. This is useful if a
2698 /// predecessor basic block is deleted. The value removed is returned.
2699 ///
2700 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2701 /// is true), the PHI node is destroyed and any uses of it are replaced with
2702 /// dummy values. The only time there should be zero incoming values to a PHI
2703 /// node is when the block is dead, so this strategy is sound.
2704 ///
2705 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2706
2707 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2708 int Idx = getBasicBlockIndex(BB);
2709 assert(Idx >= 0 && "Invalid basic block argument to remove!");
2710 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2711 }
2712
2713 /// Return the first index of the specified basic
2714 /// block in the value list for this PHI. Returns -1 if no instance.
2715 ///
2716 int getBasicBlockIndex(const BasicBlock *BB) const {
2717 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2718 if (block_begin()[i] == BB)
2719 return i;
2720 return -1;
2721 }
2722
2723 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2724 int Idx = getBasicBlockIndex(BB);
2725 assert(Idx >= 0 && "Invalid basic block argument!");
2726 return getIncomingValue(Idx);
2727 }
2728
Andrew Walbran3d2c1972020-04-07 12:24:26 +01002729 /// Set every incoming value(s) for block \p BB to \p V.
2730 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2731 assert(BB && "PHI node got a null basic block!");
2732 bool Found = false;
2733 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2734 if (getIncomingBlock(Op) == BB) {
2735 Found = true;
2736 setIncomingValue(Op, V);
2737 }
2738 (void)Found;
2739 assert(Found && "Invalid basic block argument to set!");
2740 }
2741
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002742 /// If the specified PHI node always merges together the
2743 /// same value, return the value, otherwise return null.
2744 Value *hasConstantValue() const;
2745
2746 /// Whether the specified PHI node always merges
2747 /// together the same value, assuming undefs are equal to a unique
2748 /// non-undef value.
2749 bool hasConstantOrUndefValue() const;
2750
2751 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2752 static bool classof(const Instruction *I) {
2753 return I->getOpcode() == Instruction::PHI;
2754 }
2755 static bool classof(const Value *V) {
2756 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2757 }
2758
2759private:
2760 void growOperands();
2761};
2762
2763template <>
2764struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2765};
2766
2767DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2768
2769//===----------------------------------------------------------------------===//
2770// LandingPadInst Class
2771//===----------------------------------------------------------------------===//
2772
2773//===---------------------------------------------------------------------------
2774/// The landingpad instruction holds all of the information
2775/// necessary to generate correct exception handling. The landingpad instruction
2776/// cannot be moved from the top of a landing pad block, which itself is
2777/// accessible only from the 'unwind' edge of an invoke. This uses the
2778/// SubclassData field in Value to store whether or not the landingpad is a
2779/// cleanup.
2780///
2781class LandingPadInst : public Instruction {
2782 /// The number of operands actually allocated. NumOperands is
2783 /// the number actually in use.
2784 unsigned ReservedSpace;
2785
2786 LandingPadInst(const LandingPadInst &LP);
2787
2788public:
2789 enum ClauseType { Catch, Filter };
2790
2791private:
2792 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2793 const Twine &NameStr, Instruction *InsertBefore);
2794 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2795 const Twine &NameStr, BasicBlock *InsertAtEnd);
2796
2797 // Allocate space for exactly zero operands.
2798 void *operator new(size_t s) {
2799 return User::operator new(s);
2800 }
2801
2802 void growOperands(unsigned Size);
2803 void init(unsigned NumReservedValues, const Twine &NameStr);
2804
2805protected:
2806 // Note: Instruction needs to be a friend here to call cloneImpl.
2807 friend class Instruction;
2808
2809 LandingPadInst *cloneImpl() const;
2810
2811public:
2812 /// Constructors - NumReservedClauses is a hint for the number of incoming
2813 /// clauses that this landingpad will have (use 0 if you really have no idea).
2814 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2815 const Twine &NameStr = "",
2816 Instruction *InsertBefore = nullptr);
2817 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2818 const Twine &NameStr, BasicBlock *InsertAtEnd);
2819
2820 /// Provide fast operand accessors
2821 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2822
2823 /// Return 'true' if this landingpad instruction is a
2824 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2825 /// doesn't catch the exception.
2826 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2827
2828 /// Indicate that this landingpad instruction is a cleanup.
2829 void setCleanup(bool V) {
2830 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2831 (V ? 1 : 0));
2832 }
2833
2834 /// Add a catch or filter clause to the landing pad.
2835 void addClause(Constant *ClauseVal);
2836
2837 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2838 /// determine what type of clause this is.
2839 Constant *getClause(unsigned Idx) const {
2840 return cast<Constant>(getOperandList()[Idx]);
2841 }
2842
2843 /// Return 'true' if the clause and index Idx is a catch clause.
2844 bool isCatch(unsigned Idx) const {
2845 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2846 }
2847
2848 /// Return 'true' if the clause and index Idx is a filter clause.
2849 bool isFilter(unsigned Idx) const {
2850 return isa<ArrayType>(getOperandList()[Idx]->getType());
2851 }
2852
2853 /// Get the number of clauses for this landing pad.
2854 unsigned getNumClauses() const { return getNumOperands(); }
2855
2856 /// Grow the size of the operand list to accommodate the new
2857 /// number of clauses.
2858 void reserveClauses(unsigned Size) { growOperands(Size); }
2859
2860 // Methods for support type inquiry through isa, cast, and dyn_cast:
2861 static bool classof(const Instruction *I) {
2862 return I->getOpcode() == Instruction::LandingPad;
2863 }
2864 static bool classof(const Value *V) {
2865 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2866 }
2867};
2868
2869template <>
2870struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2871};
2872
2873DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
2874
2875//===----------------------------------------------------------------------===//
2876// ReturnInst Class
2877//===----------------------------------------------------------------------===//
2878
2879//===---------------------------------------------------------------------------
2880/// Return a value (possibly void), from a function. Execution
2881/// does not continue in this function any longer.
2882///
Andrew Walbran16937d02019-10-22 13:54:20 +01002883class ReturnInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002884 ReturnInst(const ReturnInst &RI);
2885
2886private:
2887 // ReturnInst constructors:
2888 // ReturnInst() - 'ret void' instruction
2889 // ReturnInst( null) - 'ret void' instruction
2890 // ReturnInst(Value* X) - 'ret X' instruction
2891 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2892 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2893 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2894 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2895 //
2896 // NOTE: If the Value* passed is of type void then the constructor behaves as
2897 // if it was passed NULL.
2898 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2899 Instruction *InsertBefore = nullptr);
2900 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2901 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2902
2903protected:
2904 // Note: Instruction needs to be a friend here to call cloneImpl.
2905 friend class Instruction;
2906
2907 ReturnInst *cloneImpl() const;
2908
2909public:
2910 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2911 Instruction *InsertBefore = nullptr) {
2912 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2913 }
2914
2915 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2916 BasicBlock *InsertAtEnd) {
2917 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2918 }
2919
2920 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2921 return new(0) ReturnInst(C, InsertAtEnd);
2922 }
2923
2924 /// Provide fast operand accessors
2925 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2926
2927 /// Convenience accessor. Returns null if there is no return value.
2928 Value *getReturnValue() const {
2929 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2930 }
2931
2932 unsigned getNumSuccessors() const { return 0; }
2933
2934 // Methods for support type inquiry through isa, cast, and dyn_cast:
2935 static bool classof(const Instruction *I) {
2936 return (I->getOpcode() == Instruction::Ret);
2937 }
2938 static bool classof(const Value *V) {
2939 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2940 }
2941
2942private:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002943 BasicBlock *getSuccessor(unsigned idx) const {
2944 llvm_unreachable("ReturnInst has no successors!");
2945 }
2946
2947 void setSuccessor(unsigned idx, BasicBlock *B) {
2948 llvm_unreachable("ReturnInst has no successors!");
2949 }
2950};
2951
2952template <>
2953struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2954};
2955
2956DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
2957
2958//===----------------------------------------------------------------------===//
2959// BranchInst Class
2960//===----------------------------------------------------------------------===//
2961
2962//===---------------------------------------------------------------------------
2963/// Conditional or Unconditional Branch instruction.
2964///
Andrew Walbran16937d02019-10-22 13:54:20 +01002965class BranchInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01002966 /// Ops list - Branches are strange. The operands are ordered:
2967 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2968 /// they don't have to check for cond/uncond branchness. These are mostly
2969 /// accessed relative from op_end().
2970 BranchInst(const BranchInst &BI);
2971 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2972 // BranchInst(BB *B) - 'br B'
2973 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2974 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2975 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2976 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2977 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2978 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2979 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2980 Instruction *InsertBefore = nullptr);
2981 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2982 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2983 BasicBlock *InsertAtEnd);
2984
2985 void AssertOK();
2986
2987protected:
2988 // Note: Instruction needs to be a friend here to call cloneImpl.
2989 friend class Instruction;
2990
2991 BranchInst *cloneImpl() const;
2992
2993public:
Andrew Scull0372a572018-11-16 15:47:06 +00002994 /// Iterator type that casts an operand to a basic block.
2995 ///
2996 /// This only makes sense because the successors are stored as adjacent
2997 /// operands for branch instructions.
2998 struct succ_op_iterator
2999 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3000 std::random_access_iterator_tag, BasicBlock *,
3001 ptrdiff_t, BasicBlock *, BasicBlock *> {
3002 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3003
3004 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3005 BasicBlock *operator->() const { return operator*(); }
3006 };
3007
3008 /// The const version of `succ_op_iterator`.
3009 struct const_succ_op_iterator
3010 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3011 std::random_access_iterator_tag,
3012 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3013 const BasicBlock *> {
3014 explicit const_succ_op_iterator(const_value_op_iterator I)
3015 : iterator_adaptor_base(I) {}
3016
3017 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3018 const BasicBlock *operator->() const { return operator*(); }
3019 };
3020
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003021 static BranchInst *Create(BasicBlock *IfTrue,
3022 Instruction *InsertBefore = nullptr) {
3023 return new(1) BranchInst(IfTrue, InsertBefore);
3024 }
3025
3026 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3027 Value *Cond, Instruction *InsertBefore = nullptr) {
3028 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3029 }
3030
3031 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3032 return new(1) BranchInst(IfTrue, InsertAtEnd);
3033 }
3034
3035 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3036 Value *Cond, BasicBlock *InsertAtEnd) {
3037 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3038 }
3039
3040 /// Transparently provide more efficient getOperand methods.
3041 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3042
3043 bool isUnconditional() const { return getNumOperands() == 1; }
3044 bool isConditional() const { return getNumOperands() == 3; }
3045
3046 Value *getCondition() const {
3047 assert(isConditional() && "Cannot get condition of an uncond branch!");
3048 return Op<-3>();
3049 }
3050
3051 void setCondition(Value *V) {
3052 assert(isConditional() && "Cannot set condition of unconditional branch!");
3053 Op<-3>() = V;
3054 }
3055
3056 unsigned getNumSuccessors() const { return 1+isConditional(); }
3057
3058 BasicBlock *getSuccessor(unsigned i) const {
3059 assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3060 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3061 }
3062
3063 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3064 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3065 *(&Op<-1>() - idx) = NewSucc;
3066 }
3067
3068 /// Swap the successors of this branch instruction.
3069 ///
3070 /// Swaps the successors of the branch instruction. This also swaps any
3071 /// branch weight metadata associated with the instruction so that it
3072 /// continues to map correctly to each operand.
3073 void swapSuccessors();
3074
Andrew Scull0372a572018-11-16 15:47:06 +00003075 iterator_range<succ_op_iterator> successors() {
3076 return make_range(
3077 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3078 succ_op_iterator(value_op_end()));
3079 }
3080
3081 iterator_range<const_succ_op_iterator> successors() const {
3082 return make_range(const_succ_op_iterator(
3083 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3084 const_succ_op_iterator(value_op_end()));
3085 }
3086
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003087 // Methods for support type inquiry through isa, cast, and dyn_cast:
3088 static bool classof(const Instruction *I) {
3089 return (I->getOpcode() == Instruction::Br);
3090 }
3091 static bool classof(const Value *V) {
3092 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3093 }
3094};
3095
3096template <>
3097struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3098};
3099
3100DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
3101
3102//===----------------------------------------------------------------------===//
3103// SwitchInst Class
3104//===----------------------------------------------------------------------===//
3105
3106//===---------------------------------------------------------------------------
3107/// Multiway switch
3108///
Andrew Walbran16937d02019-10-22 13:54:20 +01003109class SwitchInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003110 unsigned ReservedSpace;
3111
3112 // Operand[0] = Value to switch on
3113 // Operand[1] = Default basic block destination
3114 // Operand[2n ] = Value to match
3115 // Operand[2n+1] = BasicBlock to go to on match
3116 SwitchInst(const SwitchInst &SI);
3117
3118 /// Create a new switch instruction, specifying a value to switch on and a
3119 /// default destination. The number of additional cases can be specified here
3120 /// to make memory allocation more efficient. This constructor can also
3121 /// auto-insert before another instruction.
3122 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3123 Instruction *InsertBefore);
3124
3125 /// Create a new switch instruction, specifying a value to switch on and a
3126 /// default destination. The number of additional cases can be specified here
3127 /// to make memory allocation more efficient. This constructor also
3128 /// auto-inserts at the end of the specified BasicBlock.
3129 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3130 BasicBlock *InsertAtEnd);
3131
3132 // allocate space for exactly zero operands
3133 void *operator new(size_t s) {
3134 return User::operator new(s);
3135 }
3136
3137 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3138 void growOperands();
3139
3140protected:
3141 // Note: Instruction needs to be a friend here to call cloneImpl.
3142 friend class Instruction;
3143
3144 SwitchInst *cloneImpl() const;
3145
3146public:
3147 // -2
3148 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3149
3150 template <typename CaseHandleT> class CaseIteratorImpl;
3151
3152 /// A handle to a particular switch case. It exposes a convenient interface
3153 /// to both the case value and the successor block.
3154 ///
3155 /// We define this as a template and instantiate it to form both a const and
3156 /// non-const handle.
3157 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3158 class CaseHandleImpl {
3159 // Directly befriend both const and non-const iterators.
3160 friend class SwitchInst::CaseIteratorImpl<
3161 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3162
3163 protected:
3164 // Expose the switch type we're parameterized with to the iterator.
3165 using SwitchInstType = SwitchInstT;
3166
3167 SwitchInstT *SI;
3168 ptrdiff_t Index;
3169
3170 CaseHandleImpl() = default;
3171 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3172
3173 public:
3174 /// Resolves case value for current case.
3175 ConstantIntT *getCaseValue() const {
3176 assert((unsigned)Index < SI->getNumCases() &&
3177 "Index out the number of cases.");
3178 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3179 }
3180
3181 /// Resolves successor for current case.
3182 BasicBlockT *getCaseSuccessor() const {
3183 assert(((unsigned)Index < SI->getNumCases() ||
3184 (unsigned)Index == DefaultPseudoIndex) &&
3185 "Index out the number of cases.");
3186 return SI->getSuccessor(getSuccessorIndex());
3187 }
3188
3189 /// Returns number of current case.
3190 unsigned getCaseIndex() const { return Index; }
3191
Andrew Walbran16937d02019-10-22 13:54:20 +01003192 /// Returns successor index for current case successor.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003193 unsigned getSuccessorIndex() const {
3194 assert(((unsigned)Index == DefaultPseudoIndex ||
3195 (unsigned)Index < SI->getNumCases()) &&
3196 "Index out the number of cases.");
3197 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3198 }
3199
3200 bool operator==(const CaseHandleImpl &RHS) const {
3201 assert(SI == RHS.SI && "Incompatible operators.");
3202 return Index == RHS.Index;
3203 }
3204 };
3205
3206 using ConstCaseHandle =
3207 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3208
3209 class CaseHandle
3210 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3211 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3212
3213 public:
3214 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3215
3216 /// Sets the new value for current case.
3217 void setValue(ConstantInt *V) {
3218 assert((unsigned)Index < SI->getNumCases() &&
3219 "Index out the number of cases.");
3220 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3221 }
3222
3223 /// Sets the new successor for current case.
3224 void setSuccessor(BasicBlock *S) {
3225 SI->setSuccessor(getSuccessorIndex(), S);
3226 }
3227 };
3228
3229 template <typename CaseHandleT>
3230 class CaseIteratorImpl
3231 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3232 std::random_access_iterator_tag,
3233 CaseHandleT> {
3234 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3235
3236 CaseHandleT Case;
3237
3238 public:
3239 /// Default constructed iterator is in an invalid state until assigned to
3240 /// a case for a particular switch.
3241 CaseIteratorImpl() = default;
3242
3243 /// Initializes case iterator for given SwitchInst and for given
3244 /// case number.
3245 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3246
3247 /// Initializes case iterator for given SwitchInst and for given
Andrew Walbran16937d02019-10-22 13:54:20 +01003248 /// successor index.
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003249 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3250 unsigned SuccessorIndex) {
3251 assert(SuccessorIndex < SI->getNumSuccessors() &&
3252 "Successor index # out of range!");
3253 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3254 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3255 }
3256
3257 /// Support converting to the const variant. This will be a no-op for const
3258 /// variant.
3259 operator CaseIteratorImpl<ConstCaseHandle>() const {
3260 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3261 }
3262
3263 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3264 // Check index correctness after addition.
3265 // Note: Index == getNumCases() means end().
3266 assert(Case.Index + N >= 0 &&
3267 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3268 "Case.Index out the number of cases.");
3269 Case.Index += N;
3270 return *this;
3271 }
3272 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3273 // Check index correctness after subtraction.
3274 // Note: Case.Index == getNumCases() means end().
3275 assert(Case.Index - N >= 0 &&
3276 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3277 "Case.Index out the number of cases.");
3278 Case.Index -= N;
3279 return *this;
3280 }
3281 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3282 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3283 return Case.Index - RHS.Case.Index;
3284 }
3285 bool operator==(const CaseIteratorImpl &RHS) const {
3286 return Case == RHS.Case;
3287 }
3288 bool operator<(const CaseIteratorImpl &RHS) const {
3289 assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3290 return Case.Index < RHS.Case.Index;
3291 }
3292 CaseHandleT &operator*() { return Case; }
3293 const CaseHandleT &operator*() const { return Case; }
3294 };
3295
3296 using CaseIt = CaseIteratorImpl<CaseHandle>;
3297 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3298
3299 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3300 unsigned NumCases,
3301 Instruction *InsertBefore = nullptr) {
3302 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3303 }
3304
3305 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3306 unsigned NumCases, BasicBlock *InsertAtEnd) {
3307 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3308 }
3309
3310 /// Provide fast operand accessors
3311 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3312
3313 // Accessor Methods for Switch stmt
3314 Value *getCondition() const { return getOperand(0); }
3315 void setCondition(Value *V) { setOperand(0, V); }
3316
3317 BasicBlock *getDefaultDest() const {
3318 return cast<BasicBlock>(getOperand(1));
3319 }
3320
3321 void setDefaultDest(BasicBlock *DefaultCase) {
3322 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3323 }
3324
3325 /// Return the number of 'cases' in this switch instruction, excluding the
3326 /// default case.
3327 unsigned getNumCases() const {
3328 return getNumOperands()/2 - 1;
3329 }
3330
3331 /// Returns a read/write iterator that points to the first case in the
3332 /// SwitchInst.
3333 CaseIt case_begin() {
3334 return CaseIt(this, 0);
3335 }
3336
3337 /// Returns a read-only iterator that points to the first case in the
3338 /// SwitchInst.
3339 ConstCaseIt case_begin() const {
3340 return ConstCaseIt(this, 0);
3341 }
3342
3343 /// Returns a read/write iterator that points one past the last in the
3344 /// SwitchInst.
3345 CaseIt case_end() {
3346 return CaseIt(this, getNumCases());
3347 }
3348
3349 /// Returns a read-only iterator that points one past the last in the
3350 /// SwitchInst.
3351 ConstCaseIt case_end() const {
3352 return ConstCaseIt(this, getNumCases());
3353 }
3354
3355 /// Iteration adapter for range-for loops.
3356 iterator_range<CaseIt> cases() {
3357 return make_range(case_begin(), case_end());
3358 }
3359
3360 /// Constant iteration adapter for range-for loops.
3361 iterator_range<ConstCaseIt> cases() const {
3362 return make_range(case_begin(), case_end());
3363 }
3364
3365 /// Returns an iterator that points to the default case.
3366 /// Note: this iterator allows to resolve successor only. Attempt
3367 /// to resolve case value causes an assertion.
3368 /// Also note, that increment and decrement also causes an assertion and
3369 /// makes iterator invalid.
3370 CaseIt case_default() {
3371 return CaseIt(this, DefaultPseudoIndex);
3372 }
3373 ConstCaseIt case_default() const {
3374 return ConstCaseIt(this, DefaultPseudoIndex);
3375 }
3376
3377 /// Search all of the case values for the specified constant. If it is
3378 /// explicitly handled, return the case iterator of it, otherwise return
3379 /// default case iterator to indicate that it is handled by the default
3380 /// handler.
3381 CaseIt findCaseValue(const ConstantInt *C) {
3382 CaseIt I = llvm::find_if(
3383 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3384 if (I != case_end())
3385 return I;
3386
3387 return case_default();
3388 }
3389 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3390 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3391 return Case.getCaseValue() == C;
3392 });
3393 if (I != case_end())
3394 return I;
3395
3396 return case_default();
3397 }
3398
3399 /// Finds the unique case value for a given successor. Returns null if the
3400 /// successor is not found, not unique, or is the default case.
3401 ConstantInt *findCaseDest(BasicBlock *BB) {
3402 if (BB == getDefaultDest())
3403 return nullptr;
3404
3405 ConstantInt *CI = nullptr;
3406 for (auto Case : cases()) {
3407 if (Case.getCaseSuccessor() != BB)
3408 continue;
3409
3410 if (CI)
3411 return nullptr; // Multiple cases lead to BB.
3412
3413 CI = Case.getCaseValue();
3414 }
3415
3416 return CI;
3417 }
3418
3419 /// Add an entry to the switch instruction.
3420 /// Note:
3421 /// This action invalidates case_end(). Old case_end() iterator will
3422 /// point to the added case.
3423 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3424
3425 /// This method removes the specified case and its successor from the switch
3426 /// instruction. Note that this operation may reorder the remaining cases at
3427 /// index idx and above.
3428 /// Note:
3429 /// This action invalidates iterators for all cases following the one removed,
3430 /// including the case_end() iterator. It returns an iterator for the next
3431 /// case.
3432 CaseIt removeCase(CaseIt I);
3433
3434 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3435 BasicBlock *getSuccessor(unsigned idx) const {
3436 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3437 return cast<BasicBlock>(getOperand(idx*2+1));
3438 }
3439 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3440 assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3441 setOperand(idx * 2 + 1, NewSucc);
3442 }
3443
3444 // Methods for support type inquiry through isa, cast, and dyn_cast:
3445 static bool classof(const Instruction *I) {
3446 return I->getOpcode() == Instruction::Switch;
3447 }
3448 static bool classof(const Value *V) {
3449 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3450 }
3451};
3452
Andrew Walbran3d2c1972020-04-07 12:24:26 +01003453/// A wrapper class to simplify modification of SwitchInst cases along with
3454/// their prof branch_weights metadata.
3455class SwitchInstProfUpdateWrapper {
3456 SwitchInst &SI;
3457 Optional<SmallVector<uint32_t, 8> > Weights = None;
3458
3459 // Sticky invalid state is needed to safely ignore operations with prof data
3460 // in cases where SwitchInstProfUpdateWrapper is created from SwitchInst
3461 // with inconsistent prof data. TODO: once we fix all prof data
3462 // inconsistencies we can turn invalid state to assertions.
3463 enum {
3464 Invalid,
3465 Initialized,
3466 Changed
3467 } State = Invalid;
3468
3469protected:
3470 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3471
3472 MDNode *buildProfBranchWeightsMD();
3473
3474 void init();
3475
3476public:
3477 using CaseWeightOpt = Optional<uint32_t>;
3478 SwitchInst *operator->() { return &SI; }
3479 SwitchInst &operator*() { return SI; }
3480 operator SwitchInst *() { return &SI; }
3481
3482 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3483
3484 ~SwitchInstProfUpdateWrapper() {
3485 if (State == Changed)
3486 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3487 }
3488
3489 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3490 /// correspondent branch weight.
3491 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3492
3493 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3494 /// specified branch weight for the added case.
3495 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3496
3497 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3498 /// this object to not touch the underlying SwitchInst in destructor.
3499 SymbolTableList<Instruction>::iterator eraseFromParent();
3500
3501 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3502 CaseWeightOpt getSuccessorWeight(unsigned idx);
3503
3504 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3505};
3506
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003507template <>
3508struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3509};
3510
3511DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3512
3513//===----------------------------------------------------------------------===//
3514// IndirectBrInst Class
3515//===----------------------------------------------------------------------===//
3516
3517//===---------------------------------------------------------------------------
3518/// Indirect Branch Instruction.
3519///
Andrew Walbran16937d02019-10-22 13:54:20 +01003520class IndirectBrInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003521 unsigned ReservedSpace;
3522
3523 // Operand[0] = Address to jump to
3524 // Operand[n+1] = n-th destination
3525 IndirectBrInst(const IndirectBrInst &IBI);
3526
3527 /// Create a new indirectbr instruction, specifying an
3528 /// Address to jump to. The number of expected destinations can be specified
3529 /// here to make memory allocation more efficient. This constructor can also
3530 /// autoinsert before another instruction.
3531 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3532
3533 /// Create a new indirectbr instruction, specifying an
3534 /// Address to jump to. The number of expected destinations can be specified
3535 /// here to make memory allocation more efficient. This constructor also
3536 /// autoinserts at the end of the specified BasicBlock.
3537 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3538
3539 // allocate space for exactly zero operands
3540 void *operator new(size_t s) {
3541 return User::operator new(s);
3542 }
3543
3544 void init(Value *Address, unsigned NumDests);
3545 void growOperands();
3546
3547protected:
3548 // Note: Instruction needs to be a friend here to call cloneImpl.
3549 friend class Instruction;
3550
3551 IndirectBrInst *cloneImpl() const;
3552
3553public:
Andrew Scull0372a572018-11-16 15:47:06 +00003554 /// Iterator type that casts an operand to a basic block.
3555 ///
3556 /// This only makes sense because the successors are stored as adjacent
3557 /// operands for indirectbr instructions.
3558 struct succ_op_iterator
3559 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3560 std::random_access_iterator_tag, BasicBlock *,
3561 ptrdiff_t, BasicBlock *, BasicBlock *> {
3562 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3563
3564 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3565 BasicBlock *operator->() const { return operator*(); }
3566 };
3567
3568 /// The const version of `succ_op_iterator`.
3569 struct const_succ_op_iterator
3570 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3571 std::random_access_iterator_tag,
3572 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3573 const BasicBlock *> {
3574 explicit const_succ_op_iterator(const_value_op_iterator I)
3575 : iterator_adaptor_base(I) {}
3576
3577 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3578 const BasicBlock *operator->() const { return operator*(); }
3579 };
3580
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003581 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3582 Instruction *InsertBefore = nullptr) {
3583 return new IndirectBrInst(Address, NumDests, InsertBefore);
3584 }
3585
3586 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3587 BasicBlock *InsertAtEnd) {
3588 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3589 }
3590
3591 /// Provide fast operand accessors.
3592 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3593
3594 // Accessor Methods for IndirectBrInst instruction.
3595 Value *getAddress() { return getOperand(0); }
3596 const Value *getAddress() const { return getOperand(0); }
3597 void setAddress(Value *V) { setOperand(0, V); }
3598
3599 /// return the number of possible destinations in this
3600 /// indirectbr instruction.
3601 unsigned getNumDestinations() const { return getNumOperands()-1; }
3602
3603 /// Return the specified destination.
3604 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3605 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3606
3607 /// Add a destination.
3608 ///
3609 void addDestination(BasicBlock *Dest);
3610
3611 /// This method removes the specified successor from the
3612 /// indirectbr instruction.
3613 void removeDestination(unsigned i);
3614
3615 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3616 BasicBlock *getSuccessor(unsigned i) const {
3617 return cast<BasicBlock>(getOperand(i+1));
3618 }
3619 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3620 setOperand(i + 1, NewSucc);
3621 }
3622
Andrew Scull0372a572018-11-16 15:47:06 +00003623 iterator_range<succ_op_iterator> successors() {
3624 return make_range(succ_op_iterator(std::next(value_op_begin())),
3625 succ_op_iterator(value_op_end()));
3626 }
3627
3628 iterator_range<const_succ_op_iterator> successors() const {
3629 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3630 const_succ_op_iterator(value_op_end()));
3631 }
3632
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003633 // Methods for support type inquiry through isa, cast, and dyn_cast:
3634 static bool classof(const Instruction *I) {
3635 return I->getOpcode() == Instruction::IndirectBr;
3636 }
3637 static bool classof(const Value *V) {
3638 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3639 }
3640};
3641
3642template <>
3643struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3644};
3645
3646DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3647
3648//===----------------------------------------------------------------------===//
3649// InvokeInst Class
3650//===----------------------------------------------------------------------===//
3651
3652/// Invoke instruction. The SubclassData field is used to hold the
3653/// calling convention of the call.
3654///
Andrew Walbran16937d02019-10-22 13:54:20 +01003655class InvokeInst : public CallBase {
3656 /// The number of operands for this call beyond the called function,
3657 /// arguments, and operand bundles.
3658 static constexpr int NumExtraOperands = 2;
3659
3660 /// The index from the end of the operand array to the normal destination.
3661 static constexpr int NormalDestOpEndIdx = -3;
3662
3663 /// The index from the end of the operand array to the unwind destination.
3664 static constexpr int UnwindDestOpEndIdx = -2;
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003665
3666 InvokeInst(const InvokeInst &BI);
3667
3668 /// Construct an InvokeInst given a range of arguments.
3669 ///
3670 /// Construct an InvokeInst from a range of arguments
Andrew Walbran16937d02019-10-22 13:54:20 +01003671 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3672 BasicBlock *IfException, ArrayRef<Value *> Args,
3673 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3674 const Twine &NameStr, Instruction *InsertBefore);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003675
3676 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3677 BasicBlock *IfException, ArrayRef<Value *> Args,
Andrew Walbran16937d02019-10-22 13:54:20 +01003678 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3679 const Twine &NameStr, BasicBlock *InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003680
Andrew Walbran16937d02019-10-22 13:54:20 +01003681 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003682 BasicBlock *IfException, ArrayRef<Value *> Args,
3683 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3684
Andrew Walbran16937d02019-10-22 13:54:20 +01003685 /// Compute the number of operands to allocate.
3686 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3687 // We need one operand for the called function, plus our extra operands and
3688 // the input operand counts provided.
3689 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3690 }
3691
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003692protected:
3693 // Note: Instruction needs to be a friend here to call cloneImpl.
3694 friend class Instruction;
3695
3696 InvokeInst *cloneImpl() const;
3697
3698public:
Andrew Walbran16937d02019-10-22 13:54:20 +01003699 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3700 BasicBlock *IfException, ArrayRef<Value *> Args,
3701 const Twine &NameStr,
3702 Instruction *InsertBefore = nullptr) {
3703 int NumOperands = ComputeNumOperands(Args.size());
3704 return new (NumOperands)
3705 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3706 NameStr, InsertBefore);
3707 }
3708
3709 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3710 BasicBlock *IfException, ArrayRef<Value *> Args,
3711 ArrayRef<OperandBundleDef> Bundles = None,
3712 const Twine &NameStr = "",
3713 Instruction *InsertBefore = nullptr) {
3714 int NumOperands =
3715 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3716 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3717
3718 return new (NumOperands, DescriptorBytes)
3719 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3720 NameStr, InsertBefore);
3721 }
3722
3723 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3724 BasicBlock *IfException, ArrayRef<Value *> Args,
3725 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3726 int NumOperands = ComputeNumOperands(Args.size());
3727 return new (NumOperands)
3728 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3729 NameStr, InsertAtEnd);
3730 }
3731
3732 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3733 BasicBlock *IfException, ArrayRef<Value *> Args,
3734 ArrayRef<OperandBundleDef> Bundles,
3735 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3736 int NumOperands =
3737 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3738 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3739
3740 return new (NumOperands, DescriptorBytes)
3741 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3742 NameStr, InsertAtEnd);
3743 }
3744
3745 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3746 BasicBlock *IfException, ArrayRef<Value *> Args,
3747 const Twine &NameStr,
3748 Instruction *InsertBefore = nullptr) {
3749 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3750 IfException, Args, None, NameStr, InsertBefore);
3751 }
3752
3753 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3754 BasicBlock *IfException, ArrayRef<Value *> Args,
3755 ArrayRef<OperandBundleDef> Bundles = None,
3756 const Twine &NameStr = "",
3757 Instruction *InsertBefore = nullptr) {
3758 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3759 IfException, Args, Bundles, NameStr, InsertBefore);
3760 }
3761
3762 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3763 BasicBlock *IfException, ArrayRef<Value *> Args,
3764 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3765 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3766 IfException, Args, NameStr, InsertAtEnd);
3767 }
3768
3769 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3770 BasicBlock *IfException, ArrayRef<Value *> Args,
3771 ArrayRef<OperandBundleDef> Bundles,
3772 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3773 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3774 IfException, Args, Bundles, NameStr, InsertAtEnd);
3775 }
3776
3777 // Deprecated [opaque pointer types]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003778 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3779 BasicBlock *IfException, ArrayRef<Value *> Args,
3780 const Twine &NameStr,
3781 Instruction *InsertBefore = nullptr) {
3782 return Create(cast<FunctionType>(
3783 cast<PointerType>(Func->getType())->getElementType()),
3784 Func, IfNormal, IfException, Args, None, NameStr,
3785 InsertBefore);
3786 }
3787
Andrew Walbran16937d02019-10-22 13:54:20 +01003788 // Deprecated [opaque pointer types]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003789 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3790 BasicBlock *IfException, ArrayRef<Value *> Args,
3791 ArrayRef<OperandBundleDef> Bundles = None,
3792 const Twine &NameStr = "",
3793 Instruction *InsertBefore = nullptr) {
3794 return Create(cast<FunctionType>(
3795 cast<PointerType>(Func->getType())->getElementType()),
3796 Func, IfNormal, IfException, Args, Bundles, NameStr,
3797 InsertBefore);
3798 }
3799
Andrew Walbran16937d02019-10-22 13:54:20 +01003800 // Deprecated [opaque pointer types]
3801 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003802 BasicBlock *IfException, ArrayRef<Value *> Args,
Andrew Walbran16937d02019-10-22 13:54:20 +01003803 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3804 return Create(cast<FunctionType>(
3805 cast<PointerType>(Func->getType())->getElementType()),
3806 Func, IfNormal, IfException, Args, NameStr, InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003807 }
3808
Andrew Walbran16937d02019-10-22 13:54:20 +01003809 // Deprecated [opaque pointer types]
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003810 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3811 BasicBlock *IfException, ArrayRef<Value *> Args,
3812 ArrayRef<OperandBundleDef> Bundles,
3813 const Twine &NameStr, BasicBlock *InsertAtEnd) {
Andrew Walbran16937d02019-10-22 13:54:20 +01003814 return Create(cast<FunctionType>(
3815 cast<PointerType>(Func->getType())->getElementType()),
3816 Func, IfNormal, IfException, Args, Bundles, NameStr,
3817 InsertAtEnd);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003818 }
3819
3820 /// Create a clone of \p II with a different set of operand bundles and
3821 /// insert it before \p InsertPt.
3822 ///
3823 /// The returned invoke instruction is identical to \p II in every way except
3824 /// that the operand bundles for the new instruction are set to the operand
3825 /// bundles in \p Bundles.
3826 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3827 Instruction *InsertPt = nullptr);
3828
3829 /// Determine if the call should not perform indirect branch tracking.
3830 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
3831
3832 /// Determine if the call cannot unwind.
3833 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3834 void setDoesNotThrow() {
3835 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3836 }
Andrew Scullcdfcccc2018-10-05 20:58:37 +01003837
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003838 // get*Dest - Return the destination basic blocks...
3839 BasicBlock *getNormalDest() const {
Andrew Walbran16937d02019-10-22 13:54:20 +01003840 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003841 }
3842 BasicBlock *getUnwindDest() const {
Andrew Walbran16937d02019-10-22 13:54:20 +01003843 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003844 }
3845 void setNormalDest(BasicBlock *B) {
Andrew Walbran16937d02019-10-22 13:54:20 +01003846 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003847 }
3848 void setUnwindDest(BasicBlock *B) {
Andrew Walbran16937d02019-10-22 13:54:20 +01003849 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003850 }
3851
3852 /// Get the landingpad instruction from the landing pad
3853 /// block (the unwind destination).
3854 LandingPadInst *getLandingPadInst() const;
3855
3856 BasicBlock *getSuccessor(unsigned i) const {
3857 assert(i < 2 && "Successor # out of range for invoke!");
3858 return i == 0 ? getNormalDest() : getUnwindDest();
3859 }
3860
Andrew Walbran16937d02019-10-22 13:54:20 +01003861 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3862 assert(i < 2 && "Successor # out of range for invoke!");
3863 if (i == 0)
3864 setNormalDest(NewSucc);
3865 else
3866 setUnwindDest(NewSucc);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003867 }
3868
3869 unsigned getNumSuccessors() const { return 2; }
3870
3871 // Methods for support type inquiry through isa, cast, and dyn_cast:
3872 static bool classof(const Instruction *I) {
3873 return (I->getOpcode() == Instruction::Invoke);
3874 }
3875 static bool classof(const Value *V) {
3876 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3877 }
3878
3879private:
3880
3881 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3882 // method so that subclasses cannot accidentally use it.
3883 void setInstructionSubclassData(unsigned short D) {
3884 Instruction::setInstructionSubclassData(D);
3885 }
3886};
3887
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003888InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3889 BasicBlock *IfException, ArrayRef<Value *> Args,
Andrew Walbran16937d02019-10-22 13:54:20 +01003890 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003891 const Twine &NameStr, Instruction *InsertBefore)
Andrew Walbran16937d02019-10-22 13:54:20 +01003892 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3893 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3894 InsertBefore) {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003895 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3896}
3897
Andrew Walbran16937d02019-10-22 13:54:20 +01003898InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003899 BasicBlock *IfException, ArrayRef<Value *> Args,
Andrew Walbran16937d02019-10-22 13:54:20 +01003900 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01003901 const Twine &NameStr, BasicBlock *InsertAtEnd)
Andrew Walbran16937d02019-10-22 13:54:20 +01003902 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3903 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3904 InsertAtEnd) {
3905 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3906}
3907
3908//===----------------------------------------------------------------------===//
3909// CallBrInst Class
3910//===----------------------------------------------------------------------===//
3911
3912/// CallBr instruction, tracking function calls that may not return control but
3913/// instead transfer it to a third location. The SubclassData field is used to
3914/// hold the calling convention of the call.
3915///
3916class CallBrInst : public CallBase {
3917
3918 unsigned NumIndirectDests;
3919
3920 CallBrInst(const CallBrInst &BI);
3921
3922 /// Construct a CallBrInst given a range of arguments.
3923 ///
3924 /// Construct a CallBrInst from a range of arguments
3925 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3926 ArrayRef<BasicBlock *> IndirectDests,
3927 ArrayRef<Value *> Args,
3928 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3929 const Twine &NameStr, Instruction *InsertBefore);
3930
3931 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932 ArrayRef<BasicBlock *> IndirectDests,
3933 ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, BasicBlock *InsertAtEnd);
3936
3937 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3938 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3939 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3940
Andrew Walbran3d2c1972020-04-07 12:24:26 +01003941 /// Should the Indirect Destinations change, scan + update the Arg list.
3942 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3943
Andrew Walbran16937d02019-10-22 13:54:20 +01003944 /// Compute the number of operands to allocate.
3945 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3946 int NumBundleInputs = 0) {
3947 // We need one operand for the called function, plus our extra operands and
3948 // the input operand counts provided.
3949 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3950 }
3951
3952protected:
3953 // Note: Instruction needs to be a friend here to call cloneImpl.
3954 friend class Instruction;
3955
3956 CallBrInst *cloneImpl() const;
3957
3958public:
3959 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3960 BasicBlock *DefaultDest,
3961 ArrayRef<BasicBlock *> IndirectDests,
3962 ArrayRef<Value *> Args, const Twine &NameStr,
3963 Instruction *InsertBefore = nullptr) {
3964 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3965 return new (NumOperands)
3966 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3967 NumOperands, NameStr, InsertBefore);
3968 }
3969
3970 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3971 BasicBlock *DefaultDest,
3972 ArrayRef<BasicBlock *> IndirectDests,
3973 ArrayRef<Value *> Args,
3974 ArrayRef<OperandBundleDef> Bundles = None,
3975 const Twine &NameStr = "",
3976 Instruction *InsertBefore = nullptr) {
3977 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3978 CountBundleInputs(Bundles));
3979 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3980
3981 return new (NumOperands, DescriptorBytes)
3982 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3983 NumOperands, NameStr, InsertBefore);
3984 }
3985
3986 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3987 BasicBlock *DefaultDest,
3988 ArrayRef<BasicBlock *> IndirectDests,
3989 ArrayRef<Value *> Args, const Twine &NameStr,
3990 BasicBlock *InsertAtEnd) {
3991 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3992 return new (NumOperands)
3993 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3994 NumOperands, NameStr, InsertAtEnd);
3995 }
3996
3997 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3998 BasicBlock *DefaultDest,
3999 ArrayRef<BasicBlock *> IndirectDests,
4000 ArrayRef<Value *> Args,
4001 ArrayRef<OperandBundleDef> Bundles,
4002 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4003 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4004 CountBundleInputs(Bundles));
4005 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4006
4007 return new (NumOperands, DescriptorBytes)
4008 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4009 NumOperands, NameStr, InsertAtEnd);
4010 }
4011
4012 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4013 ArrayRef<BasicBlock *> IndirectDests,
4014 ArrayRef<Value *> Args, const Twine &NameStr,
4015 Instruction *InsertBefore = nullptr) {
4016 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4017 IndirectDests, Args, NameStr, InsertBefore);
4018 }
4019
4020 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4021 ArrayRef<BasicBlock *> IndirectDests,
4022 ArrayRef<Value *> Args,
4023 ArrayRef<OperandBundleDef> Bundles = None,
4024 const Twine &NameStr = "",
4025 Instruction *InsertBefore = nullptr) {
4026 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4027 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4028 }
4029
4030 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4031 ArrayRef<BasicBlock *> IndirectDests,
4032 ArrayRef<Value *> Args, const Twine &NameStr,
4033 BasicBlock *InsertAtEnd) {
4034 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4035 IndirectDests, Args, NameStr, InsertAtEnd);
4036 }
4037
4038 static CallBrInst *Create(FunctionCallee Func,
4039 BasicBlock *DefaultDest,
4040 ArrayRef<BasicBlock *> IndirectDests,
4041 ArrayRef<Value *> Args,
4042 ArrayRef<OperandBundleDef> Bundles,
4043 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4044 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4045 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4046 }
4047
4048 /// Create a clone of \p CBI with a different set of operand bundles and
4049 /// insert it before \p InsertPt.
4050 ///
4051 /// The returned callbr instruction is identical to \p CBI in every way
4052 /// except that the operand bundles for the new instruction are set to the
4053 /// operand bundles in \p Bundles.
4054 static CallBrInst *Create(CallBrInst *CBI,
4055 ArrayRef<OperandBundleDef> Bundles,
4056 Instruction *InsertPt = nullptr);
4057
4058 /// Return the number of callbr indirect dest labels.
4059 ///
4060 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4061
4062 /// getIndirectDestLabel - Return the i-th indirect dest label.
4063 ///
4064 Value *getIndirectDestLabel(unsigned i) const {
4065 assert(i < getNumIndirectDests() && "Out of bounds!");
4066 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4067 1);
4068 }
4069
4070 Value *getIndirectDestLabelUse(unsigned i) const {
4071 assert(i < getNumIndirectDests() && "Out of bounds!");
4072 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073 1);
4074 }
4075
4076 // Return the destination basic blocks...
4077 BasicBlock *getDefaultDest() const {
4078 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4079 }
4080 BasicBlock *getIndirectDest(unsigned i) const {
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004081 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
Andrew Walbran16937d02019-10-22 13:54:20 +01004082 }
4083 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4084 SmallVector<BasicBlock *, 16> IndirectDests;
4085 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4086 IndirectDests.push_back(getIndirectDest(i));
4087 return IndirectDests;
4088 }
4089 void setDefaultDest(BasicBlock *B) {
4090 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4091 }
4092 void setIndirectDest(unsigned i, BasicBlock *B) {
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004093 updateArgBlockAddresses(i, B);
Andrew Walbran16937d02019-10-22 13:54:20 +01004094 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4095 }
4096
4097 BasicBlock *getSuccessor(unsigned i) const {
4098 assert(i < getNumSuccessors() + 1 &&
4099 "Successor # out of range for callbr!");
4100 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4101 }
4102
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004103 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4104 assert(i < getNumIndirectDests() + 1 &&
Andrew Walbran16937d02019-10-22 13:54:20 +01004105 "Successor # out of range for callbr!");
Andrew Walbran3d2c1972020-04-07 12:24:26 +01004106 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
Andrew Walbran16937d02019-10-22 13:54:20 +01004107 }
4108
4109 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4110
4111 // Methods for support type inquiry through isa, cast, and dyn_cast:
4112 static bool classof(const Instruction *I) {
4113 return (I->getOpcode() == Instruction::CallBr);
4114 }
4115 static bool classof(const Value *V) {
4116 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4117 }
4118
4119private:
4120
4121 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4122 // method so that subclasses cannot accidentally use it.
4123 void setInstructionSubclassData(unsigned short D) {
4124 Instruction::setInstructionSubclassData(D);
4125 }
4126};
4127
4128CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4129 ArrayRef<BasicBlock *> IndirectDests,
4130 ArrayRef<Value *> Args,
4131 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4132 const Twine &NameStr, Instruction *InsertBefore)
4133 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4134 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4135 InsertBefore) {
4136 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4137}
4138
4139CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4140 ArrayRef<BasicBlock *> IndirectDests,
4141 ArrayRef<Value *> Args,
4142 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4143 const Twine &NameStr, BasicBlock *InsertAtEnd)
4144 : CallBase(
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004145 cast<FunctionType>(
4146 cast<PointerType>(Func->getType())->getElementType())
4147 ->getReturnType(),
Andrew Walbran16937d02019-10-22 13:54:20 +01004148 Instruction::CallBr,
4149 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004150 InsertAtEnd) {
Andrew Walbran16937d02019-10-22 13:54:20 +01004151 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004152}
4153
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004154//===----------------------------------------------------------------------===//
4155// ResumeInst Class
4156//===----------------------------------------------------------------------===//
4157
4158//===---------------------------------------------------------------------------
4159/// Resume the propagation of an exception.
4160///
Andrew Walbran16937d02019-10-22 13:54:20 +01004161class ResumeInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004162 ResumeInst(const ResumeInst &RI);
4163
4164 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4165 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4166
4167protected:
4168 // Note: Instruction needs to be a friend here to call cloneImpl.
4169 friend class Instruction;
4170
4171 ResumeInst *cloneImpl() const;
4172
4173public:
4174 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4175 return new(1) ResumeInst(Exn, InsertBefore);
4176 }
4177
4178 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4179 return new(1) ResumeInst(Exn, InsertAtEnd);
4180 }
4181
4182 /// Provide fast operand accessors
4183 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4184
4185 /// Convenience accessor.
4186 Value *getValue() const { return Op<0>(); }
4187
4188 unsigned getNumSuccessors() const { return 0; }
4189
4190 // Methods for support type inquiry through isa, cast, and dyn_cast:
4191 static bool classof(const Instruction *I) {
4192 return I->getOpcode() == Instruction::Resume;
4193 }
4194 static bool classof(const Value *V) {
4195 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4196 }
4197
4198private:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004199 BasicBlock *getSuccessor(unsigned idx) const {
4200 llvm_unreachable("ResumeInst has no successors!");
4201 }
4202
4203 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4204 llvm_unreachable("ResumeInst has no successors!");
4205 }
4206};
4207
4208template <>
4209struct OperandTraits<ResumeInst> :
4210 public FixedNumOperandTraits<ResumeInst, 1> {
4211};
4212
4213DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4214
4215//===----------------------------------------------------------------------===//
4216// CatchSwitchInst Class
4217//===----------------------------------------------------------------------===//
Andrew Walbran16937d02019-10-22 13:54:20 +01004218class CatchSwitchInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004219 /// The number of operands actually allocated. NumOperands is
4220 /// the number actually in use.
4221 unsigned ReservedSpace;
4222
4223 // Operand[0] = Outer scope
4224 // Operand[1] = Unwind block destination
4225 // Operand[n] = BasicBlock to go to on match
4226 CatchSwitchInst(const CatchSwitchInst &CSI);
4227
4228 /// Create a new switch instruction, specifying a
4229 /// default destination. The number of additional handlers can be specified
4230 /// here to make memory allocation more efficient.
4231 /// This constructor can also autoinsert before another instruction.
4232 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4233 unsigned NumHandlers, const Twine &NameStr,
4234 Instruction *InsertBefore);
4235
4236 /// Create a new switch instruction, specifying a
4237 /// default destination. The number of additional handlers can be specified
4238 /// here to make memory allocation more efficient.
4239 /// This constructor also autoinserts at the end of the specified BasicBlock.
4240 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4241 unsigned NumHandlers, const Twine &NameStr,
4242 BasicBlock *InsertAtEnd);
4243
4244 // allocate space for exactly zero operands
4245 void *operator new(size_t s) { return User::operator new(s); }
4246
4247 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4248 void growOperands(unsigned Size);
4249
4250protected:
4251 // Note: Instruction needs to be a friend here to call cloneImpl.
4252 friend class Instruction;
4253
4254 CatchSwitchInst *cloneImpl() const;
4255
4256public:
4257 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4258 unsigned NumHandlers,
4259 const Twine &NameStr = "",
4260 Instruction *InsertBefore = nullptr) {
4261 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4262 InsertBefore);
4263 }
4264
4265 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4266 unsigned NumHandlers, const Twine &NameStr,
4267 BasicBlock *InsertAtEnd) {
4268 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4269 InsertAtEnd);
4270 }
4271
4272 /// Provide fast operand accessors
4273 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4274
4275 // Accessor Methods for CatchSwitch stmt
4276 Value *getParentPad() const { return getOperand(0); }
4277 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4278
4279 // Accessor Methods for CatchSwitch stmt
4280 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4281 bool unwindsToCaller() const { return !hasUnwindDest(); }
4282 BasicBlock *getUnwindDest() const {
4283 if (hasUnwindDest())
4284 return cast<BasicBlock>(getOperand(1));
4285 return nullptr;
4286 }
4287 void setUnwindDest(BasicBlock *UnwindDest) {
4288 assert(UnwindDest);
4289 assert(hasUnwindDest());
4290 setOperand(1, UnwindDest);
4291 }
4292
4293 /// return the number of 'handlers' in this catchswitch
4294 /// instruction, except the default handler
4295 unsigned getNumHandlers() const {
4296 if (hasUnwindDest())
4297 return getNumOperands() - 2;
4298 return getNumOperands() - 1;
4299 }
4300
4301private:
4302 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4303 static const BasicBlock *handler_helper(const Value *V) {
4304 return cast<BasicBlock>(V);
4305 }
4306
4307public:
4308 using DerefFnTy = BasicBlock *(*)(Value *);
4309 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4310 using handler_range = iterator_range<handler_iterator>;
4311 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4312 using const_handler_iterator =
4313 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4314 using const_handler_range = iterator_range<const_handler_iterator>;
4315
4316 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4317 handler_iterator handler_begin() {
4318 op_iterator It = op_begin() + 1;
4319 if (hasUnwindDest())
4320 ++It;
4321 return handler_iterator(It, DerefFnTy(handler_helper));
4322 }
4323
4324 /// Returns an iterator that points to the first handler in the
4325 /// CatchSwitchInst.
4326 const_handler_iterator handler_begin() const {
4327 const_op_iterator It = op_begin() + 1;
4328 if (hasUnwindDest())
4329 ++It;
4330 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4331 }
4332
4333 /// Returns a read-only iterator that points one past the last
4334 /// handler in the CatchSwitchInst.
4335 handler_iterator handler_end() {
4336 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4337 }
4338
4339 /// Returns an iterator that points one past the last handler in the
4340 /// CatchSwitchInst.
4341 const_handler_iterator handler_end() const {
4342 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4343 }
4344
4345 /// iteration adapter for range-for loops.
4346 handler_range handlers() {
4347 return make_range(handler_begin(), handler_end());
4348 }
4349
4350 /// iteration adapter for range-for loops.
4351 const_handler_range handlers() const {
4352 return make_range(handler_begin(), handler_end());
4353 }
4354
4355 /// Add an entry to the switch instruction...
4356 /// Note:
4357 /// This action invalidates handler_end(). Old handler_end() iterator will
4358 /// point to the added handler.
4359 void addHandler(BasicBlock *Dest);
4360
4361 void removeHandler(handler_iterator HI);
4362
4363 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4364 BasicBlock *getSuccessor(unsigned Idx) const {
4365 assert(Idx < getNumSuccessors() &&
4366 "Successor # out of range for catchswitch!");
4367 return cast<BasicBlock>(getOperand(Idx + 1));
4368 }
4369 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4370 assert(Idx < getNumSuccessors() &&
4371 "Successor # out of range for catchswitch!");
4372 setOperand(Idx + 1, NewSucc);
4373 }
4374
4375 // Methods for support type inquiry through isa, cast, and dyn_cast:
4376 static bool classof(const Instruction *I) {
4377 return I->getOpcode() == Instruction::CatchSwitch;
4378 }
4379 static bool classof(const Value *V) {
4380 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4381 }
4382};
4383
4384template <>
4385struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4386
4387DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4388
4389//===----------------------------------------------------------------------===//
4390// CleanupPadInst Class
4391//===----------------------------------------------------------------------===//
4392class CleanupPadInst : public FuncletPadInst {
4393private:
4394 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4395 unsigned Values, const Twine &NameStr,
4396 Instruction *InsertBefore)
4397 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4398 NameStr, InsertBefore) {}
4399 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4400 unsigned Values, const Twine &NameStr,
4401 BasicBlock *InsertAtEnd)
4402 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4403 NameStr, InsertAtEnd) {}
4404
4405public:
4406 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4407 const Twine &NameStr = "",
4408 Instruction *InsertBefore = nullptr) {
4409 unsigned Values = 1 + Args.size();
4410 return new (Values)
4411 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4412 }
4413
4414 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4415 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4416 unsigned Values = 1 + Args.size();
4417 return new (Values)
4418 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4419 }
4420
4421 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4422 static bool classof(const Instruction *I) {
4423 return I->getOpcode() == Instruction::CleanupPad;
4424 }
4425 static bool classof(const Value *V) {
4426 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4427 }
4428};
4429
4430//===----------------------------------------------------------------------===//
4431// CatchPadInst Class
4432//===----------------------------------------------------------------------===//
4433class CatchPadInst : public FuncletPadInst {
4434private:
4435 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4436 unsigned Values, const Twine &NameStr,
4437 Instruction *InsertBefore)
4438 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4439 NameStr, InsertBefore) {}
4440 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4441 unsigned Values, const Twine &NameStr,
4442 BasicBlock *InsertAtEnd)
4443 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4444 NameStr, InsertAtEnd) {}
4445
4446public:
4447 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4448 const Twine &NameStr = "",
4449 Instruction *InsertBefore = nullptr) {
4450 unsigned Values = 1 + Args.size();
4451 return new (Values)
4452 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4453 }
4454
4455 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4456 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4457 unsigned Values = 1 + Args.size();
4458 return new (Values)
4459 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4460 }
4461
4462 /// Convenience accessors
4463 CatchSwitchInst *getCatchSwitch() const {
4464 return cast<CatchSwitchInst>(Op<-1>());
4465 }
4466 void setCatchSwitch(Value *CatchSwitch) {
4467 assert(CatchSwitch);
4468 Op<-1>() = CatchSwitch;
4469 }
4470
4471 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4472 static bool classof(const Instruction *I) {
4473 return I->getOpcode() == Instruction::CatchPad;
4474 }
4475 static bool classof(const Value *V) {
4476 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4477 }
4478};
4479
4480//===----------------------------------------------------------------------===//
4481// CatchReturnInst Class
4482//===----------------------------------------------------------------------===//
4483
Andrew Walbran16937d02019-10-22 13:54:20 +01004484class CatchReturnInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004485 CatchReturnInst(const CatchReturnInst &RI);
4486 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4487 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4488
4489 void init(Value *CatchPad, BasicBlock *BB);
4490
4491protected:
4492 // Note: Instruction needs to be a friend here to call cloneImpl.
4493 friend class Instruction;
4494
4495 CatchReturnInst *cloneImpl() const;
4496
4497public:
4498 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4499 Instruction *InsertBefore = nullptr) {
4500 assert(CatchPad);
4501 assert(BB);
4502 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4503 }
4504
4505 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4506 BasicBlock *InsertAtEnd) {
4507 assert(CatchPad);
4508 assert(BB);
4509 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4510 }
4511
4512 /// Provide fast operand accessors
4513 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4514
4515 /// Convenience accessors.
4516 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4517 void setCatchPad(CatchPadInst *CatchPad) {
4518 assert(CatchPad);
4519 Op<0>() = CatchPad;
4520 }
4521
4522 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4523 void setSuccessor(BasicBlock *NewSucc) {
4524 assert(NewSucc);
4525 Op<1>() = NewSucc;
4526 }
4527 unsigned getNumSuccessors() const { return 1; }
4528
4529 /// Get the parentPad of this catchret's catchpad's catchswitch.
4530 /// The successor block is implicitly a member of this funclet.
4531 Value *getCatchSwitchParentPad() const {
4532 return getCatchPad()->getCatchSwitch()->getParentPad();
4533 }
4534
4535 // Methods for support type inquiry through isa, cast, and dyn_cast:
4536 static bool classof(const Instruction *I) {
4537 return (I->getOpcode() == Instruction::CatchRet);
4538 }
4539 static bool classof(const Value *V) {
4540 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4541 }
4542
4543private:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004544 BasicBlock *getSuccessor(unsigned Idx) const {
4545 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4546 return getSuccessor();
4547 }
4548
4549 void setSuccessor(unsigned Idx, BasicBlock *B) {
4550 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4551 setSuccessor(B);
4552 }
4553};
4554
4555template <>
4556struct OperandTraits<CatchReturnInst>
4557 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4558
4559DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4560
4561//===----------------------------------------------------------------------===//
4562// CleanupReturnInst Class
4563//===----------------------------------------------------------------------===//
4564
Andrew Walbran16937d02019-10-22 13:54:20 +01004565class CleanupReturnInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004566private:
4567 CleanupReturnInst(const CleanupReturnInst &RI);
4568 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4569 Instruction *InsertBefore = nullptr);
4570 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4571 BasicBlock *InsertAtEnd);
4572
4573 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4574
4575protected:
4576 // Note: Instruction needs to be a friend here to call cloneImpl.
4577 friend class Instruction;
4578
4579 CleanupReturnInst *cloneImpl() const;
4580
4581public:
4582 static CleanupReturnInst *Create(Value *CleanupPad,
4583 BasicBlock *UnwindBB = nullptr,
4584 Instruction *InsertBefore = nullptr) {
4585 assert(CleanupPad);
4586 unsigned Values = 1;
4587 if (UnwindBB)
4588 ++Values;
4589 return new (Values)
4590 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4591 }
4592
4593 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4594 BasicBlock *InsertAtEnd) {
4595 assert(CleanupPad);
4596 unsigned Values = 1;
4597 if (UnwindBB)
4598 ++Values;
4599 return new (Values)
4600 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4601 }
4602
4603 /// Provide fast operand accessors
4604 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4605
4606 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4607 bool unwindsToCaller() const { return !hasUnwindDest(); }
4608
4609 /// Convenience accessor.
4610 CleanupPadInst *getCleanupPad() const {
4611 return cast<CleanupPadInst>(Op<0>());
4612 }
4613 void setCleanupPad(CleanupPadInst *CleanupPad) {
4614 assert(CleanupPad);
4615 Op<0>() = CleanupPad;
4616 }
4617
4618 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4619
4620 BasicBlock *getUnwindDest() const {
4621 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4622 }
4623 void setUnwindDest(BasicBlock *NewDest) {
4624 assert(NewDest);
4625 assert(hasUnwindDest());
4626 Op<1>() = NewDest;
4627 }
4628
4629 // Methods for support type inquiry through isa, cast, and dyn_cast:
4630 static bool classof(const Instruction *I) {
4631 return (I->getOpcode() == Instruction::CleanupRet);
4632 }
4633 static bool classof(const Value *V) {
4634 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4635 }
4636
4637private:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004638 BasicBlock *getSuccessor(unsigned Idx) const {
4639 assert(Idx == 0);
4640 return getUnwindDest();
4641 }
4642
4643 void setSuccessor(unsigned Idx, BasicBlock *B) {
4644 assert(Idx == 0);
4645 setUnwindDest(B);
4646 }
4647
4648 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4649 // method so that subclasses cannot accidentally use it.
4650 void setInstructionSubclassData(unsigned short D) {
4651 Instruction::setInstructionSubclassData(D);
4652 }
4653};
4654
4655template <>
4656struct OperandTraits<CleanupReturnInst>
4657 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4658
4659DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4660
4661//===----------------------------------------------------------------------===//
4662// UnreachableInst Class
4663//===----------------------------------------------------------------------===//
4664
4665//===---------------------------------------------------------------------------
4666/// This function has undefined behavior. In particular, the
4667/// presence of this instruction indicates some higher level knowledge that the
4668/// end of the block cannot be reached.
4669///
Andrew Walbran16937d02019-10-22 13:54:20 +01004670class UnreachableInst : public Instruction {
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004671protected:
4672 // Note: Instruction needs to be a friend here to call cloneImpl.
4673 friend class Instruction;
4674
4675 UnreachableInst *cloneImpl() const;
4676
4677public:
4678 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4679 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4680
4681 // allocate space for exactly zero operands
4682 void *operator new(size_t s) {
4683 return User::operator new(s, 0);
4684 }
4685
4686 unsigned getNumSuccessors() const { return 0; }
4687
4688 // Methods for support type inquiry through isa, cast, and dyn_cast:
4689 static bool classof(const Instruction *I) {
4690 return I->getOpcode() == Instruction::Unreachable;
4691 }
4692 static bool classof(const Value *V) {
4693 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4694 }
4695
4696private:
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01004697 BasicBlock *getSuccessor(unsigned idx) const {
4698 llvm_unreachable("UnreachableInst has no successors!");
4699 }
4700
4701 void setSuccessor(unsigned idx, BasicBlock *B) {
4702 llvm_unreachable("UnreachableInst has no successors!");
4703 }
4704};
4705
4706//===----------------------------------------------------------------------===//
4707// TruncInst Class
4708//===----------------------------------------------------------------------===//
4709
4710/// This class represents a truncation of integer types.
4711class TruncInst : public CastInst {
4712protected:
4713 // Note: Instruction needs to be a friend here to call cloneImpl.
4714 friend class Instruction;
4715
4716 /// Clone an identical TruncInst
4717 TruncInst *cloneImpl() const;
4718
4719public:
4720 /// Constructor with insert-before-instruction semantics
4721 TruncInst(
4722 Value *S, ///< The value to be truncated
4723 Type *Ty, ///< The (smaller) type to truncate to
4724 const Twine &NameStr = "", ///< A name for the new instruction
4725 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4726 );
4727
4728 /// Constructor with insert-at-end-of-block semantics
4729 TruncInst(
4730 Value *S, ///< The value to be truncated
4731 Type *Ty, ///< The (smaller) type to truncate to
4732 const Twine &NameStr, ///< A name for the new instruction
4733 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4734 );
4735
4736 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4737 static bool classof(const Instruction *I) {
4738 return I->getOpcode() == Trunc;
4739 }
4740 static bool classof(const Value *V) {
4741 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4742 }
4743};
4744
4745//===----------------------------------------------------------------------===//
4746// ZExtInst Class
4747//===----------------------------------------------------------------------===//
4748
4749/// This class represents zero extension of integer types.
4750class ZExtInst : public CastInst {
4751protected:
4752 // Note: Instruction needs to be a friend here to call cloneImpl.
4753 friend class Instruction;
4754
4755 /// Clone an identical ZExtInst
4756 ZExtInst *cloneImpl() const;
4757
4758public:
4759 /// Constructor with insert-before-instruction semantics
4760 ZExtInst(
4761 Value *S, ///< The value to be zero extended
4762 Type *Ty, ///< The type to zero extend to
4763 const Twine &NameStr = "", ///< A name for the new instruction
4764 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4765 );
4766
4767 /// Constructor with insert-at-end semantics.
4768 ZExtInst(
4769 Value *S, ///< The value to be zero extended
4770 Type *Ty, ///< The type to zero extend to
4771 const Twine &NameStr, ///< A name for the new instruction
4772 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4773 );
4774
4775 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4776 static bool classof(const Instruction *I) {
4777 return I->getOpcode() == ZExt;
4778 }
4779 static bool classof(const Value *V) {
4780 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4781 }
4782};
4783
4784//===----------------------------------------------------------------------===//
4785// SExtInst Class
4786//===----------------------------------------------------------------------===//
4787
4788/// This class represents a sign extension of integer types.
4789class SExtInst : public CastInst {
4790protected:
4791 // Note: Instruction needs to be a friend here to call cloneImpl.
4792 friend class Instruction;
4793
4794 /// Clone an identical SExtInst
4795 SExtInst *cloneImpl() const;
4796
4797public:
4798 /// Constructor with insert-before-instruction semantics
4799 SExtInst(
4800 Value *S, ///< The value to be sign extended
4801 Type *Ty, ///< The type to sign extend to
4802 const Twine &NameStr = "", ///< A name for the new instruction
4803 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4804 );
4805
4806 /// Constructor with insert-at-end-of-block semantics
4807 SExtInst(
4808 Value *S, ///< The value to be sign extended
4809 Type *Ty, ///< The type to sign extend to
4810 const Twine &NameStr, ///< A name for the new instruction
4811 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4812 );
4813
4814 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4815 static bool classof(const Instruction *I) {
4816 return I->getOpcode() == SExt;
4817 }
4818 static bool classof(const Value *V) {
4819 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4820 }
4821};
4822
4823//===----------------------------------------------------------------------===//
4824// FPTruncInst Class
4825//===----------------------------------------------------------------------===//
4826
4827/// This class represents a truncation of floating point types.
4828class FPTruncInst : public CastInst {
4829protected:
4830 // Note: Instruction needs to be a friend here to call cloneImpl.
4831 friend class Instruction;
4832
4833 /// Clone an identical FPTruncInst
4834 FPTruncInst *cloneImpl() const;
4835
4836public:
4837 /// Constructor with insert-before-instruction semantics
4838 FPTruncInst(
4839 Value *S, ///< The value to be truncated
4840 Type *Ty, ///< The type to truncate to
4841 const Twine &NameStr = "", ///< A name for the new instruction
4842 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4843 );
4844
4845 /// Constructor with insert-before-instruction semantics
4846 FPTruncInst(
4847 Value *S, ///< The value to be truncated
4848 Type *Ty, ///< The type to truncate to
4849 const Twine &NameStr, ///< A name for the new instruction
4850 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4851 );
4852
4853 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4854 static bool classof(const Instruction *I) {
4855 return I->getOpcode() == FPTrunc;
4856 }
4857 static bool classof(const Value *V) {
4858 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4859 }
4860};
4861
4862//===----------------------------------------------------------------------===//
4863// FPExtInst Class
4864//===----------------------------------------------------------------------===//
4865
4866/// This class represents an extension of floating point types.
4867class FPExtInst : public CastInst {
4868protected:
4869 // Note: Instruction needs to be a friend here to call cloneImpl.
4870 friend class Instruction;
4871
4872 /// Clone an identical FPExtInst
4873 FPExtInst *cloneImpl() const;
4874
4875public:
4876 /// Constructor with insert-before-instruction semantics
4877 FPExtInst(
4878 Value *S, ///< The value to be extended
4879 Type *Ty, ///< The type to extend to
4880 const Twine &NameStr = "", ///< A name for the new instruction
4881 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4882 );
4883
4884 /// Constructor with insert-at-end-of-block semantics
4885 FPExtInst(
4886 Value *S, ///< The value to be extended
4887 Type *Ty, ///< The type to extend to
4888 const Twine &NameStr, ///< A name for the new instruction
4889 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4890 );
4891
4892 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4893 static bool classof(const Instruction *I) {
4894 return I->getOpcode() == FPExt;
4895 }
4896 static bool classof(const Value *V) {
4897 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4898 }
4899};
4900
4901//===----------------------------------------------------------------------===//
4902// UIToFPInst Class
4903//===----------------------------------------------------------------------===//
4904
4905/// This class represents a cast unsigned integer to floating point.
4906class UIToFPInst : public CastInst {
4907protected:
4908 // Note: Instruction needs to be a friend here to call cloneImpl.
4909 friend class Instruction;
4910
4911 /// Clone an identical UIToFPInst
4912 UIToFPInst *cloneImpl() const;
4913
4914public:
4915 /// Constructor with insert-before-instruction semantics
4916 UIToFPInst(
4917 Value *S, ///< The value to be converted
4918 Type *Ty, ///< The type to convert to
4919 const Twine &NameStr = "", ///< A name for the new instruction
4920 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4921 );
4922
4923 /// Constructor with insert-at-end-of-block semantics
4924 UIToFPInst(
4925 Value *S, ///< The value to be converted
4926 Type *Ty, ///< The type to convert to
4927 const Twine &NameStr, ///< A name for the new instruction
4928 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4929 );
4930
4931 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4932 static bool classof(const Instruction *I) {
4933 return I->getOpcode() == UIToFP;
4934 }
4935 static bool classof(const Value *V) {
4936 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4937 }
4938};
4939
4940//===----------------------------------------------------------------------===//
4941// SIToFPInst Class
4942//===----------------------------------------------------------------------===//
4943
4944/// This class represents a cast from signed integer to floating point.
4945class SIToFPInst : public CastInst {
4946protected:
4947 // Note: Instruction needs to be a friend here to call cloneImpl.
4948 friend class Instruction;
4949
4950 /// Clone an identical SIToFPInst
4951 SIToFPInst *cloneImpl() const;
4952
4953public:
4954 /// Constructor with insert-before-instruction semantics
4955 SIToFPInst(
4956 Value *S, ///< The value to be converted
4957 Type *Ty, ///< The type to convert to
4958 const Twine &NameStr = "", ///< A name for the new instruction
4959 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4960 );
4961
4962 /// Constructor with insert-at-end-of-block semantics
4963 SIToFPInst(
4964 Value *S, ///< The value to be converted
4965 Type *Ty, ///< The type to convert to
4966 const Twine &NameStr, ///< A name for the new instruction
4967 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4968 );
4969
4970 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4971 static bool classof(const Instruction *I) {
4972 return I->getOpcode() == SIToFP;
4973 }
4974 static bool classof(const Value *V) {
4975 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4976 }
4977};
4978
4979//===----------------------------------------------------------------------===//
4980// FPToUIInst Class
4981//===----------------------------------------------------------------------===//
4982
4983/// This class represents a cast from floating point to unsigned integer
4984class FPToUIInst : public CastInst {
4985protected:
4986 // Note: Instruction needs to be a friend here to call cloneImpl.
4987 friend class Instruction;
4988
4989 /// Clone an identical FPToUIInst
4990 FPToUIInst *cloneImpl() const;
4991
4992public:
4993 /// Constructor with insert-before-instruction semantics
4994 FPToUIInst(
4995 Value *S, ///< The value to be converted
4996 Type *Ty, ///< The type to convert to
4997 const Twine &NameStr = "", ///< A name for the new instruction
4998 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4999 );
5000
5001 /// Constructor with insert-at-end-of-block semantics
5002 FPToUIInst(
5003 Value *S, ///< The value to be converted
5004 Type *Ty, ///< The type to convert to
5005 const Twine &NameStr, ///< A name for the new instruction
5006 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5007 );
5008
5009 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5010 static bool classof(const Instruction *I) {
5011 return I->getOpcode() == FPToUI;
5012 }
5013 static bool classof(const Value *V) {
5014 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5015 }
5016};
5017
5018//===----------------------------------------------------------------------===//
5019// FPToSIInst Class
5020//===----------------------------------------------------------------------===//
5021
5022/// This class represents a cast from floating point to signed integer.
5023class FPToSIInst : public CastInst {
5024protected:
5025 // Note: Instruction needs to be a friend here to call cloneImpl.
5026 friend class Instruction;
5027
5028 /// Clone an identical FPToSIInst
5029 FPToSIInst *cloneImpl() const;
5030
5031public:
5032 /// Constructor with insert-before-instruction semantics
5033 FPToSIInst(
5034 Value *S, ///< The value to be converted
5035 Type *Ty, ///< The type to convert to
5036 const Twine &NameStr = "", ///< A name for the new instruction
5037 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5038 );
5039
5040 /// Constructor with insert-at-end-of-block semantics
5041 FPToSIInst(
5042 Value *S, ///< The value to be converted
5043 Type *Ty, ///< The type to convert to
5044 const Twine &NameStr, ///< A name for the new instruction
5045 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5046 );
5047
5048 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5049 static bool classof(const Instruction *I) {
5050 return I->getOpcode() == FPToSI;
5051 }
5052 static bool classof(const Value *V) {
5053 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5054 }
5055};
5056
5057//===----------------------------------------------------------------------===//
5058// IntToPtrInst Class
5059//===----------------------------------------------------------------------===//
5060
5061/// This class represents a cast from an integer to a pointer.
5062class IntToPtrInst : public CastInst {
5063public:
5064 // Note: Instruction needs to be a friend here to call cloneImpl.
5065 friend class Instruction;
5066
5067 /// Constructor with insert-before-instruction semantics
5068 IntToPtrInst(
5069 Value *S, ///< The value to be converted
5070 Type *Ty, ///< The type to convert to
5071 const Twine &NameStr = "", ///< A name for the new instruction
5072 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5073 );
5074
5075 /// Constructor with insert-at-end-of-block semantics
5076 IntToPtrInst(
5077 Value *S, ///< The value to be converted
5078 Type *Ty, ///< The type to convert to
5079 const Twine &NameStr, ///< A name for the new instruction
5080 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5081 );
5082
5083 /// Clone an identical IntToPtrInst.
5084 IntToPtrInst *cloneImpl() const;
5085
5086 /// Returns the address space of this instruction's pointer type.
5087 unsigned getAddressSpace() const {
5088 return getType()->getPointerAddressSpace();
5089 }
5090
5091 // Methods for support type inquiry through isa, cast, and dyn_cast:
5092 static bool classof(const Instruction *I) {
5093 return I->getOpcode() == IntToPtr;
5094 }
5095 static bool classof(const Value *V) {
5096 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5097 }
5098};
5099
5100//===----------------------------------------------------------------------===//
5101// PtrToIntInst Class
5102//===----------------------------------------------------------------------===//
5103
5104/// This class represents a cast from a pointer to an integer.
5105class PtrToIntInst : public CastInst {
5106protected:
5107 // Note: Instruction needs to be a friend here to call cloneImpl.
5108 friend class Instruction;
5109
5110 /// Clone an identical PtrToIntInst.
5111 PtrToIntInst *cloneImpl() const;
5112
5113public:
5114 /// Constructor with insert-before-instruction semantics
5115 PtrToIntInst(
5116 Value *S, ///< The value to be converted
5117 Type *Ty, ///< The type to convert to
5118 const Twine &NameStr = "", ///< A name for the new instruction
5119 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5120 );
5121
5122 /// Constructor with insert-at-end-of-block semantics
5123 PtrToIntInst(
5124 Value *S, ///< The value to be converted
5125 Type *Ty, ///< The type to convert to
5126 const Twine &NameStr, ///< A name for the new instruction
5127 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5128 );
5129
5130 /// Gets the pointer operand.
5131 Value *getPointerOperand() { return getOperand(0); }
5132 /// Gets the pointer operand.
5133 const Value *getPointerOperand() const { return getOperand(0); }
5134 /// Gets the operand index of the pointer operand.
5135 static unsigned getPointerOperandIndex() { return 0U; }
5136
5137 /// Returns the address space of the pointer operand.
5138 unsigned getPointerAddressSpace() const {
5139 return getPointerOperand()->getType()->getPointerAddressSpace();
5140 }
5141
5142 // Methods for support type inquiry through isa, cast, and dyn_cast:
5143 static bool classof(const Instruction *I) {
5144 return I->getOpcode() == PtrToInt;
5145 }
5146 static bool classof(const Value *V) {
5147 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5148 }
5149};
5150
5151//===----------------------------------------------------------------------===//
5152// BitCastInst Class
5153//===----------------------------------------------------------------------===//
5154
5155/// This class represents a no-op cast from one type to another.
5156class BitCastInst : public CastInst {
5157protected:
5158 // Note: Instruction needs to be a friend here to call cloneImpl.
5159 friend class Instruction;
5160
5161 /// Clone an identical BitCastInst.
5162 BitCastInst *cloneImpl() const;
5163
5164public:
5165 /// Constructor with insert-before-instruction semantics
5166 BitCastInst(
5167 Value *S, ///< The value to be casted
5168 Type *Ty, ///< The type to casted to
5169 const Twine &NameStr = "", ///< A name for the new instruction
5170 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5171 );
5172
5173 /// Constructor with insert-at-end-of-block semantics
5174 BitCastInst(
5175 Value *S, ///< The value to be casted
5176 Type *Ty, ///< The type to casted to
5177 const Twine &NameStr, ///< A name for the new instruction
5178 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5179 );
5180
5181 // Methods for support type inquiry through isa, cast, and dyn_cast:
5182 static bool classof(const Instruction *I) {
5183 return I->getOpcode() == BitCast;
5184 }
5185 static bool classof(const Value *V) {
5186 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5187 }
5188};
5189
5190//===----------------------------------------------------------------------===//
5191// AddrSpaceCastInst Class
5192//===----------------------------------------------------------------------===//
5193
5194/// This class represents a conversion between pointers from one address space
5195/// to another.
5196class AddrSpaceCastInst : public CastInst {
5197protected:
5198 // Note: Instruction needs to be a friend here to call cloneImpl.
5199 friend class Instruction;
5200
5201 /// Clone an identical AddrSpaceCastInst.
5202 AddrSpaceCastInst *cloneImpl() const;
5203
5204public:
5205 /// Constructor with insert-before-instruction semantics
5206 AddrSpaceCastInst(
5207 Value *S, ///< The value to be casted
5208 Type *Ty, ///< The type to casted to
5209 const Twine &NameStr = "", ///< A name for the new instruction
5210 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5211 );
5212
5213 /// Constructor with insert-at-end-of-block semantics
5214 AddrSpaceCastInst(
5215 Value *S, ///< The value to be casted
5216 Type *Ty, ///< The type to casted to
5217 const Twine &NameStr, ///< A name for the new instruction
5218 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5219 );
5220
5221 // Methods for support type inquiry through isa, cast, and dyn_cast:
5222 static bool classof(const Instruction *I) {
5223 return I->getOpcode() == AddrSpaceCast;
5224 }
5225 static bool classof(const Value *V) {
5226 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5227 }
5228
5229 /// Gets the pointer operand.
5230 Value *getPointerOperand() {
5231 return getOperand(0);
5232 }
5233
5234 /// Gets the pointer operand.
5235 const Value *getPointerOperand() const {
5236 return getOperand(0);
5237 }
5238
5239 /// Gets the operand index of the pointer operand.
5240 static unsigned getPointerOperandIndex() {
5241 return 0U;
5242 }
5243
5244 /// Returns the address space of the pointer operand.
5245 unsigned getSrcAddressSpace() const {
5246 return getPointerOperand()->getType()->getPointerAddressSpace();
5247 }
5248
5249 /// Returns the address space of the result.
5250 unsigned getDestAddressSpace() const {
5251 return getType()->getPointerAddressSpace();
5252 }
5253};
5254
5255/// A helper function that returns the pointer operand of a load or store
5256/// instruction. Returns nullptr if not load or store.
5257inline Value *getLoadStorePointerOperand(Value *V) {
5258 if (auto *Load = dyn_cast<LoadInst>(V))
5259 return Load->getPointerOperand();
5260 if (auto *Store = dyn_cast<StoreInst>(V))
5261 return Store->getPointerOperand();
5262 return nullptr;
5263}
5264
5265/// A helper function that returns the pointer operand of a load, store
5266/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5267inline Value *getPointerOperand(Value *V) {
5268 if (auto *Ptr = getLoadStorePointerOperand(V))
5269 return Ptr;
5270 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5271 return Gep->getPointerOperand();
5272 return nullptr;
5273}
5274
Andrew Scull0372a572018-11-16 15:47:06 +00005275/// A helper function that returns the alignment of load or store instruction.
5276inline unsigned getLoadStoreAlignment(Value *I) {
5277 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5278 "Expected Load or Store instruction");
5279 if (auto *LI = dyn_cast<LoadInst>(I))
5280 return LI->getAlignment();
5281 return cast<StoreInst>(I)->getAlignment();
5282}
5283
5284/// A helper function that returns the address space of the pointer operand of
5285/// load or store instruction.
5286inline unsigned getLoadStoreAddressSpace(Value *I) {
5287 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5288 "Expected Load or Store instruction");
5289 if (auto *LI = dyn_cast<LoadInst>(I))
5290 return LI->getPointerAddressSpace();
5291 return cast<StoreInst>(I)->getPointerAddressSpace();
5292}
5293
Andrew Scull5e1ddfa2018-08-14 10:06:54 +01005294} // end namespace llvm
5295
5296#endif // LLVM_IR_INSTRUCTIONS_H