Andrew Walbran | 3d2c197 | 2020-04-07 12:24:26 +0100 | [diff] [blame^] | 1 | //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Contains generic JIT-linker types. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H |
| 14 | #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H |
| 15 | |
| 16 | #include "JITLinkMemoryManager.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/DenseSet.h" |
| 19 | #include "llvm/ADT/Optional.h" |
| 20 | #include "llvm/ADT/Triple.h" |
| 21 | #include "llvm/ExecutionEngine/JITSymbol.h" |
| 22 | #include "llvm/Support/Allocator.h" |
| 23 | #include "llvm/Support/Endian.h" |
| 24 | #include "llvm/Support/Error.h" |
| 25 | #include "llvm/Support/FormatVariadic.h" |
| 26 | #include "llvm/Support/MathExtras.h" |
| 27 | #include "llvm/Support/Memory.h" |
| 28 | #include "llvm/Support/MemoryBuffer.h" |
| 29 | |
| 30 | #include <map> |
| 31 | #include <string> |
| 32 | #include <system_error> |
| 33 | |
| 34 | namespace llvm { |
| 35 | namespace jitlink { |
| 36 | |
| 37 | /// Base class for errors originating in JIT linker, e.g. missing relocation |
| 38 | /// support. |
| 39 | class JITLinkError : public ErrorInfo<JITLinkError> { |
| 40 | public: |
| 41 | static char ID; |
| 42 | |
| 43 | JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {} |
| 44 | |
| 45 | void log(raw_ostream &OS) const override; |
| 46 | const std::string &getErrorMessage() const { return ErrMsg; } |
| 47 | std::error_code convertToErrorCode() const override; |
| 48 | |
| 49 | private: |
| 50 | std::string ErrMsg; |
| 51 | }; |
| 52 | |
| 53 | // Forward declare the Atom class. |
| 54 | class Atom; |
| 55 | |
| 56 | /// Edge class. Represents both object file relocations, as well as layout and |
| 57 | /// keep-alive constraints. |
| 58 | class Edge { |
| 59 | public: |
| 60 | using Kind = uint8_t; |
| 61 | |
| 62 | using GenericEdgeKind = enum : Kind { |
| 63 | Invalid, // Invalid edge value. |
| 64 | FirstKeepAlive, // Keeps target alive. Offset/addend zero. |
| 65 | KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness. |
| 66 | LayoutNext, // Layout constraint. Offset/Addend zero. |
| 67 | FirstRelocation // First architecture specific relocation. |
| 68 | }; |
| 69 | |
| 70 | using OffsetT = uint32_t; |
| 71 | using AddendT = int64_t; |
| 72 | |
| 73 | Edge(Kind K, OffsetT Offset, Atom &Target, AddendT Addend) |
| 74 | : Target(&Target), Offset(Offset), Addend(Addend), K(K) {} |
| 75 | |
| 76 | OffsetT getOffset() const { return Offset; } |
| 77 | Kind getKind() const { return K; } |
| 78 | void setKind(Kind K) { this->K = K; } |
| 79 | bool isRelocation() const { return K >= FirstRelocation; } |
| 80 | Kind getRelocation() const { |
| 81 | assert(isRelocation() && "Not a relocation edge"); |
| 82 | return K - FirstRelocation; |
| 83 | } |
| 84 | bool isKeepAlive() const { return K >= FirstKeepAlive; } |
| 85 | Atom &getTarget() const { return *Target; } |
| 86 | void setTarget(Atom &Target) { this->Target = &Target; } |
| 87 | AddendT getAddend() const { return Addend; } |
| 88 | void setAddend(AddendT Addend) { this->Addend = Addend; } |
| 89 | |
| 90 | private: |
| 91 | Atom *Target; |
| 92 | OffsetT Offset; |
| 93 | AddendT Addend; |
| 94 | Kind K = 0; |
| 95 | }; |
| 96 | |
| 97 | using EdgeVector = std::vector<Edge>; |
| 98 | |
| 99 | const StringRef getGenericEdgeKindName(Edge::Kind K); |
| 100 | |
| 101 | /// Base Atom class. Used by absolute and undefined atoms. |
| 102 | class Atom { |
| 103 | friend class AtomGraph; |
| 104 | |
| 105 | protected: |
| 106 | /// Create a named (as yet unresolved) atom. |
| 107 | Atom(StringRef Name) |
| 108 | : Name(Name), IsDefined(false), IsLive(false), ShouldDiscard(false), |
| 109 | IsGlobal(false), IsAbsolute(false), IsCallable(false), |
| 110 | IsExported(false), IsWeak(false), HasLayoutNext(false), |
| 111 | IsCommon(false) {} |
| 112 | |
| 113 | /// Create an absolute symbol atom. |
| 114 | Atom(StringRef Name, JITTargetAddress Address) |
| 115 | : Name(Name), Address(Address), IsDefined(true), IsLive(false), |
| 116 | ShouldDiscard(false), IsGlobal(false), IsAbsolute(false), |
| 117 | IsCallable(false), IsExported(false), IsWeak(false), |
| 118 | HasLayoutNext(false), IsCommon(false) {} |
| 119 | |
| 120 | public: |
| 121 | /// Returns true if this atom has a name. |
| 122 | bool hasName() const { return Name != StringRef(); } |
| 123 | |
| 124 | /// Returns the name of this atom. |
| 125 | StringRef getName() const { return Name; } |
| 126 | |
| 127 | /// Returns the current target address of this atom. |
| 128 | /// The initial target address (for atoms that have one) will be taken from |
| 129 | /// the input object file's virtual address space. During the layout phase |
| 130 | /// of JIT linking the atom's address will be updated to point to its final |
| 131 | /// address in the JIT'd process. |
| 132 | JITTargetAddress getAddress() const { return Address; } |
| 133 | |
| 134 | /// Set the current target address of this atom. |
| 135 | void setAddress(JITTargetAddress Address) { this->Address = Address; } |
| 136 | |
| 137 | /// Returns true if this is a defined atom. |
| 138 | bool isDefined() const { return IsDefined; } |
| 139 | |
| 140 | /// Returns true if this atom is marked as live. |
| 141 | bool isLive() const { return IsLive; } |
| 142 | |
| 143 | /// Mark this atom as live. |
| 144 | /// |
| 145 | /// Note: Only defined and absolute atoms can be marked live. |
| 146 | void setLive(bool IsLive) { |
| 147 | assert((IsDefined || IsAbsolute || !IsLive) && |
| 148 | "Only defined and absolute atoms can be marked live"); |
| 149 | this->IsLive = IsLive; |
| 150 | } |
| 151 | |
| 152 | /// Returns true if this atom should be discarded during pruning. |
| 153 | bool shouldDiscard() const { return ShouldDiscard; } |
| 154 | |
| 155 | /// Mark this atom to be discarded. |
| 156 | /// |
| 157 | /// Note: Only defined and absolute atoms can be marked live. |
| 158 | void setShouldDiscard(bool ShouldDiscard) { |
| 159 | assert((IsDefined || IsAbsolute || !ShouldDiscard) && |
| 160 | "Only defined and absolute atoms can be marked live"); |
| 161 | this->ShouldDiscard = ShouldDiscard; |
| 162 | } |
| 163 | |
| 164 | /// Returns true if this definition is global (i.e. visible outside this |
| 165 | /// linkage unit). |
| 166 | /// |
| 167 | /// Note: This is distict from Exported, which means visibile outside the |
| 168 | /// JITDylib that this graph is being linked in to. |
| 169 | bool isGlobal() const { return IsGlobal; } |
| 170 | |
| 171 | /// Mark this atom as global. |
| 172 | void setGlobal(bool IsGlobal) { this->IsGlobal = IsGlobal; } |
| 173 | |
| 174 | /// Returns true if this atom represents an absolute symbol. |
| 175 | bool isAbsolute() const { return IsAbsolute; } |
| 176 | |
| 177 | /// Returns true if this atom is known to be callable. |
| 178 | /// |
| 179 | /// Primarily provided for easy interoperability with ORC, which uses the |
| 180 | /// JITSymbolFlags::Common flag to identify symbols that can be interposed |
| 181 | /// with stubs. |
| 182 | bool isCallable() const { return IsCallable; } |
| 183 | |
| 184 | /// Mark this atom as callable. |
| 185 | void setCallable(bool IsCallable) { |
| 186 | assert((IsDefined || IsAbsolute || !IsCallable) && |
| 187 | "Callable atoms must be defined or absolute"); |
| 188 | this->IsCallable = IsCallable; |
| 189 | } |
| 190 | |
| 191 | /// Returns true if this atom should appear in the symbol table of a final |
| 192 | /// linked image. |
| 193 | bool isExported() const { return IsExported; } |
| 194 | |
| 195 | /// Mark this atom as exported. |
| 196 | void setExported(bool IsExported) { |
| 197 | assert((!IsExported || ((IsDefined || IsAbsolute) && hasName())) && |
| 198 | "Exported atoms must have names"); |
| 199 | this->IsExported = IsExported; |
| 200 | } |
| 201 | |
| 202 | /// Returns true if this is a weak symbol. |
| 203 | bool isWeak() const { return IsWeak; } |
| 204 | |
| 205 | /// Mark this atom as weak. |
| 206 | void setWeak(bool IsWeak) { this->IsWeak = IsWeak; } |
| 207 | |
| 208 | private: |
| 209 | StringRef Name; |
| 210 | JITTargetAddress Address = 0; |
| 211 | |
| 212 | bool IsDefined : 1; |
| 213 | bool IsLive : 1; |
| 214 | bool ShouldDiscard : 1; |
| 215 | |
| 216 | bool IsGlobal : 1; |
| 217 | bool IsAbsolute : 1; |
| 218 | bool IsCallable : 1; |
| 219 | bool IsExported : 1; |
| 220 | bool IsWeak : 1; |
| 221 | |
| 222 | protected: |
| 223 | // These flags only make sense for DefinedAtom, but we can minimize the size |
| 224 | // of DefinedAtom by defining them here. |
| 225 | bool HasLayoutNext : 1; |
| 226 | bool IsCommon : 1; |
| 227 | }; |
| 228 | |
| 229 | // Forward declare DefinedAtom. |
| 230 | class DefinedAtom; |
| 231 | |
| 232 | raw_ostream &operator<<(raw_ostream &OS, const Atom &A); |
| 233 | void printEdge(raw_ostream &OS, const Atom &FixupAtom, const Edge &E, |
| 234 | StringRef EdgeKindName); |
| 235 | |
| 236 | /// Represents a section address range via a pair of DefinedAtom pointers to |
| 237 | /// the first and last atoms in the section. |
| 238 | class SectionRange { |
| 239 | public: |
| 240 | SectionRange() = default; |
| 241 | SectionRange(DefinedAtom *First, DefinedAtom *Last) |
| 242 | : First(First), Last(Last) {} |
| 243 | DefinedAtom *getFirstAtom() const { |
| 244 | assert((!Last || First) && "First can not be null if end is non-null"); |
| 245 | return First; |
| 246 | } |
| 247 | DefinedAtom *getLastAtom() const { |
| 248 | assert((First || !Last) && "Last can not be null if start is non-null"); |
| 249 | return Last; |
| 250 | } |
| 251 | bool isEmpty() const { |
| 252 | assert((First || !Last) && "Last can not be null if start is non-null"); |
| 253 | return !First; |
| 254 | } |
| 255 | JITTargetAddress getStart() const; |
| 256 | JITTargetAddress getEnd() const; |
| 257 | uint64_t getSize() const; |
| 258 | |
| 259 | private: |
| 260 | DefinedAtom *First = nullptr; |
| 261 | DefinedAtom *Last = nullptr; |
| 262 | }; |
| 263 | |
| 264 | /// Represents an object file section. |
| 265 | class Section { |
| 266 | friend class AtomGraph; |
| 267 | |
| 268 | private: |
| 269 | Section(StringRef Name, uint32_t Alignment, sys::Memory::ProtectionFlags Prot, |
| 270 | unsigned Ordinal, bool IsZeroFill) |
| 271 | : Name(Name), Alignment(Alignment), Prot(Prot), Ordinal(Ordinal), |
| 272 | IsZeroFill(IsZeroFill) { |
| 273 | assert(isPowerOf2_32(Alignment) && "Alignments must be a power of 2"); |
| 274 | } |
| 275 | |
| 276 | using DefinedAtomSet = DenseSet<DefinedAtom *>; |
| 277 | |
| 278 | public: |
| 279 | using atom_iterator = DefinedAtomSet::iterator; |
| 280 | using const_atom_iterator = DefinedAtomSet::const_iterator; |
| 281 | |
| 282 | ~Section(); |
| 283 | StringRef getName() const { return Name; } |
| 284 | uint32_t getAlignment() const { return Alignment; } |
| 285 | sys::Memory::ProtectionFlags getProtectionFlags() const { return Prot; } |
| 286 | unsigned getSectionOrdinal() const { return Ordinal; } |
| 287 | size_t getNextAtomOrdinal() { return ++NextAtomOrdinal; } |
| 288 | |
| 289 | bool isZeroFill() const { return IsZeroFill; } |
| 290 | |
| 291 | /// Returns an iterator over the atoms in the section (in no particular |
| 292 | /// order). |
| 293 | iterator_range<atom_iterator> atoms() { |
| 294 | return make_range(DefinedAtoms.begin(), DefinedAtoms.end()); |
| 295 | } |
| 296 | |
| 297 | /// Returns an iterator over the atoms in the section (in no particular |
| 298 | /// order). |
| 299 | iterator_range<const_atom_iterator> atoms() const { |
| 300 | return make_range(DefinedAtoms.begin(), DefinedAtoms.end()); |
| 301 | } |
| 302 | |
| 303 | /// Return the number of atoms in this section. |
| 304 | DefinedAtomSet::size_type atoms_size() { return DefinedAtoms.size(); } |
| 305 | |
| 306 | /// Return true if this section contains no atoms. |
| 307 | bool atoms_empty() const { return DefinedAtoms.empty(); } |
| 308 | |
| 309 | /// Returns the range of this section as the pair of atoms with the lowest |
| 310 | /// and highest target address. This operation is expensive, as it |
| 311 | /// must traverse all atoms in the section. |
| 312 | /// |
| 313 | /// Note: If the section is empty, both values will be null. The section |
| 314 | /// address will evaluate to null, and the size to zero. If the section |
| 315 | /// contains a single atom both values will point to it, the address will |
| 316 | /// evaluate to the address of that atom, and the size will be the size of |
| 317 | /// that atom. |
| 318 | SectionRange getRange() const; |
| 319 | |
| 320 | private: |
| 321 | void addAtom(DefinedAtom &DA) { |
| 322 | assert(!DefinedAtoms.count(&DA) && "Atom is already in this section"); |
| 323 | DefinedAtoms.insert(&DA); |
| 324 | } |
| 325 | |
| 326 | void removeAtom(DefinedAtom &DA) { |
| 327 | assert(DefinedAtoms.count(&DA) && "Atom is not in this section"); |
| 328 | DefinedAtoms.erase(&DA); |
| 329 | } |
| 330 | |
| 331 | StringRef Name; |
| 332 | uint32_t Alignment = 0; |
| 333 | sys::Memory::ProtectionFlags Prot; |
| 334 | unsigned Ordinal = 0; |
| 335 | unsigned NextAtomOrdinal = 0; |
| 336 | bool IsZeroFill = false; |
| 337 | DefinedAtomSet DefinedAtoms; |
| 338 | }; |
| 339 | |
| 340 | /// Defined atom class. Suitable for use by defined named and anonymous |
| 341 | /// atoms. |
| 342 | class DefinedAtom : public Atom { |
| 343 | friend class AtomGraph; |
| 344 | |
| 345 | private: |
| 346 | DefinedAtom(Section &Parent, JITTargetAddress Address, uint32_t Alignment) |
| 347 | : Atom("", Address), Parent(Parent), Ordinal(Parent.getNextAtomOrdinal()), |
| 348 | Alignment(Alignment) { |
| 349 | assert(isPowerOf2_32(Alignment) && "Alignments must be a power of two"); |
| 350 | } |
| 351 | |
| 352 | DefinedAtom(Section &Parent, StringRef Name, JITTargetAddress Address, |
| 353 | uint32_t Alignment) |
| 354 | : Atom(Name, Address), Parent(Parent), |
| 355 | Ordinal(Parent.getNextAtomOrdinal()), Alignment(Alignment) { |
| 356 | assert(isPowerOf2_32(Alignment) && "Alignments must be a power of two"); |
| 357 | } |
| 358 | |
| 359 | public: |
| 360 | using edge_iterator = EdgeVector::iterator; |
| 361 | |
| 362 | Section &getSection() const { return Parent; } |
| 363 | |
| 364 | uint64_t getSize() const { return Size; } |
| 365 | |
| 366 | StringRef getContent() const { |
| 367 | assert(!Parent.isZeroFill() && "Trying to get content for zero-fill atom"); |
| 368 | assert(Size <= std::numeric_limits<size_t>::max() && |
| 369 | "Content size too large"); |
| 370 | return {ContentPtr, static_cast<size_t>(Size)}; |
| 371 | } |
| 372 | void setContent(StringRef Content) { |
| 373 | assert(!Parent.isZeroFill() && "Calling setContent on zero-fill atom?"); |
| 374 | ContentPtr = Content.data(); |
| 375 | Size = Content.size(); |
| 376 | } |
| 377 | |
| 378 | bool isZeroFill() const { return Parent.isZeroFill(); } |
| 379 | |
| 380 | void setZeroFill(uint64_t Size) { |
| 381 | assert(Parent.isZeroFill() && !ContentPtr && |
| 382 | "Can't set zero-fill length of a non zero-fill atom"); |
| 383 | this->Size = Size; |
| 384 | } |
| 385 | |
| 386 | uint64_t getZeroFillSize() const { |
| 387 | assert(Parent.isZeroFill() && |
| 388 | "Can't get zero-fill length of a non zero-fill atom"); |
| 389 | return Size; |
| 390 | } |
| 391 | |
| 392 | uint32_t getAlignment() const { return Alignment; } |
| 393 | |
| 394 | bool hasLayoutNext() const { return HasLayoutNext; } |
| 395 | void setLayoutNext(DefinedAtom &Next) { |
| 396 | assert(!HasLayoutNext && "Atom already has layout-next constraint"); |
| 397 | HasLayoutNext = true; |
| 398 | Edges.push_back(Edge(Edge::LayoutNext, 0, Next, 0)); |
| 399 | } |
| 400 | DefinedAtom &getLayoutNext() { |
| 401 | assert(HasLayoutNext && "Atom does not have a layout-next constraint"); |
| 402 | DefinedAtom *Next = nullptr; |
| 403 | for (auto &E : edges()) |
| 404 | if (E.getKind() == Edge::LayoutNext) { |
| 405 | assert(E.getTarget().isDefined() && |
| 406 | "layout-next target atom must be a defined atom"); |
| 407 | Next = static_cast<DefinedAtom *>(&E.getTarget()); |
| 408 | break; |
| 409 | } |
| 410 | assert(Next && "Missing LayoutNext edge"); |
| 411 | return *Next; |
| 412 | } |
| 413 | |
| 414 | bool isCommon() const { return IsCommon; } |
| 415 | |
| 416 | void addEdge(Edge::Kind K, Edge::OffsetT Offset, Atom &Target, |
| 417 | Edge::AddendT Addend) { |
| 418 | assert(K != Edge::LayoutNext && |
| 419 | "Layout edges should be added via setLayoutNext"); |
| 420 | Edges.push_back(Edge(K, Offset, Target, Addend)); |
| 421 | } |
| 422 | |
| 423 | iterator_range<edge_iterator> edges() { |
| 424 | return make_range(Edges.begin(), Edges.end()); |
| 425 | } |
| 426 | size_t edges_size() const { return Edges.size(); } |
| 427 | bool edges_empty() const { return Edges.empty(); } |
| 428 | |
| 429 | unsigned getOrdinal() const { return Ordinal; } |
| 430 | |
| 431 | private: |
| 432 | void setCommon(uint64_t Size) { |
| 433 | assert(ContentPtr == 0 && "Atom already has content?"); |
| 434 | IsCommon = true; |
| 435 | setZeroFill(Size); |
| 436 | } |
| 437 | |
| 438 | EdgeVector Edges; |
| 439 | uint64_t Size = 0; |
| 440 | Section &Parent; |
| 441 | const char *ContentPtr = nullptr; |
| 442 | unsigned Ordinal = 0; |
| 443 | uint32_t Alignment = 0; |
| 444 | }; |
| 445 | |
| 446 | inline JITTargetAddress SectionRange::getStart() const { |
| 447 | return First ? First->getAddress() : 0; |
| 448 | } |
| 449 | |
| 450 | inline JITTargetAddress SectionRange::getEnd() const { |
| 451 | return Last ? Last->getAddress() + Last->getSize() : 0; |
| 452 | } |
| 453 | |
| 454 | inline uint64_t SectionRange::getSize() const { return getEnd() - getStart(); } |
| 455 | |
| 456 | inline SectionRange Section::getRange() const { |
| 457 | if (atoms_empty()) |
| 458 | return SectionRange(); |
| 459 | DefinedAtom *First = *DefinedAtoms.begin(), *Last = *DefinedAtoms.begin(); |
| 460 | for (auto *DA : atoms()) { |
| 461 | if (DA->getAddress() < First->getAddress()) |
| 462 | First = DA; |
| 463 | if (DA->getAddress() > Last->getAddress()) |
| 464 | Last = DA; |
| 465 | } |
| 466 | return SectionRange(First, Last); |
| 467 | } |
| 468 | |
| 469 | class AtomGraph { |
| 470 | private: |
| 471 | using SectionList = std::vector<std::unique_ptr<Section>>; |
| 472 | using AddressToAtomMap = std::map<JITTargetAddress, DefinedAtom *>; |
| 473 | using NamedAtomMap = DenseMap<StringRef, Atom *>; |
| 474 | using ExternalAtomSet = DenseSet<Atom *>; |
| 475 | |
| 476 | public: |
| 477 | using external_atom_iterator = ExternalAtomSet::iterator; |
| 478 | |
| 479 | using section_iterator = pointee_iterator<SectionList::iterator>; |
| 480 | using const_section_iterator = pointee_iterator<SectionList::const_iterator>; |
| 481 | |
| 482 | template <typename SecItrT, typename AtomItrT, typename T> |
| 483 | class defined_atom_iterator_impl |
| 484 | : public iterator_facade_base< |
| 485 | defined_atom_iterator_impl<SecItrT, AtomItrT, T>, |
| 486 | std::forward_iterator_tag, T> { |
| 487 | public: |
| 488 | defined_atom_iterator_impl() = default; |
| 489 | |
| 490 | defined_atom_iterator_impl(SecItrT SI, SecItrT SE) |
| 491 | : SI(SI), SE(SE), |
| 492 | AI(SI != SE ? SI->atoms().begin() : Section::atom_iterator()) { |
| 493 | moveToNextAtomOrEnd(); |
| 494 | } |
| 495 | |
| 496 | bool operator==(const defined_atom_iterator_impl &RHS) const { |
| 497 | return (SI == RHS.SI) && (AI == RHS.AI); |
| 498 | } |
| 499 | |
| 500 | T operator*() const { |
| 501 | assert(AI != SI->atoms().end() && "Dereferencing end?"); |
| 502 | return *AI; |
| 503 | } |
| 504 | |
| 505 | defined_atom_iterator_impl operator++() { |
| 506 | ++AI; |
| 507 | moveToNextAtomOrEnd(); |
| 508 | return *this; |
| 509 | } |
| 510 | |
| 511 | private: |
| 512 | void moveToNextAtomOrEnd() { |
| 513 | while (SI != SE && AI == SI->atoms().end()) { |
| 514 | ++SI; |
| 515 | if (SI == SE) |
| 516 | AI = Section::atom_iterator(); |
| 517 | else |
| 518 | AI = SI->atoms().begin(); |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | SecItrT SI, SE; |
| 523 | AtomItrT AI; |
| 524 | }; |
| 525 | |
| 526 | using defined_atom_iterator = |
| 527 | defined_atom_iterator_impl<section_iterator, Section::atom_iterator, |
| 528 | DefinedAtom *>; |
| 529 | |
| 530 | using const_defined_atom_iterator = |
| 531 | defined_atom_iterator_impl<const_section_iterator, |
| 532 | Section::const_atom_iterator, |
| 533 | const DefinedAtom *>; |
| 534 | |
| 535 | AtomGraph(std::string Name, unsigned PointerSize, |
| 536 | support::endianness Endianness) |
| 537 | : Name(std::move(Name)), PointerSize(PointerSize), |
| 538 | Endianness(Endianness) {} |
| 539 | |
| 540 | /// Returns the name of this graph (usually the name of the original |
| 541 | /// underlying MemoryBuffer). |
| 542 | const std::string &getName() { return Name; } |
| 543 | |
| 544 | /// Returns the pointer size for use in this graph. |
| 545 | unsigned getPointerSize() const { return PointerSize; } |
| 546 | |
| 547 | /// Returns the endianness of atom-content in this graph. |
| 548 | support::endianness getEndianness() const { return Endianness; } |
| 549 | |
| 550 | /// Create a section with the given name, protection flags, and alignment. |
| 551 | Section &createSection(StringRef Name, uint32_t Alignment, |
| 552 | sys::Memory::ProtectionFlags Prot, bool IsZeroFill) { |
| 553 | std::unique_ptr<Section> Sec( |
| 554 | new Section(Name, Alignment, Prot, Sections.size(), IsZeroFill)); |
| 555 | Sections.push_back(std::move(Sec)); |
| 556 | return *Sections.back(); |
| 557 | } |
| 558 | |
| 559 | /// Add an external atom representing an undefined symbol in this graph. |
| 560 | Atom &addExternalAtom(StringRef Name) { |
| 561 | assert(!NamedAtoms.count(Name) && "Duplicate named atom inserted"); |
| 562 | Atom *A = reinterpret_cast<Atom *>( |
| 563 | AtomAllocator.Allocate(sizeof(Atom), alignof(Atom))); |
| 564 | new (A) Atom(Name); |
| 565 | ExternalAtoms.insert(A); |
| 566 | NamedAtoms[Name] = A; |
| 567 | return *A; |
| 568 | } |
| 569 | |
| 570 | /// Add an external atom representing an absolute symbol. |
| 571 | Atom &addAbsoluteAtom(StringRef Name, JITTargetAddress Addr) { |
| 572 | assert(!NamedAtoms.count(Name) && "Duplicate named atom inserted"); |
| 573 | Atom *A = reinterpret_cast<Atom *>( |
| 574 | AtomAllocator.Allocate(sizeof(Atom), alignof(Atom))); |
| 575 | new (A) Atom(Name, Addr); |
| 576 | AbsoluteAtoms.insert(A); |
| 577 | NamedAtoms[Name] = A; |
| 578 | return *A; |
| 579 | } |
| 580 | |
| 581 | /// Add an anonymous defined atom to the graph. |
| 582 | /// |
| 583 | /// Anonymous atoms have content but no name. They must have an address. |
| 584 | DefinedAtom &addAnonymousAtom(Section &Parent, JITTargetAddress Address, |
| 585 | uint32_t Alignment) { |
| 586 | DefinedAtom *A = reinterpret_cast<DefinedAtom *>( |
| 587 | AtomAllocator.Allocate(sizeof(DefinedAtom), alignof(DefinedAtom))); |
| 588 | new (A) DefinedAtom(Parent, Address, Alignment); |
| 589 | Parent.addAtom(*A); |
| 590 | getAddrToAtomMap()[A->getAddress()] = A; |
| 591 | return *A; |
| 592 | } |
| 593 | |
| 594 | /// Add a defined atom to the graph. |
| 595 | /// |
| 596 | /// Allocates and constructs a DefinedAtom instance with the given parent, |
| 597 | /// name, address, and alignment. |
| 598 | DefinedAtom &addDefinedAtom(Section &Parent, StringRef Name, |
| 599 | JITTargetAddress Address, uint32_t Alignment) { |
| 600 | assert(!NamedAtoms.count(Name) && "Duplicate named atom inserted"); |
| 601 | DefinedAtom *A = reinterpret_cast<DefinedAtom *>( |
| 602 | AtomAllocator.Allocate(sizeof(DefinedAtom), alignof(DefinedAtom))); |
| 603 | new (A) DefinedAtom(Parent, Name, Address, Alignment); |
| 604 | Parent.addAtom(*A); |
| 605 | getAddrToAtomMap()[A->getAddress()] = A; |
| 606 | NamedAtoms[Name] = A; |
| 607 | return *A; |
| 608 | } |
| 609 | |
| 610 | /// Add a common symbol atom to the graph. |
| 611 | /// |
| 612 | /// Adds a common-symbol atom to the graph with the given parent, name, |
| 613 | /// address, alignment and size. |
| 614 | DefinedAtom &addCommonAtom(Section &Parent, StringRef Name, |
| 615 | JITTargetAddress Address, uint32_t Alignment, |
| 616 | uint64_t Size) { |
| 617 | assert(!NamedAtoms.count(Name) && "Duplicate named atom inserted"); |
| 618 | DefinedAtom *A = reinterpret_cast<DefinedAtom *>( |
| 619 | AtomAllocator.Allocate(sizeof(DefinedAtom), alignof(DefinedAtom))); |
| 620 | new (A) DefinedAtom(Parent, Name, Address, Alignment); |
| 621 | A->setCommon(Size); |
| 622 | Parent.addAtom(*A); |
| 623 | NamedAtoms[Name] = A; |
| 624 | return *A; |
| 625 | } |
| 626 | |
| 627 | iterator_range<section_iterator> sections() { |
| 628 | return make_range(section_iterator(Sections.begin()), |
| 629 | section_iterator(Sections.end())); |
| 630 | } |
| 631 | |
| 632 | /// Returns the section with the given name if it exists, otherwise returns |
| 633 | /// null. |
| 634 | Section *findSectionByName(StringRef Name) { |
| 635 | for (auto &S : sections()) |
| 636 | if (S.getName() == Name) |
| 637 | return &S; |
| 638 | return nullptr; |
| 639 | } |
| 640 | |
| 641 | iterator_range<external_atom_iterator> external_atoms() { |
| 642 | return make_range(ExternalAtoms.begin(), ExternalAtoms.end()); |
| 643 | } |
| 644 | |
| 645 | iterator_range<external_atom_iterator> absolute_atoms() { |
| 646 | return make_range(AbsoluteAtoms.begin(), AbsoluteAtoms.end()); |
| 647 | } |
| 648 | |
| 649 | iterator_range<defined_atom_iterator> defined_atoms() { |
| 650 | return make_range(defined_atom_iterator(Sections.begin(), Sections.end()), |
| 651 | defined_atom_iterator(Sections.end(), Sections.end())); |
| 652 | } |
| 653 | |
| 654 | iterator_range<const_defined_atom_iterator> defined_atoms() const { |
| 655 | return make_range( |
| 656 | const_defined_atom_iterator(Sections.begin(), Sections.end()), |
| 657 | const_defined_atom_iterator(Sections.end(), Sections.end())); |
| 658 | } |
| 659 | |
| 660 | /// Returns the atom with the given name, which must exist in this graph. |
| 661 | Atom &getAtomByName(StringRef Name) { |
| 662 | auto I = NamedAtoms.find(Name); |
| 663 | assert(I != NamedAtoms.end() && "Name not in NamedAtoms map"); |
| 664 | return *I->second; |
| 665 | } |
| 666 | |
| 667 | /// Returns the atom with the given name, which must exist in this graph and |
| 668 | /// be a DefinedAtom. |
| 669 | DefinedAtom &getDefinedAtomByName(StringRef Name) { |
| 670 | auto &A = getAtomByName(Name); |
| 671 | assert(A.isDefined() && "Atom is not a defined atom"); |
| 672 | return static_cast<DefinedAtom &>(A); |
| 673 | } |
| 674 | |
| 675 | /// Search for the given atom by name. |
| 676 | /// Returns the atom (if found) or an error (if no atom with this name |
| 677 | /// exists). |
| 678 | Expected<Atom &> findAtomByName(StringRef Name) { |
| 679 | auto I = NamedAtoms.find(Name); |
| 680 | if (I == NamedAtoms.end()) |
| 681 | return make_error<JITLinkError>("No atom named " + Name); |
| 682 | return *I->second; |
| 683 | } |
| 684 | |
| 685 | /// Search for the given defined atom by name. |
| 686 | /// Returns the defined atom (if found) or an error (if no atom with this |
| 687 | /// name exists, or if one exists but is not a defined atom). |
| 688 | Expected<DefinedAtom &> findDefinedAtomByName(StringRef Name) { |
| 689 | auto I = NamedAtoms.find(Name); |
| 690 | if (I == NamedAtoms.end()) |
| 691 | return make_error<JITLinkError>("No atom named " + Name); |
| 692 | if (!I->second->isDefined()) |
| 693 | return make_error<JITLinkError>("Atom " + Name + |
| 694 | " exists but is not a " |
| 695 | "defined atom"); |
| 696 | return static_cast<DefinedAtom &>(*I->second); |
| 697 | } |
| 698 | |
| 699 | /// Returns the atom covering the given address, or an error if no such atom |
| 700 | /// exists. |
| 701 | /// |
| 702 | /// Returns null if no atom exists at the given address. |
| 703 | DefinedAtom *getAtomByAddress(JITTargetAddress Address) { |
| 704 | refreshAddrToAtomCache(); |
| 705 | |
| 706 | // If there are no defined atoms, bail out early. |
| 707 | if (AddrToAtomCache->empty()) |
| 708 | return nullptr; |
| 709 | |
| 710 | // Find the atom *after* the given address. |
| 711 | auto I = AddrToAtomCache->upper_bound(Address); |
| 712 | |
| 713 | // If this address falls before any known atom, bail out. |
| 714 | if (I == AddrToAtomCache->begin()) |
| 715 | return nullptr; |
| 716 | |
| 717 | // The atom we're looking for is the one before the atom we found. |
| 718 | --I; |
| 719 | |
| 720 | // Otherwise range check the atom that was found. |
| 721 | assert(!I->second->getContent().empty() && "Atom content not set"); |
| 722 | if (Address >= I->second->getAddress() + I->second->getContent().size()) |
| 723 | return nullptr; |
| 724 | |
| 725 | return I->second; |
| 726 | } |
| 727 | |
| 728 | /// Like getAtomByAddress, but returns an Error if the given address is not |
| 729 | /// covered by an atom, rather than a null pointer. |
| 730 | Expected<DefinedAtom &> findAtomByAddress(JITTargetAddress Address) { |
| 731 | if (auto *DA = getAtomByAddress(Address)) |
| 732 | return *DA; |
| 733 | return make_error<JITLinkError>("No atom at address " + |
| 734 | formatv("{0:x16}", Address)); |
| 735 | } |
| 736 | |
| 737 | // Remove the given external atom from the graph. |
| 738 | void removeExternalAtom(Atom &A) { |
| 739 | assert(!A.isDefined() && !A.isAbsolute() && "A is not an external atom"); |
| 740 | assert(ExternalAtoms.count(&A) && "A is not in the external atoms set"); |
| 741 | ExternalAtoms.erase(&A); |
| 742 | A.~Atom(); |
| 743 | } |
| 744 | |
| 745 | /// Remove the given absolute atom from the graph. |
| 746 | void removeAbsoluteAtom(Atom &A) { |
| 747 | assert(A.isAbsolute() && "A is not an absolute atom"); |
| 748 | assert(AbsoluteAtoms.count(&A) && "A is not in the absolute atoms set"); |
| 749 | AbsoluteAtoms.erase(&A); |
| 750 | A.~Atom(); |
| 751 | } |
| 752 | |
| 753 | /// Remove the given defined atom from the graph. |
| 754 | void removeDefinedAtom(DefinedAtom &DA) { |
| 755 | if (AddrToAtomCache) { |
| 756 | assert(AddrToAtomCache->count(DA.getAddress()) && |
| 757 | "Cache exists, but does not contain atom"); |
| 758 | AddrToAtomCache->erase(DA.getAddress()); |
| 759 | } |
| 760 | if (DA.hasName()) { |
| 761 | assert(NamedAtoms.count(DA.getName()) && "Named atom not in map"); |
| 762 | NamedAtoms.erase(DA.getName()); |
| 763 | } |
| 764 | DA.getSection().removeAtom(DA); |
| 765 | DA.~DefinedAtom(); |
| 766 | } |
| 767 | |
| 768 | /// Invalidate the atom-to-address map. |
| 769 | void invalidateAddrToAtomMap() { AddrToAtomCache = None; } |
| 770 | |
| 771 | /// Dump the graph. |
| 772 | /// |
| 773 | /// If supplied, the EdgeKindToName function will be used to name edge |
| 774 | /// kinds in the debug output. Otherwise raw edge kind numbers will be |
| 775 | /// displayed. |
| 776 | void dump(raw_ostream &OS, |
| 777 | std::function<StringRef(Edge::Kind)> EdegKindToName = |
| 778 | std::function<StringRef(Edge::Kind)>()); |
| 779 | |
| 780 | private: |
| 781 | AddressToAtomMap &getAddrToAtomMap() { |
| 782 | refreshAddrToAtomCache(); |
| 783 | return *AddrToAtomCache; |
| 784 | } |
| 785 | |
| 786 | const AddressToAtomMap &getAddrToAtomMap() const { |
| 787 | refreshAddrToAtomCache(); |
| 788 | return *AddrToAtomCache; |
| 789 | } |
| 790 | |
| 791 | void refreshAddrToAtomCache() const { |
| 792 | if (!AddrToAtomCache) { |
| 793 | AddrToAtomCache = AddressToAtomMap(); |
| 794 | for (auto *DA : defined_atoms()) |
| 795 | (*AddrToAtomCache)[DA->getAddress()] = const_cast<DefinedAtom *>(DA); |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | // Put the BumpPtrAllocator first so that we don't free any of the atoms in |
| 800 | // it until all of their destructors have been run. |
| 801 | BumpPtrAllocator AtomAllocator; |
| 802 | |
| 803 | std::string Name; |
| 804 | unsigned PointerSize; |
| 805 | support::endianness Endianness; |
| 806 | SectionList Sections; |
| 807 | NamedAtomMap NamedAtoms; |
| 808 | ExternalAtomSet ExternalAtoms; |
| 809 | ExternalAtomSet AbsoluteAtoms; |
| 810 | mutable Optional<AddressToAtomMap> AddrToAtomCache; |
| 811 | }; |
| 812 | |
| 813 | /// A function for mutating AtomGraphs. |
| 814 | using AtomGraphPassFunction = std::function<Error(AtomGraph &)>; |
| 815 | |
| 816 | /// A list of atom graph passes. |
| 817 | using AtomGraphPassList = std::vector<AtomGraphPassFunction>; |
| 818 | |
| 819 | /// An atom graph pass configuration, consisting of a list of pre-prune, |
| 820 | /// post-prune, and post-fixup passes. |
| 821 | struct PassConfiguration { |
| 822 | |
| 823 | /// Pre-prune passes. |
| 824 | /// |
| 825 | /// These passes are called on the graph after it is built, and before any |
| 826 | /// atoms have been pruned. |
| 827 | /// |
| 828 | /// Notable use cases: Marking atoms live or should-discard. |
| 829 | AtomGraphPassList PrePrunePasses; |
| 830 | |
| 831 | /// Post-prune passes. |
| 832 | /// |
| 833 | /// These passes are called on the graph after dead and should-discard atoms |
| 834 | /// have been removed, but before fixups are applied. |
| 835 | /// |
| 836 | /// Notable use cases: Building GOT, stub, and TLV atoms. |
| 837 | AtomGraphPassList PostPrunePasses; |
| 838 | |
| 839 | /// Post-fixup passes. |
| 840 | /// |
| 841 | /// These passes are called on the graph after atom contents has been copied |
| 842 | /// to working memory, and fixups applied. |
| 843 | /// |
| 844 | /// Notable use cases: Testing and validation. |
| 845 | AtomGraphPassList PostFixupPasses; |
| 846 | }; |
| 847 | |
| 848 | /// A map of symbol names to resolved addresses. |
| 849 | using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>; |
| 850 | |
| 851 | /// A function to call with a resolved symbol map (See AsyncLookupResult) or an |
| 852 | /// error if resolution failed. |
| 853 | using JITLinkAsyncLookupContinuation = |
| 854 | std::function<void(Expected<AsyncLookupResult> LR)>; |
| 855 | |
| 856 | /// An asynchronous symbol lookup. Performs a search (possibly asynchronously) |
| 857 | /// for the given symbols, calling the given continuation with either the result |
| 858 | /// (if the lookup succeeds), or an error (if the lookup fails). |
| 859 | using JITLinkAsyncLookupFunction = |
| 860 | std::function<void(const DenseSet<StringRef> &Symbols, |
| 861 | JITLinkAsyncLookupContinuation LookupContinuation)>; |
| 862 | |
| 863 | /// Holds context for a single jitLink invocation. |
| 864 | class JITLinkContext { |
| 865 | public: |
| 866 | /// Destroy a JITLinkContext. |
| 867 | virtual ~JITLinkContext(); |
| 868 | |
| 869 | /// Return the MemoryManager to be used for this link. |
| 870 | virtual JITLinkMemoryManager &getMemoryManager() = 0; |
| 871 | |
| 872 | /// Returns a StringRef for the object buffer. |
| 873 | /// This method can not be called once takeObjectBuffer has been called. |
| 874 | virtual MemoryBufferRef getObjectBuffer() const = 0; |
| 875 | |
| 876 | /// Notify this context that linking failed. |
| 877 | /// Called by JITLink if linking cannot be completed. |
| 878 | virtual void notifyFailed(Error Err) = 0; |
| 879 | |
| 880 | /// Called by JITLink to resolve external symbols. This method is passed a |
| 881 | /// lookup continutation which it must call with a result to continue the |
| 882 | /// linking process. |
| 883 | virtual void lookup(const DenseSet<StringRef> &Symbols, |
| 884 | JITLinkAsyncLookupContinuation LookupContinuation) = 0; |
| 885 | |
| 886 | /// Called by JITLink once all defined atoms in the graph have been assigned |
| 887 | /// their final memory locations in the target process. At this point he |
| 888 | /// atom graph can be, inspected to build a symbol table however the atom |
| 889 | /// content will not generally have been copied to the target location yet. |
| 890 | virtual void notifyResolved(AtomGraph &G) = 0; |
| 891 | |
| 892 | /// Called by JITLink to notify the context that the object has been |
| 893 | /// finalized (i.e. emitted to memory and memory permissions set). If all of |
| 894 | /// this objects dependencies have also been finalized then the code is ready |
| 895 | /// to run. |
| 896 | virtual void |
| 897 | notifyFinalized(std::unique_ptr<JITLinkMemoryManager::Allocation> A) = 0; |
| 898 | |
| 899 | /// Called by JITLink prior to linking to determine whether default passes for |
| 900 | /// the target should be added. The default implementation returns true. |
| 901 | /// If subclasses override this method to return false for any target then |
| 902 | /// they are required to fully configure the pass pipeline for that target. |
| 903 | virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const; |
| 904 | |
| 905 | /// Returns the mark-live pass to be used for this link. If no pass is |
| 906 | /// returned (the default) then the target-specific linker implementation will |
| 907 | /// choose a conservative default (usually marking all atoms live). |
| 908 | /// This function is only called if shouldAddDefaultTargetPasses returns true, |
| 909 | /// otherwise the JITContext is responsible for adding a mark-live pass in |
| 910 | /// modifyPassConfig. |
| 911 | virtual AtomGraphPassFunction getMarkLivePass(const Triple &TT) const; |
| 912 | |
| 913 | /// Called by JITLink to modify the pass pipeline prior to linking. |
| 914 | /// The default version performs no modification. |
| 915 | virtual Error modifyPassConfig(const Triple &TT, PassConfiguration &Config); |
| 916 | }; |
| 917 | |
| 918 | /// Marks all atoms in a graph live. This can be used as a default, conservative |
| 919 | /// mark-live implementation. |
| 920 | Error markAllAtomsLive(AtomGraph &G); |
| 921 | |
| 922 | /// Basic JITLink implementation. |
| 923 | /// |
| 924 | /// This function will use sensible defaults for GOT and Stub handling. |
| 925 | void jitLink(std::unique_ptr<JITLinkContext> Ctx); |
| 926 | |
| 927 | } // end namespace jitlink |
| 928 | } // end namespace llvm |
| 929 | |
| 930 | #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H |