Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
Andrew Walbran | 16937d0 | 2019-10-22 13:54:20 +0100 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some functions that are useful for math stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| 14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
| 15 | |
| 16 | #include "llvm/Support/Compiler.h" |
| 17 | #include "llvm/Support/SwapByteOrder.h" |
| 18 | #include <algorithm> |
| 19 | #include <cassert> |
| 20 | #include <climits> |
| 21 | #include <cstring> |
| 22 | #include <limits> |
| 23 | #include <type_traits> |
| 24 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 25 | #ifdef __ANDROID_NDK__ |
| 26 | #include <android/api-level.h> |
| 27 | #endif |
| 28 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 29 | #ifdef _MSC_VER |
| 30 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 31 | // expensive, and MathExtras.h is popular. |
| 32 | // #include <intrin.h> |
| 33 | extern "C" { |
| 34 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 35 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 36 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 37 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 38 | } |
| 39 | #endif |
| 40 | |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 41 | namespace llvm { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 42 | /// The behavior an operation has on an input of 0. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 43 | enum ZeroBehavior { |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 44 | /// The returned value is undefined. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 45 | ZB_Undefined, |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 46 | /// The returned value is numeric_limits<T>::max() |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 47 | ZB_Max, |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 48 | /// The returned value is numeric_limits<T>::digits |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 49 | ZB_Width |
| 50 | }; |
| 51 | |
| 52 | namespace detail { |
| 53 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
| 54 | static std::size_t count(T Val, ZeroBehavior) { |
| 55 | if (!Val) |
| 56 | return std::numeric_limits<T>::digits; |
| 57 | if (Val & 0x1) |
| 58 | return 0; |
| 59 | |
| 60 | // Bisection method. |
| 61 | std::size_t ZeroBits = 0; |
| 62 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 63 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 64 | while (Shift) { |
| 65 | if ((Val & Mask) == 0) { |
| 66 | Val >>= Shift; |
| 67 | ZeroBits |= Shift; |
| 68 | } |
| 69 | Shift >>= 1; |
| 70 | Mask >>= Shift; |
| 71 | } |
| 72 | return ZeroBits; |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | #if __GNUC__ >= 4 || defined(_MSC_VER) |
| 77 | template <typename T> struct TrailingZerosCounter<T, 4> { |
| 78 | static std::size_t count(T Val, ZeroBehavior ZB) { |
| 79 | if (ZB != ZB_Undefined && Val == 0) |
| 80 | return 32; |
| 81 | |
| 82 | #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0) |
| 83 | return __builtin_ctz(Val); |
| 84 | #elif defined(_MSC_VER) |
| 85 | unsigned long Index; |
| 86 | _BitScanForward(&Index, Val); |
| 87 | return Index; |
| 88 | #endif |
| 89 | } |
| 90 | }; |
| 91 | |
| 92 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 93 | template <typename T> struct TrailingZerosCounter<T, 8> { |
| 94 | static std::size_t count(T Val, ZeroBehavior ZB) { |
| 95 | if (ZB != ZB_Undefined && Val == 0) |
| 96 | return 64; |
| 97 | |
| 98 | #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0) |
| 99 | return __builtin_ctzll(Val); |
| 100 | #elif defined(_MSC_VER) |
| 101 | unsigned long Index; |
| 102 | _BitScanForward64(&Index, Val); |
| 103 | return Index; |
| 104 | #endif |
| 105 | } |
| 106 | }; |
| 107 | #endif |
| 108 | #endif |
| 109 | } // namespace detail |
| 110 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 111 | /// Count number of 0's from the least significant bit to the most |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 112 | /// stopping at the first 1. |
| 113 | /// |
| 114 | /// Only unsigned integral types are allowed. |
| 115 | /// |
| 116 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 117 | /// valid arguments. |
| 118 | template <typename T> |
| 119 | std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 120 | static_assert(std::numeric_limits<T>::is_integer && |
| 121 | !std::numeric_limits<T>::is_signed, |
| 122 | "Only unsigned integral types are allowed."); |
| 123 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 124 | } |
| 125 | |
| 126 | namespace detail { |
| 127 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
| 128 | static std::size_t count(T Val, ZeroBehavior) { |
| 129 | if (!Val) |
| 130 | return std::numeric_limits<T>::digits; |
| 131 | |
| 132 | // Bisection method. |
| 133 | std::size_t ZeroBits = 0; |
| 134 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 135 | T Tmp = Val >> Shift; |
| 136 | if (Tmp) |
| 137 | Val = Tmp; |
| 138 | else |
| 139 | ZeroBits |= Shift; |
| 140 | } |
| 141 | return ZeroBits; |
| 142 | } |
| 143 | }; |
| 144 | |
| 145 | #if __GNUC__ >= 4 || defined(_MSC_VER) |
| 146 | template <typename T> struct LeadingZerosCounter<T, 4> { |
| 147 | static std::size_t count(T Val, ZeroBehavior ZB) { |
| 148 | if (ZB != ZB_Undefined && Val == 0) |
| 149 | return 32; |
| 150 | |
| 151 | #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) |
| 152 | return __builtin_clz(Val); |
| 153 | #elif defined(_MSC_VER) |
| 154 | unsigned long Index; |
| 155 | _BitScanReverse(&Index, Val); |
| 156 | return Index ^ 31; |
| 157 | #endif |
| 158 | } |
| 159 | }; |
| 160 | |
| 161 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 162 | template <typename T> struct LeadingZerosCounter<T, 8> { |
| 163 | static std::size_t count(T Val, ZeroBehavior ZB) { |
| 164 | if (ZB != ZB_Undefined && Val == 0) |
| 165 | return 64; |
| 166 | |
| 167 | #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) |
| 168 | return __builtin_clzll(Val); |
| 169 | #elif defined(_MSC_VER) |
| 170 | unsigned long Index; |
| 171 | _BitScanReverse64(&Index, Val); |
| 172 | return Index ^ 63; |
| 173 | #endif |
| 174 | } |
| 175 | }; |
| 176 | #endif |
| 177 | #endif |
| 178 | } // namespace detail |
| 179 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 180 | /// Count number of 0's from the most significant bit to the least |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 181 | /// stopping at the first 1. |
| 182 | /// |
| 183 | /// Only unsigned integral types are allowed. |
| 184 | /// |
| 185 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 186 | /// valid arguments. |
| 187 | template <typename T> |
| 188 | std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 189 | static_assert(std::numeric_limits<T>::is_integer && |
| 190 | !std::numeric_limits<T>::is_signed, |
| 191 | "Only unsigned integral types are allowed."); |
| 192 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 193 | } |
| 194 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 195 | /// Get the index of the first set bit starting from the least |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 196 | /// significant bit. |
| 197 | /// |
| 198 | /// Only unsigned integral types are allowed. |
| 199 | /// |
| 200 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 201 | /// valid arguments. |
| 202 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 203 | if (ZB == ZB_Max && Val == 0) |
| 204 | return std::numeric_limits<T>::max(); |
| 205 | |
| 206 | return countTrailingZeros(Val, ZB_Undefined); |
| 207 | } |
| 208 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 209 | /// Create a bitmask with the N right-most bits set to 1, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 210 | /// bits set to 0. Only unsigned types are allowed. |
| 211 | template <typename T> T maskTrailingOnes(unsigned N) { |
| 212 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
| 213 | const unsigned Bits = CHAR_BIT * sizeof(T); |
| 214 | assert(N <= Bits && "Invalid bit index"); |
| 215 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
| 216 | } |
| 217 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 218 | /// Create a bitmask with the N left-most bits set to 1, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 219 | /// bits set to 0. Only unsigned types are allowed. |
| 220 | template <typename T> T maskLeadingOnes(unsigned N) { |
| 221 | return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 222 | } |
| 223 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 224 | /// Create a bitmask with the N right-most bits set to 0, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 225 | /// bits set to 1. Only unsigned types are allowed. |
| 226 | template <typename T> T maskTrailingZeros(unsigned N) { |
| 227 | return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 228 | } |
| 229 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 230 | /// Create a bitmask with the N left-most bits set to 0, and all other |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 231 | /// bits set to 1. Only unsigned types are allowed. |
| 232 | template <typename T> T maskLeadingZeros(unsigned N) { |
| 233 | return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
| 234 | } |
| 235 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 236 | /// Get the index of the last set bit starting from the least |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 237 | /// significant bit. |
| 238 | /// |
| 239 | /// Only unsigned integral types are allowed. |
| 240 | /// |
| 241 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 242 | /// valid arguments. |
| 243 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 244 | if (ZB == ZB_Max && Val == 0) |
| 245 | return std::numeric_limits<T>::max(); |
| 246 | |
| 247 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
| 248 | // in the __builtin_clz intrinsic on x86. |
| 249 | return countLeadingZeros(Val, ZB_Undefined) ^ |
| 250 | (std::numeric_limits<T>::digits - 1); |
| 251 | } |
| 252 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 253 | /// Macro compressed bit reversal table for 256 bits. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 254 | /// |
| 255 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
| 256 | static const unsigned char BitReverseTable256[256] = { |
| 257 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
| 258 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
| 259 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
| 260 | R6(0), R6(2), R6(1), R6(3) |
| 261 | #undef R2 |
| 262 | #undef R4 |
| 263 | #undef R6 |
| 264 | }; |
| 265 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 266 | /// Reverse the bits in \p Val. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 267 | template <typename T> |
| 268 | T reverseBits(T Val) { |
| 269 | unsigned char in[sizeof(Val)]; |
| 270 | unsigned char out[sizeof(Val)]; |
| 271 | std::memcpy(in, &Val, sizeof(Val)); |
| 272 | for (unsigned i = 0; i < sizeof(Val); ++i) |
| 273 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
| 274 | std::memcpy(&Val, out, sizeof(Val)); |
| 275 | return Val; |
| 276 | } |
| 277 | |
| 278 | // NOTE: The following support functions use the _32/_64 extensions instead of |
| 279 | // type overloading so that signed and unsigned integers can be used without |
| 280 | // ambiguity. |
| 281 | |
| 282 | /// Return the high 32 bits of a 64 bit value. |
| 283 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
| 284 | return static_cast<uint32_t>(Value >> 32); |
| 285 | } |
| 286 | |
| 287 | /// Return the low 32 bits of a 64 bit value. |
| 288 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
| 289 | return static_cast<uint32_t>(Value); |
| 290 | } |
| 291 | |
| 292 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
| 293 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
| 294 | return ((uint64_t)High << 32) | (uint64_t)Low; |
| 295 | } |
| 296 | |
| 297 | /// Checks if an integer fits into the given bit width. |
| 298 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
| 299 | return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); |
| 300 | } |
| 301 | // Template specializations to get better code for common cases. |
| 302 | template <> constexpr inline bool isInt<8>(int64_t x) { |
| 303 | return static_cast<int8_t>(x) == x; |
| 304 | } |
| 305 | template <> constexpr inline bool isInt<16>(int64_t x) { |
| 306 | return static_cast<int16_t>(x) == x; |
| 307 | } |
| 308 | template <> constexpr inline bool isInt<32>(int64_t x) { |
| 309 | return static_cast<int32_t>(x) == x; |
| 310 | } |
| 311 | |
| 312 | /// Checks if a signed integer is an N bit number shifted left by S. |
| 313 | template <unsigned N, unsigned S> |
| 314 | constexpr inline bool isShiftedInt(int64_t x) { |
| 315 | static_assert( |
| 316 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
| 317 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
| 318 | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
| 319 | } |
| 320 | |
| 321 | /// Checks if an unsigned integer fits into the given bit width. |
| 322 | /// |
| 323 | /// This is written as two functions rather than as simply |
| 324 | /// |
| 325 | /// return N >= 64 || X < (UINT64_C(1) << N); |
| 326 | /// |
| 327 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting |
| 328 | /// left too many places. |
| 329 | template <unsigned N> |
| 330 | constexpr inline typename std::enable_if<(N < 64), bool>::type |
| 331 | isUInt(uint64_t X) { |
| 332 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
| 333 | return X < (UINT64_C(1) << (N)); |
| 334 | } |
| 335 | template <unsigned N> |
| 336 | constexpr inline typename std::enable_if<N >= 64, bool>::type |
| 337 | isUInt(uint64_t X) { |
| 338 | return true; |
| 339 | } |
| 340 | |
| 341 | // Template specializations to get better code for common cases. |
| 342 | template <> constexpr inline bool isUInt<8>(uint64_t x) { |
| 343 | return static_cast<uint8_t>(x) == x; |
| 344 | } |
| 345 | template <> constexpr inline bool isUInt<16>(uint64_t x) { |
| 346 | return static_cast<uint16_t>(x) == x; |
| 347 | } |
| 348 | template <> constexpr inline bool isUInt<32>(uint64_t x) { |
| 349 | return static_cast<uint32_t>(x) == x; |
| 350 | } |
| 351 | |
| 352 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
| 353 | template <unsigned N, unsigned S> |
| 354 | constexpr inline bool isShiftedUInt(uint64_t x) { |
| 355 | static_assert( |
| 356 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
| 357 | static_assert(N + S <= 64, |
| 358 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
| 359 | // Per the two static_asserts above, S must be strictly less than 64. So |
| 360 | // 1 << S is not undefined behavior. |
| 361 | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
| 362 | } |
| 363 | |
| 364 | /// Gets the maximum value for a N-bit unsigned integer. |
| 365 | inline uint64_t maxUIntN(uint64_t N) { |
| 366 | assert(N > 0 && N <= 64 && "integer width out of range"); |
| 367 | |
| 368 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
| 369 | // (uint64_t(1) << N) - 1 |
| 370 | // without checking first that N != 64. But this works and doesn't have a |
| 371 | // branch. |
| 372 | return UINT64_MAX >> (64 - N); |
| 373 | } |
| 374 | |
| 375 | /// Gets the minimum value for a N-bit signed integer. |
| 376 | inline int64_t minIntN(int64_t N) { |
| 377 | assert(N > 0 && N <= 64 && "integer width out of range"); |
| 378 | |
| 379 | return -(UINT64_C(1)<<(N-1)); |
| 380 | } |
| 381 | |
| 382 | /// Gets the maximum value for a N-bit signed integer. |
| 383 | inline int64_t maxIntN(int64_t N) { |
| 384 | assert(N > 0 && N <= 64 && "integer width out of range"); |
| 385 | |
| 386 | // This relies on two's complement wraparound when N == 64, so we convert to |
| 387 | // int64_t only at the very end to avoid UB. |
| 388 | return (UINT64_C(1) << (N - 1)) - 1; |
| 389 | } |
| 390 | |
| 391 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
| 392 | inline bool isUIntN(unsigned N, uint64_t x) { |
| 393 | return N >= 64 || x <= maxUIntN(N); |
| 394 | } |
| 395 | |
| 396 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
| 397 | inline bool isIntN(unsigned N, int64_t x) { |
| 398 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
| 399 | } |
| 400 | |
| 401 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 402 | /// least significant bit with the remainder zero (32 bit version). |
| 403 | /// Ex. isMask_32(0x0000FFFFU) == true. |
| 404 | constexpr inline bool isMask_32(uint32_t Value) { |
| 405 | return Value && ((Value + 1) & Value) == 0; |
| 406 | } |
| 407 | |
| 408 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 409 | /// least significant bit with the remainder zero (64 bit version). |
| 410 | constexpr inline bool isMask_64(uint64_t Value) { |
| 411 | return Value && ((Value + 1) & Value) == 0; |
| 412 | } |
| 413 | |
| 414 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 415 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 416 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
| 417 | return Value && isMask_32((Value - 1) | Value); |
| 418 | } |
| 419 | |
| 420 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 421 | /// remainder zero (64 bit version.) |
| 422 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
| 423 | return Value && isMask_64((Value - 1) | Value); |
| 424 | } |
| 425 | |
| 426 | /// Return true if the argument is a power of two > 0. |
| 427 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| 428 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
| 429 | return Value && !(Value & (Value - 1)); |
| 430 | } |
| 431 | |
| 432 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
| 433 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
| 434 | return Value && !(Value & (Value - 1)); |
| 435 | } |
| 436 | |
| 437 | /// Return a byte-swapped representation of the 16-bit argument. |
| 438 | inline uint16_t ByteSwap_16(uint16_t Value) { |
| 439 | return sys::SwapByteOrder_16(Value); |
| 440 | } |
| 441 | |
| 442 | /// Return a byte-swapped representation of the 32-bit argument. |
| 443 | inline uint32_t ByteSwap_32(uint32_t Value) { |
| 444 | return sys::SwapByteOrder_32(Value); |
| 445 | } |
| 446 | |
| 447 | /// Return a byte-swapped representation of the 64-bit argument. |
| 448 | inline uint64_t ByteSwap_64(uint64_t Value) { |
| 449 | return sys::SwapByteOrder_64(Value); |
| 450 | } |
| 451 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 452 | /// Count the number of ones from the most significant bit to the first |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 453 | /// zero bit. |
| 454 | /// |
| 455 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
| 456 | /// Only unsigned integral types are allowed. |
| 457 | /// |
| 458 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 459 | /// ZB_Undefined are valid arguments. |
| 460 | template <typename T> |
| 461 | std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 462 | static_assert(std::numeric_limits<T>::is_integer && |
| 463 | !std::numeric_limits<T>::is_signed, |
| 464 | "Only unsigned integral types are allowed."); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 465 | return countLeadingZeros<T>(~Value, ZB); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 466 | } |
| 467 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 468 | /// Count the number of ones from the least significant bit to the first |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 469 | /// zero bit. |
| 470 | /// |
| 471 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
| 472 | /// Only unsigned integral types are allowed. |
| 473 | /// |
| 474 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 475 | /// ZB_Undefined are valid arguments. |
| 476 | template <typename T> |
| 477 | std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 478 | static_assert(std::numeric_limits<T>::is_integer && |
| 479 | !std::numeric_limits<T>::is_signed, |
| 480 | "Only unsigned integral types are allowed."); |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 481 | return countTrailingZeros<T>(~Value, ZB); |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 482 | } |
| 483 | |
| 484 | namespace detail { |
| 485 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 486 | static unsigned count(T Value) { |
| 487 | // Generic version, forward to 32 bits. |
| 488 | static_assert(SizeOfT <= 4, "Not implemented!"); |
| 489 | #if __GNUC__ >= 4 |
| 490 | return __builtin_popcount(Value); |
| 491 | #else |
| 492 | uint32_t v = Value; |
| 493 | v = v - ((v >> 1) & 0x55555555); |
| 494 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 495 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
| 496 | #endif |
| 497 | } |
| 498 | }; |
| 499 | |
| 500 | template <typename T> struct PopulationCounter<T, 8> { |
| 501 | static unsigned count(T Value) { |
| 502 | #if __GNUC__ >= 4 |
| 503 | return __builtin_popcountll(Value); |
| 504 | #else |
| 505 | uint64_t v = Value; |
| 506 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 507 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 508 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 509 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 510 | #endif |
| 511 | } |
| 512 | }; |
| 513 | } // namespace detail |
| 514 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 515 | /// Count the number of set bits in a value. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 516 | /// Ex. countPopulation(0xF000F000) = 8 |
| 517 | /// Returns 0 if the word is zero. |
| 518 | template <typename T> |
| 519 | inline unsigned countPopulation(T Value) { |
| 520 | static_assert(std::numeric_limits<T>::is_integer && |
| 521 | !std::numeric_limits<T>::is_signed, |
| 522 | "Only unsigned integral types are allowed."); |
| 523 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 524 | } |
| 525 | |
| 526 | /// Return the log base 2 of the specified value. |
| 527 | inline double Log2(double Value) { |
| 528 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 |
| 529 | return __builtin_log(Value) / __builtin_log(2.0); |
| 530 | #else |
| 531 | return log2(Value); |
| 532 | #endif |
| 533 | } |
| 534 | |
| 535 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 536 | /// (32 bit edition.) |
| 537 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| 538 | inline unsigned Log2_32(uint32_t Value) { |
| 539 | return 31 - countLeadingZeros(Value); |
| 540 | } |
| 541 | |
| 542 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 543 | /// (64 bit edition.) |
| 544 | inline unsigned Log2_64(uint64_t Value) { |
| 545 | return 63 - countLeadingZeros(Value); |
| 546 | } |
| 547 | |
| 548 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
| 549 | /// (32 bit edition). |
| 550 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| 551 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
| 552 | return 32 - countLeadingZeros(Value - 1); |
| 553 | } |
| 554 | |
| 555 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
| 556 | /// (64 bit edition.) |
| 557 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
| 558 | return 64 - countLeadingZeros(Value - 1); |
| 559 | } |
| 560 | |
| 561 | /// Return the greatest common divisor of the values using Euclid's algorithm. |
| 562 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
| 563 | while (B) { |
| 564 | uint64_t T = B; |
| 565 | B = A % B; |
| 566 | A = T; |
| 567 | } |
| 568 | return A; |
| 569 | } |
| 570 | |
| 571 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
| 572 | inline double BitsToDouble(uint64_t Bits) { |
| 573 | double D; |
| 574 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 575 | memcpy(&D, &Bits, sizeof(Bits)); |
| 576 | return D; |
| 577 | } |
| 578 | |
| 579 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
| 580 | inline float BitsToFloat(uint32_t Bits) { |
| 581 | float F; |
| 582 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 583 | memcpy(&F, &Bits, sizeof(Bits)); |
| 584 | return F; |
| 585 | } |
| 586 | |
| 587 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
| 588 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
| 589 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 590 | inline uint64_t DoubleToBits(double Double) { |
| 591 | uint64_t Bits; |
| 592 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 593 | memcpy(&Bits, &Double, sizeof(Double)); |
| 594 | return Bits; |
| 595 | } |
| 596 | |
| 597 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
| 598 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
| 599 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 600 | inline uint32_t FloatToBits(float Float) { |
| 601 | uint32_t Bits; |
| 602 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 603 | memcpy(&Bits, &Float, sizeof(Float)); |
| 604 | return Bits; |
| 605 | } |
| 606 | |
| 607 | /// A and B are either alignments or offsets. Return the minimum alignment that |
| 608 | /// may be assumed after adding the two together. |
| 609 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
| 610 | // The largest power of 2 that divides both A and B. |
| 611 | // |
| 612 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
| 613 | // MSVC warning C4146 |
| 614 | // return (A | B) & -(A | B); |
| 615 | return (A | B) & (1 + ~(A | B)); |
| 616 | } |
| 617 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 618 | /// Aligns \c Addr to \c Alignment bytes, rounding up. |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 619 | /// |
| 620 | /// Alignment should be a power of two. This method rounds up, so |
| 621 | /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. |
| 622 | inline uintptr_t alignAddr(const void *Addr, size_t Alignment) { |
| 623 | assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && |
| 624 | "Alignment is not a power of two!"); |
| 625 | |
| 626 | assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); |
| 627 | |
| 628 | return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); |
| 629 | } |
| 630 | |
Andrew Scull | cdfcccc | 2018-10-05 20:58:37 +0100 | [diff] [blame] | 631 | /// Returns the necessary adjustment for aligning \c Ptr to \c Alignment |
Andrew Scull | 5e1ddfa | 2018-08-14 10:06:54 +0100 | [diff] [blame] | 632 | /// bytes, rounding up. |
| 633 | inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) { |
| 634 | return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; |
| 635 | } |
| 636 | |
| 637 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
| 638 | /// Returns zero on overflow. |
| 639 | inline uint64_t NextPowerOf2(uint64_t A) { |
| 640 | A |= (A >> 1); |
| 641 | A |= (A >> 2); |
| 642 | A |= (A >> 4); |
| 643 | A |= (A >> 8); |
| 644 | A |= (A >> 16); |
| 645 | A |= (A >> 32); |
| 646 | return A + 1; |
| 647 | } |
| 648 | |
| 649 | /// Returns the power of two which is less than or equal to the given value. |
| 650 | /// Essentially, it is a floor operation across the domain of powers of two. |
| 651 | inline uint64_t PowerOf2Floor(uint64_t A) { |
| 652 | if (!A) return 0; |
| 653 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); |
| 654 | } |
| 655 | |
| 656 | /// Returns the power of two which is greater than or equal to the given value. |
| 657 | /// Essentially, it is a ceil operation across the domain of powers of two. |
| 658 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
| 659 | if (!A) |
| 660 | return 0; |
| 661 | return NextPowerOf2(A - 1); |
| 662 | } |
| 663 | |
| 664 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 665 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
| 666 | /// |
| 667 | /// If non-zero \p Skew is specified, the return value will be a minimal |
| 668 | /// integer that is greater than or equal to \p Value and equal to |
| 669 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than |
| 670 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. |
| 671 | /// |
| 672 | /// Examples: |
| 673 | /// \code |
| 674 | /// alignTo(5, 8) = 8 |
| 675 | /// alignTo(17, 8) = 24 |
| 676 | /// alignTo(~0LL, 8) = 0 |
| 677 | /// alignTo(321, 255) = 510 |
| 678 | /// |
| 679 | /// alignTo(5, 8, 7) = 7 |
| 680 | /// alignTo(17, 8, 1) = 17 |
| 681 | /// alignTo(~0LL, 8, 3) = 3 |
| 682 | /// alignTo(321, 255, 42) = 552 |
| 683 | /// \endcode |
| 684 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 685 | assert(Align != 0u && "Align can't be 0."); |
| 686 | Skew %= Align; |
| 687 | return (Value + Align - 1 - Skew) / Align * Align + Skew; |
| 688 | } |
| 689 | |
| 690 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 691 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
| 692 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
| 693 | static_assert(Align != 0u, "Align must be non-zero"); |
| 694 | return (Value + Align - 1) / Align * Align; |
| 695 | } |
| 696 | |
| 697 | /// Returns the integer ceil(Numerator / Denominator). |
| 698 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
| 699 | return alignTo(Numerator, Denominator) / Denominator; |
| 700 | } |
| 701 | |
| 702 | /// \c alignTo for contexts where a constant expression is required. |
| 703 | /// \sa alignTo |
| 704 | /// |
| 705 | /// \todo FIXME: remove when \c constexpr becomes really \c constexpr |
| 706 | template <uint64_t Align> |
| 707 | struct AlignTo { |
| 708 | static_assert(Align != 0u, "Align must be non-zero"); |
| 709 | template <uint64_t Value> |
| 710 | struct from_value { |
| 711 | static const uint64_t value = (Value + Align - 1) / Align * Align; |
| 712 | }; |
| 713 | }; |
| 714 | |
| 715 | /// Returns the largest uint64_t less than or equal to \p Value and is |
| 716 | /// \p Skew mod \p Align. \p Align must be non-zero |
| 717 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 718 | assert(Align != 0u && "Align can't be 0."); |
| 719 | Skew %= Align; |
| 720 | return (Value - Skew) / Align * Align + Skew; |
| 721 | } |
| 722 | |
| 723 | /// Returns the offset to the next integer (mod 2**64) that is greater than |
| 724 | /// or equal to \p Value and is a multiple of \p Align. \p Align must be |
| 725 | /// non-zero. |
| 726 | inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { |
| 727 | return alignTo(Value, Align) - Value; |
| 728 | } |
| 729 | |
| 730 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 731 | /// Requires 0 < B <= 32. |
| 732 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
| 733 | static_assert(B > 0, "Bit width can't be 0."); |
| 734 | static_assert(B <= 32, "Bit width out of range."); |
| 735 | return int32_t(X << (32 - B)) >> (32 - B); |
| 736 | } |
| 737 | |
| 738 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 739 | /// Requires 0 < B < 32. |
| 740 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
| 741 | assert(B > 0 && "Bit width can't be 0."); |
| 742 | assert(B <= 32 && "Bit width out of range."); |
| 743 | return int32_t(X << (32 - B)) >> (32 - B); |
| 744 | } |
| 745 | |
| 746 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 747 | /// Requires 0 < B < 64. |
| 748 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
| 749 | static_assert(B > 0, "Bit width can't be 0."); |
| 750 | static_assert(B <= 64, "Bit width out of range."); |
| 751 | return int64_t(x << (64 - B)) >> (64 - B); |
| 752 | } |
| 753 | |
| 754 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 755 | /// Requires 0 < B < 64. |
| 756 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
| 757 | assert(B > 0 && "Bit width can't be 0."); |
| 758 | assert(B <= 64 && "Bit width out of range."); |
| 759 | return int64_t(X << (64 - B)) >> (64 - B); |
| 760 | } |
| 761 | |
| 762 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
| 763 | /// value of the result. |
| 764 | template <typename T> |
| 765 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
| 766 | AbsoluteDifference(T X, T Y) { |
| 767 | return std::max(X, Y) - std::min(X, Y); |
| 768 | } |
| 769 | |
| 770 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
| 771 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 772 | /// the result is larger than the maximum representable value of type T. |
| 773 | template <typename T> |
| 774 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
| 775 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 776 | bool Dummy; |
| 777 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 778 | // Hacker's Delight, p. 29 |
| 779 | T Z = X + Y; |
| 780 | Overflowed = (Z < X || Z < Y); |
| 781 | if (Overflowed) |
| 782 | return std::numeric_limits<T>::max(); |
| 783 | else |
| 784 | return Z; |
| 785 | } |
| 786 | |
| 787 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
| 788 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 789 | /// the result is larger than the maximum representable value of type T. |
| 790 | template <typename T> |
| 791 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
| 792 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 793 | bool Dummy; |
| 794 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 795 | |
| 796 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
| 797 | // because it fails for uint16_t (where multiplication can have undefined |
| 798 | // behavior due to promotion to int), and requires a division in addition |
| 799 | // to the multiplication. |
| 800 | |
| 801 | Overflowed = false; |
| 802 | |
| 803 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
| 804 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
| 805 | // will necessarily be less than Log2Max as desired. |
| 806 | int Log2Z = Log2_64(X) + Log2_64(Y); |
| 807 | const T Max = std::numeric_limits<T>::max(); |
| 808 | int Log2Max = Log2_64(Max); |
| 809 | if (Log2Z < Log2Max) { |
| 810 | return X * Y; |
| 811 | } |
| 812 | if (Log2Z > Log2Max) { |
| 813 | Overflowed = true; |
| 814 | return Max; |
| 815 | } |
| 816 | |
| 817 | // We're going to use the top bit, and maybe overflow one |
| 818 | // bit past it. Multiply all but the bottom bit then add |
| 819 | // that on at the end. |
| 820 | T Z = (X >> 1) * Y; |
| 821 | if (Z & ~(Max >> 1)) { |
| 822 | Overflowed = true; |
| 823 | return Max; |
| 824 | } |
| 825 | Z <<= 1; |
| 826 | if (X & 1) |
| 827 | return SaturatingAdd(Z, Y, ResultOverflowed); |
| 828 | |
| 829 | return Z; |
| 830 | } |
| 831 | |
| 832 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
| 833 | /// the product. Clamp the result to the maximum representable value of T on |
| 834 | /// overflow. ResultOverflowed indicates if the result is larger than the |
| 835 | /// maximum representable value of type T. |
| 836 | template <typename T> |
| 837 | typename std::enable_if<std::is_unsigned<T>::value, T>::type |
| 838 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
| 839 | bool Dummy; |
| 840 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 841 | |
| 842 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
| 843 | if (Overflowed) |
| 844 | return Product; |
| 845 | |
| 846 | return SaturatingAdd(A, Product, &Overflowed); |
| 847 | } |
| 848 | |
| 849 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
| 850 | extern const float huge_valf; |
| 851 | } // End llvm namespace |
| 852 | |
| 853 | #endif |